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LORENTZ SPACES OF VECTOR MEASURES AND REAL

INTERPOLATION OF OPERATORS

R. DEL CAMPO, A. FERNÁNDEZ, F. MAYORAL, F. NARANJO, E.A. SÁNCHEZ PÉREZ

Dedicated to the memory of Joe Diestel

Abstract. Using the representation of the real interpolation of spaces of p-integrable
functions with respect to a vector measure, we show new factorization theorems for

p-th power factorable operators acting in interpolation couples of Banach function

spaces. The recently introduced Lorentz spaces of the semivariation of vector mea-
sures play a central role in the resulting factorization theorems. We apply our results

to analyze extension of operators from classical weighted Lebesgue Lp-spaces —in

general with different weights—, that can be extended to their q-th powers. This is
the case, for example, of the convolution operators defined by Lp-improving measures

acting in Lebesgue Lp-spaces or Lorentz spaces. A new representation theorem for
Banach lattices with a special lattice geometric property, as a space of vector measure

integrable functions, is also proved.

1. Introduction

The interpolation of operators acting in Banach function spaces has become a clas-
sic tool in mathematical analysis, and many important theorems have been obtained
in functional analysis using interpolation techniques. Concerning real interpolation of
Banach spaces, some relevant results involving operators acting in the classical Lebesgue
Lp-spaces have been extended to their corresponding natural class of real interpolation
spaces: the Lorentz spaces. In this paper, the vector measure version of the Lp-spaces
and the associated class of operators factoring through them are considered. Some effort
has been made in recent years to improve the knowledge on these spaces, concretely to
investigate the role of the Lp spaces of a vector measure in the factorization theorems for
operators, in comparison with the one played by the classical Lebesgue spaces, mainly
in the so-called Maurey-Rosenthal factorization theorems (see [7]).

In the vector valued context and after the work developed by several authors (see
[20, 12] and the references therein) we learned that the canonical operators that factor
through an Lp-space of a vector measure coincide with the operators that can be extended
to the p-th power of the Banach function space where the operator acts. These operators
are called p-th power factorable operators. For example, for 1 ≤ p ≤ r an operator
T : Lr[0, 1] −→ E is p-th power factorable if it can be extended to an operator T̂ :

L
r
p [0, 1] −→ E.

Date: February 13, 2021.
2000 Mathematics Subject Classification. Primary 46E30; Secondary 47B38, 46B42.
Key words and phrases. Banach function space, vector measure, real interpolation, factorable oper-

ator, bidual concave operator, improving measures.
The first four authors acknowledge the support of La Junta de Andalućıa (Spain). The fifth author
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Consequently, the analysis of the vector valued version of these classical factorization
results is the study of the real interpolation of p-th power factorable operators. That
is, to analyze to what extent the analogies from the classical setting of interpolation of
operators and factorizations through Lorentz spaces can be translated into the frame-
work of spaces of vector measure integrable functions. Motivated by the extension of
some classical interpolation results to the vector measure context, we will provide new
factorization theorems through a new class of (quasi-)Banach function spaces. As an ap-
plication, we will use them to produce some new results on factorization and extensions
of operators acting on real interpolation spaces of classical Lebesgue Lp and Lorentz
spaces with different weights.

Regarding the available tools, a concrete representation of the real interpolation spaces
of the spaces of p-integrable functions with respect to a vector measure has been recently
obtained (see [9]). The new relevant Lorentz space Lp,q(‖m‖) appears in it. This space
is defined following the classical construction of the Lorentz space, but the distribution
function is defined by the (real valued) capacity ‖m‖, —the semivariation of the vector
measure m—. Since these spaces are in fact the cornerstone of our construction, we will
give more results on their geometric properties, and a characterization of what kind of
Banach lattices can be represented as Lorentz spaces of the semivariation of a vector
measure. This will provide a new representation theorem for this particular class of
Banach lattices, which is one of the main outcomes of the present paper.

2. Preliminaries and notation

Let (Ω,Σ, µ) be a finite measure space. A Banach function space X over µ (B.f.s.
for short) is an ideal of the space of (equivalence classes of) measurable functions L0(µ)
endowed with a complete norm ‖ · ‖X that is compatible with the µ-a.e. order and such
that L∞(µ) ⊆ X ⊆ L1(µ) (see [17, p. 28]). The topological dual is denoted by X∗.
A B.f.s. X is order continuous if for every sequence (fn)n in X such that 0 ≤ fn ↓ 0
pointwise we have that ‖fn‖X ↓ 0. Let us show in this section several analytical concepts
and tools that will be used in the paper.

2.1. Lp-spaces of a vector measure. Let (Ω,Σ) be a measurable space and E a real
Banach space. Let m : Σ −→ E be a countably additive vector measure. For every x∗

in the dual E∗ of E, let 〈m,x∗〉 be the scalar signed measure defined by 〈m,x∗〉(A) :=
〈m(A), x∗〉, for all A ∈ Σ. The semivariation of m is the subadditive real bounded set
function ‖m‖ : A ∈ Σ −→ ‖m‖(A) ∈ [0,∞) defined by

‖m‖(A) = sup {|〈m,x∗〉| (A) : ‖x∗‖E∗ ≤ 1} ,

where |〈m,x∗〉| is the variation measure of 〈m,x∗〉. It is well-known that

1

2
‖m‖(A) ≤ sup{‖m(B)‖E : B ⊆ A,B ∈ Σ} ≤ ‖m‖(A),

for every set A ∈ Σ. A Rybakov (control) measure for m is a measure defined as |〈m,x∗〉|
for some x∗ ∈ E∗, satisfying that |〈m,x∗〉|(A) = 0 if and only if ‖m‖(A) = 0. Such a
measure always exists (see [8, Theorem IX.2.2]).

Let us introduce now the basic notions of integration with respect to a vector measure.
The reader can find a complete analysis of these spaces in [20, Chapter 3]. A measurable
function f : Ω −→ R is scalarly integrable if f ∈ L1(|〈m,x∗〉|) for all x∗ ∈ E∗. The space
consisting of all (equivalence classes of ‖m‖-a.e. equal) scalarly integrable functions with
respect to m is L1

w(m), which is a Banach function space over every Rybakov (control)
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measure for m, with the sequential Fatou property, and a weak unit, when equipped with
the norm

‖f‖L1
w(m) := sup

{∫
Ω

|f | d|〈m,x∗〉| : ‖x∗‖E∗ ≤ 1

}
.

