

Escola Tècnica Superior d’Enginyeria Informàtica

Universitat Politècnica de València

MEMORY USAGE OPTIMIZATION IN THE
IMPLEMENTATION OF THE TR-069
PROTOCOL (CWMP) FOR MOCA

MODEMS

Degree Final Work

Degree in Computer Engineering

Author: Manuel García Belmonte

Tutor: Lenin Guillermo Lemus Zúñiga

2020/2021

Memory Usage Optimization in the Implementation of the TR-069 Protocol (CWMP)
for MoCA Modems

2

3

Resumen
El presente trabajo versa sobre la reducción de memoria en los módems MoCA de la

compañía MaxLinear que incorporan soporte para el protocolo TR-069 o CWMP. Este

protocolo permite gestionar remotamente los dispositivos conectados a una red a través

de servidores de autoconfiguración o ACS. Estos dispositivos cuentan con una reducida

memoria RAM y se ha detectado que dicho protocolo realiza un gran consumo de

recursos.

Con el fin de estudiar qué funciones están realizando un mayor consumo se ha

puesto en marcha un simulador del dispositivo del cual se conocía su existencia pero no

su estado ni cómo utilizarlo. Mediante la simulación se han llevado experimentos para

conocer los consumos de memoria del cliente CWMP así como se ha desarrollado una

propuesta que consiste en el envío fragmentado de los mensajes.

La mejora presentada en este proyecto ha conseguido reducir en un 61% el uso de

memoria realizado por el protocolo TR-069 en una operativa habitual.

Palabras clave: memoria, CWMP, TR-069, módem, embebido

Abstract
This work focuses on the memory reduction for MaxLinear’s MoCA modems that

features TR-069 or CWMP protocol support. This protocol allows to remotely manage

the network connected devices through an auto configuration server or ACS. These

devices have a small amount of RAM memory and previous studies have detected that

this protocol needs high amounts of resources.

With the aim of studying which are the functions that have higher memory needs, a

simulator has been used. Simulation allow us to launch several experiments to know

memory consumptions and also helped with the development proposal that consists on

a fragmented message sending.

Memory Usage Optimization in the Implementation of the TR-069 Protocol (CWMP)
for MoCA Modems

4

The proposal developed in this project has reduced by 61% the amount of memory

need by TR-069 protocol during a normal operation mode.

Keywords : memory, CWMP, TR-069, modem, embedded

5

Acronyms

Acronym Definition
ACS Auto Configuration Server.

API Application Programming
Interface

CI Continuous Integration

CPE Customer Premises Equipment.

CWMP CPE Wan Management
Protocol.

DOM Data Object Model.

GPA Get Parameter Attributes

GPN Get Parameter Names

GPV Get Parameter Values

GPx Get Parameter [Attributes,
Names, Values]

MoCA Multimedia over Coaxial
Alliance

OS Operating System

RPC Remote Procedure Call.

RTOS Real Time Operating System

R&D Research and Development

SAX Simple API for XML

SOAP Simple Object Access Protocol.

SPV Set Parameter Values

SPx Set Parameter [Attributes,
Names, Values]

TLS Transport Layer Security.

TR69 Technical Review 069

XML Extensible Markup Language

Memory Usage Optimization in the Implementation of the TR-069 Protocol (CWMP)
for MoCA Modems

6

Table of contents

1. Introduction 9

1.1. Motivation 9

1.2 Current state 10

1.3. Goals 11

2. TR-069 or CWMP protocol 11

2.1. A typical TR-069 session 14

2.2. Current implementation 15

2.3. Document Object Model (DOM) 17

3. Methodology 19

3.1. Organization 19

3.2. Development 20

3.3. Laboratories and tests 20

4. Memory Analysis 21

4.1. Current memory layout 22

4.3. Functions to analyze 24

4.4. Testing setup 25

4.5. Memory usage analysis per function 29

4.5.1. Reception of the message 29

4.5.2. Message decoding 30

4.5.3. Specific RPC calls 31

4.5.4. XML message construction 32

4.6. Preliminary findings 33

4.7. Análisis del consumo de memoria para GPA, GPN y GPV 34

4.8. Final conclusions and development proposals 35

7

5. Development 36

5.1. Transfer-Encoding: Chunked 37

5.2. HTTP client modifications 38

TR69_SoapSend: 39

TR69_HttpCSend: 39

HTTPClientSendRequest: 39

HTTPClientWriteData: 39

5.3. CWMP client modifications 41

5.4. Implementation details 42

5.4.1 Global Structure 42

5.4.2. GPA, GPN and GPV functions 44

5.4.3. XML message build functions 45

5.4.4. Main function 46

6. Final memory layout 48

6.1. Consumption measurements 48

6.2. New memory layout 51

7. Future improvements 52

8. Final conclusions 52

9. Bibliography 54

Memory Usage Optimization in the Implementation of the TR-069 Protocol (CWMP)
for MoCA Modems

8

List of figures

Figure 1: typical architecture of a TR-069 session ... 12

Figure 2: SOAP message structure ... 13

Figure 3: TR-069 datamodel hierarchy example .. 13

Figure 4: typical TR-069 session ... 14

Figure 5: MoCA TR-069 client sequence diagram ... 16

Figure 6: DOM representation of an Inform message .. 18

Figure 7: example of fail allocation due to memory fragmentation 22

Figure 8: HSMEM_getMemUsage output example .. 24

Figure 9: MoCA simulation targets .. 25

Figure 10: testing environment setup .. 27

Figure 11: Friendly ACS GUI ... 28

Figure 12: SPA memory usage .. 34

Figure 13: traffic capture of G.hn inform sent in chunks .. 38

Figure 14: HTTP client activity diagram ... 40

Figure 15: new CWMP sequence diagram .. 41

Figure 16: GPA, GPN y GPV activity diagram ... 46

Figure 17: TR-069 main function activity diagram .. 47

Figure 18: TR-069 testbench setup ... 49

List of tables

Table 1: previous memory layout ... 23

Table 2: message of message memory consumption .. 30

Table 3: message decoding memory consumption .. 31

Table 4: specific RPC calls memory consumption ... 32

Table 5: XML message construction memory consumption ... 33

Table 6: GPA memory consumption .. 35

Table 7: GPN memory consumption .. 35

Table 8: GPV memory consumption .. 35

Table 9: GPA, GPN and GPV memory usage comparison .. 48

Table 10: current memory block usage.. 50

Table 11: new memory block usage .. 51

Table 12: new memory layout and usage .. 51

9

1. Introduction

Some studies estimate that 50.000 million devices are connected to the internet at the

moment this project is being written [1]. The vast majority of them are embedded

devices and share some peculiarities among them: their software and hardware are

job-specific, meaning this that they have been engineered to perform an specific

domain task -such as control the radiation of your everyday use microwave or even

monitor critical variables when receiving radiotherapy during an oncological treatment-.

Although embedded systems significantly differ ones from others depending on their

application, they usually address the same engineering challenges for the programmer:

resources are limited due to several constraints, being memory one of the most critical

parts of an embedded device.

This project has been developed during an internship in the American company

MaxLinear. MaxLinear is a fabless semiconductors company specialized in solutions

for access and connectivity with a R&D facility in Valencia.

1.1. Motivation

MaxLinear manufactures ICs that grant connectivity to millions of people around the

globe. Some of those chips allow service providers to deploy modems that connect

individuals to the Internet.

