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Abstract In the last twenty years the Turing test has been left further behind by
new developments in artificial intelligence. At the same time, however, these devel-
opments have revived some key elements of the Turing test: imitation and adversar-
ialness. On the one hand, many generative models, such as generative adversarial
networks (GAN), build imitators under an adversarial setting that strongly resembles
the Turing test (with the judge being a learnt discriminative model). The term “Turing
learning” has been used for this kind of setting. On the other hand, AI benchmarks
are suffering an adversarial situation too, with a ‘challenge-solve-and-replace’ eval-
uation dynamics whenever human performance is ‘imitated’. The particular AI com-
munity rushes to replace the old benchmark by a more challenging benchmark, one
for which human performance would still be beyond AI. These two phenomena re-
lated to the Turing test are sufficiently distinctive, important and general for a detailed
analysis. This is the main goal of this paper. After recognising the abyss that appears
beyond superhuman performance, we build on Turing learning to identify two dif-
ferent evaluation schemas: Turing testing and adversarial testing. We revisit some of
the key questions surrounding the Turing test, such as ‘understanding’, commonsense
reasoning and extracting meaning from the world, and explore how the new testing
paradigms should work to unmask the limitations of current and future AI. Finally,
we discuss how behavioural similarity metrics could be used to create taxonomies for
artificial and natural intelligence. Both testing schemas should complete a transition
in which humans should give way to machines —not only as references to be imitated
but also as judges— when pursuing and measuring machine intelligence.
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Leverhulme Centre for the Future of Intelligence, Cambridge, UK
E-mail: jorallo@upv.es, ORCID: 0000-0001-9746-7632
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1 Introduction

Twenty years ago, on the fiftieth anniversary of the introduction of the imitation game
(Saygin et al., 2000), there seemed to be momentum and consensus to move beyond
the Turing test (Hernández-Orallo, 2000). It was high time, I argued, to look for
intelligence tests that should be “non-Boolean, factorial, non-anthropomorphic, com-
putational and meaningful”. In these two decades, AI has changed significantly, and
the Turing test is not part of the everyday vocabulary of AI researchers any more, not
even as a future landmark (Marcus, 2020). Rather, the notions of artificial general in-
telligence (AGI) and superintelligence have replaced the old wild dreams of AI, and
are used as arguments exposing the limitations of a great majority of AI applications
—fuelled by deep learning— that can still be considered very narrow.

Somewhat surprisingly, a particular type of “generative models”, exemplified by
generative adversarial networks (GAN), refine a generator by relying on a discrimi-
native model, a judge telling between the true object and the generated one. Because
of this analogy, this paradigm has been dubbed “Turing learning” (Li et al., 2016;
Groß et al., 2017), and deserves a technical and philosophical analysis on its own.
Relatedly, there is an adversarial situation in AI benchmarks, suffering a ‘challenge-
solve-and-replace’ evaluation dynamics (Schlangen, 2019). New benchmarks appear
every year, but ‘superhuman performance’ is achieved very quickly. In many cases
this performance is reached by using shortcuts or tricks, from obscure statistical prop-
erties in the data to plain cheating, a phenomenon that is usually referred to as the
Clever Hans of AI (Sebeok and Rosenthal, 1981; Sturm, 2014; Hernández-Orallo,
2019a). The discovery that benchmarks can be gamed prompts their replacement by
more complex ones, hopefully capturing that elusive challenging part of the task the
system fails to understand or is thought to be key to intelligent behaviour.

The very concept of ‘superhuman performance’ has similar grounds to the Turing
test, and in this paper we dissect the problems that emerge when extrapolating beyond
‘the human level’: how can we evaluate real breakthroughs in AI and determine the
paths to follow beyond human performance? Somewhat paradoxically, the solution to
these problems goes through the Turing learning paradigm mentioned above. From
here, two adversarial evaluation settings can be introduced: Turing testing (where im-
itation is kept) and Adversarial testing (where imitation is eliminated). In both cases
the human judge turns into a machine, which improves its assessment performance
as the evaluation progresses.

The rest of the paper is organised as follows. Section 2 summarises the reasons
why the Turing test should have been left behind for AI evaluation, and what has
changed in AI in the last twenty years. Section 3 discusses the problems of using
humans as a reference when trying to extrapolate beyond them. Section 4 discusses
Turing learning, and ways in which we should train the judges in competitions and
benchmarks, through two settings: Turing testing and Adversarial testing. Section 5
addresses the evaluation of elusive capabilities related to ‘thinking’, such as under-
standing the world and extracting meaning from it, and whether this is possible if
the machine judge in the testing setting lacks those capabilities. Section 6 converts
‘equivalence’ tests into ‘similarity’ tests leading to metrics that can be used to ar-
range and categorise behaviour (either natural or artificial) into taxonomies. Finally,
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Section 7 closes the paper with a discussion about the lessons learnt in the last twenty
years and what needs to be done to really move beyond the Turing test once and for
all.

2 The Turing Test: A Beacon or a Relic?

In the context of this paper, and seventy years after the imitation game was intro-
duced, it is very appropriate to remember that Turing’s original paper (1950) was
meant to counteract nine arguments against the idea of intelligent machines. The
term ‘test’ and the current interpretation of the game was only adopted after some in-
terviews (e.g., Turing, 1952) and the huge amount of literature that flourished in the
following decades. This kept a different debate alive, such as whether the imitation
game could be a sufficient and necessary test for intelligence (Fostel, 1993; Hayes and
Ford, 1995; Copeland, 2000; French, 2000; Proudfoot, 2011). For the reader that is
unfamiliar with this history, I suggest some insightful surveys (Moor, 2003; Copeland
and Proudfoot, 2008; Oppy and Dowe, 2011; Proudfoot, 2017) or in better alignment
with the rest of this paper, sections 5.3 and 5.4 in (Hernández-Orallo, 2017b), cov-
ering the variants of the Turing test, some of their philosophical interpretations and
their use as evaluation instruments for artificial intelligence.

For the purpose of this paper, it is just necessary to recall that the Turing test has
three parties: player A (the imitator), player B (the authentic reference) and the judge,
who must tell who the impostor is. In the original Turing’s imitation game, the judge
was a human, player A was a computer (pretending to be a woman) and player B was
an actual woman. In the standard interpretation of the Turing test used today, gender
is considered irrelevant; the judge is a human, player A is a computer pretending to
be a human and player B is a human. Following this generalisation, some interesting
variants have followed, as Table 1 summarises.

Table 1 Several variants of the Turing test. W , M , H and C represent general woman, man, hu-
man and computer respectively, with subindexes referring to particular individuals. The columns
for player A and B represent the imitator and the authentic agent. The arrows represent “pretend-
ing to be”. The final column indicates what kind of communication is allowed between the players
and the judge. [Adapted from (Hernández-Orallo, 2017b, Table 5.1).]

Variant Judge Player A Player B Interaction
Victorian parlour game H M ÑW W ÑW Written notes
Turing’s imitation game H C ÑW W ÑW Textual teletype
Standard Turing test H C Ñ H H Ñ H Textual teletype
Visual/Total TT H C Ñ H H Ñ H Visual/embodied
BotPrize H C Ñ H H Ñ H Video game
TT with compression H+size C Ñ H H Ñ H Textual teletype
Matching pennies � CA Ñ CB CB Ñ  CA Binary teletype
Inverted TT C C Ñ H H Ñ H Textual teletype
Reverse TT: CAPTCHA C C Ñ H � Any

Going top-down in the table, Victorian parlour games, represented in the first
row, challenged a human who should tell between a man and a woman through writ-
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ten notes. These games were played in Victorian times, and could have well inspired
Turing to propose his imitation game. Note that we distinguish the original imita-
tion game in the second row, as introduced in (Turing, 1950), where gender still
appears explicitly, and the Standard Turing test, in the third row, as was understood
more commonly in subsequent years (Turing, 1952). The Visual/Total Turing test
(Zillich, 2012; Borg et al., 2012) is a variant where the agents are embodied in a
(simulated) world and can see each other. BotPrize was a competition taking place
in the game Unreal Tournament (Hingston, 2009), with the goal of creating an AI
player that would be indistinguishable from a human by the human judges. A Turing
test with compression is an idea first introduced in (Dowe and Hajek, 1997, 1998),
arguing that some compression problems should be included to show understanding.
Matching pennies is a binary version of rock-paper-scissors that has been discussed
as an elementary intelligence test, or at least a prediction test (Hibbard, 2008, 2011;
Hernández-Orallo et al., 2012; Hernández-Orallo et al., 2012). The inverted Turing
test is the first proposal of a test where the judge is a machine (Watt, 1996), but quite
surprisingly, it is the judge that is evaluated. If the judge can tell between machines
and humans, then it is intelligent. This is very different from the reverse Turing test
(von Ahn et al., 2004; von Ahn et al., 2008), with its implementations usually known
as CAPTCHAs, where the judge is not evaluated, as in all other versions. The rele-
vance of the reverse Turing test is that it is totally automated, as the human or machine
to be detected does not have to be compared against a real human. Usually, the kind of
exercises are quite trivial for humans, but challenging to state-of-the-art AI. We will
especially discuss the appropriateness of human judges in the following sections.