A function f ∈ L1
w(m) is said to be integrable with respect to m if for every A ∈ Σ there

exists an element of E denoted by

∫
A

f dm, such that〈∫
A

f dm, x∗
〉

=

∫
A

f d〈m,x∗〉, x∗ ∈ E∗.

The space of all (‖m‖-a.e. equivalence classes of) integrable functions with the norm of
L1
w(m) is denoted by L1(m). It is an order continuous ideal of L1

w(m), and the integration

map Im : f ∈ L1(m) −→ Im(f) :=

∫
Ω

f dm ∈ E is linear and continuous. The definition

of the corresponding Lp(m) spaces (1 < p < ∞) is done in the natural way. A function
f ∈ L1

w(m) is called scalarly p-integrable with respect to m if |f |p ∈ L1
w(m), and p-

integrable with respect to m whenever |f |p ∈ L1(m). We denote by Lpw(m) and Lp(m)
the corresponding spaces of (‖m‖-a.e. equal equivalence classes of) scalarly p-integrable
and p-integrable functions with respect to m. These spaces are equipped with the norm

‖f‖Lpw(m) = sup

{(∫
Ω

|f |p d|〈m,x∗〉|
) 1
p

: ‖x∗‖E∗ ≤ 1

}
.

Both spaces are p-convex (for the definition of p-convexity of Banach lattices see [17,
1.d.3]). Finally L∞(m) denotes the Banach function space of the (‖m‖-a.e. equal equiv-
alence classes of) measurable functions that are ‖m‖-a.e. essentially bounded.

2.2. Lorentz spaces of the semivariation of a vector measure. Let us present here
some fundamental known properties of the Lorentz space of the semivariation of a vector
measure m. The reader can find a complete explanation of these properties in [9, Section
4]. Suppose that 1 ≤ p, q ≤ ∞. The Lorentz space Lp,q(‖m‖) is defined by all (‖m‖-a.e.
equivalence classes of) measurable functions f : Ω −→ R for which

‖f‖Lp,q(‖m‖) :=

(∫ ∞
0

(
s

1
p f∗(s)

)q ds
s

) 1
q

<∞, 1 ≤ q <∞, (2.1)

or ‖f‖Lp,∞(‖m‖) := sup
{
s

1
p f∗(s) : s > 0

}
< ∞, for q = ∞. In these formulas, f∗ is the

decreasing rearrangement of the function f with respect to the semivariation ‖m‖. These
functions (2.1) provide quasi-norms on the corresponding spaces Lp,q(‖m‖), but they are
equivalent to a norm for p > 1 and 1 ≤ q ≤ ∞. In this case, more can be said: Lp,q(‖m‖)
is a Banach lattice, that is reflexive (and then order continuous) if 1 < p, q <∞ (see [9,
Corollary 14] and [9, Corollary 18]). Moreover, [9, Proposition 2] provides the following
equivalent formula for the quasi-norm of the Lorentz spaces. For 1 ≤ p, q <∞,

‖f‖Lp,q(‖m‖) =

(
p

∫ ∞
0

tq−1(‖m‖f (t))
q
p dt

) 1
q

, (2.2)

and ‖f‖Lp,∞(‖m‖) = sup
{
t‖m‖f (t)

1
p : t > 0

}
, for the case q = ∞. Here ‖m‖f , defined

for t > 0 by the equality ‖m‖f (t) := ‖m‖([|f | > t]), is the distribution function of the
function f with respect to the semivariation ‖m‖, where [|f | > t] denotes the measurable
set {w ∈ Ω : |f(w)| > t}.
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For a given vector measure m, the inclusions between the different Lorentz spaces
Lp,q(‖m‖) follow the same rule that for the case of finite scalar measures. In particular
Lp,q(‖m‖) ⊆ L1(m) for every 1 < p < ∞ and 1 ≤ q ≤ ∞. However, the following
inclusions are characteristic of the vector valued measure case (see [9, Proposition 7]).
For 1 ≤ p <∞, we have the continuous inclusions

Lp,1(‖m‖) ⊆ Lp,p(‖m‖) ⊆ Lp(m) ⊆ Lpw(m) ⊆ Lp,∞(‖m‖). (2.3)

To finish this summary, let us write the main real interpolation result for Lp-spaces of a
vector measure m (see [9, Corollary 17]), which is the main tool for much of this paper.

Theorem 2.1. Suppose 0 < θ < 1 ≤ q ≤ ∞ and let 1 ≤ p0 6= p1 ≤ ∞. Then

(Lp0(m), Lp1(m))θ,q = (Lp0
w (m), Lp1(m))θ,q = (Lp0

w (m), Lp1
w (m))θ,q = Lp,q(‖m‖),

where
1

p
=

1− θ
p0

+
θ

p1
. All above equalities are topological.

3. Real interpolation and optimal domains

Let T : X −→ E be a Banach space valued operator acting in an order continuous
B.f.s. X. The expression mT (A) := T (χA) defines a vector measure mT : Σ −→ E which
is called the vector measure associated to T. The operator T is said to be µ-determined
if the measures µ and mT have exactly the same null sets. When T is µ-determined,
the space L1(mT ) is an order continuous Banach function lattice on (Ω,Σ, µ), X is
continuously included into L1(mT ) via the natural inclusion

JT : f ∈ X −→ JT (f) := f ∈ L1(mT )

and the integration operator ImT : L1(mT ) −→ E is the unique continuous linear ex-
tension of T satisfying T = ImT ◦ JT (see [5] or [20, Proposition 4.4]). Therefore, if
Y is another order continuous B.f.s such that X ⊆ Y ⊆ L0(µ) and T : Y −→ E is a
continuous linear extension of T, then Y ⊆ L1(mT ) continuously. In this sense, it is said
that L1(mT ) is the (order continuous) optimal domain for the operator T.

