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Abstract

Scientific applications generally imply a variable and an unpredictable
computational workload that institutions must address by dynamically adjusting
the allocation of resources to their different computational needs. Scientific
applications could require a high capacity, e.g. the concurrent usage
of computational resources for processing several independent jobs (High
Throughput Computing or HTC) or a high capability by means of using
high-performance resources for solving complex problems (High Performance
Computing or HPC). The computational resources required in this type of
applications usually have a very high cost that may exceed the availability of
the institution’s resources or they are may not be successfully adapted to the
scientific applications, especially in the case of infrastructures prepared for the
execution of HPC applications. Indeed, it is possible that the different parts
that compose an application require different type of computational resources.
Nowadays, cloud service platforms have become an efficient solution to meet the
need of HTC applications as they provide a wide range of computing resources
accessible on demand. For this reason, the number of hybrid computational
infrastructures has increased during the last years. The hybrid computation
infrastructures are the combination of infrastructures hosted in cloud platforms
and the computation resources hosted in the institutions, which are named
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on-premise infrastructures. As scientific applications can be processed on different
infrastructures, the application delivery has become a key issue. Nowadays,
containers are probably the most popular technology for application delivery
as they ease reproducibility, traceability, versioning, isolation, and portability.
The main objective of this thesis is to provide an architecture and a set of
services to build up hybrid processing infrastructures that fit the need of different
workloads. Hence, the thesis considered aspects such as elasticity and federation.
The use of vertical and horizontal elasticity by developing a proof of concept
to provide vertical elasticity on top of an elastic cloud architecture for data
analytics. Afterwards, an elastic cloud architecture comprising heterogeneous
computational resources has been implemented for medical imaging processing
using multiple processing queues for jobs with different requirements. The
development of this architecture has been framed in a collaboration with a
company called QUIBIM. In the last part of the thesis, the previous work has been
evolved to design and implement an elastic, multi-site and multi-tenant cloud
architecture for medical image processing has been designed in the framework
of a European project PRIMAGE. This architecture uses a storage integrating
external services for the authentication and authorization based on OpenID
Connect (OIDC). The tool kube-authorizer has been developed to provide access
control to the resources of the processing infrastructure in an automatic way from
the information obtained in the authentication process, by creating policies and
roles. Finally, another tool, hpc-connector, has been developed to enable the
integration of HPC processing infrastructures into cloud infrastructures without
requiring modifications in both infrastructures, cloud and HPC. It should be noted
that, during the realization of this thesis, different contributions to open source
container and job management technologies have been performed by developing
open source tools and components and configuration recipes for the automated
configuration of the different architectures designed from the DevOps perspective.
The results obtained support the feasibility of the vertical elasticity combined with
the horizontal elasticity to implement QoS policies based on a deadline, as well
as the feasibility of the federated authentication model to combine public and
on-premise clouds.
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Resumen

Las aplicaciones científicas implican generalmente una carga computacional
variable y no predecible a la que las instituciones deben hacer frente variando
dinámicamente la asignación de recursos en función de las distintas necesidades
computacionales. Las aplicaciones científicas pueden necesitar grandes requisitos.
Por ejemplo, una gran cantidad de recursos computacionales para el procesado
de numerosos trabajos independientes (High Throughput Computing o HTC)
o recursos de alto rendimiento para la resolución de un problema individual
(High Performance Computing o HPC). Los recursos computacionales necesarios
en este tipo de aplicaciones suelen acarrear un coste muy alto que puede
exceder la disponibilidad de los recursos de la institución o estos pueden
no adaptarse correctamente a las necesidades de las aplicaciones científicas,
especialmente en el caso de infraestructuras preparadas para la ejecución de
aplicaciones de HPC. De hecho, es posible que las diferentes partes de una
aplicación necesiten distintos tipo de recursos computacionales. Actualmente las
plataformas de servicios en la nube se han convertido en una solución eficiente
para satisfacer la demanda de las aplicaciones HTC, ya que proporcionan un
abanico de recursos computacionales accesibles bajo demanda. Por esta razón,
se ha producido un incremento en la cantidad de clouds híbridos, los cuales
son una combinación de infraestructuras alojadas en servicios en la nube y
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en las propias instituciones (on-premise). Dado que las aplicaciones pueden
ser procesadas en distintas infraestructuras, actualmente la portabilidad de las
aplicaciones se ha convertido en un aspecto clave. Probablemente, las tecnologías
de contenedores son la tecnología más popular para la entrega de aplicaciones
gracias a que permiten reproducibilidad, trazabilidad, versionado, aislamiento
y portabilidad. El objetivo de la tesis es proporcionar una arquitectura y una
serie de servicios para proveer infraestructuras elásticas híbridas de procesamiento
que puedan dar respuesta a las diferentes cargas de trabajo. Para ello, se ha
considerado la utilización de elasticidad vertical y horizontal desarrollando una
prueba de concepto para proporcionar elasticidad vertical y se ha diseñado una
arquitectura cloud elástica de procesamiento de Análisis de Datos. Después, se
ha trabajo en una arquitectura cloud de recursos heterogéneos de procesamiento
de imágenes médicas que proporciona distintas colas de procesamiento para
trabajos con diferentes requisitos. Esta arquitectura ha estado enmarcada en
una colaboración con la empresa QUIBIM. En la última parte de la tesis, se
ha evolucionado esta arquitectura para diseñar e implementar un cloud elástico,
multi-site y multi-tenant para el procesamiento de imágenes médicas en el marco
del proyecto europeo PRIMAGE. Esta arquitectura utiliza un almacenamiento
distribuido integrando servicios externos para la autenticación y la autorización
basados en OpenID Connect (OIDC). Para ello, se ha desarrollado la herramienta
kube-authorizer que, de manera automatizada y a partir de la información
obtenida en el proceso de autenticación, proporciona el control de acceso a
los recursos de la infraestructura de procesamiento mediante la creación de las
políticas y roles. Finalmente, se ha desarrollado otra herramienta, hpc-connector,
que permite la integración de infraestructuras de procesamiento HPC en
infraestructuras cloud sin necesitar realizar cambios en la infraestructura HPC ni
en la arquitectura cloud. Cabe destacar que, durante la realización de esta tesis,
se han utilizado distintas tecnologías de gestión de trabajos y de contenedores de
código abierto, se han desarrollado herramientas y componentes de código abierto
y se han implementado recetas para la configuración automatizada de las distintas
arquitecturas diseñadas desde la perspectiva DevOps. Los resultados obtenidos
avalan la idoneidad de la elasticidad vertical combinada junto con la elasticidad
horizontal para implementar políticas de Calidad de Servicio basadas en plazos
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de ejecución, así como la viabilidad del modelo de autenticación federada para
combinar clouds públicos y on-premise.
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Resum

Les aplicacions científiques impliquen generalment una càrrega computacional
variable i no predictible a què les institucions han de fer front variant
dinàmicament l’assignació de recursos en funció de les diferents necessitats
computacionals. Les aplicacions científiques poden necessitar grans requisits. Per
exemple, una gran quantitat de recursos computacionals per al processament
de nombrosos treballs independents (High Throughput Computing o HTC) o
recursos d’alt rendiment per a la resolució d’un problema individual (High
Performance Computing o HPC). Els recursos computacionals necessaris en
aquest tipus d’aplicacions solen comportar un cost molt elevat que pot excedir
la disponibilitat dels recursos de la institució o aquests poden no adaptar-se
correctament a les necessitats de les aplicacions científiques, especialment en
el cas d’infraestructures preparades per a l’avaluació d’aplicacions d’HPC. De
fet, és possible que les diferents parts d’una aplicació necessiten diferents tipus
de recursos computacionals. Actualment les plataformes de servicis al núvol
han esdevingut una solució eficient per satisfer la demanda de les aplicacions
HTC, ja que proporcionen un ventall de recursos computacionals accessibles a
demanda. Per aquest motiu, s’ha produït un increment de la quantitat de clouds
híbrids, els quals són una combinació d’infraestructures allotjades a servicis en
el núvol i a les mateixes institucions (on-premise). Donat que les aplicacions
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poden ser processades en diferents infraestructures, actualment la portabilitat de
les aplicacions s’ha convertit en un aspecte clau. Probablement, les tecnologies de
contenidors són la tecnologia més popular per a l’entrega d’aplicacions gràcies al
fet que permeten reproductibilitat, traçabilitat, versionat, aïllament i portabilitat.

L’objectiu de la tesi és proporcionar una arquitectura i una sèrie de servicis per
proveir infraestructures elàstiques híbrides de processament que puguen donar
resposta a les diferents càrregues de treball. Per a això, s’ha considerat la
utilització d’elasticitat vertical i horitzontal desenvolupant una prova de concepte
per proporcionar elasticitat vertical i s’ha dissenyat una arquitectura cloud
elàstica de processament d’Anàlisi de Dades. Després, s’ha treballat en una
arquitectura cloud de recursos heterogenis de processament d’imatges mèdiques
que proporciona distintes cues de processament per a treballs amb diferents
requisits. Aquesta arquitectura ha estat emmarcada en una colÂ·laboració
amb l’empresa QUIBIM. En l’última part de la tesi, s’ha evolucionat aquesta
arquitectura per dissenyar i implementar un cloud elàstic, multi-site i multi-tenant
per al processament d’imatges mèdiques en el marc del projecte europeu
PRIMAGE. Aquesta arquitectura utilitza un emmagatzemament integrant
servicis externs per a l’autenticació i autorització basats en OpenID Connect
(OIDC). Per a això, s’ha desenvolupat la ferramenta kube-authorizer que, de
manera automatitzada i a partir de la informació obtinguda en el procés
d’autenticació, proporciona el control d’accés als recursos de la infraestructura
de processament mitjançant la creació de les polítiques i rols. Finalment,
s’ha desenvolupat una altra ferramenta, hpc-connector, que permet la integració
d’infraestructures de processament HPC en infraestructures cloud sense necessitat
de realitzar canvis en la infraestructura HPC ni en l’arquitectura cloud. Es
pot destacar que, durant la realització d’aquesta tesi, s’han utilitzat diferents
tecnologies de gestió de treballs i de contenidors de codi obert, s’han desenvolupat
ferramentes i components de codi obert, i s’han implementat receptes per a la
configuració automatitzada de les distintes arquitectures dissenyades des de la
perspectiva DevOps.

Els resultats obtinguts avalen la idoneïtat de l’elasticitat vertical combinada junt
amb l’elasticitat horitzontal per implementar polítiques de Qualitat de Servei

xiv



basades en terminis d’execució, així com la viabilitat del model d’autenticació
federada per combinar clouds públics i on-premise.
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Alba y Adri, entre la tesis y la pandemia, tampoco hemos podido pasar todos
los momentos que desearíamos, especialmente, durante este último año. Pronto
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cámara cenital) y nuestros viajes. Gracias por el “power”, por apoyarnos en los
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Este camino no lo podría haber recorrido sin el apoyo de la familia, la de siempre
y la política.
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Chapter 1

Introduction and objectives

Scientific applications generally imply a variable and unpredictable computational
workload that researchers must estimate when requesting resources to Data
Processing Centres, with little or no capability of dynamically adjusting the
allocation of resources. Therefore, overestimation is habitual, so institutions end
up with an enormous request of computational resources. Moreover, scientific
applications typically comprise parts that require processing many independent
jobs (High Throughput Computing or HTC) or high-performance resources for
solving complex problems (High Performance Computing or HPC), which could
fit different types of resources.

In a flexible scenario, researchers could request computing resources that fit
the common workloads, but when conditions change, the infrastructure must be
updated and resized. The acquisition of equipment that only is necessary to face
up punctual workload peaks or when different workloads appear could be able for
big institutions or large consortia. For this reason, it is very interesting to take
profit of the cloud platforms to address this problem. Cloud service platforms
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provide a wide range of computing resources and services that have made them
an efficient solution to get the resources needed on demand.

Elasticity is a key issue in cloud computing because it allows to dynamically
resize the infrastructure depending on certain aspects, for example, to guarantee
a minimum level of Quality of Service (QoS) or to reduce the waste of unused
resources. There are two types of elasticity depending on the problem: horizontal
and vertical. The horizontal elasticity is used when the problem can leverage
concurrency (for example, in the HTC case) to be completed earlier. In some
cases, applications can increase their performance by adjusting the resources
allocated to individual instances, such as memory and number of cores. Vertical
elasticity focuses on increasing or decreasing the allocation of such resources to the
running instances. Occasionally, vertical elasticity could complement horizontal
elasticity.

The advances in the study of elasticity and the increase in the number of cloud
computing platforms offers have contributed to the arise of hybrid infrastructures,
which combine computing resources hosted by different providers (such as public
cloud platforms and on-premise institutional resources).

The management of hybrid infrastructures is a complex task because there
are many aspects to consider: the synchronization of several processing
infrastructures; distributed storage; coherent authentication and authorization;
application delivery, etc. Configuring and operating such infrastructures is
complex and requires nontrivial system administration skills.

Nowadays, the growth of hybrid and cloud infrastructures has contributed
to consider application delivery also a key issue. Container technologies
have become the most popular solution for application delivery in cloud
environments. Regarding HPC infrastructures, popular container technologies
require administrative privileges that are incompatible with the access restrictions
that HPC centres impose to their users. However, they are starting to use
them thanks to the improvements of user-space container technology. For
example, Singularity containers [94] are currently used [152] in the world’s
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fastest supercomputer (RIKEN’s Fugaku [153] in Tokio, Japan) according to the
November 2020 TOP500 list [172].

One of the aims of this thesis is to provide elastic cloud architectures that
address different workloads (for example, HPC or HTC). Other objective of
this thesis is to take profit of the DevOps perspective to contribute with
configuration recipes for the implementation of hybrid infrastructures, as well
as the development of services and tools for the integration of on-premises
and cloud infrastructures. These contributions could facilitate the adoption of
cloud infrastructures in commercial or academia environments for leveraging the
benefits of cloud platforms. This dissertation is composed of different articles that
have been published or have been submitted to different conferences and journals.

1.1 Objectives

The main objective of this thesis is to design, implement and validate an
architecture and a set of services to build up hybrid processing infrastructures
that can address different workloads. This general objective can be decomposed
into several (sub-)objectives that will be tackled in this thesis:

• Analyse the requirements of scientific applications dealing with
medical image processing. Institutions have different computing
necessities depending of their scientific applications. Hence, there are
some aspects that must be considered to provide cloud infrastructures that
cover all of their necessities. This thesis will study the typical computing
requirements of trend research fields, such as data analysis or medical
imaging processing, to design cloud architectures that efficiently address
their necessities.

• Design and implement a mixed vertical and horizontal elasticity
framework. The cloud architectures designed in this thesis will make use of
automatic horizontal elasticity to optimize the resource allocation in cloud
platforms and to address workload peaks or different types of workloads
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(HTC or HPC). The implementation of these cloud infrastructures must
be performed following the DevOps perspective to provide automatic
management of computing resources. Furthermore, the vertical elasticity
will be studied to guarantee a minimum of QoS defined as a time execution
deadline.

• Support hybrid infrastructures by developing services for
federated authentication and interconnection between different
processing infrastructures. Hybrid architectures enable fitting different
workload types by the combination of cloud and on-premise infrastructures.
There are some aspects that must be considered and will be studied in this
thesis. Authorization is a key aspect and, in this dissertation, a service to
provide federated authorization must be implemented. The management
of different job queues or multiple workload manager also are important
aspects that will be studied during this thesis.

• Identify the most appropriate container technology and
orchestrator tool according to the architecture requirements.
Containers have become the most popular technology for application
delivery. During the research phase, different container technologies and
container orchestrator solutions will be analysed to identify which are the
most appropriate depending on their architecture necessities. Although
container technologies commonly have similar features, they work with
containers with different strategies or security requirements, so one of them
can fit better than the rest for certain scenarios.

• Develop use cases to validate the architectures and the services
implemented. Despite the architectures developed are for general purpose,
a set of use cases will be implemented in the context of medical imaging
and data analytics to validate their concept and development. The first
case is focused on validating a cloud architecture for data analytics that
address different types of workloads (long-running jobs and batch jobs)
leveraging the horizontal and vertical elasticity. The second case is the
design of an elastic cloud architecture that focuses on demonstrating the
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integration of different tools and workloads, focusing on medical imaging
analysis processing for a business company named QUIBIM. The third case
focuses on demonstrating that the cloud architecture designed and software
developed provide a hybrid infrastructure, multi-tenant and multi-site in the
framework of the European project PRIMAGE.

Open Science improves the effectiveness and productivity of the whole research
community and avoids “reinventing the wheel”. Thus, the whole set of services,
tools and configuration recipes that will be developed during this thesis must be
open source.

1.2 Summary of the state of art

This section summarizes the state of the art in the framework of this dissertation.
This dissertation is structured as a compilation of research papers that have been
published or submitted to indexed journals and conferences. Therefore, each
chapter includes a detailed section regarding the state of the art in the particular
problem addressed by the chapter.

The use of cloud infrastructures by institutions and enterprises is increasingly
widespread [14]: renowned research centres such as CERN [174] use private cloud
platforms; European initiatives and projects provide hybrid cloud platforms such
as Helix Nebula Science Cloud [53] or Gaia X [63]; and multinational companies
as Philips [44] or Spanish companies such as Mahou San Miguel [75] are using
cloud platforms.

Cloud computing has proven to be effective to tackle e-Science challenges
[182][181] due to the fact that cloud platforms enable the ability to adapt the
computing infrastructure to the application. For example, the analysis of large
amounts of data can be processed to obtain very useful information. There have
been many programming models for big data that leverage cloud computing [180].
The MapReduce programming model has provided an efficient way to process
large amounts of data on cloud service platforms due to the access to large
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clusters on demand. The computational paradigm MapReduce is implemented by
Apache Hadoop [59], a framework to process applications on large clusters with
the data stored in its own distributed file system named Hadoop Distributed File
System. Another important programming model is functional programming. In
this type of programming model, the most popular framework is Spark [62], which
allows to process data storage in RAM memory. The use of Structured Query
Language (SQL) is the classical way to interact with data warehouses. Apache
Hive [60] is an open-source data warehousing solution built on top of Hadoop
that supports queries expressed in a SQL-like declarative language that will be
compiled into MapReduce jobs executed on Hadoop. The Actor model [72] is a
programming model for concurrent computation, which considers “Actor” as the
universal primitive unit for computation. An actor is responsible for reacting to a
set of messages to trigger specific processing logics for different contexts. Apache
Storm [173] is an example of this programming model. The dataflow programming
paradigm [87] is designed to model programs as directed graphs with operations
and dependencies as nodes and edges. An example of this programming model is
Microsoft Dryad [82].

Another field that has relied on cloud services is biomedicine. In [78] [115] the
authors describe a large number of bioinformatic applications as well as scientific
workflow tools that support bioinformatics applications leveraging cloud services.
On the other hand, there are works that use other preconfigured platforms with
a large number of tools for bioinformatic analysis. For example, a web platform
named Galaxy Project [64] that can be deployed on public and on-premises Cloud
offerings.

Regarding the deployment and configuration of cloud computing clusters, there
are several works that provide tools to configure a Load Resource Management
System (LRMS) and the associated resources in cloud service providers. On the
one hand, StarCluster [169] (from the Massachusetts Institute of Technology) is
an open-source cluster-computing toolkit for Amazon’s Elastic Compute Cloud
that has a plugin [170] to manage the elasticity according to the length of the
cluster’s job queue. On the other hand, Elastic Cloud Computing Cluster (EC3)
[119], a tool that manages elastic virtual clusters from computational resources
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in cloud platforms that was developed in the research group where this thesis is
performed.

It should be pointed out that EC3 is also able to manage the horizontal elasticity
according to customisable policies thanks to a previous work: CLUster Energy
Saving (CLUES) [36]. EC3 is able to deploy and destroy VMs according to
the workload of the cluster. Elasticity is a research field widely studied in cloud
computing. For example, in [23] [122] the authors present a method to manage the
elasticity in a HTC infrastructure. In [123], the authors design and study a generic
and elastic architecture for hybrid infrastructures. The authors in [90] propose
a framework to manage the elasticity according to the resource usage (CPU,
memory, etc.). In[161] the authors present Kingfisher, a system to manage the
elasticity according to the pricing models and transition strategies that optimize
the incurred cost.

The creation of scientific applications has different stages [154] and institutions
may have different computing environments for their scientific applications.
Furthermore, it is possible that scientific applications could be used in different
computing resources. For these reasons, it is crucial to consider the application
delivery aspect. Containers are not a new concept (they come from the idea of
FreeBSD jails [42] in 2000) but they have become the most popular technology
for application delivery during the last years thanks to the reproducibility,
isolation, provenance and portability. A container is an executable unit of
software in which an application code is packaged, along with its libraries and
dependencies. Container technology encapsulates processes and their execution
environment in isolated filesystems and namespaces that enable the execution of
processes in a restricted environment. As they are actually system processes,
there is no overhead like that caused by the hypervisor layer introduced by
virtual machines in CPU, memory, and storage [52] because containers do not
virtualise the entire OS. Going one layer deeper, container concept can be split
in various concepts: container image format, container engine, container runtime
and container orchestrator. Historically, there were different Container Image
formats: Docker [147], Appc [9] and LXC/LXD [105] [106]. Nowadays, with
the formation of the Open Container Initiative (OCI) [128], almost all container
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engines and runtimes are compliant with the specification defined by the OCI
[129]. Furthermore, container images can be made up of one or more layers. A
container engine can be defined as “a piece of software that accepts user requests,
including command line options, pulls images, and from the end user’s perspective
runs the container” [150]. Almost all container engines are OCI compliant (Docker
and RKT [33]) but LXC/D has its own format. Regarding the container runtime,
OCI also defines a Runtime specification [130]. The reference implementation of
this standard is runC [81] but there exist other OCI compliant runtimes: crun [32],
RailCar [142], Katacontainers [57] and CRI-O[56]. The container orchestrators are
in charge of managing the execution of containers along the different computing
nodes. Commonly, the container execution implies several system calls and
functions that could require privileged permissions. All container technologies
employ one of the following security approaches: only allow executing containers
to users that belong to the sudoers group, have a privileged root daemon that
runs the containers, use SetUID [158] to enable privilege escalation, use Linux
capabilities [98], or employ user namespaces [175].

Linux Containers (LXC or LXD) take profit of kernel features (kernel namespaces
[124], chroots [26], cgroups [20], capabilities [98], etc.) to create an environment
as near as possible to a standard Linux but without the need for a separate kernel.

Docker has reached the maximum popularity due to its convenient and rich
ecosystem of tools and container orchestrators. Docker manages containers using
containerd [31], which relies on runC library the container execution. Docker and
runC commonly depend on privileged daemons to manage containers, although
both can run in user namespaces (Docker rootless mode is an experimental feature
[39]). Docker images are formed by several layers that typically are stored in a
Container Registry, which is a public or private image repository.

The launch of Docker in 2013 placed containers as the most popular technology
for application delivery and, therefore, other alternatives emerged during the
recent years trying to facilitate the acquisition of containers in other environments
such as HPC infrastructures: Singularity [94], Shifter [125], CharlieCloud [146]
[95], udocker [67] or Podman [151]. Most of them inherit the Docker image
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ecosystem for building and storing the images and even permit to use pure
Docker images or convert them to their specific formats. Singularity is the most
popular container technology for HPC environments. Singularity is designed
to allow users to run containers as themselves. For this reason, there are
some calls that require privileges and, by default, Singularity employs a SetUID
binary to perform these tasks, although it supports Linux capabilities and user
namespaces [163]. Shifter and CharlieCloud are other alternatives designed
for HPC environments developed by the National Energy Research Scientific
Computing Centre (NERSC) and Los Alamos National Laboratory (LANL),
respectively. On the other hand, Podman and uDocker are user-space and
daemonless container technologies for generic use. uDocker is designed for
executing Docker containers in user space and it provides three alternative
modes to run containers: user namespaces (using runC), PTRACE execution
method (using PRoot [149]) and LD_PRELOAD method (using fakechroot [50]).
Podman manages OCI compliant containers and pods (groups of containers) but
it only supports running containers on Linux. On the other hand, if an institution
employs Docker, the authors state that the adoption of podman is easy because
the only requirement is to create the “alias” command alias docker=podman.

There are some excellent container orchestration tools and job schedulers that
are able to manage the different container technologies. Docker Swarm [41]
was the native job scheduler of Docker. It has designed to be used in small
and medium clusters. When this thesis started, Docker Swarm was more used
that Kubernetes but, nowadays, it is being replaced by Kubernetes (even Docker
Engine has included a standalone version of Kubernetes). The container runtime
used in Docker Swarm is containerd. Kubernetes [171] (also known as K8s)
is an open-source orchestration system for Docker containers. Pods are the
minimum unit of scheduling in Kubernetes and they are groups of containers
that are deployed and scheduled together. Kubernetes has a big community that
enhances the tool with different plug-ins and modules, such as Helm [71] (package
manager to configure applications or services) or Kubernetes Ingress Controller
[92] (it exposes HTTP and HTTPS routes from outside the cluster to services
within the cluster). It should be pointed out that Kubernetes has a module [93]
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that is able to manage the horizontal elasticity of pods based on the CPU usage.
Kubernetes also used containerd as a container runtime, but Kubernetes recently
announced that it will be using CRI-O by default. Apache Mesos [117] is not
a job scheduler, it is a large-scale resource management system that partitions
and assigns computing resources across various job schedulers, which are also
called frameworks (such as Spark [62], Hadoop [59], etc.). It should be pointed
out that Docker Swarm and Kubernetes also can run on top of a Mesos cluster.
Nomad [126] is an open-source job scheduler that allows running non-containerised
and container-based jobs with different container technologies (natively, Docker
and Podman; and by using community-developed plugins, it can run Singularity,
rkt and LXC). It can be remarked that Kubernetes can also run other container
technologies but it is required to change the container runtime, and Apache Mesos
relies on its frameworks to be able to run several container technologies.

1.3 Organization of this document

This dissertation is presented as a compendium of research articles which were
published or submitted during the research phase. Chapters 2, 3, 4, and 5
correspond to works presented in already published articles in conferences and
journals, and Chapter 6 is associated to a submitted article. As each chapter
is a whole paper, all of them include the sections introduction and state of art.
Thus, these chapters can be read independently and it is possible that there exists
some redundant information in the different related work sections. The remaining
chapters are a discussion of the results obtained and the conclusion of the thesis.
The following paragraphs describe each chapter in detail.

Chapter 2, “Vertical Elasticity on Marathon and Chronos Mesos frameworks”,
presents an open-source mechanism that provides a way to manage the vertical
elasticity in Chronos and Marathon framework in an Apache Mesos cluster.
This work demonstrates that, thanks to the checkpointing feature and the
redeployment capabilities of the Mesos frameworks, it is possible to dynamically
vary the resources assigned to an application according to its progress and
considering a specific Quality of Service (QoS). This work [101] was published
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in the Journal of Parallel and Distributed Computing, which is a JCR-indexed
journal that belongs to the second quartile (Q2).

Chapter 3, “A self-managed Mesos cluster for data analytics with QoS
guarantees”, presents an elastic cloud architecture for data analytics with vertical
elasticity. This work combines the previous work with the tools developed in
the research group with a set of open-source recipes that allow to build a cloud
architecture from scratch in the majority of cloud providers. This work [102]
was published in the Future Generation Computer Systems journal, which is a
JCR-indexed journal that belongs to the first quartile (Q1).

Chapter 4, “A Cloud Architecture for the Execution of Medical Imaging
Biomarkers”, presents an elastic cloud architecture designed for the execution
of medical imaging biomarkers. This architecture is composed of a heterogeneous
computing infrastructure to deal with different types of jobs. Moreover, this
architecture includes a workflow to ease the building, testing, delivery, and
version management of the containers thanks to the adoption of a continuous
integration tool. This work [100] was published in the conference International
Conference on Computational Science, which is rated as CORE A and Class 2 in
the GII-GRIN-SCIE conference ranking.