Having hundreds or even thousands of devices is not a big deal for big service provider

companies such as AT&T, Verizon or Vodafone: they can have thousands of

technicians that install, maintain and repair their systems. The issue arises when more

than 4.600 million people are connected to the world through modems [2] and the

Internet has become a first need: deploying and solving any potential issue cannot be

done physically by a technician in an economical and temporal efficient way.

A new way of managing the devices was needed and here is where CWMP (CPE Wan

Management Protocol) comes into action: the first technical report referring to this

protocol was introduced by the Broadband Forum in May 2004 under the name of TR-

069 and several amendments have been published since then [3]. This protocol allows

service providers to remotely manage the devices deployed in customer premises.

Memory Usage Optimization in the Implementation of the TR-069 Protocol (CWMP)
for MoCA Modems

10

As the firmware of the modem devices evolves with more features requested, the

information managed by the CWMP protocol grows. This situation is not a problem

when applications are programmed for general purpose computers but turns into a

challenge when built for embedded devices as resources are difficult to enlarge -if not

impossible- for the already deployed systems. And, of course, backward compatibility is

a must.

I have always been attracted by embedded devices and used to realize small projects

in my spare time since I started studying this degree. Having the opportunity to work in

cutting edge projects and develop the knowledge acquired during the studies is what

motivated this work.

This project addresses the issue of high memory consumption due to the usage of

CWMP protocol in MoCA modems developed by company MaxLinear.

1.2 Current state

MoCA modems were initially developed by a company acquired by MaxLinear and

transferred to the R&D Valencia group at the beginning of year 2020.

The solution was completed and fully functional at the moment I joined the company.

The software was being tested by some important customers to reach its production

phase by mid-2021.

Some recently added functionality requested by customers led to reducing the system

free memory to as low as less than 1% of total memory. This compromised the future

of new releases and features while impacting the performance of the modem as new

memory needs will necessarily decrease the available memory for packet routing and

other MoCA functionalities.

Biggest memory consumption was identified prior to my inclusion to the project: the

CWMP protocol was the biggest consumer but a deeper study of the memory usage

per function was still needed.

On the other hand, a simulator product was present in the code repository as a

developing tool but was never used by the Valencia team and documentation was

almost nonexistent. Current developers do not use the tool as it cannot be even

compiled and there are no usage guides.

11

1.3. Goals

The main goal of this project is to optimize the memory usage by the protocol CWMP in

MaxLinear’s MoCA modems. This purpose should be reached by the achievement of

the following incremental points:

1. Compile and start the simulation product.

2. Detect where is taking place the higher memory consumption.

3. Implement a solution that reduces the memory usage of the system.

4. Test the solution in a real environment and define an optimized new memory

layout.

2. TR-069 or CWMP protocol

TR-069 or CWMP (CPE WAN Management Protocol) is a technical specification

published by the Broadband Forum that defines an application layer protocol that

allows to remotely manage CPEs (customer-premises equipment) connected to an IP

network.

The protocol is based on a bidirectional SOAP communication between the CPE and

an ACS (Auto-Configuration Server) over HTTP.

Memory Usage Optimization in the Implementation of the TR-069 Protocol (CWMP)
for MoCA Modems

12

Figure 1: typical architecture of a TR-069 session
Source: Remote Management of CableFree LTE CPEs using TR-069

https://www.cablefree.net/wirelesstechnology/4glte/lte-cpe-tr-069/

SOAP is a messaging protocol that uses XML to exchange structured data. The XML

document structure consists of different elements as described in its specification

document [4]:

• The envelope: is mandatory and identifies the document as a SOAP message.

TR-069 includes its own datamodel in the envelope.

• The header: is optional and includes some application-specific information

about the message.

• The body: is mandatory and contains the call or response. It is actually the

message to be sent. TR-069 uses the body to encapsulate its remote procedure

calls (RPCs).

• The fault: is optional and indicates error messages.

https://www.cablefree.net/wirelesstechnology/4glte/lte-cpe-tr-069/

13

Figure 2: SOAP message structure

By using TR-069 protocol, ACS servers are able to remotely call the available RPCs

implemented by the devices (CPE) in order to monitor, diagnose and even upgrade

their firmware.

A series of datamodels are defined by the Broadband Forum to be used by CWMP

protocol. This way, TR-069 enabled devices always have a root datamodel called

Device that stablishes a series of common objects and components that can the

instantiated by the device and describe its information such as interfaces, software

version, parameters, etc. Moreover, specific datamodels are defined to be used in

particular applications such as VoIP services.

The ACS usually requests the whole device datamodel to know the capabilities of the

device and how to manage it. This is done sending Get Parameter Attributes (GPA),

Get Parameter Names (GPN) and Get Parameter Values (GPV) RPCs. The server can

also modify some of the values by calling their respective setter functions: SPA and

SPV.

Figure 3: TR-069 datamodel hierarchy example

Memory Usage Optimization in the Implementation of the TR-069 Protocol (CWMP)
for MoCA Modems

14

2.1. A typical TR-069 session

A quick overview of a typical TR-069 session will help to understand the current
implementation of the protocol in MaxLinear MoCA modems:

Figure 4: typical TR-069 session
Source: CWMP communications

https://commons.wikimedia.org/wiki/File:ComunicacionTR69_1.JPG

1. The CPE opens the connection and optionally

2. A secure connection is negotiated between both devices.

3. The CPE starts the session sending an Inform Request over an HTTP post. It

contains some basic information such as the device ID or the events that

caused the CPE to start the session.

4. The ACS answers with an Inform Response, confirming that the Inform has

been correctly processed.

https://commons.wikimedia.org/wiki/File:ComunicacionTR69_1.JPG

15

5. If the CPE doesn’t have more information to deliver to the ACS, it sends an

empty HTTP Post meaning “no more work”.

6. If the ACS has RPCs to be sent, sends the appropriate HTTP response with the

method requested. If not, sends an empty HTTP response (step 10).

7. The CPE delivers the response with the data the ACS was looking for in an

HTTP Post.

8. The ACS could need to set some values and sends a Set Parameter request.

9. The CPE returns a response indicating if the changes the ACS requested have

been performed or not.

10. If the ACS has no more RPCs to send to the CPE, it sends an empty HTTP

response.

11. The CPE closes the session.

As seen, in TR-069 the CPE always initiates the session. A periodic inform is set to

constantly initiate communication with the server. Nevertheless, in some cases the

ACS needs to perform some RPCs that cannot wait until the periodic inform is

triggered. In this case, a Connection Request is sent to force the CPE to start the

session.

Due to today’s network architectures, CPEs are not accessible if they are behind a

NAT gateway. Some mechanisms are used to reach the CPE (such as STUN or XMPP

[5]) but are out of the scope of this document.

2.2. Current implementation

Figure 5 describes the current implementation of the TR-069 client in MaxLinear MoCA

modems.

We can mainly identify three .c files involved:

● tr69_client.cwmp.c: CWMP client main function is located in this file. It is in

charge of stablishing the connection when the device boots up and when the

periodic inform event is received. Receives the messages following the flow

showed in Figure 4. Also encapsulates the response in a SOAP message and

sends it.

Memory Usage Optimization in the Implementation of the TR-069 Protocol (CWMP)
for MoCA Modems

16

● tr69_client_soap.c: is responsible of identifying the remote procedure call (RPC)

requested by the ACS. Once identified, calls the appropiate device

implementation of the RPC. Finally gets the parameter list retrieved by the Glue

Layer and builds the XML message.