Let us consider now an interpolation couple (X0, X1) of order continuous Banach
function spaces on the same finite measure space (Ω,Σ, µ), and an interpolation couple
(E0, E1) of Banach spaces. Take and admissible µ-determined operator T between the
couples (X0, X1) and (E0, E1), that is, an operator T : X0 +X1 −→ E0 + E1 such that
its restrictions T0 := T |X0

: X0 −→ E0 and T1 := T |X1
: X1 −→ E1 are continuous.

Moreover, let Tθ,q : (X0, X1)θ,q −→ (E0, E1)θ,q be the interpolated operator for 0 < θ <

1 ≤ q <∞, where (·, ·)θ,q denotes the real interpolation method, and set mθ,q := mTθ,q for

all 0 < θ < 1 ≤ q <∞. In this situation we have the optimal domains L1(m0), L1(m1),
and L1(mθ,q) corresponding to the restricted µ-determined operators T0 : X0 −→ E0,
T1 : X1 −→ E1 and Tθ,q : (X0, X1)θ,q −→ (E0, E1)θ,q . The following result relates the

real interpolation space
(
L1(m0), L1(m1)

)
θ,q

of the optimal domains of T0 and T1 with

the optimal domain L1(mθ,q) of the interpolated operator Tθ,q. The case of the complex
interpolation method was considered in [2, Theorem 3.1].

Theorem 3.1. If 0 < θ < 1 ≤ q <∞, then
(
L1(m0), L1(m1)

)
θ,q
⊆ L1(mθ,q). Moreover,

this inclusion is continuous.

Proof. For i = 0, 1, the space Xi is continuously included into L1(mi), and there exists a
unique extension of Ti to L1(mi) given by the integration map Imi : L1(mi) −→ Ei (see
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[5] or [20, Theorem 4.14]). Since Im0
(ϕ) = Im1

(ϕ) for every simple function ϕ and the
set of simple functions are dense in both spaces L1(m0) and L1(m1), the map

T̂ : L1(m0) + L1(m1) −→ E0 + E1

given by T̂ (f) := Im0
(f0) + Im1

(f1) for f0 ∈ L1(m0), f1 ∈ L1(m1) is well-defined, linear
and continuous, that is, it is an operator.

The interpolated spaces (X0, X1)θ,q and
(
L1(m0), L1(m1)

)
θ,q

are both order contin-

uous, since X0, X1, L
1(m0) and L1(m1) are all order continuous (see Remarks 1.9 and

1.10 in [6, page 17]). The simple functions are also dense in both interpolated spaces
since they are dense in each intersection, X0 ∩X1 and L1(m0) ∩ L1(m1). Moreover, the
following inclusion (X0, X1)θ,q ⊆

(
L1(m0), L1(m1)

)
θ,q

holds. The restriction of the in-

terpolated operator T̂θ,q :
(
L1(m0), L1(m1)

)
θ,q
−→ (E0, E1)θ,q to the space (X0, X1)θ,q

clearly coincides with Tθ,q. In other words, T̂θ,q is a continuous linear extension of Tθ,q
to the order continuous Banach function space

(
L1(m0), L1(m1)

)
θ,q

. The optimality of

the domain L1(mθ,q) for Tθ,q (see again [5] or [20, Theorem 4.14]) gives the continuous
inclusion

(
L1(m0), L1(m1)

)
θ,q
⊆ L1(mθ,q). �

Remark 3.2. In general the inclusion
(
L1(m0), L1(m1)

)
θ,q
⊆ L1(mθ,q) is proper. The

example considered in [2, Remark 3.3] for the complex interpolation method, also works
in this case.

Next result is a consequence of the above theorem combined with the estimates of the
K-functional of p-convexifications of Banach function spaces obtained by Maligranda in
[19, Lemma 1 and Theorem 1].

Corollary 3.3. If 0 < θ < 1 ≤ q <∞, and 1 ≤ p <∞, then

(Lp(m0), Lp(m1))θ,q ⊆ L
p(mθ,q).

Proof. Since q ≤ p q, we have (Lp(m0), Lp(m1))θ,q ⊆ (Lp(m0), Lp(m1))θ,p q . Then it

is enough to prove that (Lp(m0), Lp(m1))θ,p q ⊆ Lp(mθ,q). We have to see that |f |p ∈
L1(mθ,q) for a given f ∈ (Lp(m0), Lp(m1))θ,p q . By Theorem 3.1 we need to prove |f |p ∈(
L1(m0), L1(m1)

)
θ,q
. In order to obtain that, we use Maligranda’s estimates. If f ∈

(Lp(m0), Lp(m1))θ,p q , then∫ ∞
0

(
K(t, |f |p, L1(m0), L1(m1))

tθ

)q
dt

t
= p

∫ ∞
0

(
K(sp, |f |p, L1(m0), L1(m1))

sp θ

)q
ds

s

by [19, Theorem 1] ≈
∫ ∞

0

(
K(s, |f |, Lp(m0), Lp(m1))p

sp θ

)q
ds

s

=

∫ ∞
0

(
K(s, |f |, Lp(m0), Lp(m1))

sθ

)p q
ds

s
.

The last integral is finite, and so the proof is over. �

4. Real interpolation of p-th power factorable operators

Let us start with the real interpolated factorization theorems for p-th power factorable
operators. Let X be an order continuous Banach function space over a finite measure
µ and T : X −→ E an operator on a Banach space E. The formula mT (A) := T (χA)
provides a (countably additive) vector measure in E associated to the operator T. In order
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to avoid some technicalities, throughout the paper, every operator T will be assumed to
be µ-determined whenever a factorization is established, although in most of the results
this property is not needed.

