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bDepartment of Economics and Management, University of Ferrara, Italy

Abstract

This paper elaborates an empirical analysis of the temporal and geographical distribution of green tech-
nology, and on how specific country characteristics enable or thwart environmental inventive activities.
Using patent data on 63 countries over the period 1971-2012 we identify key drivers of cross-country
diversification and specialisation. Our first finding is that countries diversify towards green technolo-
gies that are related to their existing competences. Notably, the maturity of the green technology
seems to matter more than the level of development of each country. The second main result is that
countries move along cumulative paths of specialisation, and towards more mature green technologies.
Interestingly, the complexity of green technologies is not an obstacle to further specialisation. The
latter holds also for developing countries that are most exposed to climate change hazards.
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1. Introduction

This paper elaborates an empirical analysis of the temporal and geographical distribution of en-

vironmental inventive activities, and on how country and green technological characteristics enable

or thwart the development of green technology. The backdrop to our study is the debate on climate

change and the growing consensus around the urgency to build climate resilience and increased expo-

sure to extreme weather events for preserving global stability (World Economic Forum, 2018). The

prospective costs of non-action are high considering that, for example, air and water pollution pose

serious threats to human health, or that loss of biodiversity and depletion of agricultural resources

imperil the global supply of food (see i.e. Haines and Patz, 2004; Patz et al., 2005; McMichael et al.,

2006). What is more, these risks are interconnected in ways that could trigger a chain of events with

potentially higher social and economic costs – for example, water scarcity may induce large-scale in-
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voluntary migration. Scholars and policy makers agree that multilateral and multilevel responses are

required to contain the degradation of the global environment and prevent further risks. As Ayres and

van den Bergh (2005) [p. 116] put it “economic growth must be accompanied by structural change,

which implies continuous introduction of new products and new production technologies, and changes

in [energy] efficiency and de-materialization”.

Far from ignoring the limitations and the intrinsic difficulties of a ‘technological fix’ (Sarewitz and

Nelson, 2008), accelerating the development and diffusion of new low-carbon technologies remains a

staple of any strategy aimed at dealing with climate change (Stern, 2007; Johnstone et al., 2012). The

presence of market failures highlights that policy intervention aimed at incentivising investments in

the development of green technologies and products are required (Jaffe et al., 2005; Popp et al., 2010).

According to Arrow (1972), increasing returns, knowledge inappropriability and uncertainty lead to

underinvestment in R&D activities. Whereas these issues commonly affect all types of knowledge, the

higher complexity, novelty and impact of environmental technologies enhances the detrimental effect

of these market failures (Barbieri et al., 2018a). In addition, the loss of environmental quality brought

about by production activities is borne by third parties rather than by the polluters (i.e. environmental

externalities). Thus, in this complex scenario the targets and design of policy are pivotal to address

these market failures and trigger green technological change.1 Indeed, successful policy would call upon

a broad portfolio of technologies and of competences, due to the wide range of activities and sectors

that generate greenhouse-gas (GHG) emissions. This implies high complexity and uncertainty. For

one, the ability to stay apace with the green technological frontier varies significantly across countries

(Sbardella et al., 2018). Further, while environmentally-friendly technologies emerge first, and more

frequently, in more developed countries the urgency of effective deployment of adaptation technologies

is stronger in poorer countries (Mendelsohn et al., 2006; Bathiany et al., 2018)2. In turn, unequal

1See Barbieri et al. (2016) for a review of the studies that investigate the inducement effect of environmental policies
on eco-innovation.

2See an overview of emissions by country: http://www.wri.org/blog/2017/04/

interactive-chart-explains-worlds-top-10-emitters-and-how-theyve-changed (Last accessed: 1 November
2018).
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distribution of innovative capacity is a global problem, because achieving or maintaining resource

efficiency through innovation requires international cooperation, for example to harmonize product

standards (Stern, 2007). Furthermore, this process could become self-reinforcing, as less developed

countries remain trapped in high-carbon regimes that limit incentives to develop competences for

emission containment and that, ultimately, increase exposure to climate change (Dessai et al., 2009;

Cardona et al., 2012).

Against this backdrop, we propose an empirical study of environmental innovation that accounts

for both the specificities of geography and of technological domains. As the comprehensive review

by Barbieri et al. (2016) shows, existing literature falls short in at least one of these two dimensions.

Prior efforts at comprehensively mapping the spatial distribution of inventive activities in environmen-

tal technologies are limited to most advanced economies (i.e. Lanjouw and Mody, 1996; Veugelers,

2012; Costantini and Mazzanti, 2012; Fankhauser et al., 2013; Calel and Dechezleprêtre, 2016) and

do not delve into country-specific green technological characteristics (e.g. technological comparative

advantage, technological maturity). Other scholarly work focuses on either individual countries (Calel

and Dechezleprêtre, 2016; Marin, 2014; Gagliardi et al., 2016) or on specific technological domains -

predominantly energy (Popp, 2002; Fischer and Newell, 2008; Nesta et al., 2014). In our view, the

lack of engagement with issues concerning how countries build green innovation capabilities, and how

such a capacity differs along the gradient of economic development, is a major shortcoming for both

policy and scholarly debates.

The present paper fills this gap by, first, elaborating systematic and up-to-date evidence on environ-

mental technology development and, second, by analysing patterns of diversification and specialisation

in panel of 63 countries over the period 1971-2012. Our empirical approach replicates the methodology

proposed by Petralia et al. (2017), hereafter PBM, and extends it to green technology using disaggre-

gated data of patenting activity. While PBM provides an empirical framework on all technology, we

apply the same approach to uncover general trends of green technological specialisation, and identify

country-specific factors that enable or hinder the diversification in new areas of green technology. Such
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an exercise provides a clear characterization of the leaders and of the laggards in the global effort to

counter climate change.

The main findings of this paper are three. First, countries are more likely to diversify into domains

of green technology that are related to their portfolio of competences. This is coherent with the broad

picture on the entire technological landscape that emerges from PBM. The result is also in line with the

insights provided by Barbieri et al. (2018a) who point out that green technologies recombine a broad

range of knowledge sources and technological components. Second, specialisation and diversification

do not exhibit strong association with the stage of development of a country but, rather, with the

maturity of the green technology. In fact, gaps in competences may represent a bigger obstacle than

gaps in wealth. Third, we find that countries move along cumulative paths of specialisation. At the

same time, and contrary to prior studies, the complexity of green technologies is not an obstacle to

further specialisation. Notably, this holds true even for developing countries. Although our study is

not aimed at analysing the effectiveness of policy implementation, the commitment of the political

framework to address environmental harmful behaviour is crucial for spurring competitive advantage

in green technological development. We expect our insights to aid the identification of effective policy

design in that accounting for both the innovation capabilities a country is endowed with and for the

maturity of green technologies is important to inform the course of action.

The paper is structured as follows. After a review of the relevant literature in Section 2, Section 3

details the main data sources and the procedure for the construction of the main variables. Section 4

provides information on the descriptive statistics and the empirical methods. Results are discussed in

Section 5. The last section summarises and concludes.

