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“Cuando sea viejo y con melancolía  

allá por las tardes me ponga a soñar  

soltaré los canes de mi fantasía 

y a lejanos bosques me iré a cazar. 

 

No tendré ya perros ni el arco de Diana 

ni la fuerza inquieta de la juventud  

que corran conmigo en hora temprana  

por llanos y montes de esta latitud. 

 

Seguiré soñando y seguiré riendo  

y que los ladridos de mi corazón  

sean esa jauría que sigue corriendo 

tras la presa viva, que es la ilusión.” 

 

Autor: Alejandro Saborío Villegas, mi padre. 

“El Cazador”, 1963. 
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ABSTRACT 

 

The analysis of the host genetic control over its microbiota has recently been pointed 

out as a promising theme in different fields of study. The relationship between the host-

microbiome holobiont and phenotypes in dairy cattle could lead to new insights in breeding 

programs. The analysis of microbiota implies dealing with sparce compositional data frames, 

among other issues concerning inference about causality of microbes over traits of interest, 

single microbe effect vs whole microbiota effect on relevant characters, or aggregation of 

whole microbiota to approach implementation in breeding selection programs. Optimal 

technics to analyze this kind of data are not well defined yet. Therefore, different statistical 

approaches to better deal with this sort of data are to be used. Within this Ph.D. thesis, 

estimation and analysis through different statistical approaches were performed aiming to 

unravel the host genetic control over the microbiota in dairy cattle. Besides, methane 

concentration trait was analyzed as a potential phenotype to be included in the Spanish dairy 

cattle breeding program. A total of 437 cows from 14 commercial dairy cattle farms at the 

northern region of Spain (País Vasco, Cantabria, Navarra and Gerona), were involved in the 

METALGEN project, which was articulated on three sub-projects. This thesis was developed 

within the sub-project one (The (meta)-genomic base of the animal-microbiome binomy, and 

its relationship with feed efficiency and methane emissions in the Holstein-Friesian breed) 

of the METALGEN project, leaded by INIA. The animals were genotyped by CONAFE 

using the low-density chips EuroG 10K and EuroG LD 12k (Illumina, San Diego, California, 

USA), and then imputed to the Bovine 50k SNP chip (Illumina, San Diego, California, USA) 

using its reference population to obtain genotypes containing 54,609 SNP. Microbial 

composition from each cow was obtained from whole metagenome sequencing of ruminal 

content samples using a MinION device from Oxford Nanopore Technologies. Methane 

concentration was measured with Guardian® NG infrared gas monitor from Edinburgh 

Sensors during cow’s visits to the milking automated system. Methane was weekly averaged 

from the peaks for each cow during 2-to-3-week period. Concentration (ppm CH4) and 

intensity (ppm CH4/kg milk) were used as phenotypes.  

Risk factors for methane concentration and methane intensity were estimated using 

phenotypic variables of milk yield (kg), milk fat (%), milk protein (%), conformation traits; 
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methane concentration and methane intensity GEBVs scales previously generated from a 

ssGBLUP; as well as centered log-ratio transformed (CLR) microbiome composition at 

phylum (n=86) and genus (n=1240) level, as potential risk factors. Cows were classified in 

quartiles (low, middle-low, middle-high, and high), according to individual records of 

methane measurements, and averaged milk yield in the case of methane intensity. A threshold 

model approach, under a Markov chain Monte Carlo (MCMC) Bayesian framework, was 

used to determine risk factors for being classified as high for both traits. High yielding cows 

had lower probability of being classified in the high category for methane intensity. Body 

structure and capacity traits were positively correlated to increased probability of being in 

the higher category of methane concentration. Larger GEBVs were also protector factors for 

both traits, reducing the probability of being classified as high methane emitters. Higher 

relative abundance of most eukaryotes (mainly ciliate protozoa and fungi) and some archaea 

(Methanobrevibacter spp. Methanothermus spp and Methanosphera spp.) were risk factors 

for being classified in the high categories.  

The risk factor approach, using GEBVs, allowed to associate the genetic effect of the 

host over the phenotypes, as well as the microbiome effect over the phenotypes; however, it 

lacked of information regarding the host genetic effect over the microbiome. In order to 

tackle this limitation, a set of structural equation models (SEMs) of a recursive type within a 

Markov chain Monte Carlo (MCMC) framework was proposed to jointly analyze the host-

metagenome-phenotype relationship. Non-recursive models were set as benchmark. The 

relative abundance of rumen single microbes (RA) and CH4 concentration were included as 

phenotypes into both sets of bivariate mixed animal models (recursive and non-recursive). 

The host genetics was included into the models through the genomic relationship matrix 

between animals, allowing to estimate variance components. Heritability of CH4 was 

estimated at 0.12 ± 0.01 in both, the recursive and non-recursive, models. Likewise, 

heritability estimates for the relative abundance of the taxa overlapped between models and 

ranged between 0.08 and 0.48. Genetic correlations between the microbial composition and 

CH4 ranged from -0.76 to 0.65 in the non-recursive bivariate models and from -0.68 to 0.69 

in the recursive models. Regardless of the statistical model used, positive genetic correlations 

with methane were estimated consistently for the 7 genera pertaining to the Ciliophora 
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phylum, as well as for those genera belonging to the Euryarchaeota (Methanobrevibacter 

sp.), Chytridiomycota (Neocallimastix sp.) and Fibrobacteres (Fibrobacter sp.) phyla.  

The analysis of single taxa informed about independent relationships between the 

phenotype and one microbe at a time, as well as concerning of the host-genetic effect over a 

given microorganism; However, it lacks comprehensive information about the whole 

microbiome effect over the phenotype and the host genetic effect over the whole microbiome. 

To tackle the whole microbiome effect over the phenotype, the microbiome must take a 

conformable form to be included into genetic animal models. For that, twelve microbiota 

relationship matrices (K) from different microbiome distance metrics were built, aiming to 

compare its performance within a variance component estimation framework for CH4 and 

whole microbiome analysis on simulation (n = 1000, 25 replicates) and real data were 

performed, considering four possible models: an additive genomic model (GBLUP), a 

microbiome model (MBLUP), a genetic and microbiome effects model (HBLUP) and a 

genetic, microbiome and genetic × microbiome interaction effects model (HiBLUP). All 

models were implemented within a Bayesian framework using the BGLR package in R. The 

Ks built from Multidimensional Scaling (MDS), Redundancy Analysis (RDA) and 

Constrained Correspondence Analysis (CCA) performed better in simulation to estimate 

heritability and microbiability. The same methods to build Ks were between the most 

plausible in real data, according to the Deviance Information Criteria (DIC). The DIC was 

also used to obtain the most plausible model, which happened to be the HiBLUP. A new term 

“Holobiability” was defined to refer to the proportion of the phenotypic variance attributable 

to the host-microbiome holobiont effects. Estimates from real data using HiBLUP varied 

depending on the K used and ranged between 0.15-0.17, 0.15-0.21 and 0.42-0.59 for 

heritability, microbiability and holobiability, respectively.  

Despite the usage of Ks allowed to estimate the whole microbiome effect over the 

phenotype, there was still lack of information concerning the host genetic effect over the 

whole microbiome. To deal with this issue, the whole microbiome not only needed to be 

conformable, as in K form, but needed to be aggregated into vectors in order to be treated as 

a phenotype. The microbiome dataset was aggregated through Principal Component Analysis 

(PCA) into few principal components (PCs) that were used as proxies of the core 

metagenome. The PCA allowed condensing the huge and fuzzy taxonomical and functional 
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information from the metagenome into few PCs. Bivariate animal models were applied using 

these PCs and methane production as phenotypes. Part of the variability condensed in these 

PCs is controlled by the cow genome, with heritability estimates for the first PC (PC1) of 

~0.30 at all taxonomic levels, with a large probability (>83%) of the posterior distribution 

being > 0.20 and with the 95% highest posterior density interval (95%HPD) not containing 

zero. Most genetic correlation estimates between PC1 and methane were large (≥0.70) at all 

taxonomic levels, with most of the posterior distribution (>82%) being >0.50 and with its 

95%HPD not containing zero.  

These results suggest that rumen’s whole metagenome recursively regulate methane 

emissions in dairy cows, and that both CH4 and the microbiota compositions are partially 

controlled by the host genotype. The risk factor approach contributed to understand the effect 

of microbiome and host genetics over methane emissions; However, it lacked the ability of 

describing the control exerted by the host genetic over microbiome. The CH4 was positively 

associated with relative abundance (RA) of eukaryotes (protozoa and fungi) at Phylum, 

Class, Order, Family and Genus. Nanopore long reads allowed the characterization of the 

core rumen metagenome using whole metagenome sequencing, and the purposed aggregated 

variables (PCs) could be used in animal breeding programs to reduce methane emissions in 

future generations. 
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RESUMEN 

 

El análisis del control genético del hospedador sobre su microbiota ha sido señalado 

recientemente como un tema prometedor en diferentes campos de estudio. La relación entre 

el holobionte hospedador-microbioma y los fenotipos en el ganado lechero podría conducir 

a nuevos conocimientos en los programas de selección genética. El análisis de la microbiota 

implica lidiar con bases de datos composicionales, entre otras problemáticas relacionadas 

con la inferencia sobre la causalidad de los microbios sobre los rasgos de interés, el efecto de 

un solo microbio frente al efecto de toda la microbiota en los caracteres relevantes, o la 

agregación de toda la microbiota para abordar la implementación en los programas de 

selección genética. Las técnicas óptimas para analizar este tipo de datos no están bien 

definidas aún. Por lo tanto, se deben utilizar diferentes enfoques estadísticos para tratar mejor 

este tipo de datos. Dentro de esta tesis doctoral, se realizó la estimación y análisis a través de 

diferentes enfoques estadísticos con el objetivo de desentrañar el control genético del 

hospedador sobre la microbiota en ganado lechero. Además, se analizó el rasgo de 

concentración de metano como un fenotipo potencial para ser incluido en el programa de 

mejora de ganado lechero español. Un total de 437 vacas de 14 granjas ganaderas comerciales 

de ganado lechero de la región Norte de España (País Vasco, Cantabria, Navarra y Gerona) 

participaron en el proyecto METALGEN, que se articuló en tres subproyectos. Esta tesis se 

desarrolló dentro del subproyecto uno (La base (meta)-genómica del binomio animal – 

microbioma, y su relación con la eficiencia alimentaria y emisiones de metano en la raza 

Holstein-Frisona) del proyecto METALGEN, liderado por INIA. Los animales fueron 

genotipados por CONAFE usando los chips de baja densidad EuroG 10K y EuroG LD 12k 

(Illumina, San Diego, California, EE. UU.), Y luego imputados al chip Bovine 50k SNP 

(Illumina, San Diego, California, EE. UU.) usando su población de referencia para obtener 

genotipos que contienen 54.609 SNP. La composición microbiana de cada vaca se obtuvo a 

partir de la secuenciación completa del metagenoma de muestras de contenido ruminal 

utilizando un dispositivo MinION de Oxford Nanopore Technologies. La concentración de 

metano se midió con el monitor de gas infrarrojo Guardian® NG de Edinburgh Sensors 

durante las visitas de las vacas al sistema automatizado de ordeño. El metano fue 

semanalmente promediado a partir de los picos de cada vaca durante un periodo de  2 a 3 
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semanas. Concentración (ppm CH4) e intensidad (ppm CH4/ kg leche) fueron utilizados 

como fenotipos.  

Se estimaron factores de riesgo para concentración de metano e intensidad de metano 

utilizando variables fenotípicas de producción de leche (kg), grasa láctea (%) proteína láctea 

(%), carácteres de conformación; escalas GEBVs para concentración de metano e intensidad 

de metano previamente generadas a partir de un ssGBLUP; así como la transformación 

logarítmica centrada (CLR) de la composición de la microbiota a nivel de filo (n=86) y 

género (n=1240), como factores de riesgo potenciales. Las vacas fueron clasificadas en 

cuartiles (baja, media-baja, media-alta y alta), según registros individuales de las mediciones 

de metano y la producción de leche promedio en el caso de intensidad de metano. Un abordaje 

de modelo umbral, bajo un marco Bayesiano de Cadenas de Markov Monte Carlo (MCMC), 

fue utilizado para determinar factores de riesgo para ser clasificada como alta para ambos 

carácteres. Las vacas de alta producción tuvieron menor probabilidad de ser clasificadas en 

la categoría alta para intensidad de metano. Los caracteres de estructura y capacidad corporal 

fueron positivamente correlacionados a una probabilidad incrementada de estar en la 

categoría más alta de concentración de metano. Mayores GEBVs también fueron factores 

protectores para ambos caracteres, reduciendo la probabilidad de ser clasificadas como altas 

emisoras de metano. Mayor abundancia relativa de la mayoría de los eucariotas 

(principalmente protozoos ciliados y hongos) y algunas arqueas (Methanobrevibacter spp. 

Methanothermus spp. y Methanosphaera spp.) fueron factores de riesgo para ser clasificadas 

en la categoría alta. 

El abordaje de factores de riesgo, utilizando GEBVs, permitió asociar el efecto 

genético del hospedador sobre los fenotipos, así como el efecto de la microbiota sobre los 

fenotipos; sin embargo, careció de información con relación al efecto genético del 

hospedador sobre el microbioma. Con el objetivo de abordar esta limitación, se propuso un 

conjunto de modelos de ecuaciones estructurales (SEM) de tipo recursivo dentro de un marco 

de Cadenas de Markov Monte Carlo (MCMC) para analizar conjuntamente la relación 

hospedador-metagenoma-fenotipo. Se estableció un modelo bivariado no-recursivo como 

punto de referencia. La abundancia relativa de microorganismos ruminales (RA) y 

concentración de CH4 fueron incluidos como fenotipos en ambos sets de modelos mixtos 

animales bivariados (recursivos y no-recursivos). La genética del hospedador fue incluida 
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dentro de los modelos a través de la matriz de relaciones genómicas entre animales, 

permitiendo estimar componentes de varianza. La heredabilidad de CH4 se estimó en 0,12 ± 

0,01 en ambos modelos, recursivo y no recursivo. Asimismo, las estimaciones de 

heredabilidad para la abundancia relativa de los taxones se superpusieron entre los modelos 

y variaron entre 0.08 y 0.48. Las correlaciones genéticas entre la composición microbiana y 

el CH4 variaron de -0,76 a 0,65 en el modelo bivariado no recursivo y de -0,68 a 0,69 en el 

modelo recursivo. Independientemente del modelo estadístico utilizado, se estimaron 

consistentemente correlaciones genéticas positivas con metano para los 7 géneros 

pertenecientes al filo Ciliophora, así como para los géneros pertenecientes a los filos 

Euryarchaeota (Methanobrevibacter sp.), Chytridiomycota (Neocallimastix sp.) y 

Fibrobacteres (Fibrobacter sp.). 

El análisis de taxones únicos informó acerca de relaciones independientes entre el 

fenotipo y un microorganismo a la vez, así como lo concerniente al efecto genético del 

hospedador sobre un microorganismo dado. Sin embargo, careció de información exhaustiva 

acerca del efecto de toda la microbiota sobre el fenotipo y el efecto genético sobre el 

microbioma completo. Para abordar el efecto conjunto de toda la microbiota sobre el 

fenotipo, la microbiota debe tomar una forma conformable para ser incluida dentro de 

modelos animales genéticos. Para esto, doce matrices de relación de microbiota (K) fueron 

construidas a partir de diferentes métricas de distancia del microbioma, con el objetivo de 

comparar su desempeño dentro de un marco de estimación de componentes de varianza para 

CH4 y toda la microbiota. Análisis de simulación (n = 1000) y datos reales fueron 

desarrollados considerando cuatro modelos posibles: un modelo genómico aditivo (GBLUP), 

un modelo de microbioma (MBLUP), un modelo de efectos genéticos y microbioma 

(HBLUP) y un modelo de efectos de interacción genético, microbioma y genético × 

microbioma (HiBLUP). Todos los modelos se implementaron dentro de un marco Bayesiano 

utilizando el paquete BGLR en R. Las (Ks) de escalado multidimensional (MDS), el análisis 

de redundancia (RDA) y el análisis de correspondencia restringida (CCA) funcionaron mejor 

en la simulación para estimar la heredabilidad y la microbiabilidad. Los mismos métodos 

para construir Ks estuvieron entre los modelos más plausibles en los datos reales, de acuerdo 

con el criterio de información de desviación (DIC). El DIC también fue utilizado para obtener 

el modelo más plausible, que fue el HiBLUP. Un nuevo término “Holobiabilidad” fue 
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definido para referirse a la proporción de la varianza atribuible a los efectos del holobionte 

hospedador-microbioma. Las estimaciones a partir de datos reales usando HiBLUP variaron 

dependiendo de la K utilizada y estuvieron entre 0.15-0.17, 0.15-0.21 y 0.42-0.59 para 

heredabilidad, microbiabilidad y holobiabilidad, respectivamente 

A pesar de que el uso de Ks permitió estimar el efecto del microbioma completo sobre 

el fenotipo, faltó información concerniente al efecto genético del hospedador sobre el 

microbioma completo. Para lidiar con este problema, el microbioma completo no solo 

necesitaba ser conformable, como en forma de K, sino que necesitaba estar agregado en 

vectores, para poder ser tratados como un fenotipo. El conjunto de datos de microbioma fue 

agregado a través de análisis de componentes principales (PCA), en pocos componentes 

principales (PCs) que fueron utilizados como aproximaciones del metagenoma central. El 

PCA permitió condensar la enorme y difusa información taxonómica y funcional del 

metagenoma en unos pocos PC. Se aplicaron modelos animales bivariados utilizando estos 

PC y la producción de metano como fenotipos. Parte de la variabilidad condensada en estos 

PC está controlada por el genoma de la vaca, con estimaciones de heredabilidad para el 

primer PC (PC1) de ~ 0,30 en todos los niveles taxonómicos, con una gran probabilidad (> 

83%) de que la distribución posterior sea > 0,20 y con un intervalo de mayor densidad 

posterior al 95% (95% HPD) no conteniendo cero. La mayoría de las estimaciones de 

correlación genética entre PC1 y metano fueron grandes (≥0,70) en todos los niveles 

taxonómicos, con la mayor parte de la distribución posterior (> 82%) siendo > 0,50 y con  su 

95% HPD no conteniendo cero. 

Estos resultados sugieren que todo el metagenoma del rumen regula recursivamente 

las emisiones de metano en las vacas lecheras, y que tanto el CH4 como las composiciones 

de la microbiota están parcialmente controladas por el genotipo del hospedador. El CH4 fue 

positivamente asociado con la abundancia relativa (RA) de eucariotas (protozoos y hongos) 

en Filo, Clase, Orden, Familia y Genero. Las lecturas largas con nanoporos permitieron la 

caracterización del metagenoma central del rumen usando secuenciación del metagenoma 

completo, y las variables agregadas (PC) propuestas podrían ser usadas en programas de 

mejora de animales para reducir las emisiones de metano en las generaciones futuras. 
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RESUM 

 

L'anàlisi del control genètic de l'hoste sobre la seva microbiota s'ha assenyalat 

recentment com un tema prometedor en diferents camps d'estudi. La relació entre el holobiont 

hoste-microbioma i els fenotips en bovins de llet podria conduir a nous coneixements en els 

programes de cria. L’anàlisi de la microbiota implica tractar amb marcs de dades compositius 

escassos, entre altres qüestions relacionades amb la inferència sobre la causalitat dels 

microbis sobre els trets d’interès, l’efecte microbiòtic únic vs l’efecte microbiota sencer sobre 

els caràcters rellevants o l’agregació de tota la microbiota per abordar la implementació en 

programes de selecció de cria. Les tècniques òptimes per analitzar aquest tipus de dades 

encara no estan ben definides. Per tant, s’han d’utilitzar diferents enfocaments estadístics per 

tractar millor aquest tipus de dades. Dins d'aquest doctorat es van realitzar tesis, estimacions 

i anàlisis mitjançant diferents enfocaments estadístics amb l'objectiu de desentranyar el 

control genètic de l'hoste sobre la microbiota en bestiar lleter. A més, es va analitzar el tret 

de concentració de metà com a fenotip potencial a incloure en el programa espanyol de cria 

de bestiar lleter. Un total de 437 vaques de 14 explotacions comercials de boví lleter de la 

regió nord d’Espanya (País Basc, Cantàbria, Navarra i Girona) van participar en el projecte 

METALGEN, articulat en tres subprojectes. Aquesta tesi es va desenvolupar dins del 

subprojecte (La base (meta) genòmica de la bionomia microbioma animal i la seva relació 

amb l’eficiència alimentària i les emissions de metà de la raça Holstein-Friesian) del projecte 

METALGEN, liderat per INIA. Els animals van ser genotipats per CONAFE mitjançant xips 

de baixa densitat EuroG 10K i EuroG LD 12k (Illumina, San Diego, Califòrnia, EUA), i 

després van ser imputats al xip SNP boví 50k (Illumina, San Diego, Califòrnia, EUA) 

mitjançant el seu població de referència per obtenir genotips que contenen 54.609 SNP. La 

composició microbiana de cada vaca es va obtenir a partir de la seqüenciació de 

metagenomes sencers de mostres de contingut ruminal mitjançant un dispositiu MinION 

d’Oxford Nanopore Technologies. La concentració de metà es va mesurar amb el monitor de 

gas infraroig Guardian® NG de Edinburgh Sensors durant les visites de les vaques al sistema 

automatitzat de munyir. El metà es feia una mitjana setmanal a partir dels pics de cada vaca 

durant un període de 2 a 3 setmanes. La concentració (ppm CH4) i la intensitat (ppm CH4 / 

kg de llet) es van utilitzar com a fenotips 
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Els factors de risc per a la concentració de metà i la intensitat del metà es van estimar 

utilitzant variables fenotípiques de rendiment de la llet (kg), greix de la llet (%), proteïna de 

la llet (%), trets de conformació; concentracions de metà i intensitat de metà. Escales de 

GEBV generades prèviament a partir d’un ssGBLUP; així com la composició del 

microbioma centrat en la relació logarítmica (CLR) centrada a nivell de fil (n = 86) i gènere 

(n = 1240), com a possibles factors de risc. Les vaques es van classificar en quartils (baixa, 

mitjana-baixa, mitjana-alta i alta), segons registres individuals de mesures de metà, i el 

rendiment mitjà de llet en el cas de la intensitat del metà. Es va utilitzar un enfocament del 

model llindar, sota un marc bayesià de Monte Carlo (MCMC) de la cadena Markov, per 

determinar els factors de risc per classificar-se com a elevats per a tots dos trets. Les vaques 

amb alt rendiment van tenir una menor probabilitat de ser classificades en la categoria alta 

per intensitat de metà. Els trets de l’estructura corporal i de la capacitat es van correlacionar 

positivament amb l’augment de la probabilitat de situar-se en la categoria més alta de 

concentració de metà. Els GEBV més grans també van ser factors de protecció per a ambdós 

trets, reduint la probabilitat de ser classificats com a elevats emissors de metà. La major 

abundància relativa de la majoria dels eucariotes (principalment protozous i fongs ciliats) i 

algunes arquees (Methanobrevibacter spp. Methanothermus spp i Methanosphera spp.) Van 

ser factors de risc per classificar-se en les categories altes. 

L’enfocament del factor de risc, mitjançant GEBV, va permetre associar l’efecte 

genètic de l’hoste sobre els fenotips, així com l’efecte microbioma sobre els fenotips; 

Tanmateix, va mancar d'informació sobre l'efecte genètic de l'hoste sobre el microbioma. Per 

tal d’afrontar aquesta limitació, es va proposar un conjunt de models d’equacions estructurals 

(SEM) de tipus recursiu dins d’un marc de cadena Markov Monte Carlo (MCMC) per 

analitzar conjuntament la relació hoste-metagenoma-fenotip. Es van establir models no 

recursius com a referència. L’abundància relativa de microbis rumen sols (RA) i concentració 

de CH4 es van incloure com a fenotips en ambdós conjunts de models animals mixtos 

bivariables (recursius i no recursius). La genètica de l’hoste es va incloure als models a través 

de la matriu de relacions genòmiques entre animals, permetent estimar els components de la 

variància. L'heretabilitat del CH4 es va estimar en 0,12 ± 0,01 en ambdós models, recursius 

i no recursius. De la mateixa manera, les estimacions d’heretabilitat de l’abundància relativa 

dels tàxons es van superposar entre models i van oscil·lar entre 0,08 i 0,48. Les correlacions 
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genètiques entre la composició microbiana i el CH4 van oscil·lar entre -0,76 i 0,65 en els 

models bivariables no recursius i de -0,68 a 0,69 en els models recursius. Independentment 

del model estadístic utilitzat, les correlacions genètiques positives amb el metà s’estimaren 

constantment per als 7 gèneres pertanyents al fil Ciliophora, així com per als gèneres 

pertanyents a l’Euryarchaeota (Methanobrevibacter sp.), Chytridiomycota (Neocallimastix 

sp.) I Fibrobacteres (Fibrobacter sp.) Filus. 

L'anàlisi de tàxons individuals va informar sobre les relacions independents entre el 

fenotip i un microbi a la vegada, així com sobre l'efecte genètic de l'hoste sobre un determinat 

microorganisme; Tot i això, no té informació completa sobre l’efecte microbioma sencer 

sobre el fenotip i l’efecte genètic de l’hoste sobre tot el microbioma. Per fer front a tot l’efecte 

microbioma sobre el fenotip, el microbioma ha de tenir una forma compatible per incloure’l 

en models animals genètics. Per a això, es van construir dotze matrius de relació de 

microbiota (K) de diferents mètriques de distància de microbiomes, amb l'objectiu de 

comparar el seu rendiment dins d'un marc d'estimació de components de variància per CH4 

i anàlisi de microbiomes sencers en simulació (n = 1000, 25 rèpliques) i es van realitzar dades 

reals , considerant quatre possibles models: un model genòmic additiu (GBLUP), un model 

de microbioma (MBLUP), un model d’efectes genètics i microbiomes (HBLUP) i un model 

d’efectes d’interacció genètics, microbiomes i genètics × microbiomes (HiBLUP). Tots els 

models es van implementar dins d’un marc bayesià mitjançant el paquet BGLR de R. Els Ks 

construïts a partir de l’escala multidimensional (MDS), l’anàlisi de redundància (RDA) i 

l’anàlisi de correspondència restringida (CCA) van tenir un millor rendiment en simulació 

per estimar l’herència i la microbilitat. Els mateixos mètodes per construir Ks estaven entre 

els més plausibles en dades reals, segons els criteris d'informació sobre desviacions (DIC). 

El DIC també es va utilitzar per obtenir el model més plausible, que va passar a ser el 

HiBLUP. Es va definir un nou terme "Holobiabilitat" per referir-se a la proporció de la 

variància fenotípica atribuïble als efectes holobiont del microbioma host. Les estimacions de 

dades reals mitjançant HiBLUP van variar en funció de la K utilitzada i van oscil·lar entre 

0,15-0,17, 0,15-0,21 i 0,42-0,59 per heretabilitat, microbiabilitat i holobiabilitat, 

respectivament. 

