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The differentiation operator in the space of uniformly

convergent Dirichlet series

José Bonet

Abstract

Continuity, compactness, the spectrum and ergodic properties of the differentiation
operator are investigated, when it acts in the Fréchet space of all Dirichlet series that are
uniformly convergent in all half-planes {s ∈ C | Res > ε} for each ε > 0. The properties
of the formal inverse of the differentiation are also investigated.

1 Introduction and preliminaries

The Fréchet space H∞
+ of Dirichlet series f(s) =

∑∞
n=1 ann

−s which are uniformly convergent
on the half-planes Cε := {s ∈ C | Re s > ε} for each ε > 0 was investigated by the author in [5].
When endowed with its natural metrizable locally convex topology, it is Schwartz, not nuclear,
has a Schauder basis and contains isomorphically the space H(Dm) of analytic functions on
the open unit polydisc D

m for each m ∈ N. Moreover, this space is a multiplicatively convex
Fréchet algebra for the pointwise product.

A Dirichlet series is a series of the form f(s) =
∑∞

n=1 ann
−s with complex coefficients an

and variable s ∈ C. Define Cr := {s ∈ C | Re s > r} for r ∈ R. The abscissas of convergence,
uniform convergence and absolute convergence of f are defined as follows (see [2], [8] and
[20]):

σc(f) := inf{r
∣

∣

∞
∑

n=1

ann
−s converges on Cr},

σu(f) := inf{r
∣

∣

∞
∑

n=1

ann
−s converges uniformly on Cr},

σa(f) := inf{r
∣

∣

∞
∑

n=1

ann
−s converges absolutely on Cr}.

Here the infima are taken in the extended real line. When the Dirichlet series is nowhere
convergent, the three abscissas are +∞. We have −∞ ≤ σc(f) ≤ σu(f) ≤ σa(f) ≤ ∞. By a
classical result of Bohr, that is of central importance in the study of Dirichlet series, if f is
a bounded analytic function on the half-plane C0 and it can be represented as a convergent
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Dirichlet series f(s) =
∑∞

n=1 ann
−s for Re s large enough, then the Dirichlet series converges

uniformly on each half-plane Cε := {s ∈ C | Re s > ε}, ε > 0; see Theorem 6.2.3 in [20] and
[4]. This means that the abscissa of uniform convergence σu(f) of f satisfies σu(f) ≤ 0. It
implies that the set of Dirichlet series f(s) =

∑∞
n=1 ann

−s such that σu(f) ≤ 0 coincides with
the set of holomorphic functions on C0 that are bounded on Cε for each ε > 0 and that can
be represented as a convergent Dirichlet series in C0. As another consequence, the space H∞

+

contains the Banach space H∞ of all Dirichlet series f(s) =
∑∞

n=1 ann
−s that converges to a

bounded analytic function on C0; it is endowed with the norm ||f || := sups∈C0
|f(s)|.

A Dirichlet series f(s) =
∑

n=1 ann
−s defines an analytic function in its half-plane of

convergence σ > σc(f) and its derivative is represented in this half-plane by the Dirichlet
series

f ′(s) = D(f)(s) = −
∞
∑

n=1

an log n

ns
= −

∞
∑

n=2

an log n

ns
,

differentiating term by term. Moreover, the Dirichlet series f ′(s) has the same abscissa of
convergence and absolute convergence as the series f(s). See for example Theorem 11.12 in [2].
It is well-known that the differentiation operator D(f) := f ′ does not act (continuously) on
the Banach space H∞. Indeed, if D(H∞) ⊂ H∞, the operator D : H∞ → H∞ is continuous
by the closed graph theorem. However, ||n−s|| = 1 and ||D(n−s)|| = log n for each n ∈ N.

The purpose of this note is to investigate the differentiation operator D on the Fréchet
space H∞

+ and its inverse J defined on the subspace of all f(s) =
∑∞

n=1 ann
−s such that

a1 = 0. Continuity and compactness of D and J are studied in Theorem 2.3, the spectra of
these operators are determined in Theorem 2.6 and mean ergodicity and hypercyclicity are
treated in Proposition 2.7. Corollary 2.4 presents a characterization of continuous Volterra
operators on H∞

+ .
The general theory of Dirichlet series was developed at the beginning of the last century

by Bohr, Hardy, Landau and Riesz, among others. This field showed remarkable advances
recently, in particular combining functional analytical and complex analytical tools. We refer
to the books [9], [13], [20], the articles [3], [8], [12], [18] and [19], and the references therein for
more information. If Ω is an open subset of C, H(Ω) is the space of all holomorphic functions
on Ω endowed with the Fréchet topology of uniform convergence on the compact subsets of
Ω. Our notation for locally convex spaces, Banach spaces and functional analysis is standard.
See e.g. [10], [14] and [16]. Necessary definitions will be recalled when needed later in the
article.