2. Literature review

The analysis of the nature, the sources and the diffusion of eco-innovation is at the centre of an

intense debate among academics and policy makers alike. The broad consensus is that accelerating the

development of new low-carbon technologies and promoting their global application are crucial steps,
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albeit not the only ones, towards containing and preventing GHG emissions (OECD, 2011). As a vast

literature shows, the development of green innovation confront a diverse array of barriers that lead

to underinvestment in R&D activities. First, uncertainty in reaching the desired innovation outcome

or in the market success of innovations negatively affects the propensity to engage in such activities

(Arrow, 1962). Second, the public good nature of the information contained in innovation implies that

innovators bear the entire cost of the knowledge generation process while externalities prevents them

from reaping the full benefits (Arrow, 1962; Nelson, 1959). Third, uncertainty on the appropriability

of the prospective environmental benefits and knowledge-related barriers create the so-called ‘double

externality’ feature that hampers green technological development (Jaffe et al., 2005; Newell, 2010).

Other barriers to the diffusion of green technology may arise from systemic failures – such as i.e. lack of

skills, weak institutions – that hinder knowledge flows and, thus, the efficiency of R&D and innovation

efforts (OECD, 2003). These market failures lead to insufficient credit to eco-innovation which deters

from investing in green technologies (Ghisetti et al., 2015). The extant literature emphasise that policy

maker intervention is crucial to overcome barriers to green innovation, suggesting that environmental

policies are important to mobilise knowledge generation (see, among others, Popp, 2002).

The complexity associated with these broad issues increases significantly when the analysis in-

cludes the spatial dimension. Geography is, we argue, a necessary lens as climate change is a global

phenomenon with marked local manifestations, which implies that confronting this grand societal

challenge depends crucially on the specificities of place. For one, geographical areas differ significantly

both in their exposure as well as in their ability to respond effectively to climate events (Jurgilevich

et al., 2017). Further, the striking paradox is that while environmentally-friendly technologies emerge

primarily in industrialized countries, the urgency to adapt to climate change is stronger in poorer

countries (Mendelsohn et al., 2006; Bathiany et al., 2018). In addition, the double externality problem

highlights the critical role of the attendant institutional conditions for promoting or thwarting sustain-

able economic growth. Governance mechanisms that are crucial to create the right mix of incentives for

efficient use of natural resources and environmental conservation while minimizing prospective market
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failures, are spatially bound (Deacon and Mueller, 2006).

Spatial features also matter for the innovation process. It has long been established that the gener-

ation and diffusion of knowledge, prime engines of innovation, stem from the recombination of existing

ideas (Romer, 1994; Weitzman, 1998) among agents that have limited access to information, and im-

perfect capacity to absorb, process, and respond to new information (Cohen and Levinthal, 1990). A

key point is that economic development builds on existing local capabilities to generate distinctive

technological and industrial profiles (Rigby and Essletzbichler, 1997). Such a distinctiveness depends

on the composition of knowledge, that is, the number of underlying inputs and the interdependence

between them (Frenken and Boschma, 2007; Neffke et al., 2011). The greater and more diverse the

spectrum of know-how, the more complex the domains to which this knowledge is applied, be they

products (Hidalgo and Hausmann, 2009; Cristelli et al., 2013), industries or technologies (Balland and

Rigby, 2017). As a consequence, information exchange confronts costs that increase with the diversity

of the attendant knowledge base. Put otherwise, higher coherence between activities facilitates the

growth of knowledge and increases the likelihood of innovation (Atkinson and Stiglitz, 1969; Chatterjee

and Wernerfelt, 1991). These characteristics point to potential weaknesses and systemic failures in the

growth and diffusion of knowledge, especially when mismatches in the incentives of private and public

research organisations become barriers to the diffusion of necessary competences.

The dynamics of local knowledge mirror, of course, those of physical technology. The literature

has analysed the latter through the lenses of the life cycle heristic proposed by Abernathy and Ut-

terback (1978) and further refined by Klepper (1996) and Utterback (1994). At early stages, variety

is highest and each prototype technology carries a set of characteristics whose effectiveness cannot

be judged ex-ante because, at least in evolutionary accounts of the story, the selection environment

co-evolves together with the contestants (Adner and Kapoor, 2015; Barbieri et al., 2018a). As tech-

nology moves towards maturity, the inferior variants are selected out, industry structures consolidate

and the knowledge base acquires a configuration based primarily on routine activities to the detriment

of explorative ones. Underlying the dynamics of the knowledge base stands the adaptation of support-
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ing institutional structures in the form of new training and research, regulatory regimes, government

infrastructure (Nelson, 1994; Vona and Consoli, 2015).

In turn, knowledge generation and diffusion rely on the organization of the territory, and the

attendant socioeconomic and cultural systems that determine the success of the local economy via

entrepreneurial ability, local production factors (labour and capital) as well as capacity for decision-

making that enables local economic and social actors to guide the development process (Capello, 2010).

Clearly the ability to develop an effective network of institutions differs significantly among countries,

and these differences significantly shape the ability to enter a technological regime, regardless of the

intrinsic complexity of the technology. No matter how codified the relevant know-how may be, the

global diffusion of technologies is subject to endogenous barriers, and replicating the characteristics

that granted leadership in early stages may simply not suffice (Nelson, 2008).

Following on these premises, we propose to identify whether and to what extent local compe-

tences hinder or facilitate the development of green technologies across countries. Prior research leads

us to expect that there are significant cross-country differences both in the ability to enter existing

technological domains, as well as setting in motion new trajectories (Lanjouw and Mody, 1996; Veugel-

ers, 2012; Costantini and Mazzanti, 2012; Fankhauser et al., 2013; Calel and Dechezleprêtre, 2016).

Only few areas possess the necessary competences to invest in complex technologies, and this capac-

ity is plausibly correlated with their long-run path of economic development (Pugliese et al., 2017;

Sbardella et al., 2018). The recent study by Petralia et al. (2017) has tackled this issue by exploring

the entire landscape of technologies across a large selection of countries. Their analysis disentangles

the role of country-specific characteristics - namely, possessing technological competences - as well as

technology-specific characteristics - namely, complexity of technology - on the paths of specialisation

and diversification.

In the remainder of the paper we employ a similar approach to map the geographical distribution

of environmental technology development, and to assess how specific country and technological char-

acteristics enable or thwart the development of inventive activities. In so doing we seek to fill a gap
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concerning how countries build green innovation capabilities, and how such a capacity differs along the

gradient of economic development.

3. Data and Variables

Data sources. We use patent data as an indirect measure of innovation capabilities in green technolo-

gies. This source of information carries benefits and shortcomings. Patents provide highly disaggre-

gated information of each invention, in particular the location of the inventor and the characteristics of

the invention which are essential to the analysis proposed here. In addition, prior research has pointed

out that patents provide a good indicator of research and development activities, as applications are

usually filed early in the research process (Griliches, 1990). In this study, we use groups of patent, viz.

families, on related inventions that have been filed in various countries to track diffusion of knowledge

across countries (e.g. Lanjouw and Mody, 1996). While we acknowledge that not all inventions are

patented, the characteristics of intellectual property rights (IPR) regimes underlying patenting activ-

ities are likely to have a significant effect on the propensity to search and develop inventions (Cohen

et al., 2000; Ginarte and Park, 1997). Further, compared to other domains, the regulatory framework

plays a particularly important role in the case of environmental technologies (Jaffe et al., 2002; Popp

et al., 2010).