It is now relevant to recall some of the reasons why the standard Turing test should
have been left behind many decades ago. The first one is that the Turing test does not
measure intelligence, but “humanity”’ (Fostel, 1993). The incarnations of the Turing
test, such as the Loebner Prize, have raised little enthusiasm from the AI community.
For instance, referring to a recent edition of the prize (Shah and Warwick, 2015),
Moshe Y. Vardi, editor-in-chief of the Communications of the ACM responded: “the
details of this 2014 Turing Test experiment only reinforces my judgement that the
Turing Test says little about machine intelligence” (Vardi, 2015). Even assuming that
we really wanted to measure likeness to human behaviour —more on this at the end
of this paper—, a second objection would be that the Turing test is not a good testing
instrument. The interaction is too open-ended to have good properties of measure-
ment invariance and reliability. Precisely because of this, one can argue that virtually
anything can be added to correct the Turing test, from sensorimotor interaction (Har-
nad, 1992; Schweizer, 1998; Zillich, 2012) (e.g., fourth and fifth rows in Table 1) to
compression questions (Dowe and Hajek, 1997, 1998) (sixth row in Table 1). Most
of these variants do not solve the issues but rather introduce new ones. It is important
not to blame Turing for this, as Sloman (2014) puts it: “[Turing] did not propose his
‘imitation game’ as a test for intelligence, though he occasionally slipped into calling
his non-test a test!”.

By the end of the previous century, the accumulated criticisms were sufficiently
substantial against the Turing test as an actual test for intelligence. The time was ripe
to move beyond it. In (Hernández-Orallo, 2000), I used the title “Beyond the Turing
Test” with a double interpretation: (1) we should be leaving the Turing test behind,
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and (2) future machine intelligence may go well beyond (and deviate significantly)
from human abilities. The question of what is beyond humans, in a universal land-
scape of intelligence, is the exciting question for philosophy and AI research. How-
ever, evaluating (machine) intelligence was still an open problem, and really moving
beyond the Turing test required an alternative.

In (Hernández-Orallo, 2000) I proposed a measure of intelligence that could
be non-Boolean (i.e., gradual rather than passing or not a test), factorial (i.e., non-
monolithic, capturing several capabilities), non-anthropocentric (i.e., not using hu-
mans as references), computational (i.e., considering intelligence some kind of in-
formation processing) and meaningful (i.e., knowing what we are measuring). The
key idea was defining intelligence test items using algorithmic information theory
(Hernández-Orallo and Minaya-Collado, 1998), an approach that was followed by
many other proposals in the next two decades, from the very influential “universal
intelligence” (Legg and Hutter, 2007) to the recent “measure of intelligence” (Chol-
let, 2019). However, while some of these proposals have had an important impact on
the understanding of what intelligence is, its relation to compression (Dowe et al.,
2011), difficulty (Hernández-Orallo, 2015; Hernandez-Orallo, 2015) and generality
(Martinez-Plumed and Hernandez-Orallo, 2018), the adoption of some of these tests
(or associated definitions) in practice has been very limited.

It is no surprise that many other papers tried to investigate what lies “Beyond
the Turing Test”. What is more surprising is that most of them used the same or
very similar titles (Alvarado et al., 2002; Cohen, 2005; Arel and Livingston, 2009;
French, 2012; You, 2015; Schoenick et al., 2017), including an AAAI 2015 workshop
and special issue in the AI magazine with, yet again, the same title: “Beyond the
Turing Test” (Marcus et al., 2015, 2016). This led to yet again the same titles for
the headlines by Forbes1, the New York Times2 and even a whole programme by the
Templeton World Charity Foundation3.

This failure to find —or agree on— an operative alternative to the Turing test
that could serve as a beacon for AI (or AGI) partly explains why the Turing test
still lingers on in discussions and initiatives about AI evaluation. But there are some
other reasons. The Turing test is usually associated with the concept of Human-Level
Machine Intelligence (HLMI), either because the former is still thought to be a test for
the latter, or because both have the same philosophical and conceptual assumptions:
an anthropocentric view of intelligence and a monolithic scale, where human “level”
would be placed at the pinnacle, as far as we know today.

The concept of HLMI is associated with a machine possessing the intelligence
of an average human, which ‘can carry out human professions at least as well as a
typical human” (Bostrom, 2014, p. 19), or “capable of matching humans in every (or
nearly every) sphere of intellectual activity” (Shanahan, 2015). HLMI is frequently
presented with other definitions and names, such as ‘human-level artificial intelli-
gence’, ‘high-level machine intelligence’ or even just artificial general intelligence
(McCarthy, 1983; Preston, 1991; Nilsson, 2006; Zadeh, 2008; Bostrom, 2014). How-

1 https://www.forbes.com/sites/jenniferhicks/2015/09/20/beyond-the-turing-test/#e7206bf22411.
2 https://opinionator.blogs.nytimes.com/2015/02/23/outing-a-i-beyond-the-turing-test/?ref�

opinion& r�0.
3 https://www.templetonworldcharity.org/our-work/diverse-intelligences.
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ever, “some [...] feel that the notion of a ‘human level’ of artificial intelligence is
ill-defined” (Bostrom, 2014, p. 20). The moment ‘it’ will be achieved is also said
to be “ill-posed” (McDermott, 2007). Predictions around the term are hence said to
have failed or, more precisely, are simply unverifiable (Armstrong and Sotala, 2015).
In the same vein are concepts such as superhuman performance or superintelligence,
which are directly or indirectly assuming humans as a yardstick. We will address how
to circumvent this issue in the following section.

Apart from these associations, there are some other reasons why the Turing test is
still a matter of discussion. They have to do with two key components of the Turing
test: imitation and adversarialness (Hernández-Orallo, 2017b).

Imitation is intrinsic to the Turing test, which is ultimately an imitation game, and
as such, it would be sufficient for the impostor to imitate humans well. This can be
achieved by learning good mind models, an important aspect of social intelligence.
Imitation is a more general phenomenon, though, as we will discuss more extensively
in the following sections in the context of Turing learning, and machine learning in
general; many AI systems just learn by imitating the outputs or the behaviours of
other systems, either by a sample of their behaviour (datasets or demonstrations) or
by interacting with them.

Adversarialness appears because imitators and judges are opposed. As the imita-
tor gets better the judge must get better too, otherwise it will be fooled. Consequently,
when an imitator fools a judge, this might mean either or both of two things: the imi-
tator is good or the judge is bad. It is important to realise that much of the progress in
evolution, and social evolution in particular (with conspecifics or heterospecifics), is
the result of adversarial co-evolution, from insects and flowers to predators and preys.
In sport terms we would say that one gets better when competing against good rivals.