Chapter 5, “Seamlessly managing HPC workloads through Kubernetes”,
introduces an open-source tool named hpc-connector to ease the combination
of two existent computing infrastructures. The main idea behind this tool
is to create an extra layer to permit the combination without modifying the
computing infrastructure. Thus, it is possible to interconnect different computing
infrastructures that have incompatible job schedulers or different authentication
methods. In this work, the authors combine a Kubernetes cluster hosted in
Spain with the supercomputer Prometheus [34] hosted in Poland, which uses
the job scheduler Slurm. This work [103] was published in the conference ISC
High Performance, which is rated as CORE C and has not defined a class yet in
GII-GRIN-SCIE conference rating.
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Chapter 6, “Automated isolation management of processing workflows in a
multi-tenant and multi-site Kubernetes clusters - a medical imaging use case”,
presents kube-authorizer, which is a service to automate the creation of
namespaces, service accounts, and permissions of users authenticated by OpenID
Connect (OIDC) in a Kubernetes cluster. This work has been submitted to the
IEEE Access journal, which is a JCR-indexed journal that belongs to the first
quartile (Q1).

Chapter 7 is a discussion of the achievements obtained during the research phase
of this thesis. Finally, Chapter 8 summarizes the main results, concludes this
dissertation and points to future work.
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Vertical Elasticity on
Marathon and Chronos Mesos
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2.1 Introduction

Apache Mesos [117] is a large-scale Resource Management System (RMS) that
can partition and assign the resources of computing infrastructure (CPU, memory,
I/O, disk and special resources) across several job schedulers, namely frameworks.
Apache Mesos is not used to execute applications, but to allocate resources to
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those frameworks. Apache Mesos is becoming very popular due to a large number
of supported frameworks. Among them, Marathon [109] and Chronos [25] provide
means for deploying reliable services and periodic batch applications.

Applications deployed on Marathon can be scaled up and down according to
specific triggers. However, this horizontal elasticity is appropriate when the
problems that are solved are inherently parallel (e.g. stateless web services scaling
on a variable access workload), but when the problem cannot benefit from an
increase of the number of resources, another type of elasticity must be considered.
Vertical elasticity consists of resizing dynamically the resources assigned to each
application to meet varying workload demands or a previously Quality of Service
(QoS) agreed. Some scenarios will benefit more from vertical elasticity rather
than horizontal elasticity [155]. Studies propose proactive elasticity [104] as an
effective mechanism to improve QoS.

This work uses the RMS Apache Mesos, whose objective is to execute applications
by using distributed frameworks and controlling resources such as storage, CPU
and memory in a collection of computational nodes. Depending on the framework
features, it is possible to scale-out or scale-in worker nodes (horizontal elasticity)
or adjust the CPU share (vertical elasticity) associated with each execution
instance. There are some frameworks among Apache Mesos, but this work
focuses on Marathon and Chronos. Marathon is a production-grade container
orchestration platform with high availability and fault-tolerant framework.
Furthermore, it is designed for managing long-running applications, which is a
common type of application that executes on Cloud infrastructure. Besides,
Marathon provides methods to perform horizontal and vertical elasticity but
only for stateless applications. Chronos is a distributed and fault-tolerant
scheduler designed as a replacement for Linux Cron [99]. Furthermore, it supports
the execution of Docker containers and also provides a mechanism for varying
their assigned resources. Both frameworks are complementary and widely used
together. There are many applications in Cloud computing that run several
iterations and, with this framework, it is possible to manage such class. More
precisely, this work addresses two use cases, each one with one of the frameworks:
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• Chronos can schedule a set of application iterations with a given
periodicity and start them at a given time. It is not targeted at the
bag-of-tasks execution model, in which applications are independent and
embarrassingly parallel, which could be controlled by simpler horizontal
elasticity mechanisms. Chronos can execute applications defined as a
workflow, in which each stage requires the completion of a previous stage.
We consider the simple case of an iterative workflow with a fixed number
of iterations of one application. Therefore, vertical elasticity is essential to
define the most appropriate number of resources to execute each iteration
in the desired timeframe.

• Marathon can run a multithreaded application whose computational cost
is known previously, so it is expected to finish once a certain amount of
CPU time has been consumed. We cannot apply horizontal elasticity as it
runs on a single node. If vertical elasticity is not utilised, then the resource
allocation must ensure that the deadline is met. Given a scenario of nodes
with 4 cores each, if, for example, an application requires 1.5 CPUs for
a given time, and this reservation is static, the remaining 2.5 cores will
be wasted if no matching request comes to the system. In our approach,
the application will use the maximum CPU share (4 cores) if there are no
competing applications in the same node. If a new request comes to the
system asking for 2.5 cores, the system could allocate it in the same node,
reducing the CPU share according to the 1.5 / 2.5 ratio. Therefore, the
application could advance part of the computation, anticipating load to
earlier time slots and leading to a better load balancing.

Mesos, Marathon and Chronos are only examples of the tools that appear to
foster the usage of containers. Containers enable the developer to encapsulate
the applications and their libraries winning more flexibility, scalability, boot up
time and resource efficiency than when using Virtual Machines (VM) [12] [52].
Thus, the containers become the most popular way for packaging and deploying
applications on Cloud infrastructures. Docker containers, in turn, have become
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the most popular container platform. For this reason, the development proposed
in this work is based on Docker containers instead of Mesos native containers.

Thereby, the work is focused on designing and implementing a mechanism that,
given an application specification and a QoS target, can deploy it in Mesos
framework (Chronos or Marathon) using a Docker container, monitor such
application and vary the assigned resources with the objective of achieving the
agreed QoS.

This paper is organised as follows. Section 2.2 describes the problem in detail
and then defines the two possible scenarios according to the above use cases
and the frameworks. Section 2.3 describes the past works of elasticity in VM
and Docker containers. Section 2.4 describes the technologies mentioned in this
paper. Section 2.5 presents the mechanism developed. Section 2.6 describes
the tests for evaluating this mechanism and then discusses the obtained results.
Finally, Section 2.7 presents the conclusions of the work explained in the paper.

2.2 Description of the problem

The motivation of the work is to provide a mechanism for adjusting the allocation
of vCPU resources to a running application inside a Docker container managed
by a Mesos Framework (Marathon or Chronos). The design principles are the
following:

• There is a known, feasible deadline for a given execution of an application
or, if not, there is a Quality of Service target, expressed as the CPU time,
that must be allocated to the application in a given timeframe.

• The application can benefit from multiple cores.

• Multiple applications are competing for the resources – otherwise, the QoS
guarantees would not have any meaning.
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• Applications are multithreaded but can only use one node (shared memory).
The number of threads an application will use will depend on the number
of vCPUs of the node, which will be the same for all the nodes.

Therefore, we identify the following requirements:

• Deadline should be provided at submission time, so this information is
associated with the application.

• A fine-grain monitoring of the task (e.g. consumed CPU time for the
individual task) is needed. Considering that the tasks run in a distributed
environment, this may require identifying the physical resources where the
task runs.

• The progress of the application must be computed and defined. We will
use three states: under-progress, if the application progress is below a given
threshold of the expected progress or CPU time allocation; ontime, if the
application progress is between the acceptable, expected progress interval,
given a threshold; and overprogress, if an application has advanced more
than a given threshold with respect to the expected progress. The user can
configure these thresholds at submission time.

• An actuator will trigger a new resource allocation if needed. An
underprogress state will lead into an increase of resources and an overprogress
state into a reduction of such resources. The user can configure these
increments or decrements at submission time.

• In case of the application state needs to be frozen and restored, checkpointed
is needed.

The motivation for these requirements can be seen in the following scenarios:

• Applications which perform a known number of iterations (with a
predictable execution time each one) that should be finished before meeting
a deadline. This scenario is implemented using Chronos: The user submits
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an application to Chronos that iterates multiple times through independent
executions, which can not take place concurrently due to flow dependencies,
external data dependencies, etc. The user wants to guarantee that the
application completes all of the individual executions before a given deadline.
Each iteration starts with a specific resource reservation and, according
to the application progress at the end of each iteration, the developed
mechanism decides to modify the assigned vCPU share to meet the QoS
agreed. This modification is decided by the developed mechanism but is
performed by Chronos. There is no need to monitor the vCPU usage but
only the completion of the iterations.

• Applications whose progress cannot be monitored but have an estimation
for the CPU time. They are implemented using long-living Marathon
applications: The user submits a long-living application to Marathon with
the guarantee that a minimum CPU time has been allocated to that
application in a given time frame. The developed mechanism queries
the monitoring system periodically to compute the application progress.
The actuator system will vary the vCPU share assigned if needed, using
Marathon. The application progress must be preserved because, unlike the
first scenario, the modification of the assigned resources is performed during
the execution. This scenario assumes that other tasks have been scheduled
in the same resources with different QoS requirements and submission times,
so temporarily speeding up or decelerating other application may lead to a
lower overall QoS violation ratio. It should be noted that the mechanism is
designed for deciding to modify the assigned vCPU share of an application
based only on its progress (not considering the progress of all applications).
Similarly to the Chronos scenario, the framework modifies the allocation of
resources. In this case, the mechanism requires to monitor the CPU time to
each application in the distributed infrastructure.
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2.3 Related work

Elasticity is an active research area in Cloud Computing. There are many
works focused on horizontal elasticity and vertical elasticity. Horizontal elasticity
consists of providing additional resources (more VMs or Docker containers)
dynamically to meet an increase or decrease of service demand (e.g. growth of
requests in a Cloud service). This approach is appropriate when the problems can
be resolved in a parallel way. Vertical elasticity consists of modifying the assigned
resources of a Virtual Machine (VM) or a Docker container to meet an increase of
demand (e.g. a scientific application that needs more RAM memory for finalizing
its execution). The work of this paper is focused on vertical elasticity.

Most hypervisors and Cloud IaaS support vertical elasticity in VMs. OpenNebula
and OpenStack provide with resize functions to provide a stopped VM with a
higher or lower number of virtual CPUs (or vCPUs) and RAM. However, there is
no support in OpenNebula and OpenStack for dynamic resizing of VMs, as they
will require acting both at the level of the virtualisation hypervisor (varying the
assigned resources to the VM) and at the VM’s guest Operating System (updating
the resources available in the OS).

One approach for providing vertical elasticity of vCPU for VM’s can be leveraging
the CPU CAP (the maximum number of CPU resources a VM can use) and the
physical memory allocated by the virtualisation hypervisor. These techniques
do act only at the level of the virtualisation hypervisor. This way, the internal
configuration of the VM’s OS remains the same, but it is provided with a higher
share of physical resources, so the vCPU can run faster or slower, and have more
RAM mapped on physical RAM. [162] presents a mechanism named CloudScale,
to automate fine-grained elastic resource scaling for multi-tenant Cloud computing
infrastructures. In contrast, other approaches such as CPU hot-plugging requires
that both the guest Operating System supports dynamic plugging of CPUs.

From [51], vertical elasticity approaches can be categorised into
performance-based, capacity-based, and hybrid approaches. The virtualisation
hypervisor supports these approaches with two mechanisms: add or remove
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memory, also named hot memory plugging, and memory ballooning ([121], [51]).
However, in such cases, the allocation of resources is performed at the level of
the whole Virtual Machine, which will affect all the applications running on it.

Few works deal with vertical elasticity in Docker containers. [143] provides a
tool to perform vertical elasticity in Cloud infrastructures manually. [2] presents
Elasticdocker, which is a mechanism that modifies the allocated resources (CPU
time, vCPU cores and memory) of a Docker container according to the workload
demand. Elasticdocker monitors the CPU time, vCPU utilisation, number of
vCPUs and memory usage to take the elasticity decisions and implements these
decisions modifying the cgroups pseudo-files of the Docker container directly.

There is also some related work on mechanisms to address elasticity aspects
in Mesos frameworks. [4] provides a mechanism to scale in and out stateless
Marathon services (horizontal elasticity) but considering that services do not store
a persistent state so they can be restarted. This approach takes into account
both memory and vCPU. Regarding vertical elasticity, a Mesos executing and
monitoring framework called Makeflow [185] is proposed for a bag of tasks, which
adjusts the number of vCPUs of a series of independent jobs according to their
actual utilization.

To the best of our knowledge, there are currently no tools to provide vertical
elasticity for applications embedded inside Docker Containers executed by Mesos
frameworks (Marathon and Chronos). Thus, the work described in this paper
aims to design and implement a flexible mechanism for applications that vary the
vCPU share to a specific application in a highly loaded infrastructure to meet the
agreed QoS.

2.4 Underlying technologies

This work relies on a set of well-known technologies for containers, resource
orchestration, checkpointing, application submission and monitoring.
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2.4.1 Application Delivery

We use Docker containers to run applications. Formally, a container is a group
of processes executed in an isolated and controlled way on the host kernel on
an independent and virtualised filesystem. It provides a convenient mechanism
to embed software dependencies for application delivery. Containers hold the
whole execution context for an application. In this sense, CRIU [176] is a project
for Linux operating system that enables to freeze a running application as a
collection of files called checkpoint. Using checkpointing a user can freeze and
restore the application at the same execution point as it was when the checkpoint
was made, even in another machine. Currently, CRIU is included into many
Linux distributions and it is integrated into containers platforms like OpenVZ
[177], LXC [105] or Docker (with the experimental release).

2.4.2 Resource management

Apache Mesos is a middleware comprising a set of applications and services for
cluster management that provides efficient resource isolation and sharing across
distributed applications (frameworks) or roles (users). Mesos can run on top of
Virtual Machines, bare metal or Docker containers. Mesos are composed of two
main components: the master and a set of agents (or worker nodes).

The Mesos master manages agent daemons running on the worker nodes. Worker
nodes run Mesos agents that register with the master and offer their resources
(CPU, disk, ports, special hardware, etc.). Mesos provides two mechanisms
for reserving the resources discovered in the worker nodes for the execution
frameworks: static and dynamic reservation. Static reservation consists of
specifying the resources reserved for a certain role in the agent start-up. Dynamic
reservation enables roles and authorised frameworks to reserve or liberate
resources after agent start-up.

Execution frameworks, in turn, are composed of two main components: scheduler
and executor. The framework scheduler registers with the Mesos master for
receiving resource offers. When an offer is available, the framework scheduler
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Figure 2.1: Example of resource offer from Mesos agent and how it is assigned to a task of
a framework’s executor. Image source: [74].

sends the information of the number of resources that it will be assigned to
the framework’s tasks to the Mesos master. Then, the Mesos master sends the
framework’s tasks to the corresponding Mesos agent, which allocates appropriate
resources to the framework’s executor. The framework’s executors are in charge
of launching the framework’s tasks in the Mesos agent. The Figure 2.1 illustrates
this procedure.

There are some frameworks [8] for Mesos to execute long-running services (such as
Aurora or Marathon), Big Data processing (Spark, Hadoop, Storm, etc.), batch
scheduling (Chronos, Cook, Jenkins, etc.), data storage (Cassandra, Ceph, etc)
and machine learning (e.g. TFMesos).

Marathon is high-availability and fault-tolerant Mesos framework that acts like
a Platform as a Service (PaaS). This framework is designed for managing long
run services, i.e., services that must be permanently running. Marathon obtains
high availability thanks to periodic checks of the task health. Activating the
checkpointing feature in Marathon enables tasks to continue running during
Mesos-slave restarts and Marathon scheduler failovers. The users can interact
with Marathon using the REST protocol or graphical web interface.
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Chronos is a distributed and fault-tolerant Mesos framework used for job
orchestration. This framework is a scheduler that can manage tasks that need
to be triggered periodically. Besides, it supports the creation of dependent jobs
chains. This type of applications will run when a list of depending applications
have been completed before at least once. The users can interact with Chronos
using a REST API or a graphical web interface.

2.4.3 Monitoring

Monitoring is a crucial issue when managing elasticity. Monitoring should be
fine-grained to focus on the real consumption of resources of the specific task that
is monitored, and lightweight to add the minimum overhead and disturbance to
the system. For this purpose, OpenStack Monasca [141] has been selected, which
is an open-source, highly-scalable, multitenant and fault-tolerant monitoring tool
integrated with OpenStack [165].

In Monasca, a Metric defines a type of monitored resource. A metric is defined
by a name, often representing a hierarchy, and a set of dimensions. The unit
of monitoring is a measurement, which contains values for the dimensions and a
timestamp. When a Metric is stored in Monasca, the user can perform queries or
define Alarms, which are a composed by a boolean expression and a Notification
method. This expression compares the result obtained by evaluating aMetric with
a threshold. In turn, each expression can be formed by one or more expressions.

The data is stored in Monasca by two entities: the users and the Monasca Agent
[134]. The users can send Metrics to Monasca, once they are authenticated by
OpenStack KeyStone [139], using the command-line interface or a REST API
[140]. The Monasca Agent [134] is a Python tool that gathers Metrics using
available plug-ins [136]. There are default plugins for standard resources (such
as IO, network, CPU usage) and even for monitoring higher-level services and
applications (such as CEPH, MongoDB, Kafka, among others). In this work,
Monasca data is stored by the Monasca Agent, and the component Supervisor
(described in Section 2.5) of the mechanism developed.
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2.5 The proposed system architecture

As mentioned before, the two scenarios considered are a Chronos application with
multiple independent iterations and long-living Marathon applications. According
to the scenario, the architecture varies in some aspects, which will be explained
in this section. Figures 2.2 and 2.3 depict the design of the architecture for both
scenarios. Applications are specified using JavaScript Object Notation (JSON)
format.

The mechanism architecture is composed of three main components: Launcher,
Supervisor and Executor. These components are implemented in Python.

The Launcher is a command-line tool in charge of the submission of the
application. The user runs the Launcher specifying the application in JSON
format with the QoS information, the parameters to connect and configure the
Supervisor, the address of Supervisor and the credentials of the Mesos frameworks
(Chronos and Marathon). First, the Launcher provides each application with
a unique identifier (UUID). Then, the Launcher creates a new application
specification based on the user application specification. The changes (that
are detailed in Section 2.5.1) for creating the modified specification are done
according to the selected scenario. Afterwards, the Launcher submits via REST
the new application specification to the appropriate framework. Once submitted,
the Launcher sends through a REST call the relevant information (Section 2.5.1
details this information) to the Supervisor.

The Supervisor is a REST service that receives the information for monitoring
from the Launcher and the Docker containers (applications) that are running on
the working nodes. Besides, it computes the application performance state and
decides if scaling is needed. If the assigned vCPU share must be modified, the
Supervisor obtains the application specification from the framework scheduler
(Marathon or Chronos), changes it and re-submits it to the framework. Then,
the framework relaunches the application with the new vCPU share assignation
(it should be pointed out that, in Marathon case, the framework terminates the
current execution losing the execution progress).
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The Supervisor monitors the applications with two approaches: passive and
active. The passive approach is chosen for Chronos scenario and the active one
for Marathon scenario. In the first approach, when the Supervisor receives the
notification from the application that the execution is complete, it computes the
progress state and decides if it is necessary to scale. In the active approach,
when the Supervisor receives a notification from the Executor (this component is
described below), it starts monitoring the application state. This monitoring is
periodical and, for each instant of monitoring, the Supervisor decides if an update
in the assigned resources is needed. If it is required to update the assigned
resources, the Supervisor notifies it to the framework (Marathon or Chronos).
Once the execution of the application is completed (the Supervisor receives a
notification from the Executor), the Supervisor stops monitoring the application.
Meanwhile, the Supervisor sends metrics to Monasca so that progress can be
displayed.

All the applications are embedded in Docker containers. In the Chronos scenario,
the scaling decisions are implemented between iterations, so checkpointing is not
required to maintain the execution state. In the Marathon scenario, the scaling
decisions are implemented during the execution of the Docker container. The
container will be forced to restart by Marathon and checkpointing will preserve
the execution state. An additional component, the Executor, is required to start
and resume the execution of a container from a Checkpoint. This requirement
is a consequence of the fact that Marathon cannot initiate Docker containers
based on checkpoints, so it cannot handle the stop-resume process after an
adjustment. It should be noted that, when applications are not embedded in
a Docker container in Chronos or Marathon, these applications are embedded in
Mesos Native container, so the Executor runs inside a Mesos Native container.

First, the Executor performs several preprocessing tasks: registering initial data
on Monasca, checking the existence of a previous checkpoint to be resumed and
notifying that the application execution will be started through a REST call to the
Supervisor. Then, it starts or resumes the execution of the Docker container from
a checkpoint stored in an accessible directory for all worker nodes. Afterwards, the
Executor waits until the Docker container’s execution finishes. For this purpose,
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Figure 2.2: Design of the architecture for the Chronos scenario.

it runs a command (docker logs -f container_id) that ends when the Docker
container’s execution is finished.

When the Supervisor indicates to the Marathon scheduler that the assigned
vCPU share must be modified, the Marathon scheduler notifies that the current
execution will be terminated to the Marathon executor. If the Executor receives
a signal from the Marathon executor, it makes a checkpoint and stores it to a
directory shared by all Mesos agents. Once the execution of the Docker container
is finished, the Executor notifies it through a REST call to the Supervisor and
cleans the shared directory. As mentioned above, the Executor detects when the
Docker container ends its execution because the Executor is running a command
that ends when the Docker container is finished.

The architecture flow can be divided into four stages: application submitting and
execution, monitoring, decision-making, and adjustment.
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Figure 2.3: Design of the architecture for the Marathon scenario.

2.5.1 Application submission and execution

The Chronos scenario deals with several executions of an application, which must
be completed according to the given deadline. As described above, checkpointing
is not required for this scenario. Therefore, the Chronos executor directly manages
the Docker container. The modifications needed to create the new application
specification for this scenario focus only on the monitoring process. The Launcher
adds a REST request to the Supervisor in the original command field of the
application specification. This REST call is inserted in the command field after
the initial command’s value, making the Docker container to invoke a REST
request to Supervisor once the execution is completed. The request’s message is
a JSON object formed by the start and the end of the application execution, the
application name and UUID.

The Marathon scenario aims to guarantee that the mechanism allocates to
the application (at least) enough vCPU share for meeting the targeted QoS,
which is defined as the number of vCPU time that has to be allocated. As
described above, the application specification must be modified to manage the
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Docker container, i.e., to run the component Executor. The modifications in the
application specification consist of three parts. First, the Launcher obtains, from
the application specification, all the information required for launching the Docker
container. As the Executor will manage the Docker container, the Launcher
removes the Docker container definition of the application specification. With
this changes, the task launched by Marathon will assign the same resources
as the original application but embedded in a Mesos Native container instead
of a Docker container. Finally, the Launcher changes the command of the
original application specification by the command that runs the Executor with
the information required for notifying Supervisor, in order to launch the container
(obtained at the start of the modification of the application specification), and
the application UUID.

Once these changes are done, the Launcher submits the application through a
REST call the application to the appropriate framework (Chronos or Marathon).
Besides, for both scenarios, the Launcher sends through a REST call the relevant
information to the Supervisor. The relevant information comprises the application
name, the application UUID, the framework name, the duration of one application
execution, the targeted QoS, the maximum overprogress percentage, and, in
Chronos case, also the number of iterations is sent. The framework name can
be Chronos or Marathon.

It should be noted that the user only has to define two parameters about the
application in the specification of each application: the duration of one iteration
and the maximum overprogress percentage. The duration of one execution
parameter is the most complex to define by the user. In Chronos case, it is
an intermediate value between the estimated duration of the execution using one
vCPU and the maximum number of vCPUs in one worker node. It should be
pointed out that, if this value is closer to the estimated time using one vCPU,
the Supervisor increments the assigned resources more easily than in the opposite
case, because the prediction calculated by the Supervisor is more pessimistic. In
Marathon case, the duration parameter is the estimated amount of CPU time
(in seconds) that the system must guarantee to the application before meeting
the deadline. The definition of this amount of time can be estimated by the
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study of the CPU time consumed (user and system) by the Linux processes of
the application. These values are located in the cgroups files assigned to each
Linux process. Besides, it should be noted that the goal of the QoS mechanism
is to guarantee that enough vCPU time is assigned to a process to complete its
execution before meeting the deadline. This fits those applications whose progress
cannot be evaluated during its execution. The maximum overprogress percentage
is the percentage in which the user considers that the application’s performance
is higher enough and it can be resized. For example, if the maximum overprogress
percentage is 0.2, the user considers that the system will decrement the assigned
resources if the application’s performance is 20% higher than the required for
completing the execution on time.

2.5.2 Monitoring stage

Once that the application is launched in the Mesos agent by the framework
executor, the mechanism monitors it to collect its performance to update (if
necessary) its assigned resources. As described in Section 2.5, this work considers
two approaches for monitoring: passive and active.

The passive approach is used in the Chronos scenario. In this approach,
monitoring is performed by the Supervisor. The Supervisor receives a message
from the application (Docker container) each time an iteration finishes its
execution. This message is the result of the modification done by the Launcher
in the application specification (the Launcher puts a REST request in command
field after the original command) described in Section 2.5.1. When this message
arrives to the Supervisor, it starts the decision-making stage to meet the QoS
agreed. In addition, the Supervisor decrements the remaining iterations of the
application.

As the aim of the Marathon scenario is not to run a determined number of
iterations, monitoring is done during the execution of the application. For this
purpose, the active approach is used in the Marathon scenario. As mentioned
above, one of the first tasks of the Executor is to notify the Supervisor using a
REST request (the body of its message is formed by the application UUID and
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the timestamp of the start of the execution) that the application has been started.
Once the Supervisor receives this message, it starts to monitor periodically. As
the Supervisor does not have access to the Mesos agents, it uses the metrics
of the Docker container’s performance from Monasca. The Monasca Agent
collects these metrics for each container. It should be noted that a modified
Docker plug-in for the Monasca Agent (available in the GitHub repository of
this work [157]) is required to enable monitoring of restored containers from
checkpoints. Whenever the Supervisor obtains the collected data from Monasca,
it starts the decision-making stage to meet the QoS agreed. This procedure
is periodically repeated until the Executor notifies to the Supervisor that the
application execution is finished. The body of this notification message is formed
by the application UUID and the timestamp of the end of the execution.

2.5.3 Decision-making stage

Once the data collection in monitoring stage is completed, the next step consists
in determining the application performance state. As discussed in Section
2.2, there are three states for the application: underprogress, ontime and
overprogress. The Supervisor uses the Algorithm 1 to determine the state of
the application. This algorithm has the same input in both scenarios: the
application performance percentage (performance), the over-progress threshold
(thresholdoverprogress) and the under-progress threshold (thresholdunderprogress).
The thresholdunderprogress is set by default to 0.9, which means that an application
is considered in the under-progress state when its performance is a maximum
of 10% below the required performance. The thresholdoverprogress is the
obtained using the Equation 2.1 with the maximum over-progress percentage
(max_overprogress), which is a parameter sent by the Launcher to tune the
Supervisor’s configuration for each application launched. If max_overprogress

is set to 0.2 by the user, the thresholdoverprogress is 1.2, which means that an
application is considered in the over-progress state when its performance is at
least of 20% above the required performance.

thresholdoverprogress = 1.0 + max_overprogress (2.1)
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where max_overprogress is the maximum overprogress percentage sent by the
Launcher in 2.5.1.