Tot i l'ús de Ks permès estimar l'efecte del microbioma sencer sobre el fenotip, encara 

hi havia manca d'informació sobre l'efecte genètic de l'hoste sobre el microbioma sencer. Per 
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tractar aquest problema, tot el microbioma no només necessitava ser conformable, com en 

forma K, sinó que calia agregar-lo en vectors per tractar-lo com un fenotip. El conjunt de 

dades de microbiomes es va agregar mitjançant l'anàlisi de components principals (PCA) en 

pocs components principals (PC) que es van utilitzar com a proxies del metagenoma 

principal. El PCA va permetre condensar la enorme i difusa informació taxonòmica i 

funcional del metagenoma en pocs PC. Es van aplicar models animals bivariants utilitzant 

aquests PCs i la producció de metà com a fenotips. Part de la variabilitat condensada en 

aquestes PC està controlada pel genoma de la vaca, amb estimacions d’heretabilitat per a la 

primera PC (PC1) de ~ 0,30 a tots els nivells taxonòmics, amb una gran probabilitat (> 83%) 

de la distribució posterior> 0,20 i amb un 95% més alt interval de densitat posterior (95% 

HPD) que no conté zero. La majoria de les estimacions de correlació genètica entre PC1 i 

metà eren grans (≥0,70) en tots els nivells taxonòmics, amb una gran part de la distribució 

posterior (> 82%)> 0,50 i amb un 95% de HPD que no contenia zero. 

Aquests resultats suggereixen que tot el metagenoma del rumen regula recursivament 

les emissions de metà en vaques lleteres i que tant el CH4 com les composicions de 

microbiota estan parcialment controlades pel genotip de l’hoste. L’enfocament del factor de 

risc va contribuir a entendre l’efecte del microbioma i la genètica de l’hoste sobre les 

emissions de metà; Tot i això, no tenia la capacitat de descriure el control exercit per la 

genètica hoste sobre el microbioma. El CH4 es va associar positivament amb l’abundància 

relativa (RA) d’eucariotes (protozous i fongs) a Phylum, Class, Order, Family i Genus. Les 

lectures llargues de Nanopore van permetre caracteritzar el metagenoma del rumen bàsic 

mitjançant una seqüenciació completa de metagenomes, i les variables agregades proposades 

(PC) es podrien utilitzar en programes de cria d’animals per reduir les emissions de metà en 

les generacions futures. 
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Methane emissions in ruminants 

Ruminants exhale methane (CH4) as a by-product of fermentation inside their 

digestive tract. The enteric CH4 is a colourless and odourless gas produced primarily in the 

rumen (87%), most of it is emitted by eructation (95%). The remanent CH4 production (13%) 

takes place in the large intestines and is mostly evacuated through the lungs (89%), and in a 

smaller extent (11%) through the anus (Murray et al., 1976). There are two main relevant 

issues concerning methane emissions from ruminants: A) environmental effect and B) effect 

on animal feed efficiency. 

 

Methane environmental effect. The livestock industry has been one under recent 

environmental concern. The main reason is because bovines are the domesticated ruminants 

that emit the largest amount of methane (Clauss et al., 2020). The global warming potential 

of methane is 28 times that from carbon dioxide (CO2). However, this comparison should be 

nuanced, because it remains less time (12 years) in the atmosphere than CO2 (100 years) 

(Myhre et al., 2013). Livestock methane emissions contribute with 8% to 12% of 

anthropogenic emissions (Eckard et al., 2010; Gerber et al., 2013). The amount of methane 

emitted by an adult Holstein cow in a daily basis has been previously estimated. Differences 

between studies remark variation of this phenotype. For instance, Garnsworthy et al., (2012) 

reported 369 g/d (range 278-456 g/d); Difford et al., (2018) informed of 395.8 g/d  

(SD=63.5), and Ramayo‐Caldas et al., (2019) registered 506 g/d (SD=56). Differences 

among studies regarding methane concentration (ppm) have also been previously reported 

(Wu et al., 2018; Huhtanen et al., 2015). 

 

Methane effect on feed efficiency. Methane operates as the most important sink of hydrogen 

(H2) inside the rumen  (Ungerfeld, 2020). Therefore, inhibiting the rumen methanogenesis 

could redirect H2 in the direction of fermentation products nutritionally valuable for the 

animal, enhancing the cow feed efficiency. There is not a universal definition of feed 

efficiency, a simple one would be how efficiently animals convert feed into product 

(Seymour et al., 2020). The energy utilization in ruminants is presumably diminished by the 

loss generated by methane production pathway, which ranges between 2 and 12% of ingested 

gross energy (Johnson and Johnson, 1995). Theoretically, feed efficiency is negatively 
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affected by high rates of methane emissions, which waste energy to the environment rather 

than use it to generate the final product of the system. Previous studies inhibiting 

methanogenesis invitro resulted in accumulation of H2 (Ungerfeld, 2015), while in vivo trails 

reducing methanogenesis also increased H2 (Ungerfeld, 2018).  

 

Holobiont control of methane emissions 

The host-microbiota system is referred as “holobiont”. The introduction of the 

“holobiont” term has been attributed to Lynn Margulis in 1991 (Margulis, 1991), and 

extended to describe a host and its associated communities of microorganisms (Simon et al., 

2019). Nevertheless, there is controversy regarding the introduction of this concept, ascribing 

it to Adolf Meyer-Abich nearly 50 years before (Baedke et al., 2020). Ruminants are animals 

especially dependent on their microbiota because their source of energy comes from volatile 

fatty acids generated during enteric fermentation. Microbiota composition at the same time 

is presumably controlled by the specific characteristics of the host. Generating a self-

regulated two ways feedback. Methane emissions from ruminants are dependent on both, 

host, and microbiome, therefore regulated by the holobiont. 

 

Host phenotypic control of methane emissions. Concerning methane emissions, several 

phenotypic traits of the host have been associated to methane production. The rumen size has 

been hypothesized as a methane associated trait in sheep, with smaller size and faster turnover 

rate favoring some bacteria abundance, whose fermentative processes result in reduction of 

H2, which consequently reduces the substrate for hydrogenotrophic methane formation 

(Kamke et al., 2016). Other studies in sheep support the association between smaller rumen 

and lower methane emissions (Goopy et al., 2014) and between reduction in mean retention 

time of digesta in the whole tract and lower methane emissions (Barnett et al., 2012). In large 

ruminants, association between rumen size or mean retention time and methane emissions is 

limited (Negussie et al., 2017). Body weight and linear conformation are related traits (Yan 

et al., 2009) which had been associated to enteric methane emissions in dairy and beef cattle 

(Moraes et al., 2014). In general there is a positive correlation between body weight and 

methane production (Moraes et al., 2014). Linear conformation traits had been associated to 

methane emissions (López-Paredes et al., 2020), a possible reason for this could be that some 
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conformation traits (i.e. stature, chest wide, body depth, angularity)  might indicate larger 

rumen capacity, which in turn involves slower rumen passage rates of digesta, increasing 

production of methane. Other phenotypic traits like the rumen epithelial cell wall had been 

associated to methane production (Xiang et al., 2016), suggesting that the layers of the rumen 

wall respond adapting specifically to diet, and therefore influencing CH4 production. 

 

Microbiota control of methane emissions. Rumen microbiota is essential for ruminants. All 

three domains of life, Bacteria, Archaea and Eukaryote (Woese et al., 1990), also known in 

biological taxonomy as superkingdom, are present in the rumen (Kittelmann et al., 2013). 

Virus clades, which are not included in the three-domain system, can be also found in the 

rumen (Gilbert et al., 2020). In dairy cattle, the rumen exhibits a consistent and highly 

conserved abundance rank structure of microbiome across geographical locations, breeds and 

diets (Wallace et al., 2019). Crucial functions such as forage fiber fermentation, volatile fatty 

acid production or pH homeostasis are possible thanks to ruminal microorganisms. 

 Differences between microbiota of cows have been consistently evidenced (Mizrahi 

and Jami, 2018). There are also evidences of microbial community resistance to perturbation 

and capacity to recover from it (resilience), which provides stability of the digestive function 

for the host across a range of feeding and management conditions (Weimer, 2015). Most 

microorganisms in the rumen of adult cows are bacteria, the most abundant phylum being 

Bacteroidetes and Firmicutes (Chaucheyras-Durand and Ossa, 2014). 

In ruminants, the enteric methane is produced by methanogenic microorganisms 

inside their digestive tract. All known methanogens belong to the archaea superkingdom 

(Lang et al., 2015). Archaeas that produce methane using hydrogen (H2) as a reducing agent 

and carbon dioxide (CO2) are called hydrogenotrophic methanogens, the chemical reaction 

for this pathway can be describes as:  

 

CO2 + 4H2 → CH4 + 2H2O 

 

There are other methanogenic archaeas that produce methane using different 

substrates. For instance, acetoclastic archaeas use acetate (CH3COOH) through the following 

reaction:  
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CH3COOH → CO2 + CH4 

 

While methylotrophic archaeas use methylated compounds (Vanwonterghem et al., 

2016). Methanol (CH3OH) is an example of a methylated substrate, as described Yin et al., 

(2019) with the following formula: 

 

4CH3OH → 3CH4 + CO2 + 2H20 

 

The hydrogenotrophic pathway certainly occur in the rumen, acetoclastic and 

methylotrophic pathways might be also present in the rumen, although neither pathways had 

been experimentally demonstrated yet (Qiao et al., 2014). There are evidences of rumen 

methanogens using formate, acetate, methyl compounds and ethanol as substrates, but 

usually jointly with hydrogen (Greening et al., 2019).    

Methanogens have been conventionally classified into seven orders: 

Methanobacteriales, Methanococcales, Methanomicrobiales, Methanosarcinales, 

Methanocellales, Methanopyrales and Methanomassiliicoccales (Vanwonterghem et al., 

2016). Most of them make use of the hydrogenotrophic pathway, while there are evidences 

suggesting the presence of the acetoclastic and methylotrophic pathways in 

Methanosarcinales and Methanomassiliicoccales, respectively (Lang et al., 2015).    

Ruminants exhale methane, which is originated as an end-product from the 

metabolism of methanogenic archaeas that inhabit inside their gastrointestinal tract. The 

usage of H2 by hydrogenotrophic archaeas could be important for the host, due to its 

contribution over the control of intraruminal pressure exerted by H2, which at high 

concentration inhibits rumen fermentation (Morgavi et al., 2010).  

A plethora of microorganisms have been associated to complex traits of interest in 

dairy cattle (Schären et al., 2018). The concept of microbiota variability between individuals 

and the partial host microbiota stability, in addition to the association of microbiota with 

certain complex traits, give rise to an interesting hypothesis: if the microbiota is heritable at 

some extent, it could generate the opportunity to select individuals with optimal microbiotas, 

genetically correlated traits associated to optimal microbiotas would pass to the next 
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generations due to its partial genetic control, which could modulate those genetically 

correlated traits for specific breeding objectives. 

 

Hologenome 

 The hologenome is the combination of the host genome and its associated microbial 

genomes (Rosenberg et al., 2007). It can also be defined as the collective genomes of a 

holobiont (Simon et al., 2019). Analogously, as the holobiont controls methane emissions 

from ruminants, there is presumably a partial regulation of methane emissions by the 

hologenome, which in this case could be partitioned into cow genome and metagenome. 

 

Cow genome. Heritability is the term used to describe the proportion of the phenotypic 

variance attributable to the additive genetic effect in a population (Templeton, 2006). This 

genetic parameter is used in animal breeding to predict response to selection, which is the 

difference in the phenotypic mean between a population and its progeny. Heritability values 

range between 0 and 1, with higher values causing a faster response in the targeted 

phenotypes under selection (Oldenbroek and van der Waaij, 2014). Methane emissions is a 

heritable trait.  Lassen et al. (2012) estimated heritability (±SE)  of methane emissions (g/day) 

from 1745 Holstein cows in 0.21±0.06. Lassen and Løvendahl (2016) obtained larger but less 

accurate estimates 0.25±0.16 from a smaller sample (n=339) of cows of the same breed. 

Similar heritability estimates were informed by Manzanilla-Pech et al., (2016) 0.23±0.23 

(n=205); Pszczola et al., (2017) 0.27±0.09 (n=485) and (Difford et al., 2018) 0.21±0.09 

(n=750). A more recent study (Breider et al., 2019) informed of heritability estimates for 

methane emissions (g/day) from Holstein cows of 0.45±0.11. Other studies estimating 

heritabilities for methane emissions concentration (ppm/day) reported values of 0.11±0.02 

(n=355) (van Engelen et al., 2018) and 0.21±0.11 (n=434) (Difford et al., 2019). In general, 

average estimates of heritability for methane emissions ranged from 0.05 to 0.45 regardless 

of the measurement units (g/day, mg/kg, ppm/day) (Lassen and Difford, 2020). If 

methanogenic archaea are the only rumen producers of methane (Hook et al., 2010) and 

methane is a heritable trait, it is reasonable to hypothesizes that the composition of 

methanogenic archaea and associated microbiome regulating methane emissions is also 

heritable.     
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Metagenome. Some authors (Huws et al., 2018) confer the first postulate of the host influence 

over its microbiome to Weimer et al., (2010), who found that cows restored their bacterial 

composition after near total exchange of the rumen content. In this study, cows also returned 

volatile fatty acid concentration and pH back to pre-exchange values. In a more recent study 

of near-total rumen content exchange, the hosts capacity to return the rumen bacterial 

composition to the original status was further evidenced (Weimer et al., 2017). Other 

investigations have evidenced the control that the genetic background of the animal exerts 

over its ruminal microbiota composition: Roehe et al., (2016) assessed host genetic control 

using sire progeny groups, they found consistent ranking of the sire progeny groups (overall 

and within diet) for relative abundance of archaea and methane emissions, proposing a 

genetic regulation of the host over these traits. Difford et al. (2018) found heritabilities for 

relative abundance of rumen bacteria OTU and rumen archaea OTU reaching 0.4 and 0.3, 

respectively. Li et al. (2019) reported heritability estimates ≥ 0.15 for rumen bacteria in beef 

cattle, concluding that some rumen microbial features could be influenced by host genetics 

and suggested the potential to modulate the heritable microbiota through genetic selection 

and breeding. Several studies reported high heritabilities estimates for ruminal 

microorganisms, for instance: Sasson et al., (2017) reported heritability estimates larger than 

0.7 for 22 bacterial  Operational Taxonomic Units (OTU) in dairy cattle. Wallace et al. (2019) 

showed heritability estimates for family (Lachnospiraceae) and genus (Prevotella sp.) larger 

than 0.6 and 0.4, respectively in 1016 lactating dairy cows of the Holstein and Nordic Red 

breed from 4 countries (United Kingdom, Italy, Sweden and Finland). Heritability estimates 

from different populations should not be compared directly, due to the frequency dependent 

nature of linear models in variance component estimation (Templeton, 2006). Therefore, 

heritability estimates should be obtained from the population of interest, in order to increase 

the reliability of this genetic parameter.  

 

Genetic correlations. The genetic association between traits is frequently expressed through 

the genetic correlation parameter, which ranges between -1 and 1, and is defined as the 

correlation between the additive effects (Hazel, 1943). Genetic correlations between specific 

microorganisms and complex traits of interest had been estimated showing correlations 
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different from zero (Aliakbari et al., 2021). The influence of the microbiome on relevant 

complex traits in cattle has been well established (Wallace et al., 2019). Nevertheless, there 

is a plethora of challenges to determine the most appropriate characteristics of a host to pass 

on future generations, in order to generate a given microbiota on their offspring, to enhance 

the desired performance of animals. Other challenges rise on determining the collateral 

effects of these microbiota composition changes on correlated traits. The estimation of 

genetic correlations between microbiota and traits of interest, as methane emissions in dairy 

cattle, should be taken as a way to orientate future decisions; however, selecting by lower 

methane emission could affect other correlated traits, such as milk fatty acids, that had been 

positively correlated to methane emissions (Bougouin et al., 2019). 

 

Compositional nature of microbiome 

Data structured as proportions or with a constant or irrelevant sum, are designated as 

compositional data (Gloor et al., 2017). Compositional data contains information regarding 

the relationships between the parts (Aitchison, 1986). Sequencing processes of microbiome 

samples computed as relative abundances confer to microbiome data sets the nature of being 

compositional. These characteristic of the microbiome datasets poses the challenge of the 

statistical approach to analyze compositional data, besides its sparsity and complex 

interrelationships. To deal with compositionality, data can be transformed from the relative 

abundance of taxa to the centered log-ratios (CLR) between taxa (Gloor et al., 2017). 

However, there is the inconvenient of zero inflated microbiome data sets obtained from 

sequencing, limiting the computation of logarithms. To fill this gap, imputation of count 

zeros from compositional data has been purposed (Martín-Fernández et al., 2015). Assigning 

weights to taxa according to the relative abundance in CLR transformation could be 

misleading. The complexity of synergic or antagonist interrelations between microorganisms 

is still under study and might be more cautious to approach each taxon equally. In other 

words, a low relative abundance of a given microorganism could have a huge effect on other. 

 

Causality 

 Studies addressing the effect of microbiome on phenotypes of interest have recently 

boosted (Huws et al., 2018); However, the extent whether those associations are causal rather 
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than casual have not been clarified yet (Newbold and Ramos-Morales, 2020). There are 

specific cases in which causation could be inferred based on biological facts. For instance: 

archaeas are the unique microorganism capable to carry out biological methane production 

(Enzmann et al., 2018; Lyu et al., 2018). All methane originated in a given ecological niche 

should be generated from archaeas. This biological phenomenon offers the opportunity to 

assess causality from the archaea-methane relationship. Concerning the enteric methane 

produced inside the gastro-intestinal tract of ruminants, an unidirectional effect (known as 

recursive effect) between traits is expected, in which relative abundance of archaea 

recursively cause methane, without any feedback from methane affecting archaea. A 

bidirectional simultaneous effect could be feasible if methane does not leave the rumen, 

causing a negative feedback over archaea methane production. However, methane does leave 

rumen, turning this latter scenario into a biological unplausible pathway direction. Specific 

statistical models could be valuable to infer causality from hypothesized models in this 

particular case or in similar cases.    

 

Single vs whole approaches 

Metagenomic studies are frequently focus on independent effect of singular taxa over 

phenotypic complex traits. Besides, rumen microbiota is frequently expressed in microbiome 

studies as the relative abundance of each taxonomically classified microorganism. Therefore, 

effects and heritabilities estimates of rumen microbiota are independently expressed for the 

relative abundance of single taxonomic classifications (Difford et al., 2018; Wallace et al., 

2019). Nevertheless, it is necessary to incorporate the whole microbiome into statistical 

models to assess its entire association with complex traits. Host genetics and microbiome has 

been approached so far as univariate relationships instead of as host-metagenome holobiont; 

however, a more realistic approach would be to analyze the holobiont as whole, rather than 

as independent organisms. Aggregation of microbiome into microbiota relationship matrices 

could be feasible, but the performance of those matrices should be assessed, in terms of 

plausibility and ability to capture phenotypic variance. 
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Dimensionality reduction  

Microbiome data analysis requires handling big data. Metagenomic data are usually 

composed by high dimension matrices, which in turn requires costume made statistical 

management. Metagenomic data implies complex relationship between microorganisms in 

continuous change. Those relationships are attempted to be deciphered from large sparse 

compositional data obtained from sequencing procedures. The best statistical approaches to 

analyze this kind of data are still unclear and remain under study. Multivariate methods could 

be useful to deal with metagenomic data. Principal Component Analysis (PCA) is a 

multivariate technic used to reduce dimensionality and condense most of the variance from 

interrelated variables. It transform the original data set into uncorrelated subjacent variables, 

the principal components (PCs), which are ordered so that the first few retain most of the 

variation present in all the original variables (Jolliffe, 2002). In PCA, the number of extracted 

PCs is equal or lower to the number of original variables; commonly, the number of PCs to 

be kept can be selected by: 1) The variance explained by the PCs, 2) The number of PCs with 

eigenvalues higher than 1, or 3) The interpretation of the PCs structure (subjacent variables 

with biological meaning). In PCA, the algorithm generates a linear function of the elements 

of the vector of random variables having maximum variance (PC1), next it finds the linear 

function uncorrelated to PC1 having maximum variance (PC2) an so on. If a set of variables 

are substantially correlated between each other, then the first few PCs will account for most 

of the variance from the original variables (Jolliffe, 2002). Metagenomic variables are usually 

correlated, which make PCA suitable to summarize the data of taxa into PCs. Specific 

coordinates from the PCA of microbiome taxa can be assigned to each animal, it allows 

shrinking huge data sets to few, even unique, synthetic subjacent variables (PCs), which 

become an opportunity to constrain metagenome into a single vector. If these coordinates 

from the PCA are heritable and genetically correlated to some complex traits, the PCA 

coordinates could be used as phenotypes in multi-trait variance components estimation 

models, or in genomic best linear unbiased prediction (GBLUP) animal models, in order to 

perform metagenomic predictions of correlated traits of interest in animal breeding programs.  
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Implementation 

A trait can be included into an animal breeding program if the trait has an heritable 

component or is genetically correlated with another heritable trait. However, the microbiome 

is a difficult trait to measure. If the microbiome is to be included into animal breeding 

programs, a reference population containing microbiota information, as well as phenotypic 

and genotypic information, is to be generated in order to establish associations between 

microbiome, phenotype and genotype. One of the cumbersome issues of including 

microbiome in breeding programs is the sparsity and large dimension of microbiota 

information, which possess the challenge of aggregate microbiota into few variables in order 

to be able to use it in animal breeding programs. The approach to condense the whole 

microbiome information into a phenotype, capturing as much as possible of variance from 

the original variables might be the way of including microbiome as a phenotype, However, 

the heritability of these aggregated variables and its genetic correlations with traits of interest 

need to be evaluated. 
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Three research groups including the Department of Animal Production of the Basque 

Institute for Agricultural Research and Development (NEIKER)-Basque Research and 

Technology Alliance (BRTA), National Confederation of Associations of Spanish Friesian 

(CONAFE) and National Institution of Agri-Food Research and Technology (INIA) were 

involved in the RTA2015-00022-C03 (METALGEN) project; from the national plan of 

research, development, and innovation 2013-2020. Each group leaded the obtention of 

phenotypes (NEIKER-BRTA), genotypes (CONAFE), and rumen microbiota composition 

(INIA) from dairy cows of 14 commercial herds at four regions of the Northern Spain (País 

Vasco, Cantabria, Navarra, and Gerona). The project was focused on improvement of feed 

efficiency and mitigation of greenhouse gases emissions in dairy cattle. The current study 

approached the genotype-microbiota-phenotype relationship, through different statistical 

methodologies and through variance component estimation. Methane emission were used as 

the target phenotype, to clarify that complex interrelation. A partial genomic control of 

microbiota composition and methane emissions was evidenced, with the latter being also 

modulated by the microbiota composition. The findings of this thesis contribute to the 

understanding of genotype-microbiota-phenotype relationship. This study also provides 

information on the possible inclusion of microbiota composition as a proxy for methane 

emissions and other correlated traits of interest through genomic selection in animal breeding 

programs.  

 

SPECIFIC OBJECTIVES OF THIS THESIS 

 

1. To identify risk factors and quantify their effects on high methane emissions in dairy 

cattle. 

2. To develop statistical models to jointly analyze host genotype and ruminal microbiota 

information in bovines. 

3. Variance components estimation for the genotype and microbiota in complex traits 

of productive interest. 

4. To tackle the problem of compositional data in metagenomics. 

5. To propose the implementation of genetic evaluations including microbiota 

information. 
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ABSTRACT 

Mitigation of methane emissions from dairy cattle is relevant to reduce environment 

impact and increase profitability through improvement of energy usage. The objective of this 

study was to estimate how microbiome composition determines large methane concentration 

(MET) and methane intensity (MI, ppm CH4/kg Milk) in comparison to more traditional 

proxies (i.e. milk yield and conformation traits). A total of 1359 Holstein cows from 17 herds 

in 4 northern regions of Spain were included in this study, the microbiome composition data 

was a subset containing 437 cows from 14 herds. Cows were classified in quartiles for MET 

and MI, according to individual records of methane measurements during the cow’s visit to 

the automatic milking system unit. A probit approach under a Markov chain Monte Carlo 

(McMC) Bayesian framework was used to determine risk factors for high MET and high MI. 

Genetic merit for methane concentration and microbiome composition (86 phylum and 1240 

genus) were the main drivers for a cow to be classified as high MET and MI. Reducing MET 

and MI genetic merit by unit of standard deviation (SD) reduced the probability of being 

classified in the upper quartile by 35.2% (33.9% to 36.4%) and 28.8% (27.6% to 29.6%), 

respectively. A reduction in probabilities was observed as the relative abundance of most 

bacteria increased (i.e., Firmicutes 9.9% (8.3 to 11.3) for MET and 7.1% (6.2 to 8.2) for MI, 

per unit of SD). An opposite effect occurred with Eukaryotes. Larger abundance of most 

eukaryote became a risk factor to be classified as a high emitter animal (i.e., Oomycetes 

14.2% (11.7% to 16.4%) for MET and 11.8% (9.4% to 14.0%) for MI, per unit of SD). An 

increment of one unit of SD in milk yield increased the probability of being classified in the 

upper quartile for MET by 3.7% (2.3% to 4.2%) and reduced the probability for MI by 12.6% 

(12.2% to 13.3%). Structure and capacity traits were not main drivers of being classified in 

the higher quartile of methane emission and intensity, with risk odds lower than 2% per unit 

of SD. After genetic merit, microbiome composition was the most relevant risk factor for 

larger methane emissions. This study suggests that mitigation of MET and MI could be 

addressed through animal breeding programs including genetic merits and strategies that 

modulate the microbiome.  

Keywords: genomic selection, methane emission, microbiome, risk factor. 
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INTRODUCTION 

 

Methane (CH4) is a short live (8 years) climate greenhouse gas GHG (Allen et al., 

2018). It has a short lifetime in the atmosphere, which might allow evaluating the 

effectiveness of directed actions towards its mitigation in a short period of time, compared 

to other GHGs. A rapid response of CH4 levels is to be expected from successful approaches 

that preclude possible rising dynamics and even turn the slope in the desired downward 

direction. Every sector dealing with methane emissions should be capable of evaluate 

approaches to reduce its emissions, and consequently, its impact on environment.  

 Ruminants are methane emitters, with higher rates in large ruminants  (Clauss et al., 

2020), therefore it is an ethical duty for people involved in livestock to tackle methane 

emissions, leading to more sustainable productive systems. In the dairy industry, the 

productive performance of cows is of special interest because of its impact on economic 

retribution to the farmer; while methane emission reduction gives none currently economic 

revenue, other than the expectancy of increase productive performance trough better 

pathways in the usage of energy (Johnson and Johnson, 1995). This remarks the importance 

of approach the methane emission reduction through technics that allows combining an 

environmentally responsible production with competitive productive performance of the 

animals. 

There are mainly two different thinking pathways about methane emissions in 

livestock. The first is a strictly “environmental” approach. This one is focused on total 

methane production, regardless its relationship with yield. A second approach is based on 

methane production per unit of product, which evaluates MI regarding to the production of 

the animal. The latter approach is often considered more balanced, as it takes into account 

the aim of domesticated ruminants. The variability for methane production between cows 

provides some potential in reducing methane emissions with management and genetic 

selection. The evidence supporting that methane emissions are partially driven by the cow’s 

additive genetic effect (Difford et al., 2018; Saborío-Montero et al., 2020) could be used as 

an advantage to mitigate this problem. Genomic selection might be a sustainable approach to 

maintain high productive performance while a reduction of methane emissions takes place.  
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The epidemiological approach of risk factors determination has been applied as a tool 

to identify, describe and quantify disease causative variables in dairy cattle (Saborío-Montero 

et al., 2017). Disease definition from a health management perspective has increased its 

boundaries, to consider any factor limiting animal or herd performance as a component of 

disease (LeBlanc et al., 2006). High methane emissions reduce animal performance through 

energy lost (Johnson and Johnson, 1995). Therefore, we considered methane emissions as a 

trait that can be analyzed under a risk factor approach to identify and measure the effect of 

some potential factors. A plethora of factors have been associated as proxies for enteric 

methane emissions in livestock (Knapp et al., 2014; Negussie et al., 2017). Metagenomic 

profiles are a most recent topic associated to methane emissions, that has become popular in 

the last decade, due to advances like nanopore methodologies, which enables the 

determination of microorganisms from all taxonomic domains (Saborío-Montero et al., 

2020).  