● tr69_glue_api.c: it is an API called Glue Layer that translate RPCs to a specific

device function that retrieves the information requested. It is architecture

dependent.

Figure 5: MoCA TR-069 client sequence diagram

The remote procedure calls supported by our device are the following:

● GetRPCMethods

● GetParameterAttributes

● SetParameterAttributes

● GetParameterNames

17

● GetParameterValue

● SetParameterValue

● AddObject

● DeleteObject

● Reboot

● Download

● FactoryReset

When the ACS requests a particular RPC, a specific glue API function is called. Get

Parameter Attributes, Names and Values are the RPCs called when the ACS needs to

retrieve information about the current instantiation of the device data model. Therefore,

specific functions from the glue layer are called to get all the information.

Glue Layer returns the parameters in a linked list. As messages need to be sent in

XML format, each RPC function builds a DOM document containing all the requested

parameters.

2.3. Document Object Model (DOM)

Data Object Model or DOM is a tree representation of an XML or HTML document [6].

Representing an XML document in the form of nodes allow us to navigate through the

data to retrieve and modify the needed object.

MoCA firmware uses an Intel GPL library that manages DOM documents and allows a

fast creation and modification of the nodes.

Figure 6 shows a piece of an Inform message modelled in a DOM document.

Memory Usage Optimization in the Implementation of the TR-069 Protocol (CWMP)
for MoCA Modems

18

Figure 6: DOM representation of an Inform message

19

3. Methodology

3.1. Organization

The MoCA development team is composed of five people: three developers based in

Valencia, one in Taiwan and a manager in Valencia who also participates in developing

tasks. On the other hand, the software quality assurance team (SQA) is composed of

three people: a developer and manager in Valencia and a third developer based in

Carlsbad, California. Both managers report to their respective site managers (firmware

and SQA) who in turns report to the international business area manager.

The company uses agile methodologies to organize the work of every component of

the team. Tasks are defined in 2 week duration sprints with 1 hour weekly sync-up

meetings in which every member report the progress on their tasks of the past week

and the expectations for the following one. If a team or group of developers need to go

deeper into a specific topic and it doesn’t make sense for the rest of attendants, an ad-

hoc meeting is arranged.

Meetings are held online using Teams due to the current pandemic situation derived

from COVID-19. Nevertheless, as the teams involved in a project are usually located

not only in local but in any of the company offices around the world, videoconference

tools were already used before.

Managers usually assign the tasks to every developer. Nevertheless, sometimes is the

developer who suggests the tasks in which he or she should work in the following

weeks. Developers have more visibility and understanding about the job they are doing

and that is taken into consideration when it comes to task assignments. For this

reason, developers are also in charge of estimating the duration of every task. The

maximum task duration should not exceed 3 days (24h). If any task is supposed to

need more than three days, it should be decomposed in smaller ones.

JIRA is used as a task management tool. This allows an integral management of every

task in a project’s context. At the same time, it’s used as a knowledge database as

every task a developer is working in must have been previously created in JIRA with its

corresponding description and time estimates.

Memory Usage Optimization in the Implementation of the TR-069 Protocol (CWMP)
for MoCA Modems

20

During a typical 2-week sprint, each team component must load tasks with a total

duration of 8 days. The remaining 2 days are supposed to be needed in order to attend

programmed and ad-hoc meetings, write and read emails, unforeseen issues, etc.

3.2. Development

Developers use GIT as a version control system that tracks changes in code. Different

projects are organized into Bitbucket repositories. JIRA and Bitbucket are synchronized

between them so when a developer creates a commit with his changes, the commit

name must include the JIRA identifier. This way, JIRA is used as a knowledge

database not only tracking all the issues but also containing the changes associated to

every task.

Furthermore, an exhaustive process takes place before any changes are uploaded to

the repository: once code changes are tested and the developer is sure that works as

expected, a “code review” is created. At least three developers must join the code

review so they can inspect the code and add some comments, questions or

suggestions. Only once every doubt or modification is resolved, an approval is granted

by every code reviewer. The developer can then merge his changes.

Regarding compilation, several Docker machines are deployed so the developer just

needs to connect to them through SSH. This machines are properly configured to

satisfy the dependencies needed for the compilation process. Using this technology

allow the software team to easily maintain the infrastructure, offering to every

developer the same environment ready from day one.

3.3. Laboratories and tests

The devices, modems, are organized in different test benches located in MaxLinear’s

R&D centers. In our MoCA particular case, benches are located in Valencia and

Carlsbad, California. As some of the devices are inaccessible to the developer, they

are remotely managed through automatic switches that allow us to switch them on and

off in case of need. They are also connected through serial to computers that can be

accessed via web.

21

Benches are used by developers to test their changes in controlled environments. They

allow us to reproduce customer setups. They also allow SQA team to verify that the

firmware released by the firmware team passes internal tests and standard

certifications (in our case, MoCA Alliance certification tests) prior to deliver a version to

a customer.

As an automation tool for testing purposes, Jenkins is used. With this tool, SQA

designs an automated flow based on continued integration or CI. Jenkins also allow us

to manually book benches during a desired amount of time to avoid several developers

to try to use the same bench concurrently or even avoid interfering with automated

tests.

Jenkins tool is in charge of automatically launch the process of build: before some

changes are merged to a branch, several automatic tests will be launched in an

unattended way to verify that the new version doesn’t cause the modems to stop

working. If tests pass, Jenkins will automatically build the different product images and

place them in the selected output directory. Automated tests will use these binaries to

upgrade the modems and perform the requested tests.

4. Memory Analysis

Previous analysis about the CWMP implementation showed some hints about where

the higher memory consumption could be taking place. DOM representation of the

response generated by some RPC calls that request the whole datamodel tree – or at

least those that request many parameters- could be the cause of the higher memory

consumption. Nevertheless, a deeper analysis is needed to determine exactly which

functions are involved.

Memory Usage Optimization in the Implementation of the TR-069 Protocol (CWMP)
for MoCA Modems

22

4.1. Current memory layout

Before starting with the memory analysis of each function and RPC, it is necessary to

clarify how is the memory structured in the MoCA device and the mechanisms used to

allocate and free them.

C language, in which the firmware is developed, provide us a malloc function to

dynamically allocate memory. However, this mechanism is dangerous when used in

embedded systems where the memory is usually a very limited resource. Malloc and

free calls can fragment the RAM memory of the device. Fragmentation, with an

absence of mechanisms like memory management in many OS, can lead to the

impossibility to allocate the requested amount of contiguous memory even if the whole

system has enough. This behavior can cause the device to stop working properly or

even cause a crash, both undesirable situations.

Figure 7: example of fail allocation due to memory fragmentation

The approach followed in our MoCA device firmware to get around this potential

problem is based on defining a fixed structure of blocks of different sizes that will be

allocated at boot time. New malloc and free wrappers will search for the smallest block

23

available that satisfies the call. A pointer to a larger block can be returned if smallest

blocks are already in use.

This approach reduces the fragmentation issue as memory is no longer allocated

during runtime. However, a careful study of memory consumption of each part of the

system is needed in order to build a layout as much accurate as possible. Otherwise, if

not optimized, memory will be wasted assigning larger blocks than needed.

The fixed-size memory management mechanism is useful when applied to predictable

environments [7] such as our TR-069 client.