As we said in the Introduction, the class of operators that factor through spaces
Lp(mT ) (for 1 ≤ p <∞) is the class of the so called p-th power factorable operators (see
[20, Chapter 5]). Recall that an operator T : X −→ E is said to be p-th power factorable
if there is a constant K > 0 such that

‖T (f)‖E ≤ K
∥∥∥|f | 1p ∥∥∥p

X
, f ∈ X. (4.1)

The expression (without constant) on the right hand side of inequality (4.1) is in fact

the quasi-norm on the space X[p] defined as the space of all f such that |f |
1
p ∈ X. It is

well-known that X ⊆ X[p] (see [20, Chapter 2]), and so it means that the requirement
given by the inequality (4.1) is more restrictive as p increases. It is well-known that an
operator T is p-th power factorable if and only if it factors through Lp(mT ) as

X
T

- E

JT

Lp(mT )

?
�
�
�
�
��3

ImT

See [20, Chapter 5] and also [2, 13, 14] for general information on these operators. Our
aim is to analyze which additional information can be obtained by the factorization of
the operators through the corresponding Lorentz spaces of their semivariations, that is
obtained in a natural way when two p-th power factorable operators are interpolated
(see [2] for some related results for the complex interpolation method). Our main re-
sults provide factorizations through well described Banach function spaces, that are the
corresponding Lorentz spaces of their semivariations.

A consequence of Corollary 3.3 is that the real interpolated operator of two p-th power
factorable operators is also p-th power factorable.

Corollary 4.1. If T0 and T1 are p-th power factorable for some 1 < p <∞, then Tθ,q is
p-th power factorable for each 0 < θ < 1 ≤ q <∞.

Proof. Recall that an operator T : X −→ E is p-th power factorable if and only if X ⊆
Lp(mT ). Then it is enough to check that (X0, X1)θ,q ⊆ Lp(mθ,q). But this is clear taking
into account that T0 and T1 are p-th power factorable by applying Corollary 3.3. �

Remark 4.2. Suppose as in the previous corollary that the operators T0 and T1 are
both p-th power factorable for some 1 < p < ∞. Since Lp(mθ,q) ⊆ Lr,q(‖mθ,q‖) for all
1 < r < p and all 1 ≤ q <∞, we obtain the following commutative diagram

(X0, X1)θ,q
Tθ,q - (E0, E1)θ,q

JT

Lp(mθ,q) ⊆ Lr,q(‖mθ,q‖) ⊆ L1(mθ,q)

?

6ImΣ
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Here mΣ denotes the measure associated to the operator T with values into the sum space
E0 +E1. Note that the restriction of the integration operator ImΣ : L1(mΣ) −→ E0 +E1

to each L1(mθ,q) is just the integration operator Imθ,q : L1(mθ,q) −→ (E0, E1)θ,q.

Let us consider now the general situation. It is given by the case in which T0 is p0-th
power factorable and T1 is p1-th power factorable. For the aim of simplicity, we will
assume in this case that the range space is the same for both operators. That is, we have
a µ-determined operator T : X0 +X1 −→ E. Note that we have only one vector measure

m : A ∈ Σ −→ m(A) := T (χA) ∈ E

associated to every restriction of T to any order continuous Banach function space in-
cluded into the sum X0 + X1. The following result can be obtained by using direct
arguments of real interpolation of function spaces together with Theorem 2.1.

Theorem 4.3. Let 1 ≤ p0 6= p1 < ∞. If T0 is p0-th power factorable and T1 is p1-th
power factorable, then for each 0 < θ < 1 ≤ q <∞, the interpolated operator Tθ,q factors
through the following commutative diagram

(X0, X1)θ,q
Tθ,q - E,

JT

Lp,q(‖m‖)
?

�
�
�
�
��>

Im

where p > 1 is given by
1

p
=

1− θ
p0

+
θ

p1
.

Proof. Using the hypothesis, we directly obtain the continuous inclusions Xk ⊆ Lpk(m)
for k = 0, 1. Then we get that (X0, X1)θ,q ⊆ (Lp0(m), Lp1(m))θ,q for all 0 < θ < 1 ≤ q <

∞. Now, Theorem 2.1 gives (Lp0(m), Lp1(m))θ,q = Lp,q(‖m‖), where
1

p
=

1− θ
p0

+
θ

p1
,

so we obtain the commutative diagram

(X0, X1)θ,q
Tθ,q - E,

JT

(Lp0(m), Lp1(m))θ,q = Lp,q(‖m‖) ⊆ L1(m)

?

6Im

and the proof is over. �

Remark 4.4. Since p0 6= p1, we can assume for example that p0 < p1. Then Lp1(m) ⊆
Lp,q(‖m‖) ⊆ Lp0(m). Thus, as a consequence of Theorem 4.3 we obtain a factorization
for the interpolated operator Tθ,q that is weaker than being p1-th power factorable but
stronger than being p0-th power factorable. In the next section we will look specifically
at operators with this property.
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5. Lorentz factorable operators

Motivated by the results of the previous section, we say that an operator T : X −→ E
with values on a Banach space E and acting in an order continuous Banach function space
X over a finite measure µ is (p, q)-Lorentz factorable, with 1 < p < ∞, and 1 ≤ q < ∞,
if it factors through the following commutative diagram

X
T

- E,

JT

Lp,q(‖mT ‖)
? �

�
�
�
��3

ImT

where mT : Σ −→ E is the vector measure associated to T. This section is devoted to
study this kind of operators.

Remark 5.1. According to (2.3) we know that Lp,q(‖m‖) ⊆ Lp,p(‖m‖) ⊆ Lp(m), for
all 1 ≤ q ≤ p <∞, and these inclusions are in general strict. Thus, to be (p, q)-Lorentz
factorable is stronger than being p-th power factorable.

In what follows we will need the following

Lemma 5.2. Let m : Σ −→ E be a vector measure and let ϕ be a simple function taking
values α0 = 0 < α1 < · · · < αn. Then, for 1 ≤ p, q <∞,

‖ϕ‖qLp,q(‖m‖) =
p

q

n∑
k=1

(
αqk − α

q
k−1

)
(‖m‖ ([ϕ ≥ αk]))

q
p . (5.1)

Proof. A simple computation shows that the distribution function with respect to ‖m‖
of a simple function ϕ taking values α0 := 0 < α1 < · · · < αn is given by ‖m‖ϕ =
n∑
k=1

‖m‖ ([ϕ ≥ αk])χ[αk−1,αk). Since Lp,q(‖m‖) contains the simple functions, we can com-

pute its quasi-norm according to (2.2) as

‖ϕ‖qLp,q(‖m‖) = p

∫ ∞
0

tq−1 (‖m‖ϕ(t))
q
p dt

= p

∫ ∞
0

tq−1

(
n∑
k=1

‖m‖ ([ϕ ≥ αk])χ[αk−1,αk)(t)

) q
p

dt

= p

∫ ∞
0

tq−1
n∑
k=1

(‖m‖ ([ϕ ≥ αk]))
q
p χ[αk−1,αk)(t)dt

= p

n∑
k=1

(‖m‖ ([ϕ ≥ αk]))
q
p

∫ αk

αk−1

tq−1dt

=
p

q

n∑
k=1

(
αqk − α

q
k−1

)
(‖m‖ ([ϕ ≥ αk]))

q
p .