At the best of our knowledge, a risk factors approach on methane emissions has not 

been implemented yet. Here, we considered some low-cost proxies that are easy to measure, 

commonly recorded traits in dairy production systems (milk yield and composition, 

conformation traits), as well as some more complex traits (rumen metagenome, MET and MI 

genetic merits) with larger associated costs. The aim of this study was to contribute to the 

identification of methane emissions risk factors in dairy cattle and quantify their effect on the 

probability of a cow being classified as high methane emitter.  

 

MATERIALS AND METHODS 

 

Ethical and animal welfare statement 

This study was approved by the Basque Institute for Agricultural Research and 

Development Ethics Committee (Neiker-OEBA-2017-004) on March 28, 2017. This study 

was carried out in accordance with Spanish Royal Decree 53/2013 for the protection of 

animals used for experimental and other scientific purposes. 
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Study design, population, and data 

An observational study with a total of 1359 lactating Holstein cows was developed 

to determine risk factors associated to methane emissions. Cows were from 17 commercial 

herds in four regions of northern Spain (Basque Country, Cantabria, Girona and Navarre). 

The microbiome data was a subset containing 437 cows (≤ second lactation) from 14 herds. 

Methane concentration (ppm CH4) was measured using Guardian® NG infrared gas monitor 

(Edinburgh Sensors; measure range 0-1%), a non-dispersive infrared methane detector as 

described by Rey et al. (2019). Briefly, the device was installed within the feed bin of the 

automatic milking system, allowing the measurements for each cow, at every milking. MET 

in breath samples was measured individually for each cow during 2 to 3 weeks period. A 

single methane record per cow was obtained by averaging the eructation peaks recorded. 

Traits related to milk yield and composition were available for all herds at this sample period, 

through a test-day recording, as part of the official test day recording scheme. Conformation 

traits were facilitated by the Spanish Holstein Association (CONAFE). Cows were scored (1 

to 9 points categorical scale, with one-unit increments), by CONAFE’s official qualifiers, 

during their first lactation. Information regarding rumen content samples acquisition and 

sequencing are described in Saborío-Montero et al. (2021a, 2021b). 

 

Single step models for genomic BLUP (ssGBLUP) 

A single-step genomic BLUP was performed for estimating solutions for methane 

production (ppm CH4) and MI (ppm CH4/kg milk) combining pedigree and genomic 

relationships between animals following the model: 

y = Xb + Zu + e  

 

where y was a n × 1 vector of phenotypic records either for MET or MI, b denoted 

the vector of systematic effects with incidence matrix X, u was the vector of direct additive 

genetic effects assumed distributed as u ~ N (0, H𝜎𝑢
2) with H being the numerator 

relationship matrix based on a combination of pedigree and genomic relationships, as 

suggested by Legarra et al. (2014). Then 𝜎𝑢
2 was the additive genetic variance, Z the 
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corresponding incidence matrix. Finally, e was a 1 × n vector of residuals e ~N (0, I𝜎𝑒
2), 

where I was an identity matrix of appropriate order and 𝜎𝑒
2 the residual variance.  

Cows were genotyped using the EuroG 10K and EuroGMD 12k SNP chip from 

Illumina (Illumina, San Diego, California, USA), and then imputed to 54,609 SNPs (Bovine 

50k SNP chip, Illumina, San Diego, California, USA). The BEAGLE software (Browning et 

al., 2018) was used for imputation, using 3669 animals from a Spanish reference population 

provided by CONAFE (Jiménez-Montero et al. 2013). Monomorphic SNPs and those with 

MAF<0.05 were filtered out from the analysis, resulting in 42,372 SNPs left for the analyses. 

A genomic relationship matrix (G) was built following method 2 of VanRaden (2008). 

Pedigree records for all animals were also traced back to a final dataset of 2,619 animals. 

Results from the ssGBLUP were transformed to a ranking scale (GEBVs) for MET 

and MI, with lower genetic merit values for animals with higher MET and MI. 

 

Statistical analysis  

Methane phenotypes were categorized in quartiles (low, middle-low, middle-high, 

and high). Descriptive statistics of means and standard deviations were obtained for every 

factor according to response variable category. 

The statistical analyses were performed using a threshold probit model approach 

under a Markov chain Monte Carlo (MCMC) Bayesian framework (Gianola, 1982; Gianola 

y Foulley, 1983). Threshold models assume that a categorical response variable has a 

subjacent continuous distribution for a random variable named liability (λ). Likewise, the 

observed response y takes the value j when λ is greater than or equal to Tj-1 and less than Tj 

where Tj-1 and Tj are thresholds, with  𝑇0 and 𝑇4 being −∞ and ∞, respectively. 

 

𝑦 =  {

1, 𝑖𝑓 𝑇0 < λ𝑖 < 𝑇1 
2, 𝑖𝑓 𝑇1 ≤ λ𝑖 < 𝑇2 
3, 𝑖𝑓 𝑇2 ≤ λ𝑖 < 𝑇3 
4, 𝑖𝑓 𝑇3 ≤ λ𝑖 < 𝑇4

 

 

Variance of the liability distribution was set to an arbitrary value of one: λ ∼ N (μ+Xb, 

1). The first and second thresholds were arbitrarily set to zero and 1 for the model to be 

identifiable, while the third threshold was estimated. 
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A set of potential risk factors were independently included into a threshold-liability 

model (Gianola, 1982), to analyze and compare their effects on classifying a cow in the upper 

quartile of MET and MI. The statistical model for MET and MI outcome was described as: 

 

λ𝑖𝑗𝑘𝑙𝑚𝑛 = 𝜇 + RF𝑗 + DIM𝑘 + DIM2𝑙 + HR𝑚 + e𝑖𝑗𝑘𝑙𝑚𝑛 

 

Where λ𝑖𝑗𝑘𝑙𝑚𝑛𝑜 was the corresponding liability of the observation, either for MET or 

MI, 𝜇 was the population mean, 𝑅𝐹𝑗 was the risk factor of interest, 𝐷𝐼𝑀𝑘  was a covariate of 

days in milk, 𝐷𝐼𝑀2𝑙 was a covariable of the quadratic effect of days in milk, 𝐻𝑅𝑚 was the 

effect of herd-robot of methane recording (24 levels) and 𝑒𝑖𝑗𝑘𝑙𝑚𝑛 was the randomly 

distributed residual error with mean zero and residual variance set to 1. Each risk factor was 

independently analysed, and were: milk yield (kg/d), fat (%) and protein (%), conformation 

traits of overall structure and capacity value (summatory scores from the variables 

conforming the index), stature (1 to 9 scale), chest width (1 to 9 scale), loin strength (1 to 9 

scale), body depth (1 to 9 scale), body weight (kg), body condition score (BCS) (1 to 9 scale), 

genetic merit (GEBVs) for MET and MI (mean = 100, SD =10 scale; higher values represent 

lower MET or MI) from the ssGBLUP described above, and finally the centered log-ratio 

transformed relative abundances (%) of 86 phylum (replaced by class when no phylum 

assigned in NCBI) and 1240 features at genus taxonomic level. The described models were 

implemented using the TM package (Legarra et al., 2011). Each analysis consisted of a single 

chain of 60,000 iterations, discarding the first 10,000 samples. Burn-in period and chain 

length were determined by the convergence observed in trace plots. The lag period (thin) was 

10 samples, keeping 5000 samples for final inferences. 

 

Probability estimation  

 The probability for a cow of being classified in the upper quartile for MET or MI was 

based on the probability of overpassing the threshold separating categories 3 and 4 on the 

observed scale (𝑇3), and was estimated as follows:  

 

𝑃 = 1 − 𝐹(𝑇3 − 𝛽𝑖) 
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Where, 𝐹 was the standard normal cumulative distribution function, and 𝛽𝑖 was the 

posterior mean on the underlying scale for each analyzed risk factor. The lower and upper 

bounds of the probability intervals (PI) of being classified as high for MET or MI were 

calculated as: 

 

𝑃𝐼 = 1 − 𝐹(𝑇3 − (𝛽𝑖 ± 𝑃𝑆𝐸)) 

 

 where, PSE was the standard error of the posterior distribution, after burn-in, 

associated to the solution (𝛽𝑖) on the underlying scale. Probability change, expressed in 

percentage, was calculated as the difference between the probability estimated by the model 

including the potential risk factor and the probability estimated by the benchmark model, and 

then multiplied by a 100 factor. An standardization was also applied to the estimated 

probability differences, in order to remove the noise from different scales of measurement. 

The standard deviation from each variable was multiplied by the corresponding probability 

difference, leading to probability differences per unit of standard deviation (SD) of the risk 

factor.  
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RESULTS AND DISCUSSION 

 

Descriptive statistics  

 The descriptive statistics according to group for MET and MI are shown in Table 1 

and Table 2, respectively.  

Table 1. Descriptive summary of means and their standard deviation of potential risk factors 

according to quartile group for methane concentration (MET) from 1359 dairy cows.  
Variables*  Group of MET (ppm CH4) 

 Low Middle-Low Middle-High High 

Milk yield (kg)  36.78 (9.93)  36.13 (9.52)  37.85 (9.74)  38.04 (10.22) 

Milk Fat (%)   3.55 (0.96)   3.64 (0.84)   3.59 (0.87)   3.66 (0.90) 

Milk Protein (%)   3.23 (0.36)   3.29 (0.49)   3.28 (0.38)   3.24 (0.41) 

Overall Structure and Capacity (Score 1 - 100)   81.48 (2.94)   81.82 (3.26)   81.73 (3.07)   81.86 (3.35) 

Stature (Score 1 - 9)  5.79 (1.49)  5.77 (1.49)  5.70 (1.41)  5.82 (1.57) 

Chest Width (Score 1 - 9)   5.33 (1.08)   5.50 (1.20)   5.44 (1.05)   5.52 (1.14) 

Loin Strength (Score 1 - 9)   5.36 (1.16)   5.39 (1.23)   5.40 (1.24)   5.43 (1.16) 

Body Depth (Score 1 - 9)   5.38 (1.11)   5.54 (1.08)   5.55 (1.01)   5.53 (1.09) 

Body Weight (kg) 597.72 (27.76) 601.10 (29.95) 600.03 (27.26) 602.66 (30.86) 

BCS (Score 1 - 9) 5.10 (1.01) 5.38 (1.07) 5.23 (0.95) 5.27 (0.99) 

Methane (ppm) 850.59 (132.70) 1128.13 (63.48) 1364.07 (77.08) 1807.74 (287.92) 

GEBV (MET) (Scale centered in 100 (SD = 10)) 109.46 (7.00) 103.17 (6.39)  98.76 (5.65)  88.79 (8.44) 

*Each group has 340 observations except for group Middle-High with 339 observations. 

GEBVs are in a scale centered in 100 (SD = 10) with lower values for high emitting animals. 

The measurement units for the overall variables are the summatory scores from the variables 

conforming the index.  
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Table 2. Descriptive summary of means and their standard deviation of potential risk factors 

according to quartile group for methane intensity (MI) from 1359 dairy cows.  
Variables* Group of MI (ppm CH4 / kg milk) 

 Low Middle-Low Middle-High High 

Milk yield (kg)  44.77 (8.97)  40.04 (7.41)  35.34 (7.97)  28.65 (7.06) 

Milk Fat (%)   3.32 (0.86)   3.48 (0.78)   3.63 (0.89)   4.01 (0.90) 

Milk Protein (%)   3.12 (0.28)   3.21 (0.28)   3.26 (0.45)   3.45 (0.50) 

Overall Structure and Capacity (Score 1 - 100)   81.75 (3.08)   81.80 (3.09)   81.53 (3.05)   81.81 (3.40) 

Stature (Score 1 - 9)  5.91 (1.39)  5.76 (1.54)  5.66 (1.50)  5.75 (1.53) 

Chest Width (Score 1 - 9)   5.37 (1.14)   5.45 (1.16)   5.43 (1.02)   5.54 (1.15) 

Loin Strength (Score 1 - 9)   5.35 (1.25)   5.36 (1.16)   5.42 (1.22)   5.47 (1.16) 

Body Depth (Score 1 - 9)   5.48 (1.12)   5.51 (1.03)   5.47 (1.06)   5.54 (1.07) 

Body Weight (kg) 599.71 (29.15) 600.28 (29.07) 599.46 (28.31) 602.05 (29.59) 

BCS (Score 1 - 9) 5.19 (0.97) 5.20 (1.06) 5.34 (1.00) 5.25 (1.02) 

Methane (ppm/kg milk) 21.36 (3.73) 30.22 (1.98) 38.60 (3.06) 58.69 (15.62) 

GEBV (MI) (Scale centered in 100 (SD = 10)) 107.09 (7.46) 101.58 (7.54)  98.20 (9.09)  91.48 (10.94) 

*Each group has 340 observations except for group Middle-High with 339 observations. 

GEBVs are in a scale centered in 100 (SD = 10) with lower values for high emitting animals. 

The measurement units for the overall variables are the summatory scores from the variables 

conforming the index.  

 

 

 The relative abundance of the microbial superkingdom in the rumen microbiota are 

described in Table 3 for each quartile group of MET and MI.  

 

Table 3. Descriptive summary of relative abundance (%) of microbiota superkingdom 

according to quartile group of methane concentration (MET) and methane intensity (MI) 

from 437 dairy cows.  

 Group of MET (ppm CH4) 

Superkingdom Low Middle-Low Middle-High High 

Archaea 0.19 0.22 0.21 0.21 

Bacteria 94.16 93.39 92.58 92.48 

Eukaryote 5.65 6.39 7.21 7.31 

 Group of MI (ppm CH4 / kg milk) 

Superkingdom Low Middle-Low Middle-High High 

Archaea 0.22 0.19 0.21 0.22 

Bacteria 94.25 93.34 92.59 92.38 

Eukaryote 5.53 6.47 7.20 7.40 

 

The relative abundance of eukaryotes showed an uplifting trend as groups increased 

from low to high MET or MI. Consequently, the average abundance of bacteria decreased 

proportionally from low to high MET and MI, which implies larger Eukaryote/Bacteria ratio 
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in groups with larger MET or higher MI. The means in archaea superkingdom by quartile 

remained close to a modest value of 0.20%, regardless the group of MET or MI. 

 The correlation for genetic merit scores between MET and MI was high and positive 

(0.84). The genetic merit for MET and MI allowed to evaluate, at a genetic level, the potential 

effect of the animal’s genetic background as a risk factor for both traits.   

    

Threshold models  

The use of non-linear mixed models based in threshold theory has been proposed as 

more appropriate alternative to linear models for the analysis of categorical traits  (Gianola, 

1982; Gianola y Foulley, 1983) and extensively compared between both approaches in 

posterior studies (Kadarmideen et al., 2000; González-Recio y Alenda, 2005; Saborío-

Montero et al., 2018).  Results from the threshold model for the potential risk factors analysis 

are described in subsequent sections. 

 

Milk yield and composition  

Results from the threshold model showed that an increment in milk yield was 

associated to larger MET, with slight increments in the probability of being classified in the 

upper quartile (Figure 1A). The slight increase of probability agreed with previous studies, 

which stated that methane production in dairy cattle is not well predicted by milk yield alone 

(Negussie et al., 2017; Niu et al., 2018). Other studies reported low to moderate positive 

genetic correlations between those traits (Breider et al., 2019; López-Paredes et al., 2020), 

pointing milk yield as a poor predictor of methane emissions.  

Milk fat percentage was positively associated to MET, with increased probability of 

being classified in the high methane emissions group when milk fat percentage increased 

(Figure 1A). This is consistent with previous studies that showed positive correlations 

between methane emissions and milk fat content (Moate et al., 2018; Bougouin et al., 2019). 

Rumen acetate enhance de novo milk fat synthesis; this process requires a carbon source, 

mainly acetate and β-hydroxybutyrate, as well as NADPH+H+, primarily from glucose and 

acetate (Bauman and Davis, 1974). Rumen acetate also enhance hydrogenogenesis (Moraes 

et al., 2014). The latter process is biologically linked to methane emissions through hydrogen 
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supply for hydrogenotrophic methanogens (Moraes et al., 2014; Danielsson et al., 2017). 

Those biological relationships support the finding of positive association between milk fat 

percentage and methane emissions. Conversely, in the MI (ppm CH4/kg milk) analysis, milk 

yield was a protector factor. The probability of being classified in the upper quartile was 

lower per unit of SD for milk yield, showing a large protective effect (Figure 1B). Other 

studies also showed negative associations between milk yield and MI (Kandel et al., 2017). 

Jiao et al. (2014) showed that MI decreased with larger milk yield level in grazing dairy cattle 

fed with higher doses of concentrate. A low forage/concentrate diet reduce rumen pH, 

affecting microbial fermentation process (Bauman and Griinari, 2001). These results in an 

acetate to propionate ratio reduction (Danielsson et al., 2017), causing a diminish to the 

overall MI due to a lack of substrate (acetate) for hydrogenotrophic methanogens (Moraes et 

al., 2014; Danielsson et al., 2017). It can also affect the protozoal composition through 

inhibiting methanogens growth and activity (Martin et al., 2010). Besides, there is a direct 

effect on MI reduction due to the increase in milk yield, that straightforward influences the 

calculation of MI.  

Percentages of milk protein and milk fat increased the probability of a cow being 

classified in the upper quartile for MI by 7.03% per unit of SD in milk protein percentage 

and by 6.45% per unit of SD in milk fat percentage (Figure 1B). These results are consistent 

with a dilution effect on milk components, reducing fat and protein percentages, in high 

producing cows, and a concentration effect, causing increments on milk fat and protein 

percentages on low producing cows, as evidenced in Table 2. Volatile fatty acids are related 

to milk components (Liu et al., 2018) and methane emissions (Williams et al., 2019), with 

acetate positively correlated to milk fat content (Urrutia and Harvatine, 2017), as well as with 

milk protein synthesis (Zhao et al., 2019) and methanogenesis (Lopes et al., 2016). Acetate 

and leucine interact synergically in the up-regulation of milk protein synthesis (Zhao et al., 

2019), the positive association of acetate with milk fat and milk protein, as well as with 

methane emissions, might explain the findings of milk fat and milk protein as risk factors for 

MI in the present study.    
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Figure 1. Change in the probability of a cow being classified in the upper quartile for methane concentration (ppm CH4) and methane 

intensity (ppm CH4 / kg milk) per unit of increment in the risk factor corrected for standard deviation for methane concentration (A) and 

methane intensity (B). Black dashed lines indicate the baseline probability of being classified in the upper quartiles without any variable 

effect. Probability intervals are depicted for each risk factors. BCS=Body condition score, GEBV_CH4_ppm/kg= Genetic merit for 

methane intensity (MI), GEBV_CH4_ppm=Genetic merit for methane concentration (MET), CH4_GEBV=Genetic merit for methane 

traits, Milk=Milk related traits, Str_and_Cap= Structure and capacity related traits.
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Conformation traits  

Seven conformation traits, related to structure and capacity, were associated to larger 

MET (Figure 1A). An increment of one unit of SD in the score of these traits increased the 

probability of a cow being classified in the upper quartile for MET (body weight (2.03%), 

body depth (1.85%), chest width (1.59%), BCS (1.40%), overall structure and capacity 

(1.36%), loin strength (1.28%) and stature (1.03%)). Larger cows have higher energy 

demands and intake levels (Li et al., 2018), hence larger probability of being classified in the 

upper quartile for MET (Figure 1). Similar results were observed in previous studies that 

studied the phenotypic (Yin et al., 2015) or genetic (Pszczola et al., 2019; López-Paredes et 

al., 2020) (López-Paredes et al., 2020; Pszczola et al., 2019) association between 

conformation traits and methane.  

The probability of being classified in the upper quartile for MI increased with the 

increment by one unit of SD for BCS (0.53%) and chest width (0.53%). A reduction in that 

probability was observed per unit of body depth (0.74%) and stature (0.78%), presumably by 

a correlated response on milk yield and feed intake in larger animals. The increase in milk 

yield attenuates the emission per kg of milk by increasing the denominator of the response 

variable. Structure and capacity traits increased the risk for high MET, with a lesser effect 

over high MI. These traits could be modified through genetic selection, with an impact on 

methane emissions. However, the effect over correlated traits of interest such as milk yield 

and composition should be analyzed before including these traits into breeding programs. 

The extent to which structure and conformation affect both methane traits was marginal 

compared to the genetic merit.  

 

Additive genetic effect 

Larger values for genetic merits decreased the risk of being classified in the upper 

quartile for MET and MI. The genetic merit reduced the probabilities of being classified in 

the upper quartile for MET by 35.2% (Figure 1A) and by 13.1% for MI (Figure 1B) per unit 

of SD. Conversely, cows with lower genetic merit for MET and MI were more likely 

classified in the higher categories, as expected. 
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The genetic merit was the main driver for reducing the probability of being classified 

in the upper quartile for MET and MI, compared to all productive and conformation 

phenotypic traits analyzed, when measurement scales were standardized. In dairy cattle, 

methane emissions are partially controlled by the additive genetic effect of the cow (Difford 

et al., 2018; Saborío-Montero et al., 2020), plus external inherent conditions affecting each 

individual (Knapp et al., 2014). Direct genetic merit of the cow was the variable that best 

explained the methane production level of a cow. Our results provide evidence of the 

existence of a genetic effect of the animal over its methane emissions, it also allows the 

comparison of the relative impact of the genetic and environmental factors over this complex 

trait.  

 

Microbiome  

Microbiome showed the largest phenotypic risk factor effect in this study. Ciliate 

protozoa and fungi were among the top 5 taxonomic features with the highest increment in 

the probability of a cow being classified in the upper quartile for MET and MI, according to 

an increment of one unit of SD in their relative abundances. For instance, a one unit of SD in 

Chytridiomycota relative abundance, increased that probability in 13.42% for MET and 

12.33% for MI (Figure 2). This phylum includes the Neocallimastigomycetes class 

(Spatafora et al., 2016) which in turn, contain Pyromyces spp. and Neocallimastix spp., a 

couple of genera associated to the presence of Methanobrevibacter spp. (Jin et al., 2011). 

The utility of Chytridiomycota phylum and other taxonomic features (i.e. Oomycetes, 

Mucoromycota, Heterotrichea, Oligohymenophorea and Spirotrichea), as rumen microbiota 

markers for methane emissions should be further studied given its high influence as a risk 

factor for MET and MI obtained in this study, as well as previous evidence of genera from 

this phylum associated to methanogenic archaea. The phyla with the largest reduction in the 

probability of a cow being classified in the upper quartile for both traits per unit of SD were 

Proteobacteria and Firmicutes, with a 10.02% and 9.91% reduction for MET, and a 7.08% 

and 7.12% reduction for MI, respectively (Figure 2). 
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Figure 2. Change in the probability of a cow being classified in the upper quartile for (A) methane concentration (ppm CH4) and (B) 

methane intensity (ppm CH4/kg milk) per standard deviation unit of 86 phyla colored by superkingdom. Black dashed line indicates the 

baseline probability of being classified in the upper quartiles without any phylum effect. Probability intervals based on posterior standard 

deviations are depicted for all phyla. 
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The results of the microbiota analysis at the phylum level indicated that the 

probability of being classified as high methane emitter for MET and MI was larger in cows 

with larger relative abundance of Eukaryote phyla (Figure 2). Previous studies showed 

associations between rumen protozoa and methane emissions (Guyader et al., 2014). There 

is a plausible biological mechanism underlying this relationship as some eukaryote microbes 

host archaea inside their cells. Archaea living in Eukaryotes are surrounded by mitochondria-

like structures called “hydrogenosomes”, these structures supply archaeas with hydrogen, 

which is then transformed into methane as an end-product from carbon dioxide reduction that 

takes place inside the archaea (Shinzato et al., 2010). Therefore, the larger the abundance of 

eukaryotes, the larger substrate places for methanogenic archaea into the rumen microbiota. 

Most of the bacteria phyla reduced the probability of being classified as high methane emitter, 

both for MET and MI per unit of SD in its relative abundance. Similar results were observed 

in a previous study that associated bacteria with methane emissions (Aguilar-Marin et al., 

2020). This study proposed that higher abundances of ruminal Prevotella spp. compete with 

methanogens for hydrogen utilization, redirecting it for propionic acid production, and 

therefore reducing the amount of hydrogen available for methanogenesis. 

A similar pattern was observed for the 1240 genera analysed (Figure 3), with higher 

probabilities of being classified in the upper quartile for MET and MI as the SD of relative 

abundance of Eukaryotes increased. Lower probabilities of being classified in the upper 

quartile for MET and MI were found as the relative abundances of genera standardized for 

SD from most bacteria increased (Figure 3).  
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Figure 3. Change in the probability of being classified in the upper quartile for (A) methane concentration (ppm CH4) and (B) methane 

intensity (ppm CH4/kg milk) per unit of increment in relative abundance (%) of 1240 genera colored by superkingdom. Black dashed 

line indicates the baseline probability of being classified in the upper quartiles without any genus effect. All the archaea genera are 

explicitly indicated. Probability intervals based on posterior standard deviations are depicted in gray for all genera. 
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The top 10 eukaryote genera that caused larger increment in the probability of being 

classified in the upper quartile for MET and MI per SD unit of increment in their relative 

abundance were ciliate protozoa from the Ciliophora phylum and two fungi (Neocallimastix 

and Piromyces) from the Neocallimastigomycetes class (Table 4). 

 

Table 4. Increment of probability of a cow being classified in the upper quartile for methane 

concentration (MET) and methane intensity (MI) according to a unit of increment in the SD 

of the relative abundance of the top 10 risk factors from eukaryote genera. 

MET (ppm CH4)  

Genera Mean (%) LB1 (%) UB2 (%) 

Paramecium spp. 12.7 10.6 15.5 

Tritrichomonas spp. 12.6 11.5 14.4 

Stentor spp. 12.3 10.4 15.0 

Oxytricha spp. 12.2 10.3 14.8 

Neocallimastix spp.3 12.1 10.2 14.2 

Pseudocohnilembus spp. 12.1 10.5 14.2 

Tetrahymena spp. 12.0 10.1 13.9 

Ichthyophthirius spp. 11.8 10.3 14.0 

Entamoeba spp. 11.8 9.8 12.9 

Planoprotostelium spp. 11.2 9.5 12.7 

MI (ppm CH4 / kg milk)  

Genera Mean (%) LB (%)  UB (%) 

Stentor spp. 12.9 10.2 15.6 

Oxytricha spp. 12.5 10.0 15.5 

Pseudocohnilembus spp. 12.3 9.4 15.3 

Paramecium spp. 12.2 9.7 15.1 

Ichthyophthirius spp. 11.9 9.0 14.8 

Plasmodium spp. 11.7 9.4 13.9 

Entodinium spp. 11.6 8.9 14.2 

Neocallimastix spp. 3 11.4 8.6 14.5 

Piromyces spp. 3 11.3 9.0 13.5 

Stylonychia spp. 11.0 8.4 14.1 
1LB=Lower bound, 2UB=Upper bound, 3Fungi from the Neocallimastigomycetes class. 

 

Interestingly, most of the eukaryote from the top 10 genera that caused larger increment 

in the probability of being classified in the upper quartile for MET were common for MI, 

with slight differences in their ranking order. This group of microorganisms could point to 

the joint reduction of both MET and MI, through rumen control approach of ciliate protozoa 

and fungi abundances.  