The main source is the PATSTAT dataset (2016 spring version, source: European Patent Office,

EPO) from which we select patent applications related to green technologies using the ENV-TECH

classification (OECD, 2016). This lists International Patent Classification (IPC) and Cooperative

Patent Classification (CPC)3 codes concerning 95 green technologies, grouped into 8 families and 36

subgroups4. We identify a total of 1,262,281 patent families (1,032,635 patent families geolocalized

3The IPC and CPC are hierarchical technology classification systems that describes the technical content of the
patents. At the full-digit level (i.e. the lowest level of the hierarchy) the codes refer to narrow technological domains,
e.g. IPC full-digit C03C 1/02 – “Pre-treated ingredients generally applicable to manufacture of glasses, glazes or vitreous
enamels”. At the highest level, i.e. 1-digit, the codes refer to general, broad technological fields, e.g. IPC 1-digit C -
“Chemistry, Metallurgy”.

4The majority of ENV-TECH technologies are defined using CPC codes, but Environmental Management and Water-
related Adaptation Technologies are identified also with IPC codes. In an intermediate step, we convert these IPC codes
into CPC codes using a correspondence table provided by the European Patent Office (EPO) and the United States
Patent and Trademark Office (USPTO), in order to deal with just one classification system.
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and grouped in three-year intervals from 1971 to 2012 - see below) to which at least one ENV-TECH

code is assigned, in eight specific domains: environmental management, water management, energy

production, capture and storage of greenhouse gases, transportation, buildings, waste management

and production of goods.

Geolocalisation of green patent families. Our goal of developing a cross-country analysis calls for accu-

rate geographical localisation of inventive activities. To this end, we use the green technology database

5, in particular information on inventors’ addresses to geocode each patent family at city level. Infor-

mation on the location of inventors from PATSTAT is parsed through GeoNames6 and Google Maps

API.

The procedure entails 3 steps. First, we geo-localise patent families by identifying the postal codes

within the address string and searching in GeoNames. Second, for patent families in which the postal

code information is missing, or for which it is not possible to detect the geographical coordinates, we

identify the city name in the address using the city table of the GeoNames database (limiting the

search to cities with at least 5000 inhabitants in order to reduce potential noises) and we manually

check the results. To retrieve the remaining addresses for which geographical coordinates was missing,

we used the Google Maps API, a programmable interface to the geographical database developed by

Google since 2005 which allows obtaining for an address its coordinates and the administrative entities

it belongs to.

This procedure allows us to geolocalize 1,032,635 patent families (with at least 1 inventor geolocal-

ized - 57.2% patent families have more than half of their inventors geolocalized), in 146 countries. The

allocation of green inventions to countries is done using fractional counting (i.e. if a patent family has

2 inventors living in 2 different countries, 0.5 of the patent family will be assigned to the first country

and 0.5 to the second country).

5An online version is publicly available at https://www.greentechdatabase.com/
6GeoNames is a geographical database available under a Creative Commons attribution license which contains over

10 million geographical names corresponding to over 9 million unique features whereof 2.8 million populated places and
5.5 million alternate names. A feature can be physical (mountain, lake. . . ), political (country, territory. . . ), a human
settlement (city, village...), etc. See http://www.geonames.org for more information.
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Using geolocalisation at city level leads us to drop patent families where the inventor’s localisation

is not geocoded (either because his address is missing or not found). The geolocalisation rate remains

almost stable across ENV-TECH families (1 digit) and patent offices: standard deviation are 0.089

and 0.118 respectively. This reduces concerns about any bias that may be due to the geolocalisation

procedure.

Complexity of green technologies. The second key dimension in our analysis is the complexity of green

technologies. For this we employ the methodology of PBM built on the seminal work of Hidalgo et al.

(2007). In our study, technologies are the 36 items identified by means of ENV-TECH classification

and countries are those of the inventors.

The first step is to calculate the Reveal Technological Advantage (RTA), to identify countries’

technological trajectories and capabilities over time. To this end we calculate:

RTAcjt =
Patentscjt/

∑
j Patentscjt∑

c Patentscjt/
∑

cj Patentscjt

Scjt = I[RTAcjt > 1]

Where c stands for country, j for ENV-TECH subgroup, t for the 3 years time period between 1971

and 2012, and I[.] represents the indicator function. This measure provides information on country’s

specialisation in each technology, comparing the share of that technology in country’s technology

production with the worldwide average share of that technology for each time period. A country has

an advantage when its share in a green technology domain is bigger than the world average, identified

when Scjt is equal to one. This indicator identifies the time period t in which a country c starts to

diversify in a technology j (Scjt−1 = 0 and Scjt = 1) or the circumstance in which a country had not

entered a technology domain at the beginning of the period (Scjt = 0 with t = 1971 − 1974).

To construct our Index of Technological Complexity (ITC), we only consider countries that are

significant producers of particular green technology (GT) (Scjt = 1). To this end, we build a two-

mode matrix M = (Mc,j) for each time period, where Mc,j reflects whether a country c has RTA in
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the production of GT j. Following the method of reflections, the ITC is an iteration between two

variables: the diversity of countries and the ubiquity of GT. These two variables measure the degree

of centrality for both sets of nodes, in the country - green technology network.

The degree of centrality of countries is given by the number of GT in which a country has an RTA

(diversity):

kc,0 =
∑
j

Mc,j

In the same manner, the degree of centrality of GT is given by the number of countries with a RTA

in this technology (ubiquity):

kj,0 =
∑
c

Mc,j

Hidalgo and Hausmann (2009) calculate the measure of complexity for countries and technologies

as an iteration of these two degrees of centrality, as follows:

kc,n =
1

kc,0

∑
j

Mc,jkj,n−1

kj,n =
1

kj,0

∑
c

Mc,jkc,n−1

Each iteration of n provides finer-grained estimates of the knowledge complexity of technologies

they produce. To llustrate, when n = 1, kj,1 represents the average diversity of countries that have

an RTA in technology j. In the next iteration, kj,2 represents the average ubiquity of the green

technologies produced in countries that have a RTA in GT j. ITC for technology j is defined as the

value of kj,n with the maximum number of iterations for each period under analysis.

Green technological space. ENV-TECH defines 3 levels of classification, from the broader level which we

call family to the more detailed one, called technology. Families are too broad to elucidate the special-
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isation patterns of countries but technologies have too few patent families to capture the contribution

to green technologies of low-middle income countries, as defined in PBM (Appendix A). Moreover,

some families, in particular “capture, storage, sequestration or disposal of greenhouse gases” or “cli-

mate change mitigation technologies related to transportation” are only divided into subgroups. Since

using 3-digit classes of ENV-TECH would entail missing some important green technologies, we use

the 2-digits level, for a total of 36 green technologies (GT).