�

Next theorem is the main result of this section and provides a characterization of
the class of (p, q)-Lorentz factorable operators. In addition, it describes an optimality
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property of Lorentz spaces of the semivariation Lp,q(‖m‖) associated to this class of
operators.

Theorem 5.3. Let X be an order continuous Banach function space over a finite measure
µ and let T : X −→ E be a Banach space valued operator. The following assertions are
equivalent.

(i) T is (p, q)-Lorentz factorable.
(ii) There is a constant K > 0 such that(

n∑
k=1

(
αqk − α

q
k−1

) ∥∥T (χBk∩[|f |≥αk]

)∥∥ qp
E

) 1
q

≤ K ‖f‖X (5.2)

for each f ∈ X and each pair of finite sequences α0 := 0 < α1 < · · · < αn and
B1, . . . , Bn in Σ, for all n ∈ N.

Moreover, in this case the space Lp,q(‖mT ‖) is optimal in the following sense: if there is
another Banach function space Z over µ such that X ⊆ Z and T can be extended as a
(p, q)-Lorentz factorable operator T̃ : Z −→ E, then Z ⊆ Lp,q(‖mT ‖).

Proof. (ii)⇒(i) By Lemma 5.2 we know that for a simple function ϕ taking values α0 :=
0 < α1 < · · · < αn, its quasi-norm in the space Lp,q (‖mT ‖) is given by

‖ϕ‖qLp,q(‖mT ‖) =
p

q

n∑
k=1

(
αqk − α

q
k−1

)
(‖mT ‖ ([ϕ ≥ αk]))

q
p .

Then

‖ϕ‖qLp,q(‖mT ‖) =
p

q

n∑
k=1

(
αqk − α

q
k−1

)
(‖mT ‖ ([ϕ ≥ αk]))

q
p

≤ p

q

n∑
k=1

(αqk − α
q
k−1)2

q
p sup
Bk∈Σ

∥∥T (χBk∩[ϕ≥αk])
∥∥ qp
E

=
p

q
2
q
p sup
Bk∈Σ

n∑
k=1

(αqk − α
q
k−1)

∥∥T (χBk∩[ϕ≥αk])
∥∥ qp
E
≤ p

q
2
q
pKq‖ϕ‖qX .

The last inequality follows from (5.2). Now, if f ∈ X, there exists a sequence (ϕn)n
of simple function such that 0 ≤ ϕn ↑ |f | pointwise µ-a.e. In particular 0 ≤ ϕn ↑ |f |

pointwise ‖mT ‖-a.e. and ‖ϕn‖Lp,q(‖mT ‖) ≤
(
p
q

) 1
q

2
1
pK‖ϕn‖X ≤

(
p
q

) 1
q

2
1
pK‖f‖X . Since

Lp,q(‖mT ‖) has the sequential Fatou property (see [3, Proposition 3.1]) we conclude

that ‖f‖Lp,q(‖mT ‖) = sup
n
‖ϕn‖Lp,q(‖mT ‖) ≤

(
p

q

) 1
q

2
1
pK‖f‖X , and X ⊆ Lp,q(‖mT ‖). The

commutativity of the diagram follows from the known facts that Lp,q(‖mT ‖) ⊆ L1(mT ),

and T (f) =

∫
Ω

fdmT , for all f ∈ X.

(i)⇒(ii) Take a function f ∈ X, a finite sequence α0 := 0 < α1 < · · · < αn, and a finite
sequence B1, . . . , Bn in Σ. From the inclusion X ⊆ Lp,q(‖mT ‖) there exists a constant
M > 0 such that ‖f‖Lp,q(‖mT ‖) ≤M‖f‖X . Consider the simple function

ϕ :=

n∑
k=1

αk−1χ[αk>|f |≥αk−1] + αnχ[|f |≥αn].
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Note that 0 ≤ ϕ ≤ |f | and [|f | ≥ αk] = [ϕ ≥ αk] for all k = 1, . . . , n. Then

n∑
k=1

(
αqk − α

q
k−1

) ∥∥T (χBk∩[|f |≥αk]

)∥∥ qp
E

=

n∑
k=1

(
αqk − α

q
k−1

) ∥∥T (χBk∩[ϕ≥αk]

)∥∥ qp
E

=

n∑
k=1

(
αqk − α

q
k−1

)
‖mT (Bk ∩ [ϕ ≥ αk])‖

q
p

E

≤
n∑
k=1

(
αqk − α

q
k−1

)
(‖mT ‖ (Bk ∩ [ϕ ≥ αk]))

q
p

≤
n∑
k=1

(
αqk − α

q
k−1

)
(‖mT ‖ ([ϕ ≥ αk]))

q
p

=
q

p
‖ϕ‖qLp,q(‖mT ‖) ≤

q

p
‖f‖qLp,q(‖mT ‖)

≤ q

p
Mq ‖f‖qX ,

as we wanted to prove.
Let us show now the optimality of the extension provided by Lp,q(‖mT ‖). Suppose that

T can be extended to another Banach function space Z, with X ⊆ Z, as T̃ : Z −→ E.
Then we have that the vector measure mT̃ : Σ −→ E associated to T̃ coincides with

mT because mT̃ (A) = T̃ (χA) = T (χA) = mT (A) for all A ∈ Σ. Since T̃ preserves the
(p, q)-Lorentz factorability, we have that Z ⊆ Lp,q(‖mT̃ ‖) = Lp,q(‖mT ‖), as desired. �

Remark 5.4. 1) It is not difficult to see that an operator T : X −→ E is (p, q)-Lorentz
factorable if and only if there is a constant K > 0 such that

n∑
k=1

(αk − αk−1)
∥∥T (χBk∩[|f |≥αk]

)∥∥ qp
E
≤ K

∥∥∥|f | 1q ∥∥∥q
X

(5.3)

for each f ∈ X, each finite increasing sequence α0 := 0 < α1 < · · · < αn and each finite
sequence B1, . . . , Bn in Σ. As we noted before, X ⊆ X[q], for q ≥ 1, and consequently

|f |
1
q ∈ X for all f ∈ X. This inequality (5.3) can be compared with the definition of q-th

power factorable operator given by the inequality (4.1).