Algorithm 1: Algorithm used by the Supervisor to obtain the application
state
Input : performance, thresholdoverprogress and thresholdunderprogress

Result: application_state
begin

if performance > thresholdoverprogress :
application_state = overprogress ; /* Decrease assigned

resources */

else if performance < thresholdunderprogress :
application_state = underprogress ; /* Increase assigned

resources */

else:
application_state = ontime ; /* Nothing to do */

end

The performance value is obtained differently according to the scenario. The
user specifies the QoS to the Launcher. As it is described in Section 2.5.1, the
Launcher specifies the target QoS in two formats: as a deadline in timestamp
format or as a time frame in seconds. This action is done for facilitating the
computation of the performance to the Supervisor. In the Chronos scenario, as
the mechanism guarantees that the application is executed within a determined
number of iterations, the QoS is a time limit to complete all the iterations.
For example, the QoS of an application establishes that ten iterations of this
application must be executed before 9 a.m. (QoS is 9 a.m. but in timestamp
format). In the Marathon scenario, as the mechanism guarantees a predefined
minimum CPU time to the application according to a given deadline, the QoS
is allocating enough vCPU share to finish the application during the time frame.
For example, QoS is 300 seconds for an application that needs 275 seconds of
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CPU time (the duration of the application) to be executed time before the next
five minutes.

In case of the Chronos scenario, the decision-making stage is done when each
iteration of the application finalizes its execution. Once an iteration completes
its execution, the Supervisor obtains the performance value using the Equation
2.2 for determining the application state using the Algorithm 1. This equation
requires the estimated finalization time of all iterations, tprediction, which is
obtained using Equation 2.3.

performance = tprediction

tqos
(2.2)

where tprediction is the estimated finalization time of all iterations in timestamp
format obtained using the Equation 2.3 and tqos is the QoS agreed in timestamp
format (obtained from the Launcher in Section 2.5.1).

tprediction = tcurrent + rem_iter ∗ (diteration + ddeployment) (2.3)

where tcurrent is the current time in timestamp format, diteration is the expected
duration of one iteration execution (sent by the Launcher), ddeployment is the upper
bound value of the deployment time of the new iteration in the infrastructure (sent
by the Launcher), and rem_iter is the number of remaining iterations.

In the Marathon scenario, the decision-making stage is periodically done (just
before the monitoring stage). Once the Supervisor ends each monitoring stage,
it immediately obtains the performance at determined time t of the execution
using the Equation 2.4. Once the performance is obtained, the Supervisor uses
the Algorithm 1 to determine the application state.

performance(t) = cputimecurrent(t)
cputimedesired(t) (2.4)

where cputimecurrent(t) is the real CPU time consumed at determined time
t for the application (the computing of this value is detailed below) and
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cputimedesired(t) the expected CPU time at determined time t for meeting the
QoS agreed.

As real progress information is not available, the Supervisor estimates it by
computing the CPU time consumed on a given execution time cputimecurrent(t).
It can be computed from the information obtained by two queries to
Monasca (container.cpu.user_time and container.cpu.system_time). These
values correspond to the total user and system clock ticks consumed by the
container in the working node where it is running. These values are transformed
into seconds, dividing them by the clock ticks per second constant of the system.

The cputimedesired(t) is the CPU time that the application should have consumed
at determined time t for meeting the QoS agreed. The Supervisor uses the
Equation 2.5 to calculate cputimedesired(t) in seconds. As it is described above,
in the Marathon scenario, the duration of the application execution (dapplication)
is the CPU time that the developed mechanism must allocate in the time frame
agreed (tqos). As tqos is the available time frame for allocating dapplication seconds,
it is necessary to calculate the percent of the time frame available (dqos) that the
application has consumed at a determined time t. This percentage is calculated
with tcurrent−tstart

tqos
. Using this percentage and the CPU time that the application

has to consume before to meet to QoS, dapplication, the CPU time that the
application should have consumed at determined time t can be calculated using
the Equation 2.5.

cputimedesired(t) =
{

( tcurrent−tstart

tqos
) ∗ dapplication if tcurrent ≤ tstart + tqos

dapplication otherwise
(2.5)

where tcurrent is the current time in timestamp format, tstart is the time when
the application starts its execution in timestamp format (sent by the Executor),
dapplication is the CPU time in seconds that the developed mechanism must
allocate in the time frame agreed (sent by the Launcher) and tqos in seconds
is the time frame for allocating dapplication seconds.
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At this point of the architecture’s flow, the Supervisor downloads the application
specification for obtaining the last value of the vCPU share that was assigned.
Then, it sends to Monasca, through a REST call, information about the
application performance and the vCPU share, in order to allow displaying it.

2.5.4 Adjustment

Once the Supervisor completes the decision-making stage, it determines,
according to the application state, if the application must be resized. If the
application state is overprogress or underprogress, the Supervisor varies vCPU
share assigned to the application. It should be remembered that the Supervisor
determines the scaling decision (increasing or decreasing the vCPU share),
but it is the framework (Chronos or Marathon) executor who implements it.
The mechanism implements the variation of the resources by changing and
re-submitting the application specification to the framework by means of a REST
API. In both scenarios, the framework halts and restarts the application, starting
it on a (not necessarily different) working node.

In Chronos case, the Supervisor modifies (increments or decrements the vCPU
share and ensures that the remaining iterations value of the application is
correct) the application specification, which was downloaded at the end of the
decision-making stage. The amount of vCPU share that it is incremented or
decremented is set by default at the startup of the Supervisor. In Marathon and
Chronos, if an application has assigned 1.0 vCPU, it means that the application
has a 100% of the vCPU share of one vCPU. Thus, if an application has 1.5
vCPUs in a node with 2.0 vCPUs, the application has reserved all of the vCPU
share of one vCPU and the 50% of the vCPU share of the other vCPU. After
several tests, it has been observed that increasing or decreasing the vCPU share
by 0.4 leads to the best results. Once the modification is done in the application
specification, the Supervisor sends it using a POST request to the REST API of
the Chronos scheduler. Therefore, the new iteration of the application will be
executed with the vCPU share. As the adjustment stage in Chronos scenario is
done between iterations, is not necessary to preserve the state of the execution.
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The adjustment stage in the Marathon scenario is more complex than in the
Chronos scenario because the mechanism resizes the assigned resources while
the application is running. As it is described above, the Executor is in charge
of managing the Docker container. According to the state of the application
obtained in Section 2.5.3, the Supervisor modifies vCPU share assigned of the
application specification downloaded at the end of the decision-making stage.
When the Supervisor re-submits the modified application specification with the
new value of the percentage of CPU time using a PUT request to the REST
API of the Marathon scheduler, the Marathon executor (on the Mesos agent)
sends a termination signal to the process that is running the application before
removing it. This process is the Executor, which is running embedded in a Mesos
container. The termination signal sent by the Marathon executor is captured by
the Executor, which creates a checkpoint of the running container and stores it in
an accessible location by all worker nodes (Mesos agents) of the infrastructures.
As soon as the application with the new vCPU share allocation is running, the
Executor restores the checkpoint created previously to resume the execution at
the exact point in which the termination signal was captured.

2.6 Results and discussion

In this work, a Mesos cluster has been set up. It comprises five Mesos agents,
version 1.2.0, a Marathon (version 1.4.3) and a Chronos (version 2.1.0) framework.
Monasca (version 1.6.1) is used for monitoring. Docker (version 17.05.0-ce)
running under the experimental mode is used as container engine and CRIU
(version 2.6) is used for checkpointing. All machines are virtual machines (VM)
deployed on top of an OpenNebula IaaS [137] with 2 CPUs and 4 GB of memory
RAM, and they are connected through a private network. Only the front-end
has a public IP and all the main services have been deployed there. Figure 2.4
shows an architecture diagram of the solution. It is important to outline that we
configure Mesos to enable running jobs to use all the free CPU cycles available in
the node, beyond the allocation of resources given by Mesos. Therefore, the CPU
allocation will only be limited if other applications are competing in the same
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node, considering the resource share distribution requested in the application
deployment. This feature is desirable in our system, as applications will make use
of idle CPU cycles from powered-on resources, over progressing and tentatively
releasing more resources in the future for other applications closer to the deadline.

Deployment has been done using the Infrastructure Manager [15] Orchestrator
and using the Elastic Cloud Computing Cluster (EC3) [119] client recipes from
project EUBra-BIGSEA [47]. This environment is easy to reproduce as the recipes
are publicly available in the Docker container eubrabigsea/ec3client available in
[148]. A Network File System (NFS) is used along all the nodes to share a
directory where the CRIU checkpoint images will be stored. No changes have been
applied to any of the above components, to facilitate migrating to new versions.
We rely on the REST API of Marathon [108], Chronos [24] and Monasca [140]
and develop the necessary services at the front end to deal with the application
registration and scaling decisions. The code is done in Python and it is publicly
available in GitHub [157].

Many applications may benefit from the proposed system, but it is especially
useful for applications with high CPU usage. For this reason, the benchmark
LINPACK [84] is selected for testing the system. As the worker nodes have 2
vCPUs, the tests use a parallel version of LINPACK benchmark (source code is
available in [86]). The parallel version was optimized using OpenMP [132]. Source
code of the parallel version and binary executable are available in a Docker image
[156].

We evaluated the overhead of the monitoring system by registering the CPU time
used (both user and system). The CPU time used of the monitoring probes
and services lied below 10% (mostly below 5%) of a single vCPU core. As
the monitoring service is needed to register other variables of the system, the
monitoring system cannot be entirely switched off. Therefore, this overhead is an
upper bound of the effect of introducing the mechanism proposed in the article.
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Figure 2.4: Infrastructure and software deployment.

2.6.1 Use case 1: Chronos

The Chronos use case involves the execution of six applications. All applications
are the LINPACK benchmark (previously mentioned). Each application will
require to execute a different number of iterations and different matrix input size.
Table 2.1 shows the information about these applications. In this table, each
row corresponds to a different application instance with different requirements in
memory and execution time. The column iteration denotes the number of Chronos
iterations executed per application. The columns Av. Time denote the average
execution time of a single iteration with 1 or 2 vCPUs respectively. The execution
time depends on the size of the problem, shown in the last column (Matrix dim.).
The use of VMs mainly causes the speedup of the multithreaded application to be
very reduced. In the Chronos scenario, the App duration column is the expected
duration of an iteration in seconds. In the Marathon scenario, the App duration
column is the CPU time in seconds that the mechanism must allocate in the
given time frame. It is important to point out that, instead of asking for specific
resource allocation, applications define a feasible time frame in which they will
require more than 1 vCPU (and less than 2 vCPUs, which is the per-node limit).
The Prediction columns depicts the expected total execution time. This value
is calculated using the maximum deployment time for each iteration (this value
is set to 45 seconds) and the expected duration of one iteration (the column
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Table 2.1: Information about QoS, the averaged execution time, the estimated duration
defined by the user, the matrix dimension parameter of the application and the results of
the experiment (time in seconds).

Name Iterations Av. Time Av. Time App Prediction Prediction Results Matrix
1 iter - 1 vCPU 1 iter 2 vCPUs Duration 1 vCPU 2 vCPUs Dim.

app1 4 480.4 362.2 400 2101.6 1628.8 -328 6000
app2 4 480.4 362.2 400 2101.6 1628.8 -340 6000
app3 13 162.75 113.2 130 2700.75 2056.6 36 4000
app4 11 162.75 113.2 130 2285.25 1740.2 -105 4000
app5 12 162.75 113.2 130 2493 1898.4 133 4000
app6 14 92.36 66.32 80 1923.04 1558.48 -290 3500

App duration). Finally, column Results is the difference between the QoS agreed
and the real execution time of each application in the experiment. The negative
values of the column Results show that the application ended before the target
QoS. Figure 2.5 depicts the difference in seconds between the prediction of the
execution finalization of all iterations and the QoS agreed (time limit to finalise
all iterations).

This use case considers a highly-loaded infrastructure. If there were always
resources for the application to run in the best conditions, vertical elasticity would
not be needed. In this use case, all the iterations from each application have a
similar completion time. Thus, it is reasonable conclude that the completion time
of all executions will grow linearly.

Therefore, it is possible to compute an estimation of the finalization time using the
averaged completion time of each execution (the column App Duration) described
in Table 2.1 and the deployment time, which it is set to 45 seconds in the
infrastructure used for the experiment. The deployment time is the maximum
time observed deploying applications in the Chronos framework. The same table
shows also these predictions and the results obtained in the test.

If the mechanism allocates 1 CPU for each application, the targeted QoS is not
achieved. Due to the fact that the infrastructure provides five node with 2 CPUs
each and there are six applications, at least one of them will not reach the QoS
agreed. Furthermore, according to the column Prediction, two applications (app3
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Figure 2.5: Difference between prediction of finalization time and the application deadline
for the use case 1.

and app5 ) cannot finishing on time. Therefore, the best possible result for the
test is to complete four out of six applications on time , which was successfully
achieved by the system.

Finally, we can state that no overhead is introduced due to the rescheduling of
the Docker containers in Chronos, as the variation of the assigned resources is
done between iterations. Chronos always reschedules each iteration as it were
a new job. Therefore, changing the reservation of resources does not make any
difference.

Figure 2.5 depicts the difference between prediction of finalization time and
the application time limit. The Y-axis and X-axis represent, respectively, the
difference in seconds and the time when the sample was collected in CEST time.
The Y-axis coloured ranges in represent the application state: red, green and
yellow for, respectively, underprogress, ontime and overprogress.
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The perfect case for Figure 2.5 would be that an application that begins far from
the zero value (in the Y axis) terminates in the zero. If an application begins
above the zero mark, means that is into underprogress state. If it is more than
the defined threshold below the zero mark, it is into overprogress state. Otherwise,
it is into ontime state. If an application concludes its execution at the zero mark
means that the application has finished its execution just at the moment before
breaking the targeted QoS. Thus, if an application has a downwards tendency, it
tendency means that it is improving its performance. This decreasing tendency
is common in applications that have been in underprogress state because the
mechanisms had increased their assigned resources. Using the same reasoning,
when an application has an increasing tendency means that the application is
running slower than what is needed to meet the targeted QoS.

From Figure 2.5 it can be seen that the red and green region applications have a
decreasing tendency. In case of the applications of the red region, this tendency is
consequence of the increase of assigned resources during the executions. In case of
the green region applications, the applications have assigned more resources than
needed for meeting the target QoS. In fact, the performance of the application
app1 is so high that the mechanism can reduce its assigned resources. It should
be pointed out that, the resizing of the application app1 causes the change of its
tendency.
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Figure 2.6: Shared CPU time and duration of completion time for each application.

Figure 2.6 shows two graphs for each application. The points in these graphs
are collected when an iteration is completed (X-axis) in CEST time. The graphs
on the right show the vCPU share assigned for the application and the graphs
on the left shows the duration of the execution. As it can be seen in the figure,
all applications started with only one vCPU assigned, and the vertical elasticity
system varied this resource allocation to correct the evolution of the execution.
This fact explains why most of the applications started to be underperforming and
progressively improved the performance to fulfil the expected deadline (see figure
2.5). From the results obtained, it seems that the estimation for applications 3, 4
and 5 was too optimistic, which led to a violation of the deadline in two of them.

As the applications are running in multiple iterations (the iterations of each
application are independent) there are actually 58 tasks competing for the
resources (although only 6 tasks could run concurrently). There is a guarantee
through Mesos that there are no over-subscription, so if an iteration requests
more resources than available it will be blocked until resources become available.
Take into account that this waiting time is added to the total execution time,
explaining the different runtime of equivalent iterations (same application and
resource assignment).

In Figure 2.6 it can be seen that, for some applications, there is not exists
a correlation between the assigned vCPU share and the application duration.
Apache Mesos is configured to limit the vCPU share of each containerised task
(embedded in a Mesos Native container or Docker container) only when it is
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competing with other applications (in the same node). Therefore, the real vCPU
share used on each container can be higher than the vCPU share assigned.

2.6.2 Use case 2: Marathon

This use case demonstrates the flexibility of the system to update the assignment
of resources to an executable task to guarantee that an agreed vCPU time is
consumed for a given time frame. This use case analyses:

• The capability of checkpointing a containerised job to resume the execution
in a different computing resource at the execution point it was stopped in
the origin computing resource. For this purpouse, we evaluate the overheads
of checkpointing using CRIU.

• The monitoring an application in a realistic execution environment, sharing
the resources with a background workload. For this purpose we will use
MONASCA, the Docker plugin and our progress estimation system, which
isolates the CPU time spent by a task in the distributed nodes, gathering
the accumulated CPU time spent across the different nodes the job has been
reallocated to.

• The evaluation of the progress concerning the CPU guarantee and the
capability of the supervisor system to update the resource reservation and
to fit the new request to the specific node in the infrastructure.

The rest of the section analyses these previous points.

Before starting the experiment, we want to analyse the overhead caused by the use
of CRIU. We performed a test consisting of the execution of a parallel Linpack job
within a Docker container. The job was checkpointed and immediately restarted
to evaluate the following variables:

• The total runtime overhead caused by checkpointing, stopping and
restarting a container compared to a run without checkpointing.
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Table 2.2: Execution of 5 instances of parallel Linpack with (2) and without (1)
checkpointing interruption. In case of (2), the checkpoint was stored in an NFS directory.
The checkpointing time is the time taken to create the checkpoint image, which takes place
in parallel to the execution (it should not be added or subtracted to the Linpack execution
time). Checkpointing in an NFS (3) and a local directory (4) have been measured. Time is
in minutes seconds.

Execution time Execution time Checkp. Checkp.
without checkp. (1) with one checkp. (2) time in NFS (3) time in local (4)

#1 06:29,0 06:45,0 00:30,4 0:01,3
#2 06:32,3 06:44,3 00:29,8 0:01,4
#3 06:33,5 06:33,7 00:46,2 0:01,7
#4 06:33,3 06:30,1 00:56,4 0:01,6
#5 06:25,1 06:33,8 00:56,8 0:01,4

Mean 06:30,7 0:06:37 0:00:44 0:01,5
Std. Dev. 00:03,6 0:00:07 0:00:13 0:00,16

• The time requested to create the checkpoint both in an NFS and a local
folder.

• The size of the checkpoint image for the experiment job. We repeated the
execution of the multithreaded Linpack test for a problem size of dimension
1000.

We repeated the experiment five times, executing one checkpointing and restart
per case at different application stages. Table 2.2 presents the results (comparing
to the execution without stopping, checkpointing and restarting).

This table shows that the checkpointing only increases (in average) the execution
time in 6 seconds. The checkpointing process only considers the layers and
memory that are modified in the Docker container, producing a small disk
footprint (between 6 and 11 MB). Despite of the fact that the checkpointing
in the NFS system takes between 30 and 60 seconds (on the order of 1 second
in the case of a local filesystem), the downtime of the application is minimal.
Starting the application with the checkpoint takes a negligible cost.

Once the overhead of checkpointing has been analysed, we execute the QoS
experiment for the Marathon use case. In this use case, the mechanism aims
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to guarantee the allocation of a minimum amount of CPU time to the application
during a given interval in a congested infrastructure. For this test, the duration
of one execution (400 seconds) is a value between the duration in seconds of the
application using two CPUs (360 seconds) and the given interval for completion
time corresponds with the averaged application duration using one CPU (480
seconds).

The test finalizes successfully because the execution is ended in 393 seconds. This
test is very interesting because the application enters into the three possible states.
This can be seen in Figure 2.7 where the Y-axis and X-axis represent, respectively,
the application performance and the time when the sample was collected (in
CEST). The Y-axis colored ranges denote the application status: red, green and
yellow for, respectively, underprogress, ontime and overprogress.

Computing the real overhead in this case is difficult to evaluate, as several
variables are affecting the performance. The previous experiment shown in table
2.2 shows an absolute overhead of 6 seconds per checkpoint. The experiment
managed to execute a Linpack test in 393 seconds. The average execution in an
isolated two-core working node is around 362 and 480 seconds in a single-core
working node, as shown in table 2.1. The test incurred in two checkpoints
and restarts, thus leading to three different execution intervals. Although the
framework only requested 1 vCPU, the application will try to use all the free
resources temporarily unless other jobs run in the system. This has been the
case for the middle interval (Figure 2.9 depicts the vCPU reservation). From
the execution results, we observe that the resources reserved during the first
and last intervals (68% of the time) were between 1 and 2 CPUs. During the
middle interval (32% of the total execution), the resources assigned efficiently
were between 0.6 and 1 CPU. The overhead of the developed mechanism will be
lower than 31 seconds (the difference between the observed execution time and the
average time with 2 cores), and higher than the 12 seconds required to perform
the 2 checkpoints and restarts.

Figure 2.8 depicts the comparison of CPU time consumed and the CPU time that
the system predicts that should be consumed at the moment of which the samples
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Figure 2.7: Performance value used for compute the application state of the application.

are collected in seconds. These values are used in Equation 2.4 to calculate the
performance of the application, whose values are shown in Figure 2.7.

Figure 2.9 shows the assigned vCPU share to the application when the samples
are collected. According to application state obtained from ratio progress, the
share of CPU time is modified.

The execution trace can be seen from the three graphs. The first sample
corresponds to the start of the application. The next sample is collected when the
application is in overprogress state, thus a decreasing of vCPU share is required.
As it can be seen in Figure 2.8, the two following samples of current time consumed
are indicating that the application performance is under the expected but, in case
of third sample, it is not low enough to trigger an action, thus the state is ontime.
For this reason, in Figure 2.9 the vCPU share is only incremented once. The
last sample is obtained when the execution is completed and, as it can be seen in
Figures 2.8 and 2.7, the application ends fulfilling the targeted quality of service
with 87 seconds of margin.
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Figure 2.8: Comparison between the current CPU time consumed by the container and
the CPU time that should be consumed (both in seconds).
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Figure 2.9: Assigned vCPU share for the application.
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2.7 Conclusions

Vertical elasticity is the only solution for dynamically speeding up sequential
or multicore applications which could not benefit from increasing the number
of instances. Vertical elasticity in cloud system usually implies rebooting the
services, as hypervisors can resize Virtual Machines only when they are powered
off. Memory ballooning and CPU CAP update can be done dynamically without
rebooting VMs, but they require privileged access to the hypervisors, which is
not the case in most IaaS. The use of container-based applications to dynamically
change the resource assignation is a transparent and low-impact technique that
can be done in user-space without compromising others executions.

The article demonstrates that the combination of checkpointing and Mesos
Frameworks can be used to keep the application progress and even to benefit
from the service redeployment capabilities of Marathon and Mesos to find the
rightmost resources. This technique has been successfully applied to both iterative
jobs (Chronos) and long-run jobs (Marathon) on a busy environment in which
workload is dynamic and competitive. The work aimed at ensuring the desired
QoS, although it can be used for other policies in the serverless paradigm, enabling
the execution and retake of functions.
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3.1 Introduction

The need for data analytics platforms has risen in the recent years, in parallel to
the increase in the computing and data storage requirements, in order to tackle
the challenges of data processing. Configuring and operating such platforms is
not straightforward and requires non-trivial system administration skills. Data
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analytics platforms involve multiple components and resources, which must be
appropriately linked and cross-configured. In addition, dealing with unpredictable
workloads is an operationally complex task that requires dynamically readjusting
the resources and reconfiguring them on the fly.

In this way, this article presents a set of tools and configuration recipes for
deploying a virtual self-managed cluster of computing nodes. The cluster can
scale horizontally (in and out), by adding and removing computing resources and
reconfiguring them according to the workload, and vertically (up and down), by
readjusting the assigned resources to individual jobs dynamically to satisfy a given
Quality of Service (QoS).

This paper introduces the problem, the software architecture, the automatic
deployment tools and recipes, the elasticity mechanism and the experiments,
discussing the results obtained. The reminder of the paper is structured as follows.
First, section 3.2 examines the requirements of a data analytics platform and
revises the state of the art related to the work presented in the paper. Then,
section 3.3 presents the proposed architecture of the platform used to perform
data analytics and the mechanisms involved in the elasticity management. Also,
a brief analysis of each component involved in the architecture is presented in
this section. Section 3.4 describes the most relevant metrics obtained from the
deployment of the self-managed virtual cluster and the execution of several test
cases to validate the horizontal and vertical elasticity. Section 3.5 discusses the
main developments and improvements presented in this work in comparison with
the state of the art. Finally, section 3.6 summarizes the main results, concludes
the paper and points to future work.

3.2 Requirements & State of the art

This section presents the requirements and reviews the state of the art of the two
main areas of research that constitute the basis of this work (cloud orchestration
and elastic clusters) as well as other cloud-based processing software architectures
that address the requirements identified.
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3.2.1 Requirements

In this work, we consider three types of use cases that address three main
problems in data analytics [46]. The first use case is data acquisition, which deals
with the periodic acquisition of external datasets and the integration with the
previously acquired data. The second use case is the development of descriptive
models, aiming at deriving additional information and knowledge from raw data.
Finally, the third use case concerns predictive models, which build up models for
estimating specific variables under new scenarios.

From this analysis, we identified the following technical requirements concerning
processing:

1. Running unrestricted batch jobs. This requirement refers to the execution of
batch jobs that do not have any QoS guarantee to meet, such as long-running
jobs that are not linked to a production service.

2. Running periodic batch jobs. Periodic workloads, such as daily jobs that
retrieve the updated data from a public data source, must be regularly
executed by the platform.

3. Running batch jobs with QoS restrictions. Tracking the job progress
is a complex task that is limited to jobs that use a specific execution
framework that supports it (e.g. Spark, Marathon, etc.). We consider in
this requirement the guarantee that a given amount of CPU time is assigned
to a running job in a given time frame.

4. Self-adapting elasticity. This requirement is strongly linked to requirement
3. The platform should provide enough resources to deal with new jobs and
to ensure that jobs with QoS are properly executed.

5. Running parallel Spark jobs. The platform must support the execution of
Spark jobs across several nodes in parallel, providing the right amount of
resources to each job.
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Considering these requirements, we focus on analyzing the available technologies
for cloud orchestration, elasticity and cloud services for data analytics.

3.2.2 Cloud Orchestration

Cloud orchestration is the process needed to automate the entire lifecycle
of a cloud application. It implies the deployment of all the computational
resources, the installation and configuration of the different component parts of
the application and their correct interconnection.

To describe cloud applications, the Topology and Orchestration Specification
for Cloud Applications (TOSCA) [127] open standard has been defined by the
OASIS consortium1. It defines the interoperable description of services and
applications to be run on the cloud, including their components, relationships,
dependencies, requirements, and capabilities; thereby enabling portability and
automated management across cloud providers regardless of the underlying
platform or infrastructure.

By using TOSCA to model the user’s complex application architectures it is
possible to obtain repeatable and deterministic deployments. Users can port
their virtual infrastructures among cloud providers obtaining the same expected
topology.

Several open source orchestration tools and services exist in the market, but most
of them come with the limitation of only supporting their own Cloud Management
Platforms (CMPs) because they are developed within those project ecosystems.
As an example we can cite some of them, such as OpenStack Heat [138] and
its YAML-based Domain Specific Language (DSL) called Heat Orchestration
Template (HOT) [135], native to OpenStack [165]. OpenNebula [137] also
provides its own JSON-based multi-tier Cloud application orchestration called
OneFlow [133]. Eucalyptus [168] supports orchestration via its implementation
of the Amazon Web Services (AWS) CloudFormation [5] web service.

1https://www.oasis-open.org/
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In case of other general orchestration tools, we can find Cloudify [29],
which provides TOSCA-based orchestration across different cloud providers.
Unfortunately, Cloudify is not currently able to deploy on OpenNebula sites,
one of the main CMPs used within current science clouds. Apache ARIA
[58] is a very recent project, not mature enough and also without support for
OpenNebula. Project CELAR [66] uses an old XML-based TOSCA version with
SlipStream [164] as the orchestration layer (this project has no activity in the last
years and SlipStream has the limitation of being open-core, thus not supporting
commercial providers in the open-source version). CompatibleOne [183] provided
orchestration capabilities based on the Open Cloud Computing Interface (OCCI).
However, the project has not been active in the last years. OpenTOSCA[166]
currently only supports OpenStack and the AWS EC2 [3] service.

Our previous work in the field is the Infrastructure Manager (IM) [15],
a cloud orchestration runtime that deploys complex and customized virtual
infrastructures on multiple back-ends. It supports the TOSCA Simple Profile
in YAML version of the standard. It is compatible with a wide variety of Cloud
back-ends, both on-premises CMP and public Cloud providers, thus making user
applications cloud agnostic. In addition, it features DevOps capabilities, based
on Ansible2 to enable the installation and configuration of all the user required
applications providing the user with a fully functional infrastructure.