Each ENV-TECH family aggregates a set of technologies by topic (transportation, energy, building,

et cetera) and objective (climate change adaptation or mitigation), but the technologies belonging to a

family can have a different gradient of relatedness, and can even be more related to other technologies

outside their own family. In order to measure relatedness, we follow PBM, Hidalgo et al. (2007) and

Balland and Rigby (2017) in seeing the Technological Space as a network-based representation of the

production of technologies, defined as nodes, the relatedness of each couple of technologies being a tie

between two nodes. Accordingly, relatedness between green technology i and j is calculated as follows:

Rijt =
Ccjt√
SitSjt

Where Ccjt counts the co-occurrences of technologies i and j, and Si and Sj count the size of GT

at period t. Therefore, the more two technologies are associated to the same patent families, the more

related they are controlling for size, the higher is Rijt.

Density of green technologies. Once the proximity between green technologies is estimated, we calculate

how close is each technology to the country’s portfolio of all technologies. This variable varies from 0

to 1, with higher values indicating a country has capacity to produce GT nearby a given technology.

It is measured as follows:

Densitycjt =

∑
iRijtXcit∑

iRijt

Where Xcit is a dummy variable that takes value 1 if country c is patenting in GT i during the
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period t. This variable captures the capacities of country c to produce patents in technologies related

to technology j in time period t, which help to understand if capacities in the production of related

technologies are linked to diversification in other technologies.

Other variables. For each ENV-TECH class we calculate the number of patent families produced (Size)

to control for scale effects, as well as the Herfindhal Index to account for competition among countries

in each technology7. We also control for the level of development of each country’s economy over time

through proxied by GDP (Source: Green Growth Knowledge Platform8).

4. Empirical Analysis

4.1. Descriptive Statistics

Table 1 shows descriptive statistics of our variables. Our database gather information on 63 coun-

tries and 36 green technologies, from 1971 to 2012, in 14 time periods of 3 years each. About 24%

of countries specialized in a technology at time period t (Scjt = 1) were not specialized in the same

technology in the previous time period (identified in the column NPAcjt−1), which we define as a

diversification event. On the other hand, 33% of the observations were having a patent activity in

time period t − 1 (identified in the column PAcjt−1) and lost their technological advantages on the

next time period t (Scjt = 0). These proportions are lower than those reported by PBM, but follow

the same trend: once a country has started to invent, it tends to retain a technological advantage.

4.2. Regression analysis

Our objective is to characterize patterns of technological diversification and specialisation in green

technologies, in relation with the intrinsic characteristics of the technology (size and complexity), but

also with the characteristics of the country, in particular activity in other proximate green technologies

7Given the specificities of the ENV-TECH classification, we do not use technology value added like PBM. This is
because, first, ENV-TECH associates various IPC and CPC codes to a technology, which makes difficult to associate
an industrial sector to a specific technology, so makes inappropriate the use of manufactures surveys. Second, and in
particular in the case of emergent technologies like for example CO2 capture and sequestration, the value added could
be important in the future but this kind of technology is not used enough at present to be able to estimate it.

8Available at http://www.greengrowthknowledge.org/
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(Density) and whether there is prior technological advantage as per RTA. We characterise diversifica-

tion in two ways: first, by restricting the dataset to cases in which there were no patenting activity at

the beginning of the sample (RTAcjt < 0.1 where t = 1971 − 1974) and, second, by accounting only

for the cases in which there was no patenting activity in the prior time period (RTAcjt−1 < 0.1). As

for specialisation, we account for the RTA of a country in a green technological domain disregarding

if it shows a technological advantage in previous periods. Contrary to what PBM find, using patents

from PATSTAT instead of USPTO mitigates the uncertainty on the detection of global knowledge

production, as PATSTAT is a worldwide patent database and is not limited to the United States only.

All the other limitations identified apply.

We estimate two different models, one for diversification and the other for specialisation. The former

is further split by considering short-term and long-term effects, namely by accounting for period to

period changes and for changes relative to the first time period of the sample. In turn, Specialisation

focuses on comparative advantage in developing innovation in technological fields in each period. All

models include dummies for green technologies, countries and time periods in order to control for

potential biases introduced by peculiarities of certain green technologies, countries or time periods.

We specify two models as follows:

• Diversification equation

Scjt = Θ1Densitycjt−1 + Θ2Densitycjt−1 ×GDPct + β1 logSizejt + β2HIjt

+ β3ITCjt + β4GDPct + δcDc + δjDj + δtDt + εcjt (1)

• Specialisation equation

Scjt = Θ1Densitycjt−1 + β1 logSizejt + β2HIjt

+ β3ITCjt + β4GDPct + β5 logSizejt ×GDPct + β6HIjt ×GDPct

+ β7ITCjt ×GDPct + δcDc + δjDj + δtDt + εcjt (2)

Where c, j, and t identify respectively countries, green technologies and time periods, Scjt takes
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the value of unity when a country c has a RTA above unity in a technology j in time period t, GDPct

is the gross domestic product per capita for country c and time period t, Densitycjt is the proximity of

surrounding green technologies in country c to technology j in time period t, HIjt, ITCjt and Sizejt

are the technology-related variables defined in Table 1, and εcjt is the error term.

The first model captures the effect of a country possessing competences in proximate technologies on

diversification over both short- and long-term time horizons. The second model aims at identifying the

patterns of specialisation in green technologies, measuring the effects of the technology determinants

themselves and those of surrounding technologies in a country, regardless of whether a country has

previously produced that technology.9 In the regressions all the variables are interacted with GDP

to check for the influence of each country’s level of development. Last but not least, we extend

the framework of PBM by estimating diversification and specialisation in a model that accounts for

the degree of maturity of the green technology along life-cycle (as defined in Appendix A). In so

doing we evaluate whether green technologies behavior is homogeneous across families, or if intrinsic

characteristics of ENV-TECH domains have a differential influence.

5. Results and discussion

The present section is organised in three parts. First, we present the results of the regression

models specified above. Second, we extend the general framework to include the technology life-cycle.

Third, we include a robustness check that accounts for the role of environmental policy. All along the

benchmark for the interpretation of the results is the work of PBM, with the proviso that the present

paper focuses on the domain of green technology.

5.1. Specialisation and Diversification

Table 2 shows the results of the main regressions. In columns (1) and (2) are the diversification

models for, respectively, short- and long-term, while column (3) shows results from the specialisation

9We employ OLS with robust standard errors to estimate the two linear probability models. This enables us to
compare our findings to PBM and interpret the coefficients in more effective way.
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model. In all cases we find a positive and significant coefficient for density. This suggests that having

technological capabilities in related domains increases the likelihood of investing in a new-to-the-

country green technology. Such a finding is in line with prior work on the pivotal role of related

capabilities in the green knowledge generation process (Sbardella et al., 2018). Indeed, knowledge

stemming from existing capabilities reduces the costs and uncertainty that exploratory mechanisms

entail and triggers technological variety across different - though related - fields (Castaldi et al., 2015).