CHAPTER 3 

55 
 

There are evidences of endosymbiotic associations between methanogenic archaea and 

anaerobic ciliates protozoa, such as Entodinium spp. (Finlay et al., 1994). There is also 

information regarding hydrogenosomes in Neocallimastix spp., suggesting those structures 

as an intracellular hydrogen source for methanogenic archaea (Shinzato et al., 2010). This 

associations between eukaryote and archaea support the findings of this study, relating larger 

probabilities of being in the high category of MET and MI as eukaryote relative abundance 

increase. The protective factors that reduced the probability of a cow being classified in the 

upper quartile for MET and MI were mainly bacteria genera from the Firmicutes, 

Bacteroidetes and Proteobacteria phyla (Table 5). 

 

Table 5. Reduction of probability of a cow being classified in the upper quartile for methane 

concentration (MET) and methane intensity (MI) according to a unit of increment in the SD 

of the relative abundance of the top 10 protective factors from bacteria genera. 

MET (ppm CH4)  

Genera Mean (%) LB1 (%) UB2 (%) 

Dialister spp. 13.2 10.7 15.0 

Mitsuokella spp. 11.8 9.9 13.7 

Sutterella spp. 11.6 9.8 13.6 

Oribacterium spp. 11.5 9.3 13.7 

Megasphaera spp. 11.3 9.5 13.2 

Anaerobiospirillum spp. 10.2 8.1 11.8 

Lactobacillus spp. 9.6 7.5 11.3 

Vibrio spp. 9.5 7.6 11.4 

Hespellia spp. 9.0 7.2 10.7 

Halomonas spp. 8.9 6.7 10.4 

MI (ppm CH4 / kg milk)  

Genera Mean (%) LB1 (%) UB2 (%) 

Megasphaera spp. 9.7 8.1 11.1 

Mitsuokella spp. 9.4 7.7 11.4 

Dialister spp. 9.2 7.2 11.6 

Oribacterium spp. 8.8 7.7 9.8 

Citrobacter spp. 8.1 7.1 9.0 

Acidaminococcus spp. 8.0 5.8 9.6 

Sutterella spp. 7.6 5.8 10.0 

Colwellia spp. 7.5 5.2 9.0 

Halomonas spp. 7.3 5.6 9.6 

Aggregatibacter spp. 7.1 5.1 8.7 
1LB=Lower bound, 2UB=Upper bound. 
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The top 10 protective factors for MET and MI overlapped for 6 genera. Lower relative 

abundances of Megasphaera spp, Dialister spp. and Mitsuokella spp. had been previously 

described in higher methane emitter animals (Wallace et al., 2015). While Oribacterium spp. 

has been reported as a potential H2 sink in low methane emitter animals (Greening et al., 

2019). The Halomonas spp. genus has been qualified as a methanotroph able to degrade 

methane to ectoines (metabolites produced by some bacteria to resist salinity stress), with 

higher ectoines yields than those reported for the already known ectoines producer 

methanotrophs (Cantera et al., 2019). Concordance between bacteria protective factors might 

indicate that those genera can improve efficiency by jointly reducing MET and MI.  

The Methanobrevibacter spp., was the most relevant risk factor among archaea, for a 

cow to be classified in the upper quartile for MET by 5.05% probability increment and MI 

by 5.19% probability increment. This is a recognized hydrogenotrophic methanogenic 

archaeas previously described in rumen (Janssen and Kirs, 2008; Martínez-Álvaro et al., 

2020). In contrast, Methanomethylophylus spp. was the archaea genus with the largest 

reduction for the probability of a cow being classified in the upper quartile for MET (9.0%) 

and MI (3.4%). Methanomethylophylus spp. is a methylotrophic archaea negatively 

correlated with methane emissions in a previous study (Martínez-Álvaro et al., 2020), 

belonging to the Termoplasmata class, which has been implicated in reduced methane 

emissions from bovine rumen (Poulsen et al., 2013).  

 At the genus taxonomic level, an increase in relative abundance of some archaea 

increased the probabilities of being classified as high methane emitter. The probabilities 

linked to archaea at the genus level differed from those observed at phylum level, in which 

increments in all archaea phyla had a reductive effect of probabilities. A plausible 

explanation for this would be that there is a hidden effect of some methanogenic archaea by 

some other non-methanogenic archaea within the same phylum, resulting in an overall effect 

which is confounded at higher taxonomic levels and unmasked at more specific ones. These 

results may explain why archaea relative abundances have shown weaker or lack of 

associations with methane in previous studies (Negussie et al., 2017).  
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CONCLUSION 

Direct genetic merit of the cow was the variable that best explained the methane 

production level of a cow. Genetic merit was the most relevant protective factor that reduced 

the probability of being classified in the upper quartile for MET (35.2%) and MI (13.1%) per 

SD unit. These results evidenced its relevance as a proxy for methane emission reduction. 

The microbiota was the main phenotypic factor influencing the probability of being classified 

in the upper quartile for both methane traits.  A reduction in that probability was observed as 

the relative abundance per SD unit of most bacteria increased (i.e., ≈10% for Firmicutes and 

Proteobacteria). An opposite effect occurred with Eukaryotes. Larger abundance of most 

eukaryote became a risk factor to be classified as a high emitter animal (i.e., ≈15% for ciliate 

protozoa and fungi). A similar pattern was observed at the genus level, showing reduced 

probabilities as the relative abundances per SD unit of bacteria increased (i.e., ≈10% for 

Dialister spp., Mitsuokella spp., Sutterella spp.) and relative abundances of eukaryote 

increased (i.e., ≈12% for Stentor spp., Paramecium spp. and Oxytricha spp.). Some archaea 

genera were risk factors (i.e., ≈5% for Methanobrevibacter spp., Methanothermus spp. and 

Methanosphaera spp.) but other were protective factors (i.e., ≈10% Methanomethylophilus 

spp.) influencing the probability of being classified in the upper quartile for MET and MI, 

depending on the genus analyzed. Archaea should not be taken as a single group when 

analyzing their association with MET and MI. Milk yield increments slightly increased the 

probability of being classified in the upper quartile for MET (3.6%) and reduced that 

probability for MI (12.6%) per unit of standard deviation. The structure and capacity trait 

analysis indicated that bigger cows had larger probabilities of being classified in the upper 

quartile for MET, not so for MI, although they were not the main drivers of larger methane 

emissions. The findings from this study suggest that mitigation of MET and MI could be 

addressed from multifactorial approaches, with promising responses for genetic merits and 

microbiome modulation through nutritional and genetic management. 
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ABSTRACT 

 

The advent of metagenomics in animal breeding poses the challenge of statistically 

modeling the relationship between the microbiome, the host genetics and relevant complex 

traits.  A set of structural equation models (SEMs) of a recursive type within a Markov chain 

Monte Carlo (MCMC) framework was proposed here to jointly analyze the host-

metagenome-phenotype relationship. A non-recursive bivariate model was set as benchmark 

to compare the recursive model. The relative abundance of rumen microbes (RA), methane 

concentration (CH4) and the host genetics was used as a case of study. Data were from 337 

Holstein cows from 12 herds in the north and north-west of Spain. Microbial composition 

from each cow was obtained from whole metagenome sequencing of ruminal content samples 

using a MinION device from Oxford Nanopore Technologies. Methane concentration was 

measured with Guardian® NG infrared gas monitor from Edinburgh Sensors during cow’s 

visits to the milking automated system. A quarterly average from the methane eructation 

peaks for each cow was computed and used as phenotype for CH4. Heritability of CH4 was 

estimated at 0.12 ± 0.01 in both, the recursive and bivariate, models. Likewise, heritability 

estimates for the relative abundance of the taxa overlapped between models and ranged 

between 0.08 and 0.48. Genetic correlations between the microbial composition and CH4 

ranged from -0.76 to 0.65 in the non-recursive bivariate model and from -0.68 to 0.69 in the 

recursive model. Regardless of the statistical model used, positive genetic correlations with 

methane were estimated consistently for the 7 genera pertaining to the Ciliophora phylum, 

as well as for those genera belonging to the Euryarchaeota (Methanobrevibacter sp.), 

Chytridiomycota (Neocallimastix sp.) and Fibrobacteres (Fibrobacter sp.) phyla. These 

results suggest that rumen’s whole metagenome recursively regulate methane emissions in 

dairy cows, and that both CH4 and the microbiota compositions are partially controlled by 

the host genotype. Recursive models are an interesting approach to disentangle this complex 

relationship. 

 

Keywords: Methane emissions, recursive model, structural equations models, metagenome, 

genetic correlation. 
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INTRODUCTION 

The collection of genes and genomes from the members of a microbiota are defined 

as the metagenome. Its association with complex traits of interest has been previously 

suggested (Marchesi and Ravel, 2015). The metagenome is gaining a crescent interest in 

animal production worldwide for different purposes on several species (Thompson et al., 

2017). Previous studies have analyzed the association between the metagenome in ruminants 

(sheep, goat, beef cattle, dairy cattle, tammar wallaby) and different traits such as methane 

emissions or feed efficiency (Tapio et al., 2017). The relationship between the metagenome 

and the host genotype has also been proposed (Roehe et al., 2016; Camarinha-Silva et al., 

2017; Gonzalez-Recio, Zubiria, García-Rodríguez, Hurtado, & Atxaerandio, 2017). Previous 

studies have analyzed the relationship between the metagenome and the phenotype but 

ignoring any recursive phenotypic relationship that might exists between the involved traits 

(Difford et al., 2018; Buitenhuis et al., 2019). Analyzing the host effect on the microbiota 

and a complex trait of interest simultaneously, accounting for a recursive plausible effect 

between them, might be useful because it could lead to more realistic estimates, hence 

refining the conclusions drawn from these studies. Statistical complexity and limited 

availability of software capable to deal with this kind of relationship are among the reasons 

of the lack of studies considering this joint relationship. Thus, there is the need to consider 

simultaneously the host-metagenome-phenotype relationships. Structural equation models 

(SEM) could fill the gap in this area. They allow representing recursive or simultaneous 

mechanisms among phenotypic traits, while provide inference on the magnitude of those 

relationships (Rosa et al., 2011; Valente and de Magalhães Rosa, 2013). In SEM a trait can 

be used as a predictor of some other trait, assuming a functional link between them (Rosa et 

al., 2011).  

Applying SEM in this context may contribute in elucidating the host-metagenome-

phenotype relationships. They also assist on clarifying the direct and indirect effects of the 

microbiota on relevant complex traits. This relationship can be either recursive or 

simultaneous: a recursive system describes an unidirectional effect between traits, with one 

trait affecting the other without feedback from the latter. A simultaneous system assumes a 

feedback effect between variables, with changes of a quantity indirectly influencing the 

quantity itself  (Gianola and Sorensen, 2004). Although SEM has been extensively used in 
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animal breeding (De Los Campos et al., 2006; Wu et al., 2007; Konig et al., 2008; López de 

Maturana et al., 2008; Heringstad et al., 2009; Rosa et al., 2011; De Los Campos et al., 2014), 

their application to host-metagenome studies has not been yet referenced. 

We hypothesized that there is a recursive relationship in which the microbial 

composition affects the methane production (CH4) and both are under the host genetic 

control. Here enteric methane is used as a case of study, which is affected by the microbial 

digestion fermentation that occur in the rumen. Both CH4 and the relative abundance (RA) 

of the rumen microbes are partially controlled by the host genetics. Hence, it is rational to 

modelize a recursive effect from RA on CH4, without a feedback from CH4 over the microbial 

RA. The two traits recursive system include environmental (E) and genetic (U) effects and 

could be represented schematically as in Figure 1, where a structural coefficient 𝜆𝐶𝐻4←𝑅𝐴 

describes the rate of change of methane emissions with respect to the RA of a given genus in 

the metagenome. Under this assumption, RA has a direct recursive effect on CH4, which 

corresponds to the structural coefficient 𝜆𝐶𝐻4←𝑅𝐴. (López De Maturana et al., 2008).  

 

Figure 1. Recursive model in a two trait system between metagenome relative abundance 

(𝑦𝑀𝑖𝑐𝑟) and methane emissions(𝑦𝐶𝐻4) phenotypes. 𝑈𝑀𝑖𝑐𝑟 and 𝑈𝐶𝐻4 are additive genetic 

effects acting on the system; 𝐸𝑀𝑖𝑐𝑟 and 𝐸𝐶𝐻4 are residual effects. The single head arrows 

indicate which variable is being affected (e.g.,  𝑦𝑀𝑖𝑐𝑟→ 𝑦𝐶𝐻4  indicates that 𝑦𝐶𝐻4  is affected 

by 𝑦𝑀𝑖𝑐𝑟). The 𝜆𝐶𝐻4←𝑀𝑖𝑐𝑟 is a structural coefficient that indicate the rate of change of variable 

𝑦𝐶𝐻4 with respect to variable 𝑦𝑀𝑖𝑐𝑟. Double headed arrows denote correlations between pairs 

of variables. 
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This study plains to implement recursive SEM to analyze the host-metagenome-

phenotype relationship, and to evaluate their behavior using methane emissions in dairy cattle 

as a case of study. Traditional bivariate models were used as benchmark. 

 

MATERIALS AND METHODS 

 

This study was carried out in accordance with Spanish Royal Decree 53/2013 for the 

protection of animals used for experimental and other scientific purposes, and was approved 

by the Basque Institute for Agricultural Research and Development Ethics Committee 

(Neiker-OEBA-2017-004) on March 28, 2017. 

 

Data 

Four hundred and sixteen lactating Friesian Holstein cows (primiparous or second 

lactation) from 12 commercial farms at regions of País Vasco, Gerona and Navarra in Spain 

were included in this study. Methane emissions (ppm) were measured using a non-dispersive 

infrared methane detector (The Guardian® NG infrared gas monitor from Edinburg Sensors; 

measure range 0-1%), installed within the feed bin of the automatic milking system (AMS). 

Methane concentration in breath samples was measured individually for each cow, during 

the milking time at each cow visit to the AMS for 2-3 weeks periods. Eructation peaks 

recorded were averaged to obtain a single record per cow. During this sample period herds 

underwent a test-day recording as part of the official test day recording scheme. All traits 

related to milk yield and composition were also available.    

During the ruminal content sampling, cows were placed in individual stalls. A custom 

made mechanical device was used to raise the snout of the animal. Samples of ruminal 

content (approximately 100 ml) were extracted from each cow by introducing a stomach tube 

(18 mm diameter and 160 mm long) orally through the esophagus connected to a mechanical 

pumping unit (Vacubrand ME 2SI, Wertheim, Germany) with a 1000 ml Erlenmeyer trapped 

in-between. Samples were then stored in a sterilized container. Hose and all material in 

contact with the samples were systematically washed between cows. Samples were filtered 

through 4 layers of sterile cheesecloth, in order to remove the solid fraction and the filtered 
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fraction was frozen in liquid nitrogen (N2) vapors immediately after. Then frozen samples 

were transported to the laboratory in liquid N2 containers and stored at −80 °C until analysis. 

The samples were thawed, and then homogenized in a blender. The DNA extraction 

was performed using 250 µl from the homogenized samples with the commercial “DNeasy 

Power Soil Kit” (QIAGEN, Valencia, CA, USA). The genomic DNA concentrations and 

their purity were measured by spectrophotometry using a Nanodrop ND-1000 UV/Vis 

spectrophotometer (Nanodrop Technologies Inc., DE, USA) and also the Qubit fluorometer 

(ThermoFisher Scientific, 150 Waltham, MA, USA). 1 µg of DNA sample were analyzed 

following the 1D Native barcoding genomic DNA (with EXP-NBD104, EXP-NBD114) and 

ligation sequencing kit (SQK-LSK109) protocol from Oxford Nanopore, using the MinION 

sequencer. This device uses the variation in an ionic current to perform the base calling. This 

current is distinctively generated depending on which nucleotide from a DNA simple strand 

passes through the protein-based nanopores in a flow cell.  

Sequences were analyzed using the open-source program software DIAMOND 

(double index alignment of next-generation sequencing data), to exhaustively find all 

significant alignments. This software is based on double indexing to determine the list of all 

seeds and their locations in both the query and the protein reference sequences database; the 

two lists are sorted lexicographically and traversed together to obtain all matching seeds and 

their corresponding locations (Buchfink et al., 2014). Next, MEGAN software was used to 

compute the taxonomical content of the data set, using the National Center for Biotechnology 

Information (NCBI) taxonomy database to assign reads to a taxonomic category (Huson et 

al., 2007). 

Cows were genotyped using the EURO12K SNP chip from Illumina, and then 

imputed to 54609 SNPs (Bovine 50k SNP chip, Illumina, San Diego, California, USA) using 

BEAGLE software (http://faculty.washington.edu/browning/beagle/beagle.html), using the 

Spanish reference population provided by CONAFE (Spanish Friesian Associations 

Confederation), as described by  Jiménez-Montero, Gianola, Weigel, Alenda, & González-

Recio (2013). Monomorphic SNPs and those with MAF<0.05 were filtered out from the 

analysis.   

 

http://faculty.washington.edu/browning/beagle/beagle.html


STRUCTURAL EQUATION MODELS TO DISENTANGLE THE BIOLOGICAL RELATIONSHIP BETWEEN MICROBIOTA 
AND COMPLEX TRAITS: METHANE PRODUCTION IN DAIRY CATTLE AS A CASE OF STUDY 

 

 

72 
 

Grouping and filtering of zero inflated compositional data  

The initial metagenome dataframe contained nucleotide counts linked to 627 

taxonomically classified taxa in the 416 samples. Data were summarized at the genus level, 

resulting in the clustering of 134 genera. Counts in each sample were closured to 100 in order 

to obtain a relative abundance (%) at the genus level. Then, genera that were not present in 

at least 70% of the samples were excluded from the analysis, as well as samples that lacked 

reads from more than 50% of the genera. This hard filter reduced the dataframe to 24 genus 

plus a taxonomically unknown group in 337 samples. The remaining zeros were assumed to 

be count zeros and were then imputed using a Bayesian-multiplicative replacement of count 

zeros through a geometric Bayesian Multiplicative method with the cmultRepl function of 

the zCompositions package (https://cran.r-

project.org/web/packages/zCompositions/zCompositions.pdf) in R environment.  

 

Genomic relationship matrix 

A genomic relationship matrix (GRM), between individuals j and k was built 

following method 2 of VanRaden (2008) and Yang et al. (2010) with the 

following formula: 

 

 

G𝑗𝑘 =

{
 
 

 
 

1

𝑁
∑

(𝑥𝑖𝑗 − 2𝑝𝑖)(𝑥𝑖𝑘 − 2𝑝𝑖)

2𝑝𝑖(1 − 𝑝𝑖)𝑖
, 𝑗 ≠ 𝑘

 

1 +
1

𝑁
∑

𝑥𝑖𝑗
2 − (1 + 2𝑝𝑖) 𝑥𝑖𝑗 + 2𝑝𝑖

2

2𝑝𝑖(1 − 𝑝𝑖)
, 𝑗 = 𝑘

𝑖

  [1] 

 

Where 𝑥𝑖  refers to the AA, Aa and aa SNP genotypes, coded as 2, 1, and 0, 

respectively, of individual j or k at locus i (i = 1, …, N), with N being the number of SNP  

(42372) and 𝑝𝑖 being the SNP allele frequency in the whole genotyped population. This 

matrix depicted the genetic relationships within individuals (diagonal elements) and between 

individuals (out-diagonal elements), where elements in the diagonal were close to one with 

some deviation according to the difference between the observed and the expected 

consanguinity. Out diagonal elements varied according to the genomic similarity between 

individuals. 

https://cran.r-project.org/web/packages/zCompositions/zCompositions.pdf
https://cran.r-project.org/web/packages/zCompositions/zCompositions.pdf
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Non-recursive bivariate model 

A non-recursive bivariate model within a Bayesian framework was set as benchmark 

for variance components estimation for RA and CH4 as follow: 

 

y = Xb + Z(h)h + Z(u)u + e, 

 

[2] 

where: y  is a 2 × n vector containing the observed RA and the observed CH4 concentration 

for the ith individual (cow); b is a vector including effects on parity (2 levels), h is a vector 

of herd-robot effect (20 levels); u is a 2 × n vector of genetic effects (337 levels); and e is a 

2 × n vector of residuals. Then, X and Z are incidence matrices of appropriate order, 

with b distributed as uniform (-9999, 9999), h ~N (0, I𝜎ℎ
2), u ~N(0, G𝜎𝑢

2), and e ~N (0,I𝜎𝑒
2), 

where I is an identity matrix of appropriate order and G is the genomic relationship matrix 

between cows.  

 The heritability for each trait (RA or CH4) was calculated as: 

 

                   ℎ2 =
𝜎𝑢
2

𝜎𝑢2 + 𝜎ℎ
2 + 𝜎𝑒2

 [3] 

 

Where 𝜎𝑢
2 is the additive genetic variance of the analysed trait, 𝜎ℎ

2is the herd-robot 

variance and 𝜎𝑒
2 is the residual variance. 

 The genetic correlation between RA and CH4 was computed as: 

 

                    𝐶𝑜𝑟𝑟𝑢𝑅𝐴𝑢𝐶𝐻4 =
𝜎𝑢𝑅𝐴𝑢𝐶𝐻4

√𝜎𝑢𝑅𝐴 ∗ 𝜎𝑢𝐶𝐻4
 [4] 

 

Where 𝜎𝑢𝑅𝐴𝑢𝐶𝐻4 is the additive genetic covariance between RA and CH4, 𝜎𝑢𝑅𝐴  is the 

additive genetic variance for RA and 𝜎𝑢𝐶𝐻4  is the additive genetic variance for CH4. 
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Recursive Gaussian Structural Equation Models 

A set of recursive Gaussian SEM was used to analyze the relationship between RA 

for each taxa and CH4. Assuming a joint multivariate normal distribution for RA and CH4, 

the observed data were modeled as 

 

             Λy = Xb + Z(h)h + Z(u)u + e, [5] 

 

where 

 

                   y│Λ, b, h, u, R0 ~ N(Λ-1(Xb + Z(h)h + Z(u)u), Λ-1 R0 Λˊ-1). [6] 

 

Here, Λ is the matrix of the structural coefficient for RA, and it takes the form  

 

𝚲  =  [
           1                 0
−λCH4←RA            1

] [7] 

 

In [5] above, all other terms are as described in [2]. 

 Genetic effects for the two traits were assumed to be distributed, a priori, as a 

multivariate normal, with a null mean vector and a (co)variance matrix 𝐊0⊗ G, where G is 

a GRM between individuals of order 337 and  

 

  𝐊𝟎 = (
𝜎𝑢𝑅𝐴
2

𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 

𝜎𝑢𝑅𝐴𝑢𝐶𝐻4
𝜎𝑢𝐶𝐻4
2 ) [8] 

 

In [8], 𝜎𝑢𝑅𝐴
2  is the genetic variance for the RA of a given taxa, 𝜎𝑢𝐶𝐻4

2  is the variance between 

animals for CH4, and 𝜎𝑢𝑅𝐴𝑢𝐶𝐻4  is the additive genetic covariance between CH4 and RA. A 

random effect of herd-robot combination (h) on the two traits were assumed to follow a 

multivariate normal distribution with null mean vector and (co)variance matrix 𝐇0⊗ I, 

where  
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𝐇𝟎  = (
𝜎ℎ𝑅𝐴
2

𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 

𝜎ℎ𝑅𝐴ℎ𝐶𝐻4
𝜎ℎ𝐶𝐻4
2 ) [9] 

 

Above 𝜎ℎ𝑅𝐴
2  is the herd-robot variance on RA, 𝜎ℎ𝐶𝐻4

2  is the herd-robot variance on 

CH4 and 𝜎ℎ𝑅𝐴ℎ𝐶𝐻4  is the covariance between herd-robot effects on CH4. I is an identity matrix 

of corresponding order. 

The residual vector e was assumed to follow a multivariate normal distribution with 

mean vector 0 and (co)variance matrix R0 ⊗ I, where  

 

              𝐑𝟎  = (
𝜎𝑒𝑅𝐴
2

𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐 

𝜎𝑒𝑅𝐴𝑒𝐶𝐻4
𝜎𝑒𝐶𝐻4
2 ) [10] 

 

And I is an identity matrix of corresponding order. 

 

Markov chain Monte Carlo (MCMC) and posterior analysis 

Denote 𝛉 = (Λ, b, h, u, 𝐊0, R0), let 𝐲CH4 be the vector denoting the observed CH4 for 

the 337 cows and for the sake of simplicity ignore hyperparameters in the notation. The joint 

posterior density of 𝛉 and CH4 is given by  

 

p(𝐲CH4, 𝛉 │𝐲RA) ∝ p(𝐲CH4, 𝐲RA, 𝛉) =  p(𝐲RA, 𝐲CH4 │𝛉) p(𝛉). [11] 

 

The last term is the prior density of the unknown parameters, and it can be factorized 

as: 

 

            p(𝛉) = p(Λ) p(b) p(h│H0) p(h)  p(u│𝐊0) p(u) p(R0). [12] 

 

 A uniform prior distribution (-9999, 9999) was assigned to the structural coefficient 

vector and the systematic effect b. Herd-robot effect was assumed to be distributed as, h ~ 

N(0, I ⊗ H0); and animal genetic effect u ~ N(0, G ⊗ 𝐊0) so that their fully conditional 

posterior distribution were also normal. 
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 Inferences on the parameters in the model were through an MCMC approach using a 

modified version of the TM package (Legarra et al., 2011). After preliminary runs, visual 

examination of trace plots, and additional diagnostic assessments, the length of the chain was 

set to 300,000 iterations with a burn-in of 100,000 iterations; subsequently one of each 10 

successive samples was retained in order to reduce autocorrelation between samples. A total 

of 20,000 samples were used to infer the posterior distributions of the unknown parameters. 

The autocorrelation between samples, the effective sample size and convergence diagnosis 

were obtained using the coda package (https://cran.r-

project.org/web/packages/coda/coda.pdf) in R environment. 

 Probability intervals were estimated as  

 

𝛉̅ ± 1.96 𝜎/√𝑚 , [13] 

 

where 𝛉̅ is the estimated mean from the a posteriori distribution, 𝜎 is the standard 

deviation from the a posteriori distribution, and 𝑚 is the effective sample size corrected by 

autocorrelation between samples.  

 

Genetic and structural parameters 

 In recursive models, location and dispersion parameters need specific calculations to 

be done in order to be comparable with spatial mixed models. In our case, a transformation 

to the 𝐊0, H0 and R0 matrices was implemented using the matrix of structural coefficients 𝚲 

(Sorensen and Gianola, 2002): 

 

𝐊∗ = 𝚲−1𝐊0𝚲
ˊ−𝟏   [14] 

𝐇∗ = 𝚲−1𝐇0𝚲
ˊ−𝟏 [15] 

𝐑∗ = 𝚲−1𝐑0𝚲
ˊ−𝟏 [16] 

 

Heritabilities and genetic correlations were computed based on 𝐊∗, 𝐇∗ and 𝐑∗. 

 

https://cran.r-project.org/web/packages/coda/coda.pdf
https://cran.r-project.org/web/packages/coda/coda.pdf
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Posterior analysis of structural coefficients  

The rate of change of CH4 with respect to RA [λCH4←RA] indicates the expected 

change in CH4 by the increment of 1 unit in RA. If λCH4←RA  is positive, an increase of RA 

in 1% will increase CH4 by λCH4←RA units. 

 

RESULTS 

 

Descriptive statistics  

The descriptive statistics for days in milk (DIM), body weight, milk yield, milk fat, 

milk protein and milk lactose from the Spanish official control of dairy performance as well 

as methane emissions from cows included in the study are summarized in Table 1. 

 

Table 1. Descriptive statistics of quantitative variables from 337 Spanish Holstein cows. 