3.2.3 Cloud-based Data analytics

In recent years, the Data Deluge [7] made it possible to enter an era in which
distributed computing is now the new normal, paving the way for Big Data,
a term coined for scenarios in which the amount of data (or the speed at
which data is generated) can no longer be processed in a feasible time in a
single computer. Google, being a large-scale data-oriented enterprise, faced the
challenges that involved the processing of huge datasets and, in 2008 unveiled the
MapReduce programming model [37], together with an associated implementation
for processing large datasets. This was the seed that made possible the Apache

2https://www.ansible.com/
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Hadoop project [59], an open-source software for reliable, scalable, distributed
computing that ended up forming the kernel (as is the case of the Hadoop
Distributed File System) of a huge ecosystem of tools aimed at solving Big
Data problems. This is the case of Hive [60], a data warehouse software for
querying and managing large datasets in a distributed storage or Pig [61], a
platform for analyzing large datasets via a high-level language for expressing data
analysis programs. Other platforms such as Spark [62], due to its speed related
to in-memory processing, are also fundamental for many Big Data scenarios.

In addition, the trend towards lightweight virtualization allowed container
technology to considerably evolve, exemplified by the recent advances in Linux
containers (LXC) [105] and Docker [147], and the HPC-specific Singularity [94].
LXC enables to run multiple isolated processes in one host without the overhead
caused by the hypervisor layer introduced by Virtual machines (VMs) in CPU,
memory and storage [52], as if it was a whole new machine. Docker is oriented
to applications, and the underlying idea is to run a single application that is
isolated and with a tailored environment. Moreover, the ecosystem of tools around
Docker has exploded in the last years, with contributions in many areas such as
Continuous Integration/Continuous Delivery (CI/CD), application packaging and
container orchestration tools. Indeed, there are many applications to manage the
execution of containers across multiple hosts (e.g. Kubernetes [171] or Deis [38])
but one of the most advanced tools for computationally challenging problems
is Apache Mesos [117], a software that abstracts CPU, memory, storage and
other compute resources away from machines to enable fault-tolerant distributed
systems to be built. Moreover, Mesos supports several frameworks suitable
for resource-intensive computing, as is the case of Chronos [25], for the job
fault-tolerant executions, and Marathon [109], for the execution of long-running
services. Finally, Singularity is an alternative to Docker that has been developed
in the HPC context. Its growing popularity is due to the ability to create
containers that run in the user space, and are integrated with the underlying
system by mapping the system user ids and important folders (such as home). In
order to foster its usage, it is able to get images in Docker format, among others.
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3.2.4 Elastic Clusters

Elasticity is the property of an infrastructure to dynamically adapt itself to the
current or estimated workload. This is manifested in cloud infrastructures at
several levels. In the lower level of on-premises clouds, elasticity represents the
ability to dynamically power on and off the nodes of the underlying hardware
in order to provision and relinquish physical computing hardware on which the
virtualized infrastructure will run. At the level of IaaS (Infrastructure as a
Service), these techniques should be integrated within the Cloud Management
Frameworks (CMF) so that requests of virtual infrastructure deployment trigger,
if necessary, the powering of physical nodes in order to accommodate the
virtual infrastructure that will be executed on top of the physical infrastructure.
Horizontal elasticity is the ability to dynamically deploy and terminate nodes
within a virtual infrastructure according to a set of elasticity rules (scale in/scale
out) and this is exemplified by services such as Auto-Scaling [4] for AWS or
Heat/AutoScaling for OpenStack, to name a few.

In the literature, we can find several research works regarding horizontal elasticity
in virtual clusters. In [110] and [111], the Nimbus toolkit is employed to
implement a tool to create elastic sites, so that physical clusters based on a Local
Resource Management System (LRMS) such as Torque are supplemented with
computational resources provisioned from AWS according to different policies.

A widely used tool is StarCluster [169] which enables the creation of virtual
clusters in AWS, that satisfy a user-defined list of required applications (Sun
Grid Engine, OpenMPI, NFS, etc.). The Virtual Machines (VMs) are based on
predefined Amazon Machine Images (AMI). In addition, a plugin named Elastic
Load Balancer [170] is available to add and terminate new cluster nodes taking
into account the number of jobs queued up at the LRMS. The main limitation of
this plugin is that it requires a permanent connection to the cloud infrastructure
from the StarCluster installation in the user’s computer in order to deploy and
terminate the VMs.
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In the last years, horizontal elasticity has also been introduced in well-known
Big Data frameworks. This is the case presented in [21], where the authors
propose a system called BBQ, which is able to provide elasticity to Hadoop
MapReduce. It works with AWS and needs a specific modified implementation of
Hadoop to properly work with BBQ, thus, limiting the ability to choose a desired
configuration for the users.

Our previous work in the field is Elastic Cloud Computing Cluster (EC3) [17], a
tool that creates elastic virtual clusters from computational resources provisioned
from IaaS clouds. These clusters scale out to a larger number of nodes on demand,
up to a maximum size specified by the user. Whenever idle resources are detected,
the clusters dynamically and automatically scale in, according to some simple
policies, in order to minimise the costs in the case of using a public cloud provider.

To dynamically manage the clusters, EC3 relies on the CLUster Energy Saving
(CLUES)[36] tool, an elasticity manager. CLUES has been already integrated
in public and on-premises cloud environments in order to deploy/destroy VMs
and it is able to automatically integrate the VMs in the LRMS according to the
workload of the cluster.

Horizontal elasticity is appropriate when the problems solved are inherently
parallel. In cases where the problems cannot benefit from an increase in the
amount of resources, another elasticity strategy must be considered. Vertical
elasticity is the ability to dynamically resize the resources of the nodes, such as
the number of CPUs, the share of CPU or memory, according to a set of elasticity
rules (scale up or scale down).

Most of the hypervisors and cloud IaaS support vertical elasticity. This is the
case of OpenNebula and OpenStack, which offer functions to resize the memory
or change the number of CPUs of stopped VMs. Nevertheless, dynamic resizing
of VMs is not supported because it is necessary to act both at the level of the
hypervisor and at the level of the VM’s operating system.

There are techniques for providing vertical elasticity leveraging the CPU CAP
(the maximum amount of CPU resources a VM can use) and the physical memory
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allocated by the hypervisor. This strategy only acts at the level of the hypervisor
and, thus, it has a better approach than the strategy described above. This way,
the internal configuration of the VM remains the same, but it is provided with a
higher share of physical resources, so the virtual CPU can run faster or slower,
and have more RAM mapped on physical RAM. For example, the work by Shen
et al. [162] describes an approach named CloudScale to automate fine-grained
elastic resource scaling for multi-tenant cloud computing infrastructures. Other
examples of these techniques are described in [45]. It should be pointed that, in
this example, the system needs access to the private network to connect with the
worker nodes and root privileges for leveraging the CPU CAP and the memory
RAM.

Vertical memory elasticity is interesting for some problems (e.g. when the
consumed memory grows over time). For this purpose, the virtualization
hypervisors provide two mechanisms: add or remove memory, also named hot
memory plugging, and memory ballooning ([121], [51]). In any case, the allocation
of resources with the aforementioned techniques affects all of the tasks running
in the VM.

Providing vertical elasticity to guarantee QoS restrictions requires a more
fine-grained approach than the techniques described above because it is necessary
to resize the assigned resource for a specific job (not all the running jobs of the
VM). For this purpose, it is needed to act at the level of processes of the operating
system of the VM.

Nowadays, Docker containers are becoming the new platform for packaging,
distribution and deployment of applications in Cloud Computing. Vertical
elasticity in Docker containers has few works in the literature compared those
available for VMs. The work by Al-Dhuraibi et al. [2] presents a mechanism that
modifies the allocated resources (CPU time, vCPU cores and memory) of a Docker
container according to the workload demand. This mechanism monitors the
CPU time, CPU utilization, vCPUs and memory utilization to take the elasticity
decisions and implements these decisions modifying the cgroups pseudofiles of the
Docker container directly.
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The job execution capabilities of the Mesos cluster are provided by their
frameworks and, commonly, these jobs are encapsulated in Docker containers
or Mesos native containers, which are processes of the VM. In case of Mesos, the
level of processes of the operating system of the VM can be seen as the jobs of
frameworks that support vertical elasticity (for example, Marathon).

Some techniques modify the assigned resources for Apache Mesos execution
frameworks. One example of this approach is [185], a Mesos executing and
monitoring framework called Makeflow is designed to adjust the number of vCPUs
of a series of independent jobs according to their actual performance. The work
[35] proposes a mechanism to provide both horizontal and vertical elasticity
according to the share of CPU and memory used. This technique considers that
the jobs do not store a persistent state and, thus, they can be easily restarted.

3.3 Architecture Design

The architecture of the infrastructure must enable the execution of a wide variety
of workloads, that range from parallel to high-throughput jobs, including short
jobs and big data workflows. This section provides information on the proposed
architecture for the deployment and the automatic management of both horizontal
and vertical elasticity at the level of the framework.

3.3.1 General Architecture

The proposed architecture is depicted in Figure 3.1. In the scenario, the
administrator user is in charge of deploying the virtual infrastructure by using the
EC3 client. EC3 interacts with the Infrastructure Manager (IM), requesting the
needed resources considering the characteristics of the cluster together with its
specific configuration. With these data, the IM interacts with the selected cloud
provider, requests the VMs that compose the cluster and configures them. Notice
that, by using IM, the cluster can be deployed on different on-premises and public
clouds. In particular, at least the following providers can be used: OpenNebula,
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Figure 3.1: Architecture of the required infrastructure to perform data analytics.

OpenStack, Amazon Web Services, Google Cloud Platform [68] and Microsoft
Azure [118].

The infrastructure has three main types of nodes:

• The front-end node, that is the master of the cluster. It contains the Mesos
master instance together with the Marathon and Chronos frameworks, and
also including Docker, Hadoop, Spark and NFS. The front-end also has an
instance of the IM that, together with CLUES, is in charge of managing the
elasticity of the cluster. This node is also in charge of offering an interface
for end users of the infrastructure.

• The Monasca [141] nodes, that include the Openstack Monasca server
instance, that also have Apache Kafka [54], Apache Storm [55], InfluxDB
[80] and Grafana [96]; three Monasca agents also act as Hadoop datanodes.
The architecture also includes a VM that provides the keystone [139] server
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needed by Monasca. It is not running inside the Monasca server to avoid
excessive resource consumption.

• The working nodes, that are the elastic part of the infrastructure. These
nodes are deployed on-demand when triggered by CLUES, that monitors
the Mesos and Marathon queues and reactively provides the needed Mesos
agents. These working nodes also contain Docker and CRIU [176], to have
the ability to run jobs inside containers with checkpointing capabilities. NFS
is employed to provide a shared file system across the nodes to manage the
checkpointed containers. A Spark daemon is also running on each working
node and all of them are monitored by Monasca.

Regarding networking, all the components of the infrastructure are interconnected
by a private network. Moreover, a dedicated overlay network, managed by Weave
[178], is created to interconnect the containers running on different hosts. The
front-end is also connected to this overlay network, so that applications running
in the containers can interact with the services using the overlay network. This
guarantees a bi-directional communication on a wide range of ports without
exposing the jobs to the Internet. The front-end of the cluster is the only
component that can be accessed via a public network, even though the whole
infrastructure has access to the Internet via NAT (Network Address Translation).

3.3.2 Vertical scaling

This section describes the architecture of the developed mechanism for providing
vertical elasticity to the batch jobs with QoS restriction. As it is described in
section 3.2, the developed mechanism aims to guarantee that the desired amount
of CPU time is assigned to a running job in the given time frame of the targeted
QoS. These jobs are embedded in Docker containers and are executed using the
Marathon framework of Mesos. The architecture is composed of three main
components: Launcher, Executor and Supervisor. This architecture is depicted
in Figure 3.2, where the green dashed lines represent the interactions between
components and the other services (Marathon, Monasca and Keystone).

60



3.3 Architecture Design

Vertical elasticity is the ability to resize the assigned resources of a job in order
to meet a targeted QoS. In this work, the mechanism varies the assigned share of
CPU to the job. Resizing jobs in Marathon requires updating the job specification
in the Marathon scheduler via its REST API. Once the job specification is
changed, Marathon removes the older version of the job without preserving
the execution state. Then, it runs the job with the new resource reservation.
Furthermore, it should be pointed out that the new job execution can run on
another working node.

Therefore, every time a job is resized its progress state is lost. To avoid this
problem, this work uses CRIU [176], which is a project for the Linux operating
system that allows to freeze a running application as a collection of files called
checkpoint. Checkpointing allows users to stop and resume the job at the same
execution point as it was when the checkpoint was made, even in another machine.
As Marathon cannot freeze and resume the Docker container using CRIU, it is
required that the developed mechanism manages the Docker container execution.

The Launcher is a command-line tool in charge of the submission of the job. Users
run the Launcher specifying the job in JSON format with the QoS information,
the parameters to connect and configure the Supervisor, and the credentials of
the Marathon scheduler. The QoS information is composed of the number of
seconds of CPU time that the mechanism should assign for completing the job,
the over-progress percentage, and the time frame (in seconds) for executing the
job. Users can configure, with the parameter called over-progress percentage, the
overprogress threshold used by the Supervisor in Algorithm 2 for computing the
job performance state.

First, the Launcher assigns to each job a unique identifier (UUID). If the
Launcher submits to Marathon the job specification provided by the user, then the
Marathon executor will manage the Docker container. As the mechanism must
manage the Docker container for using the checkpointing feature, an additional
component, the Executor, is required. To allow the Executor to manage the
Docker container, the Launcher creates a new job specification based on the
job specification provided by the user. Tasks in Mesos are isolated because
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they are executed embedded into Docker containers or Mesos native containers.
Thus, the Marathon executor runs the new job (the Executor) created by the
Launcher isolated by a Mesos native container. Once the new job specification
is generated, the Launcher submits it via a REST API call to the Marathon
scheduler. Finally, the Launcher sends a message with information about the job
to the Supervisor. This information is formed by the job name, the job UUID,
the maximum overprogress percentage, the number of seconds of CPU time that
the mechanism should allocate for completing the job, and the time frame for
executing the job in seconds.

The Executor performs several tasks. First, it prepares the worker node to enable
the Docker container monitoring using a modified Docker plug-in of the Monasca
Agent. Afterwards, it checks for the existence of a previous checkpoint of the job
in the directory shared by all of the worker nodes. If the Executor does not find
a checkpoint, then it starts the Docker container. Once the Docker container is
running, the Executor notifies via a REST API call to the Supervisor. Then, it
waits until the Docker execution is done or until capture the termination signal
sent by the Marathon executor when a scaling decision is implemented by the
Supervisor. If the Docker container ends its execution, the Executor cleans the
worker node and the shared directory, and notifies the end of the job execution
via a REST call to the Supervisor. If the Executor captures a termination signal,
then it means that the Docker container will be resized. Thus, the Executor
performs the checkpoint of the execution and stores it into the directory shared
by all the worker nodes. Once the Marathon executor runs the Executor with
the new allocated resources, the Executor resume the Docker container execution
from the stored checkpoint.

The Supervisor is a REST service in charge of the decision making. When the
Executor notifies the start of the job execution to the Supervisor, it begins to
periodically monitor the job to decide if scaling up or down is needed. There
are three possible job performance states: overprogress, underprogress or ontime.
If the job state is overprogress or underprogress, then the Supervisor scales,
respectively, down or up the assigned resources to the job. The Supervisor
implements the scaling decision re-submitting the job specification (which is
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available on the Marathon scheduler) with the new resource reservation by a
REST API call to the Marathon scheduler. The amount of share of CPU that
is incremented or decremented is set at the startup of the Supervisor. For this
work, empirical observation indicates that 0.4 offers good results. Once the new
resource assignation arrives to the Marathon scheduler, it notifies the Marathon
executor to send the termination signal to the old version of the job, which is
captured by the Executor to create and store the checkpoint.

The Supervisor uses the Algorithm 2 to determine the job performance state.
This algorithm has three input values: the performance, the overprogress, and
underprogress thresholds. The performance is obtained using the Equation
3.2. The Equation 3.2 uses the CPU time consumed cputimecurrent(t)
and the expected CPU time consumed (cputimedesired(t)) on a certain time
t (both expressed in seconds). The Supervisor estimates the CPU time
consumed at certain time t, cputimecurrent(t), requesting via the REST API
the gathered information about the Docker container to the Monasca. The
information obtained by the Supervisor from Monasca is composed of two
metrics (container.cpu.user_time and container.cpu.system_time). These
values correspond to the total user and system clock ticks consumed by the
container in the node where it is running. These values are transformed into
seconds, dividing them by the clock ticks per second constant of the system. The
addition between these values is the cputimecurrent(t). In addition, the Supervisor
also estimates the CPU time that the job would have to consume at certain time
t, cputimedesired(t), by means of Equation 3.1.

cputimedesired(t) =
{ (tcurrent−tstart)∗secondsjob

secondstimeframe
if tcurrent ≤ tstart + secondstimeframe

secondsjob otherwise
(3.1)

where tcurrent is the current time in timestamp format, tstart is the start time
of the execution in timestamp format (obtained when the Executors notifies the
start of the execution), secondsjob is the number of seconds of CPU time that the
mechanism should allocate for completing the job (sent by the Launcher), and
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Figure 3.2: Architecture for vertical scaling.

secondstimeframe is the available time interval to complete the execution of the
job (sent by the Launcher).

The underprogress threshold is 10% by default, so the value used in Algorithm 2 is
0.9. The overprogress threshold is customizable by the user because this value is
sent by the Launcher. The value used in Algorithm 2 is 1.0 plus the overprogress
threshold provided by the user to the Launcher.

performance(t) = cputimecurrent(t)
cputimedesired(t) (3.2)
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Algorithm 2: Algorithm used by the Supervisor to obtain the job state.

Input : performance, thresholdoverprogress and thresholdunderprogress

Result: state
begin

if performance > thresholdoverprogress :
state = overprogress ; /* Decrease resource reservation */

else if performance < thresholdunderprogress :
state = underprogress ; /* Increase resource reservation */

else:
state = ontime ; /* Nothing to do */

end

3.3.3 Description of the components

As shown in the figures above, the proposed architecture is composed of several
components. Most of them are well-known software packages and frameworks
while others are software tools developed by our research group.

All these components require different configuration files and installation steps,
which are customized for the different underlying operating systems supported by
the VMs. Therefore, this involves a large number of configuration files. Therefore,
to ease the deployment and installation process, Ansible roles and playbooks were
used for the sake of maintainability and high reusability. These are configuration
files that describe the process of installation, configuration and integration with
the selected architecture. Furthermore, to keep the component recipes as generic
as possible (to further ease maintenance and reuse), such recipes were coded
according to the following principles:

• The production Ansible roles should be stored in public repositories such as
GitHub (all the recipes should be open-source and available to the public).

• The variables used inside the Ansible roles should be defined in a way
that they can be set up at deployment time. This way, updates can
be automatically applied to the roles, so users do not keep outdated
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configurations on their systems (except those that could have been explicitly
modified by the user).

• The Ansible roles should be added to Ansible Galaxy3 a public repository4

of roles so that others can reuse them, thus greatly simplifying the roles
definition and composition.

• In addition to the Ansible roles, there must exist high-level installation
recipes (also stored in GitHub) for the Infrastructure Manager 5 and EC36

that contain all the configuration steps for deploying complete virtual
infrastructures.

• The recipes should support different platforms (currently Ubuntu 14,
Ubuntu 16 and CentOS 7).

Table 3.1 includes the components that were identified and configured using
Ansible roles for the creation of the virtual infrastructure previously described.

The EC3 tool is in charge of deploying the fully configured cluster by using these
Ansible recipes. Thus, it provides the required infrastructure with the necessary
services to deploy applications by using only a command, that automatically
configures and contextualizes all the VMs that compose the cluster infrastructure.
As stated above, all the sources of the recipes used to configure the cluster are
stored in GitHub7. Moreover, for the sake of reproducibility of the results of this
contribution, a Docker container image with the EC3 client installed has been
released8.

3https://galaxy.ansible.com/
4https://galaxy.ansible.com/grycap
5https://github.com/grycap/im
6https://github.com/grycap/ec3
7https://github.com/grycap
8https://hub.docker.com/r/eubrabigsea/ec3client/
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Node Type Component Version Requirements Comments

Front/wn Apache Mesos 1.4.1 All Main framework,
including Mesos-DNS.

Front Marathon 1.4.3 1,3,4 For deploying long-term and
high-availability services on Mesos.

Front Chronos 2.1.0 1,2,4 Cron-like job scheduler for Mesos.

Front/wn Spark 1.6.3 1,5
Execution of Spark code through
spark-submit from the Front/End

or external resources.
Datanode Hadoop 2.6 All HDFS storage backend.

Front/Monasca Zookeeper 3.4.8-1 All High availability of Mesos
and Marathon.

Front/Monasca/wn Docker 17.05.0-ce 1-4
Containerization of applications
launched through Marathon

and Chronos.

Front Docker registry 2 1-4
Mirroring and caching the Docker
images to speed-up distribution

along the cluster.
Front CLUES 2.1.0b 4 Manages horizontal elasticity.

Front Infrastructure Manager 1.6.6 4 Manages the configuration of the
internal nodes.

Front/wn CRIU 2.6 4 Performs container checkpointing

Monasca/wn OpenStack Monasca 1.6.1 3,4
Monitoring system, including

the Docker plugin.
Monasca agent installed in WN.

Keystone OpenStack Keystone 13.0.0 3,4

A service that provides API
client authentication, service
discovery, and distributed
multi-tenant authorization.

Monasca
Apache Kafka +

Storm + Grafana +
InfluxDB

2.12,
1.0.2, 4.0.1
& 0.9.5

3,4 Components for the Monasca Server

Front/wn Weave 2.1.3 All Provides the overlay network to
the container infrastructure.

Front/wn Vertical Elasticity 1.0 3,4 Proactive vertical elasticity mechanism
for Marathon using Monasca

Table 3.1: Components of the Mesos cluster architecture.
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3.4 Results

The experiments performed in this paper address three main aspects: i) the
efficiency of the deployment of a medium-sized virtual infrastructure; ii) the
overhead of the horizontal elasticity compared to the execution with resources
deployed upfront; and iii) the ability of the vertical elasticity to reconfigure the
reservation of resources for a running job to meet a specific QoS.

For the first case, this work measures the deployment time of a cluster with 50
nodes and 100 processing cores. This time includes the deployment of the VMs,
the download and installation of the software dependencies, and the configuration
of all the services. This process is entirely automatic.

The second case covers the execution of a set of 20 parallel Spark jobs at different
time intervals. Initially, there are no processing resources except the front-end
node of the cluster and the system automatically starts and reconfigures them as
required. The execution intervals have been defined in a way that the job queue
is flushed completely, triggering the suspending of idle nodes.

The third case deals with the Quality of Service guarantees for a Marathon
job executed in the cluster. The cluster is busy with other jobs competing
for the resources, so we aim to assign the required CPU time to meet the
targeted QoS. The developed tool9 dynamically readjusts the share of CPU to
reduce the assigned resources to a job if it is over progressing and increases the
assigned resources if the job progress is lower than expected. We measure the job
performance as the amount of CPU time consumed by a job according the given
time frame of the QoS agreed.

For the three experiments, the physical infrastructure used is composed by two
type of nodes. The first type of node has two Intel(R) Xeon(R) CPU E5-2683 v3
2.00GHz (14 cores) processors, 64 GB of memory RAM, 240 GB of Solid State
Disk, two 1 GB Ethernet network adapter and one 10 GB Ethernet network
adapter. The second type of node has two Intel(R) Xeon(R) CPU E5-2660 v4

9https://github.com/eubr-bigsea/vertical_elasticity
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2.00GHz (14 cores) processors, 128 GB of memory RAM, 250 GB of Solid State
Disk, two 1 GB Ethernet network adapter and one 10 GB Ethernet network
adapter. The Storage Area Network is a Dell Equallogic PS4210 with 16 TB
availables. This hardware is managed by the OpenNebula Cloud Management
Framework and the KVM hypervisor.

3.4.1 Deployment metrics

The deployment of the data analytics cluster is done automatically through EC3.
The following metrics have been evaluated to show the performance and the
impact of the usage of the elasticity on the user experience when interacting with
the virtual cluster:

• Deployment of the static components (not managed by CLUES): Mesos
master (front-end of the cluster, with 4 CPUs and 16Gb of RAM), Monasca
master (with 2 CPUs and 8Gb of memory RAM) and 3 HDFS datanodes
(with 2 CPUs and 2Gb of memory RAM). This set of nodes are deployed
by the EC3 client in the virtual cluster creation step.

• Deployment of the first working node (with 1 CPU and 2Gb of RAM),
including the creation of the golden image that will be used to speed up the
deployment of the rest of the elastic nodes. This feature consists on creating
a VMI from the first working node correctly configured and integrated in
the system. Thus, this VMI is used for the next working nodes deployed in
the system, accelerating their configuration.

• Deployment of a second working node using the created golden image to
measure the impact of the usage of golden images in subsequent nodes.

• Concurrent deployment of multiple concurrent working nodes (10, 20, 35
and 50 nodes). It will show how the system will react when a large set of
nodes are requested.
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Figure 3.3: Deployment time of the different node types.

These measures give information about the overheads on the deployment of the
full operational cluster and their reconfiguration, which serves as basis for defining
elasticity mechanisms and suitable applications.

The first step is the deployment of the front-end and the set of static nodes
(front + monasca node + 3 datanodes). The average deployment time for the
complete initial infrastructure is 23min 26sec (1406 s). Figure 3.3 shows the
comparative deployment time of the initial infrastructure and the working nodes.
The deployment of a node without golden image plus the creation of the golden
image when the node has been configured takes an average time of 10min 31sec.
(631 s) whereas the deployment of nodes with golden images takes an average
time of 6min 38 sec. (383 s). Clearly, nodes deployed from a Virtual Machine
Golden Image, created on the fly, show a smaller configuration time.

Finally, for testing the scalability of the system, we present the deployment times
for a concurrent deployment of multiple nodes (10, 20, 35 and 50 nodes). Table 3.2
depicts the results of each test, where golden images have been used to accelerate
the deployments. The configuration system has been improved in the frame of the
EUBra-BIGSEA10 project to deal with the bottlenecks that appear when a large
number of nodes are simultaneously configured. In the original approach a single

10http://www.eubra-bigsea.eu/
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Number of nodes 10 20 35 50
Average time per

node (sec.)
513.647 560.349 666.997 900.841

Total time (sec.) 520.472 592.602 751.997 1052.883

Table 3.2: Deployment time for different quantities of nodes (deployed simultaneously).

VM is selected as the “master”. Then, Ansible is installed in this VM, which
configures all the VMs in parallel. In this new approach (suitable for a large
number of simultaneous VM deployments), Ansible is installed in all the VMs
and each one configures itself in parallel. This approach increases the latency
but reaches higher scalability, being successfully demonstrated in more than 100
machines.

Figure 3.4 shows the latency time (in seconds) from the request of the deployment
of 50 simultaneous nodes in the cluster to the actual provisioning of the resources.
The graph shows the number of machines deployed at each timestep. The figure
shows that most of the nodes (42) are fully configured in less than 980 seconds.
The rest of the nodes take a bit more time (72 seconds). It is only 7.3% more
than the first groups of nodes. This delay is produced by different bottlenecks of
the cloud platform (mainly network) when a large number of nodes are configured
in parallel.