A study by Noailly and Shestalova (2017) also points out that renewable energy technologies benefit,

among other factors, from intra and inter-technology spillovers. In this sense, green technologies do

not differ from all other technologies.

The same goes for the negative coefficient of the interaction between Density and GDP in the short-

term model (Column 1). The interpretation is that existing capabilities in related technologies are less

relevant for developed countries relative to developing ones, and, thus, that the costs and uncertainty of

exploring new technological domains is a major concern when the endowment of financial resources is

lower. Note however that the latter only holds for the short-term while the coefficient is not significant

in the long-term (Column 2). Thus, green technologies differ from other technologies in that possessing

established competences matter in the immediate but not necessarily over the long haul. We ascribe

this to the notion, consolidated in the literature, that green technologies are at an altogether early

stage of development (OECD, 2011; Barbieri et al., 2018b). Operating in such a technological domain

characterised by a high level of uncertainty, due to lack of established practices and gaps in know-how,

entails that financial capacity does not influence diversification capacity.

We also find significant coefficients for two technology-level variables, namely Size and the Herfind-

hal index. The former is positive and significant, again only in the short-term model, thus suggesting

that scale effects at country level matter. The negative sign of the Herfindhal index instead indicates

that high geographical concentration of environmental technology does not favor diversification. Both

findings are in line with what has been observed in the entire technology landscape by PBM. Our

results, however, differ for what concerns the role of technology complexity, ITC, which is not signif-
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icant. The current stage of development of green technology plausibly marks the difference with the

broader landscape: because taking a sustainable path requires bringing together different knowledge

sources, more so than in established technological domains (Barbieri et al., 2018a), complexity in terms

of diffusion of innovation capabilities to develop GT is not necessarily a barrier.

Results from the specialisation equation are shown in the third column of Table 2. The finding that

the coefficient of technology density is positive and significant corroborates the idea that operating in

proximate fields increases the likelihood of specialisation. Again, the coefficients of Size and of the

Herfindhal index are both significant, and in line with prior results. Also, technology complexity bear

no association with specialisation. Interacting these variables with GDP instead yields negative and

significant coefficients. This implies, first, that scale effects decline with the income level of the country

(though the magnitude is rather low) and, second, that high geographical concentration may hinder

specialisation among low-income countries more than for high-income ones.

Figures 1 and 2 provide a visual summary of the main findings. Figure 1 shows the probability of

diversification taking into account the margins at different levels of GDP (left panel) and Size (right

panel) with darker colors showing a higher probability and isolines indicating probability values. On

the left-hand panel, we can observe that the presence of related capabilities is particularly important

for countries at lower levels of GDP per capita. As far as we move to the right we notice that di-

versification in high income countries benefits from related capabilities along the whole spectrum of

Density. The result provides evidence that the endowment of capabilities in related green technologies

eases diversification especially in those countries at the beginning of the greening process for which

knowledge spillovers are key to explore new-to-the-country technological domains. As for developed

countries, diversification is still associated with Density but experimentation is less risky than in de-

veloping or emerging countries and thus does not represent a strong barrier. Our insight suggests, once

again, that accounting for country and technological characteristics is a fundamental step to explore

diversification and specialisation patterns. The right-hand panel of Figure 1 shows that diversification

is favoured by high levels of related capabilities (i.e. Density) and patenting intensity (i.e. Size). That
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is, increasing both dimensions enhances the stock of knowledge that can be exploited by innovators.

The left-hand panel of Figure 2 shows the the probability of specialisation at different levels of

GDP per capita and Density. The result confirms what has been observed in the case of diversification.

The endowment of related inventive capabilities appears to be more important for low income than

high income countries. The left-hand panel of Figure 2 shows the extent to which the probability of

specialisation changes according to green technologies density and the size. These results confirm the

finding associated with diversification. That is, the probability of specialisation tends to be higher

when countries have inventive capabilities in surrounding green technologies (i.e. Density) and the

stock of knowledge in that technology (i.e. Size) increases.

This, other than adding to previous literature, including but not limited to PBM, offers interesting

insights for policy. Our reading is that, akin to several other societal challenges, dealing with envi-

ronmental sustainability calls upon the capacity to build rich and diverse knowledge structures with

the proactive participation of both firms and the attendant institutions (Nelson, 2008). The evidence

provided here shows that countries that successfully develop domestic capabilities can overcome tech-

nological barriers. More than this, we find that these opportunities are not precluded to countries with

lower income levels, and therefore to the places that according to many are most vulnerable to climate

change hazards.

5.2. Green Technology Life-Cycle

Given the idiosyncratic features of our domain of analysis, we now enrich the indications stemming

from the general analysis above by assessing whether and to what extent the maturity of green tech-

nologies plays a role. To this end we refer to the empirical constructs of a recent study by Barbieri et al.

(2018b) on the relation between regional knowledge diversification and the life cycle stage of environ-

mental technologies. Table 3 reports the macro-technological groups provided by OECD (2016) ranked

in relation to their level of maturity. Therein technologies such as i.e.“Capture, storage, sequestration

or disposal of GHG”(ENV-TECH 2) are at early stages of development while others, i.e.“Environmental
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or Waste management” (ENV-TECH 1-2), are more mature (Barbieri et al., 2018b).10

Table 4 shows results of the regressions articulated according to the life-cycle classification. The

coefficient of technological maturity is positive and significant in all specifications, thus indicating that

the more consolidated a technology the higher the probability to diversify in green domains that had

not previously been explored. The result holds also in the specialisation equation (Column 3). Not

surprisingly the finding suggests that countries tend to diversify and specialise, i.e. spend effort to

explore new-to-the-country green domains, in more mature technological domains. This is particularly

relevant as far as developed countries are concerned. Indeed, the interaction term between GDP and

TLC suggests that the more a country is developed, the higher is the association between the maturity

of the technology and the likelihood of specialising in that field.

5.3. The role of Environmental Policy

As stated in the introduction, environmental policies play a crucial role in the context of green

growth. Policy intervention is required to address market failures with which the development of

green technologies confronts. In order to deal with this issue we check the robustness of previous

results by testing the correlation between diversification and specialisation patterns and environmental

regulation. To do so, we employ the OECD’s Environmental Policy Stringency Index (EPSI) (Botta

and Koźluk, 2014) with the aim of capturing the commitment of the institutional framework to contain

environmentally harmful behaviour by means of different policy instruments. The results of Table

5 confirm previous findings 11. The coefficient of EPSI across the different specifications indicates

that the diversification into previously unexplored technological fields (Columns 1 and 2) correlated

with countries’ technological capabilities rather than with environmental regulation. This is in line

with studies that highlight the effectiveness of flexible environmental policy instruments at triggering

innovation (Johnstone et al., 2010). That is, the technology-neutrality of policies may favours the

10Note that the level of maturity is calculated relative to the stage of development of all green technologies.
11The reader will appreciate that the number of observations decreases substantially from 63 to 32. This is due to

data availability, as information on EPSI exists only for most of the OECD countries plus Brazil, China, India, Russia
and South Africa.
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development of technologies whose know-how is already present in the country. This suggests that

environmental policies are positively correlated with specialisation patterns which capture the efforts

in developing green technologies regardless to the endowment of innovation capabilities in the previous

periods.