The simplest game that combines imitation and adversarialness (and where both
players act as imitators and judges) is ‘matching pennies’ (a binary version of rock-
paper-scissors). This game has been suggested as a minimal intelligence test (Hib-
bard, 2008, 2011; Hernández-Orallo et al., 2012; Hernández-Orallo et al., 2012), and
can be regarded as yet another variant of the Turing test (seventh row in Table 1).

The role of imitation and adversarialness in AI has always been important, but
several phenomena have made them more relevant in the past two decades. Imita-
tion has become a principle behind many machine learning settings, from supervised
learning to reinforcement learning. Inverse reinforcement learning and preference
learning, in particular, try to model different aspects of humans or other agents. Ad-
versarialness has been a traditional drive in games, a domain that has been associated
with some of the most important breakthroughs in AI (e.g., Campbell et al., 2002; Sil-
ver et al., 2017b). Recently, self-play (Silver et al., 2017a) has been vindicated as a
very powerful way of making game playing algorithms improve by competing against
themselves. The combination of imitation and adversarialness is perfectly captured
by Turing learning, a term that generalised generative adversarial models and other
kinds of settings where a generator (an imitator) and a discriminator (a judge) play
against each other. We will explore this in more detail and its relation to the Turing
test in section 4.
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3 The Abyss Beyond Superhuman Performance

Even in specific areas of AI where the Turing test is not used or even mentioned,
we find countless references to human performance. For instance, Figure 1 shows
the progress in performance for CIFAR10 (Krizhevsky, 2009), a very popular image
recognition benchmark. This kind of plot is usually portrayed in reports about the
state of AI such as the ‘AI index’ (Shoham, 2017), repositories such as ‘Papers with
Code’ (paperswithcode.com) and interactive exploratory tools such as the ‘AI collab-
oratory’ (aicollaboratory.org). These plots usually represent human performance as
a horizontal line, calculated using a human expert or a sample of humans (see, e.g.,
Russakovsky et al., 2015).

Human Level
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2012 2014 2016 2018

Date

A
cc

ur
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y

CIFAR−10 Image Recognition

Fig. 1 Evolution of AI performance on the CIFAR10 corpus, with the horizontal dashed line representing
average human performance. [Image from the AI Collaboratory (Martı́nez-Plumed et al., 2020).]

But what does it mean to have the same accuracy as humans? And, more conspic-
uously, what is the meaning of being 100% correct? Images are labelled by humans,
meaning that ground truth depends on human experts or collective human perfor-
mance. What is superhuman machine vision if better-than-human performance can
only happen because the average human makes mistakes on images that are labelled
by other humans?

In other cases, the extrapolation is even less clear. For instance, the Hybrid Re-
ward Architecture (HRA) has reached the maximum score of 999,990 points for
Pac-Man. Compare this to the average and best performance of an average human
player, which are estimated to be around 15,693 points and 266,330 points respec-
tively (Van Seijen et al., 2017). We can calculate its ‘Absolute Turing Ratio’ (Masum
et al., 2002), the quotient between the performance of the AI system and humans,
which would be approximately 4 if using best human performance as a reference.
Clearly, this ratio is meaningless, as score scales in games are simply arbitrary.

It is then quite common that whenever human performance is reached, com-
petitions are usually discontinued and replaced by more challenging benchmarks.
This is a ‘challenge-solve-and-replace’ evaluation dynamics (Schlangen, 2019), or a
‘dataset-solve-and-patch’ adversarial benchmark co-evolution (Zellers et al., 2019).
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For instance, CIFAR10 is accompanied by the more challenging CIFAR100 (Krizhevsky,
2009), SQuAD1.1 gets replaced by SQuAD2.0 (Rajpurkar et al., 2018), GLUE by
SUPERGLUE (Wang et al., 2019), and Starcraft by Starcraft II (Vinyals et al., 2017).
The underlying problem behind these replacements relies on using human intelli-
gence as a yardstick, limiting our vision beyond these benchmarks. But how can we
extrapolate without human yardsticks?

In machine vision, we can get rid of the human reference —and even any hu-
man labelling— and define benchmarks in non-anthropocentric terms. For instance,
we can create new images (in real or virtual worlds) from scratch, by varying the
number of objects, the similarity between them, the locations, etc. We can also add
psychophysical distortions, such as rotation, contrast, size, etc. (Rajalingham et al.,
2018; Leibo et al., 2018) or increase cognitive difficulty by adding more elements
or relations, as done in some human intelligence tests (Dowe and Hernández-Orallo,
2012; Hernández-Orallo et al., 2016a). However, some other tasks are more strongly
linked to humans. For instance, natural language tasks rely on collected corpora from
humans. In machine translation, it is hard to conceive how humans should not be
taken as a reference. For instance, in machine translation, the original text is gener-
ally written by a human and the target of the translation is again given by a human.
The quality of the translation between two languages A and B depends on obtaining
the same effect on humans whose native language is A as on those humans whose
native language is B.

From these and other cases, we can identify different categories, as shown in
Fig. 2. The first category, ‘Ceiling’, represents tasks that cannot be extrapolated, ei-
ther because the ground truth is human or the task measures humanity. The Turing
test is a clear example of this category, but some other problems (e.g., realistic hu-
man voice generators) also fall under this category. There is an abyss beyond human
performance. The second category, ‘Projectional’, captures those domains for which,
once AI reaches human performance, the score can be projected numerically. Video
game scores, such as Pac Man, are an example of this category. However, the score
is meaningless, because the magnitude is arbitrary or ill-defined. The third category,
‘Transitional’, represents those problems where instance variations of different diffi-
culty can be created. For instance, we can add Gaussian noise and blur to ImageNet
(Dodge and Karam, 2017).

H H
H

H

1D
Ceiling

1D 
Projectional

1D→mD 
Transitional

mD
Universal

Fig. 2 Four situations when extrapolating beyond human performance. The ‘Ceiling’ (C) category sets
humans H⃝ as a goal of a one-dimensional space (1D) and nothing cannot go beyond (e.g., Turing test).
The ‘Projectional’ (P) category extrapolates the original dimension, even if the magnitude of the score has
no actual meaning (e.g., Pac Man). The ‘Transitional’ (T) category extends a one-dimensional space with
new, more complex instances once human performance has been reached (e.g., ImageNet 2012) using
distortions or modifications in many dimensions (mD). Finally, the ‘Universal’ (U) category defines a
(multidimensional, mD) space from the very conception of the task (e.g., brain cancer diagnosis).
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Finally, the fourth paradigm in Fig. 2 is originally non-anthropocentric. For in-
stance, the ground truth in brain cancer diagnosis is given by whether a patient devel-
ops cancer in a given time window (e.g., five years), independently of what human
experts predicted. For this problem, we can identify what values make the problem
harder, and derive a multidimensional space of performance, where AI systems —and
any particular physician— can be located. The key issue behind any extrapolation,
and especially the ‘universal’ category, is a well-defined scale of measurement, where
units are meaningful (Hernández-Orallo, 2017b; Flach, 2019; Hernández-Orallo, 2019b,
2020). When figuring out these dimensions we need to consider instances that are
cognitively harder than those humans could solve. Nevertheless, in order to really
break the ‘ceiling’, humans (or other systems) must be able to conceive instances
that humans cannot solve.

We definitely reach a conundrum. Thinking of challenging tasks for AI is becom-
ing more and more difficult for humans, because humans have limited capabilities
to produce and verify test instances that are difficult enough for many AI bench-
marks today. This has happened in areas such as planning and board games, but it
is also happening in natural language. For instance, can humans think of a chess
position way-out that computers cannot find nowadays? Can humans find easy trans-
lation examples where computers fail? These questions arise whenever more chal-
lenging benchmarks are asked to replace the old ones. Can we really keep up with
this ‘challenge-solve-and-replace’ phenomenon (Schlangen, 2019), with humans be-
ing required as the judges who have to find and verify the new challenges?