2 Differentiation operator on H∞
+

As in [5], we denote by H∞
+ the space of all analytic functions on the half-plane C0 which are

bounded on Cε for each ε > 0 and that can be represented as a convergent Dirichlet series
f(s) =

∑∞
n=1 ann

−s in C0. An analytic function f(s) =
∑∞

n=1 ann
−s, which is a Dirichlet

series convergent in C0 belongs toH
∞
+ if and only if the series

∑∞
n=1 ann

−s converges uniformly
on Cε for each ε > 0. The space H∞

+ is endowed with the metrizable locally convex topology
defined by the system of seminorms

Pε(f) := sup
s∈Cε

|f(s)|, f ∈ H∞
+ .

Endowed with this topology H∞
+ is a Fréchet space, i.e. a complete metrizable locally convex

space. It was proved in [5] that H∞
+ is Schwartz, non-nuclear and the Dirichlet monomials

2



en(s) = n−s, n ∈ N are a Schauder basis of the space. In fact, [20, Theorem 6.1.1] implies that
all coefficient functionals un : H∞

+ → C, f → an of the Dirichlet monomials en are continuous.
In particular, the subspace H∞

+,0 of all f(s) =
∑∞

n=1 ann
−s ∈ H∞

+ such that a1 = 0 is closed
in H∞

+ . This fact is also a consequence of Theorem 11.2 in [2].
We recall the following Abel’s tests that will be useful in the rest of the article. See

Theorem 7.36 in [17].

Lemma 2.1 Let K be a nonvoid set and let (xn)
∞
n=1 and (yn)

∞
n=1 be sequences of bounded

complex valued functions on K. Define Xn :=
∑n

k=1 xk, n ∈ N. Then
∑∞

n=1 xnyn converges
uniformly on K if any of the following hypothesis is satisfied:

(i) (Xn)
∞
n=1 converges uniformly on K, (yn)

∞
n=1 is a real valued monotone sequence that

is uniformly bounded on K.
(ii) (Xn)

∞
n=1 converges uniformly on K, (yn)

∞
n=1 is uniformly bounded on K and the

sequence
(
∑k

n=1 |yn − yn+1|
)∞

k=1
is also uniformly bounded on K.

Lemma 2.2 Let (γn)
∞
n=2 be a sequence of non-zero complex numbers such that limn→∞

log |γn|
logn =

0. Then the linear operator T (
∑∞

n=2 ann
−s) :=

∑∞
n=2 anγnn

−s maps each
∑∞

n=2 ann
−s ∈ H∞

+,0

into a Dirichlet series with absolute abscissa less or equal than 1. Moreover, if T (H∞
+,0) ⊂

H∞
+,0, then T has closed graph, hence it is continuous.

Proof. For each f(s) =
∑∞

n=2 ann
−s ∈ H∞

+,0, we have σu(f) ≤ 0, hence σa(f) ≤ 1 and
∑∞

n=2
|an|
n1+ε < ∞ for each ε > 0. By assumption for each δ > 0 there is n(δ) ∈ N such

that |γn| < nδ for each n ≥ n(δ). This implies
∑∞

n=2
|anγn|
n1+ε < ∞ for each ε > 0. Thus

σa
(
∑∞

n=2 anγnn
−s

)

≤ 1.
Now assume that T (H∞

+,0) ⊂ H∞
+,0. If we suppose that

lim
k→∞

∞
∑

n=2

aknn
−s =

∞
∑

n=2

a0nn
−s in H∞

+,0

and

lim
k→∞

∞
∑

n=2

aknγnn
−s =

∞
∑

n=2

b0nn
−s in H∞

+,0.

Proceeding as in the proof of Theorem 2.2 in [5], we get limk→∞ akn = a0n and limk→∞ aknγn =
b0n for each n. Therefore γna

0
n = b0n and T has closed graph. Since H∞

+,0 is a Fréchet space,
the closed graph theorem implies that T is continuous. ✷

A continuous linear operator T : X → X on a Fréchet space X is called bounded (resp.
compact) if there exists a neighbourhood U of 0 ∈ X such that T (U) is a bounded (resp.
relatively compact) subset of X. If X is Montel (i.e., each bounded set is relatively compact),
then T is compact if and only if it is bounded. SinceH∞

+ is a Fréchet-Schwartz space [5], hence
a Montel space, there is no distinction between being compact or bounded for a continuous
linear operator on H∞

+ .