6. Conclusions

The new growth agenda laid out in the Sustainable Development Goals (SDGs) and the Paris

Agreement states explicitly that growth, climate action and development are complementary objectives.

This complementarity defines not only the nature of the goals but also that of the policies that can best

facilitate achieving them. Building climate change resilience within countries entails the reorganisation

of existing, and in some case the creation of new, systems for generating and using natural resources.

Against this backdrop, accelerating the development and diffusion of new low-carbon technologies

remains a crucial ingredient of the environmental policy mix.

Progress in recent years has been significant if uneven, not only between green technology domains

but also across countries, and the concern is that imbalances on the distribution of opportunities

could further exacerbate these gaps and, paradoxically, become hurdles towards sustainability. Thus,

continued innovation and deployment are crucial, but so is the capacity to put in place policies that

facilitate diffusion, especially towards developing countries that are most exposed to climate hazards

and yet lag behind the technological frontier. Because climate change is a global phenomenon with

local manifestations, we proposed an analysis that articulates green technology development across

domains and across countries. Effective resource management cannot be divorced from characteristics

of the institutional regime over which regulatory functions are to be undertaken. While the geographic

distribution of natural resources may partially be determined by exogenous factors – such as i.e.

availability of raw materials – the capacity for adaptation and mitigation stems from endogenous

factors such as human capital and institutional flexibility.

The present study has tackled these questions by analysing cross-country patterns of diversifica-
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tion and specialisation in environmental technology development, and on their drivers. This exercise

yields three main findings. First, countries are more likely to diversify into new domains of green

technology that are close to the portfolio of existing competences as proxied by prior technological

orientation. Second, our results are peculiar in that diversification and specialisation do not exhibit

strong association with the stage of development of a country but, rather, with the maturity of the

green technology. In particular, differences in competences are a bigger obstacle than differences in

wealth. This insight is in line with the ongoing debate on the limits of GDP as a welfare indicator

(Fleurbaey, 2009). Going beyond GDP implies accounting for other complementary indicators that

capture the value of public - or extra-market - goods such as environmental quality or, as in our case,

knowledge and its spillovers (Mazzanti and Gilli, 2018). Third, in line with prior studies, we find that

countries move along cumulative paths of specialisation. At the same time, and contrary to other

studies, the complexity of innovative capabilities is not an obstacle to specialisation.

The paper also explores the correlation between the development of green technologies and en-

vironmental policy. Although data availability reduces the sample of countries in our analysis, we

have observed that environmental policy stringency is a significant predictor of specialisation patterns

which is in line with the insights provided by the extensive literature that focuses on the innovation

inducement effect of policy implementation. Once again the role of environmental policies to address

market failures emerges and emphasises that green growth is strongly connected to the institutional

framework that characterises the innovation system.

On the whole, our empirical analysis suggests that policy intervention should account for current

characteristics of countries’ knowledge space. This implies that triggering innovation in new-to-the-

country technological domains is contingent upon existing innovation capabilities with which countries

are endowed. Environmental policy that aims at increasing those capabilities out of the blue may

face a serious barrier in achieving its objectives. Additionally, in line with previous studies that

highlight the heterogeneous incentives provided by different types of instruments (Milliman and Prince,

1989), policies focused on the reduction of pollutant emissions should be designed carefully in order
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to exploit pollution abatement technologies available to the country. An effective strategy may arise

from a careful assessment of existing capabilities that should be taken into account in the design of

policy. Thus, policy interventions targeting green technological domains that are outside countries’

knowledge bases may require the development of a broader range of technologies from which green

innovation stems. This would call upon a mix of policy instruments that are designed to target a

portfolio of technologies (Veugelers, 2012), highlighting the ability of policy makers at anticipating or

reacting to the development of new technological opportunities (Requate, 2005). However, such an

intervention should not affect the variety of technological options that are presented to the changing

selective environment and the resulting adaptive flexibility of the system (Rammel and van den Bergh,

2003). Once again the role of diversification emerges as stressed by the recent stream of studies

that investigate how (related and unrelated) variety of skills, practices and knowledge bases enhance

economic performance (Frenken et al., 2007; Castaldi et al., 2015; Barbieri et al., 2018b; Barbieri and

Consoli, 2019). These policy implications may be considered in the current debate around the new

green deals that explicitly stress the role of technology to achieve long-term climate policy objectives

(e.g. the Green New Deal, EU Circular Economy Strategy).

Our analysis is not free from limitations which, we suggest, may offer useful insights for future

research. First, the empirical study relies on patent data which clearly represent only one dimension

of green innovation. This seemed the best strategy considering that one of the goals of the present

paper was to provide a global map of progress in environmental technology, an exercise that requires

harmonised and comparable data. Our effort could therefore be a primer to guide country-specific

analysis on the state of deployment of adaptation and mitigation activities, which may be extended

by investigating non-linear relationship between development paths and technological trajectories. A

second limitation is that our analysis does not account explicitly for efficiency in the use of natural

resources, which a proficient literature debates in terms of a shifting balance between technological

innovation and structural change. Such a debate is however narrower relative to our approach, in that

it focuses mostly on energy. The analysis proposed here could therefore be be extended to explore
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the determinants of countries’ and sectors’ heterogeneity in performance, thus informing case study

analysis. While we acknowledge these limitations, we hope that the empirical findings of the present

paper can foster new interest in the relationship between environmental sustainability and economic

development.
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Tables and Figures

Table 1. Main Descriptive Statistics

Obs Mean SD Min Max

Specialisation 31248 0.234 0.423 0 1

Log Size 31248 6.161 1.980 0.406 10.257

Herfindhal Index 31248 0.299 0.145 0.000 1

ITC 31248 12.644 3.105 4.429 22.5

Density 31248 0.535 0.400 0 1

GDP Per Capita 26604 12947.3 15595.4 112.73 107318

Correlation Table

Specialisation 1

Log Size 0.177 1

Herfindhal Index -0.134 0.175 1

ITC -0.086 -0.619 -0.313 1

Density 0.357 0.145 -0.066 0.036 1

GDP 0.202 0.225 -0.121 0.045 0.468 1

Specialisation PAcjt−1 NPAcjt−1 Total

Scjt = 1 0.758 0.242 1

Scjt = 0 0.328 0.673 1

Number of countries: 63

Number of technologies: 36

Coverage: 1971 – 2012 (14 periods of 3 years each)
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Table 2. Results of the Econometric Model

Diversification, Short-Term Diversification, Long-Term Specialisation

(RTA < 0.1 prior period) (RTA < 0.1 first time period)

Density 0.07050*** 0.11723*** 0.13949***

(0.01) (0.01) (0.01)

Density × GDP -0.00229** -0.00033

(0.00) (0.00)

Technological-level Variables

Log Size 0.00857* 0.00652 0.01912***

(0.00) (0.01) (0.01)

Herfindahl Index -0.11388*** -0.16854*** -0.09516***

(0.02) (0.02) (0.03)

ITC -0.00065 -0.00042 0.00270

(0.00) (0.00) (0.00)

GDP 0.00116 -0.00036 0.00000

(0.00) (0.00) (.)