The crux of the problem can be found in what I call the “cognitive-judge prob-
lem”: by this I refer to a failure to recognise the manual or automatic cognitive ef-
fort that is necessary for producing and verifying instances, and distinguish it from
the effort of solving them4. Some tasks (e.g., producing a random block world and
checking whether the agent has survived after 1,000 time steps) require no cognitive
effort on the side of the evaluation. But some other tasks do require cognitive effort
for producing the instances and/or verifying the solutions. Therefore, effective eval-
uation depends on finding these resources, usually by relying on previous cognitive
human labour (e.g., existing corpora with translations) or by ad-hoc verification effort
(e.g., checking each translation made by the machine).

In some domains, producing instances requires more cognitive effort than verify-
ing the solution. Some examples of this situation are:

– A challenging theorem for an automated theorem prover. Producing the instance
(making the conjecture) and solving it are usually harder than verifying the solu-
tion.

– A small but difficult maze for a navigation robot. Producing a challenging maze
that is hard to solve (and of course solving it) is harder than verifying the solution
(the robot is out of the maze).

4 This separation is well-known in computer science, at least between solving and verifying. For in-
stance, NP problems can be verified easily (in polynomial time), but unless P=NP, we know that solving
these problems is much harder than verifying them. For the “cognitive-judge problem” we must distinguish
producing, solving and verifying instances, and realise that any of the three can be harder than the others.
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– An image of a bird species for an image recognition system. Finding different
species of birds and labelling them is harder than verifying the solution (checking
the label).

– A borderline patient record for a cancer screening system. Selecting such a patient
case and solving it is harder than verifying the solution (looking at the evolution
of the patient).

In many of these cases, verifying the solution is so easy that it can be done auto-
matically, using simple procedures or metrics5. In other cases, however, automated
procedures and metrics usually fail to do a proper job assessing when answers are
correct. The result ends up being verified by a human. For instance:

– A poetic passage to be translated by a machine translation system. Finding an
appropriate translation and verifying it is usually complicated.

– A set of facial traits for a face generator to build a composite. Verifying the accu-
racy of the facial composite is hard —even if an actual photo to compare with is
ultimately available.

– An image for a caption generator system. Verifying that the caption makes sense
with the image is cognitively hard.

– A trip destination for a routing device. Verifying that the route is the optimal one
requires the evaluation of many other alternative routes, which is cognitively hard.

We tend to think that cognitively hard verification mostly happen in natural language
processing tasks, but the examples above show that the phenomenon happens in
other areas, especially in generative models (Kynkäänniemi et al., 2019), with hu-
man judges being used in the end6. Of course, there are some other cases where both
producing and verifying instances require cognitive effort, such as writing the first
part of a new poem and asking a language model to complete it. In all these cases,
but especially when cognitive verification is required, relying on humans to judge
the result usually leads to problems of subjectivity, bias, reliability and scalability.
These problems will get worse as tasks become more complex and AI becomes more
powerful.

But it is precisely the case of generative models that suggests a possible pathway,
and solution, to this problem: replace the judges by machines. Indeed, we have seen
this change in some recent and popular variants to the Turing test: inverted and reverse
Turing tests, as shown in the two bottom rows of Table 1. Let us explore a whole area
of AI for which the judge —the discriminator— is a machine. This is known as Turing
learning.

5 In some of the cases above, we are assuming that labelling requires human cognitive effort, such as
the bird species example where a human must look at the images. But labelling could have been done in
other ways, such as a DNA test.

6 In language models, ‘perplexity’ is a very common automatic metric, which basically measures how
well the model anticipates the next words in a sentence, and a proxy of how well the model compresses
the data. Compression has been connected with the Turing test and (machine) intelligence evaluation a few
times (Dowe and Hajek, 1997, 1998; Mahoney, 1999; Dowe et al., 2011). Despite the correlation between
perplexity and other evaluation metrics used by human judges, the latter are still used as ground truth to
evaluate conversational agents (see, e.g., Adiwardana et al., 2020).
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4 From Turing Learning back to Testing

The solution to the “cognitive-judge problem” comes precisely from one of the areas
of AI that has experienced most progress and attention in the past decade: generative
adversarial networks (GANs) (Goodfellow et al., 2014a). Adversarial situations have
been exploited in AI as early as some systems played against themselves (self-play)
in board games such as checkers (Samuel, 1959). But it is the division of two different
roles, the generator and the discriminator, which really shapes a new paradigm, cov-
ering the production and verification issues of the “cognitive-judge problem”. Also,
the setting is more closely resembling the Turing test than self-play.

More generally, GANs and other architectures —not necessarily using neural
networks— that follow the same paradigm are known as ‘Turing learning’ (Li et al.,
2016; Groß et al., 2017). Figure 3 shows a schematic representation of Turing learn-
ing. In this game, a real entity A produces some object (e.g., an image) or some
behaviour (e.g., a human conversation). At the same time, a machine generator B
tries to generate a similar object or imitate A’s behaviour. The discriminator, also a
machine, has to tell which of A and B corresponds to the genuine entity and which
one corresponds to the imitator. The whole procedure is trained by informing the dis-
criminator and the generator of the discrimination error, which will affect negatively
on the discriminator (whose goal is to tell correctly between A and B), and will affect
positively on the generator (whose goal is to fool the discriminator).

real entity

generator

random 
seed or 
latent 
choice

discriminator

object or 
behaviour B

object or 
behaviour A

discrimination 
error

+

−

for training or 
comparison

A or B
right?

Fig. 3 Schematic representation of Turing learning, for which generative adversarial networks are just a
particular case. An object or behaviour coming from a real entity A (e.g., an image from the real world
or text produced by humans) is compared against an object or behaviour coming from a machine imitator
B (e.g., an image produced by a generator or text produced by a language model). The discriminator is a
machine model (a classifier) that has to tell which one is real and which one is an imitation.

There are variants of this schema. For instance, as depicted in Figure 3, the dis-
criminator receives two entities and may simply tell which one is the authentic entity
and which one is not (more like the Turing test). However, in many implementations,
the discriminator just takes one object at a time, and must tell whether it is authentic
or generated. It is also important to clarify that there are some constraints about the
way the generator can operate. For instance, the generator cannot simply copy the
objects or behaviours A produced by the real entity. Typically, the generator works
by compressing the training data (a set of objects or behaviours) into a smaller latent
space, using some kind of encoding or compressor, such as an autoencoder (Hin-
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ton and Zemel, 1994; Goodfellow et al., 2016). By choosing some combination of
these latent variables (perhaps randomly) the generator can create new objects or be-
haviours B that can be compared with some of the real ones. Usually, generator and
discriminator are trained in batches, and not at the same time.

Figure 4 shows the result of three generated images using BigGAN (Brock et al.,
2018), a large scale GAN for generating high-fidelity images7. The first cock on the
left is realistic, although there is something strange with its legs. Something went
clearly wrong with the one in the middle, looking more like conjoined cock twins.
The one on the right is the most realistic one.

Fig. 4 Three 256x256 synthesised images of the category ‘cock’ using BigGAN (Brock et al., 2018).
‘Truncation’ and ‘noise seed’ parameters are set to 0.5 and 20 respectively. All other parameters are kept
as their default values in the Colab implementation.

The idea of combining a generator and a discriminator goes beyond neural net-
works —actually precedes it, see e.g., Li et al. (2013)— and can be generalised in
many ways, not only by considering images, video, audio or text generators, but by
the creation of agents whose behaviour is to be discriminated. In particular, Groß
et al. (2017) suggest that the discriminators could be turned into “interrogators”, à la
Turing test. When interaction is present, the discriminator can do some information-
based adaptation, such as adaptive sampling, (computerised) adaptive testing or active
learning.

In adaptive sampling (Seber and Salehi, 2013), the sampler selects the instances
that are most discriminating according to the information that it has about the phe-
nomenon of interest in a particular distribution or population. Adaptive testing (Vale
and Weiss, 1975; Wainer, 2000; Weiss, 2011) is a kind of adaptive sampling for the
specific purpose of evaluation, where the characteristics of the questions (known as
items) are chosen adaptively so that the variables to be measured converge faster
than by batch, non-adaptive testing. It is quite common to use adaptive testing with
Item Response Theory (IRT) (van der Linden, 2008), a technique that extracts latent
factors about the items, such as difficulty and discrimination. IRT has recently been
brought to machine learning and artificial intelligence (Martı́nez-Plumed et al., 2019).
Finally, in active learning (Settles, 2009), the situation is determined by a learner that

7 This was implemented using Colab over TensorFlow (https://colab.research.google.com/github/
tensorflow/hub/blob/master/examples/colab/biggan generation with tf hub.ipynb).
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can choose questions to be answered by an oracle (e.g., instances to be labelled in a
classification problem) in such a way that the learner can refine its boundaries and
areas where it requires more information.