2) Let us remark that if E is a Banach lattice and T is a positive operator, then∥∥T (χB∩[|f |≥α]

)∥∥
E
≤
∥∥T (χ[|f |≥α]

)∥∥
E
, f ∈ X, α > 0, B ∈ Σ,

and therefore the measurable sets Bk can be dropped in the inequalities (5.2) and (5.3).

The (p, q)-Lorentz factorability of the identity map of a Banach function space X over
a finite measure µ defines a concavity-type lattice geometric property for Banach lattices
of measurable functions. Let us finish this section by analyzing this property.

Definition 5.5. Let 1 < p < ∞ and 1 ≤ q < ∞ be. We say that a Banach function
space X of measurable functions over a finite measure µ is (p, q)-Lorentz concave if there

is a constant K > 0 such that

n∑
k=1

(αk − αk−1)
∥∥χ[|f |≥αk]

∥∥ qp
X
≤ K

∥∥∥|f | 1q ∥∥∥q
X
, for every

function f ∈ X and each finite sequence α0 := 0 < α1 < · · · < αn.
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Remark 5.6. Note that Theorem 5.3 together with Remark 5.4 imply that an order
continuous Banach function space is (p, q)-Lorentz concave if and only if the identity
map in X is (p, q)-Lorentz factorable.

Theorem 5.7. (Representation Theorem)
1) Let m : Σ −→ E a vector measure. Then Lp,q(‖m‖) is (p, q)-Lorentz concave.
2) If X is a (p, q)-Lorentz concave order continuous Banach function space with a

weak order unit, there is a Banach space valued vector measure m : Σ −→ X such that
X is topologically and order isomorphic to Lp,q(‖m‖).

Proof. 1) Consider a vector measure m and take a function f ∈ Lp,q(‖m‖), and a finite
sequence α0 := 0 < α1 < · · · < αn. Consider the simple function

ϕ :=

n∑
k=1

αk−1χ[αk>|f |≥αk−1] + αnχ[|f |≥αn].

Note that 0 ≤ ϕ ≤ |f | and [|f | ≥ αk] = [ϕ ≥ αk] for all k = 1, . . . , n. Also, being p > 1,

we have the continuous inclusion Lp
2,q(‖m‖) ⊆ Lp,q(‖m‖). Then

n∑
k=1

(
αqk − α

q
k−1

) ∥∥χ[|f |≥αk]

∥∥ qp
Lp,q(‖m‖) =

n∑
k=1

(
αqk − α

q
k−1

) ∥∥χ[ϕ≥αk]

∥∥ qp
Lp,q(‖m‖)

=

n∑
k=1

(
αqk − α

q
k−1

)(p
q

) 1
p

(‖m‖ ([ϕ ≥ αk]))
q

p2

=

(
p

q

) 1
p q

p2

p2

q

n∑
k=1

(
αqk − α

q
k−1

)
(‖m‖ ([ϕ ≥ αk]))

q

p2

=

(
p

q

) 1
p q

p2
‖ϕ‖q

Lp2,q(‖m‖)

≤ K‖ϕ‖qLp,q(‖m‖) ≤ K‖f‖
q
Lp,q(‖m‖).

This shows that the space Lp,q(‖m‖) is (p, q)-Lorentz concave.
2) By [4, Theorem 8] we know that X is order and topologically isometric to L1(m)

for a certain vector measure m : Σ −→ X. Moreover, this isometry is exactly the identity
map and then it is (p, q)-Lorentz factorable, which means that L1(m) ⊆ Lp,q(‖m‖). But
we know that the reverse inclusion Lp,q(‖m‖) ⊆ L1(m) always holds, and so the proof is
over. �

6. Lattice geometric properties of Lp,q of the semivariation

Let us center now our attention in the lattice geometric properties of our class of
spaces. According to the terminology for Banach lattices (see [17, 1.f.4] for example),
a quasi-Banach lattice X is said to satisfy an upper, respectively lower, p-estimate, for
some 1 ≤ p <∞, if there exists a constant M > 0 such that, for every choice of pairwise
disjoint elements x1, . . . , xn in X we have∥∥∥∥∥

n∑
i=1

xi

∥∥∥∥∥
p

≤M
n∑
i=1

‖xi‖p, respectively

n∑
i=1

‖xi‖p ≤M

∥∥∥∥∥
n∑
i=1

xi

∥∥∥∥∥
p

.

Let us note that if a quasi-Banach lattice is normable, that is, there exists a norm
equivalent to the quasi-norm, then it satisfies an upper 1-estimate. In order to analyze
when the Lorentz spaces Lp,q(‖m‖) satisfy a lower estimate, we introduce the following
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terminology. We say that the semivariation ‖m‖ of a vector measure m has a lower
r-estimate (1 ≤ r <∞) if there exists M > 0 such that

‖m‖ (A1 ∪ · · · ∪An) ≥M ((‖m‖(A1))
r

+ · · ·+ (‖m‖(An))
r
)

1
r

for every choice of pairwise disjoint sets A1, . . . , An in Σ. Note that this condition implies
that m has finite r-variation. That is, we have that

sup

{∑
A∈π
‖m(A)‖rE : π ∈ Pf (Ω)

}
<∞,

where Pf (Ω) is the family of all finite partitions of Ω by means of measurable subsets.

Proposition 6.1. Let m be a Banach space valued vector measure.

(i) If 1 ≤ p ≤ q < ∞, then the space Lp,q(‖m‖) has an upper p-estimate. In
particular, it has an upper 1-estimate.