GDP × Log Size -0.00115***

(0.00)

GDP × Herfindahl Index -0.01439***

(0.00)

GDP × ITC -0.00009

(0.00)

R2 0.10189 0.19124 0.22482

Tech Fixed Effects Yes Yes Yes

Time Fixed Effects Yes Yes Yes

Country Fixed Effects Yes Yes Yes

Obs 13902 19599 24372
* p < .1, ** p < .05, *** p < .01
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Figure 1. Diversification probabilities according to the characterics of technologies and countries.

Figure 2. Specialisation probabilities according to the characterics of technologies and countries.

32



Table 3. Technology maturity ranking

ENV-TECH (1-DIGIT) Technological field Ranking

ENV-TECH 5 Capture, storage, sequestration or disposal of GHG 1 (Less mature)

ENV-TECH 6 Transportation 2

ENV-TECH 4 Energy generation, transmission or distribution 3

ENV-TECH 9 Production or processing of goods 4

ENV-TECH 2 Water-related adaptation technologies 5

ENV-TECH 8 Wastewater treatment or waste management 6

ENV-TECH 7 Buildings 7

ENV-TECH 1 Environmental management 8 (More Mature)
Note: The list of environmental-related technologies is provided by OECD (2016). ENV-TECH 3 - “Biodiversity

protection and ecosystem health” does not include technological classification codes. This ranking is based on Barbieri
et al. (2018b).
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Table 4. Regression results with technology life cycle

Diversification, Short-Term Diversification, Long-Term Specialisation

(RTA < 0.1 prior period) (RTA < 0.1 first time period)

Density 0.07050*** 0.13161*** 0.17200***

(0.01) (0.01) (0.01)

Density × GDP -0.00229** -0.00033

(0.00) (0.00)

Technological-level Variables

Log Size 0.00857* 0.00652 0.01889***

(0.00) (0.01) (0.01)

Herfindahl Index -0.11388*** -0.16854*** -0.10849***

(0.02) (0.02) (0.03)

ITC -0.00065 -0.00042 0.00239

(0.00) (0.00) (0.00)

Maturity 0.02312*** 0.02586*** 0.03605***

(0.01) (0.01) (0.01)

GDP 0.00116 -0.00036 0.00843***

(0.00) (0.00) (0.00)

GDP× Log Size -0.00119***

(0.00)

GDP × HHI -0.01229***

(0.00)

GDP × ITC -0.00002

(0.00)

GDP × Maturity 0.00041***

(0.00)

R2 0.10189 0.19124 0.22551

Tech Fixed Effects Yes Yes Yes

Time Fixed Effects Yes Yes Yes

Country Fixed Effects Yes Yes Yes

Obs 13902 19599 24372
* p < .1, ** p < .05, *** p < .01
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Table 5. Regression results with the Environment Policy Stringency Index

Diversification, Short-Term Diversification, Long-Term Specialisation

(RTA < 0.1 prior period) (RTA < 0.1 first time period)

Density 0.08312 0.12386*** 0.17041***

(0.05) (0.04) (0.03)

Density × GDP -0.00645* -0.00288

(0.00) (0.00)

Technological-level Variables

Log Size 0.02314 0.02719 0.06970***

(0.03) (0.02) (0.02)

Herfindahl Index -0.20542** -0.21335*** -0.21122**

(0.10) (0.08) (0.08)

ITC -0.00457 0.00219 0.00484

(0.01) (0.01) (0.01)

EPSI 0.02212 0.01128 0.05005**

(0.03) (0.02) (0.02)

GDP 0.00105 0.00067 0.00000

(0.00) (0.00) (.)

GDP× Log Size -0.00131***

(0.00)

GDP × HHI -0.00412

(0.00)

GDP × ITC 0.00002

(0.00)

GDP × EPSI -0.00149*

(0.00)

R2 0.11967 0.18250 0.17868

Tech Fixed Effects Yes Yes Yes

Time Fixed Effects Yes Yes Yes

Country Fixed Effects Yes Yes Yes

Obs 2140 5225 7740
* p < .1, ** p < .05, *** p < .01
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Appendix A. Measuring life cycle stages

Different methodologies exist in the literature to estimate the development of technologies using

patent data. Haupt et al. (2007) try to identify differences in the evolution of patent indicators in

relation with the technology life cycle stages. First, the authors identify using a pool of experts and

literature review in which development stages are the technologies. Then, they show that patent

indicators follow specific patterns depending on the stage of development of the technology. Other

studies use patent indicators to identify directly the life cycle stages of technologies (Gao et al., 2013;

Chang and Fan, 2016). They use interviews of experts in benchmark technology to define life cycle

stages, and assess the trends of patent indicators over its technological evolution. Subsequently, they

compare patent indicators of the technologies under analysis with the ones calculated on the benchmark

technology assigning the life cycle stage of the latter to the former. Finally, stochastic techniques are

also employed to measure technology life cycle. Lee et al. (2012; 2016) run Hidden Markov Models to

analyse patent indicators time-series. This technique allows calculating the highest probability path

that gives the most probable stage of development at each step of the time series.

Unfortunately, we could not use these methodologies in our research because the identification of

technology life cycle stages relies either on benchmark technologies or is based only on the number of

patents in the case of Hidden Markov Models. The identification of benchmark technologies to analyse

36 heterogeneous environment-related technologies is nearly impossible, even with the contribution of

a wide pool of experts. Moreover, the stage of development of green technologies should not take into

account only the evolution of the number of patents as the Hidden Markov Models do, but also the

diffusion of technologies over time. It should also take into account that not all intermediate stages

are achieved by technologies. Finally, our desired indicator should be able to provide information on

the life cycle stage of broad technological domains and not just single patents.
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Our methodology proposed below to identify green technologies life cycle stages is based on these

two dimensions: the geographical diffusion (ubiquity) and the patenting intensity. We use worldwide

patent families for each technology as identified by the OECD in the Env-Tech classification12. This

leads us to determine the overall stage of development of green technologies to which all worldwide

inventors contributed to.

The ubiquity indicator measures how geographically spread are inventive activities in green tech-

nologies, relative to country’s specialisation. Following Balland and Rigby (2017), we calculate the

Revealed Technological Advantage (RTA) for each green technology, country and time period as fol-

lows:

RTAjct =
Patentsjct/

∑
j Patentsjct∑

c Patentsjct/
∑

jc Patentsjct

The RTA measures the intensity of the contribution of each country c to the development of Env-

Tech technology j at time t. That is, it indicates the proportion of country’s patent activity is a

specific technology with respect to all green technologies divided by the world’s proportion in this

same specific technology. A technological advantage is “revealed” for country c in technology j during

the time period t if RTAjct > 1. Therefore, the ubiquity of each Env-Tech technological domain is

given by the number of countries with a Revealed Technological Advantage, as follows:

UBIQUITYjt =
∑
c

Mcj

Where Mcj = 1 if RTA > 1.