However, the key idea of the Turing test and Turing learning is discrimination,
aiming at distinguishing the real thing from the impostor. But Turing learning aims at
building a good generator and a good discriminator together, whereas for the purpose
of intelligence evaluation, we are mostly interested in building a good discriminator.
Distilling on this observation, Figure 5 represents ‘Turing testing’, a framework in
which the discriminator (a machine) adapts its queries (to either or both the real
entity and the imitator) such that depending on their response to the query, it can
refine its decision. On top of this, the discriminator also learns during the process,
whenever the discrimination error is available. In the Turing testing setting, whether
the imitator gets feedback about the discriminator is optional. If it happens then the
imitator learns as the discriminator learns, and we have a proper adversarial situation.

real entity

imitator

adaptive 
items asked 

by 
discriminator

discriminator

object or 
behaviour B

object or 
behaviour A

discrimination 
error

+

−

A or B
right?

  

what is the best 
question now?

queries

Fig. 5 Schematic representation of Turing ‘testing’. In this setting a machine discriminator adapts its
queries to a natural player (real entity) and/or an artificial player (a machine imitator), as long as it gets
information from both players, learning throughout the process. The two players and the discriminator
may have had access to the real world prior to the test, but this access must be controlled during the test to
avoid interference.

In brief, what we are considering here is that judges should be machines, and
they should be learning as they interact with the real entity and the impostor. The
schema is intentionally asymmetric between imitator and discriminator, and in this
way it differs significantly from other adversarial settings such as matching pennies
and self-play in games —in both cases the situation is symmetric and there is no need
for a judge as the outcome is automatic. The schema in Figure 5 is much more similar
to the inverted and reverse Turing test variants in Table 1.

Figure 5 suggests that evaluation should be as confined as possible, and this
should be the case to avoid interference (e.g., the discriminator finds information
about the imitator on the Internet). However, this does not mean that the two players
and the discriminator should not have access to the real world. The two players and
the discriminator may have had previous access to the real world before the eval-
uation begins, especially for the evaluation of capabilities related to commonsense
reasoning or requiring embodiment in the real world. Access to the real world dur-
ing evaluation may still be possible depending on how the three systems work, but it
must be well controlled to avoid interference. This extra care is quite usual in many
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competitions and evaluation platforms in AI. We mention this access to the real world
because it is important to highlight that the discriminator does not need to start from
scratch, as in many GAN architectures. The discriminator may have been devised
and pre-trained to be a good discriminator. Whether the discriminator is configured
to keep on learning and improving during the test is a matter of design, taking advan-
tage that the evaluations of some subjects may be useful to refine the evaluator for
other subjects.

While this schema mimics Turing learning very naturally, we can refine it, while
keeping some of the principles. If we remove the imitation part of the game but keep
the adversarial part, we have a new schema, ‘Adversarial Testing’, as shown in Fig-
ure 6, where the discriminator becomes a tester. The imitator has nothing to imi-
tate and simply becomes a testee. The schema becomes very similar to computerised
adaptive testing, with the difference that the tester and the testee are thought to work
in an adversarial way and learn from each other. The critical part of this setting com-
pared to Turing testing is that we no longer have a reference to imitate. Consequently,
the tester must have a measure of progress in the dimensions it is measuring, given
by the transitional and universal cases we saw in Figure 2.

testee
adaptive 

items asked 
by tester

testerobject or 
behaviour B

+

−,+,−

testee's 
quality?

most 
informative 
question?

queries

Fig. 6 Schematic representation of Adversarial Testing. In this scenario we get rid of the reference player
A, and we only have the machine to be evaluated (called ‘testee’) and the judge (called ‘tester’). They
engage in an adversarial game, where the testee tries to get good scores from the evaluator, while the
tester tries to find problems that are most informative for determining the evaluator’s ability (items that are
neither too hard nor too easy for the testee). The testee and tester may have had access to the real world
prior to the test, but this access must be controlled during the test to avoid interference.

The idea of a machine intelligence test along the principles of adaptive testing
predates the concept of Turing learning and was first introduced in (Hernández-Orallo
and Dowe, 2010), under the concept of an “anytime universal test”. In this test, the
tester would adapt its questions according to the previous interaction between tester
and testee, looking for more informative problems, as in adaptive testing. Note that
very easy and very difficult queries are both uninformative, so the evaluator must find
those problems that are at the right level. A test with this design can become anytime
if the accuracy of the estimation increases as more time is given to the test, which can
be stopped at any time.

The schema becomes easier to automate when the production and verification of
instances is easier than solving them, as happens in many scenarios we discussed in
the previous section around the “cognitive-judge problem”. But the adaptation be-
comes more complicated as the judge needs to analyse cognitive contraptions and
behaviours. As discussed early on in this paper, we need to evaluate whether an AI



Twenty Years Beyond the Turing Test 15

system does, for example, a great literary translation from Chinese to English, cre-
ates an impactful logo for a new design project, cleans a house appropriately, etc.
While these applications are usually evaluated by humans, despite the associated cost
and time, the real problem about humans as judges comes from the realisation that
not only are humans bad judges for the Turing test, but they have also many limita-
tions for all these other AI evaluation settings. And these limitations become more
noticeable as the tasks that AI is solving become more cognitively complex.

As happens with the Turing test and many other tasks, we can select and train
humans to become better judges. They can even learn and improve as they do more
evaluations, but in the end they will reach an evaluation quality plateau because of
their mental resources, motivation and capability. This plateau can nonetheless be
broken by machines. There is evidence so far that artificial intelligence is becoming
better than humans at capturing some cognitive behaviours. For instance, in social
networks, machine learning techniques are now much better than humans at telling
the personality or even the IQ of human users (Youyou et al., 2015; Burr and Cris-
tianini, 2019).

Turing learning works by maximising both the quality of the generator and the
quality of the discriminator. Under some conditions, this is a game that must reach an
equilibrium between generator and discriminator. Understanding this game, and its
relation to generalisation, is a very active area of research in AI at the moment (see,
e.g., Arora et al., 2017). In adversarial testing, both the testee and the tester evolve and
have opposed goals too. However, as we said above, the goal of the tester is not to find
cases for which the testee fails —this would be just done by choosing very difficult
instances—, but to find those that are most informative. For instance, as in adaptive
testing, the tester produces instances with high entropy, which in a binary setting
would mean a probability of the testee getting them right around 0.5. This usually
means finding items at the right level of difficulty (Vale and Weiss, 1975; Wainer,
2000; Weiss, 2011), which in AI depends on finding scales and units of difficulty
(Hernández-Orallo, 2019b) or instances that are surprising in terms of unexpected
behaviours (predicted easy but failed by the testee, or vice versa). This is an area of
enormous interest recently, not coincidentally referred to as ‘adversarial examples’
(Goodfellow et al., 2014b).

Summing up, in this section we have started from Turing learning and we have
distilled some of its principles (many shared with the Turing test) into two different
kinds of testing: Turing testing and adversarial testing. There are two main condi-
tions we have identified. The first one is that we should convert human judges into
machines that improve adversarially with the systems to be tested. In the future, this
can be more (economically) efficient than using humans in general. Machines can be
the answer to the limited capacity and robustness of humans to discriminate good so-
lutions in many applications —including the Turing test—, and also to the ‘challenge-
solve-and-replace’ problem (Schlangen, 2019). For instance, in multi-agent pathfind-
ing (Stern et al., 2019), we can replace human experts scoring how good a plan or
route is by a machine that uses optimality metrics instead, and learns to generate more
challenging routes conditioned to previous results of the agents. The second condi-
tion, which takes from Turing testing to adversarial testing, is that we should also
eliminate the reference (player A) in as many evaluation settings as possible. Having
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a reference, especially if it is anthropocentric, introduces subjectiveness and costs,
and does not help going beyond the reference level. For instance, in self-driving cars,
setting the goal as driving like an average human is absurd when we can aim at better
targets in terms of metrics such as accident rates, efficiency, pollution, etc. In the end,
it is only under these two conditions (no human judges and no human reference) that
we will be able to devise true measurement instruments, with absolute scales that can
extrapolate without ceilings.