Table 1 shows the memory layout when I started working on this project.

Block size
(Bytes)

Number of
blocks

16 2300
32 1250
72 1900
256 20
360 10
1024 15
2048 10
3072 4
4096 3
13312 2
18432 2
59392 2

Table 1: previous memory layout

With the aim of analyzing the memory usage of different CWMP client functions, a

simple but useful function has been developed. HMEM_getMemUsage prints the

following information:

● Block size.

● Number of blocks.

● Number of used blocks.

● Maximum number of used blocks since boot.

● Maximum requested size (value of malloc argument).

Memory Usage Optimization in the Implementation of the TR-069 Protocol (CWMP)
for MoCA Modems

24

● Number of blocks overflow.

Analyzing the first line output of HSMEM_getMemUsage showed in Figure 8, a total of

2300 blocks of 16B are allocated at boot time. At the time of the function call, 35 of

those 16B blocks were taken while 37 blocks was the maximum number of 16B served

by the malloc wrapper since the system booted.

“MaxSz” 13 states that the biggest block needed was indeed 13B but as there is not a

smaller one, a 16B block was returned instead. If” Ovf” was bigger than “0”, it would

indicate that an allocation of 16B was requested by could not been satisfied because

all of them were already in use.

4.3. Functions to analyze

The strategy used to detect where is taking place the higher memory consumption is

based on identifying some suspicious points in CWMP client and using

HSMEM_getMemUsage function described previously to get the memory information at

a given time.

Points identified to be analyzed are:

● Receiving the message: RPCs sent by the ACS are received by

TR69_SoapRecv function.

Figure 8: HSMEM_getMemUsage output example

25

● Message decoding: TR69_ProcessACSReq function is in charge of decoding

the received message and call the appropiate function corresponding to the

requested RPC.

● RPC call: each RPC that can be requested by the ACS has its corresponding

function in the CWMP client. Although our CPE implements all functions listed

in page XX, we selected the study of those which request or modify many

parameters and could have bigger memory needs:

○ GetParameterAttributes.

○ GetParameterNames.

○ GetParameterValues.

○ SetParameterAttributes.

○ SetParameterValues.

○ GetRPC.

● XML message build: once processed the requested RPC, an XML message is

built and sent to the ACS. ixmlPrintDocument is the function in charge or

parsing the DOM document and building the XML message.

4.4. Testing setup

The main objective of this project, as stated earlier, was the memory usage reduction in

the CWMP protocol implementation in MaxLinear’s MoCA modems. Nevertheless, the

existence of a simulation product was known by the team but the Valencia team didn’t

have expertise on this. Its state was unknown so they didn’t know if it was operative

and how to use it. Setting up the simulator was one of the sub-objectives of the project.

It would help the memory analysis task while could become a useful tool for the whole

team in further developments.

The Makefile of the project showed different simulation products as shown in Figure 9.

We decided to focus on the product that included the TR-069 protocol and the Linux IP

stack.

Figure 9: MoCA simulation targets

Memory Usage Optimization in the Implementation of the TR-069 Protocol (CWMP)
for MoCA Modems

26

A Linux environment we set up using a virtual machine so we can execute the binary

built after leuc-hostless-sim-tr69-lin product compilation. Prior to that, it was necessary

to solve some issues related to the compilation as some libraries were missing. To

accomplish this task, a better understanding about how the simulator was coded was

necessary. The code that was present in the repository was full of sentences like the

following one:

#if defined(SIMULATOR)

#include “library.h”

#endif

This compiler directives allow not only to include the libraries needed for the simulation

product to compile but also allow the developer to split a function that differs from its

implementation for different compilation products, avoiding the need of having different

files for those products. This approach is used, for instance, in the IP stack

implementation and thread management: the simulation needs a different piece of code

than the real hardware but both are coded in the same .c file and function name.

Once the product compiled successfully, it was necessary to modify the Linux

environment in order to make it work:

• Add 32-bit architecture compatibility: the simulation application thrown a

compatibility error due to is 32-bit architecture. As the Linux machine was 64-

bit, 32-bit compatibility was needed to make the OS capable of executing it.

• TAP interface creation: once the compatibility issue was solved, an error related

with an absence of tap interface was shown. Tap interfaces are offered by the

Linux kernel and basically are software interfaces without any hardware

component related to them. This interface allow to send and receive packets to

an application –the simulator in our case- that is attached to it. The advantage

of using tap interfaces lies in the simplicity of capturing the packets that go

through them by using an appropriate tool such as Wireshark.

Openvpn tool was used for that purpose with the following commands:

openvpn --mktun --dev tap0

ip link set tap0 up

ip addr add 10.0.0.1/24 dev tap0

27

• Set a couple of processor in the virtual machine: once the earlier issues were

solved, the application started its execution but showed an error related with

pthread library. A deeper study of the simulator code led us to notice that

POSIX threads were used to simulate the behavior of threads created in real

hardware RTOS. The simulation application needed the OS to be configured

with at least 2 processors. Therefore, it was needed to configure VirtualBox in

such way.

Once the environment was properly set up and the behavior of the simulator was

understood, we decided to continue using the simulator product during the following

phases of the project: analyzing memory usage and implementing a reduction

proposal.

Figure 10: testing environment setup

The use of this simulator allows to boost the process of analysis and implementation

since:

1. Compilation is faster: production firmware for real modems needs to use

specific platform compiler which also requires to connect to a license server

located in the US, increasing time to compile.

Memory Usage Optimization in the Implementation of the TR-069 Protocol (CWMP)
for MoCA Modems

28

2. Loading the firmware into the device is not necessary when using the simulator.

Real modems need to be upgraded through serial port which is a slow process.

They also need to be reflashed when the firmware contains some bug and the

device crashes. Simulator is launched in a bash terminal so executions are a lot

faster.

3. Analyzing packets is easier as they can be inspected using an analyzing tool

such as Wireshark. Tap interfaces allow to inspect full Ethernet frames avoiding

the need of additional hardware to capture them.

Figure 9 shows the final setup used to perform the memory analysis showed in the

following chapter. We can observe how the simulation application uses the TAP

interface to communicate with the guest OS. The virtual machine uses a bridge with the

host OS so it can reach the outside.

MaxLinear has access to a cloud-hosted ACS server that will be used to manage the

CPEs. Using its administration console via web, different predefined and custom RPCs

can be sent to the devices. It also shows valuable information about the RPC result:

whether they succeeded or not. Figure 11 shows a screenshot of Friendly ACS GUI.

Figure 11: Friendly ACS GUI

29

4.5. Memory usage analysis per function

The following piece of code shows the memory consumption procedure. In this

particular case, the reception of the message is taken as example but the method is

analogue to all measurements made through this chapter.

TR69_Free(msg);

msg = NULL;

HSMEM_getMemUsage();

TR69_Receive(msg);

HSMEM_getMemUsage();

The call to HSMEM_getMemUsage() prints on console the current memory block state,

as was shown in Figure 8. The information is printed twice: once prior the function call

to analyze and lastly once the function has returned.

The difference between both time instants shows the information desired: the memory

allocation that took place during the function call to analyze.