Consequently, the higher the number of countries specialised in the development of a particular

green technology, the higher the UBIQUITY of that technology. In other words, Ubiquity is a proxy

to measure the diffusion of green innovative activities. The advantage of this measure with respect to

12The Env-Tech classification OECD (2016) groups environmental-related technologies at different digits (up to three).
In the present paper we focus the 2-digit which is a compromise between narrow (three digits) and broad (1-digit)
technological fields. Table 7 reports the list of green technological domains employed to define technology life cycle
stages.
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other potential patent indicators of diffusion (such as i.e. citations, family size, etc.) is that it allows

capturing specialisation patterns in specific green technologies relative to their global counterparts.

The second dimension is measured using the number of patent families of a green technology at

country level filled during a time period. This is a proxy of patenting intensity of each country in the

development of green technologies.

Table 6. Life cycle stages

Ubiquity
Low High

Patenting High Development Diffusion
intensity Low Emergence Maturity

Bringing together these two dimensions (ubiquity and patent intensity) leads us to define four life

cycle stages for each technological at the worldwide level, as shown by table 6. The emergence phase

is characterised by a low level of technological diffusion and intensity. It is the lowest level of maturity,

where there is a low patenting activity concentrated in only few countries. We have identified two

different strategies (non-exclusive) to reach the maturity stage. The first one consists in an increase of

the patenting activity but still geographically concentrated, which is the development phase. The other

one goes toward a geographical diffusion phase meaning an increased number of countries specialised

in a technology, but the patenting activity grows at a slower pace. Finally, in the maturity phase

standardisation in the design and knowledge-related activities is achieved, both patenting intensity

and geographical diffusion of inventive activities are at relatively high levels. This approach allows a

dynamic understanding of technological evolution in the sense that not all stages are always achieved,

and maturity may be an intermediate stage before the appearance of further developments.

In order to assign to each green technology a stage of development, we standardise the indicators

by calculating the average of ubiquity and patenting activity for each time period. Then, we attribute

a life cycle stage to a technology when its exhibits a value above or below the average value of each

dimension. In so doing, the technology life cycle indicator depends on both idiosyncratic features

of the technology under analysis and on the stage of development of the other green technologies.
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Table 7. Life cycle stages of green technologies

ID ENV-TECH 1980 1990 2000 2010
1.1 AIR POLLUTION ABATEMENT 4 4 4 4
1.2 WATER POLLUTION ABATEMENT 3 4 4 4
1.3. WASTE MANAGEMENT 3 3 4 4
1.4 SOIL REMEDIATION 1 1 3 3
1.5 ENVIRONMENTAL MONITORING 1 1 1 1
2.1 DEMAND-SIDE TECH (water conservation) 1 3 3 3
2.2 SUPPLY-SIDE TECH (water availability) 1 1 1 3
4.1 RENEWABLE ENERGY GENERATION 4 4 4 4
4.2 ENERGY GENERATION FROM FUELS OF NON-FOSSIL

ORIGIN
1 3 3 4

4.3 COMBUSTION TECH WITH MITIGATION POTENTIAL 1 1 1 3
4.4 NUCLEAR ENERGY 2 2 1 1
4.5 EFFICIENCY IN ELECTRICAL POWER GENERATION,

TRANSMISSION OR DISTRIBUTION
1 2 1 1

4.6 ENABLING TECH IN ENERGY SECTOR 1 2 2 2
4.7 OTHER ENERGY CONVERSION OR MANAGEMENT

SYSTEMS REDUCING GHG EMISSIONS
1 1 1 3

5.1 CO2 CAPTURE OR STORAGE (CCS) 1 1 1 3
5.2 CAPTURE OR DISPOSAL OF GREENHOUSE GASES

OTHER THAN CARBON DIOXIDE (N2O, CH4, PFC, HFC,
SF6)

1 1 1 3

6.1 ROAD TRANSPORT 2 4 2 2
6.2 RAIL TRANSPORT 1 1 1 1
6.3 AIR TRANSPORT 1 1 1 3
6.4 MARITIME OR WATERWAYS TRANSPORT 1 1 1 3
6.5 ENABLING TECH IN TRANSPORT 1 1 1 2
7.1 INTEGRATION OF RENEWABLE ENERGY SOURCES IN

BUILDINGS
1 1 1 4

7.2 ENERGY EFFICIENCY IN BUILDINGS 1 3 4 4
7.3 ARCHITECTURAL OR CONSTRUCTIONAL ELEMENTS

IMPROVING THE THERMAL PERFORMANCE OF
BUILDINGS

1 1 1 1

7.4 ENABLING TECH IN BUILDINGS 4 4 4 4
8.1 WASTEWATER TREATMENT 1 3 4 4
8.2 SOLID WASTE MANAGEMENT 3 3 4 4
8.3 ENABLING TECH OR TECH WITH A POTENTIAL OR

INDIRECT CONTRIBUTION TO GHG MITIGATION
1 1 1 1

9.1 TECH RELATED TO METAL PROCESSING 3 3 3 4
9.2 TECH RELATING TO CHEMICAL INDUSTRY 1 4 4 4
9.3 TECH RELATING TO OIL REFINING AND PETRO-

CHEMICAL INDUSTRY
1 1 1 3

9.4 TECH RELATING TO THE PROCESSING OF MINERALS 1 3 1 3
9.5 TECH RELATING TO AGRICULTURE, LIVESTOCK OR

AGROALIMENTARY INDUSTRIES
1 3 1 3

9.6 TECH IN THE PRODUCTION PROCESS FOR FINAL IN-
DUSTRIAL OR CONSUMER PRODUCTS

1 1 2 4

9.7 CLIMATE CHANGE MITIGATION TECH FOR SECTOR-
WIDE APPLICATIONS

1 1 1 1

9.8 ENABLING TECH WITH A POTENTIAL CONTRIBU-
TION TO GHG EMISSIONS MITIGATION

1 1 1 4

ID and ENV-TECH correspond to green technology groups listed in OECD (2016). Numbers in the columns indicate
the life cycle stage of green technologies: 1=“Emergence”, 2=“Development”, 3=“Diffusion”, 4=“Maturity” (as per

Table 6). Dark colours are associated to higher stages of the technology life cycle.
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As an illustration, table 7 reports the life cycle stages of green technology in 1980, 1990, 2000 and

2010. Indications from this exercise resonate with information that can be gathered in specialised

literature or policy reports. As an example, “Air pollution abatement” (ENV-TECH 1.1), “Renewable

energy generation” (ENV-TECH 4.1), etc., are found in the maturity stage since the 1980s. Contrarily,

“Environmental monitoring” (ENV-TECH 1.5) or “Rail transport” (ENV-TECH 6.2) remain in the

emergence phase. Table 7 also shows some technologies that move from emergence to maturity stages

– i.e. “Energy efficiency in buildings” (ENV-TECH 7.2), “Wastewater treatment” (ENV-TECH 8.1).

It is important here to emphasise that reaching maturity does not need to go through all the life

cycle stages. Moreover, as explained earlier, development and diffusion phases seem to be alternative

pathways to achieve maturity.
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