5 Non-Thinking Judges and Understanding

Turing replaces the question of thinking machines with a game, for which objec-
tions at the time were expected to be less belligerent: can we create a machine whose
behaviour is indistinguishable from a human’s? Turing does not claim that creating
such a machine and passing the ‘test’ would answer the question of what ‘think-
ing’ is. Indeed, determining whether a machine, a human or an animal thinks is a
much more complex question, related to issues such as whether the subject shows
true understanding or is able to extract meaning from the world. Because these are
still unresolved questions, needing proper definitions of ‘understanding’ or ‘mean-
ing’, they tend to be replaced by some other elements, such as whether the subject
is able to create models of the world, can perform simulations with them or solves
analogies and metaphors (Mitchell, 2019, ch. 14-15). On other occasions thinking is
associated with ‘common sense’, identified as one of the great challenges in AI since
its inception (Levesque, 2017; Davis and Marcus, 2015; Gunning, 2018). Common
sense has an important component that must be anthropocentric, as it should cap-
ture what humans usually see and understand in common situations. Common sense
is also aligned with some interpretations of the Turing test as “a guarantee [...] of
culturally-oriented human intelligence” (French, 1990).

However, there is another component about understanding, or “that which gets the
same meaning out of a sequence of symbols as we do” (Hofstadter, 1980), which is
more essential, and less dependent on previous knowledge. Under this interpretation
of understanding, it is not that “the computer will always be unmasked if it has not
experienced the world as a human being has” (French, 1990), but that the computer
will be unmasked if not capable of extracting the right meaning in other more ab-
stract situations. Examples of these more abstract, culture-independent, situations are
the experiments with the Bongard problems8 (Bongard, 1970), the Copycat project9

(Hofstadter and Mitchell, 1994), many abstract IQ tests using series or analogies10

8 Bongard problems are pattern recognition puzzles, where the diagrams on the left have something in
common (e.g., only containing convex polygons) that the diagrams on the right do not (e.g., containing
concavities). Telling where a new diagram should belong correctly (left or right) is assumed to reveal that
there is understanding of the underlying concept.

9 The Copycat project explored systems that could solve analogies such as “abc is to abd as ijk is to
what?”, where giving the right answer should reveal the understanding of the mechanism that generated
the strings.

10 IQ tests usually include abstract questions with diagrams or numbers. For instance, “What’s the odd
out of 40, 3, 20 and 80?” assumes understanding of a common pattern behind three elements but not the
fourth.
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(Hernández-Orallo et al., 2016b), comprehension tests based on algorithmic infor-
mation theory, such as the C-test11 (Hernández-Orallo, 2000) or the new Abstraction
and Reasoning Challenge (ARC)12 (Chollet, 2019).

The new evaluation paradigms represented in Figures 5 and 6 are meant to be ap-
plicable to any task or ability. They are general evaluation procedures. The paradigms
could be used for evaluating tasks or even capabilities that would not require thinking,
understanding or common sense. However, a fundamental question arises were we to
use these paradigms, and especially ‘adversarial testing’, to evaluate ‘understand-
ing’ or the capability of extracting ‘meaning’ in a range of situations. This would
re-connect this evaluation paradigm to many of the variants of the Turing test seen
in Table 1 that were targeting ‘thinking’, the original question that motivated Tur-
ing’s imitation game. In what follows we analyse the advantages and caveats of using
this paradigm for the evaluation of the elusive notions of thinking, understanding and
meaning.

One key motivation why using machines instead of humans for testing under-
standing comes from the realisation of how easy it is to fool humans into thinking
that they are facing a system that understands, when it really does not. This is a
well-known phenomenon: humans ascribe agenthood and meaning to the simplest
behaviours, what Dennett would refer to as the ‘intentional stance’ (Dennett, 1971).
And this stance is very biased in favour of those behaviours that are similar to the be-
holder, a human in this case. In Watt’s words, humans have the “tendency to ascribe
mentality and mental states to others in proportion to their similarity to the ascriber
[...] This natural faculty biases the [Turing] test, showing up as false positives or neg-
atives” (Watt, 1996). More blatantly, humans are “willing to ascribe understanding
and consciousness to computers, based on little evidence” (Mitchell, 2019).

Another key motivation for the use of the evaluation paradigms in Figure 6 is the
difficulty of discovering the mechanisms behind some behaviour by simple obser-
vation, if the testee has no say of what instances are tested. For instance, many AI
generators work well when creating an image or a text using an appropriate latent
representation or prompt, and there is no further interaction with the generator about
what it would do in other situations. For instance, some recent language models such
as GPT-3 (Brown et al., 2020, Fig. 3.11) generate text in some domains (e.g., news
articles) that are virtually indistinguishable from articles written by humans; the ac-
curacy of human judges detecting them is close to chance (52%). The results fool
humans in domains such as humour or poetry. For instance, the following text13 is a
continuation generated by GPT-3 for Sonnet 1814.

11 The C-test generated letter series using patterns whose algorithmic complexity and ‘unquestionability’
could be estimated from first principles. For instance, solving instances such as “Continue the series:
abbcccdddde...” assumes understanding of the pattern that generates the series.

12 ARC is also inspired by algorithmic information theory, but the actual instances resemble pixelated
versions of the Bongard problems, where there is a pattern that converts some images into others by
playing some algorithmic transformation (e.g., filling the closed areas in the image, mirroring an image,
etc.). Finding the pattern should indicate understanding of how the transformation works.

13 Taken from https://www.gwern.net/GPT-3.
14 This sonnet was also used by Turing in some of his examples about the imitation game (Turing, 1950).
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HUMAN-GENERATED CONTEXT (PROMPT):
Shall I compare thee to a summer’s day?

Thou art more lovely and more temperate:

Rough winds do shake the darling buds of May,

And summer’s lease hath all too short a date;

MACHINE-GENERATED CONTINUATION:
A winter’s day, when beams of sun are few,

And skies are grey with clouds intemperate,

As surprising and realistic some generated text might look like, these examples
usually are accompanied by other examples of how meaningless and pointless some
continuations are. The interesting thing is that the evaluation of these systems by hu-
mans has become an adversarial game, but not because the system is interrogated in
the form of a question/answer system or a conversational bot, but rather in a more
fundamental way. In order to use these systems, humans must look for contexts and
prompts (texts that are used as inputs to the language model) such that they get the de-
sired continuation (right or wrong, depending on the purpose). Apart from the many
different ways in which a context can lead to a bad answer, it is especially interest-
ing to see what happens with questions that challenge factual knowledge and require
some degree of understanding. For instance, this is a simple example that takes GPT-3
to its (short) limits15.

Q: Who was president of the United States in 1600?

A: Queen Elizabeth I was president of the United States in 1600.

This does not really show a lack of knowledge, and the inference makes some
sense (although most of the area of the United States at the time was either inhab-
ited by Native Americans or was under the control of a different colonial Empire).
It seems more that the language model per se is not using its estimated probabili-
ties to do some primitive metacognition (an ‘I don’t know’ answer or any diversion
trick), and is not dealing with related knowledge about the question. Of course, a
language model is not a full model of the world for which inferences —and not only
continuations— could be done about any of its particular states.