Variable Mean S.D. † C.V. ‡ (%) 

DIM§               (days) 164 80 48.8 

Body weight     (kg) 592 37 6.3 

Milk yield         (kg) 33.6 7.6 22.6 

Milk fat             (%)   3.59 0.84 23.4 

Milk protein      (%)   3.29 0.42 12.8 

Lactose              (%)   4.74 1.07 22.6 

CH4
¶
                        (ppm) 853 278 32.6 

†S.D. = Standard deviation, ‡ C.V. = Coefficient of variation, §DIM = Days in milk, ¶CH4 = 

Methane concentration. 

 

 Recorded values of dairy performance are within normal records for the Holstein 

breed in Spain. Methane concentration was estimated at 853 ppm (±278). 

 

Microbiota recursive effect on methane 

In total, taxa from this study belonged to 8 phyla. The highest magnitude values for 

λCH4←RAwere in genus with low relative abundances. In general, lower values for λCH4←RA 

were obtained for genera with larger RA (Table 2). The 7 genera from the Ciliophora phylum 
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had positive λCH4←RA as well as some genera from the Euryarchaeota (Methanobrevibacter 

sp.), Chytridiomycota (Neocallimastix sp.) and Fibrobacteres (Fibrobacter sp.) phyla. The 

Proteobacteria and Spirochaetes phyla had negative λCH4←RA. Most genera from Firmicutes 

phylum had positive λCH4←RA. Two genera (Prevotella and Paraprevotella sp.), from the 

Bacteroidetes phylum, had positive λCH4←RA. Bacteroides and Alistipes sp. resulted in 

negative λCH4←RA. 

 

Table 2. Phylum, genus, relative abundance of genus (RA), rate of change of methane (ppm) 

with respect to RA [𝜆𝐶𝐻4←𝑅𝐴] and standard error of prediction (SEP) of [𝜆𝐶𝐻4←𝑅𝐴] according 

to genus from the rumen content of 337 Holstein cows. 

Phylum Genus RA (%) [𝜆𝐶𝐻4←𝑅𝐴](ppm) SEP (ppm) 

Bacteroidetes Paraprevotella sp. 0.19 284 14.5 

Ciliophora Pseudocohnilembus sp.  0.29 138   8.5 

Chytridiomycota Neocallimastix sp. 0.44   70   7.6 

Ciliophora Ichthyphthirius sp. 0.38   61   8.2 

Ciliophora Stylonychia sp. 0.80   60   6.7 

Ciliophora Tetrahymena sp. 0.78   59   6.5 

Ciliophora Oxytricha sp. 0.81   58   6.7 

Firmicutes Butyrivibrio sp. 0.82   49 12.2 

Euryarchaeota Methanobrevibacter sp. 0.21   46 12.6 

Ciliophora Paramecium sp. 0.74   46   6.9 

Ciliophora Stentor sp. 0.93   44   6.3 

Firmicutes Succiniclasticum sp. 0.65   28   7.8 

Firmicutes Mycoplasma sp. 0.25   20 12.7 

Firmicutes Ruminococcus sp. 1.85   10   9.6 

Fibrobacteres Fibrobacter sp. 3.02     6   4.4 

Bacteroidetes Prevotella sp.  66.87     1   2.8 

Firmicutes Selenomonas sp. 0.94   -4   8.2 

Firmicutes Clostridium sp. 3.81   -7   4.6 

Proteobacteria Succinimonas sp. 0.18   -8 10.9 

Unknow Unknow sp. 8.35 -10   4.3 

Spirochaetes Treponema sp. 1.79 -13   5.5 

Firmicutes Eubacterium sp. 0.63 -21 10.0 

Bacteroidetes Bacteroides sp. 4.36 -25   6.9 

Bacteroidetes Alistipes sp. 0.68 -28 14.9 

Proteobacteria Succinivibrio sp. 0.23 -63 10.2 
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Host genetic effect on methane production  

The non-recursive bivariate models were set as the benchmarks to compare the 

parameters estimation obtained with the recursive models across all the genera. The CH4 

heritability (ℎ𝐶𝐻4
2 ), calculated as the average of the posterior means and the average Monte 

Carlo standard errors across all the models, was estimated at 0.12 ± 0.01 for the non-recursive 

bivariate model. The same ℎ𝐶𝐻4
2  (0.12 ± 0.01) was estimated for the recursive model. 

Individual estimates obtained in each bivariate analysis are provided in Figure 2.  

 

Figure 2. Heritability of methane concentration (ppm) according to statistical model (Non-

Recursive vs Recursive) for each bi-trait model according to genus (phylum within 

parenthesis), estimated from the mean of the stationary posterior distribution. The bars show 

the 95% probability intervals around the heritability estimates using the Monte Carlo 

standard error. 
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Similar ℎ𝐶𝐻4
2  were obtained across all the set of models from both statistical 

approaches, ranging from 0.08 to 0.16 in the non-recursive bivariate model and from 0.09 to 

0.18 in the recursive model. In this case the recursive model did not resulted in different 

ℎ𝐶𝐻4
2 estimate. 

 

Host genetic effect on the microbiota composition 

The RA heritability (ℎ𝑅𝐴
2 ) estimates, obtained from the posterior mean and the Monte 

Carlo standard error, are shown in Figure 3. They ranged between 0.08 and 0.46, using the 

non-recursive bivariate model, with an average of 0.25±0.01 and between 0.08 and 0.48 for 

the recursive model which also averaged 0.25±0.01. As expected similar heritabilities for RA 

were obtained as the structural parameter do not affect the heritability estimate of the 

recursive trait. The larger ℎ𝑅𝐴
2  was estimated for Prevotella sp., Butyrivibrio sp. and 

Mycoplasma sp. (0.34 - 0.48). The lowest ℎ𝑅𝐴
2  were obtained for Treponema sp. and 

Fibrobacter sp. (0.08 - 0.10).  
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Figure 3. Heritability of microbial genus relative abundance (%) according to statistical 

model (Non-Recursive vs Recursive) from each bi-trait model according to genus (phylum 

within parenthesis), estimated from the mean of the stationary posterior distribution. The bars 

show the 95% probability intervals around the heritability estimates using the Monte Carlo 

standard error. 

 

The analyzed phyla, sorted from higher to lower averages within phyla of the 

ℎ𝑅𝐴
2 estimates in both models were: Ciliophora (0.30), Chytridiomycota (0.28), Bacteroidetes 

(0.28), Firmicutes (0.26), Euryarchaeota (0.18), Proteobacteria (0.17), Fibrobacteres (0.10) 

and Spirochaetes (0.08).  
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Genetic correlations between CH4 and microbiota composition 

The genetic correlation estimates between CH4 and RA of rumen microbes at the 

genus level are shown in Figure 4. They ranged from -0.76 to 0.65 using the non-recursive 

bivariate model and from -0.68 to 0.69 using the recursive model.  

 

 

Figure 4. Genetic correlation between methane concentration (ppm) and microbial genus 

relative abundance (%) according to statistical model (Non-Recursive vs Recursive) from 

each bi-trait model according to genus (phylum within parenthesis), estimated from the mean 

of the stationary posterior distribution. The bars show the 95% probability intervals around 

the heritability estimates using the Monte Carlo standard error. 
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Positive genetic correlations with methane were estimated consistently for the 7 

genera from the Ciliophora phylum both with the non-recursive bivariate model (0.49 to 0.65) 

as well as with the recursive model (0.43 to 0.56). Positive genetic correlations were also 

obtained for the Euryarchaeota (Methanobrevibacter sp.), Chytridiomycota (Neocallimastix 

sp.) and Fibrobacteres (Fibrobacter sp.) phyla, in both, non-recursive bivariate and recursive 

models. 

All genera in this case, excepting (Succinivibrio sp.) from the Proteobacteria pylum, 

resulted in overlapped genetic correlations between the non-recursive bivariate model and 

the recursive model. However, high differences were observed. Succinivibrio sp. showed the 

largest disagreement changing from positively correlated (0.08) in the non-recursive 

bivariate model to negatively correlated (-0.20) in the recursive model. In the non-recursive 

bivariate model the two genera (Succinivibrio sp. and Succinimonas sp.) from the 

Proteobacteria phylum showed opposite genetic correlations (0.08 and -0.49, respectively), 

whereas within the recursive model, both genera showed negative genetic correlations (-0.20 

and -0.38, respectively), grouping both genus from the same phylum within the same 

direction of genetic correlation.  For the Treponema sp. genus a change from negatively 

correlated (-0.09) in the non-recursive bivariate model to positively correlated (0.06) in the 

recursive model was obtained, but in this case probability intervals overlapped.  

The Stentor sp. and Butyrivibrio sp. genera showed the largest genetic correlation 

(0.65) with CH4, using the non-recursive bivariate model, while for the recursive model, 

Butyrivibrio sp. and Neocallimastix sp. (an obligate anaerobic rumen fungi) genera showed 

the largest genetic correlation (0.69 and 0.59, respectively) with CH4. Conversely, Prevotella 

sp. (Bacteroidetes phylum) showed the largest antagonistic genetic correlation with CH4 (-

0.76 and -0.68, respectively) for the non-recursive bivariate model and the recursive model. 

The RA of Methanobrevibacter sp. in the rumen showed a positive genetic correlation with 

CH4 (0.49 and 0.36, respectively) within the non-recursive bivariate model and the recursive 

model. 
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DISCUSSION 

 

Methane is the second most relevant greenhouse gas (GHG) after carbon dioxide 

(CO2). It is relevant for global warming because it has a global warming potential ≈ 28 times 

greater than CO2 (Myhre et al., 2013), although it remains less time in the atmosphere than 

CO2 (12 years vs 100 years). Ruminants emit enteric CH4 as a by-product from feed 

degradation and fermentation processes. In addition to the detriment caused by methane on 

the environment, the loss of energy associated with the production of methane is an 

undesirable metabolic route for the productive system, since this energy could be used in 

other ways directly related to the final product of the system. The CH4 produced is mainly 

exhaled through breath and eructation to the atmosphere and not seize by the host. It is 

estimated that the loss of energy for the animal due to methane production varies between 2 

and 12% of gross energy consumption (Johnson et al., 1993).  

The daily CH4  production of an adult cow, of the Holstein breed, has previously been 

estimated at 369 g/d (range 278 to 456 g/d CH4) (Garnsworthy et al., 2012) and more recently 

at 395.8 g/d (SD = 63.5) (Difford et al., 2018). Values as high as 506 g/d (SD =56) had been 

reported for this trait in a latter study (Ramayo‐Caldas et al., 2019). A recent result from 28 

heifers averaged 267 g/d of CH4 (Flay et al., 2019) indicated that younger cows are in average 

less CH4 emitters than adult cows. Regarding CH4 concentration, a recent study (Wu, 

Koerkamp, & Ogink, 2018) reported a range between 543 ppm (SD, 33) to 1,100 ppm (SD, 

92), using a different infrared spectroscopy gas analyzer. Those values are in accordance to 

our estimations (853 ppm, SD = 278). Another study (Huhtanen et al., 2015) reported CH4 

concentrations of 1405 ppm (SD=247) using a sniffer method. A possible reason for our 

lower values compared to the latter study could be due to the measurement instrument used. 

Another reason for lower estimation of CH4 emissions in this study could be due to parity; 

as animals in our study were first and second calving cows instead of adult cows.  

Methane heritability estimates (0.09 to 0.18) were relatively homogeneous across the 

set of recursive Gaussian SEM. The estimates for ℎ𝐶𝐻4
2  in this study is in agreement with 

previous studies (Difford et al., 2018; Breider, Wall, & Garnsworthy, 2019) and further 

support that methane production is a heritable trait, and breeding strategies can be 

implemented to reduce the amount of methane produced in dairy cattle. The estimates for 
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ℎ𝐶𝐻4
2 in this study were slightly lower than 0.19 ± 0.09 (mean ± SE) previously reported by 

Difford et al. (2018) and 0.21 ± 0.06 (h2 ± SE) reported in lactating Holstein cows in Denmark 

(Lassen and Løvendahl, 2016).  

Methanogenic microorganisms in the rumen belong to the archaea domain and most 

of them use hydrogen (H2) to reduce CO2 into CH4 controlling H2 concentrations and intra-

ruminal pressure (hydrogenotrophic methanogens); Bacterial fermentation could be inhibited 

at high concentrations of H2 (Mizrahi and Jami, 2018); however metagenome 

interrelationships contributing to methane emissions, including non-methanogens 

microorganisms, are currently under study and still to be deciphered. In dairy cattle, there are 

many studies associating the metagenome of the host with phenotypic traits. A meta-analysis 

(Guyader et al., 2014) with 28 experiments on ruminants analyzed the relationship between 

methane emissions and the number of protozoa. They found a significant linear relationship 

(R2 = 0.90, P <0.05) in the association of these traits. In a recent study (Delgado et al., 2018) 

found that Holstein cows with better feed efficiency had higher abundance of Bacteroidetes, 

Prevotella, and lower abundance of Methanobacteria and Methanobrevibacter in the rumen 

microbiota than less efficient cows, concluding that more efficient animals showed different 

metagenomes than less efficient animals. These findings provide evidence about the 

relationship between the animal metagenome and the phenotypes expressed by its host.  

The range of ℎ𝑅𝐴
2  obtained from both models is in accordance with previous estimates 

of this parameter from previous studies. For instance, Li et al., (2019) reported ℎ𝑅𝐴
2  for 

Firmicutes, (0.16 ± 0.08; mean ± SE), unclassified Clostridiales (0.25 ± 0.09) and Blautia 

(0.18 ± 0.08), as well as for Methanobacterium (0.23 ± 0.08), Mbb. ruminantium (0.18 ± 

0.08), and  Methanobacterium alkaliphilum (0.23 ± 0.08). Another study (Wallace et al., 

2019) informed about heritable microbial OTUs with heritability estimates ranging from 0.20 

to 0.60. 

The study of the relationship between metagenome and methane production using 

SEM allows to account for biologically plausible effects between traits, and hence, modelize 

a more realistic scenario, which could yield to better estimation of parameters and a better 

fitting of the statistical models for this biological problem. Non-zero estimates for λCH4←RA 

indicated that there exist a biological recursive effect of microbes RA on CH4. While some 

taxa, like ciliate protozoa or Methanobrevibacter sp., increased the CH4 emissions (positive 
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values of λCH4←RA), others like Succinivibrio sp. from Proteobacteria phylum decreased it 

(negative value of λCH4←RA.These variation between λCH4←RA could be useful to generate a 

ranking of ruminal microbial taxa linked to CH4 emissions, which added to the relative (or 

total) abundance of a given genus in the metagenome, could contribute as a proxy for CH4 

predictions at the phenotypic level. 

 

Biological implications of genetic parameters for RA and CH4 

Among taxa analyzed, Ciliate protozoa (7 genera) showed moderate heritabilities 

(0.28-0.32) as well as positive genetic correlations (0.43-0.56) with CH4, regardless of the 

model used. Protozoa are known to be associated to CH4 emissions, especially through their 

ability to produce H2 in their hydrogenosomes and their ability to play a symbiotic role with 

methanogenic archaea while protecting them from the toxicity of oxygen  (Suen et al., 2015; 

Belanche, De La Fuente, & Newbold, 2014). On the other hand, the most abundant genera 

from Bacteroidetes phylum was Prevotella sp. which resulted in negative correlation with 

CH4. This is congruent to previous studies reporting that Prevotella sp. is associated with 

improved feed efficiency in dairy cows (Bach et al., 2019). 

The two genera from the Proteobacteria phylum (Succinivibrio sp. and Succinimonas 

sp.) were only negatively correlated to CH4 in the recursive model, which is congruent to 

previous studies reporting that lower abundances of Proteobacteria seem to be associated 

with high methane emissions (Tapio et al., 2017). Those two genera had been negatively 

correlated to CH4 emissions previously (Granja-Salcedo et al., 2019) trough increasing 

fumarate reductase activity (Asanuma and Hino, 2000), resulting in less free H2 and therefore 

lower CH4. In the non-recursive bivariate model one genus from the Proteobacteria phylum 

(Succinivibrio sp.) showed positive genetic correlation, while the other (Succinimonas sp.) 

was negatively correlated. The genetic correlation between CH4 and the RA of 

Methanobrevibacter sp. was also moderate positive. There are some inconsistencies 

regarding the association in the literature between the relative abundance  of archaea and 

methane (Negussie et al., 2017). A possible explanation to this phenomenon could be based 

on the endosymbiotic relationship from methanogenic archaea to anaerobic ciliates (van 

Hoek et al., 2000), in which ciliates provide to methanogenic archaea with an intracellular 
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source of hydrogen as the basis for a stable association (Finlay et al., 1994). The archaea cell 

walls are structurally different from that of bacteria. It confers archaea more resistance to 

lytic protocols that work well for bacterial cells (Roopnarain et al., 2017). This may affect 

and difficult their DNA extraction. Consequently, the archaea relative abundance could be 

an unreliable indicator of methane synthesis, while a higher relative abundance of ciliates 

could indicate a favorable ciliates-archaea symbiosis and therefore higher production of CH4. 

The RA of Ciliate in the rumen is larger than that of archaea, and it may assist on a more 

reliable estimate of the genetic correlation with CH4.  

New strategies to jointly analyze host-metagenome-phenotype relationship, as the one 

presented here, are to be developed, with the purpose of integrating the complex biological 

interrelationships between microorganisms and its link to genotype and phenotype. The 

magnitude of ℎ𝑅𝐴
2  and ℎ𝐶𝐻4

2  and genetic correlations obtained here indicates that there could 

be an opportunity to include CH4 emissions in animal breeding programs. In the same way 

as the λCH4←RA could be useful to generate a ranking of ruminal microbial taxa linked to CH4 

emissions, to be used as proxies; genetic parameters of rumen microbiota composition, 

including the genetic correlations with CH4, could be used to select individuals that are able 

to modulate a favorable microbiota composition that pass their genes onto the next 

generations for lower CH4. Future genetic trends in CH4 could be modified through direct 

selection of animals with favorable genetic breeding values for RA of relevant microbes. For 

instance, selecting animals with low relative abundance of ciliates could reduce the substrate 

for methanogenic microorganisms in next generations. Based on the high heritabilities found 

for those genera, a decrease of CH4 emissions from the progeny of selected cows would be 

expected. This kind of strategies could enhance the genetic progress of lower values for CH4 

in the future populations. Ross, Moate, Marett, Cocks, & Hayes (2013) argued that it is 

possible that metagenomic predictions could aid in the reduction of enteric methane 

production from ruminants, if increased accuracy in the prediction of enteric methane 

production level is achieved. Genetic selection using estimation of additive breeding values 

is potentially the most sustainable way of reducing enteric methane emission from ruminant 

(Pickering et al., 2015).  
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CONCLUSIONS 

 

This study applied SEM as a tool to integrate genomic, metagenomic and phenotypic 

information in order to jointly analyze plausible biological relationships. Ciliate protozoa (7 

genus) showed moderate heritabilities and consistent positive genetic correlation to CH4 in 

both statistical model approaches (non-recursive and recursive). Genetic correlation 

estimates revealed differences according to the usage of non-recursive and recursive models, 

with a more biologically supported result for the recursive model estimation. Based on the 

heritabilities and genetic correlations obtained from this study we conclude that, methane 

emissions could be included in genetic evaluations for dairy cattle, in order to obtain more 

cost effective animals while diminishing their environmental footprint. SEM could be used 

to also include metagenomic information into genetic evaluations analysis accounting for the 

recursive relationship between traits, and with the opportunity to increase reliability.  
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ABSTRACT 

 

Rumen microbiota has been previously related to phenotypic complex traits of relevance in 

dairy cattle. The joint analysis of the host’s genetic background and its microbiota can be 

statistically modelled using similarity matrices between microorganism communities in the 

different hosts. Microbiota relationship matrices (K) enable considering the whole 

microbiota and the cumbersome interrelations between taxa, rather than analyzing single taxa 

one at the time. Several methods have been proposed to ordinate these matrices. The aim of 

this study was to compare the performance of twelve K built from different microbiome 

distance metrics, within a variance component estimation framework for methane 

concentration in dairy cattle. Phenotypic, genomic and rumen microbiome information from 

simulations (n = 1000) and real data (cows = 437) were analyzed. Four models were 

considered: an additive genomic model (GBLUP), a microbiome model (MBLUP), a genetic 

and microbiome effects model (HBLUP) and a genetic, microbiome and genetic × 

microbiome interaction effects model (HiBLUP). Results from simulation were obtained 

from 25 replicates. Results from simulated data suggested that Ks with flattened off-diagonal 

elements were more accurate in variance components estimation for all compared models 

that included Ks information (MBLUP, HBLUP and HiBLUP). Multidimensional scaling 

(MDS), redundancy analysis (RDA) and constrained correspondence analysis (CCA) 

performed better in simulation to estimate heritability and microbiability. The models 

including Ks from the MDS, RDA and CCA methods were also between the most plausible 

models in the real data set, according to the deviance information criteria (DIC). Real data 

was analyzed under the same framework as in the simulation. The most plausible model in 

real data was HiBLUP. Estimates variated depending on K; methane heritability (0.15-0.17) 

and microbiability (0.15-0.21) were lower than the proportion of the phenotypic variance 

attributable to the host-microbiome holobiont effect (0.42-0.59), which we have defined here 

as “holobiability”. The holobiability including the genomic × microbiome interaction from 

the HiBLUP was between 0.01 and 0.15 larger than the holobiability explained from the sum 

of the genetic and microbiome effects without interaction between them, from the HBLUP, 

depending on K. The findings in this study support the potential of the joint analysis of 

genomic and microbiome information. Accounting for the hologenome effect (genomic and 
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microbiome) could improve the accuracy in variance component estimation of complex traits 

relevant in livestock science. 

 

Keywords: Heritability, holobiability, methane, microbiability, microbiota relationship 

matrix. 

 

INTRODUCTION 

 

 The microbiome contributes to the phenotypic variability of complex traits (Difford 

et al., 2018; Buitenhuis et al., 2019). There is also extensive support that digestive 

microbiome is partially controlled by host genetic variation in several species, such as: 

humans (Blekhman et al., 2015; Zoetendal et al., 2001), mice (Benson et al., 2010; McKnite 

et al., 2012), poultry (Zhao et al., 2013), pigs (Camarinha-Silva et al., 2017) and cattle (Roehe 

et al., 2016; Gonzalez-Recio et al., 2017; Difford et al., 2018). In animal breeding, a host’s 

complex traits prediction that incorporates information regarding its microbiome is a 

promising field. For instance, the microbiability (m2), defined as the proportion of the 

phenotypic variance attributable to the microbiome (Difford et al. 2016), has been previously 

estimated with higher values than narrow-sense heritability for feed efficiency and feed 

intake in pigs (Camarinha-Silva et al., 2017). Thus, considering the microbiome as a source 

of information at predicting complex traits is a rational practice and could lead to improved 

accuracy in genomic prediction. Sequencing the metagenome is now the method of choice to 

characterize the microbiota. Affordable whole genome sequencers (~ $50 USD per sample) 

have been recently developed and commercialized in a more compact format than previous 

devices (Lu et al., 2016; Santos et al., 2020). These characteristics facilitate its acquisition, 

transportation, and in-situ handling in a more versatile way. Those sequencers are now 

commonly used to estimate relative abundance of microbial taxa, allowing to analyze 

microbiome at a compositional level (Saborío-Montero et al., 2020). Third generation 

sequencers have enlarged the boundaries of microbial identification, previously restricted to 

culture methods or amplicon-based studies (Ciuffreda et al., 2021).   
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Many traits of economical and sustainability importance in livestock have been 

previously associated to microbiome composition (Roehe et al., 2016; Tapio et al., 2017). 

For instance, methane emissions from livestock contribute with approximately 8% to 12% of 

anthropogenic emissions (Eckard et al., 2010) and is an area of concern because of its 

potential as a greenhouse gas. Previous studies have reported its potential effects in the global 

warning context as 28-fold more harmful than carbon dioxide (Myhre et al., 2013).  The joint 

analysis of the effect of host genetics and the ruminal microbiota on complex traits can be 

conducted through incorporating a microbiota relationship matrix (K) into the statistical 

models. This matrix considers the microbiota as a whole instead of individual assessment of 

single microorganisms.   

The metagenomic relationship between a group of samples (K) can be described by 

a square matrix of dimensions n × n samples, generated through the cross-product of a matrix 

(X) of the centred log-ratio transformation of samples by taxa contingency table, divided by 

the number of taxa (p) as (1/p)XXT (hereafter “CrPr”). This approach has been applied to 

incorporate microbiome effect into mixed models in several studies  (Camarinha-silva et al., 

2017; Hadfield and Nakagawa, 2010; Khanal et al., 2020a, 2020b; Ross et al., 2013; 

Weishaar et al., 2020). Other approaches to build the K matrix include the Jensen-Shannon 

distance matrix (Maltecca et al., 2019), or the usage of an exponential product on a function 

of the Euclidean distance (Pérez and De Los Campos, 2014). Similarly, it is possible to 

include the interaction between the genomic and the microbiota relationship matrices 

(Jarquín et al., 2014; Saborío-Montero, 2018). Variances from genomic information, 

microbiome information and its interaction can be extracted from the multi-kernel analysis, 

allowing the estimation of heritability, microbiability and holobiability. We have defined the 

latter term as the proportion of the phenotypic variance attributable to whole animal-

microbiome holobiont organism.  

In this study we compared several methods of ordination (Multidimensional Scaling 

(MDS), Detrended Correspondence Analysis (DCA), Non-Metric Multidimensional Scaling 

(NMDS), Redundancy Analysis (RDA), Constrained Correspondence Analysis (CCA)) and 

distance matrices (Euclidean, Bray-Curtis, Canberra, Jaccard, Mahalanobis and Aitchison). 

The objectives of this study were to disentangle the most appropriate distance metric to 

estimate variance component for methane emission in dairy cattle, as well as to compare 
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different models including the additive and microbiome effects using simulated and real data. 

A deeply review on these subjects will be addressed in this study, to understand the state of 

the art focusing on the development and evaluation of microbiome relationship matrices and 

the holobiability concept, innovative in prediction of complex traits. 

 

 

MATERIALS AND METHODS 

 

This study was developed in the Department of Animal Breeding and Genetics of the 

National Agricultural and Food Research and Technology Institute (INIA), Madrid, Spain. 

This research was carried out in accordance with Spanish Royal Decree 53/2013 for the 

protection of animals used for experimental and other scientific purposes and was approved 

by the Basque Institute for Agricultural Research and Development Ethics Committee 

(Neiker-OEBA-2017-004) on March 28, 2017. 

Variance components, heritability, microbiability and holobiability, regarding 

methane production in dairy cows, was estimated using two data subsets: a simulated dataset 

and a real dataset. 

 

Simulated data  

Simulations were generated using the observed data structure in the real data set. A 

data frame of real genotypes from 1000 Holstein animals was used. A total of 9244 SNPs 

loci were randomly selected from a 50K SNP bead chip for subsequent analysis. Additive 

genetic effects were determined by 1000 QTL randomly selected along the genome. QTL 

effects were generated based on a normal distribution N ~ (0, 1). True breeding values (u) 

were calculated by summing all QTL effects and were subsequently scaled to a realized 

genetic variance of 𝜎𝑢
2. 

The relative abundances of phylum j (j=1-86) in animal i (i=1-1000) were simulated 

from real data (samples of 437 animals and 86 phyla), following the steps described below: 

1) The covariance matrix (86 × 86) from the real relative abundance of phyla was 

obtained.  
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2) The resulting symmetric matrix was then converted to the nearest positive-definite 

matrix (86 × 86) to ensure it was a valid covariance matrix. 

3) A total of 86 vectors of 1000 random values, replicating relative abundance of 

phyla for 1000 cows, were sampled from a normal distribution (N ~ (0.5, 0.1)). 

The used parametric values were arbitrarily chosen under the assumption that 

mean relative abundance should be between 0 and 1 and that a narrow variance 

would improve simulation results.   