3.4.2 Horizontal Elasticity

The second case consisted of submitting 20 parallel data analytics jobs
(implemented in Spark) to an infrastructure that initially had only two nodes
started (2 vCPUs and 4 GB RAM each). These jobs were submitted at different
time frames as shown in Table 3.3. The infrastructure had to detect the
registration of a Spark framework, realize that there are not enough resources
and deploy an additional node when a job remains queued longer than a given
threshold (5 seconds in the experiment), with a cooling time (waiting time to
perform a new action) of 5 minutes. Jobs were prepared to run for approximately
11 minutes and were able to use up to 4 cores each and request 0.5GB of memory
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Figure 3.4: Deployment time for 50 simultaneous nodes.

Job Submit Job Submit Job Submit Job Submit
1 0:00:30 6 0:35:54 11 0:55:14 16 1:31:14
2 0:01:15 7 0:52:34 12 1:28:34 17 1:31:54
3 0:01:53 8 0:53:14 13 1:29:14 18 2:05:14
4 0:18:34 9 0:53:54 14 1:29:54 19 2:21:54
5 0:19:14 10 0:54:34 15 1:30:34 20 2:38:34

Table 3.3: Scheduling of the jobs to be executed.

RAM. It is important to state that even if the job requests for 4 cores and Mesos
offers it 2 cores, the job would anyway start. If there are enough resources (4 free
cores), the job will take them all.

During the execution of the jobs, we measured the timestamp at the submission,
execution start and execution end. We also registered all the changes in the
status of the nodes, which could be OFF (not deployed), RESTART (being
restarted), IDLE (powered-on and without jobs allocated), USED (executing jobs)
or SUSPEND (being suspended). Figure 3.5 shows the results of the evolution of
jobs and Figure 3.6 shows the status of the nodes along time.
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Figure 3.5 shows the number of jobs (vertical axis) along time (horizontal axis) for
five metrics. Submitted, Started and Ended lines denote the accumulated number
of jobs that have been submitted, have actually started and have been completed
over time. The lines Queued and Running denote the number of jobs that are
queued or concurrently running at a given time. The execution profile has been
defined to ensure that there are peaks of workload that require starting up new
VMs and idle periods long enough to trigger the suspension mode for the VMs.
This is used to analyze the behaviour system when adjusting the infrastructure.
More details are provided in Figure 3.6.

As depicted in Figure 3.5, the length of the queue does not grow above one job.
The delay between the submission and the start of a job (the difference in the
horizontal axis between submitted and started lines) is negligible. It is important
to remark that this overhead relates mainly to the time required for the VMs to
change from suspended to running, as the VMs are suspended on disk rather than
destroyed. It should be pointed out that the execution time for the jobs varies
according to the resources available at the executing time.

Figure 3.6 shows how the working nodes are started and suspended on demand.
The figure shows the number of working nodes (vertical axis) that are in each
one of the five possible status (described at the beginning of this section) along
time (horizontal axis). It is important to outline that transitions are very short,
and the submission pattern of the execution enables emptying the queues and
triggering the suspension of idle resources. Moreover, the default amount idle
time to switch off a node in CLUES was used (20 minutes) but this value can be
modified by user depending on the requirements.

3.4.3 Vertical elasticity

Running batch jobs that need to deal with QoS restrictions on infrastructures
with a significant amount of free resources is not a complex task. For this type
of infrastructures, it is very easy to accomplish the QoS restrictions because the
scheduler only has to assign the maximum resources to all running applications.
Thus, vertical elasticity makes sense in congested infrastructures. The QoS
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Figure 3.5: Jobs queued vs jobs running in the platform during the experiment and
accumulated list of jobs (suspend mode).

0

2

4

6

8

10

0:0
0:0
0

0:1
0:0
4

0:2
0:0
9

0:3
0:1
4

0:4
0:1
8

0:5
0:2
3

1:0
0:2
7

1:1
0:3
2

1:2
0:3
6

1:3
0:4
1

1:4
0:5
6

1:5
1:0
1

2:0
1:0
5

2:1
1:1
0

2:2
2:4
1

2:3
2:4
5

2:4
2:5
0

2:5
2:5
4

3:0
2:5
9

3:1
3:5
6

3:2
4:0
1

3:3
4:0
6

IDLE USED RESTART SUSPEND OFF

Figure 3.6: Evolution of the state of the cluster nodes, started and suspended on demand.
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Figure 3.7: Performance during the experiment.

restrictions for this type of jobs are defined as the allocation of a minimum CPU
time to the job during a given time interval.

The job used for checking the vertical elasticity capabilities of the implemented
architecture takes 480 seconds (one CPU) and 360 seconds (two CPUs) to be
completed. The number of the seconds (CPU time) that the mechanism must
allocate is set to 400 seconds, which is a value between the completion time when
using one and two CPUs. If a node has more amount of CPU share available
than the job needs, the job uses all amount of CPU share. The QoS restriction
on this test is set to the same completion time than when the job is executed
using one CPU. Indeed, the developed mechanism for providing vertical elasticity
is designed to make all jobs with QoS restrictions of a congested infrastructure
to accomplish their agreed QoS. The maximum overprogress threshold is 10%,
which means the job enters to overprogress state when its performance is 10%
better than the required for meeting the targeted QoS.

The test has special interest because the job enters into the three possible states
(described in section 3.3.2) during the execution. In addition, the experiment
ends in 393 seconds, demonstrating that the system can scale up and down to
guarantee a minimum CPU time. The execution trace can be observed in Figures
3.7 and 3.8.
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Figure 3.7 shows the performance value (obtained using 3.2) and the performance
state (obtained using 2) along the experimentation. The Y-axis and X-axis of the
Figure 3.7 represent, respectively, the performance and the time when the sample
was collected. The Y-axis coloured ranges denote the performance state: red,
green and yellow represent, respectively, underprogress, ontime and overprogress.

Figure 3.8 shows a comparison between the consumed and the desired CPU time
consumed, and the assigned share of CPU at each sample. The X-axis represent
the time when the sample was collected. The desired CPU time is the amount
of time that the developed mechanism estimates that should be consumed at the
moment of which the samples are collected. The left Y-axis represents the amount
of CPU time consumed in seconds. The right Y-axis represents the share of CPU
assigned to the job during the experiment. If the working node where Marathon
executes the job has 1 CPU and the user assigns 1.0 CPU share to the job, it
means that the job has the 100% of the CPU share of one CPU. Thus, if the
working node has 3 CPU and the CPU share assigned to the job is 2.5 CPUs,
the job has reserved all of the CPU share of two CPUs and the 50% of the CPU
share of the remaining CPU.

It should be noted that instants when the samples were collected are the same
at both figures. The first sample corresponds to the start of the job. When
the second sample is collected, it can be observed in Figure 3.7 that the job
performance state is overprogress. In Figure 3.8 it can be observed at the second
sample that the difference between the current time of CPU consumed and the
desired time of CPU consumed is big enough to make the performance above the
overprogress threshold. Thus, the Supervisor decrements the assigned share of
CPU, which can be seen in the dashed line at the same figure. Then, the Executor
performs a checkpoint as soon as it realises that the Supervisor decreased the job
assigned resources.

As it can be seen in Figure 3.8, the current CPU time consumed is lower than the
desired CPU time consumed in the next two samples but, the job’s states are not
equal. In case of the third sample, the performance state is underprogress (the
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Figure 3.8: The dashed line represents the CPU share assignation during the experiment.
The rest of the figure is a comparison between the CPU time consumed and the CPU time
(desired) that the job is expected to consume at the time when the sample was collected.

performance value is 69%) so the Supervisor will do an increment of the assigned
share CPU and the Executor will create a checkpoint.

Regarding the job performance at the fourth sample, the CPU time consumed
is lower than the required CPU time calculated using Eq. 3.1. Due to the
underprogress threshold is set to 90% and the performance value (calculated using
the equation 3.2) is 93%, the performance state is ontime. For this reason, the
job does not require to be resized.

The last sample corresponds with the end of the execution. Figures 3.7 and 3.8
show that the application terminates fulfilling the quality of service agreed with
87 seconds of margin.

We measured that the time from the start of the checkpointing to when it
is stored in the shared directory (NFS) ranges from 30 to 60 seconds. After
several tests, we estimate that executing one checkpointing and restart of the
job execution increases the execution time in 6 seconds. Thus, even though the
time of checkpointing in NFS is considerable, the downtime of the job execution
is negligible. This is because the container continues to be executed while the
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checkpoint is created, similarly to virtual machine live migration techniques.
Indeed, only when the checkpoint is completed the container is stopped and, then,
it is immediately rescheduled in a new machine. Therefore, the time required for
loading the checkpoint and starting the process is negligible.

It is complicated to estimate the overhead caused by the checkpoint mechanism
in the experiment. The duration of the experiment was 393 seconds. The average
duration of the job execution with 1 and 2 CPU takes, respectively, 480 and 360
seconds. In this experiment, the mechanism performed two checkpoints, so the
overhead of checkpointing is 12 seconds. Thus, the overhead of the mechanism
will be lower than 33 seconds and higher than 12 seconds.

3.5 Discussion

This section compares the proposed tools and solution exposed in this work
with the already available solutions that can be found in the literature regarding
the execution of time critical applications. Concerning cloud orchestration, our
analysis of the state of the art revealed that there is no general orchestration
tool that enables the deployment of cloud applications in several on-premises and
public IaaS deployments using the standard TOSCA specification. Most of them
only provide access to a very limited list of cloud providers. Our proposed cloud
orchestration solution, the IM tool, supports the TOSCA standard and a big
number of public and federated Cloud providers and on-premises CMPs, making
the application cloud agnostic. The IM automates the Virtual Machine Image
(VMI) selection, deployment, configuration, software installation, monitoring and
update of virtual infrastructures.

The deployment of Big Data frameworks such as Mesos or Kubernetes requires
an underlying distributed computing and storage infrastructure, that can be
provisioned from on-premises clouds, public clouds or even from bare metal.
However, there are several limitations that hinder the adoption of these
frameworks, especially by Data Scientists that may be well versed in using the
frameworks themselves but not specifically on efficiently deploying and scaling
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them. The framework presented in this paper in combination with the EC3 tool,
considerably simplifies the deployment of these Big Data frameworks. EC3 allows
to automatically deploy these Big Data frameworks with a single command, and
without the need of user interaction.

Most of the already available solutions to automatically deploy clusters provide
a virtual cluster with a fixed number of nodes, other solutions are oriented to a
specific LRMS or they are tied to Amazon EC2 and, therefore, cannot provision
nodes from other public Cloud providers, or even on-premises Cloud deployments
(e.g. based on OpenNebula, OpenStack, etc.). The vertical elasticity mechanism
presented in this work in combination with EC3 and the IM tools allows the
user to deploy virtual clusters offering at the same time both horizontal and
vertical auto-scaling capabilities. In addition, the contribution of the presented
mechanism to the vertical elasticity capabilities (i.e. executing data analytics jobs
embedded in Docker containers using Marathon involving common applications
with QoS restrictions) was not found in the literature.

3.6 Conclusions

This paper has presented a software architecture and a set of open-source tools
and configuration recipes for deploying a virtual self-managed cluster which offers
horizontal (in and out) and vertical (up and down) scalability. Moreover a series
of plugins have been developed to offer quality of service capabilities inside the
cluster.

Regarding the technical requirements identified at the beginning of the paper,
the test cases defined and the results exposed, it can be concluded that all
the requirements proposed were fulfilled by the architecture presented. Running
unrestricted batch jobs is one of the basic functionalities offered by the standard
cluster configuration. In all the test cases it is demonstrated how the cluster
admits different types of jobs and executes them without issues.

For running periodic batch jobs, the cluster must be prepared to accept a set of
jobs defined to be executed in an specific time. In section 3.4.2 a batch of jobs

79



Chapter 3. A self-managed Mesos cluster for data analytics with QoS guarantees

are programmed to be launched and the cluster executes them by adjusting the
resources available. This demonstrates that the defined architecture is not only
able to process this kind of scheduled jobs, it is also able to self adapt horizontally
depending on the workload. Moreover, the jobs presented in section 3.4.2 are a
set of Spark jobs that were executed in parallel thus complying with the last
requirement presented which required to execute Spark jobs in parallel.

In addition, the QoS restrictions and the vertical elasticity were tested in section
3.4.3. The execution of batch jobs with QoS restrictions by adjusting the share
of CPU assigned is done thanks to a set of plugins developed and deployed
automatically in combination with the frameworks available in the architecture
presented.

Moreover, and as an extra step towards reusability and community usage, all the
code developed for this project is publicly available and any user with access to
one of the supported cloud providers (which include the most popular ones) can
deploy an elastic cluster and tweak the configuration to fit the needs.

Future work includes testing the cluster with bigger setups, such as several
hundred nodes and thousands of jobs during long periods of time but
unfortunately and due to all the test being done in real infrastructures with
shared resources and real users, the test cases have to be limited.
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Springer International Publishing, 2019, pp. 130–144. isbn: 978-3-030-22744-9

4.1 Introduction

Traditionally, medical images have been analysed qualitatively. This type of
analysis relies on the experience and knowledge of specialised radiologists in charge
of carrying out the report. This entails a high temporal and economic cost. The
rise of computer image analysis techniques and the improvement of computer
systems lead to the advent of quantitative analysis. Contrary to qualitative
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analysis, the quantitative analysis aims to measure different characteristics of a
medical image (for example, the size, texture, or function of a tissue or organ and
the evolution of these features in time) to provide radiologists and physicians with
additional, objective information as a diagnostic aid. In turn, the quantitative
analysis requires image acquisitions with the highest possible quality to ensure
the accuracy of the measurements.

An imaging biomarker is a characteristic extracted from medical images,
regardless of the acquisition modality. These characteristics must be measured
objectively and should depict changes caused by pathologies, biological processes
or surgical interventions [49] [112]. The availability of large population sets
of medical images, the increase of their quality and the access to affordable
intensive computing resources has enabled the rapid extraction of a huge amount
of imaging biomarkers from medical images. This process allows to transform
medical images into mineable data and to analyze the extracted data for decision
support. This practice, known as radiomics, provides information that cannot
be visually assessed by qualitative radiological reading and reflects underlying
pathophysiology. This methodology is designed to be applied at a population
level to extract relationships with the clinical endpoints of the disease that can
be directed to manage the disease of an individual patient.

The execution of medical image processing tasks, such as biomarkers, is a process
that sometimes requires high-performance computing infrastructures and, in
some cases, specific hardware (GPUs) that is not available in most medical
institutions. Cloud service providers make it possible to access specific and
powerful hardware that fits the needs of the workload [115]. Another interesting
advantage of the Cloud platforms is the capability of fitting the infrastructure
capacity to the dynamic workload, thus improving cost contention. The
seamless transition from local image processing and data analytic development
environments to cloud-based production-quality processing services implies a
Continuous Integration and Deployment DevOps problem that is not properly
addressed in current platforms.
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4.1.1 Motivation and Objectives

The objective of this work is to design and implement a cloud-based platform that
could address the needs of developing and exploiting medical image processing
tools. In this sense, the work focuses on the development of an architecture
focusing on the following principles:

• Agnostic to the platform, so the same solution can be deployed on different
public and on-premise cloud offerings, adapting to the different needs and
requirements of the users and avoiding lock-in.

• Capable of integrating High-performance computing and storage back-ends
to deal with the processing of massive sets of medical images.

• Seamlessly integrating development, pre-processing, validation and
production from the same platform and automatically.

• Open, reusable, extendable, secure and traceable platform.

4.1.2 Requirements

A requirement elicitation and analysis process was performed, leading to the
identification of 13 requirements, classified into 8 mandatory requirements, 2
recommendable requirements and 3 desirable requirements. The requirements
are described in Tables 4.1, 4.2 and 4.3.

4.2 State of the art

Since the appearance of Cloud services, a large number of applications have been
adapted to facilitate the access of the application users to Cloud infrastructures.
In the field of biomedicine we find examples in [78, 159]. On the other hand,
there are works that offer pre-configured platforms with a large number of tools
for bioinformatic analysis. An example is the Galaxy Project[64], a web platform
that can be deployed on public and on-premises Cloud offerings (e.g. using
CloudMan[30] for Amazon EC2 [3] and OpenStack [165]). Another example is
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RiD Name Description Level

RI1 Resource
provisioning

Resources should be automatically configured in the deployment.
Provisioning should be performed with minimal intervention by system
administrators and should be able to work in multiple IaaS platforms.

R

RI2 Resource
isolation

Jobs should run on the system at the maximum level of isolation.
Workload may have different and even incompatible software
dependencies, and the failure of the execution of a job should not
affect the rest of the executions.

M

RI3 Resource
scalability

Virtual infrastructures should be automatically reconfigured when adding
or removing nodes (limited by a minimum and maximum number of nodes
for each type of resource). Elasticity could be triggered externally.

R

RI4 Manag. of
Releases

Software should be easy to update and releases should be easy to deploy.
This implies automation, minimal customer intervention, progressive
rollouts, roll backs, and version freezing.

M

RI5 User
Authentication

Users should be able to log-in the system using ad-hoc credentials or an
external Identity Provider (IDP) such as Google or Microsoft LiveID.

D

RI6 User
Authorisation

Access to the services should be granted only to authorised users. This
implies access to data, services and resources. Only special users would
be able to access resources.

D

RI7 High
availability
(HA)

Services must be deployed in HA to guarantee Quality of Service. M

Table 4.1: Requirements of the Infrastructure (Mandatory, Recommended, Desirable)

RiD Name Description Level

RE1 Batch
execution

The system should run batch jobs. A job will comprise a set of
files, software dependencies, hardware requirements, execution arguments,
input and output sandbox, job type, memory and CPU requirements.

M

RE2 Workflow
execution

A job may include several linked steps that need to be executed according
to a data flow. The workflow will imply the automatic execution of the
different stages as dependencies are solved.

M

RE3 Job
customization

Linked to requirements RI2 and RI4, this requirement poses the need of
jobs to run on a customizable environment requiring special hardware,
specific software configuration, operating system, and licenses.

M

RE4 Execution
triggers

Jobs could also be initiated by means of events. Uploading a file or
messages in a queue can spawn the execution of jobs. These reactive
jobs will be defined through rules.

D

RE5 Efficient
Execution

Jobs should be efficiently executed in the platform. This performance is
defined at two levels: a) minimum overhead with respect to the execution
on an equivalent pre-installed physical node; b) capability of integrating
high-performance resources as GPUs and multicore CPUs.

M

Table 4.2: Requirements for Job Execution.
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RiD Name Description Level

RD1 POSIX
access

Jobs expect to find the data to be processed in a POSIX file system
in a specific directory route.

M

RD2 ACLs access Storage access authorization based on a coarse granularity (access
granted/denied for both read & write).

M

RD3 Provenance
and
traceability

Traceability for the derived data is key to bound to the GDPR
regulations (e.g. a trained model should be invalidated if the
permissions for any part of the data used in the training is
revoked).

R

Table 4.3: Requirements with respect to the Data.

Cloud BioLinux[28], a project that offers a series of preconfigured virtual machine
images for Amazon EC2, VirtualBox and Eucalyptus[48]. Finally, the solution
proposed in [120] is specially designed for medical image analysis using ImageJ
[79] in an on-premise infrastructure using Eucalyptus.

Before taking a decision on the architecture, an analysis has been done at three
levels: Container technologies, Resource Managers and Job Scheduling.

Containers are a set of methodologies and technologies that aim at isolating
execution environments at the level of processes, network namespaces, disk areas
and resource limitations. Containers are isolated with respect to: the host
filesystem (as they can only see a limited section of it, using techniques such as
chroot or FreeBSD Jails), the processes running on the host (only the processes
derived executed within the container are visible,for example, using namespaces),
and the resources the container can use (as the processes in a container can be
bound to a CPU, memory or I/O share, for example, using cgroups).

Containers are used in application delivery, isolation and light encapsulation
of resources in the same tenant, execution of processes with incompatible
dependencies and improved system administration. Three of the most prominent
technologies in the market supporting Containers are Docker [147], Linux
Containers (LXC) [105] and Singularity [94]. Docker has reached the maximum
popularity for application delivery due to its convenient and rich ecosystem of
tools. However, Docker containers run under the root user space and do not
provide multi-tenancy. On the other side, Singularity run containers on the
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user-space, but access to specific devices is complex. LxC/D is better in terms of
isolation but have limited support (e.g. LxD only works in ubuntu [106]). The
solution for container isolation selected will be Docker on top of isolated virtual
machines.

Resources should be provisioned and allocated for deploying containers. Resource
Management Systems (RMSs) deal with the principles of managing a pool of
resources and splitting them across different workloads. RMSs manage the
resources of physical and virtual machines reserving a fraction of them for a
specific workload. RMSs deal with different functionalities, such as: Resource
discovery, Resource Monitoring, Resource allocation and release and Coordination
with Job Schedulers. We identify 3 technologies to orchestrate resources are:
Kubernetes [171], Mesos [117] and EC3 [15][17].

Finally, Job schedulers manage the remote execution of a job on the resources
provided by the RMS. Job Schedulers retrieve job specifications from different
interfaces, run them on the remote nodes using a dedicated input and output
sandbox for the job, monitor its status and retrieve the results.

Job Schedulers may provide other features, such as fault tolerance, complex
jobs (bag of tasks, parallel or workflow jobs) and deeply interact with the
RMS to access and release the needed resources. We consider in this analysis
Marathon [109] Chronos [25], Kubernetes [171] and Nomad [126]. Marathon and
Chronos require a Mesos Resource Management System and can deploy containers
as long-term fault-tolerant services (Marathon) or periodic jobs (Chronos).
Kubernetes has the capacity of deploying containers (mainly Docker but not
limited to it) as services, or running batch jobs as containers. However, any
of them deal seamlessly with non-containerised and container-based jobs. In
this sense, Nomad can deal with multi-platform hybrid workloads with minimal
installation requirements.
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4.3 Architecture

The service-oriented architecture is described and implemented in a modular
manner, so components could easily be replaced. In Section 4.3.1, the architecture
is described in a technology-agnostic way, so different solutions could fit into the
architecture. Section 4.3.2 describes all architecture components and how they
fulfil the use case requirements identified in Section 4.1.2. Finally, Section 4.3.3
shows the final version of the architecture including the technologies selected and
how each one addresses the requirements.

4.3.1 Overview of the Architecture

The system architecture addresses the requirements described in section 4.1.2.
The architecture can be divided into two parts: Container Delivery (CD), and
Container Execution (CE). It should be noted that although all the components
of the architecture can be installed in different nodes, in some cases they could be
installed in the same node to reduce costs. As it can been seen in Figure 4.1, the
CD architecture is composed of three components: the Container Image Registry,
the Source Code Manager (SCM), and the Continuous Integration (CI) tool.

Figure 4.2 depicts the CE architecture. The system consists of four types of
logical nodes: Front-end, job schedulers nodes, working nodes and Container
Image Registry (this component also appear in CD architecture describe above).
The Front-end and job schedulers nodes are interconnected using a private
network. The Front-end logical node exposes a REST API, which allows
load-balanced communication with the REST API of the job scheduler nodes.
Furthermore, it contains the Resource Management Service, which is composed
of the Cloud Orchestrator and the horizontal elasticity manager. Job schedulers
nodes comprise the master services of the Job Scheduler (JS). Furthermore, as the
Front-end is the gateway between users and the job scheduler service, a service
for providing authorization and load balancing (between job scheduler nodes) is
required. Different working nodes will run the Job scheduler executors. Working
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nodes mount locally a volume available from a global external storage. Is should
be noted that the set of working nodes can be heterogeneous.

4.3.2 Components

Resource Management service (RMS): It is in charge of deploying the
resources, configuring them and to reconfigure them according to the
changes on the workload. The requirements stated in Section 4.1.2 focus
on facilitating deployment, higher isolation, scalability, application releases
management and generic authentication and authorisation mechanisms.
RMS may require to interact with the infrastructure provider to deploy
new resources (or undeploy them), and to configure the infrastructure
accordingly. Furthermore, the deployment should be maintainable, reliable,
extendable and platform agnostic.

Job Scheduling service: It will perform the execution of containerised jobs
requested remotely by a client application through the REST API. It is
required that the job scheduler service includes a monitoring system to
provide up-to-date information on the status of the jobs running in the
system. Clients will submit jobs through the load balancer service providing
a job description formed by any additional information required by the
Biomarkers platform, the information related to the container image, the
input and output sandbox, and the software and hardware requirements
(such GPUs, memory, etc.).

Horizontal Elasticity service: It is necessary to fulfil the Resource scalability
requirement, which is strongly related to the Job scheduler and the Resource
Manager. Horizontal elasticity tool has to be able to monitor the job
scheduler queue and running jobs, and current working node resources in
order to scale in or scale out the infrastructure. It is desirable that the
horizontal elasticity manager could maintain a certain number of nodes
always idle or stopped to reduce the time that the jobs are queued.
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Source Code Manager (SCM): It is required to manage the coding source
for developers. Due to the release management requirement and the
development complexity, it is mandatory to lean on this kind of tools.

Container Image Registry: In order to store and delivery the biomarker
applications, it is necessary to use a Container Image Registry. Biomarker
applications could be bound to Intellectual Property Rights (IPR)
restrictions so Container Image Registry must be private. For this reason,
authentication mechanisms are required for obtaining images from the
registry. Working nodes will pull the application images when the container
image not exists or recent version exists.

Continuous Integration (CI) tool: CI eases the development cycle because
it automates building, testing and pushing to the Container Image Registry
the biomarker application (with a certain version or tag). Developers or
(the CI experts) define this workflow to do it. Furthermore, some of CI
tools could trigger these tasks for each SCM commits.

Storage: Biomarker applications make use of legacy code and standard libraries
which expect data to be provided in a POSIX filesystem. For this reason,
the storage technology must mount the filesystem in the container.

4.3.3 Detailed Architecture

The previous sections describe the architecture and its components. After the
technology study done in Section 4.2 and the feature identification for each
architecture component in 4.3.2, the technologies selected for addressing the
requirements are the following:

• Jenkins as the CI tool due to the wide variety of available plugins (such
us SCM plugins). Furthermore, it allows you to easily define workflows for
each task using a file named Jenkinsfile. Jenkins provides means to satisfy
the requirements RI4, RI5 and RI6.

90



4.3 Architecture

Figure 4.3: Proposed architecture with selected technologies.

• GitHub as SCM because it supports both private (commercial license) and
public repositories, which are linked to the CI tool. Furthermore, there
is a Jenkins plugin that could scan a GitHub organization and create
Jenkins tasks for each repository (and also for each branch) that contains
a Jenkinsfile, addressing to requirement RI4. This component meets the
requirements RI5, RI6 and RI7.

• Hashicorp Nomad is the Job scheduler. We selected Nomad instead of
Kubernetes as Kubernetes can only run Docker containers. Furthermore,
Nomad incorporates job monitoring that can be consulted by users.
Additionally, it is designed to work in High Availability mode, addressing
requirement RI7. Hashicorp Consul is used to resources service discovery as
Nomad could use it natively. By using this job scheduler, the architecture
meets the requirements RI2, RI4 (job versioning), RE1, RE2, RE3 and
satisfies RI5 and RI6 using its Access Control List (ACL) feature.
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• Docker is the container platform selected because it is the most popular
container technology and it is supported by wide variety of Job schedulers.
It provides the resources isolation required by RI2 and support version
management (by tagging the different images) of RI4.

• As Docker [147] is the container platform used in this work, Docker Hub
and Docker Registry are used as, respectively, public and private container
image registry. Requirements RI4 and RI6 are address by using Docker.

• Infrastructure Manager (IM) [15] is the orchestrator chosen because it is
open source, cloud agnostic and provides the required functionality to fulfil
the use case requirements RI1, RI3, RI5 and RI6.

• CLUES [36] has been chosen for addressing RI3 because it is open source
and can scale up or down infrastructures using IM by monitoring the Nomad
jobs queue.