In this context, we picture new research looking for automatically generated
prompts for language models and other sophisticated AI engines. In particular, Jiang
et al. (2020b) are able to paraphrase questions in various ways and combine the an-
swers to make a language model give more robust solutions to Q/A tasks. While this
may show some increase of performance in some ‘language understanding’ tasks,
the use of an ensemble to derive the answer to a question may raise more brows as
whether the system is actually having a model of the world, not to say understanding
its own outputs. Nevertheless, for our purposes, it is more interesting to think of the
opposite situation: machine-generated prompts that are able to detect lack of under-

15 Taken from https://lacker.io/ai/2020/07/06/giving-gpt-3-a-turing-test.html.
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standing. The automatic generation of instances or distractors for human testing in
psychology is commonplace, but it has only become common in AI recently.

For instance, SWAG (Situations With Adversarial Generations) (Zellers et al.,
2018) takes the true video caption for the next event in a video sequence and generates
three distractors (incorrect answers) automatically. These answers are “adversarially
generated and human verified, so as to fool machines but not humans”. This means of
course that the generation is not fully automated, as human cognition is needed at the
end of the loop. This is again a consequence of the way the benchmark is conceived,
using humans as a reference. In other cases, the reliance on humans is even more
explicit. For instance, adversarial NLI (Nie et al., 2019) is a benchmark that asks hu-
mans for questions that are easy for them but that can fool a model, which is provided
to the human. While in this case the human is assisted by a model to produce new
questions, the key idea in Figure 6 is whether we can take humans out of the loop
completely. For instance, Zhou et al. (2020) generate probes using syntactically dif-
ferent but logically-equivalent expressions. This is simply very effective: the results
show that pre-trained language models are no better than random guessing. Related
ideas using explicit or implicit patterns for the generation of instances in AI eval-
uation have been used before in benchmarks such as Winograd Schema Challenge
(Levesque et al., 2012), or the extended version of the challenge, Winogrande (Sak-
aguchi et al., 2019), which also uses adversarial filtering inspired by SWAG. Other
approaches combined templates and human computation (Amazon Turk) to generate
adversarial datasets (Rozen et al., 2019).

When dealing with language understanding or commonsense reasoning, the use
of patterns or other mechanisms to generate instances automatically is aiming at tak-
ing humans out of the loop, in the same direction of Figures 5 and 6. However, the
adversarial mechanism must be responsive and customised. This is basically what
an interactive dialogue provides (as originally conceived with the imitation game),
unleashing all the power of an interview-like evaluation. Not all kinds of evaluation
following the paradigms of Turing testing and adversarial testing must be in the form
of an interview. However, there must be some reactive interaction, such that the ques-
tion or problem that comes next depends on the previous answers or solutions by
the particular agent the tester is evaluating. For instance, it may well be that a com-
mon sense test is conducted in a video game setting for reinforcement learning agents
(Jiang et al., 2020a). In other words, the test must be adaptive, independently of the
kind of communication and modality (and there are many options in the variants
in Table 1 and in many other benchmarks in AI). Adaptive testing (Vale and Weiss,
1975; Wainer, 2000; Weiss, 2011) makes testing more efficient when evaluating some
other capabilities, as already mentioned in previous sections, but it turns crucial when
evaluating ‘understanding’, ‘commonsense’ or being able to find ‘meaning’. Let us
analyse why this is so.

The question of assessing whether agent A understands a concept or idea, repre-
sented by a model M , implies taking the model to its limits, to find the borderline
cases where the answers are most informative about whether A really works with
model M internally. We have seen this with the example about the president of the
United States in 1600. For most instances, statistically, many other models of the
world are compatible with what the AI system is outputting. High performance can
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be obtained with the wrong model, à la Clever Hans. It is then important that the fo-
cus of the tester soon moves from the overall performance provided by statistically-
easy instances to peculiar situations that can rule out some other interpretations of
the observed performance. This is specifically what other non-adaptive tests do, such
as Raven matrices, letter series, Copycat, the C-test or ARC, mentioned above. But
given a machine evaluator in an interactive setting, the goal should be to select the
most informative questions. This does not necessarily mean that the tester must be
more capable than the testee. The evaluator may simply generate models at random
using some appropriate representations, as done in automatically generated test in-
stances for humans or machines. In some situations dealing with the real world, the
evaluation is more constrained. For instance, it is harder —but not impossible— to
imbue the subtleties of naive physics or naive psychology into an evaluator such that
it generates situations adaptively for a particular testee. In the absence of these mod-
els of the world, the evaluator can simply act as a learner, as in an active learning
situation (Settles, 2009), to check the properties of the model identified by the testee.

In many domains, such as music, a person can recognise a good performer even
if they do not perform themselves. If evaluating is simpler than performing then the
cognitive-judge problem can be circumvented. Of course, this may not be the case
for all domains. Actually, for humanlike intelligence, Watt (1996) actually argued
that being able to distinguish humans from machines was a criterion for intelligence.
I disagree with the sufficiency of this criterion. The success of machines quantify-
ing and categorising human behaviour in social networks, from personality to IQ
(Youyou et al., 2015; Burr and Cristianini, 2019), as we mentioned before, is a sign
that this may be possible. In sum, we should explore the possibility of non-intelligent
machine judges that may still do a good job at telling between humans and machines.
CAPTCHAs will explore this route for a time. In a more long term, there is the philo-
sophical question about whether a system that is not thinking can reliably determine
whether another system is thinking or not, or the related question of how much intel-
ligence is needed to test intelligence. These are open questions, especially if we are
not more specific about what we are testing and how we would evaluate the intelli-
gence of the tester and the testee independently. What is more certain is that a race has
started to build ‘machine judges’16. This originated with the detection of Clever Hans
phenomena in AI systems (Sturm, 2014), a problem that is very much related to the
increasingly important area of explainable AI, but will continue with the challenge of
building more comprehensive tester machines.

6 Building Behavioural Taxonomies

Turing learning is now consolidated as a technique that makes generator and discrim-
inator reach high levels of competence. This suggests new applications of Turing
testing for determining how similar two behaviours are, beyond images, videos, au-
dios and text.

The first thing we need to understand is that for any task, the imitator creates a
latent space in which any two points can be interpolated. For instance, Figure 7 shows

16 These judges may have a particular training and developmental process, as child machine judges.
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several images that are generated from the category ‘cock’ to the category ‘hen’ (us-
ing the same BigGAN technology as in Figure 4). As we see in the progression, the
intermediate images are points in this space that are midway a male and a female,
points that do not exist in the real world. When thinking about creating new AI be-
haviours such as agents and other kinds of systems that are not necessarily generators,
it is important to visualise this continuous space.

Fig. 7 Five 256x256 synthesised images going from the category ‘cock’ to ‘hen’ using BigGAN interpo-
lation (Brock et al., 2018). ‘Truncation’ and ‘noise seed’ parameters (for both categories) are set at 0.5, 0
and 0 respectively. All other parameters are kept as their default values in the Colab implementation.

Consider that we want to analyse whether two agents have the same behaviour.
The discriminator should think of those test instances —environments in this case—
such that it can tell between the two agents. However, if both agents are stochastic,
some of these different behaviours may not really imply that they are different. Ac-
tually, by taking the same agent twice (as both player A and B), we could observe
different behaviours, just because it is stochastic. Again, the latent space solves the
conundrum. Even if the behaviours are sometimes different because of random ef-
fects, what matters is whether the two agents are close in the latent space. For humans
we use abstract traits such as cognitive abilities and personalities, and we should do
similarly for every kind of agent, be it natural or artificial (Hernández-Orallo, 2017b).
The discriminator must also learn to build this abstract latent space in which the dis-
tances can be converted into meaningful similarity metrics.