Theorem 2.3 (i) The differentiation operator D : H∞
+ → H∞

+ , D(f) := f ′, is continuous.
Its image D(H∞

+ ) coincides with H∞
+,0.
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(ii) The operator J : H∞
+,0 → H∞

+,0 given by

J(

∞
∑

n=2

ann
−s) := −

∞
∑

n=2

an
ns log n

is continuous and it satisfies DJ(f) = f = JD(f) for each f ∈ H∞
+,0.

(iii) Neither D nor J is a compact operator.

Proof. (i) The differentiation operatorD : H(C0) → H(C0) is continuous. Since the inclusion
H∞

+ ⊂ H(C0) is continuous, by the closed graph theorem, to prove that D : H∞
+ → H∞

+ is
continuous, it is enough to show that D(f) ∈ H∞

+ for each f ∈ H∞
+ .

Fix f(s) =
∑∞

n=1 ann
−s ∈ H∞

+ . For each ε > 0 the series
∑∞

n=1 ann
−s converges uniformly

on Cε. For each 0 < δ < 1 there is n(δ) ∈ N such that the real sequence (n−δ log n)n is
decreasing for n ≥ n(δ). We apply Lemma 2.1 (i) to conclude that the series

∞
∑

n=n(δ)

an log n

ns+δ

converges uniformly on Cε. Therefore
∑∞

n=1
an logn

ns converges uniformly on Cε+δ for each

0 < δ < 1. Thus σu
(
∑∞

n=1
an logn

ns

)

≤ ε. Since ε > 0 is arbitrary, we get σu
(
∑∞

n=1
an logn

ns

)

≤ 0
and D(f) ∈ H∞

+ .
It is clear that D(H∞

+ ) ⊂ H∞
+,0. The equality follows from the proof of part (ii) given

below.
(ii) By Lemma 2.2, it is enough to show that J(H∞

+,0) ⊂ H∞
+,0. The identities DJ(f) =

f = JD(f) for each f ∈ H∞
+,0 follow directly from the definitions.

Fix
∑∞

n=2 ann
−s ∈ H∞

+,0. The series
∑∞

n=2 ann
−s converges uniformly on Cε for each

ε > 0. Since the real sequence (1/ log n)∞n=2 is decreasing, we can apply Lemma 2.1 (i) to
conclude that

∑∞
n=2

an
ns logn converges uniformly on Cε. Thus J(

∑∞
n=2 ann

−s) ∈ H∞
+,0.

(iii) By part (ii) both D and J are isomorphisms from H∞
+,0 into itself. If they were

compact, this space would have a bounded 0-neighbourhood, hence it would be normable.
But H∞

+,0 is a Fréchet Schwartz space, hence Montel, and it would be finite-dimensional,
which is not the case. ✷

According to Theorem 2.3, the operator J can be considered as the integration operator
on H∞

+,0. In fact, it acts integrating term by term the Dirichlet series from n = 2 on.

Volterra type operators can be defined in our context as follows. Given a Dirichlet series
g(s) =

∑∞
n=1 ann

−s with abscissa of convergence σc(g) ≤ 0, we have σa(g
′) ≤ 1 by Theorems

11.10 and 11.12 in [2], hence σa(g
′f) ≤ 1 for each f ∈ H∞

+ . Moreover the first coefficient
of g′f is 0, hence formally J(g′f) is a well-defined Dirichlet series with abscissa of absolute
convergence less or equal than 1. Therefore the operator Vg(f) := J(g′f) is linear and maps
each f ∈ H∞

+ into a Dirichlet series Vg(f) = J(g′f) which converges at least on C1. Deep
results about Volterra operators on Hardy spaces of Dirichlet series are due to Brevig, Perfekt
and Seip [7]. We have the following characterization for this operator.

Corollary 2.4 Let g(s) =
∑∞

n=1 ann
−s be a Dirichlet series with abscissa of convergence

σc(g) ≤ 0. The Volterra operator Vg maps H∞
+ into itself (hence it is continuous) if and only

if g ∈ H∞
+ .
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Proof. Let 1(s) = 1, s ∈ C, be the constant function. Assume that Vg(1) ∈ H∞
+ . Then

Vg(1) = J(g′) = g − a1 ∈ H∞
+ .