(ii) If 1 ≤ q < p < ∞, then the space Lp,q(‖m‖) is a q-convex Banach lattice. In
particular, it has an upper q-estimate.

(iii) If the semivariation has a lower r-estimate for some r ≥ 1, then the space
Lp,pr(‖m‖) has a lower pr-estimate for each 1 ≤ p < ∞. In this case it is
s-concave for each s > pr.

Proof. (i) Take a finite sequence of pairwise disjoint functions f1, . . . , fn ∈ Lp,q(‖m‖).
Taking into account that [|f1 + · · ·+ fn| > t] = [|f1| > t]∪ · · · ∪ [|fn| > t] for every t > 0,
we obtain ‖m‖f1+···+fn(t) ≤ ‖m‖f1

(t) + · · · + ‖m‖fn(t), for each t > 0. Now using the

triangle inequality (for the norm of the weighted Lebesgue space L
q
p (ptq−1dt)) we get∥∥∥∥∥

n∑
i=1

fi

∥∥∥∥∥
p

Lp,q(‖m‖)

=

(
p

∫ ∞
0

tq−1 (‖m‖f1+···+fn(t))
q
p dt

) p
q

≤
n∑
i=1

(
p

∫ ∞
0

tq−1(‖m‖fi(t))
q
p dt

) p
q

=

n∑
i=1

‖fi‖pLp,q(‖m‖).

(ii) In this case q
p < 1, and taking θ = 1− q

p in Theorem 2.1 we have that

L
p
q ,1(‖m‖) =

(
L1(m), L∞(m)

)
θ,1
.

Since L1(m) and L∞(m) are Banach spaces, the real interpolated space L
p
q ,1(‖m‖) is

a normable (equivalently 1-convex), quasi-Banach lattice. Thus, its q-convexification
Lp,q(‖m‖) is q-convex.
(iii) Let us assume that the semivariation ‖m‖ of m has a lower r-estimate for r ≥ 1.
Take a finite pairwise disjoint sequence f1, ..., fn ∈ Lp,pr(‖m‖). Then

n∑
i=1

‖fi‖prLp,pr(‖m‖) =

n∑
i=1

p

∫ ∞
0

tpr−1(‖m‖fi(t))rdt = p

∫ ∞
0

tpr−1
n∑
i=1

(‖m‖fi(t))rdt

= p

∫ ∞
0

tpr−1
n∑
i=1

(‖m‖ ([|fi| > t]))
r
dt

≤ p

Mr

∫ ∞
0

tpr−1 (‖m‖ ([|f1| > t] ∪ · · · ∪ [|fn| > t]))
r
dt

=
p

Mr

∫ ∞
0

tpr−1 (‖m‖f1+···+fn(t))
r
dt =

1

Mr

∥∥∥∥∥
n∑
i=1

fi

∥∥∥∥∥
pr

Lp,pr(‖m‖)

.
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The second statement follows from a result by Maurey and Pisier (see for instance [17,
1.f.7]). �

Remark 6.2. In connection with Remark 4.2, if in addition we suppose there that
the semivariation ‖mθ,q‖ also has a lower q

r -estimate for some q ≥ r, then Proposition
6.1 tells us that the interpolated operator Tθ,q can be extended to a reflexive Banach
function space that has an upper r-estimate and a lower q-estimate, that is, the space
Lr,q(‖mθ,q‖).

7. Final examples and applications

In order to show some applications of our technique in its natural context, we will
show now some results on operators from different classical Lebesgue weighted Lp-spaces
and Lorentz spaces. Let us apply again Corollary 3.3 to another class of operators.
Consider a Banach function space X over a finite measure µ. For 1 ≤ p, q < ∞, a
µ-determined operator T : X −→ E, with values into a Banach space E, is said to be
bidual (p, q)-power-concave if there exists a weight 0 < w ∈ L1(µ) such that the inclusions
X ⊆ Lq(w dµ) ⊆ Lp(mT ) are continuous. Here Lq(w dµ) denotes the Lebesgue Lq-space
for the finite measure with density w given by A 7→

∫
A
w dµ (see [20, Theorem 6.9] for

other characterizations of such operators). Bidual (1, q)-power-concave operators are of
particular relevance. They are known also as bidual q-concave operators. Recall that a
bidual q-concave operator is, in particular, q-concave (see [12, Proposition 6.2 (i)] with
p = 1).

Proposition 7.1. Suppose that T is an admissible µ-determined operator between the
couples (X0, X1) and (E0, E1) such that the restrictions T0 and T1 are bidual (p, q)-power-
concave for some 1 ≤ p < ∞ and 1 ≤ q < ∞. Then for each 0 < θ < 1 the interpolated
operator Tθ,q : (X0, X1)θ,q −→ (E0, E1)θ,q is bidual (p, q)-power-concave.

Proof. Since T0 and T1 are bidual (p, q)-power-concave, there exist two weights w0 > 0
and w1 > 0 in L1(µ) such that X0 ⊆ Lq(w0 dµ) ⊆ Lp(m0) and X1 ⊆ Lq(w1 dµ) ⊆
Lp(m1). Then we have the inclusions

(X0, X1)θ,q ⊆ (Lq(w0 dµ), Lq(w1 dµ))θ,q ⊆ (Lp(m0), Lp(m1))θ,q .

Now, by the Stein-Weiss’s interpolation theorem (see [23] or [1, Theorem 5.4.1]) the

following equality (Lq(w0 dµ), Lq(w1 dµ))θ,q = Lq
(
w1−θ

0 wθ1 dµ
)

holds with equivalence of

norms. From Corollary 3.3 we know that (Lp(m0), Lp(m1))θ,q ⊆ Lp(mθ,q), and then

(X0, X1)θ,q ⊆ Lq
(
w1−θ

0 wθ1 dµ
)
⊆ Lp(mθ,q) as we wanted to prove. �

Corollary 7.2. Let (X0, X1) be a couple of q-convex order continuous B.f.s. and T an
admissible operator. If T0 and T1 are q-concave, then Tθ,q is q-concave for all 0 < θ < 1.