4.5.1. Reception of the message

To study the reception of the message memory consumption, different RPCs were

selected: GPA, GPN and GPV of full tree is a common RPC sent by the ACS to

register the CPE and also to get a provision. Once the device is registered, the ACS

usually sends some Set Parameters RPC. It usually sets from 1 to 4 parameter but we

decided to test up to 10 parameters. During normal operation, the ACS requests some

parameters so a GPA, GPN and GPV of 10 parameters is also measured. Finally, an

Inform Response and GetRPC are also analyzed.

Memory Usage Optimization in the Implementation of the TR-069 Protocol (CWMP)
for MoCA Modems

30

RPC Number of parameters Memory consumption (kB)

GPA/GPN/GPV 1 (full tree) 1.0

GPA 10 2.0

GPN 10 2.0

GPV 10 2.0

SPA 1 1.0

SPA 4 2.0

SPA 10 3.0

SPV 1 1.0

SPV 4 2.0

SPV 10 3.0

Inform Response - 1.0

Get RPC - 1.0

Table 2: message of message memory consumption

Analysis: memory usage did not exceed 3kB in any of the measurements. As expected,

those RPC that contain more parameters need largest amounts of memory: the buffer

needed to store the XML received message is bigger. However, RPCs with up to 10

parameters do not seem to compromise the system even though using 10 parameters

is not a common behavior. GPA, GPN and GPV of full tree, which involves the largest

number of parameters, just need 1kB as the message needed to request the whole

datamodel only needs one parameter, the root path.

4.5.2. Message decoding

A similar set of RPCs were chosen to analyze the message decoding. Inform

Response has not been tested as this is not the kind of message that triggers the

decoding function.

31

RPC Number of parameters Memory consumption (kB)

GPA/GPN/GPV 1 (full tree) 3.1

GPA 10 5.6

GPN 10 5.6

GPV 10 5.6

SPA 1 4.3

SPA 10 28.9

SPV 1 3.9

SPV 4 21.7

SPV 10 24.3
Get RPC - 2.7

Table 3: message decoding memory consumption

Analysis: message decoding involves parsing the XML received so the memory usage

increases as the message itself does: the more parameters to get or set, the more

memory needed. Nevertheless, a maximum of ~30kB is observed for a SPA with 10

parameters therefore the decoding function does not seem to be the bottleneck of the

system.

4.5.3. Specific RPC calls

To study the specific device implementation of each remote procedure call, the

following RPC were selected: GPA, GPN and GPV of full tree and 10 parameters. SPA

and SPV of 1 and 10 parameters. Get RPC was also studied.

Memory Usage Optimization in the Implementation of the TR-069 Protocol (CWMP)
for MoCA Modems

32

RPC Number of parameters Memory consumption (kB)

GPA 1 (full tree) 202.15

GPN 1 (full tree) 126.4

GPV 1 (full tree) 148.1

GPA 10 17.0

GPN 10 6.9

GPV 10 8.1

SPA 1 -

SPA 10 14.7

SPV 1 22.9

SPV 10 18.3

Get RPC - 2.8

Table 4: specific RPC calls memory consumption

Analysis: this experiment shows the higher memory consumption until now. Biggest

memory allocations are taking place in GPA, GPN and GPV calls for the whole tree.

This confirmed the hypothesis that full tree requests were the cause of the biggest

memory needs as the resulting message is the largest one. It also showed that GPA

needs 36% more memory than GPV, the second biggest consumer.

Setter functions memory needs increases with the number of parameters but this

behavior does not seem to be an issue as setting up to 10 parameters

4.5.4. XML message construction

Finally, the function that builds the XML message was analyzed. GPA, GPN and GPV

of full tree and 10 parameters were sent. GetRPC and Set Parameter RPCs were also

analyzed for 1, 4 and 10 parameters although setter functions just reply with a OK/KO

response so we expected small memory needs.

33

RPC Number of parameters Memory consumption (kB)

GPA 1 (full tree) 222.8

GPN 1 (full tree) 220.1

GPV 1 (full tree) 226.4

GPA 10 17.1

GPN 10 16.0

GPV 10 15.7

SPA 1 1.0

SPA 10 1.0

SPV 1 1.0

SPV 4 1.0

SPV 10 1.0

Get RPC - 13.2

Table 5: XML message construction memory consumption

Analysis: high amounts of memory are also requested by this message building

function. Around 220kB are allocated for the three GPA, GPN and GPV functions when

the whole tree is requested. This time there are no big differences between them as

showed in specific RPC function analysis. Setter RPCs memory usage was 1kB even

on those with 10 parameters. This was the expected behavior as the arguments they

have when called do not affect the response.

4.6. Preliminary findings

In the light of the results that different measurements of RPCs show, we can conclude

that calls to getter functions (GPA, GPN and GPV) are those that need biggest memory

to perform its task when the full tree is requested. High allocations are taking place not

only during the RPC function itself but also during the response message (XML) build.

Memory allocation also grows at the message reception and decoding when large

getter and setter RPCs are called. However, this has not been considered a dangerous

behavior as number of parameter requested do not usually exceed from four.

Memory Usage Optimization in the Implementation of the TR-069 Protocol (CWMP)
for MoCA Modems

34

In any case, a small study increasing the number of parameters requested by a setter

RPC was done to have more visibility about when a large SPN or SPV could

compromise system stability and is showed in Figure 10.

Figure 12: SPA memory usage

4.7. Análisis del consumo de memoria para GPA, GPN y GPV

Once identified GPA, GPN and GPV as the critical RPCs when the ACS requests the

whole device datamodel (full tree), a deeper analysis was made in order to determine

the more critical area among the two main tasks done in every RPC function:

● Glue Layer call: the retrieval of parameters is made by recursive calls that

iterate over the datamodel.

● DOM Document: it is the DOM document building (the so called tree)

● based on the list returned by the Glue Layer.

The same test setup as described earlier was used to analyze these functions in deep.

HSMEM_getMemUsage was employed not only to get the maximum memory usage as

done in previous experiments but also to get the not freed memory. This is a key

information as will show the amount of memory that will be still in use when the

message building function (ixmlPrintDocument) is called.

35

Function Max usage (kB) Not freed (kB)

Glue Layer 51.2 19.5

DOM document building 182.9 173.2

Table 6: GPA memory consumption

Function Max usage (kB) Not freed (kB)

Glue Layer 51.73 17.1

DOM document building 109.3 99.8

Table 7: GPN memory consumption

Function Max usage (kB) Not freed (kB)

Glue Layer & DOM
document building

148.4 117.7

Table 8: GPV memory consumption

4.8. Final conclusions and development proposals

The parameter retrieval performed by Glue Layer calls has a similar memory

consumption between GPA and GPN. GPV was developed in a different way as

previously presented in section X. Therefore, numbers cannot be splitted as done with

the other two RPCs.

Only around a third of the 50kB needed by the Glue Layer is not freed once the

parameter list is returned.

Nevertheless, DOM document build does an intensive memory usage, even three

times bigger than Glue Layer call in GPA case. The most critical finding is that more

than 90% of the memory allocated is not freed when the function returns. This is due to

the fact that the whole datamodel is modelled in memory in the form of nodes

representing a tree. This document will used later by the XML message build function

and therefore can not be freed.

The following conclusions may be drawn:

Memory Usage Optimization in the Implementation of the TR-069 Protocol (CWMP)
for MoCA Modems

36

● The biggest memory usage was caused by GPA, GPN and GPV when the ACS

requests the whole datamodel. This RPCs are sent continuously during normal

ACS operation mode and can compromise the stability of the system as total

memory is almost exhausted.