This implies g ∈ H∞
+ .

Conversely, if g ∈ H∞
+ , then g′ ∈ H∞

+,0 by Theorem 2.3 (i). Hence g′f ∈ H∞
+,0 for each

f ∈ H∞
+ by Theorem 2.6 (1) in [5] and Vg(f) = J(g′f) ∈ H∞

+,0 by Theorem 2.3 (ii). ✷

Let T : X → X be a continuous linear operator on a Fréchet space X. We write T ∈ L(X).
The resolvent set ρ(T ) of T consists of all λ ∈ C such that R(λ, T ) := (λI−T )−1 is a continuous
linear operator, that is λI − T : X → X is bijective and has a continuous inverse. Here I
stands for the identity operator on X. The set σ(T ) := C \ ρ(T ) is called the spectrum of T .
The point spectrum σpt(T ) of T consists of all λ ∈ C such that (λI −T ) is not injective. If we
need to stress the space X, then we write σ(T ;X), σpt(T ;X) and ρ(T ;X). Unlike for Banach
spaces X, it may happen that ρ(T ) = ∅ or that ρ(T ) is not open. The spectrum of a compact
operator T is necessarily a compact subset of C, [10, Theorem 9.10.2], which is either finite
or 0 is the accumulation point of the eigenvalues of T .

The following Lemma is well-known.

Lemma 2.5 Let T be a continuous linear bijection from a Fréchet space X onto itself. Let
µ 6= 0. Then µ ∈ ρ(T,X) if and only if µ−1 ∈ ρ(T−1,X).

Proof. By symmetry it is enough to show one implication. If µ ∈ ρ(T,X), then the inverse
(µI − T )−1 exists as a continuous linear operator on X. A direct calculation shows that
S := −µT (µI − T )−1 is the inverse of µ−1I − T−1. ✷

Theorem 2.6 (i) σ(D,H∞
+,0) = {− log n | n ∈ N, n ≥ 2}.

(ii) σ(D,H∞
+ ) = {0} ∪ {− log n | n ∈ N, n ≥ 2}.

(iii) σ(J,H∞
+,0) = {−1/ log n | n ∈ N, n ≥ 2}.

Proof. (i) By Theorem 2.3 (ii) we have 0 /∈ σ(D,H∞
+,0) because D is invertible on H∞

+,0.
On the other hand D(n−s) = (− log n)n−s for each n ∈ N, n ≥ 2, hence − log n belongs to

σpt(D,H∞
+ ) and to σpt(D,H∞

+,0) for each n ∈ N, n ≥ 2.
It remains to show that every λ ∈ C, λ 6= 0 such that λ /∈ {− log n | n ∈ N, n ≥ 2} satisfies

λ ∈ ρ(D,H∞
+,0). We fix λ ∈ C with λ 6= 0 and λ 6= − log n for each n ∈ N, n ≥ 2. There is

µ > 0 such that |λ| > µ and | log n+ λ| > µ for each n ∈ N, n ≥ 2. We have

(λI −D)
(

∞
∑

n=2

an
ns

)

=
∞
∑

n=2

(λ+ log n)an
ns

.

Accordingly, the formal inverse of (λI −D) on H∞
+,0 is given by

S
(

∞
∑

n=2

bn
ns

)

:=
∞
∑

n=2

bn
(log n+ λ)ns

.

By Lemma 2.2 it is enough to prove that σu
(
∑∞

n=2
bn
ns

)

≤ 0 implies σu
(
∑∞

n=2
bn

(logn+λ)ns

)

≤ 0.

To see this assume that
∑∞

n=2
bn
ns is uniformly convergent on Cε. We prove that

∑∞
n=2

bn
(logn+λ)ns+δ

is also uniformly convergent on Cε for each 0 < δ < 1.
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The sequence γn := 1
(log n+λ)nδ , n ∈ N, n ≥ 2 is bounded. If we show that

∞
∑

n=2

|γn − γn+1| < ∞,

we can apply Lemma 2.1 (ii) to conclude that

∞
∑

n=2

γn
bn
ns

=

∞
∑

n=2

bn
(log n+ λ)ns+δ

converges uniformly on Cε. We get, for n ∈ N, n ≥ 2,

|γn − γn+1| ≤
1

µ2

|(log(n+ 1) + λ)(n+ 1)δ − (log n+ λ)nδ|

nδ(n+ 1)δ
.