Proof. Since X0 and X1 are q-convex and T0 and T1 are q-concave, then applying [20,
Proposition 6.2 (iv) and (6.6)] it follows that T0 and T1 are bidual q-concave operators.
Then so is Tθ,q, by Proposition 7.1 with p = 1. Thus, [20, Proposition 6.2 (i)] guarantees
that Tθ,q is q-concave. �

The real interpolation spaces (Lr0(w0 dµ), Lr1(w1 dµ))θ,q , with different weights 0 <

w0, w1 ∈ L1(µ), have been extensively treated in the literature in the last fifty years for
different cases depending on the parameters 0 < θ < 1 ≤ q <∞, and 1 ≤ r0, r1 <∞. The

obtained results depend on whether r0 and r1 are equal or not, and if
1

q
=

1− θ
r0

+
θ

r1
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(the diagonal case) or
1

q
6= 1− θ

r0
+

θ

r1
(the off-diagonal case). In the diagonal case,

the classical real interpolation result of Peetre (see [1, Theorem 5.5.1]) states the well-

known formula (Lr0(w0 dµ), Lr1(w1 dµ))θ,q = Lq(w1−θ
0 wθ1 dµ). In the off-diagonal case,

the equation that is known as the Lizorkin-Freitag formula describes, for r0 6= r1, the
interpolation space (Lr0(w0 dµ), Lr1(w1 dµ))θ,q as a weighted Lorentz space associated to

a certain measure (see [11, 18] for the details). In the off-diagonal case with r = r0 = r1,
the interpolation spaces are related to Beurling-Hertz’s spaces and have been described
by Peetre and Gilbert as unions, if r > q, or intersections, if r < q, of weighted Lr-
spaces, see [15, 21]. See also Persson [22] for spaces of vector-valued functions. How-
ever, in the general case there is not a satisfactory description of the interpolated space
(Lr0(w0 dµ), Lr1(w1 dµ))θ,q .

Now suppose that T : Lr0(w0 dµ) + Lr1(w1 dµ) −→ E is an admissible µ-determined
operator with values into a Banach space E. Denote by m its associated vector mea-
sure. Assume that the restrictions T0 and T1 are p0-th and p1-th power factorable
respectively, with 1 < p0 6= p1 < ∞. Note that being p-th power factorable depends
strongly on the weights. Then Theorem 4.3 tells us that the interpolated operator T :

(Lr0(w0 dµ), Lr1(w1 dµ))θ,q −→ E is (p, q)-Lorentz factorable for
1

p
=

1− θ
p0

+
θ

p1
, which

means that (Lr0(w0 dµ), Lr1(w1 dµ))θ,q ⊆ Lp,q(‖m‖) continuously. This inclusion, to-

gether with the lattice geometrical properties of the space Lp,q(‖m‖) obtained in Section
6, provide additional information about the interpolation space (Lr0(w0 dµ), Lr1(w1 dµ))θ,q .

Finally we analyze the properties of the convolution operators defined by measures
on topological groups, giving more information about the geometric and topological
properties of some Banach lattices through which convolution operators given by Lq-
improving measures can be factored. These operators provide a source of examples of
canonical p-th power factorable operators.

Consider a regular Borel probability measure λ on an Abelian compact topological
group G. Let 1 ≤ r <∞ and consider the convolution operator

C : f ∈ Lr(G) −→ C(f) := f ∗ λ ∈ Lr(G),

where f ∗λ(x) :=
∫
G
f(x−y) dλ(y) for all x ∈ G. See [20, Chapter 7] for more information.

Recall that for the classical Lorentz spaces, we have that (Lr0(G), Lr1(G))θ,q = Lr,q(G),

where
1

r
=

1− θ
r0

+
θ

r1
, and 0 < θ < 1 ≤ q <∞. Moreover, the restriction C : Lr,q(G) −→

Lr,q(G) of the convolution operator to the Lorentz space Lr,q(G) is continuous. Let
us denote by mr,q the vector measure associated to the restriction to Lr,q(G) of the
convolution operator.

The measure λ is said to be Lq-improving, for some 1 ≤ q <∞, if there is r ∈ (q,∞)
such that λ∗f ∈ Lr(G) for every f ∈ Lq(G) (see [16]). In other words, the corresponding
convolution operator has a smaller range than the one that is originally given by the
measure λ. The following corollary (see [20, Corollary 7.103]), that is known for Lq-
improving measures, is the key of our results.

Corollary 7.3. With the above notation, the following statements are equivalent.

(i) λ is an Lq-improving measure.
(ii) For each 1 < r <∞, the convolution operator C : Lr(G) −→ Lr(G) is p-th power

factorable for some p ∈ (1,∞).
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Let us assume that the convolution operators C : Lr0(G) −→ Lr0(G) and C :
Lr1(G) −→ Lr1(G) are p-th power factorable for some 1 < p <∞. Note that, if an opera-
tor is p-th power factorable, then it is s-th power factorable for every 1 ≤ s ≤ p. According
to Remark 4.2, for each 0 < θ < 1 ≤ q <∞, the operator C : Lr,q(G) −→ Lr,q(G), where
1

r
=

1− θ
r0

+
θ

r1
, factors through the Lorentz space Ls,q(‖mr,q‖), for each 1 ≤ s < p, as

Lr,q(G)
C

- Lr,q(G).

JT

Lp(mr,q) ⊆ Ls,q(‖mr,q‖) ⊆ L1(mr,q)

?

6Imr,q

Under some further requirements, the properties of the factorization space Ls,q(‖mr,q‖)
that have been explained in Proposition 6.1 provide the following result.

Corollary 7.4. Assume that the requirements in (any of) the statements (i) and (ii)
of Corollary 7.3 hold. Suppose in addition that the semivariation ‖mr,q‖ has a lower
q
s -estimate. Then the convolution operator C : Lr,q(G) −→ Lr,q(G) can be extended to a
reflexive Banach function space that has an upper s-estimate and a lower q-estimate.
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EUITA, Universidad de Sevilla,
Ctra. de Utrera Km. 1, 41013, Sevilla. Spain.

Email address: rcampo@us.es

A. Fernández, Departamento de Matemática Aplicada II,
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