With an appropriate design of these discriminators, we would use Turing test-
ing to output a similarity value, a similarity metric that could be used to cluster
agents together. This would be a very powerful tool for mapping the intelligence of
different kinds of behaviours (Bhatnagar et al., 2017), including the comparison be-
tween machine learning families (Fabra-Boluda et al., 2020), AI systems and humans
(Insa-Cabrera et al., 2011b,a), AI systems and animals (Hernández-Orallo, 2017b;
Crosby et al., 2019, 2020) or humans, animals and different deep learning architec-
tures (Schrimpf et al., 2018, using the so-called Brain Score17). Of course, for n

agents, we would need to create a similarity matrix of size n�pn�1q
2 , which may be

impractical if n is large —but clustering with sparse similarity matrices is an option.
An alternative approach relies on the other testing setting seen in the previous

section: adversarial testing. Whereas the development of measurement instruments
that follow the adversarial testing is still incipient, and has not progressed signifi-
cantly since (Hernández-Orallo and Dowe, 2010; Hernández-Orallo et al., 2012), it

17 http://www.brain-score.org/.
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adapts according to one or more dimensions, as per the transitional and universal
cases in Figure 2. Assuming each dimension is defined by a difficulty metric (Mishra
et al., 2013; Hernández-Orallo, 2015; Hernandez-Orallo, 2015; Martinez-Plumed and
Hernandez-Orallo, 2018; Martı́nez-Plumed et al., 2019; Hernández-Orallo, 2020), we
have a multidimensional space for which the adversarial testing can derive the loca-
tion of the testee in this space. By doing this, similarities and clustering are calculated
in this space, with no need of exploring all the n�pn�1q

2 combinations when n agents
are being analysed.

In this taxonomical endeavour, as many others where humans play a part, two of
the most relevant questions are (1) the location of humans in this space and (2) the
comparisons of other systems against humans. For instance, it has taken enormous
scientific and pedagogic effort to see humans as a particular kind of ape. While this is
generally accepted today, many other species are compared against humans —from
cognition to immune systems—, for the insight and applicability of the comparison.
Despite this preponderance, we must see the landscape in a non-anthropocentric way.
For instance, we should not associate general intelligence exclusively with humans.
There is general intelligence in animals (Burkart et al., 2017), taking very different
forms and manifestations. Some of the intelligent behaviours that are common in all
humans are similar to those we find in some other animals. For particular capabil-
ities, some animals sometimes score beyond humans. It is also a fact that humans
show enormous differences in behaviour, and really determining how much a partic-
ular human is able to understand, depending on their developmental stage and their
capabilities —or disabilities— is a hard question. Representing humans as a point in
the space rather than a cloud is a mistake, even when we compare against AI sys-
tems. In the end, when we see humans as a distribution, and we realise the fewer
constraints we have when devising AI systems, it is easier to consider other ways in
which machines can develop and display general intelligence.

Despite the non-anthropocentric perspective, devising tests of humanlike cogni-
tive behaviour is important scientifically. For many applications it is also key to build
AI systems that learn and infer like us, so that communicating with them will be
easier, as well as anticipating their behaviour. Efforts such as DiCarlo’s ‘brain score’
(Schrimpf et al., 2018), mentioned above, measuring how humanlike other percep-
tion mechanisms are, is a major contribution in this direction. But it is also crucial
to develop metrics to test capabilities independently of how humanlike they are. It
is especially interesting in philosophical terms, and in connection with some of the
debates about the Turing test. The success in many of the abilities that resist AI tech-
nology today, such as understanding and making sense of the world, may lead to AI
systems that differ very much from humans. Consequently, these difference would
be be detected in a Turing test (and not only because of what Turing called “human
fallibility” (Turing, 1950)). It would also be scientifically enlightening to overhaul
human variability in behaviour under this magnified view, and understand how hu-
mans will be moving in this space as the result of using cognitive enhancers fuelled
by AI (Hernández-Orallo and Vold, 2019), to the point that humans of the future may
not be ‘humanlike’ any more. This falls into a more long-term endeavour of charac-
terising humanlike behaviour in this landscape of cognition, and understanding what
humanlike really represents.



Twenty Years Beyond the Turing Test 23

There are many more questions about machine behaviour (Rahwan et al., 2019)
that go well beyond comparing them to humans. As in comparative cognition, com-
paring all kinds of systems between them and against some other imaginary or in-
terpolating systems can give enormous scientific and philosophical insight about ar-
tificial and natural intelligence, mapping them into the same space (Bhatnagar et al.,
2017), given or latent (Hernández-Orallo, 2001). The two schemas seen in the previ-
ous section, Turing testing and adversarial testing, can exploit the power of artificial
judges —adversarial and adaptive testers— to boost this process, as we have wit-
nessed in the area of Turing learning in the past few years. Initiatives such as the
AI collaboratory (Martı́nez-Plumed et al., 2020) can benefit from increasingly more
numerous and accurate data deriving from these evaluations.

7 Discussion

The Turing test is perhaps one of the most insightful thought experiments about the
mind. However, several problems have been widely recognised when repurposed as
a measurement instrument. Some of these problems are rooted in its anthropocen-
trism. Whereas the imitation game was introduced to argue that intelligence could
be incarnated by machines, the two other players in the game, the reference and the
judge, were set to be human. Philosophically, using humans as references seems nat-
ural from the standpoint of humans, and pragmatically the Homo Sapiens represents
many capabilities we would like to imitate in intelligent machines. However, the use
of humans as a reference has been criticised, not only for evaluation, but also in
obscure terms such as human-level machine intelligence. Anthropocentrism makes
extrapolation beyond humans cumbersome, if not impossible. When considering hu-
mans in a vast space of intelligence, locating them as yet another point in this space
becomes a Copernican revolution, leading to the really interesting and challenging
questions about intelligence and the mind (Hernández-Orallo et al., 2011; Hernández-
Orallo and Dowe, 2013; Dowe and Hernández-Orallo, 2014; Hernández-Orallo et al.,
2014).

One of these challenges is choosing who plays the judge when evaluating AI
systems at present, in the upcoming years and especially in the distant future. We have
argued that replacing human judges by machines is supported by the success of new
AI contraptions such as Turing learning. There, a machine discriminator learns from
the interaction with a second system whose performance is boosted and evaluated as
the result of an adversarial process. It is this adversarial feature of the Turing test
that lives on with Turing learning, and can be adapted in settings such as Turing
testing and adversarial testing introduced here. In order to make these schemas work
successfully we need to focus on the following issues:

– We should scrutinise any task used in AI whose production and verification is
not fully automated (i.e., human judges). We have seen that discriminators can
be automated. Discriminators can be extended to an adaptive evaluation setting
where they figure out questions and instances that are of the right difficulty and
discriminating power, better than the questions humans could do.
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– We should explore the best ways in which testees and testers can work adver-
sarially, exploring different configurations and loss functions for them. This can
mimic the way GANs were extended to Turing learning, with different architec-
tures and loss functions being explored so far.

– We should separate humanlike behaviours from intelligent behaviours, so that
we can properly understand the intersection. Notions such as ‘understanding’ or
extracting meaning from the world may take different forms beyond the standard
human, as happens with the diversity of human populations and the huge diversity
in animal cognition. AI behaviour is only expected to be more diverse.

– We should understand how much computational effort we need for the tester in
comparison with the computation effort for the testee. While we have discussed
some similes (e.g., NP vs P) where testers are more lightweight than testees, we
need to analyse this question for specific and general domains in AI evaluation
(Hernández-Orallo, 2017a; Hernández-Orallo et al., 2017), in experimental and
theoretical ways.

– We should identify the dimensions of each domain we need to evaluate and the
difficulty metrics for each of them. Again, the latent spaces created by the ma-
chine testers can be very useful to build and refine the space, as AI progresses.
This abstraction will move us from a task-oriented evaluation to an ability-oriented
evaluation (Hernández-Orallo, 2017a).

We can see plenty there that needs to be done to make the new testing settings work,
first in a range of AI domains and then more broadly for the comparison of systems
that display some general intelligent behaviour. There is also plenty that needs to be
done to use the information from these evaluations in a more insightful way, through
the use of taxonomies and the development of new theories of cognition. In the end,
it is no surprise that AI can be useful for cognitive measurement; indeed, it can also
be useful for comparative cognition and it may replace human judges in any evalu-
ation setting in the future. In Turing’s words (1950): “we may hope that machines
will eventually compete with [humans] in all purely intellectual fields”: intelligence
evaluation is just one of these fields.
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