Hence

µ2|γn − γn+1| ≤
(log(n+ 1))(n + 1)δ − (log n)nδ

nδ(n+ 1)δ
+ |λ|

( 1

nδ
−

1

(n+ 1)δ
)

≤

≤
(n+ 1)δ−1(1 + δ log(n + 1))

nδ(n+ 1)δ
+

|λ|δ

nδ+1
≤

C

n1+δ/2
,

for a constant C > 0 independent of n. This implies

∞
∑

n=2

|γn − γn+1| ≤
∞
∑

n=2

C

µ2n1+δ/2
< ∞.

(ii) Clearly 0 ∈ σ(D,H∞
+ ) since the operator D : H∞

+ → H∞
+ is not surjective by Theorem

2.3 (i). The rest of the proof is similar to the one of part (i). Note that the formal inverse of
(λI −D) on H∞

+ for λ /∈ {0} ∪ {− log n | n ∈ N, n ≥ 2} is given by

S
(

∞
∑

n=1

bn
ns

)

:=
b1
λ

+
∞
∑

n=2

bn
(log n+ λ)ns

.

(iii) First of all 0 /∈ σ(J,H∞
+,0) because J is invertible on H∞

+,0 by Theorem 2.3 (ii). The
rest of the statement follows from part (i) and Lemma 2.5. ✷

An operator T ∈ L(X) is called power bounded if the sequence of iterates {T k}∞k=1 is an
equicontinuous subset of L(X). Given T ∈ L(X), the averages

T[k] :=
1
k

∑k
m=1 T

m, k ∈ N,

of the iterates of T are called the Cesàro means of T . The operator T is said to bemean ergodic
if {T[k]f}

∞
k=1 is a convergent sequence in X for every f ∈ X, [15]. If T is power bounded or

mean ergodic, then limk→∞(1/k)T kf = 0 for each f ∈ X. An operator T ∈ L(X), with X
separable, is called hypercyclic if there exists x ∈ X such that the orbit {T kx : k ∈ N0} is dense
in X, where N0 := N ∪ {0}. If, for some z ∈ X, the projective orbit {λT kz : λ ∈ C, k ∈ N0}
is dense in X, then T is called supercyclic. Clearly, hypercyclicity implies supercyclicity.
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Proposition 2.7 (i) The operator D : H∞
+,0 → H∞

+,0 is not power bounded, not mean
ergodic and not supercyclic.

(ii) The operator J : H∞
+,0 → H∞

+,0 is not power bounded, not mean ergodic and not super-
cyclic.

Proof. (i) For each k ∈ N we have Dk(3−s) = (−1)k(log 3)k3−s. This implies, for each ε > 0
and each k ∈ N,

Pε(
1

k
Dk(3−s)) = sup

s∈Cε

|
1

k
Dk(3−s)| =

(log 3)k

k3ε
.

Since log 3 > 1, the sequence ( 1kD
k(3−s))∞k=1 is unbounded in H∞

+ and D is neither power
bounded nor mean ergodic on H∞

+,0.
If un(

∑∞
n=1 ann

−s) := an, n ∈ N, denotes the coefficient functionals of the basis in H∞
+ ,

then the transposed operator D′ of D satisfies D′(un) = (− log n)un for each n ∈ N, and D′

has infinitely many linearly independent eigenvectors. Since supercyclic is the same as being
1-supercyclic in the sense of [6], it follows from Theorem 2.1 of [6] that D is not supercyclic.

(ii) We have Jk(2−s) = (−1)k(1/ log 2)k2−s for each k ∈ N. Therefore, for each ε > 0 and
each k ∈ N, we get

Pε(
1

k
Jk(2−s)) = sup

s∈Cε

|
1

k
Jk(2−s)| =

1

k(log 2)k2ε
.

Since 0 < log 2 < 1, the sequence ( 1kJ
k(2−s))∞k=1 is unbounded in H∞

+ and J is not power
bounded and not mean ergodic on H∞

+,0.
The fact that J is not supercyclic on H∞

+,0 follows similarly as in the case of D, since the
transposed operator J ′ of J satisfies J ′(un) = (−1/ log n)un for each n ∈ N, n ≥ 2. ✷

Remark 2.8 Observe that the linear dynamics of the differentiation operator D on H∞
+,0 is

different from the behaviour of D on the space H(C0). In this case it is well-known that D
is hypercyclic; see Section 4.2 in [11].
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