4) The cross product of the Cholesky factorized matrix of the positive-definite 

matrix of (co)variances, calculated in step 2, was then multiplied by the matrix 

(86 × 1000) built from the random values obtained in step 3, creating the desired 

final matrix of 1000 simulated microbiotas with 86 phyla each, and preserving the 

covariances from real data. Any phylum resulting in negative values was set to 

zero. 

Once the relative abundance of the simulated phyla was generated, the microbiome 

effect (m) for each animal was simulated as follows: 50 phyla were randomly selected out of 

the 86 phyla simulated before. Then, an effect (𝛽𝑗) was sampled from a normal distribution 

N ~ (0, 1) and assigned to each of the selected 50 phyla. The 𝑚𝑖 was then simulated as follow: 

 

𝑚𝑖 =∑ 𝛽𝑗 × 𝐹𝑖𝑗
𝒋

 

  

Where 𝐹𝑖𝑗 was the relative abundance of phylum j in animal i for the 50 selected phyla. The 

resulting {mi} were scaled to have a variance of 𝜎𝑚
2 . 

Phenotypes were finally simulated in 4 different scenarios assigning a residual 

variance to obtain a heritability and a microbiability of 0.30. Phenotypes were respectively 

simulated under 4 different scenarios: (1) an additive genetic model, (2) microbiome model, 

(3) genetic and microbiome additive effects model and (4) same as 3 plus an interaction 

effect: 

 

𝐲 =  𝛍 + 𝐮 + 𝐞, (1) 

𝐲 =  𝛍 +𝐦+ 𝐞, (2) 
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𝐲 =  𝛍 + 𝐮 +𝐦+ 𝐞 (3) 

and  

𝐲 =  𝛍 + 𝐮 +𝐦+ 𝐮 ×𝐦+ 𝐞 (4) 

where 𝛍 is the population mean, 𝐮 is the genomic effect, 𝐦 is the microbiome effect, 

𝐮 ×𝐦 is a genomic-microbiome interaction effect and 𝐞 is the residual error. The prior 

distribution of fixed effect is assumed to be a uniform distribution (-9999, 9999) and for 𝜎𝑢
2 

and 𝜎𝑒
2 are assumed to be distributed as a scaled inverse chi-square {𝜎𝑢

2~υ𝑢𝑠𝑢
2𝜒𝑣𝑢

−1 , 

𝜎𝑒
2~υ𝑒𝑠𝑒

2𝜒𝑣𝑒
−1} where {υ𝑢 , υ𝑒 } and  {s𝑢 , s𝑒 } are known degrees of freedom and scale 

parameters, respectively; with {υ𝑢 , υ𝑒 }  = 5 and {s𝑢 , s𝑒 } = 0.5 times the variance of the 

phenotypes (From default parameters of the BGLR package). 

 

Real data 

Methane measurement and sampling. Four hundred and thirty-seven lactating 

Holstein cows (primiparous or second lactation) from 14 commercial farms in 4 Northern 

Spanish regions (Cantabria, País Vasco, Navarra and Gerona) were included in this study. 

Methane emissions (ppm) were measured as described by Rey et al. (2019) using a non-

dispersive infrared methane detector (The Guardian® NG infrared gas monitor from 

Edinburg Sensors; measure range 0-1%), installed in the feed bin of the automatic milking 

system (AMS). Methane concentration in breath samples was measured individually for each 

cow, during the milking time at each cow visit to the AMS for 2-3 weeks periods. Eructation 

peaks recorded were averaged to obtain a single record per cow. During this sample period 

herds underwent a test-day recording as part of the official test day recording scheme. All 

traits related to milk yield and composition were also available.    

During the ruminal content sampling, cows were placed in individual stalls. A 

custom-made mechanical device was used to raise the snout of the animal. Samples of 

ruminal content (approximately 100 ml) were extracted from each cow by introducing a 

stomach tube (18 mm diameter and 160 mm long) orally through the esophagus connected 

to a mechanical pumping unit (Vacubrand ME 2SI, Wertheim, Germany) with a 1000 ml 

Erlenmeyer trapped in-between. Samples were then stored in a sterilized container. Hose and 

all material in contact with the samples were systematically washed between cows. Samples 
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were filtered through 4 layers of sterile cheesecloth, in order to remove the solid fraction and 

the filtered fraction was frozen in liquid nitrogen (N2) vapors immediately after. Then frozen 

samples were transported to the laboratory in liquid N2 containers and stored at −80 °C until 

analysis. 

 

Metagenomic analysis. The samples were thawed, and then homogenized with a 

blender. The DNA extraction was performed using 250 µl from the homogenized samples 

with the commercial “DNeasy Power Soil Kit” (QIAGEN, Valencia, CA, USA). The quality 

control of the DNA and the protocol used for its sequencing using MinION device are more 

detailed described in (Saborío-Montero et al., 2020). After quality control (QS > 7 and length 

> 150bp), the remaining sequences were analyzed using the SqueezeMeta pipeline, with 

taxonomic resolution reaching genus level or family level in case of unclassified genus (1240 

taxa). Count zero values were imputed for missing taxa to allow computing logarithms. The 

imputation was done using a Bayesian Multiplicative Replacement procedure with the 

geometric Bayesian multiplicative method (GBM) from the cmultRepl function of the 

zCompositions R package (Palarea-Albaladejo et al., 2019).  

 

Genotyping and analysis. Cows were genotyped using the EURO12K SNP chip from 

Illumina, and then imputed to 54609 SNPs (Bovine 50k SNP chip, Illumina, San Diego, 

California, USA) with BEAGLE software 

(http://faculty.washington.edu/browning/beagle/beagle.html), using the Spanish reference 

population provided by CONAFE (Spanish Friesian Associations Confederation), as 

described by (Jiménez-Montero et al., 2013). Monomorphic SNPs and those with MAF<0.05 

were filtered out from the analysis, resulting in 42,372 SNP. Real data was analysed using 

the same models implemented in the simulation.  

 

Ordination methods and distance matrices to build the Ks  

Due to the compositional nature of metagenomic data (Gloor et al., 2017), a centred 

log ratio transformation (CLR) method (Aitchison, 1986) was implemented using the 

unweighted option of the CLR function from the easyCODA R package (Greenacre, 2018), 

as follows:   

http://faculty.washington.edu/browning/beagle/beagle.html
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               𝐱𝐜𝐥𝐫 = [log (𝑥1/𝐴(𝑥)), log (𝑥2/𝐴(𝑥))… 𝑙𝑜𝑔 (𝑥𝐷/𝐴(𝑥))], 

 

with 𝐴(𝑥) = √𝑥1 ∗ 𝑥2 ∗ … ∗ 𝑥𝐷
𝐷 .  

Here, x = [𝑥1, 𝑥2,…,𝑥𝐷]  is a vector of counted features in a sample, and A(x) is the geometric 

mean of x.  

 A K matrix was built as K=1/pXXT. Briefly, let X be the scaled matrix of centered 

log-ratio transformations of a n × p matrix B of equivalent dimentions, where n is the number 

of animals and p is the number of phyla. Each element of the B matrix {Bij} is the relative 

abundance of phylum j in animal i.  

Additionally, other 11 methods to build the K matrices were implemented. First, five 

ordination methods were used to build K: Metric Multidimensional Scaling (MDS), 

Detrended correspondence analysis (DCA), Non-Metric Multidimensional Scaling (NMDS), 

Redundancy analysis (RDA) and Constrained correspondence analysis (CCA). Then, other 

six K were built using Euclidean, Bray-Curtis, Canberra, Jaccard, Mahalanobis and 

Aitchison metrics. A different K matrix was generated from each method. For that purpose, 

the X matrix mentioned before was independently replaced into the (1/p)XXT approach with 

the elements in X {Xij}differing according to the method to build the K matrix (Table 1). 

 

The ordination matrices (MDS, DCA, NMDS, CCA and RDA) were built through the 

ordinate function of the phyloseq package in R. The Euclidean, Bray-Curtis, Canberra, 

Jaccard and Mahalanobis matrices were built using the vegdist function of vegan package in 

R. The Aitchison matrix was built with the dist function of the coda.base package also in R. 

 

Variance component analysis and effects estimation 

Genomic BLUP (GBLUP). A GBLUP model was implemented within a Bayesian 

framework using BGLR package (Pérez and De Los Campos, 2014), in order to estimate the 

proportion of the methane production variance attributable to the additive genetic variance, 

as: 
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𝐲 = 𝟏′𝜇 + 𝐙𝐮 + 𝐞 

 

where: y = methane production pre-corrected by fixed effects of parity, days in milk 

and herd-robot, µ = population mean , 1 = vector of ones of nx1 dimensions, u = genetic 

effect, Z the corresponding incidence matrix for the genetic effect, and e = residual error, 

with u ={ui} ~N (0, G𝜎𝑢
2) and e ~N (0,𝜎𝑒

2). The prior distributions were the same as described 

in the simulation. The genomic relationship matrix (G), was constructed following method 2 

of VanRaden (2008). 

 

Microbiomic BLUP (MBLUP). Analogous as in the previous model, the proportion 

of the variance of methane production attributable to the microbiota variance was estimated 

using the following model: 

 

𝐲 = 𝟏′𝜇 +𝐖𝐦+ 𝐞 

 

Where: m = microbiota effect, W the corresponding incidence matrices for the 

microbiota effect, with m = {mi} ~N (0, K𝜎𝑚
2 ) and K is the relationship matrix between cow 

rumen microbiotas. The other terms are as described above. 

 

Hologenomic BLUP of additive effects (HBLUP). This approach assumes 

independent effects of genotype and microbiome. Mixed models were implemented using 

the following independent effect model in linear notation: 

 

𝐲 = 𝟏′𝜇 + 𝐙𝐮 +𝐖𝐦+ 𝐞 

 

With terms as described above.  

 

Hologenomic BLUP with host interaction (HiBLUP). Finally, a model accounting 

for the interaction between the genetic and the microbiota effects was tested: 

 

𝐲 = 𝟏′𝜇 + 𝐙𝐮 +𝐖𝐦+ 𝐓𝐮𝑥𝐦 + 𝐞 
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Where: y, µ, Zu, Wm and e are the same as in the previous model and uxm stands 

for the interaction between genetic background of the host and her microbiome, T represent 

the corresponding incidence matrix, with uxm = {ui x mi} ~N (0, G#K𝜎𝑢𝑥𝑚
2 ) where # stands 

for the Hadamard product. 

All models were implemented in a Bayesian framework using the BGLR package in 

R (Pérez and De Los Campos, 2014). The mean and standard error of the posterior 

distribution for the parameters of interest were obtained. In the case of simulated data, the 

average, and its standard error (SEM) from 25 replicates is provided. 

 

Holobiability estimation 

The proportion of the phenotypic variance explained by the additive genetic variance  

plus the microbiome variance was defined as “holobiability” (ℎ𝑜2), which is the addition of 

the heritability 𝜎𝑢
2/(𝜎𝑢

2 + 𝜎𝑚
2 + 𝜎𝑒

2) and the microbiability 𝜎𝑚
2 /(𝜎𝑢

2 + 𝜎𝑚
2 + 𝜎𝑒

2) in an 

additive effects model without interaction: ℎ𝑜2 = (𝜎𝑢
2 + 𝜎𝑚

2 )/(𝜎𝑢
2 + 𝜎𝑚

2 + 𝜎𝑒
2). It may also 

include the variance from the interaction effect. In biological terms, the holobiability would 

be the proportion of the phenotypic variance attributable to the host-microbiome holobiont 

effects as follow:  ℎ𝑜2 = (𝜎𝑢
2 + 𝜎𝑚

2 + 𝜎𝑢×𝑚
2 )/(𝜎𝑢

2 + 𝜎𝑚
2 + 𝜎𝑢×𝑚

2 + 𝜎𝑒
2). 

 

Models comparison. The DIC is a hierarchical modelling generalization of the 

Akaike Information Criterion (AIC) and the Bayesian information criterion (BIC), which 

consists of two components, a term that measures goodness-of-fit and a penalty term for 

increasing model complexity, in which models with smaller DIC should be preferred to 

models with larger DIC, because this point to a better fit and a lower degree of model 

complexity (Spiegelhalter et al., 2002); however, some authors (Sorensen and Gianola, 2002) 

consider DIC as a preliminary metric for screening alternative models. DIC can be calculated 

as follow: 

 

𝐷𝐼𝐶 = 𝐷̅ + 𝑝𝐷 
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The first term (𝐷̅), is a Bayesian measure of model fit, defined as the posterior 

expectation of the deviance, while the second component (𝑝𝐷) measures the complexity of 

the model by the effective number of parameters, also defined as the difference between the 

posterior mean of the deviance and the deviance evaluated at the posterior mean of the 

parameters (Berg et al., 2004). The log-likelihood evaluated at the posterior mean, as well as 

the posterior mean of the log-likelihood, the effective number of parameters and the DIC, for 

each model and method used, were reported to evaluate and compare model’s plausibility. 

All the models previously described in the simulation were also evaluated using the 

real data. 

 

RESULTS AND DISCUSSION 

 

Simulated data 

Microbiota Relationship Matrices (simulation). The diagonal elements in the K 

matrices represent the alpha-diversity and the off-diagonal elements, the beta-diversity. 

Correlations between diagonal elements (Figure 1A) and off-diagonal elements (Figure 1B) 

in the K matrices studied are shown. 
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Figure 1. Pearson correlation between diagonal (A) and off-diagonal (B) elements of the 

centred log ratios of 1000 x 1000 simulated microbiome distance, dissimilarity, or index 

matrices according to ordination method*. The strength of the correlation is also represented 

with the intensity of the colour from -1 (blue) to 1 (red). 
*(1/p)XXT (CrPr), Multidimensional Scaling (MDS), Detrended Correspondence Analysis (DCA), Non-Metric 

Multidimensional Scaling (NMDS), Redundancy Analysis (RDA), Constrained Correspondence Analysis 

(CCA), Euclidean distance (Euclidean), Bray-Curtis dissimilarity (Bray_Curtis), Canberra distance (Canberra), 

Jaccard index (Jaccard), Mahalanobis distance (Mahalanobis) and Aitchison distance (Aitchison). 

 

The correlation showed that all matrices except Bray-Curtis distance, Canberra 

distance and Jaccard index had different degrees of similitude between diagonal elements, 

ranging from null to high associations. The Jaccard index had a correlation of one with 

diagonal and out-diagonal elements of the Bray-Curtis matrix. However, the values on the 

diagonal are different between Ks. The Canberra distance also presented a correlation close 

to one (0.997) with diagonal and out-diagonal elements of the Bray-Curtis and Jaccard index 

matrices, which was driven by the CLR transformation of the data. Excluding that exceptions, 

the highest correlation (ρ ≥ 0.97) between diagonal elements was obtained between the Bray-



CHAPTER 5 

109 
 

Curtis, Canberra and Jaccard with the CrPr method. The lowest Pearson correlation (ρ = 0.06) 

between diagonal elements was obtained between CrPr, Bray-Curtis and Jaccard matrices 

with the Aitchison matrix. These matrices showed remarkable difference on how they 

calculate the distance between microbiota (Table 1).  

In general terms, out-diagonal elements had lower correlations between methods than 

diagonal elements. There were correlations coefficients ranging from low to high between 

off-diagonal elements of Ks. The highest correlation (ρ = 0.95) was observed between 

Canberra distance with Euclidean distance methods (excluding correlations between Bray-

Curtis distance and Jaccard index, which were equal to one). The lowest correlation (ρ = 

0.03) between out-diagonal elements of the metagenome matrices was between CrPr, MDS 

and NMDS with the Aitchison method.  

Heatmap graphic representations of the simulated microbiota relationship matrices 

according to method used to build them is depicted in Figure 2.   
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Table 1. Method and its linked distance, dissimilarity, or index used to build microbiota 

relationship matrices (K) via cross-product ((1/p)XXT) approach1.  

Method Distance, dissimilarity, or Index d(𝒙𝒋, 𝒙𝒌) 
Analysis 

applied to 

CLR of RA  

Elements in X 

matrix before 

(1/p)XXT 

CrPr (1/p)XXT None CLR of RA 

MDS 𝑩𝒓𝑪𝒓𝒋𝒌 =
∑ |𝒙𝒊𝒋 − 𝒙𝒊𝒌|
𝒏
𝒊=𝟏  

∑ 𝒙𝒊𝒋
𝒏
𝒊=𝟏 + ∑ 𝒙𝒊𝒌

𝒏
𝒊=𝟏

 PCoA Vectors 

DCA 𝑩𝒓𝑪𝒓𝒋𝒌 =
∑ |𝒙𝒊𝒋 − 𝒙𝒊𝒌|
𝒏
𝒊=𝟏  

∑ 𝒙𝒊𝒋
𝒏
𝒊=𝟏 + ∑ 𝒙𝒊𝒌

𝒏
𝒊=𝟏

 CA, DT Projections 

NMDS 𝑩𝒓𝑪𝒓𝒋𝒌 =
∑ |𝒙𝒊𝒋 − 𝒙𝒊𝒌|
𝒏
𝒊=𝟏  

∑ 𝒙𝒊𝒋
𝒏
𝒊=𝟏 + ∑ 𝒙𝒊𝒌

𝒏
𝒊=𝟏

 MR Points 

CCA 𝒙𝐣,𝐤
𝟐 = √∑

(𝒙𝒊𝒌 − 𝒙𝒊𝒋)
𝟐

𝒂𝒊+
 

𝒑

𝒋=𝟏

 CA Projections 

RDA 𝒙𝐣,𝐤
𝟐 = √∑

(𝒙𝒊𝒌 − 𝒙𝒊𝒋)
𝟐

𝒂𝒊+
 

𝒑

𝒋=𝟏

 PCA Components 

Euclidean 𝑬𝒖𝒄𝒍𝒋𝒌 = √∑(𝒙𝒊𝒋 − 𝒙𝒊𝒌)
𝟐

𝒏

𝒊=𝟏

 Euclidean 
Distance of 

CLR of RA 

Bray-Curtis 𝑩𝒓𝑪𝒓𝒋𝒌 =
∑ |𝒙𝒊𝒋 − 𝒙𝒊𝒌|
𝒏
𝒊=𝟏  

∑ 𝒙𝒊𝒋
𝒏
𝒊=𝟏 + ∑ 𝒙𝒊𝒌

𝒏
𝒊=𝟏

 Bray-Curtis 
Dissimilarity 

of CLR of RA 

Canberra 𝑪𝒂𝒏𝒃𝒋𝒌 =
𝟏

𝑵𝒁
∑

|𝒙𝒊𝒋 − 𝒙𝒊𝒌|

|𝒙𝒊𝒋| + |𝒙𝒊𝒌|

𝒏

𝒊=𝟏

 Canberra 
Distance of 

CLR of RA 

Jaccard  𝑱𝒂𝒄𝒄𝒋𝒌 =  𝟐𝑩𝒓𝑪𝒓/(𝟏 + 𝑩𝒓𝑪𝒓) Jaccard 
Index of CLR 

of RA 

Mahalanobis 𝑴𝒂𝒉𝒂𝒋𝒌 = √∑∑(𝒙𝒊𝑱 − 𝒙𝒊𝒌)
𝒏 𝜹−𝟏(𝒙𝒍𝒋 − 𝒙𝒍𝒌)

𝒏

𝒍=𝟏

𝒏

𝒊=𝟏

 Mahalanobis 
Distance of 

CLR of RA 

Aitchison 𝑨𝒊𝒕𝒄𝒋𝒌 = √∑(𝒍𝒐𝒈(
𝒙𝒊𝒋

𝑨(𝒙𝒋)
) − 𝒍𝒐𝒈 (

𝒙𝒊𝒌
𝑨(𝒙𝒌)

))

𝟐𝒏

𝒊=𝟏

 Aitchison 
Distance of 

CLR of RA 

1 (1/p)XXT = let X be the scaled matrix of centered log-ratio transformations of a n × p matrix B of equivalent 

dimentions, where n is the number of animals and p is the number of phyla. Each element of the B matrix {Bij} 

is the relative abundance of phylum j in animal i.  CLR = Centred Log-Ratio transformation. RA= Relative 

Abundance. PCoA= Principal Coordinate Analysis. DT= Detrending. CA = Correspondence Analysis. MR= 

Monotone regression 𝒂𝒊+ = total abundance of a given taxa in all the samples. NZ= number of non-zero entries. 

𝛿 = Covariance matrix. A = geometric mean. 
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Figure 2. Simulated microbiota relationship matrices from rumen content (n=1000) 

according to ordination method*. Darker colours represent higher values and differ 

depending on the distance, dissimilarity or index used to build the K. 
*(1/p)XXT (CrPr), Multidimensional Scaling (MDS), Detrended Correspondence Analysis (DCA), Non-Metric 

Multidimensional Scaling (NMDS), Constrained Correspondence Analysis (CCA), Redundancy Analysis 

(RDA), Euclidean distance (Eucl), Bray-Curtis dissimilarity (BrCr), Canberra distance (Canb), Jaccard index 

(Jacc), Mahalanobis distance (Maha) and Aitchison distance (Aitc). 

 

Figure 2 shows clear differences between Ks for the beta-diversity, in most methods 

represented as darker zones of the out-diagonal elements, compared to others showing flat 

homogeneous out-diagonal elements (MDS, RDA, CCA). 

 

 



HOLOBIONT EFFECT ACCOUNTS FOR MORE METHANE EMISSION VARIANCE THAN THE ADDITIVE AND 
MICROBIOME EFFECTS ON DAIRY CATTLE 

 

 

112 
 

Heritability estimates. Mean heritability (±SE) from the GBLUP model was 

estimated at 0.34 (±0.01). Including the metagenome information resulted in a most accurate 

estimation of heritability, GBLUP might be capturing microbiome effect, and therefore, 

slightly overestimating heritability. The HBLUP provided the most accurate heritabilities: 

0.30 (±0.01) in RDA, 0.29 (±0.01) in MDS and 0.29 (±0.01) in CCA methods (Figure 3A).  

 

 

Figure 3. Heritability for methane production according to method to build the microbiota 

relationship matrix (K) for the ruminal microbiota using microbiome distance, dissimilarity 

or index matrices* from A) genetic and microbiome effects (HBLUP) and from B) genetic, 

microbiome and interaction effects model (HiBLUP) using simulated data for 1000 cows and 

25 replicates. 
*(1/p)XXT (CrPr), Multidimensional Scaling (MDS), Detrended Correspondence Analysis (DCA), Non-Metric 

Multidimensional Scaling (NMDS), Redundancy Analysis (RDA), Constrained Correspondence Analysis 

(CCA), Euclidean distance (Euclidean), Bray-Curtis dissimilarity (Bray_Curtis), Canberra distance (Canberra), 

Jaccard index (Jaccard), Mahalanobis distance (Mahalanobis) and Aitchison distance (Aitchison). 
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The estimated heritability was slightly lower than the simulated (0.30) by matrices 

MDS, DCA, NMDS, RDA and CCA (Figure 3A). The other models underestimated the 

simulated value with larger differences. In the HiBLUP model, simulated heritability (0.30) 

was underestimated by all methods following a similar pattern as in the HBLUP model 

(Figure 3B).   In the HiBLUP model, the most accurate estimation of heritability was 

performed by the CCA method (0.26 ± 0.02) followed by the RDA (0.26 ±0.02) and DCA 

(0.26 ± 0.01) matrices (Figure 3B). The Aitchison matrix resulted in the most biased 

estimated heritability (Fig. 3). The estimated heritability was slightly lower than the 

simulated (0.30) by method of MDS, DCA, NMDS, RDA and CCA (Figure 3A). The other 

models underestimated the simulated value with larger differences. In the HiBLUP model, 

simulated heritability (0.30) was underestimated by all methods following a similar pattern 

as in the HBLUP model (Figure 3B).   

 

Microbiability estimates. The microbiability was simulated to a value of 0.30. The 

model that ignored the genetic effect (MBLUP) resulted in closer estimates to the simulated 

value when the following matrices were used: RDA (0.29 ± 0.00), MDS (0.27 ± 0.00) and 

CCA (0.34 ± 0.01) (Figure 4A). In general, incorporating the genomic effect (HBLUP) 

resulted in similar or more accurate microbiability estimates: RDA (0.30 ± 0.00), DCA (0.30 

± 0.01), NMDS (0.29 ± 0.02), MDS (0.29 ± 0.01) and CCA (0.31 ± 0.01) (Figure 4B). The 

other matrices (Euclidean, Bray-Curtis, Canberra, Jaccard, Aitchison) showed a relevant 

biased estimate for the microbiability. Adding the interaction effect in the model (HiBLUP) 

slightly reduced this bias but did not resulted in accurate estimates. Besides, it increased the 

SE in the rest of the matrices (Figure 4C). 
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Figure 4. Microbiability for methane production according to method to build the microbiota 

relationship matrix (K) for the ruminal microbiota using microbiome distance, dissimilarity 

or index matrices*. A) from the microbiome effect model (MBLUP), B) genetic and 

microbiome additive effects model (HBLUP) and C) genetic and microbiome interaction 

effect model (HiBLUP) using simulated data for 1000 cows and 25 replicates. 
*(1/p)XXT (CrPr), Multidimensional Scaling (MDS), Detrended Correspondence Analysis (DCA), Non-Metric 

Multidimensional Scaling (NMDS), Redundancy Analysis (RDA), Constrained Correspondence Analysis 

(CCA), Euclidean distance (Euclidean), Bray-Curtis dissimilarity (Bray_Curtis), Canberra distance (Canberra), 

Jaccard index (Jaccard), Mahalanobis distance (Mahalanobis) and Aitchison distance (Aitchison) 

 

Correlation between GEBV and TBV. The average correlation between genomic 

estimated breeding values (GEBV) and true breeding values (TBV) from the GBLUP model 

was 0.62 ± 0.00. The correlation increased when the microbiome effect was included in the 

model (HBLUP). The largest correlation was for the CrPr method (0.99 ± 0.00), followed by 

the CCA (0.98 ± 0.00) and Euclidean (0.97 ± 0.00) methods. The lowest correlation was 

obtained for the NMDS method (0.71 ± 0.05). In the HiBLUP model, the method with the 

highest correlation was CrPr (0.99 ± 0.00) followed by Euclidean (0.97 ± 0.00) and Canberra 
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(0.95 ± 0.01). The correlation increased considerably when the microbiome effect was 

included into the model, compared to the GBLUP model. Interestingly, the correlation 

between GEBV and TBV slightly decreased in some of the methods with the inclusion of the 

interaction effect (HiBLUP), compared to HBLUP (Table 2).  
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Table 2. Heritability, microbiability and correlation between estimated and true breeding or microbiome values for methane production 

according to method to build the microbiota relationship matrix (K) for the ruminal microbiota, from a microbiome effect model 

(MBLUP), genetic and microbiome additive effects model (HBLUP) and for an interaction effect model (HiBLUP), using 

simulated data for 1000 cows and 25 replicates1. 
Variance Components Simulated CrPr MDS DCA NMDS CCA RDA Eucl BrCr Canb Jacc Maha Aitc 

𝐲 = 𝟏´𝛍 +𝐖𝐦+ 𝐞, (MBLUP)             

Microbiability 0.3 0.73 0.27 0.42 0.41 0.34 0.29 0.85 0.97 0.97 0.97 0.41 0.95 

SEM Microbiability --- 0.01 0.00 0.01 0.01 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 

Correlation EMV vs TMV --- 0.98 0.73 0.84 0.28 0.97 0.91 0.94 0.86 0.84 0.86 0.91 0.94 

SEM Corr. EMV vs TMV --- 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

𝐲 = 𝟏´𝛍 + 𝐙𝐮 +𝐖𝐦+ 𝐞, (HBLUP)             

Heritability 0.3 0.20 0.29 0.27 0.25 0.29 0.30 0.14 0.08 0.08 0.09 0.25 0.03 

SEM Heritability --- 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.00 

Microbiability 0.3 0.53 0.29 0.30 0.29 0.31 0.30 0.69 0.81 0.83 0.81 0.43 0.94 

SEM Microbiability --- 0.03 0.01 0.01 0.02 0.01 0.00 0.03 0.04 0.03 0.04 0.01 0.01 

Correlation GEBV vs TBV --- 0.72 0.67 0.69 0.68 0.71 0.70 0.71 0.71 0.71 0.71 0.70 0.71 

SEM Corr. GEBV vs TBV --- 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Correlation EMV vs TMV --- 0.99 0.79 0.86 0.71 0.98 0.92 0.97 0.94 0.94 0.94 0.92 0.94 

SEM Corr. EMV vs TMV --- 0.00 0.01 0.01 0.05 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.01 

𝐲 = 𝟏´𝛍 + 𝐙𝐮 +𝐖𝐦+ 𝐓𝐮𝐱𝐦+ 𝐞, (HiBLUP)             

Heritability 0.3 0.22 0.25 0.26 0.25 0.26 0.26 0.17 0.12 0.12 0.12 0.22 0.05 

SEM Heritability --- 0.02 0.02 0.01 0.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 

Microbiability 0.3 0.46 0.33 0.29 0.25 0.35 0.34 0.58 0.70 0.70 0.69 0.45 0.87 

SEM Microbiability --- 0.05 0.03 0.02 0.02 0.03 0.03 0.05 0.05 0.05 0.05 0.04 0.04 

Correlation GEBV vs TBV --- 0.73 0.69 0.70 0.69 0.73 0.72 0.73 0.72 0.72 0.72 0.72 0.73 

SEM Corr. GEBV vs TBV --- 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

Correlation EMV vs TMV --- 0.99 0.78 0.86 0.76 0.91 0.91 0.97 0.95 0.95 0.94 0.91 0.89 

SEM Corr. EMV vs TMV --- 0.00 0.03 0.02 0.05 0.01 0.02 0.00 0.01 0.01 0.01 0.02 0.01 
1Method of (1/p)XXT (CrPr), Multidimensional Scaling (MDS), Detrended Correspondence Analysis (DCA), Non-Metric Multidimensional Scaling (NMDS), 

Redundancy Analysis (RDA), Constrained Correspondence Analysis (CCA), Euclidean distance (Eucl), Bray-Curtis dissimilarity (BrCr), Canberra distance (Canb), 

Jaccard index (Jacc), Mahalanobis distance (Maha) and Aitchison distance (Aitc). Values closest to the simulated value or better estimates are depicted in bold. 
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Correlation between EMV and TMV. The correlation between the estimated 

microbiome value (EMV) and the true microbiome value (TMV) were in general larger than 

0.90. The larger values were estimated with CrPr (0.98 ± 0.00) and CCA (0.97 ± 0.00). In 

the HBLUP model, the CrPr method had the highest correlation (0.72 ± 0.01), followed by 

CCA (0.71 ± 0.01). In the HiBLUP model the CrPr (0.99 ± 0.00) and Euclidean (0.97 ± 0.00) 

methods showed the higher values of correlation between EMV and TMV. The lowest 

correlation obtained for these parameters was for the NMDS (0.28 ± 0.00) method Table 2.               