• The RMS selected is EC3, which is a tool for system administrators that
combines IM and CLUES to configure, create, suspend, restart and remove
infrastructures. By using EC3 the system could address the requirements
RI, RI3, RI5 and RI6.

• Due to the experimentation will be done in Azure and the current storage
solution of QUIBIM is Azure Files, it has been selected as storage. It allows
to mount (entirely o partially) the data as a POSIX filesystem, which is
the requirement RD1. Also, it provides the mechanisms required to fulfil
RI5, RI6 and RD2. Additionally, it allows to mount the same filesystem
concurrently.

• HAProxy is used for load balancing because it is reliable, open source and
support LDAP or OAuth for authentication.

It should be remarked that the proposed architecture (which is depicted in Figure
4.3) is a simplification of Figure 4.2. For the experiment performed, the job
scheduling services are deployed in the Front-end node but users connect with
the job schedulers using the load balancer service. So, this simplification does not
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affect to the users-services communication. Furthermore, in order to avoid costs,
the CI tool (Jenkins) and the Docker Private Registry are in the same resource.

4.4 Results

The experiments have been performed on the public Cloud Provider Microsoft
Azure. The infrastructure is composed by three type of nodes. The front-end
node corresponds with the A2 v2 instance, which has two Intel(R) Xeon(R) CPU
E5-2660 2.20GHz, 3.5GB of RAM memory, 20 GB of Hard Drive disk and two
network interfaces. IM version 1.7.6 and CLUES version 2.2.0b has been installed
in this node. HAProxy 1.8.14-52e4d43 and Consul 1.3.0 are running on Docker
containers also in that node. The second type of node, smallwn, corresponds
with the NC6 instance with six Intel(R) Xeon(R) CPU E5-2690 v3 2.60GHz, 56
of memory RAM, 340 GB of Hard Drive disk, one NVIDIA Tesla K80 and one
network interface. Finally, the largewn node type corresponds with the D13 v2
instance, which has eight Intel(R) Xeon(R) CPU E5-2690 v3 @ 2.60GHz, 56GB
of RAM memory, 400 GiB of Hard Drive disk and one network interface. The
operating system is CentOS Linux release 7.5.1804. Nomad version 0.8.6 and
Docker version 18.09.0 build 4d60db4 are installed in all nodes.

4.4.1 Deployment

The infrastructure configuration is coded into Ansible roles1 and RADL recipes,
and they include parameters to differentiate among the deployment. The roles will
reference a local repository of packages or specific versions to minimize the impact
of changes in public repositories, as well as certified containers. Deployment time
is the time required to create and configure a resource. The deployment time
of the front-end takes 29 minutes 28 seconds on average. The time required to
configure each worker node is 9 minutes 30 seconds.

1All Ansible Roles used in this work are available in a GitHub repository. https://github.com/
grycap/
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4.4.2 Use case - Emphysema

The use case selected was the automatic quantification of lung emphysema
biomarkers from computed tomography images. This pipeline features a patented
air thresholding algorithm from QUIBIM [114] for emphysema quantification and
an automatic lung segmentation algorithm. Two versions were implemented.
A fast one with rough lung segmentation can be used during the interactive
inspection and validation of parameters. Another one with higher segmentation
accuracy is implemented for the batch, production case. This brings the need of
supporting short and long cases, which take respectively, 4 and 20 minutes.

The small cases are related with executions that take minutes to be completed.
In order to provide QoS, CLUES is configured to provide always more resources
than required (one node always free). As this type of jobs run very fast, the
small-jobs nodes that are IDLE too much time are suspended for avoiding the
deployment time. The large cases of QUIBIM biomakers could take many hours
and use huge amount of resources, so the deployment time is negligible. For this
reason, although the large case of this work takes the same amount of time that
the deployment time and the application does not need the all resources of the
VM, large-jobs nodes are not suspended and restarted, and only one large-job can
run concurrently on the same VM. The “small” Emphysema used in this work
consumes 15 GB of memory RAM and 2 vCPUs, so three Emphysema small-jobs
could run simultaneously on the same node.

The main goal of the experiment is to demonstrate the capabilities of the proposed
architecture. The experiment consists of submitting 35 small-jobs and 5 large-jobs
in order to ensure that there are workload peaks that require starting up new VMs
and idle periods long enough to remove (in case of large-jobs nodes) or suspend
VMs (in case of small-jobs nodes). Table 4.4 shown the time frames were jobs are
submitted.

Figure 4.4 shows the number of jobs (vertical axis) along time (horizontal axis)
in the different status: SUBMITTED, STARTED, FINISHED, QUEUED and
RUNNING. The first three metrics denote the cumulative number of jobs that

94



4.4 Results

Name Time Name Time Name Time Name Time

small-1 0:01:19 small-10 0:47:25 small-18 1:00:31 small-27 1:10:42

large-1 0:01:20 small-11 0:49:25 small-19 1:01:32 large-5 1:11:44

small-2 0:01:50 small-12 0:50:25 small-20 1:01:33 small-28 1:11:46

small-3 0:05:50 large-2 0:51:27 small-21 1:02:33 small-29 1:14:47

small-4 0:08:51 small-13 0:51:27 small-22 1:03:34 small-30 1:15:48

small-5 0:11:51 small-14 0:52:28 small-23 1:03:36 small-31 1:16:48

small-6 0:16:23 small-15 0:55:28 small-24 1:08:38 small-32 1:17:49

small-7 0:16:24 small-16 0:55:29 small-25 1:08:38 small-33 1:18:49

small-8 0:19:24 small-17 0:58:30 small-26 1:08:39 small-34 1:18:50

small-9 0:22:25 large-3 0:59:30 large-4 1:09:40 small-35 1:21:50

Table 4.4: Scheduling of the jobs to be executed.
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Figure 4.4: Status of jobs during the experiment.
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Figure 4.5: Status of working nodes.

have been submitted, have actually started and have been completed over time,
respectively. The remaining metrics denote the number of jobs that are queued
or concurrently running at a given time.

As depicted in Figure 4.4, the length of the queue does not grow above ten
jobs. The delay between the submission and the start of a job (the difference in
the horizontal axis between submitted and started lines) is negligible during the
first twenty minutes of the experiment. After a period without new submissions
(between 00:24:00 and 00:47:00 minutes), the workload grows again due to the
submission of new jobs, triggering the deployment of four new nodes (as it can
be seen in Figure 4.5).

The largest number of queued jobs (10) is reached during this second deployment
of new resources at 01:15:09, although it decreases to four only three minutes later
(and to two at 1:23:00). Besides, the four last jobs queued were large-jobs. It
should be pointed out that large-jobs have greater delays than short-jobs between
submission and starting as they use dedicated nodes and this type of nodes are
eliminated after 1 minute without jobs allocated (a higher value will be used in
production).
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Figure 4.5 depicts the status of the nodes along the experiment, which could be
USED (executing jobs), IDLE (powered-on and without jobs allocated), POWON
(being started, restarted or configured), POWOFF (being suspended or removed),
OFF (not deployed or suspended) or FAILED. CLUES is configured to ensure
that a small-node is always active (in status IDLE or USED). It can be seen
in Figure 4.5 that two nodes are deployed at the start of the experiment. Then,
during the period without new submissions, the running jobs end their executions,
so these new nodes are powered off after one minute in the IDLE status. As
the workload grows, the system deployed four new nodes between 00:50:00 and
01:13:00. Besides, CLUES tried to deploy one more node (a large-node) but, as
the quota limit of the cloud provider’s account has reached, the deployment was
failed. It should be noted that the system is resilient to this type of problems
and successfully ended the experiment. After two hours, all jobs are completed,
so CLUES suspends or removes all nodes (except one small-node that has to be
active always).

4.5 Conclusions and future work

This paper has presented a agnostic and elastic architecture and a set of
open-source tools for the execution of medical imaging biomarkers. Regarding the
technical requirements defined in Section 4.1.2, the experiment of a real use case
and the results exposed, it can be concluded that all the requirements proposed
were fulfilled by the architecture presented. In Section 4.4.2, a combination of
40 batch jobs was scheduled to be executed in a specific time and the cluster
achieve to execute all of them by adjusting the resources available. Furthermore,
when there are wasted resources too much time, the nodes are suspended (or
eliminated).

The proposed architecture are not only related to the execution of batch jobs,
it provides to developers a workflow to ease the building, testing, delivery and
version management of their application.
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Future work includes implementing the architecture on QUIBIM ecosystem,
testing other storage technologies as Ceph [179] or OneData [43], the study
of Function As a Services (FaaS) frameworks for batch execution (SCAR [145]
or OpenFaas [131]) or deploying Nomad, Consul and HAProxy servers as a
Kubernetes services, using Kubernetes for ensuring that services are always up.
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Chapter 5

Seamlessly managing HPC
workloads through Kubernetes

Published as:
Sergio López-Huguet et al. “Seamlessly Managing HPC Workloads Through Kubernetes”. In: High

Performance Computing. Ed. by Heike Jagode et al. Cham: Springer International Publishing,
2020, pp. 310–320. isbn: 978-3-030-59851-8

5.1 Introduction

Most scientific workloads combine requirements that could be efficiently
addressed using a combination of High-Throughput Computing (HTC) and
High-Performance Computing (HPC) workloads [16][18][107]. Focusing on
Medical Imaging, HPC is extensively used for artificial intelligence model
building and simulation. HTC is widely used in image post-processing and
applying trained models to new datasets. HTC workloads can be efficiently
tackled on cloud computing infrastructures, which fit to massive, coarsely
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coupled and embarrassingly parallel jobs. HPC workloads typically require
infrastructures composed of a large number of highly-coupled computing nodes.
HPC infrastructures are typically provided by singular datacenters through
specific interfaces.

Cloud computing platforms provide access to a large variety of computing
resources on demand and without needing on-premise resources. Therefore, cloud
services assist on reducing the cost contention and the ecological impact thanks
to the self-adaptive mechanisms that dynamically adjust the cloud infrastructure
depending on different aspects. Furthermore, it is possible to build hybrid cloud
platforms depending on the institution necessities. Cloud infrastructures are much
more flexible than HPC systems. Contrary to Cloud infrastructures, which can be
adapted to the application requirements, in HPC systems the applications must
be adapted to the execution environment. One important aspect for final users
relies on the job management.

On the other hand, an HPC cluster delivers a huge amount of specialized and
already configured computation resources to the researchers. Clusters can run free
and commercial set of toolboxes which are already prepared to be used efficiently
in distributed environments. As a result, running an application in this scenario
can be easier than in a pure cloud model for the researcher (who wants to perform
calculations and does not want to focus on the hardware and software installation
and fine tuning).

The institutions can take benefit of employing a hybrid processing platform
composed of HPC and cloud infrastructures. The architecture platform can
be complex because there are a lot of aspects to consider: authentication,
authorization, data storage, software requirements, special hardware, etc.
Furthermore, the majority of the institutions that use HPC infrastructures,
use infrastructures that are provided by third parties. Therefore, they must
adapt their other processing infrastructures (for example, a public or private
cloud platform) to use the different HPC infrastructures. This work presents
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hpc-connector1, an open-source tool that allows to seamlessly integrate the cloud
architecture with the access to the HPC cluster, without administrator privileges.

5.2 Scenario and related work

5.2.1 Architecture

Cloud application architectures typically comprise front-end services and
back-end nodes. Front-end services provide external access and manage back-end
resources through a job scheduler API or a graphical interface. In some cases,
front-end nodes use resource manager tools in order to scale in or out the
resources, depending on usage metrics to provide an agreed Quality of Service.
The back-end nodes are a set of heterogeneous resources that run the jobs sent
by the users through the job scheduler.

There are examples of cloud platforms in the literature that use the previous
architecture scheme. In [85], the authors present an architecture to process
Internet of Things (IoT) data collected from smart agriculture. In our previous
works, we presented a cloud architecture for data analysis [102] and for processing
medical imaging [100].

However, there are no examples of hybrid cloud and HPC infrastructures that
could provide a seamless interface for both types of workloads. The PRIMAGE
project [113] is an ongoing research project that uses artificial intelligence
techniques for the processing of medical imaging in paediatric cancer. In
this project, the platform architecture combines an HPC infrastructure (the
Prometheus supercomputer [34]) and an on-premise cloud platform. The tool
presented in this work was designed to solve the problem of combining the
execution of some applications in several infrastructures with no administrator
privileges.

Job schedulers (or workload managers) manage the remote execution of the
applications on the available resources. The most popular job schedulers designed

1https://gitlab.com/primageproject/hpc-connector
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for containers technologies are Docker Swarm, Kubernetes2, some frameworks
of Apache Mesos3 and Nomad4. Regarding workload managers in the HPC
environment, there are a lot that are widely used: SLURM [184], Torque5

or HTCondor6. It should be pointed out that hpc-connector was designed
to integrate any cloud architecture (provided with any job scheduler) with an
HPC infrastructure (also provided with any workload manager). In this work,
we will use Kubernetes as the cloud job scheduler, and SLURM for the HPC
infrastructure.

Application portability and delivery are key issues not only in cloud computing
environments but also in HPC. Containers probably are now the most popular
technology for application delivery, thanks to the reproducibility, traceability,
provenance, isolation, and portability. Docker7 has reached the maximum
popularity as container technology on cloud infrastructures, thanks to its rich
ecosystem of tools and great versatility. However, Docker containers run
under the root user space and do not provide easily multi-tenancy (it is
necessary to create previously the users during the container building stage).
Singularity containers [94] are widely used in the HPC environments because
they run under user space, support multi-tenancy and provide mechanisms to
use Message Passing Interface (MPI). There are other container technologies and
runtimes, such as Podman8, Charliecloud9, Shifter10, etc., but we will use Docker
and Singularity as container technologies for cloud and HPC infrastructures,
respectively. It should be noted that the commonly used HPC workload managers
(such as SLURM) can run unprivileged containers without requiring changes or
installing a plugin (as containers are processes that are executed in the user space).

2https://kubernetes.io
3http://mesos.apache.org/
4https://www.nomadproject.io/
5https://adaptivecomputing.com/cherry-services/torque-resource-manager/
6https://research.cs.wisc.edu/htcondor/
7https://www.docker.com/
8https://podman.io/
9https://hpc.github.io/charliecloud/

10https://www.nersc.gov/research-and-development/user-defined-Chapters/5_ISC_
Figures/
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5.2 Scenario and related work

5.2.2 Objectives and requirements

The goal of this work is to provide a tool that permits the combination of a job
scheduler that runs applications embedded in Docker containers (for example,
Kubernetes) on the cloud environment, with the HPC workload managers that run
applications bare metal or in unprivileged containers. Considering the scenario
described in the previous section, the identified requirements and assumptions
needed to fulfill are:

(R1) Users must use the same method to submit or cancel jobs to the HPC
workload manager, as the job scheduler on the cloud environment does.

(R2) The job scheduler used on the cloud environment must manage the full life
cycle of a job in the HPC infrastructure. For example, the job scheduler
should be able to submit, cancel, get execution state, get the logs, etc.

(R3) The data required to run the job must be accessible in the HPC
infrastructure. There are several options: users upload it in advance, the
job downloads it before starting, or there is a shared storage between the
HPC infrastructure and any other environments that could use the data.

(R4) Any user authorised to access the cloud and the HPC resources must be
able to execute jobs without requiring special privileges in neither the HPC
nor the cloud infrastructures.

(R5) The solution should be extensible to deal with different job schedulers and
workload managers.

5.2.3 State of the art

The combination of the potential of High-Performance Computing for simulation
and Big Data and cloud computing for massive data processing has become a
driving forces for complex disciplines such as Brain science [22]. The relevance
of High-Performance and Cloud Computing for addressing challenges related to
medical imaging has boosted with the take off of the application of Artificial
Intelligence [116][73]. A revision study [70] highlights 83 articles applying some
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kind of HPC techniques in Medical Imaging [27], many of them also suitable of
being addressed using cloud computing.

Although there are authors that propose hardware specific configurations based on
FPGAs and GPUs [77] [89], current tendencies propose the use of cloud computing
platforms, especially public offerings [83] with special examples on solutions
provided directly by main industry players in cloud [10]. However, in most of the
cases, the use of clouds is limited to the storage and access of medical imaging
data with low processing capabilities [27][88]. Recently, solutions proposing the
combination of container-based platform with computing accelerators have arisen
[65].

5.3 The proposed solution: hpc-connector

Institutions that manage HPC and cloud environments can integrate job
schedulers by developing the appropriate plug-ins and extending the current
job types to make them compatible between both environments. Large HPC
consortia and institutions may follow this approach. However, in most cases users
face a situation in which they can acquire both types of resources from different
providers.

Another approach is to adapt the job scheduler on the cloud platform to be
able to communicate with the workload manager, as cloud infrastructures are
widely accessible and much more flexible than an HPC infrastructure for a
regular user. This option could be complex and cumbersome, as it would require
continuous work as new updates to the job scheduler arise. If the job scheduler
is released under open-source licenses, the institution must extend it with the
desired functionality following the rules from the project developers. It should be
pointed out that, if the institution wants to use more than one HPC infrastructure
with different configurations (for example, in one case you only can interact using
a REST API but, in the other case, you can only interact using ssh commands),
the software extension could be even more complex.
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Adapting the job scheduler to the workload managers could be complex and,
besides, it forces to keep using the adapted job scheduler in the future for making
the adaption effort profitable. For this reason, we propose a solution by creating
an external tool (hpc-connector) that manages the jobs in the HPC infrastructure
from the cloud infrastructure, as any other job without special privileges.

The key point of the proposed solution is the following: once a user submits a
job to the job scheduler that wants to be executed in the HPC infrastructure
(fulfilling R1), a special job is executed in the cloud infrastructure. The special
mirror job is a an instance of hpc-connector, which will manage the job in the
HPC infrastructure (R2). Thus, the mirror job updates the job scheduler as the
execution of the HPC job progresses in the HPC infrastructure. As hpc-connector
does not need any special privilege (like mounting a directory or accessing special
kernel directives), the special mirror job can run in the user space (fulfilling R4).
After submitting the job, hpc-connector will monitor it (R2) until the end or its
cancellation by the HPC workload manager. Once the job ends, hpc-connector can
retrieve, if the HPC infrastructure allows it, the job output (R2). Furthermore,
hpc-connector is able to catch the SIGINT signal that the job scheduler can send
to the job before killing it. Therefore, if an appropriate cloud job configuration is
performed (the cloud job receives a SIGINT signal and it has a grace period before
killing it after the signal is received) and the job still running, hpc-connector will
cancel the job in the HPC infrastructure (R2).

The tool presented is designed to be running in any environment (even in a local
machine) because it is implemented in Python, so it can be running embedded
in a any type of container or bare metal. Regarding the support of HPC
infrastructures, as each HPC back-end has its own methods for managing the
jobs and the data, it is necessary to implement some specific functionality for
each back-end in hpc-connector to interact with the job submission, information
retrieval about the job execution, cancelling, or deleting jobs. Furthermore, if the
institution wants to retrieve the logs, it is required to implement how to operate
with files (like upload, download, or remove) and operations with directories
(list, create, or delete). The tool uses the super-class Backend so, for each new
HPC infrastructure, a new subclass from the Backend class must be created with
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the name of the HPC infrastructure. For example, let’s consider two different
HPC infrastructures: cluster1 and cluster2. The infrastructure cluster1 uses
SLURM as workload manager with a REST API. On the other hand, cluster2
also uses SLURM but only provides a REST API to manage the files, so the users
must interact with SLURM via ssh. Thus, cluster2 implementation is different
from cluster1 because, although both use SLURM, the job operations must be
performed using ssh for cluster2. Therefore, cluster1 and cluster2 sub classes
from Backend class must be implemented. Thus, hpc-connector fulfils R5 because
it is designed to be running in any environment and it can be extended for new
HPC infrastructures.

5.4 Use case: Segmentation of neuroblastoma tumours

To validate the usefulness of the hpc-connector, we performed a test case. The
scenario uses a private cloud platform and the Prometheus HPC infrastructure.
The cluster deployed on the private cloud infrastructure is composed of 3 virtual
nodes with 4 vCPUs, 32 GB of memory RAM, 80 GB of Solid State Disk and 1
NVIDIA Tesla V100 each. The job scheduler used is Kubernetes (version v1.15.9)
and the container technology is Docker (version 18.06.2-ce).

The HPC infrastructure is the Prometheus supercomputer [34], which is located in
the 289th position of the TOP500 list (June 2020). Prometheus cluster provides
REST API to interact with SLURM (version 19.05.5) called Rimrock (Robust
Remote Process Controller)11 and PLGData service12 to interact with the file
system.

The selected use case is a training of a neural network using Tensorflow
for performing an automated segmentation of neuroblastoma tumours.
Neuroblastoma is the most frequent solid cancer of the early childhood [13]. This
use case belongs to the PRIMAGE project [113].

11https://submit.plgrid.pl/
12https://data.plgrid.pl/?locale=en
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Figure 5.1: ConfigMap definition to specify the Prometheus configuration required by
hpc-connector.

First, we define two ConfigMap objects, which store non-confidential data in
key-value pairs). The Figure 5.1 shows the definition (in YAML13 format) of
the ConfigMap that contains the information required by hpc-connector to use
the back-end Prometheus. This ConfigMap will be used for all jobs that want
to connect with Prometheus. If we were using another HPC infrastructure, the
configuration value would maybe contain other dictionary keys.

Once the ConfigMap for accessing properly to the HPC infrastructure is defined,
the users must define the job configuration. As we are using Rimrock service from
Prometheus cluster, the required parameters are at least, the host and the SLURM
script in plain text. In this script, we specify the amount of resources, the special
hardware (GPUs), and the batch queue (plgrid-gpu). Then, we implement the
tasks: show the hostname, load modules and run the Singularity image (available
at the directory $SCRATCH/singularity/neuroblastoma.sandbox). Figure 5.2
shows the ConfigMap definition for the job configuration. This new ConfigMap
is specific for each job in Prometheus cluster.

Figure 5.3 shows the Kubernetes batch job definition. As it is described in Section
5.3, the job executed in the cloud infrastructure consists of running hpc-connector
to managing the job in Prometheus cluster. It should be noted that his job is
configured with a termination grace period and, if the users cancel this Kubernetes
job, it has 30 seconds to execute the command kill -SIGINT 1. If this occurs,

13https://yaml.org/

107

https://yaml.org/


Chapter 5. Seamlessly managing HPC workloads through Kubernetes

Figure 5.2: Job definition to specify the job configuration required by hpc-connector to
launch the job using, in this HPC backend, Rimrock.

hpc-connector will catch the signal and immediately cancel the job in the HPC
infrastructure. Once the job is submitted to Kubernetes, it is possible to check
(in real time) the progress of the execution consulting the logs of hpc-connector.
Figure 5.4 is a screenshot of the Kubernetes dashboard showing the logs of the
created job.

5.5 Conclusions

This paper has presented hpc-connector, which is an open-source tool for
seamlessly integrating HPC workloads in cloud infrastructures without requiring
administrator privileges or changes on the workload manager, providing the users
with the same user interface even across different HPC infrastructures. The tool
implemented fulfils the requirements identified in Section 5.2.2: running in the
user space, and agnosticism of the workload manager (it is implemented as a
Python tool easy extendable to other HPC infrastructures) to manage the jobs
in an HPC infrastructure.
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Figure 5.3: hpc-connector job definition.
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Figure 5.4: Consulting the logs of hpc-connector using the Kubernetes dashboard.

The experiment performed in Section 5.4 demonstrated that this approach can
address a wider range of complex problems in a convenient way. In this
experiment, we successfully trained a neural network using GPUs in an HPC
supercomputer (Prometheus) using hpc-connector from a Kubernetes job hosted
in a private cloud infrastructure.

Future work includes improving the functionality of hpc-connector : upload the
data (from a repository or from a directory in the Docker container) before
submitting the job (if necessary) or consider retrieving the results and storing
them in an external repository or in the Docker container itself (for example, if
the container has mounted a shared filesystem). Another possible enhancement
could be the ability to refresh the HPC credentials when they expire.
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6.1 Introduction

The need of platforms for running distributed data analytics [97] [167] [160]
and computing-intensive scientific applications has been increasing over the
years, as well as the computational requirements to deal with the storage and
processing of those applications. These types of platforms are normally shared by
multiple users [19] [91], even beyond the limits of a single organization. In those
cases, it is necessary to consider multi-tenant authentication and authorization
and the different relationships among the teams. In addition, the processing
infrastructures may need to provide, on the same platform, different environments
with different needs for different groups of users. Moreover, production execution
environments also require an efficient distribution and reconfiguration of resources
to adapt to its workload and development environments require more flexibility
to deal with different configurations and more interactive access. Designing,
configuring and maintaining a multi-tenant and elastic infrastructures is not a
simple task [144], especially in a multi-site scenario.

Since the appearance of Docker in 2013 [40], containers have grown in popularity
to become one of the most widely used technologies for application delivery
because they provide an isolated execution environment that has a faster startup
than virtual machines (VM). Most commercial cloud computing systems use
containers to manage applications in isolated environments through container
orchestrator services, which occupy a key part in cloud architectures. Kubernetes
[171] is positioned as the standard solution for container orchestration (according
to the 2019 Cloud Native Computing Foundation survey [1], it is used in
production mode in 78% of the cases). Most commercial cloud computing
platforms offer administrated Kubernetes clusters, such as Amazon Elastic
Kubernetes Service (Amazon EKS) [6], Azure Kubernetes Service (AKS) [11] or
Google Kubernetes Engine (GKE) [69]. As well as other solutions for managing
on-premise Kubernetes clusters such as Rancher1, EC3 [119], and OpenShift2.
Docker offers isolation of different container executions, but it does not isolate

1https://rancher.com/
2https://www.openshift.com/
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users, so users can access and manage any container deployed in the system, even
by other users who share the access to the resources. For this purpose, container
orchestrator tools provide or use additional services to guarantee the isolation of
the executions of different users. In Kubernetes, isolation can be providing by
creating namespaces, which are an abstraction that provides support for multiple
and isolated partitions of the computing resources on the same physical cluster,
and assigning quotas to those namespaces, where users can be bound. Thus,
managing user authentication and authorization and namespace isolation is key
but can be complex, even more so if it is considered on distributed scenarios where
this has to be automated. In any case, managing the authorization in a multi-site
environment will require some degree of coordination among the providers, which
could be cumbersome for users and system administrators.

This article presents two works. On the one hand, the kube-authorizer tool,
which is an open-source service that automates the creation of namespaces, service
accounts, and permissions of users authenticated by OpenID Connect3 (OIDC) in
a Kubernetes cluster. On the other hand, the design of a multi-site, multi-tenant
and an elastic cloud container-based architecture with distributed storage that
leverages kube-authorizer to automate the creation of authorization policies in
Kubernetes. The architecture was designed considering a scenario for processing
medical imaging data, which involves several Kubernetes clusters, although
the work can be applied to other use cases by defining general architecture
requirements.

The reminder of the paper is structured as follows. First, section 6.2 details the
objectives of the article. Section 6.3 revises the state of the art related to the work
presented in the paper. Then, Section 6.4 present the service kube-authorizer.
Section 6.5 a federated Kubernetes cluster detailing the architecture of their sites.
Section 6.6 correspond with the study of the security thread model. Finally,
Section 6.7 summarizes the main results, concludes the paper and points to future
work.

3https://openid.net/connect/
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6.2 Motivation and Objectives

In the recent years, Kubernetes has become the standard solution tool for
container orchestration. Kubernetes provides abstractions to describe, isolate,
and share computational resources among different users or entities. The user
concept in Kubernetes can be divided into two categories: regular users or
service accounts. Regular users map to the underlying operating system users
and Service accounts are intended to be used by processes rather than humans.
Service accounts are namespaced (in contrast with normal users that exist in the
whole cluster). Kubernetes provides different methods4 for authenticating users:
X509 Client certificates, static tokens per users, bootstrap tokens, service account
tokens, and OIDC Tokens.