● Getter and setter RPCs with a large number of parameters could need to

allocate high amounts of memory. However, this is not a common behavior

since predefined and custom RPCs usually include 3 or 4 parameters.

● GPA, GPN and GPV biggest consumptions are located in DOM document

building task. Later, similar figures are observed to parse the document and

build the response message.

Once the conclusions were showed to the MoCA team, based on the normal operation

of the protocol and due to the temporal restrictions for the development, the final

implementation decision was:

● Reduce the memory needed by GPA, GPN and GPV when the ACS requests

the full device datamodel.

The proposal consisted on:

● Sending GPA, GPN and GPV large responses splitted in small messages. This

will need the use of a standard mechanism understood by every ACS due to the

fact that server code cannot be modified.

● Modify the behavior of each GPA, GPN and GPV to get individual parameters

instead of returning a large DOM document. This way, we will save memory not

only in this process but in the later one of parsing it and building the final XML

message.

5. Development

The developing main purpose is to modify the CWMP client to slice the messages

generated by RPCs GPA, GPN and GPV in small pieces. Therefore, it won’t be

necessary to create a DOM representation of the requested tree and we will avoid the

later parsing and subsequent XML response message build.

37

For that purpose, it is necessary to use a standard mechanism accepted by all ACS

server as it is not possible to perform any modification in the server side.

5.1. Transfer-Encoding: Chunked

HTTP/1.1 allows the usage of ‘transfer-encoding’ headers applied to messages sent

between a couple of node (CPE and ACS, in our case). ‘Chunked’ directive allows to

split the data to send in a series of smaller fragments called ‘chunks’ [8].

 ‘Content-Length’ header showing information about the total size of the HTTP

message is deleted and replaced by ‘Transfer-Encoding:chunked’. This header will tell

the message receiver that the message is going to be splitter in several messages but

final length and number of chunks are still unknown.

Fragmented messages are required to be built following some formatting rules: the

length of the message to be sent in hexadecimal followed by a carriage return and a

line feed. Next line will include the message and finally a carriage return and a line feed

will indicate that the chunk is finished.

A message example using “Transfer-Encoding:chunked” directive is shown below:

66\r\n

<MaxEnvelopes>1</MaxEnvelopes><CurrentTime>2021-01-

26T12:16:31</CurrentTime><RetryCount>0</RetryCount>\r\n

This mechanism will allow us to send GPA, GPN and GPV by chunks avoiding the

need of retrieving the full tree and knowing the number of parameters and the length of

the final message beforehand.

The ‘Transfer-Encoding:chunked´ directive is a valid option since it is included in

HTTP/1.1, a standard that must be implemented in all ACS servers. However, we

decided to inspect the messages sent by CWMP protocol in a different product of the

company called G.hn and verified this was the solution implemented to solve the same

issue.

Figure 10 shows a Wireshark traffic capture of a G.hn inform message when the device

boots up.

Memory Usage Optimization in the Implementation of the TR-069 Protocol (CWMP)
for MoCA Modems

38

Figure 13: traffic capture of G.hn inform sent in chunks

5.2. HTTP client modifications

It’s been necessary to adapt the functionality of the HTTP client in order to be capable

of sending messages by chunks.

Figure 14 shows the activity diagram of the TR69 HTTP Client. It basically checks

whether we are sending a chunked RPC (GPA, GPN, GPV) or not. Only on first

iteration headers are added calling HTTPClientSendRequest. Following chunks are

sent by calling HTTPClientWriteData directly.

39

TR69_SoapSend:

This function adds SOAP headers only on first iteration if we are sending chunks or in

every call if we are not chunked sending. Finally calls TR69_HttpCSend.

TR69_HttpCSend:

This function sends the data to the HTTP server. It calls HTTPClientSendRequest

when the RPC is not a chunked one or if it is the first chunk. Following chunks are sent

by calling HTTPClientWriteData.

HTTPClientSendRequest:

This function adds HTTP headers and writes the message to the socket.

The functionality when the content-length is unknown has been added: “HTTP send

chunk” flag is set to the session. Afterwards headings are added and

HTTPClientWriteData is called.

HTTPClientWriteData:

This function builds the chunks as described in section “Transfer-Encoding: Chunked”,

calculating the chunk size and adding all necessary carriage returns and line feeds.

Finally, it delivers the message to the socket.

Memory Usage Optimization in the Implementation of the TR-069 Protocol (CWMP)
for MoCA Modems

40

Figure 14: HTTP client activity diagram

Insert headers

is chunked
RPC? else

elseis the first?

Insert headers

TR69_HttpCSend

else
not chunked RPC or

first chunk?

Insert headers

elsechunked RPC?

elsefirst?

HTTPClientSendRe
quest (Unknown

length)

HTTPClientSendRe
quest

HTTPClientWriteD
ata

else
chuned RPC

and last?

Check Response

41

5.3. CWMP client modifications

CWMP client modifications can be splitted in three big blocks described below:

● GPV glue layer call and DOM tree building must be decoupled: as presented in

previous sections, this function differs from GPA and GPN in that the glue layer

call does not only retrieve the parameters requested but also builds the DOM

tree representation.

● Replace GPA, GPN and GPV functions with new implementations that do not

build a DOM document.

● Implement new functions that build the chunk message to be sent each

iteration, including headers and footers if needed.

Figure 15 shows the new CWMP sequence diagram:

Figure 15: new CWMP sequence diagram

Memory Usage Optimization in the Implementation of the TR-069 Protocol (CWMP)
for MoCA Modems

42

5.4. Implementation details

The new CWMP client implementation will iterate through the parameters retrieved by

the Glue Layer in the main function of tr69_client_cwmp. This will differ from the

previous implementation in which the iteration was done inside each RPC function. The

new approach will avoid both task with the biggest consumptions: the DOM building

and the parsing and message construction made by ixmlPrintDocument.

The Glue Layer will return all parameters requested only during the first iteration. New

functions will be called to build the chunk message containing only the parameter

corresponding with the iteration number.

5.4.1 Global Structure

A global structure is used to handle the new message sending by chunks. TR69 client

execution is sequential and independent from other functionalities so there will be no

data dependencies between functions.

typedef struct

{

 bool error;

 TR69_RPC_T chunkedRpc;

 uint16_t numberNames;

 uint16_t loopCount;

 int msgStrIdx;

 int localBufferIdx;

 char *msgStr;

 char *localBuffer;

 char **gpnNameArray;

 char **gpaParamArray;

 bool *gpnWritableArray;

 TR69_PARAMATTR_T **gpaAttrArray;

 TR69_PARAMVALUE_ERROR_T **gpvParamArray;

 } TR69_CHUNK_SEND;

43

error

This boolean variable is responsible of tracking if an error is detected in the Glue Layer

during the parameters retrieval. It could happen due to a incorrect path in the GPx

function call, due to a wrong parameter name or any other issue found during the

execution. If an error is detected, chunking sending is aborted. Instead a Fault

response is sent in a traditional way.

chunkedRpc

It is an enum type that maintains the RPC that it is being processed:

typedef enum

{

 GET_RPC_METHODS,

 SET_PARAMETER_VALUES,

 GET_PARAMETER_VALUES,

 GET_PARAMETER_NAMES,

 SET_PARAMETER_ATTRIBUTES,

 GET_PARAMETER_ATTRIBUTES,

 ADD_OBJECT,

 DELETE_OBJECT,

 REBOOT,

 DOWNLOAD,

 FACTORY_RESET

} TR69_RPC_T

Only GET_PARAMETER_ATTRIBUTES, GET_PARAMETER_NAMES y

GET_PARAMETER_VALUES support chunked sending.

numberNames

Stores the number of parameters returned by the Glue Layer. This value is obtained in

the first GPx function call by ProcessACS.