A graphic representation of the correlation between EMV and TMV from the 

microbiome effect model is shown in Figure 5, where different accuracies of the association 

patterns are depicted according to the microbiome matrices.  

 

 

Figure 5. Correlation between estimated microbiome values (EMV) and true microbiome 

values (TMV) according to method to build the K using microbiome distance, dissimilarity 

or index matrices*from the microbiome effect model (MBLUP) using simulated data for 

1000 cows and 25 replicates.  

*(1/p)XXT (CrPr), Multidimensional Scaling (MDS), Detrended Correspondence Analysis (DCA), Non-Metric 

Multidimensional Scaling (NMDS), Redundancy Analysis (RDA), Constrained Correspondence Analysis 

(CCA), Euclidean distance (Euclidean), Bray-Curtis dissimilarity (Bray_Curtis), Canberra distance (Canberra), 

Jaccard index (Jaccard), Mahalanobis distance (Mahalanobis) and Aitchison distance (Aitchison). 
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Heritability, microbiability and correlation between estimated and true breeding or 

microbiome values for the simulated data are shown in Table 2. Results are summarized 

according to method to build the K for the ruminal microbiota from a MBLUP, HBLUP and 

for a HiBLUP model, using simulated data for 1000 cows and 25 replicates. Simulations 

enable to get insight into expected performance of methods to be applied to real data. It also 

has been an effective way for the evaluation and development of new breeding strategies 

(Faux et al., 2016). Based in the results obtained from our simulated simplified reality, it is 

expected that MDS, RDA and CCA ordination methods will perform better in real data for 

variance components estimation.  

 

Dairy data  

Microbiome composition. The relative abundance of the 86 phyla and 1240 genus 

are depicted in Figure 6. Showing some variability for the microbiome composition between 

animals.  
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Figure 6. Relative abundance (%) of phyla sorted incrementally by the abundance of 

Bacteroidetes and coloured by the top 10 most frequent taxa (A) and genera sorted 

incrementally by the abundance of Prevotellaceae (B) according to microbiota rumen sample 

for 437 Holstein cows from 14 herds at 4 Northern Regions of Spain (País Vasco, Cantabria, 

Navarra, and Girona). 

 

The variability between animals for microbiome composition implies a potential 

useful tool to improve traits of interest within animal breeding programs, its utility depends 

on a consistent and at least moderate microbiability across populations. Some specific 

phylum and genus were more frequent than others within an animal, but in general following 

a similar pattern of ranking of abundances according to phylum and genus. Most studies 

inform of higher proportions of Bacteroidetes and Firmicutes with consistent and conserved 

abundance rank structure of microbiome across geographical locations, breeds and diets 
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(Wallace et al., 2019). Consistently with our results, other studies (Deusch et al., 2017; 

Vaidya et al., 2018), also informed of the Prevotellaceae family dominating the phylum of 

Bacteroidetes and the overall bacterial community composition in rumen (Figure 6B). 

 

Microbiota Relationship Matrices. In general terms, out-diagonal elements had 

lower correlations between methods than diagonal elements. There were correlations 

coefficients ranging from null to high between out-diagonal elements of Ks, the highest 

correlation (ρ = 0.78) excluding correlations between Bray-Curtis dissimilarity and Jaccard 

index was between Canberra distance with Bray-Curtis dissimilarity and Jaccard Index 

methods. The lowest correlations were between out-diagonal elements of the K matrices from 

CCA, RDA and Mahalanobis distance methods with the rest of methods (Figure 7). There 

are considerable differences between Ks, therefore, different performances in mixed models 

are expected.  
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Figure 7.  Pearson correlation between diagonal (A) and off-diagonal (B) elements of the 

centred log ratios of 437 x 437 real microbiome distance, dissimilarity, or index matrices 

according to ordination method*. The strength of the correlation is also represented with the 

intensity of the colour from -1 (blue) to 1 (red). 
*(1/p)XXT (CrPr), Multidimensional Scaling (MDS), Detrended Correspondence Analysis (DCA), Non-Metric 

Multidimensional Scaling (NMDS), Redundancy Analysis (RDA), Constrained Correspondence Analysis 

(CCA), Euclidean distance (Euclidean), Bray-Curtis dissimilarity (Bray_Curtis), Canberra distance (Canberra), 

Jaccard index (Jaccard), Mahalanobis distance (Mahalanobis) and Aitchison distance (Aitchison). 

 

There were differences between the microbial matrices according to ordination 

method, as well as on the distance dissimilarity or index used. A heatmap graphic 

representation of the obtained K according to method used is depicted in Figure 8.  
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Figure 8. Microbiota relationship matrices of centred log-ratios of the microbial composition 

of rumen content for 437 Holstein cows according to ordination method*.  Darker colours 

represent higher values and differ depending on the distance, dissimilarity or index used to 

build the K. 

*(1/p)XXT (CrPr), Multidimensional Scaling (MDS), Detrended Correspondence Analysis (DCA), Non-Metric 

Multidimensional Scaling (NMDS), Constrained Correspondence Analysis (CCA), Redundancy Analysis 

(RDA), Euclidean distance (Eucl), Bray-Curtis dissimilarity (BrCr), Canberra distance (Canb), Jaccard index 

(Jacc), Mahalanobis distance (Maha) and Aitchison distance (Aitc). 

 

The Figure 8. illustrates that most Ks highlight the differences between alpha and 

beta-diversity, clearly evidencing the diagonal elements from the off-diagonal elements. 

There were also clear differences between Ks for the beta-diversity, in some methods (DCA, 

NMDS, Bray-Curtis, Canberra, Jaccard, Aitchison) represented as darker zones of the off-

diagonal elements, compared to others showing faint slight dark zones (CrPr, Euclidean) or 

even absent asymmetric zones among off-diagonal elements of the Ks, depicting a flat 

homogeneous off-diagonal platform (MDS, RDA, CCA, Mahalanobis). 
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Variance components estimations. Genetic (𝜎𝑢
2), microbiome (𝜎𝑚

2 ), genetic x 

microbiome interaction (𝜎𝑢𝑥𝑚
2 ) and residual (𝜎𝑒

2) variances for methane emission were 

estimated when appropriate from an GBLUP, MBLUP, HBLUP, and HiBLUP using real data 

(Figure 9).  

 

Figure 9. Proportion of phenotypic variance explained by the additive genetic variance (𝜎𝑢
2), 

microbiome variance (𝜎𝑚
2 ) and interaction variance (𝜎𝑢𝑥𝑚

2 ) according to a GBLUP, MBLUP, 

HBLUP, and HiBLUP model, depending on the distance, dissimilarity or index used to build 

the K*. 

*(1/p)XXT (CrPr), Multidimensional Scaling (MDS), Detrended Correspondence Analysis (DCA), Non-Metric 

Multidimensional Scaling (NMDS), Constrained Correspondence Analysis (CCA), Redundancy Analysis 

(RDA), Euclidean distance (Eucl), Bray-Curtis dissimilarity (BrCr), Canberra distance (Canb), Jaccard index 

(Jacc), Mahalanobis distance (Maha) and Aitchison distance (Aitc). 

 

Small variations were obtained between 𝜎𝑢
2 across all the ordination methods, while 

for 𝜎𝑚
2  and 𝜎𝑒

2 there were higher differences between estimates according to K used. Results 

of h2 estimates decreased with the inclusion of the microbiome effect and decreased even 

more with the inclusion of the microbiome × genetic effect into the models and were close 

across methods within a model. Results of m2 estimates also decreased with the inclusion of 

the genetic effect and decreased even more with the inclusion of the microbiome × genetic 

effect into the models. 
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 The estimated mean for methane h2 was 0.30 for GBLUP, and it ranged from 0.15 

(DCA, NMDS, Canberra) to 0.22 (CCA) in all the models that included the microbiome. The 

m2 estimates ranged from 0.27 (MDS) to 0.51 (RDA) in the MBLUP, from 0.19 (MDS, Bray-

Curtis, Jaccard) to 0.31 (Mahalanobis) in the HBLUP and from 0.15 (DCA, Bray-Curtis, 

Jaccard) to 0.21 (RDA, Mahalanobis) in the HiBLUP. Microbiability estimates were close to 

heritability estimates but they showed larger differences between K matrices used. 

Correlations between the posterior mean GEBVs and the methane emission 

phenotype were high and consistent across models that included the microbiome effect. 

These correlations ranged from 0.86 to 0.88 in the HBLUP model and from 0.84 to 0.86 in 

the HiBLUP model, these values were slightly lower than the value obtained for the 

benchmark GBLUP model (0.90). The correlation between the posterior means of the EMV 

and the phenotype ranged from 0.18 (NMDS) to 1.00 (CCA, RDA, Mahalanobis) in the 

MBLUP model, from 0.15 (NMDS) to 0.99 (CCA, RDA, Mahalanobis) in the HBLUP model 

and from 0.14 (NMDS) to 0.99 (CCA, RDA, Mahalanobis) in the HiBLUP model (Table 3). 

The correlation between the estimated genetic × microbiome interaction value 

(EGMV) and methane production in the methods of: CrPr (0.97), MDS (0.99), CCA (0.99), 

RDA (0.99) and Mahalanobis (0.99) were remarkably higher than the correlation between 

GEBV with methane production obtained in the GBLUP (0.90). The correlation between 

EGMV and methane production for MDS (0.99) was higher than the correlation between 

EMV and methane production obtained in the MBLUP model (0.88) or the HBLUP model 

(0.88). For CCA, RDA and Mahalanobis correlations between phenotype and EMV or 

EGMV were remarkably similar for all models (Table 3). 

The best methods, in terms of correlation between EMV or EGMV with methane 

concentration in the HiBLUP model, were: CrPr (0.97), MDS (0.99), CCA (0.99), RDA 

(0.99) and Mahalanobis (0.99). These results were remarkably higher than those obtained 

from the GBLUP (0.90). The largest proportion of phenotypic variance was explained by the 

same methods mentioned before, with a clear advantage of the holobiability parameter over 

the sum of microbiability and heritability. The methods with lowest correlation were NMDS 

(0.66) and Aitchison (0.73) (Table 3). 
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Table 3. Variance components, heritability, microbiability, holobiability and correlations between GEBV and phenotype, between EMV 

and phenotype and between EGMV and phenotype for methane production according to ordination method for the ruminal 

microbiota relationship matrix, from a GBLUP model, microbiome effect model (MBLUP), genetic and microbiome additive 

effects model (HBLUP) and for an interaction effect model (HiBLUP), using real data for 437 cows1. 
Variance Components CrPr MDS DCA NMDS CCA RDA Eucl BrCr Canb Jacc Maha Aitc 

𝐲 = 𝟏´𝛍 +𝐖𝐦+ 𝐞, (MBLUP)            

Microbiability (m2) 0.30 0.27 0.35 0.41 0.50 0.51 0.33 0.31 0.34 0.31 0.50 0.33 

Correlation GEBV with methane 0.86 0.88 0.20 0.18 1.00 1.00 0.62 0.43 0.34 0.46 1.00 0.58 

𝐲 = 𝟏´𝛍 + 𝐙𝐮 +𝐖𝐦+ 𝐞, (𝐇𝐁𝐋𝐔𝐏)            

Heritability (h2) 0.21 0.21 0.18 0.17 0.22 0.21 0.19 0.19 0.18 0.19 0.21 0.18 

Microbiability (m2) 0.21 0.19 0.22 0.27 0.30 0.29 0.22 0.19 0.23 0.19 0.31 0.22 

Holobiability (ho2) 0.42 0.40 0.40 0.44 0.52 0.50 0.41 0.38 0.41 0.38 0.52 0.40 

Correlation GEBV with methane 0.86 0.88 0.86 0.87 0.87 0.87 0.86 0.86 0.87 0.86 0.87 0.86 

Correlation EMV with methane 0.81 0.87 0.19 0.15 0.99 0.99 0.49 0.34 0.29 0.37 0.99 0.46 

𝐲 = 𝟏´𝛍 + 𝐙𝐮 +𝐖𝐦+ 𝐓𝐮𝐱𝐦 + 𝐞, (HiBLUP)            

Heritability (h2) 0.17 0.17 0.15 0.15 0.17 0.17 0.16 0.16 0.15 0.16 0.17 0.17 

Microbiability (m2) 0.17 0.16 0.15 0.20 0.20 0.21 0.18 0.15 0.18 0.15 0.21 0.16 

Holobiability (ho2) 0.51 0.55 0.42 0.45 0.58 0.58 0.47 0.45 0.46 0.45 0.59 0.47 

Correlation GEBV with methane 0.85 0.86 0.84 0.85 0.85 0.85 0.84 0.84 0.85 0.84 0.85 0.85 

Correlation EMV with methane 0.78 0.88 0.18 0.14 0.99 0.99 0.45 0.31 0.27 0.33 0.99 0.38 

Correlation EGMV with methane 0.97 0.99 0.81 0.66 0.99 0.99 0.82 0.80 0.75 0.82 0.99 0.73 

1Method of (1/p)XXT (CrPr), Multidimensional Scaling (MDS), Detrended Correspondence Analysis (DCA), Non-Metric Multidimensional Scaling (NMDS), 

Redundancy Analysis (RDA), Constrained Correspondence Analysis (CCA), Euclidean distance (Eucl), Bray-Curtis dissimilarity (BrCr), Canberra distance (Canb), 

Jaccard index (Jacc), Mahalanobis distance (Maha) and Aitchison distance (Aitc). Larger values between ordination methods are depicted in bold.
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Models comparison. Different criteria, that could assist on selecting the best model, 

were obtained from the analysis: log-likelihood evaluated at posterior mean, the posterior 

mean of the Log-Likelihood, estimated effective number of parameters, as well as the 

deviance information criterion (DIC) were obtained.  

DIC is considered particularly useful for Bayesian model selection where the 

posterior distribution of the models has been obtained by Markov Chain Monte Carlo 

(MCMC) simulation. When prior information is negligible, DIC results in an equivalent 

approximation to Akaike’s criterion (Spiegelhalter et al., 2002), but the DIC uses the 

posterior expectation of the log likelihood as a measure of model fit (Sorensen, 2004).The 

DIC can be used to decide adequacy of a model; the difference between DIC of two given 

models should suffice to make a good choice. Sorensen (2004) indicates that it is difficult to 

affirm what is an important difference in DIC and suggests that 10 definitively exclude the 

model with the highest DIC, differences from 5 to 10 are still substantial, but to choose a 

model that differs only by a value below 5 in DIC could be misleading.  

Results from those criteria were obtained for the GBLUP, MBLUP, HBLUP and 

HiBLUP models (Table 4). 
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Table 4. Information criteria estimated from a microbiome effect model (MBLUP), genetic and microbiome additive effects model 

(HBLUP) and for an interaction effect model (HiBLUP) according to method of ordination for the microbiota relationship 

matrix for real data from 437 cows, a GBLUP model is included as reference 1.  
Variance Components CrPr MDS DCA NMDS CCA RDA Eucl BrCr Canb Jacc Maha Aitc GBLUP 

𝐲 = 𝟏´𝛍 +𝐖𝐦+ 𝐞, (MBLUP) 

LLPM -3109 -3117 -3223 -3225 -2973 -2969 -3177 -3199 -3210 -3196 -2972 -3185 -3106 

PMLL -3164 -3171 -3227 -3228 -3073 -3070 -3202 -3214 -3219 -3212 -3073 -3207 -3164 

pD 110 107 8 6 200 201 49 28 18 32 201 43 115 

DIC 6440 6450 6462 6464 6347 6341 6454 6456 6457 6456 6349 6458 6443 

𝐲 = 𝟏´𝛍 + 𝐙𝐮 +𝐖𝐦+ 𝐞, (HBLUP) 

 

 

LLPM -3042 -3043 -3130 -3132 -2969 -2972 -3100 -3115 -3122 -3113 -2972 -3106 -3106 

PMLL -3123 -3125 -3176 -3178 -3072 -3074 -3158 -3166 -3171 -3166 -3074 -3162 -3164 

pD 161 164 92 91 206 204 115 103 97 104 203 111 115 

DIC 6407 6414 6445 6447 6350 6354 6431 6437 6439 6437 6352 6436 6443 

𝐲 = 𝟏´𝛍 + 𝐙𝐮 +𝐖𝐦+ 𝐓𝐮𝐱𝐦 + 𝒆, (HiBLUP)           

LLPM -2978 -2949 -3087 -3094 -2927 -2923 -3047 -3058 -3076 -3055 -2920 -3055 -3106 

PMLL -3080 -3059 -3152 -3156 -3043 -3040 -3125 -3131 -3143 -3130 -3038 -3130 -3164 

pD 204 220 128 123 232 234 156 147 135 150 235 150 115 

DIC 6365 6340 6432 6435 6318 6314 6407 6411 6422 6410 6311 6410 6443 

1Method of (1/p)XXT (CrPr), Multidimensional Scaling (MDS), Detrended Correspondence Analysis (DCA), Non-Metric Multidimensional Scaling (NMDS), 

Redundancy Analysis (RDA), Constrained Correspondence Analysis (CCA), Euclidean distance (Eucl), Bray-Curtis dissimilarity (BrCr), Canberra distance (Canb), 

Jaccard index (Jacc), Mahalanobis distance (Maha) and Aitchison distance (Aitc). LLPM = log-likelihood evaluated at posterior mean. PMLL = posterior mean of 

the Log-Likelihood. pD = estimated effective number of parameters.  DIC = deviance information criteria. DIC lower than that of GBLUP are depicted in bold. 
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Between the three models that included the microbiome effect, the log-likelihood 

evaluated at posterior mean, the posterior mean of the Log-Likelihood and the estimated 

effective number of parameters values increased as the model included more factors, in all 

building methods of K. The DIC decreased with the complexity of the model. Those results 

indicate better fit of models that included the microbiome effect. According to the DIC, CrPr 

(6440), CCA (6347), RDA (6341) and Mahalanobis (6349) fitted better than the GBLUP 

(DIC = 6443) in the MBLUP model; all other MBLUP models were outperformed by the 

GBLUP. However, all HBLUP and HiBLUP showed better fit than the GBLUP model 

(except HBLUP with DCA and NMDS matrices).  

In the HiBLUP model, all methods fitted better than the GBLUP model, with the 

lowest DIC obtained for the Mahalanobis method (DIC=6311), and differences larger than 5 

in DIC regarding GBLUP. The best models sorted according to the differences between DIC 

from the GBLUP model were Mahalanobis (132), RDA (129), CCA (125), MDS (103), CrPr 

(78), Euclidean (36), Jaccard (33), Aitchison (33), Canberra (21), DCA (11), NMDS (8). The 

Mahalanobis K matrix used in the HiBLUP model showed to be the most plausible from real 

data. Furthermore, the highest holobiability and the highest correlation between the EGMV 

and methane production were obtained with this method.  

Based on the obtained results, there are enough differences between DIC to consider 

that the HiBLUP models including genomic information, microbiota information and its 

interaction using the Mahalanobis, RDA, CCA and MDS method should be chosen rather 

than the GBLUP and over the MBLUP and other metagenomic matrices. 

The RDA, CCA and MDS methods within the HiBLUP model performed better than 

most other methods in the simulation and were by far, together with Mahalanobis method, 

the most plausible methods of building the metagenomic matrices for the real data, as 

determined by the DIC. These methods yielded outstanding results compared to classical 

approaches of variance component and other population parameters estimation (i.e. GBLUP), 

allowing for improvements of accuracy in estimated variance components of complex traits 

influenced by microbiome. 
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CONCLUSIONS 

 

This study incorporated microbiome relationship matrices into the models commonly 

used in genetic evaluation and variance component estimation. Several metrics were used to 

calculate distances between rumen microbiotas. The MDS, CCA and RDA matrices achieved 

unbiased estimation of variance components in simulated data. The genomic breeding values 

were accurately inferred when a microbiome effect and its interaction was accounted for. 

Similar results were obtained with real data. 

The deviance information criterion (DIC) was substantially lower for the HiBLUP 

model, providing enough evidence to recommend this model with K matrices built with 

Mahalanobis, CCA, RDA or MDS methods. Accounting for the genome × microbiome 

interaction improved variance component estimation and it may have yielded more accurate 

performance predictions of methane emissions.  

Holobiont modelling might also be extended to other relevant traits in dairy cattle. If 

holobiability is consistent across studies and its value surpasses heritability for the trait of 

interest, it might be a better estimator to be included into genetic evaluations, which a priori 

would increase the selection accuracy compared to the classical usage of heritability. 
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ABSTRACT 

 

The rumen is a complex microbial system of substantial importance in terms of greenhouse 

gas emissions and feed efficiency. This study proposes combining metagenomic and host 

genomic data for selective breeding of the cow hologenome towards reduced methane 

emissions. We analyzed nanopore long reads from the rumen metagenome of 437 Holstein 

cows from 14 commercial herds in 4 northern regions in Spain. After filtering, data were 

treated as compositional. The large complexity of the rumen microbiota was aggregated, 

through principal component analysis (PCA), into few principal components (PCs) that were 

used as proxies of the core metagenome. The PCA allowed condensing the huge and fuzzy 

taxonomical and functional information from the metagenome into few PCs. Bivariate animal 

models were applied using these PCs and methane production as phenotypes. The variability 

condensed in these PCs is controlled by the cow genome, with heritability estimates for the 

first PC of ~0.30 at all taxonomic levels, with a large probability (>83%) of the posterior 

distribution being > 0.20 and with the 95% highest posterior density interval (95%HPD) not 

containing zero. Most genetic correlation estimates between PC1 and methane were large 

(≥0.70), with most of the posterior distribution (>82%) being >0.50 and with its 95%HPD 

not containing zero. Enteric methane production were positively associated with relative 

abundance (RA) of eukaryotes (protozoa and fungi) through the first component of the PCA 

at Phylum, Class, Order, Family and Genus. Nanopore long reads allowed the 

characterization of the core rumen metagenome using whole metagenome sequencing, and 

the purposed aggregated variables could be used in animal breeding programs to reduce 

methane emissions in future generations. 

Key words: Genetic correlation, heritability, methane, microbiome, principal component 

analysis. 
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INTRODUCTION 

 

The rumen contains a plethora of anaerobic microorganisms of all known 

phylogenetic domains (Pace, 1997); Bacteria, eukaryotes and archaea conform this complex 

microbiota ecosystem (Deusch et al., 2017). The archaea superkingdom includes 

methanogenic microorganisms, responsible for the methane emissions emitted by the 

ruminants (Knapp et al., 2014). Reducing methane production from domesticated ruminants 

poses a large potential to reduce greenhouse gas from the agriculture industry (Negussie et 

al., 2017; Clauss et al., 2020), which is the main greenhouse gas contributor from livestock 

(Negussie et al., 2017). Methane production is also considered as a loss of energy, as it is not 

absorbed by the animal to increase the desire output of the productive system (Johnson and 

Johnson, 1995). Reduction of enteric methane from livestock has become an important area 

of research (Negussie et al., 2017), due to its environmental and economic implications.  

Several microorganisms have been associated to complex traits of interest in dairy 

cattle (Schären et al., 2018). Previous studies focused on single taxa relationships rather than 

accounting for the whole microbiome simultaneously. Moderate to high heritability estimates 

(0.20-0.60) have been reported for single taxa (e.g., genus) previously (Wallace et al., 2019). 

The effect of a single taxa over methane emissions has also been studied (Saborío-Montero 

et al., 2020). Complex traits are commonly affected by global changes in the microbial 

composition, and rarely by a single type of microorganism (Martínez-Álvaro et al., 2020; 

Malmuthuge and Guan, 2017).  

Some external forces (e.g. diet, diseases and medical treatments, stress) can determine 

the growth of some specific microorganisms, which can at the same time condition the 

abundance of others they are related with, accelerating or slowing down their multiplication 

(Bach et al., 2019).  

In recent years, efforts have been made to characterize the rumen microbiome and 

their functionality, with the aim of implementing nutrition and selective breeding strategies 

to modulate it. The ruminal microbiota composition is partially controlled by the host 

genotype, and both affect important traits in livestock that are related to efficiency and 

sustainability, including methane production (Roehe et al., 2016; Gonzalez-Recio et al., 

2017). Animal breeding aims to modulate the ruminal microbiota through selection and to 
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achieve a more efficient microbial composition that reduces the use of natural resources and 

generates less methane emissions without impairing health and productivity (López-Paredes 

et al., 2020; González-Recio et al., 2020). Selective breeding against methane emissions may 

use the effect that the host genetics exerts on the microbial composition, which can explain 

up to 40% of the variability between individuals for the relative abundance (RA) of some 

bacterial genera associated to methane emissions (Wallace et al., 2019; Saborío-Montero et 

al., 2020). However, selecting by a single genus is ineffective for methane emissions 

mitigation because the effect of the microbiota on this complex trait is commonly due to a 

set of microbes, rather than to a single type of them. Also, increasing the relative abundance 

of a given microorganism decreases the relative abundance of other taxa when analyzing 

metagenomic data. Interactions in the microbial systems are cumbersome, and the greater or 

lesser abundance of one type of microorganism can affect the composition of the rest of the 

microbiota (Newbold et al., 2015).  