As the computing infrastructure must be shared among a large number of users,
the utilization of OIDC as an authentication method in Kubernetes is the most
appropriate because, every time a user enters the cluster, Kubernetes creates a
user and, if it is configured for that, Kubernetes assigns the user to a certain
group that depends on the claims obtained from the ID token. This allows to
apply Role-based access control (RBAC) policies to different groups of users.
However, Kubernetes does not provide a way to automatically generate isolated
environments (namespaces) for each tenant, so it is necessary to create a new
service to take care of it. Furthermore, it does not provide an OpenID Connect
Identity Provider such as Google, Github5, dex6, Keycloak7, EGI Check-in8,
etc. Regarding multi-tenancy in Kubernetes, the community is working on
multi-tenancy models for extending Kubernetes. These models present limitations
(for example, some of them are not mature projects) and benefits (for example,
one of them enables the ability to create hierarchical namespaces). Depending
on the needs of the workload, the multi-site architecture, and the desired level of
the isolation between tenants, their utilisation could be recommended. It should

4https://kubernetes.io/docs/reference/access-authn-authz/authentication/
5https://github.com/
6https://dexidp.io/
7https://www.keycloak.org/
8https://www.egi.eu/services/check-in/

114

https://kubernetes.io/docs/reference/access-authn-authz/authentication/
https://github.com/
https://dexidp.io/
https://www.keycloak.org/
https://www.egi.eu/services/check-in/


6.3 Related work

be pointed out that none of them offer the creation of isolated environments for
each tenant automatically.

The second objective of the work focuses on one of the essential features of
cloud computing. Cloud computing platforms provide a wide range of computing
resources and services that have made them an efficient solution to get the
resources needed by institutions on demand. Thus, the institutions can take
benefit of them to address their necessities. The elasticity is a key aspect
in cloud platforms as they allow to adapt infrastructures according to the
workload, avoiding unnecessary costs. These infrastructures can be complex to
manage because they must consider aspects such as elasticity, reconfiguration
of computational resources, shared storage, as well as authentication and
authorization.

Moreover, our scenario applies to multi-site and multi-tenant infrastructures,
where the management of the authentication is performed on a central and
trusted service which is used by the different sites to perform the authentication
and authorization. By the use of this approach, we can automatically create a
homogeneous and trustworthy environment where accounts are created on the fly
only when resources are needed.

The aims of this work are twofold: 1) the creation of a tool that facilitates the
management of authorization in Kubernetes clusters where users authenticate
through OIDC; and 2) the design of an elastic and multi-tenant cloud
architecture based on Kubernetes with a distributed file system. Fulfilling both
objectives implies meeting the requirements described in the sections 6.4 and 6.5,
respectively.

6.3 Related work

Cloud computing enables institutions to deploy fully customised computing
environments on demand. For example, in the field of Bioinformatics, there
are some examples of tools that have been adapted to cloud environments in
[78]. Additionally, there are works that are focused on providing pre-configured
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platforms that contain a large number of tools. An example of this is Galaxy
Project9, a web platform that can be deployed on public and on-premises
Cloud offerings (e.g. using CloudMan10 for Amazon EC211 and OpenStack12).
Focused on medical imaging processing, the authors in [120] presents a on-premise
infrastructure using Eucalyptus13 that offers ImageJ14 to analyse medical images.
In [100], the authors present an elastic cloud architecture for medical imaging
processing that can be deployed in the majority of cloud provider platforms. It
should be pointed out that this architecture is not a multi-site architecture, it
does not consider multi-tenancy and it uses non-distributed storage.

Containers have become the most popular technology for application delivery
during the last years thanks to the reproducibility, isolation, provenance, and
portability. Nowadays, there are several container technologies that are designed
to provide different features that are more appropriate than the rest of them for
certain scenarios. Almost all container engines and runtimes are compliant with
the specifications defined by the Open Container Initiative15 (OCI).

Regarding container technologies, Docker16 has reached the maximum popularity
due to its convenient and rich ecosystem of tools and the support by the
majority of container orchestrator tools. Docker manages containers using
containerd17, which relies on runC18 library the container execution. Although
Docker and runC can run containers in user namespaces (Docker rootless mode
is an experimental feature [39]), they commonly require privileged daemons to
manage containers. Other alternatives to Docker emerged during the recent years
trying to facilitate the acquisition of containers in other environments such as
HPC infrastructures: Singularity [94], Shifter [125], CharlieCloud [146], udocker

9https://galaxyproject.org
10https://galaxyproject.org/cloudman
11https://aws.amazon.com/ec2/
12https://www.openstack.org/
13https://github.com/eucalyptus/eucalyptus
14https://imagej.nih.gov/ij/
15https://opencontainers.org/
16https://www.docker.com/
17https://containerd.io/
18https://github.com/opencontainers/runc

116

https://galaxyproject.org
https://galaxyproject.org/cloudman
https://aws.amazon.com/ec2/
https://www.openstack.org/
https://github.com/eucalyptus/eucalyptus
https://imagej.nih.gov/ij/
https://opencontainers.org/
https://www.docker.com/
https://containerd.io/
https://github.com/opencontainers/runc


6.3 Related work

[67] or Podman19. The Docker ecosystem is inherited by the majority of them
for building and storing images, and even some of them enable users to use
pure Docker images or convert to their own formats. Those solutions could
minimize the impact and security concerns of Docker in Computing platforms,
although they are insufficient by themselves to conveniently address multi-site
and multi-tenant authorisation.

Regarding container orchestration tools, Kubernetes20 (also known as k8s) is
currently the most popular solution used to run OCI compliant containers. In fact,
Kubernetes announced in 2020 that its default container runtime will be CRI-O21

instead of supporting by default Docker containers (by using the container runtime
dockershim). Pods are the smallest scheduling unit in Kubernetes, consisting
of groups of containers that are deployed and scheduled together. There are
other tools to manage containers such as Nomad22, Docker Swarm23 or Apache
Mesos24. Docker Swarm is the native job scheduler of Docker but it is being
replaced by Kubernetes (even Docker Engine has included a standalone version
of Kubernetes). Nomad is an open-source job scheduler that allows running
non-containerised and container-based jobs with different container technologies.
Apache Mesos is not a container orchestration tool, it is a large-scale resource
management system that partition and assign computing resources across various
job schedulers, which are also called frameworks (such as Spark25, Hadoop26,
etc.). For this reason, it is possible to run Docker Swarm and Kubernetes also
can run on top of a Mesos cluster.

Authentication in Kubernetes can be performed using different methods27: X509
Client certificates, static tokens per users, bootstrap tokens, service account
tokens, and OIDC Tokens. Managing user authentication can be complex in the
case of there are a considerable number of users. For this reason, it is interesting

19https://podman.io/
20http://kubernetes.io/
21https://cri-o.io/
22https://www.nomadproject.io/
23https://docs.docker.com/engine/swarm/
24http://mesos.apache.org/
25http://spark.apache.org
26http://hadoop.apache.org
27https://kubernetes.io/docs/reference/access-authn-authz/authentication/
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the use of OIDC as a authentication method. Kubernetes does not provide a
OIDC Identity Provider for managing users and groups so it is required to use
an external one and either an OIDC client. Kubernetes solutions for managing
on-premise Kubernetes clusters such as Rancher allow to access Kubernetes
clusters by including an OIDC client as authentication method of its own service.
This way, when a user is authenticated in Rancher by OIDC, he or she can access
to his or her clusters. There are some OIDC Identity Provider available that are
compatible with Kubernetes such as Keycloak28 or EGI Check-in29, to name a
few.

EGI Check-in is a proxy service that operates as a central hub to connect federated
IdPs to other services. It allows combining user attributes from various sources
(IdPs and attribute provider services) in a transparent way. Users in Check-in are
divided in Virtual Organization (VO), which it is a group of users that besides
allow to define different roles for each user.

Kubernetes has a big community that enhances the whole ecosystem by adding
different tools and new features. For example, Helm30 (package manager to
configure applications or services), Kubernetes Ingress Controller31 (it exposes
HTTP and HTTPS routes from outside the cluster to services within the cluster)
or the Kubernetes Dashboard32, to name a few.

Kubernetes Cluster Federation33 (also known as KubeFed) is an open-source
extension of the Kubernetes API by using CustomResourceDefinitions34 (CRD).
KubeFed was designed focused on managing life cycle of multi-cluster applications
(for example, a web service that must be deployed in multiple regions)
easily. Basically, KubeFed enables to propagate Kubernetes API objects (Jobs,
Deployments, Namespaces, etc.) to multiple clusters. In a KubeFed federated
cluster, the propagation of the selected Kubernetes objects is in charge of a

28https://www.keycloak.org/
29https://www.egi.eu/services/check-in/
30https://helm.sh/
31https://kubernetes.io/docs/concepts/services-networking/ingress/
32Source code repository: https://github.com/kubernetes/dashboard
33https://github.com/kubernetes-sigs/kubefed
34https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/

custom-resources/
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centralised federated control-plane, so one Kubernetes cluster acts as a master
of the rest of them. The principal limitation of this approach is that all the
federation is centralised in one cluster. Another aspect to take in account is the
maturity of the project (nowadays is in alpha state). Although KubeFed is a very
good solution for scenarios such as microservices that must be running in multiple
sites, it does not fit the scenario we are addressing, as objects have to be created
in the central service and artifacts and objects are propagated even in sites that
may not be used in the future. Our approach address an automatic creation of
the namespaces, different policies at each site, and creation on the fly.

The Kubernetes Multi-Tenancy Working Group focuses on defining tenancy
models for Kubernetes. Multi-tenancy models in Kubernetes can be categorized
in three types, each one with its benefits and limitations.

The clusters as a service tenancy model consists of each tenant gets their own
Kubernetes cluster. An example of the tenancy model is the project Cluster API35

(CAPI). In this scenario, the tenant clusters are provisioned by a management
cluster. This tenancy model allows full isolation of the Kubernetes between the
tenants and also full control over the cluster resources. On the other hand,
it is required to provide an computing resources infrastructure to deploy the
clusters and, as the infrastructure is not shared, it can cause that nodes have
lower utilization.

The control planes as a service model is a variation of the cluster as a service.
In this scenario, each tenant gets their own dedicated Kubernetes control planes,
but unlike the previous tenancy model, they share the computing resources. An
example of this type of tenancy model is Virtual Cluster36, which extends the
namespace-based Kubernetes multi-tenancy model by providing each tenant a
cluster view. Thus, the core Kubernetes components are not modified in virtual
cluster. In this tool, the physical nodes are managed by a Kubernetes cluster
called a supercluster. Using this type of tenancy model provides a great isolation

35https://cluster-api.sigs.k8s.io/
36https://github.com/kubernetes-sigs/multi-tenancy/tree/master/incubator/

virtualcluster
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as the cluster as a service but, thanks to the cluster is being shared among the
different tenant clusters, the efficiency is better.

The namespace as a service tenancy model consists of isolating tenants at
the namespace level. In this scenario, the Kubernetes cluster is shared
between tenants. Using this type of multi-tenancy implies configuring in
a proper way RoleBinding (managing access to Kubernetes objects and
namespaces), NetworkPolicy (accept or deny network traffic between tenants),
and ResourceQuota (for limiting usage between tenants). These configurations
enable fine-grain policies but also they can be an attack vector between tenants
if they are not well configured. Besides, manually creating namespaces and these
policies for each tenant cannot be a solution for big teams or institutions. For
other hand, using this type of multi-tenancy the same cluster is shared between
tenants. One example of this type of model is the Hierarchical Namespace
Controller37 (HNC) project, which enables the creation of additional namespaces
under parent namespace propagating resources within the hierarchy. By default,
the resources propagated are RBAC policies and RoleBinding but is also
possible to propagate the Kubernetes objects: NetworkPolicy, ResourceQuota,
LimitRange, Secret, and ConfigMap. HNC is useful when many users have similar
policies or when users belong to a team, but it is required to isolate their own
services between the rest of the team.

The utilization of these multi-site and multi-tenant tools described above is
recommended depending on how restrictive must be the isolation of the tenants,
the architecture of the infrastructure, and workloads that the infrastructure must
face. The utilization of KubeFed is appropriate for microservices that must be up
in multiple clusters, but it is not fitting very well for batch execution. Regarding
multi-tenancy, the namespace as a service enables a good level of isolation in
an efficient way. HNC is an interesting option to facilitate the propagation of
policies but it does not provide a way to automatically generate namespaces for
each tenant, so another service must create them. Additionally, HNC is not a
mature extension of Kubernetes, indeed, the last version is 0.7.038.

37https://github.com/kubernetes-sigs/multi-tenancy/tree/master/incubator/hnc
38https://github.com/kubernetes-sigs/multi-tenancy/releases/tag/hnc-v0.7.0
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6.4 kube-authorizer

The first aim of this article is the creation of a tool that automates, for each user,
the creation of its own Kubernetes namespace, the creation of a service account
for the user, and the application of the desired RBAC policies to both entities
(user and service account). Service accounts are designed to be used by processes,
but they also provide service tokens that can be used by users who wants to access
without using OIDC authentication. The requirements of this tool are:

(R.1) The service must be accessible though REpresentational State Transfer
(REST) or Simple Object Access Protocol (SOAP). Preferably, it must be
a REST service.

(R.2) The tool must create a namespace and a service account inside it, and apply
the desired ClusterRole and Role policies (these policies must be available
in the Kubernetes cluster).

(R.3) The solution must provide a way to apply Role policies (which are
namespaced) in its own user namespace and in other namespaces.

(R.4) The tool is not a OpenID Connect Identity Provider, it will receive the
username and the email. For example, if the Kubernetes authentication is
through OIDC, the username can be the claim subject (sub). Then, the tool
will perform the actions described in (R.2).

(R.5) The solution requires a service account token that can manage the
Kubernetes objects described in (R.2) at both cluster and namespace levels.

(R.6) The tool must perform their actions with the minimum intervention of the
administrators in a secure way. Preferably, it must be autonomous.

(R.7) Kubernetes API endpoint must be accessible by the developed tool.

(R.8) The service must be transparent to end users.

(R.9) The service must provide a method to automatically update the applied
RBAC policies.
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(R.10) The solution must be open source and it should be available as a Docker
container.

To fulfil the requirements described above, the authors present
kube-authorizer3940 tool. kube-authorizer is a REST API service that, for
each REST request received, composed of the email and the username, it
creates (if not exists) a namespace and, inside it, a service account. Then,
kube-authorizer applies the RBAC policies and create the generic_resources (this
feature will be detailed below). Figure 6.1 depicts the flow diagram actions of
kube-authorizer. In this figure, it can be seen the difference between the first user
access and the following. The name of both Kubernetes entities (namespace and
service account) is based on the email to facilitate the differentiation between
users when they utilise Kubernetes. As the email has characters that are not
allowed for composing the name in Kubernetes objects, the email is modified
until it works for Kubernetes. For example, the email “serlohu@upv.es” is
transformed to “serlohu-at-upv-dot-es”. The username obtained in the REST
request correspond to the user in the Kubernetes cluster.

The tool was designed to be used in combination with anOIDC proxy4142, which is
in charge of authentication, but it can run alone if it is required. The combination
of both services is useful for putting other services (like Kubernetes Dashboard43)
behind OIDC proxy. In that case, once users are authenticated when are accessing
the proxy, the OIDC proxy will validate if the user satisfies certain claims (for
example, if belongs to a determined group). If the validation is correct, the OIDC
proxy will perform a request to kube-authorizer with the information to trigger the
authorization. Finally, it redirects to the Kubernetes Dashboard adding bearer
token that contains the ID token of the user. It should be pointed out that
the Kubernetes cluster must be configured for enabling OIDC authentication in
Kubernetes API. The architecture presented in Section 6.5 uses EGI Check-in as
OIDC Identity Provider and its concept of group, so the claim that the user must

39Source code repository: https://gitlab.com/primageproject/kube-authorizer
40Docker image: https://hub.docker.com/r/primage/kube-authorizer
41Source code repository: https://gitlab.com/primageproject/oidc-proxy
42Docker image: https://hub.docker.com/r/primage/oidc-proxy
43Source code repository: https://github.com/kubernetes/dashboard
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Figure 6.1: Flow diagram that corresponds with the actions performed by kube-authorizer
on every request.

satisfy correspond with the virtual organization, i.e. the user belongs to certain
VO. The actions that are performed on every access through the OIDC proxy are
depicted in Figure 6.2.

In addition to the requirements already described, kube-authorizer has the ability
to run a set of containers when the authorization is triggered. This feature, called
generic_resources, provides system administrators a way to add other actions
that are not contemplated in kube-authorizer. The actions that administrators
can do using generic_resources must be defined as a JSON that contains a
Kubernetes object (ConfigMap, Job, etc.). These actions will be implemented
using the service account token of kube-authorizer, so they have enough privileges
to create Kubernetes objects in a privileged namespace or in the namespace of
the user that trigger these actions. For example, the creation of a ConfigMap
that contains information to help users to connect other infrastructure services
must be created on each user namespace. Otherwise, a Job that contains tokens
to perform administrator actions (such as connecting a database or adding a user
in other services like distributed storage) must be created in a namespace that
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are only accessible by system administrators. In section 6.5, there is an example
of the use of generic_resources.

Do the
user

belongs to 
the VO? Call to kube-

authorizer to trigger
the authorization

No

The OIDC proxy 
receives a request

from a user

Authentication
through OpenID

Connect

Unauthorized

Redirection to the
Kubernetes
Dashboard

Yes

Figure 6.2: Flow diagram that corresponds with the actions performed by the OIDC proxy
on every access.

6.5 Architecture design

The second aim of this work is the design of an elastic, multi-site and multi-tenant
cloud architecture based on Kubernetes with a distributed file system. A
requirement elicitation and analysis process were performed, leading to the
identification of the following requirements for the infrastructure, the execution
environment, and the distributed storage solution:

(R.1) The architecture must be agnostic to the cloud platform. Thus, the proposed
solution must can be deployed on different public and on-premise cloud
offerings.

(R.2) Resources should be automatically configured in the deployment with
minimal intervention by system administrators.

(R.3) The solution must consider horizontal elasticity of the computing resources,
adding or removing nodes depending on the workload.

(R.4) The Identity Server used to enable OpenID Connect should provide a wide
variety of Identity providers or a way to connect with them.
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Figure 6.3: Proposed architecture.

(R.5) Users should be able to authenticate in the computing infrastructure and
in the distributed storage using OpenID Connect. It is desirable that all
services that can be used from tenants allow authentication using OpenID
Connect.

(R.6) The solution must consider the authorization of users to access computing
resources with minimal intervention by system administrators.

(R.7) The solution provided must ensure that the tenants have isolated
environments.

(R.8) The applications used by tenants are embedded in containers.

(R.9) There are different types of jobs that the architecture must address. On
the one hand, batch jobs that comprise a set of files (can be mounted), a
container image, and a set of computing requirements. These types of jobs
are the execution in production mode of the application. On the other hand,
the architecture must provide fully-configured workstations that allow users
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to enter in development environment. Workstation require access through
graphical user interface (GUI) or Secure Shell (SSH).

(R.10) Users must be able to customize of the execution environment of the jobs.

(R.11) The architecture should include a high-performance distributed storage
solution. Preferably, it must include a solution that allow to combine
different storage back-ends.

(R.12) The storage solution must offer access control list (ACL) to manage the
permissions of the data.

(R.13) Applications typically require find the data in a specific directory of a POSIX
file system.

(R.14) The software used must be open source.

With the study of the features from the different technologies and the literature,
the authors propose the architecture depicted in Figure 6.3. The components
of this architecture are described in the following paragraphs. The architecture
is composed of five types of nodes that can be divided in three categories: the
distributed storage cluster nodes, the worker nodes and the front-end.

For one hand, the technologies selected to fulfil the requirements (R.1), (R.2) and
(R.3) are Infrastructure Manager (IM) [15], CLUster Energy Saving (CLUES)[36],
and Elastic Cloud Computing Cluster (EC3) [119]. IM is an open-source tool that
deploys complex and customized virtual infrastructures on multiple private and
public cloud platforms. CLUES is an elasticity manager tool that has plug-ins to
trigger elasticity actions depending on the job queues for a great number of job
schedulers, such us Kubernetes, SLURM, Nomad, etc. EC3 is a tool that relies
on IM and CLUES for creating elastic virtual clusters on top of Infrastructure as
a Service (IaaS) providers.

Regarding resource management and job scheduler, the technology selected
is Kubernetes, which is an open-source platform for managing containerized
workloads and services, that facilitates both declarative configuration and
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automation. Kubernetes has a big ecosystem of tools, extensions, and a extensive
documentation. Regarding the execution of jobs, Kubernetes provides different
type of Kubernetes objects depending on the needs. For example, the object
Job is often used to run a determined number of times a group of pods (running
a scientific application one time, i.e. a batch job) but the object ReplicaSet is
often used to guarantee the availability of a specified number of identical pods (for
example, multiple instances of a web server). Kubernetes allows to use different
type of volumes (such as NFS, Ceph, etc.) to obtain data persistence between
executions. Kubernetes allows to expose ports from running pods to the rest of
the cluster or externally through services.

Kubernetes has an active community that develops a lot of interesting tools that,
at some point, there are integrated natively. One useful tool is Kubernetes Ingress,
which is a proxy server that manages external access via HTTP or HTTPS to
the internal services in a cluster. Certificate management in a multi-tenant
environment could be a complex task and the tool cert-manager44 is used for
controlling with the certificates. Another tool is Kubernetes Dashboard, which
allows users to interact with Kubernetes API through a browser. It should be
pointed out that, in the architecture described, the Kubernetes Dashboard can
be accessible only by Kubernetes Ingress.

The Kubernetes authentication method selected is OpenID Connect tokens. The
OIDC identity provider selected is EGI Check-in because it offers a huge number
of IdPs thanks to it is federated in eduGAIN45 as a service provider. Thank to
this, (R.4) is fulfilled.

The multi-tenancy model used in this architecture is a namespace as a service.
This is achieved thanks to the use of kube-authorizer and a modified OIDC proxy
(both are described in Section 6.4). The use of both technologies provides the
ability to create namespaces for each tenant, the application of policies and the
creation of customised Kubernetes objects. The creation of the tenant namespace
is done automatically as soon as the tenant access the cluster at first time using

44https://cert-manager.io/docs/
45https://edugain.org/
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Kubernetes Dashboard. Kubernetes Dashboard is the only method allowed to
access the cluster by the tenants from outside the cluster (from pods they can
connect to the Kubernetes API). These limitations is done because it is desirable
that clusters that are connected to Internet must have the minimum attack vectors
possible.

It should be pointed out that the use of the hierarchical namespaces extension is
discarded because it is not able to generate namespaces for each tenant. However,
hierarchical namespaces can be used in combination of kube-authorizer and the
OIDC proxy. Nevertheless, as tenants are single users (not teams), the use of
this technology does not provide more features. In case of tenants were teams, it
could be interesting to combine all technologies.

The creation of a federated Kubernetes using KubeFed is discarded. For one hand,
KubeFed is useful when there are a lot of microservices that must be running
in multiple clusters (for example, a international service that have replication
in multiple zones of the world). The services that are running in the sites of
this architecture are installed in an automated way when the infrastructure is
configured using EC3. For the other hand, KubeFed allows to federate namespaces
between sites but, in a scenario with a shared distributed storage and a generation
of namespaces and policies automated, it is not interesting. Finally, and not
least important, KubeFed force to select a master Kubernetes cluster it can be
a problem for big consortia. Besides, it is not a mature project, indeed it is
currently working on a beta version.

Thanks to its features and big ecosystem of tools, the use of Kubernetes,
kube-authorizer and the OIDC proxy allow to fulfil the requirements (R.5), (R.6),
(R.7), (R.8), (R.9), (R.10) and (R.14).

Regarding storage, two technologies are used: Ceph[179] and Onedata[43]. In
a multi-site scenario, it is possible that all sites were not managed by the same
institution (for example, a big consortium). For this reason, the combination of
different storage solutions could be complex. To solve these problems, Onedata
is used because it is a multi-tenant solution that offers unified data access
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across globally distributed environments and multiple types of underlying storage.
Onedata is composed of two main components: Onezone46 and Oneprovider47.
Onezone is responsible for authentication and authorization of users and makes it
possible for users from different Oneprovider to communicate with each other and
share data. Oneprovider is in charge of expose the data from a storage solution. In
the case of the architecture presented in Figure 6.3, the storage solution is Ceph.
Thus, Onedata exposes a virtual storage combining the data from Oneproviders
transparently. The access to the data can be through web interface (access like
Google Drive), mounting the filesystem using Oneclient48, and integrated with
Jupyter Notebook via the OnedataFS Python library. Onedata ecosystem fulfil
requirements (R.5), (R.12), (R.13) and (R.14).

The infrastructure provides fully configured workstations to the tenants. The
workstations are containers configured with the proper tools that are accessible
through SSH and GUI (R.9). In a multi-site and on-demand scenario, the
computing infrastructure must provide users with persistence and shared storage
among executions and sites. For this reason, a personal directory will be
created in the filesystem for each user thanks to the feature generic_resources
of kube-authorizer. This personal storage will be available in the all sites and in
different executions.

Ceph is an open-source high-performance distributed storage solution that
provides object, block, and file storage (CephFS). The decision of select Ceph
instead of another high-performance solutions such as GlusterFS49 or Lustre50 is
motivated by various aspects. For one hand, Ceph has support for most major
orchestration and deployment frameworks. For example, Ceph provides with an
Ansible playbook51 to install the all system. It should be noted that Ansible is the
technology used by the IM tool, which is in charge of configuring the computing
resources in the architecture presented. For the other hand, it is well supported

46https://github.com/onedata/onezone
47https://onedata.org/#/home/documentation/stable/doc/administering_onedata/provider_

overview.html
48https://github.com/onedata/oneclient
49https://www.gluster.org/
50https://www.lustre.org/
51https://github.com/ceph/ceph-ansible
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by Kubernetes thanks to it is possible to use CephFS as a persistent volume
natively, offering persistence to the services deployed in the Kubernetes cluster.

The other tools and services available in the Kubernetes cluster are the following:

• Apache Guacamole52 is a clientless remote desktop gateway that allows to
connect with the protocols VNC, RDP, and SSH to workstations deployed
in the cluster by the tenants. The service is exposed by Kubernetes Ingress
and is a key tool for the multi-tenant requirements because it provides a
single and secure end-point for authenticated access to multiple containers
deployed by the tenants. It avoids the need of open a port in the firewall
for every workstation. As the service is running inside the cluster, it allows
to connect containers directly from outside the cluster with the possibility
of using a graphical desktop and directly using just the browser, even for
transfer files (up and down), there is no need for the user to download or
install any client application. With Guacamole, the requirement (R.9) is
fulfilled.

• Harbor53 is a multi-tenant and open-source registry and Chart repository
that can be configured to ensure that the images are scanned and free from
vulnerabilities, and signed. The images can be organized in different projects
which allows applying resource quotas and controlling the access to certain
images only to authenticated users and based in predefined roles (RBAC).
Anonymous users only has read access to public projects. Logged-in users
have more or less privileges in the projects where they are included depending
on their role. Besides, OIDC authenticated users can be auto-assigned to a
project and role depending on their group.

• Kubeapps54 is a web-based user interface for deploying and managing
applications in Kubernetes clusters. It can be configured to only allow
install/deploy applications that are available in a Chart Repository (like
Harbor). It can simplify the deployment of jobs and workstations to the

52https://guacamole.apache.org/
53https://goharbor.io/
54https://kubeapps.com/
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users of our cluster less familiarized with the edition of Kubernetes manifests
(YAML/JSON). They just have to choose from the collection what they
want to deploy and visually select and set values for those parameters defined
in the chart (for example volumes to mount or daemons to run, like VNC
server to connect latter through Guacamole).