It corresponds with the maximum number of iterations to perform and therefore with the

number of messages to send.

loopCount

Memory Usage Optimization in the Implementation of the TR-069 Protocol (CWMP)
for MoCA Modems

44

Number of iterations already performed (and messages already sent).

msgStrIdx

“msgStr” buffer index used to avoid buffer overflow when concatenating character

strings. It is used by the functions that build the message to be sent.

localBufferIdx

“localBuffer” buffer index used to avoid buffer overflow when concatenating character

strings. It is used by the functions that build the message to be sent.

gpnNameArray

Array returned by the specific Glue Layer function called by GPN. It is a linked list that

contains the requested parameters.

gpnWritableArray

Array returned by the specific Glue Layer function called by GPN. It is a linked list that

contains the attributes of each requested parameter.

gpaAttrArray

Array returned by the specific Glue Layer function called by GPA. It is a linked list that

contains the attributes of each requested parameter.

gpvParamArray

Array returned by the specific Glue Layer function called by GPV. It is a linked list that

contains the requested parameters.

5.4.2. GPA, GPN and GPV functions

TR69_rpcGetParameterAttributes, TR69_rpcGetParameterNames and

TR69_rpcGetParameterValues have been modified in the following way: only on first

iteration, when “loopCount” is ‘0’, they call their corresponding Glue Layer function.

This returns a linked list stored by reference in the global structure showed before. The

total number of parameters that the list includes is stored in “numberNames”.

45

This way, the total number of iterations and therefore the messages to be sent is

known.

If an error is detected during the Glue Layer call, error global variable will be set to ‘1’.

A Fault message will be built and chunk sending will be aborted.

If the Glue Layer retrieves successfully the requested parameters, new functions

TR69_xmlGetParameter[Attributes, Names, Values] will be called to build the chunk

corresponding to the current iteration.

5.4.3. XML message build functions

New functions called TR69_xmlGetParameterAttributes,

TR69_xmlGetParameterNames and TR69_xmlGetParameterValues are responsible of

building the chunk string to be sent in each iteration. They are called by each GPx

function.

The string is stored in “msgStr” buffer while “localBuffer” is used to retrieve every

parameter to be appended in “msgStr”. As C language does not provide automatic

mechanism to avoid buffer overflow, “msgStrIdx” and “localBufferIdx” presented in

previous section are used not to exceed the maximum length for these buffers.

Only on first iteration and last iteration appropriate headers and footers will be included

in the message.

If an overflow occurs while building the chunk (whether the parameter does not fit in

“localBuffer” or the string to be sent does not fit in “msgStr”), an error status is returned.

Memory Usage Optimization in the Implementation of the TR-069 Protocol (CWMP)
for MoCA Modems

46

Figure 16: GPA, GPN y GPV activity diagram

5.4.4. Main function

Main CWMP client function has been partially modified: HTTP session creation, inform

sending, inform-response reception and firmware download process have not been

reimplemented. Therefore, Figure 14 activity diagram only shows the RPC

management code block.

47

The new implementation is in charge of getting the number of iterations to be

performed. This number will be retrieved by the Glue Layer and stored in

“numberNames” global variable as shown in before.

Figure 17: TR-069 main function activity diagram

Memory Usage Optimization in the Implementation of the TR-069 Protocol (CWMP)
for MoCA Modems

48

6. Final memory layout

Once the development was concluded, next step was to measure the new memory

needs to compare with the previous implementation and define a new memory layout

that optimizes the memory block adjusted to the new consumptions.

First measurements were done using the MoCA simulator used during the whole

development process. HSMEM_getMemUsage and FriendlyACS were used the same

way as presented in chapter 4 to retrieve the information needed.

After that, the new solution was tested using a unique modem and once checked that

the firmware was correct and the device did not stop working, several tests were made

in a TR-069 test bench.

6.1. Consumption measurements

GPA, GPN and GPV requesting the whole datamodel were sent to a couple of

simulator instances: the first one was loaded with the current firmware while the second

one implemented the chunk sending.

The memory usage represents the maximum memory needed by the CWMP client to

perform each a full connection receiving each RPC.

RPC Number of
parameters

Memory usage (kB)
Current implementation

Memory usage (kB)
New implementation

Memory
Savings

GPA Full tree 424.95 50.21 88.16%

GPN Full tree 346.5 50.67 85.35%

GPV Full tree 374.5 53.66 85.67%

Table 9: GPA, GPN and GPV memory usage comparison

Table 9 results showed a reduction of more then 85% in all of the three RPCs.

Next step was to determine how this drastically memory reduction affected to the block

usage. As presented in 4.1. Current memory layout, memory was allocated at the

device boot following a block strategy showed in Table 1. Memory layout needs to be

created ad-hoc so we can optimize allocations.

49

While simulation product was a valuable tool for our developing purposes, determining

the new memory layout is hardware specific as real modem implementation differs from

simulator in the IP stack used among many other software parts.

For the new memory layout definition, a specific TR-069 bench with real modems was

used. Friendly ACS was also used but time modems are isolated and cannot connect

to the internet so a local version of the ACS was employed.

Figure 18: TR-069 testbench setup

The experiment consisted on the CPE registration into the ACS, a normal behavior that

usually involves the use of many RPCs. These are:

● Inform message.

● Full datamodel GPA, GPN y GPV.

● 4 parameters SPV.

Memory Usage Optimization in the Implementation of the TR-069 Protocol (CWMP)
for MoCA Modems

50

Table 10 shows that many blocks are already at their maximum capacity. Many others

are near 100%. This is the expected behavior as this memory layout was intentionally

created to optimize the block usage for the current CWMP implementation.

Block Size
(kB)

Number of
blocks

Max. used
blocks

Use %

16 2300 2300 100

32 1250 1067 85

72 1900 1736 91

256 20 15 75

360 10 9 90

1024 15 7 57

2048 10 4 40

3072 4 3 75

4096 3 2 67

13312 2 2 100

18432 2 2 100

59392 2 2 100

Table 10: current memory block usage

The experiment was repeated this time with the new firmware versión chunk sending. A

drastical reduction is shown in Table 11 where we can find that any of the blocks is at its

100% capacity. Even some of them are no longer used.

Block Size
(kB)

Number of
blocks

Max. used
blocks

Use %

16 2300 482 21

32 1250 322 26

72 1900 453 24

256 20 15 75

360 10 9 90

1024 15 7 47

2048 10 4 40

3072 4 2 50

51

4096 3 1 33

13312 2 0 0

18432 2 2 100

59392 2 0 0

Table 11: new memory block usage

Biggest blocks are no longer used with the exception of the 18kB blocks which are

used for TLS library as described in some comments found in the code.

With this new scenario, the failure probability is less than before: if an unexpected

allocation of memory takes place or even the datamodel grows, the system will have

enough memory not to fail. However, keeping this memory layout leads us to waste

memory as all these blocks are reserved at the boot time for the CWMP client.

6.2. New memory layout

The proposal for the new memory layout deletes no longer used blocks and reduces

the rest of them so that approximately a 30% of spare memory is kept at every block

size. This is done to reduce the possibility of having an allocation failure due to an

unexpected memory allocation. 18kB blocks are not modified since these are used by

TLS input/output buffer as previously discussed.

Block Size
(kB)

Number of
blocks

Max. used
blocks

Use %

16 730 482 66

32 520 322 62

72 650 453 70

256 25 15 60

360 13 9 69

1024 10 7 70

2048 6 4 67

3072 6 2 33

4096 2 1 50

18432 2 2 100

Table 12: new memory layout and usage

Memory Usage Optimization in the Implementation of the TR-069 Protocol (CWMP)
for MoCA Modems

52

7. Future improvements

The improvements presented in this project are focused on reducing the memory

usage by the most common RPC: GPA, GPN and GPV of full tree. However, as

discusses previously, getter and setter calls with a large number of parameters,

although not usually sent, can become an issue: CWMP client will need a big buffer to

allocate the received message and DOM document building will be built for SPx remote

procedure calls.

Since auto configuration servers do not split messages in chunks, the CWMP client

could be modified in order to process the received message by events instead of

building a DOM document. This change will need to replace the DOM parser by a SAX

one.

Although Inform sending, Fault error responses and the rest of the RPCs do not need

big amounts of memory to perform their work, sending them in chunks will bring

homogeneity to the client.

Being aware of the limitations and knowing which are the potential improvements allow

to resume these tasks in a future if needed.

8. Final conclusions

At the beginning of this project, MoCA modems using CWMP were almost at the limit of

their memory capacity due to the big consumption the protocol needed to perform its

work. This high memory usage limited the possibility of adding new features to the

product and compromise the modem performance as packet transmission buffers were

reduced to fit the remote management protocol. Moreover, some ACS send several

requests at the same time what caused device failures and constant reboots.

The main goal of this project was to reduce the memory usage needed for CWMP

operation. For this purpose, it was necessary to perform a deep analysis that help us to

determine which were the most conflictive components of TR-069 implementation.

A complementary objective was to run the MoCA product simulator with the aim of

helping not only during the development of this project but with future ones.

53

Simulator fixes and findings allow us to set up a local testing environment. Using the

simulator helped to avoid some of the issues that a developer faces when developing

embedded software and eased the measurements.

Experiments thrown that GPA, GPN and GPV remote procedure calls were the most

memory demanding functions when the whole CPE datamodel was requested. The

main issue was related with the need of building a DOM document containing all the

parameters requested and lately processing it to build the final XML message.

The proposal developed in this project consisted on sending GPA, GPN and GPV

response messages splitted in many messages as parameters were retrieved. For this

purpose, a fragmented sending mechanism supported by HTTP/1.1 was used:

´Transfer-Encoding:chunked’.

It has been necessary to modify the CWMP client so the Glue Layer, in charge of

parameter retrieval, was only called during the first iteration: the loop that went through

the parameter list building the DOM document has been moved to the CWMP main

function. This way, it is no longer necessary to build the DOM representation of the

datamodel in memory. Instead, new message building functions have been developed

in order to construct a lightweight chunk message.

It was also necessary to adapt the HTTP client in order to allow chunk sending. As

discussed before, these messages does not follow the standard structure of an HTTP

message.

Once the code was tested in the simulation environment and checked that worked in

real modems, it was necessary to determine the memory consumption reduction. For

that purpose, a dedicated TR-069 test bench was used as memory needs are different

for simulator and real products.

The new memory layout reduces the number of blocks and even remove some of

them. This new schema uses 188.272kB instead of the 487.080kB needed by the

previous implementation. A total of 298.808kB have been freed and could be used to

increase MoCA transmission buffers or develop new features. This reduction

represents a 7.5% of the total 4MB system memory.

Memory Usage Optimization in the Implementation of the TR-069 Protocol (CWMP)
for MoCA Modems

54

9. Bibliography

[1] G. Davis. (2018). 2020: Life with 50 billion connected devices. 2018 IEEE
International Conference on Consumer Electronics (ICCE), 2018, pp. 1-1, doi:
10.1109/ICCE.2018.8326056.

[2] S. Kemp. (2021, January 27th). Digital 2021: Global Overview Report. Datareportal.
https://datareportal.com/reports/digital-2021-global-overview-report

[3] TR-069 CPE WAN Management Protocol. (2020, June). Broadband Forum.
https://www.broadband-forum.org/technical/download/TR-069_Amendment-
6_Corrigendum-1.pdf

[4] Box et al. (2000). Simple Object Access Protocol (SOAP) 1.1. The World Web
Concostium, W3C. https://www.w3.org/TR/2000/NOTE-SOAP-20000508/

[5] I. Savic, M.S. Savic, G. Velickic. (2014). Implementation of TR-069 connection
request mechanism. X International Symposium on Industrial Electronics INDEL, Banja
Luka.
http://indel.etfbl.net/2014/resources/Proceedings_2014/INDEL_2014_Paper_44.pdf

[6] DOM Living Standard. Web Hypertext Application Technology Working Group.
https://dom.spec.whatwg.org/

[7] C. Yao and Q. Li. (2003). 13.3. Fixed-Size Memory Management in Embedded
Systems. Real-Time Concepts for Embedded Systems. CRC Press.

[8] R. Fielding and J. Reschke. (2014). Hypertext Transfer Protocol (HTTP/1.1):
Message Syntax and Routing. RFC 7230, DOI 10.17487/RFC7230.
https://datatracker.ietf.org/doc/html/rfc7230

https://datareportal.com/reports/digital-2021-global-overview-report
https://www.broadband-forum.org/technical/download/TR-069_Amendment-6_Corrigendum-1.pdf
https://www.broadband-forum.org/technical/download/TR-069_Amendment-6_Corrigendum-1.pdf
https://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://indel.etfbl.net/2014/resources/Proceedings_2014/INDEL_2014_Paper_44.pdf
https://dom.spec.whatwg.org/
https://datatracker.ietf.org/doc/html/rfc7230

	1. Introduction
	1.1. Motivation
	1.2 Current state
	1.3. Goals

	2. TR-069 or CWMP protocol
	2.1. A typical TR-069 session
	2.2. Current implementation
	2.3. Document Object Model (DOM)

	3. Methodology
	3.1. Organization
	3.2. Development
	3.3. Laboratories and tests

	4. Memory Analysis
	4.1. Current memory layout
	4.3. Functions to analyze
	4.4. Testing setup
	4.5. Memory usage analysis per function
	4.5.1. Reception of the message
	4.5.2. Message decoding
	4.5.3. Specific RPC calls
	4.5.4. XML message construction

	4.6. Preliminary findings
	4.7. Análisis del consumo de memoria para GPA, GPN y GPV
	4.8. Final conclusions and development proposals

	5. Development
	5.1. Transfer-Encoding: Chunked
	5.2. HTTP client modifications
	TR69_SoapSend:
	TR69_HttpCSend:
	HTTPClientSendRequest:
	HTTPClientWriteData:

	5.3. CWMP client modifications
	5.4. Implementation details
	5.4.1 Global Structure
	5.4.2. GPA, GPN and GPV functions
	5.4.3. XML message build functions
	5.4.4. Main function

	6. Final memory layout
	6.1. Consumption measurements
	6.2. New memory layout

	7. Future improvements
	8. Final conclusions
	9. Bibliography