It should be noted that all the services that can be used by tenants rely in OpenID
Connect to authenticate users fulfilling (R.5). Also they are open source (R.14)
and can be deployed with Helm charts.

6.6 Threat model

The architecture has been defined and implemented for supporting the storage
and processing of anonymized medical imaging data. Anonymization in medical
imaging data has been traditionally argued as it inherently captures unique
individual features. Therefore, regardless of dealing with anonymized data,
measures to guarantee security, data privacy and isolation are needed.

This section analyses the threat model at the different levels, considering the
components involved, the potential effects of a vulnerability and the mitigation
measures that should be implemented. For this analysis, we first identify the
actors involved and therefore the impact that an adversary for each actor could
have if gaining access.

The architecture implemented and presented in the paper focuses on the
automatic management of Authorization by trusting on a third-party IdP and
a Virtual Organization (VO) service. Users from this VO can only access the
platform services and cannot access the resources. Resources are managed by two
levels of platform administrators (one at the level of the virtual infrastructure
and one at the level of the physical resources). Therefore, we identify four types
of actors:

1. Cloud resource system admin. This is the highest privileged user
that manages the on-premise cloud management system (for example,
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OpenStack) and the physical nodes supporting it. A Cloud resource system
admin adversarial could have full access to data and resources.

2. Platform administrator. This is the user authorised to deploy resources as
Virtual Machines and Volumes, and who deploys the Kubernetes and all
associated services of the platform. A platform administrator adversarial
will have access to data and could stop the platform services or replace
them by malicious services.

3. VO user. This is a user that can access the Kubernetes resources and is
limited to a specific namespace, created on demand. A VO user adversarial
will only be able to access the part of the data that the user is authorized
and will not be able to delete or replace platform services.

4. Public user. This is a user who can access an application running on
the Kubernetes cluster deployed by a VO user. Impact of a Public User
adversarial will be quite limited and will be restricted to a subset of data
and processing through the application in which she is authorized.

In this schema, the actors defined at one level could perform the actions of the
following (higher number) levels. Therefore, an adversary or a vulnerability at the
level of a VO user (for example) could not grant access to the underlying Virtual
Machines, and could not be able to access the resources or data of a different VO
user.

The rest of the section covers the analysis of the threats at the level of the different
components of the architecture. We follow a similar approach, starting with the
services that have the minimum impact and going down by layers. By exploiting
a vulnerability at level i, a malicious user could perform all the actions expressed
from this level downwards. It is important to note that this part does not cover
gaining access through compromised credentials, but being able to exploit the
services and changing the configuration. Despite this may be unlikely in most
cases, it helps understanding the criticality of each component.

1. Console access to a processing application
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• Guacamole is a remote desktop application for a GUI Linux system.
By exploiting the service, an unauthorized user may grant access. As it
runs inside a container, this will affect only to the data and applications
available inside the Guacamole container.

• Docker Console attach. Services and applications run on Docker
containers. Docker containers isolate applications from the host where
containers run and from other applications running on other containers.
As containers images are restricted, vulnerabilities in Docker containers
will be limited. Gaining access to a Docker console will also affect only
the data accessible through such console.

2. Container Orchestrator Service level access

• Kubernetes services are only accessible in the internal network of the
Virtual Infrastructure. However, granting access to the K8s services
will enable a malicious user to have full control of the platform.

• IM Service. It acts as Cloud Orchestrator and stores the identifiers
of the resources. The IM service does not store resource credentials,
although they are provided by the user when interacting with the
service. A compromised IM service could obtain infrastructure
credentials from the users.

• Kube-Authorizer provides the creation of the namespaces of the users
on demand and the authorization of VO users. Kube-authorizer is
totally transparent to the user, who even do not need to explicitly
access it. Vulnerabilities at this level could provide access to other
user’s namespace or even the default one, where the platform services
run.

• Harbor provides a secure repository for Kubernetes Helm Charts and
Docker images. This component is key to ensure that only signed and
authorized images run in the platform. Vulnerabilities in this level will
allow a user to run an arbitrary code.
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• Kubeapps is used to deploy the Helm Charts that describe the
applications. By gaining access to the Kuebapps service, the reference
repository could be changed, therefore skipping the limitations on the
execution of verified images only.

3. Data services

• Ceph is the main backend for the storage of the data. Data is accessed
through the Ceph FileSystem using the access token credentials. By
gaining access to the Ceph storage objects, data could be compromised.

• OneData is the solution for data and metadata federation. Gaining
access to OneData services could also compromise data.

4. Fabric access

• Virtual Machines (VMs) from the Virtual Infrastructure. Only
Platform administrator users can access the VMs of the infrastructure.
By accessing the VMs, a malicious user could grant access to the
services of the platform, potentially accessing the data. Moreover,
gaining access to the front-end VM could lead to gain access to any
other resource in the virtual deployment.

• OpenStack Services. OpenStack is the main backend for the
management of the Virtual Infrastructure. Gaining access to the
OpenStack service could open the possibility to accessing the raw
resources, which could end up with accessing the whole platform.

In order to reduce the attach surface, the following measures should be applied:

• Only the services accessible by VO and public users (OneData, Kubeapps,
Guacamole) should be externally accessible. The rest of the services will be
accessible only through a VPN.
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• No SSH port will be openly accessible (only through VPN, and accessing
though Kubernetes Dashboard or Guacamole).

• Docker images will be checked, validated and signed prior to be included in
the Harbor registry. Users will not have sudo privileges within the Docker
containers.

• Kubernetes endpoint will not be accessible directly, but only through the
Kubeapps application, and Kubernetes Dashboard, which will have only
one certified repository (Harbor) of images and charts. Only the custom
images that were validated by system administrators should be run in the
infrastructure.

• Kube authorizer will only trust users from the official VO. Users will only be
allowed to enrol the official VO if they use their institutional credentials and
give a proof of membership. VO membership will require adhering to the
collaboration Access User Policy and will grant access for a limited period.

• VM access will only be allowed through DSA key pairs and will be securely
kept in the VO User resources.

• OpenStack keys should be also kept in the private computers and should
follow strong institutional password requirement policies.

The threat evaluation outlines that no arbitrary code is allowed, VO and public
users have limited access privileges and network connections are encrypted.

To achieve a higher degree of security, the following actions could be performed:

• Use encrypted storage at the level of Ceph with an external vault storage.
This will minimize the risks of vulnerabilities in Ceph and OneData, but
not at the level of the other services.

• Use enclaves to run the applications. This will reduce the risk of data leakage
even if access to the VM is granted.
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6.7 Conclusions

This paper has presented kube-authorizer, an open-source service that allows to
automate, for each user, the creation of its namespace and service account, the
application of RBAC policies and the creation of customised Kubernetes objects.
Regarding the technical requirements identified in Section 6.4, it should be pointed
out that the service implemented fulfil all of them.

This paper also presented an agnostic, elastic and contained-based software
architecture that leverages on kube-authorizer and an OIDC reverse proxy to
automatically manage the authorization in federated Kubernetes clusters. The
architecture was built with a scenario in mind: processing medical imaging
data through several Kubernetes clusters in a multi-tenant scenario. However,
the requirements identified to design the architecture were defined as general
as possible in order to provide a general use architecture. Nevertheless, this
work can be extended to other use cases redefining or adding new requirements.
The configuration recipes to deploy the processing infrastructure are easily
reproducible by using the Ansible roles available in the group Github repository55.

Treating sensitive data implies to carefully analyse the security model of the whole
infrastructure at different levels. A study of the thread model of the infrastructure
was performed in Section 6.6 in order to identify the risks and vulnerabilities at
the different levels.

It should be pointed out that the architecture and kube-authorizer were
successfully deployed in production in the framework of the European project
PRIMAGE56. Thus, we conclude by stating that all objectives proposed at the
beginning of the research have been successfully achieved.

55https://github.com/grycap/
56https://www.primageproject.eu/
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Chapter 7

Discussion of the results

The results of this thesis have been published in several JCR-indexed journals
and conference proceedings and are included in this manuscript as chapters. The
architectures developed in the thesis (detailed in Chapter 3, 4, and 6) comprise
computational infrastructures in cloud platforms. Cloud backends provide the
capability of adapting the infrastructure to the actual workload, considering
both vertical elasticity (Chapter 2) and horizontal elasticity (Chapter 3), which
are used to provide a fair QoS. Chapter 6 presents a tool to 17/manage the
authorization in a Kubernetes cluster and an elastic, multi-site and multitenant
cloud architecture. HPC backends provide high-end computational capabilities to
complete computing-intensive jobs. In Chapter 5, a method to interconnect cloud
and HPC architectures was presented. The thesis also shows the evolution of the
container-based technologies from Mesos to Nomad and Kubernetes, adapting
their developments to the changes in the landscape.

In this chapter, the author analyses the achievements obtained during the research
phase as well as other additional contributions developed during the research
phase done during the research phase. Then, publications and contributions in
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international conferences and indexed journals are listed. Finally, the research
projects in which the author has participated during the development of this
thesis are detailed.

7.1 Contributions

Cloud services provide institutions with a wide variety, flexible and powerful
computing resources. These aspects have contributed to the fast adoption of
cloud platforms to address the computational needs of many institutions. The
contributions of this thesis aim to facilitate the adoption of cloud platforms
in the research centres. To do so, the author provides different technological
solutions, which were designed considering the requisites identified depending on
some particular aspects. Tables 7.1 and 7.2 show a comparison between the
related works and the results presented in this thesis.

Elasticity is a key aspect that provides cloud environments. At the level of
the infrastructure, horizontal elasticity is used to undeploy idle resources to
reduce cost as well as to ensure that the computing infrastructure can manage
a workload peak. Vertical elasticity of the nodes usually implies reloading the
virtual machines, thus it is not a common mode of elasticity when the workload
cannot be anticipated. All the architectures proposed in this dissertation have
a mechanism that provides horizontal elasticity depending on the state of the
cluster (for example, a combination of the size of the job queue and the node
usage), thanks to use the tools developed in the research group to which the author
belongs, namely Infrastructure Manager, CLUES, and EC3 (the combination of
the two previous tools). Using these tools, the elasticity actions are triggered
based on the state of the cluster or some rules, in other words, the elasticity
actions are triggered in a reactive way. Thus, one improvement of the architectures
described in this thesis is to enhance them with a mechanism that triggers the
elasticity actions in a proactive mode anticipating the future workload. The
author of this thesis enhanced the CLUES tool with the creation of a plugin
for CLUES that allows connecting to Nomad job scheduler. Moreover, the
author created some configuration recipes for EC3 and IM, and actively tested
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the new functionalities of these tools. At the job management level, all the
container orchestrator tools support managing multiple instances that belong to
the same application, or even provide a mechanism that autonomously scales the
number of instances of an application (for example, the Autoscaler of Hashicorp
Nomad or the Horizontal Pod Autoscaler of Kubernetes to manage the horizontal
elasticity of running applications). Regarding the vertical elasticity of containers,
a mechanism was developed that triggers the elasticity actions depending on the
quality of service, expressed as a time limit for completing the execution of a batch
job. The mechanism can modify the amount of CPU assigned to the job without
special privileges due to it acting at the level of the job scheduler. Thus, the
mechanism could be used in computing environments without special privileges.
The mechanism developed provides two possibilities of use: applications which
perform a known number of independent iterations (with a predictable execution
time each one) or applications whose progress cannot be monitored. In the
first case, the user must provide an estimation of the duration of an individual
iteration. In the second case, the user must provide an estimation of the CPU time
consumed to complete the job. As the mechanism triggers the elasticity actions in
a proactive way (by anticipating if the execution will be finished before the time
limit) using the information provided by the user, the principal problem is that the
mechanism will work as well as the precision of the information provided by the
user. In the second case, as the application execution can be freezed and restored
by using checkpointing (CRIU), the application must support it. Besides, this
strategy makes sense only when the application can take benefit of the increment
of CPU share and the number of cores or memory assigned. Machine learning
training applications can leverage this type of elasticity.

The design of a cloud architecture must consider the application properties and
necessities (both hardware and software), as well as the institution workload.
The cloud architecture presented in Chapter 3 was designed considering the wide
variety of workloads that can be part of a big data analysis (data acquisition,
parallel spark jobs, etc) and to be elastic and agnostic to the platform. It should be
noted that this cloud architecture could be considered when applications consume
a lot of computing resources because of the overhead produced by the deployment
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and the configuration of the nodes instead of having the maximum resources
running. In this work, the authors also provide a set of configuration recipes to
implement the architecture in the majority of cloud platforms, but they do not
consider a continuous integration tool to automatically build and test the Docker
containers. Besides, due to the use of certain frameworks of Apache Mesos, this
work only considers the utilization of Docker containers.

Chapter 4 presents the evolution of the previous cloud architecture. In this
work, the authors designed a heterogeneous cloud architecture for the execution
of medical imaging biomarkers that also includes a workflow to ease the building,
testing, delivery, and version management of medical imaging biomarkers thanks
to the adoption of a continuous integration tool (for example, Jenkins). The
authors identified the requirements of QUIBIM, which is a company focused
on the development of image processing techniques to measure quantitative
information of medical images. After determining the requirements, a cloud
architecture considering two types of jobs with different necessities (either short or
long-running jobs requiring GPU accelerators) was defined bringing the necessity
of different types of computing nodes. Notwithstanding EC3 enables the creation
of a hybrid cloud architecture, the architectures presented in Chapters 3 and 4 do
not consider the integration with other external computing infrastructures (that
may be / might be managed by the same institution).

Sometimes big consortia or partners in research projects need to interconnect
different existent computing infrastructures. Scientific problems commonly
use applications that have different requirements or hardware architectures.
Thus, in some cases, it is required to interconnect different existent computing
infrastructures. The developed tool hpc-connector is an extra layer to interconnect
different architectures. It is required to implement how to do all actions
on each new computing infrastructure. It should be pointed out that it is
also an advantage because it allows to customize the authentication and the
communication methods for each computing infrastructure or even not using
containers. The experimentation performed in this work was an extension of
a Kubernetes cluster that uses Docker containers with the ability to run jobs
in an HPC infrastructure in Poland (the Prometheus supercomputer) embedded
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in Singularity containers. It should be noted that, although hpc-connector can
download or upload files, the data required for the computation in the external
computing infrastructure was not uploaded by hpc-connector (it only downloads
the output log). Another limitation can be that hpc-connector does not have a
mechanism to automate the renew of the credentials.

The tool hpc-connector was developed during a research stay of three months in
Krakow (Poland) in the framework of a European project named PRIMAGE. This
research project uses Onedata as the technology to provide distributed storage
among the different storage cluster of the project partners. The author of this
thesis also worked on different solutions to make accessible the distributed storage
in the supercomputer Prometheus. Those solutions to enable mounting Onedata
filesystems in Singularity containers require administrator capabilities to allow
containers to mount the filesystem or to install some packages that enable the
utilization of Docker in rootless mode. Due to the fact that those solutions require
interacting with supercomputer administrators and the Onedata team has in the
roadmap to allow mount their filesystems without administrator privileges, this
research line was not continued. Other work related to the Singularity technology
was the creation of an Ansible role to install Singularity Registry server that is
referenced in the official documentation.

Computing infrastructures are commonly used by multiple people. Docker offers
isolation of different container executions, but it does not separate the containers
of the users of an infrastructure, so containers can communicate with each others.
Therefore, container orchestrator tools must provide or use additional services
to guarantee the isolation of container executions of different users. Managing
user authentication and authorization can be complex. In the previous works,
multi-tentancy was not considered as an essential requirement. Chapter 6 presents
kube-authorizer, a REST service to automate the creation of namespaces, service
accounts, and permissions of users authenticated by OpenID Connect (OIDC)
in a Kubernetes cluster. It can be used in combination with an OIDC proxy
as a gateway to the Kubernetes dashboard or as an external service that will
be invocated by other services. The kube-authorizer service will update the
authorization configuration of the Kubernetes cluster when receiving a REST
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request with the name of the user (for example, the claim sub). In the case of
using it in combination with an OIDC proxy, when a new user enters to the
cluster through the Kubernetes dashboard, the OIDC proxy makes a request
to kube-authorizer to guarantee the access to the dashboard. Kubernetes has
support for OIDC authentication, but some of OIDC servers are not serving
directly the information required to ensure that the user is allowed to access
the system (sometimes more than one request to the OIDC server is required).
Chapter 6 also presents a multi-site, multi-tentant and elastic cloud architecture
with distributed storage. This cloud architecture can be seen as an evolution
of the architecture presented in Chapter 4 that includes, on the one hand, the
mechanism to manage the authorization, and, one the other hand, the use of
the multi-site distributed storage solution Onedata. The cloud architecture is a
general architecture; it was not designed focusing on medical image processing
platforms. The main limitation of this work is that it only works for Kubernetes.
However, Kubernetes is currently the most popular container orchestrator.

Thanks to the predoctoral grant obtained by the author, he taught 12 credits
ECTS during the last two years of the Computer Science degree in the Universitat
Politècnica de València. Moreover, thanks to the work done during the research
phase, the author of this thesis developed Cluster Elasticity Manager (CEM) [76],
which is a set of services to provide an elastic and agnostic virtual laboratory that
can be accessed by the students via a graphical remote desktop. CEM is composed
of three main components: server, agent and web. The web component is the
endpoint where the students ask for resources and the teachers can see information
of the general state of the system and the resource assignation (current and
historical data). The agent component is executed on each working node with
the objective of monitoring the users behaviour to detect that they whether they
are active or not. The server component is in charge of elasticity actions and
the assignation of resources to the students. It should be noted that the author
took profit of the experience obtained during the thesis by developing an elastic
virtual laboratory mechanism that can be deployed in the most popular computing
platforms.
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7.2 Publications

The realization of this doctoral thesis has led to the publication of a series of
research articles and publications at conferences that are detailed next:

National conferences

• Sergio López Huguet, David de Andrés Martínez, and J. Damián Segrelles
Quilis. “Gestión elástica en la nube de recursos computacionales para
actividades docentes: caso de uso en el Diseño de Sistemas Digitales”. In:
Actas de las Jornadas sobre Enseñanza Universitaria de la Informática 4.0
(2019). issn: 2531-0607. url: http://www.aenui.net/ojs/index.php?
journal=actas_jenui&page=article&op=view&path%5B%5D=509

International conferences

• Sergio López-Huguet et al. “A Cloud Architecture for the Execution
of Medical Imaging Biomarkers”. In: Computational Science – ICCS
2019. Ed. by João M F Rodrigues et al. Cham: Springer International
Publishing, 2019, pp. 130–144. isbn: 978-3-030-22744-9. CORE (2018): A,
GII-GRIN-SCIE GGS (2018): Class 3.

• Sergio López-Huguet et al. “Seamlessly Managing HPC Workloads Through
Kubernetes”. In: High Performance Computing. Ed. by Heike Jagode
et al. Cham: Springer International Publishing, 2020, pp. 310–320. isbn:
978-3-030-59851-8. CORE (2018): C. GII-GRIN-SCIE GGS (2018): Work
in progress.
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7.3 Research projects

Journal articles

• Sergio López-Huguet et al. “Vertical elasticity on Marathon and Chronos
Mesos frameworks”. In: Journal of Parallel and Distributed Computing 133
(2019), pp. 179 –192. issn: 0743-7315. doi: https://doi.org/10.1016/
j.jpdc.2019.01.002. url: http://www.sciencedirect.com/science/
article/pii/S0743731519300085. Q2. Impact factor (2019): 2,296.

• Sergio López-Huguet et al. “A self-managed Mesos cluster for data analytics
with QoS guarantees”. In: Future Generation Computer Systems 96 (2019),
pp. 449–461. issn: 0167-739X. doi: 10 . 1016 / j . future . 2019 . 02 .
047. url: http://www.sciencedirect.com/science/article/pii/
S0167739X18311087. Q1. Impact factor (2019): 6,125.

• Sergio López-Huguet et al. “Automated Isolation Management of Processing
Workflows in Multi-Tenant and Multi-Site Kubernetes clusters - A Medical
Imaging Use Case”. Submitted to: IEEE Access (2021). Q1. Impact factor
(2019): 3,745.

7.3 Research projects

The thesis has been performed within the framework of different projects
sponsored by the university, the regional and national government, as well as
by international organizations. In addition, the researcher has participated in a
technology transfer project with a company.

The results obtained in this thesis have been reflected in the different projects
that will be listed below, although the most important contributions have been
made for PRIMAGE, CHAIMELEON, COVID and QUIBIM.
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Funded by the university

• Ejecución de aplicaciones sobre plataformas on-premises elásticas de
funciones como servicio (FaaS). Grant number: SP20180068. Duration:
01/01/19 - 01/01/20. Principal investigator (PI): Miguel Caballer
Fernández. Funded by Universitat Politécnica de Valéncia.

National and regional research projects

• Computación Big Data y de Altas Prestaciones Sobre Multi-Clouds Elásticos
(BigCLOE). Grant number: TIN2016-79951-R. Duration: 01/01/19 -
01/01/20. Principal investigator (PI): Germán Moltó and Ignacio Blanquer.
Funded by Ministerio de Economía, Industria y Competitividad of Spain.

• Bases de datos centralizadas y vinculadas a datos clínicos para soluciones
de IA (Inteligencia Artificial) en epidemias tipo Covid-19. Grant number:
54. Duration: 17/04/2020-16/01/2021. Principal investigator (PI): Dr. Luís
Martí-Bonmatí. Funded by Agència Valenciana de la Innovació, Generalitat
Valenciana of Spain.

International research projects

• INtegrating Distributed data Infrastructures for Global ExplOitation.
INDIGO-DataCloud. Grant number: 653549. Duration: 01/04/15 -
01/10/17. Principal investigator (PI): Ignacio Blanquer. Funded by the
European Commission.

• Europe-Brazil Collaboration On Big Data Scientific Research Through
Cloud-Centric Application. Grant number: 690116. Duration: 01/01/16
- 01/01/18. Principal investigator (PI): Ignacio Blanquer. Funded by the
European Commission.

• Designing And Enabling E-Infrastructures For Intensive Processing In a
Hybrid Datacloud (DEEP-HybridDataCloud). Grant number: 777435.
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7.3 Research projects

Duration: 01/11/17 - 30/04/20. Principal investigator (PI): Ignacio
Blanquer. Funded by the European Commission.

• Predictive In-Silico Multiscale Analytics To Support Cancer Personalized
Diagnosis And Prognosis, Empowered By Imaging Biomarkers (PRIMAGE).
Grant number: 826494. Duration: 01/12/18 - 01/12/22. Principal
investigator (PI): Ignacio Blanquer. Funded by the European Commission.

• Accelerating The Lab To Market Transition Of Ai Tools For Cancer
Management (CHAIMELEON). Grant number: 952172. Duration:
01/09/20 - 01/09/24. Principal investigator (PI): Ignacio Blanquer. Funded
by the European Commission.

Technology transfer research projects

• Research, Development and Implementation of High Performance
Computing (HPC) Techniques to Quibim Precision. Duration: 14/12/2017
- 13/12/2019. Principal Investigator (PI): Ignacio Blanquer. Funded by
QUIBIM S.L.
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Chapter 8

Conclusions

Nowadays, public and private cloud platforms have become a very interesting
option to store and process data on demand. The thesis is focused on the
design and implementation of elastic and container-based cloud architectures for
high-performance computing.

Firstly, the research was focused on the elasticity. One the one hand, a proof of
concept mechanism was developed to provide vertical elasticity on top of an elastic
infrastructure for data analytics using Docker containers and Apache Mesos.
The mechanism triggers elasticity actions depending on the quality of service
(expressed as a deadline) and, by using Apache Mesos frameworks, it modifies
the CPU assigned to the application. Moreover, the tool considers two types of
executions: applications whose progress cannot be monitored, and applications
that perform a known number of independent iterations. On the other hand,
horizontal elasticity is obtained by using the tools developed in the research group
(IM, EC3 and CLUES).
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Chapter 8. Conclusions

Another point addressed during this thesis is the design of different
container-based cloud architectures. The first architecture presented in this thesis
was created to provide an infrastructure for data analytics. Chapter 4 describes
a cloud architecture to process medical imaging data. This architecture is an
evolution of the first architecture that considers the creation and test of the
Docker containers that include medical imaging applications. It should be noted
that this architecture is being used in the business environment, concretely at the
QUIBIM company.

The combination of existent processing platforms could be complex due to there
are a lot of aspects to consider: authentication methods, shared storage between
infrastructures, different job schedulers, or even different container technologies.
During three-months research stay in Krakow (Poland), the author implemented
a tool named hpc-connector to ease the connection of different processing
infrastructures by adding an extra layer (the own hpc-connector) that replicates
the job state in one architecture. The tool was implemented to run without
requiring special privileges (it runs as an usual job). The author demonstrates
that hpc-connector allows to interconnect multiple processing platforms (in
Chapter 5, a Kubernetes cluster was combined with Prometheus supercomputer);
but without sharing any storage between the infrastructures.

Regarding the authorization of federated infrastructures, the author developed a
tool named kube-authorizer that is able to manage the authorization policies
in a single Kubernetes cluster. This tool was designed to work behind of a
proxy but can work without it. The aim of the proxy is to authenticate users
and to trigger the creation of the security policies using kube-authorizer. This
ecosystem was successfully deployed in production mode in the framework of the
European project PRIMAGE. In the context of this project, the use of both
kube-authorizer and the proxy enables the access by using OpenID Connect
(OIDC) in the distributed storage solution (Onedata) and in the cloud processing
platform (Kubernetes cluster deployed at the UPV).

It should be pointed out that all services, tools and configuration recipes developed
during this thesis are open-source.
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8.1 Future work

With the results obtained in this thesis, we conclude stating that all objectives
proposed at the beginning of the research have been successfully achieved. The
works resulting from this thesis are being used both in the business environment
(QUIBIM) and in the academia (involved in international and national research
projects).

During the research phase of this thesis, the author used a wide variety of trending
and open-source technologies to implement the architectures designed. Regarding
resource management tools and job schedulers, Apache Mesos, Hashicorp Nomad,
Kubernetes, and Slurm were used depending on the use case. The container
technologies utilized were Docker and Singularity. Furthermore, the author
employed the most popular cloud providers such as Amazon Web Services,
Microsoft Azure, Google Cloud, OpenStack, and OpenNebula.

8.1 Future work

Future work involves the design of different architectures or the improvement of
the cloud architectures presented during this thesis to address the requirements
of the next research projects. The author is being involved in several research
projects to provide a processing infrastructure to create AI applications. One
of the related projects in which this thesis contributions are utilized and will
be thus improved and extended is a national project focused on providing an
infrastructure to study COVID patients in the Comunidad Valenciana (Spain).
Other international projects that the author is involved in, as well as its
dissertation developments, consist of providing infrastructures to create AI
models to study cancer diseases, concretely lung emphysema and Diffuse Intrinsic
Pontine Glioma (DIPG). The access to a sensible information causes that cloud
architectures must consider who uses the data to build AI models or how is
the process to obtain the data (if it is stored in other computing infrastructure).
Furthermore, it is necessary to identify multi-tenant storage solutions that provide
a POSIX to a distributed storage.
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Chapter 8. Conclusions

Designing cloud architectures also involves considering other technologies.
Resource managers, job schedulers and container technologies are constantly
evolving. Docker is the most popular container technology but other technologies
can replace it in few years. Podman is a container technology that allows to
run OCI containers without a privileged daemon (unlike Docker). In contrast
to Singularity, Podman is presented not as an HPC container solution, it is
designed to be a container technology for general use. Podman uses the same
container runtime as Kubernetes and it seems that it will replace Docker in
Kubernetes in a few years. However, Docker recently presented rootless Docker,
an alternative to regular user that enables Docker containers running in user
namespaces (as Singularity or Podman do). Thus, a future research field could
consist on adapting the research tools developed by the author and the tools that
are maintained by the research group to take profit of the advantages of using
unprivileged containers.
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