Data structured as proportions or with a constant or irrelevant sum, are designated as 

compositional data, sequence reads from the metagenome are compositional (Gloor et al., 

2017). Therefore, it is necessary to develop an analytic strategy that considers the broad 

composition of the microbiota to modulate it as a holobiont organism entity, instead of acting 

only on a few genera. 

The objective of this study was to aggregate the rumen microbiota complexity into 

few principal components and to estimate their heritability and genetic correlation with 

methane traits.   

 

MATERIALS AND METHODS 

 

Ethical statement  

This study was conducted in accordance with Spanish Royal Decree 53/2013 for the 

protection of animals used for experimental and other scientific purposes and was approved 

by the Basque Institute for Agricultural Research and Development Ethics Committee 

(Neiker-OEBA-2017-004) on March 28, 2017.  
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Data  

A total of 437 Holstein cows from 14 commercial herds in 4 northern regions in Spain 

(Cantabria, País Vasco, Navarra and Gerona) were included in this study. Methane 

concentration measurements were obtained for all cows using a non-disperse infrared 

methane detector (The Guardian NG infrared gas monitor, Edinburgh Sensors, Scotland) as 

described by Rey et al. (2019). Briefly, methane concentration was measured individually 

from breath at each cow visit (3-7 daily visits) to the automated milking system, during 2-3 

week periods. Eructation peaks recorded were averaged to obtain a single record per cow. 

Cows were classified in different groups according to lactation parameters (parity and stage 

of lactation).  

 

Genotyping 

Animals were genotyped using the EuroG 10K and EuroG LD 12k (Illumina, San 

Diego, California, USA). Low density genotypes were imputed to the Bovine 50k SNP chip 

(Illumina, San Diego, California, USA) containing 54,609 SNPs using BEAGLE software 

(Browning et al., 2018) and 3,669 animals from the Spanish Holstein reference population 

provided by the Spanish Friesian Associations Confederation (Jiménez-Montero et al., 2013). 

The SNPs with MAF<0.05 were filtered out from the analysis resulting in 42,372 SNPs left 

for the analyses.  

 

Ruminal sampling technique 

Samples of the rumen content were extracted from each animal. Cows were placed in 

individual stalls during the process, and a mechanical device was used to raise the snout of 

the animal. Approximately 100 ml of content was extracted from each cow by introducing 

orally a stomach tube (18 mm diameter and 160 mm long) through the esophagus connected 

to a mechanical pumping unit (Vacubrand ME 2SI, Wertheim, Germany) with a 1000 ml 

Erlenmeyer trapped in-between. Samples were then stored in a sterilized container. Hose and 

all material in contact with the samples were thoroughly washed between cows. Samples 

were filtered through 4 layers of sterile cheesecloth, in order to remove the solid fraction and 

the filtered fraction was frozen in liquid nitrogen vapors immediately after. Frozen samples 
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were transported to the laboratory in liquid nitrogen containers and stored at −80 °C until 

analysis. 

 

DNA extraction and sequencing 

The samples were thawed, and then homogenized in a blender. The DNA extraction 

was performed using 250 µl from the homogenized samples with the commercial “DNeasy 

Power Soil” kit (QIAGEN, Valencia, CA, USA). The genomic DNA concentrations and their 

purity were measured using the Qubit fluorometer (ThermoFisher Scientific, 150 Waltham, 

MA, USA) and a Nanodrop ND-1000 UV/Vis spectrophotometer (Nanodrop Technologies 

Inc., DE, USA) with ratios 260/280 and 260/230 around 1.8 and 2.0, respectively. One µg of 

DNA from each sample was used as initial material for sequencing, following the ligation 

sequencing kit (SQK-LSK109) protocol from Oxford Nanopore Technologies (ONT), in a 

MinION sequencer. Twelve samples were multiplexed in each run with the 1D Native 

barcoding genomic DNA (EXP-NBD104 or EXP-NBD114) ONT kit. The barcoded samples 

(700 ng of DNA in total) were pooled in a 1.5 ml Eppendorf DNA LoBind tube to perform 

adapter ligation for sequencing using a R9.4.1 flow cell. 

 

Bioinformatics 

Base calling was performed with the guppy 4.2.2 software provided by ONT. After 

quality control (QS>7 and length>150bp), the remaining sequences were analyzed using the 

SqueezeMeta 1.1.0 pipeline (Tamames and Puente-Sánchez, 2019). Briefly, it runs a blastx 

search of the reads against GenBank nr, COGs and KEGG databases to taxonomically and 

functionally annotate putative ORFs. Taxa are annotated using a last common ancestor 

algorithm for finding the consensus taxon for each read. KEGG annotation was performed 

with SqueezeMeta long reads protocol (SQM_longreads.pl), which uses the fun3 algorithm 

to assign functions. Functions were annotated using the best hit above a minimum score 

threshold in the LCA (last common ancestor) algorithm (60, 55, 50, 46, 42 and 40% for genus, 

family, order, class, phylum and superkingdom ranks, respectively). Hits below these 

thresholds were considered as unclassified at the respective taxonomical level. For instance, 

a protein will not be assigned to genus if it has no hits above 60% identity. This imposes 

rigorous taxonomy classification, but accurate assignation.  The euk option, was used to 
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improve eukaryotic annotation. Non-microbial sequences (animalia, plantae and virus 

clades) were removed. Sequences unmapped to the family level (unclassified) were also 

removed. The results from the SqueezeMeta pipeline (taxonomy and functionality) were 

pruned through a prevalence filter in order to reduce sparsity and manage sequencing errors. 

Genera were arranged based on their superkingdom taxonomical classification (Archaea, 

Bacteria or Eukaryota). KEGG results were organized according to their participation in 

methanogenesis: KEGGs within the orthology pathway ko00680 (Methane metabolism) 

were classified as “CH4-KEGGs” (n=85), and the rest were considered as “Other” (n=6,559).  

 

Association between microbial functionality with methane production 

Here, cows were grouped based on their level of CH4 (ppm) measurements according 

to quartile-based ranks, taking 4 levels: LOW, L-MID, H-MID and HIGH. The ALL-KEGGs 

group, which  consisted of total classified KEGGs (n=6,644) within this study, were included 

in the differential abundance of KEGGs between samples regarding the different methane 

emissions levels was addressed through linear regression using Limma (Ritchie et al., 2015). 

Differential abundance threshold was set to | log2FC | ≥ 0.5. The Benjamini-Hochberg 

procedure was used to control for the false discovery rate at an adjusted significance 

threshold of α < 0.05.  

An additional classification of KEEGs was then included based on the results of the 

differential abundance analysis. This is, those KEGGs that resulted to be differentially 

abundant were classified as “KEGGs-DA” (n=279). These KEGGs were subsequently 

classified as differentially abundant in the high methane emitting group “KEGGs-DA-High” 

or in the low methane emitting group “KEGGs-DA-Low”. 

 

Compositional data 

In order to deal with the compositional nature of metagenomic data, a centered log 

ratio transformation (CLR) method (Aitchison, 1986) was implemented as follows using the 

unweighted option of the CLR function from the easyCODA R package (Greenacre, 2019):   

𝐱𝐜𝐥𝐫 = [𝑙𝑜𝑔 (𝑥1/𝐺(𝑥)), 𝑙𝑜𝑔 (𝑥2/𝐺(𝑥))… 𝑙𝑜𝑔 (𝑥𝐷/𝐺(𝑥))], 

with 𝐺(𝑥) =  √𝑥1 ∗ 𝑥2 ∗ … ∗ 𝑥𝐷
𝐷 .  
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Here, x = [𝑥1, 𝑥2,…, 𝑥𝐷]  is a vector of counted features (taxa or KEGGs) in a sample, and 

G(x) is the geometric mean of x. Count zero values in the initial data frame were imputed in 

order to allow computing logarithms. The imputation was done using a Bayesian 

Multiplicative Replacement procedure. This procedure was performed with the geometric 

Bayesian multiplicative method (GBM) from the cmultRepl function of the zCompositions R 

package (Palarea-Albaladejo et al., 2019). 

 

Principal component analysis of taxa and KEGGs 

Principal component analysis was used to reduce the dimensionality and aggregate 

the metagenome variance into few variables. This was performed for the taxonomy and 

functional data sets, independently. Data matrices Ks with m rows (m =437, the number of 

individuals in the data set) and n columns (n= the number of taxa or KEGGs according to 

taxonomy or KEGG subset, respectively) were created.  The PCAs were performed on the 

CLR transformed Ks using the centered and scaled option of prcomp function from the stats 

R package (R Core Team, 2020). The number of PCs from the PCA kept for further analysis 

was decided based on:  

1. The number of PCs with eigenvalues higher than value 1,  

2. The variance explained by the PCs (Threshold ≥ 1%),  

3. The interpretation of the PCs (subjacent variables with biological meaning).  

Thus, the first five PCs were kept as descriptive synthetic variables that explain the 

variability either of the rumen microbial diversity or KEGGs subsets. Pearson correlations 

between the RA of variables (Taxa or KEGGs) and PCs were extracted with the cor option 

of the get_pca_var function from the factoextra R package(Kassambara and Mundt, 2020). 

Analyses of variance (ANOVA) were performed to find differences between mean 

correlations (centroids) for the groups of taxonomy (Archaea, Bacteria, Eukaryote) or 

functionality (KEGGs) subsets. All the ANOVA were performed with the aov function of 

the stats package in R (R Core Team, 2020). The value of P < 0.05 was set as the threshold 

to consider that there were differences between groups from the ANOVA. Then, a TukeyHSD 

function from the stats package in R (R Core Team, 2020) was used as a post hoc analysis to 

determine differences between groups.  
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Heritability and genetic correlation 

Principal components resulted from the above analyses were used as phenotypic 

variables describing the microbiota composition (taxonomical or functional). The genetic 

effect of the host over the PCs and methane emissions was simultaneously estimated using 

bivariate animal models on methane and each of the PC considered. Covariances components 

between methane and each PC were estimated under a Bayesian framework. Inferences were 

obtained through an MCMC approach with a modified version of the TM package (Legarra 

et al., 2011) that uses the genomic relationship matrix (VanRaden, 2008; Yang et al., 2010) 

instead of the pedigree numerator relationship matrix. A set of bivariate animal models were 

used to analyze the relationship between each of the principal components extracted from the 

PCA and methane production from cows. All models were implemented under a Bayesian 

framework assuming a joint multivariate normal distribution for principal components (PC) 

and CH4. The observed data were modeled as 

 

y = Xb + Z(h)h + Z(u)u + e, 

 

Where  𝐲 = {𝑦𝑖,𝑃𝐶𝑘 , 𝑦𝑖,𝐶𝐻4}  was  the observed PCk and CH4 concentration for the ith 

individual (cow); b is a vector including effects of population mean, parity (2 levels: first and 

second calving) and days in milk (3 levels: <70d, 71 to 150d, >151d), assuming prior 

distributions for b as uniform (-9999, 9999); 𝐡 = {ℎ𝑖,𝑃𝐶𝑘 , ℎ𝑖,𝐶𝐻4}  were the herd-batch effect 

(24 levels) assumed distributed as a multivariate normal distribution with null mean vector 

and (co)variance matrix 𝐇𝟎 ⊗ I, with 

 

𝐇𝟎 = [
𝜎ℎ𝑃𝐶𝑘
2 𝜎ℎ𝑃𝐶𝑘,𝐶𝐻4

2

𝜎ℎ𝐶𝐻4,𝑃𝐶𝑘
2 𝜎ℎ𝐶𝐻4

2 ] 

 

where 𝜎ℎ𝑃𝐶𝑘
2  was the herd-batch variance on PCk, 𝜎ℎ𝐶𝐻4

2  was the herd-batch variance 

on CH4 and 𝜎ℎ𝑃𝐶𝑘,𝐶𝐻4
2 was the herd-batch covariance between PCk and CH4. The I was an 

identity matrix of corresponding order. Then, 𝐮 = {𝑢𝑖,𝑃𝐶𝑘 , 𝑢𝑖,𝐶𝐻4} were the genetic effect 
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assumed to be distributed as a multivariate normal, with a null mean and a (co)variance 

matrix 𝐊𝟎 ⊗ G, with G being the genomic relationship matrix between individuals 

(VanRaden, 2008) and 

𝐊𝟎 = [
𝜎𝑢𝑃𝐶𝑘
2 𝜎𝑢𝑃𝐶𝑘,𝐶𝐻4

2

𝜎𝑢𝐶𝐻4,𝑃𝐶𝑘
2 𝜎𝑢𝐶𝐻4

2 ] 

  

where 𝜎𝑢𝑃𝐶𝑘
2  was the additive genetic variance for the PCk of a given taxa, 𝜎𝑢𝐶𝐻4

2 was 

the additive genetic variance for CH4, and 𝜎𝑢𝑃𝐶𝑘,𝐶𝐻4
2 was the additive genetic covariance 

between PCk and CH4. Finally, 𝐞 = {𝑒𝑖,𝑃𝐶𝑘 , 𝑒𝑖,𝐶𝐻4}  were the residuals assumed distributed as 

a multivariate normal distribution with zero mean and (co)variance matrix 𝐑𝟎 ⊗ I, where 

 

𝐑𝟎 = [
𝜎𝑒𝑃𝐶𝑘
2 𝜎𝑒𝑃𝐶𝑘,𝐶𝐻4

2

𝜎𝑒𝐶𝐻4,𝑃𝐶𝑘
2 𝜎𝑒𝐶𝐻4

2 ] 

  

and I was the identity matrix of corresponding order. The X and Z were incidence 

matrices of appropriate order. The ⨂ symbol stands for the Kronecker product. 

The heritability for each trait (PCk or CH4) was calculated as follows:  

 

ℎ2 =
𝜎𝑢
2

𝜎𝑢2 + 𝜎h
2 + 𝜎𝑒2

 

 

where, 𝜎u
2 is the additive genetic variance of the analyzed trait, 𝜎h

2 is the herd-batch 

variance, and 𝜎𝑒
2 is the residual variance. 

The genetic correlations between PCk and CH4 were computed as: 

 

𝐶𝑜𝑟𝑟𝑢𝑃𝐶𝑘,𝐶𝐻4
= 

𝜎𝑢𝑃𝐶𝑘,𝐶𝐻4

√𝜎𝑢𝑃𝐶𝑘
2 × 𝜎𝑢𝐶𝐻4

2
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where 𝜎𝑢𝑃𝐶𝑘,𝐶𝐻4
 is the additive genetic covariance between PCk and CH4, 𝜎𝑢𝑃𝐶𝑘

2 is the 

additive genetic variance for the PCk and finally, 𝜎𝑢𝐶𝐻4
2  is the additive genetic variance for 

CH4. 

 

Posterior analysis of genetic parameters estimated through MCMC 

Probability intervals of the posterior distribution of heritability and genetic 

correlations were estimated as the highest posterior density intervals from quantile 0.025 to 

0.975 (95%HPD) of the distribution. After preliminary runs, visual examination of trace 

plots, and additional diagnostic assessments, the length of the chain was set to 300,000 

iterations with a burn-in of 100,000 iterations; a thin period of 10 was taken in order to reduce 

the autocorrelation between samples. A total of 20,000 samples were kept to infer the 

posterior distributions of the unknown parameters. The sample size adjusted for 

autocorrelation and convergence diagnosis were performed using the coda R package 

(Plummer et al., 2019).  

 

RESULTS 

 

Microbial composition taxonomy 

The microbial dataset after filtering included a total of 6,318,344 reads, with a mean 

number of reads of 14,458 per sample, classified in 967 known genera (722 bacteria, 13 

archaea and 232 eukaryotes), and 273 that only reached family rank (i.e. Unclassified 

denomination). Overall, 503 families, 277 orders, 158 classes and 86 different phyla (37 

bacterial phyla, 3 archaeal phyla and 46 eukaryotic clades) were classified. The genera 

taxonomy classification is available in the REDIA repository 

(http://rdm.inia.es/dataset/rumen-microbial-taxonomy-in-dairy-cattle). 

Predominant microorganisms in this core rumen subcomposition were from 

Bacteroidetes, Firmicutes and Fibrobacteres phyla, representing an average RA of 63%, 16% 

and 5%, respectively. Bacteroidetes fraction was majorly composed by Prevotella, and was 

the main representative in the total community (19.4% average RA), along with other 

Prevotellaceae members. The Firmicutes group included a large number of genera. The order 

http://rdm.inia.es/dataset/rumen-microbial-taxonomy-in-dairy-cattle
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of Clostridiales dominated in terms of RA, with Lachnospiraceae and Ruminococcaceae 

families being the most representative ones. The remaining phyla (34) from the Bacteria 

superkingdom represented 7.6% averaged RA of the core metagenome. Eukaryotes 

represented a total average RA of 8.2% of the filtered dataset. Predominant eukaryotic clades 

were those included in the SAR supergroup (Stramenopiles-Alveolata-Rhizaria), accounting 

for 6% of total average RA, followed by Fungi (1.3% of total average RA). Alveolata clade 

was the most abundant among the eukaryotes, with a high representation of unclassified 

Ophryoscolecidae, Stentor and Paramecium. Archaea representation in the core 

subcomposition (0.24% of total average RA) consisted of methanogenic organisms, mostly 

Methanomicrobia and Methanobacteria members, and Thermoplasmata, which belong to the 

methylotrophic-methanogenic acidophilic organisms. Yet, many reads could not be assigned 

to a known genus. The relative abundance per animal of the most relevant taxonomic groups 

is depicted in Figure 1. 

 

Figure 1. Relative abundance (%) of phyla colored by the top 10 most frequent Phylum and 

sorted by Bacteroidetes abundance according to microbiota rumen sample for 437 Holstein 

cows from 14 herds at 4 Northern Regions of Spain (País Vasco, Cantabria, Navarra, and 

Girona). 
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Functionality 

The KEGG table was composed by 30,242,331 reads from 437 samples, classified in 

6,644 KEGGs. Most of the rumen metagenome functions were in pathways that represent the 

metabolism of carbohydrate, amino acid and other biological compounds, as well as of 

energy metabolism proteins. Pathways related to pathogenic activity were also present, in 

agreement with the RA of several genera that included some known pathogenic species.  

A total of 85 CH4-KEGGs were recovered from the KEGG orthology pathway 

ko00680 (Methane metabolism). After differential abundance analysis of ALL-KEGGs, a 

total of 279 KEGGs were classified as KEGGs-DA, with 182 KEGGs-DA-High and 97 

KEGGs-DA-Low.   

 

Dimensionality reduction of microbial composition 

The rumen microbiome complexity was aggregated in few explanatory variables by 

applying principal component analysis (PCA) to the CLR data at the different taxonomical 

levels (phylum, class, order, family and genera) as well as for the KEGG classification 

(functional). We kept the information aggregated in the first five PC, based on eigenvalues 

>1, a percentage of variance explained from the original variables ≥ 1%, and biological 

meaning of the PCs (i.e. Clustering of known taxonomical groups). The proportion of the 

microbiome variance captured by these PC at the different levels was summarized in Table 

1.         

Table 1. Number of recovered taxonomic features from the rumen content of 437 Holstein 

cows and proportion of the variance explained by the first five principal components 

according to PCA by taxonomic classification. 

 n PC1 PC2 PC3 PC4 PC5 

Phylum 86 0.310 0.027 0.027 0.018 0.018 

Class 158 0.231 0.022 0.021 0.015 0.013 

Order 277 0.172 0.023 0.018 0.016 0.012 

Family 503 0.120 0.024 0.016 0.013 0.011 

Genus 1240 0.076 0.021 0.014 0.012 0.011 
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The first five PC explained up to 40% of the phylum variance, but only 13% at genus 

level (Table 1). This is likely explained by the lower number of phyla (n=86), compared to 

other taxonomic levels, such as class, order, family or genus. Further, a lower accuracy at 

classifying more specific clades (e.g. genera) might create noisy variability, impairing the 

performance of PCA.  

We found an evident clustering in PC1 by eukaryote proportion at all taxonomic 

levels (Figure 2). Animals located at the right-hand side of the PC1(positive coordinates) had 

higher proportion of eukaryotes, while lower proportion of eukaryotes were found in animals 

placed at the left-hand side of the PC1 (negative coordinates). Not evident clustering by herd, 

region or methane emissions were found from PCA biplots (results not shown).  

 

Figure 2. Principal component analysis depicting each animal coordinates for PC1 and PC2 

at phylum (A), class (B), order (C), family (D) and genus (E) taxonomic level, colored 

according to the proportion of eukaryotes in the sample of rumen content for 437 Holstein 

cows.  
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The correlations between PC1 and the RA of microbial taxa clustered together within 

each superkingdom, eukaryotes with positive sign and bacteria with negative sign (Figure 3). 

The HSD Tukey test showed significant differences (P < 0.05) for these correlations between 

bacteria and eukaryote at all taxonomic levels and between archaea and eukaryotes at the 

genus level (Figure 3E). Here, some archaea showed null or negative correlations, whereas 

only two of them showed positive correlations. The latter were genus of Methanobrevibacter 

spp. (0.29) and Methanosphaera spp. (0.23).  
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Figure 3. Correlations between relative abundance of taxa and the first two principal 

components (PC1 and PC2) from PCA according to taxonomic level for Phylum (A), Class 

(B), Order (C), Family (D) and Genus (E) clustered by superkingdom (Archaea•, Bacteria• 

and Eukaryota•). Centroids represent the mean correlation for each superkingdom and are 

represented by larger dots. Boxplot of correlations within a superkingdom are depicted below 

each biplot; points inside the boxes are the mean correlation in each superkingdom, points 

outside the boxes are outlier correlations. Different letters represent correlation differences 

between superkingdom (P < 0.05) according to HSD Tukey test. 
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The dimensionality of microbial functions was also reduced using the same strategy. 

In this case, three analyses were performed 1) with all 6,644 KEGGs, 2) with KEGGs 

specifically involved in the methanogenesis pathway (CH4-KEGGs, n=85) and 3) with 

KEGGs statistically associated to methane from the differential abundance analysis (KEGGs-

DA, n=279). The first five PCs explained 31% of variance from ALL-KEGGs, 23% from 

CH4-KEGGs and 53% from KEGGs-DA (Table 2).  

 

Table 2. Number of recovered KEGGs from the rumen content of 437 Holstein cows and 

proportion of the variance explained by the first five principal components according to PCA 

by KEGGs subset 

 n PC1 PC2 PC3 PC4 PC5 

All-KEGGs 6,644 0.243 0.025 0.018 0.015 0.011 

CH4-KEGGs 85 0.097 0.054 0.030 0.027 0.026 

KEGGs-DA 279 0.479 0.015 0.013 0.010 0.009 

 

Clustering was observed for cows with larger RA of KEGGs-DA (either low or high) 

(Figure 4). Cows with higher proportion of CH4-KEGGs also clustered on the positive 

coordinates of PC1, but not as clearly as for KEGGs-DA. Cows with higher proportion of 

KEGGs-DA-High were placed on negative values of PC1 (Figure 4B).  
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Figure 4. Principal component analysis depicting each animal coordinates for PC1 and PC2 

from ALL-KEGGs PCA, colored according to the proportion in the sample of rumen content 

of methane specific KEGGs (A), KEGGs differentially abundant in the High (B) or Low (C) 

methane emitting animals for 437 Holstein cows.  
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 Likewise, KEGGs-DA-Low (n=97) were positively correlated with PC1, and 

KEGGs-DA-High (n=182) negatively associated (Figure 5B), with mean correlations in 

KEGGs subsets statistically different (P< 0.05) between each other. 

 

Figure 5. Correlations between relative abundance of KEGGs and the first two principal 

components (PC1 and PC2) from PCA from ALL-KEGGs for CH4-KEGGs• and other 

KEGGs• (A), and for differentially abundant KEGGs in the high (KEGGs-DA-High•) and 

low (KEGGs-DA-Low•) methane emitting cows (B). Boxplot of correlations within a subset 

according to PC1 are depicted below each biplot; points inside the boxes are the mean 

correlations in each KEGGs subset, points outside the boxes are outlier correlations. 

Different letters between KEGGs subset represent significant correlation differences (P < 

0.05) according to HSD Tukey test.  



CHAPTER 6 

157 
 

The PCA using KEGGs-DA evidenced the clear clustering of low and high emitters 

(Figure 6) with extreme correlations differing (P < 0.05) between groups (Figure 7). The PC1 

coordinates of each taxonomic level or KEGGs subset regarding every animal were kept for 

further analysis. 

 

 

Figure 6. Principal component analysis depicting each animal coordinates for PC1 and PC2 

from differentially abundant KEGGs PCA, colored according to the proportion in the sample 

of rumen content of KEGGs differentially abundant in the High (A) or Low (B) methane 

emitting animals for 437 Holstein cows.  
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Figure 7. Correlations between relative abundance of KEGGs and the first two principal 

components (PC1 and PC2) from PCA for differentially abundant KEGGs in the high 

(KEGGs-DA-High•) and low (KEGGs-DA-Low•) methane emitting cows. Boxplot of 

correlations within a group according to PC1 are depicted below each biplot; points inside 

the boxes are the mean correlations in each KEGGs group, points outside the boxes are outlier 

correlations. Different letters between KEGGs groups represent significant correlation 

differences (P < 0.05) according to HSD Tukey test. 

 

Host genomic control over the core microbiome 

The posterior mean for the heritability of methane concentration was estimated at 

0.16, with a 95% highest posterior density interval (95%HPD) of 0.02 to 0.35. The effective 

sample size of the Gibbs-sampling ranged between 162 and 940. The heritability estimates 

for the PCs were consistent across taxonomy level and ranged between 0.30 for the first PC 

to 0.11 for the 5th PC at phylum level (Figure 8).  
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Figure 8. Posterior distributions of heritabilities for the first five principal components from 

bivariate animal models with methane emissions at different taxonomic levels (Phylum•, 

Class•, Order•, Family• and Genus•). Highest posterior density interval at 0.80 (thick) and 

0.95 (thin) are displayed around the heritability mean at the base of the distributions. 

 

Table 3 shows the heritability estimates for the first aggregated variable from PCA at 

different taxonomic levels and selection of KEGG function. In general, PC1 heritability had 

larger values at all taxonomic levels (means and medians close to 0.30, with at least 83% of 

the posterior distribution higher than 0.20) and were more consistent than those estimated for 

the remaining PCs (Figure 8). Similarly, heritabilities for the PC1s that aggregate functional 

information from KEGGs were estimated at 0.30, 0.11 and 0.34 for All-KEGGs, CH4-

KEGGs and KEGGs-DA, respectively. 
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Table 3. Posterior mean heritability estimates and its highest posterior density intervals 

(95%HPD) for the metagenome first principal component, and its genetic correlation with 

methane emissions according to taxonomy level or KEGGs subset. 

  h2 PC1 Genetic correlation 

Taxonomy level   

Phylum 0.298 (0.124 to 0.501) 0.737 (0.055 to 0.998) 

Class 0.296 (0.122 to 0.498) 0.732 (0.039 to 0.998) 

Order 0.302 (0.128 to 0.504) 0.760 (0.119 to 0.999) 

Family 0.293 (0.123 to 0.498) 0.761 (0.112 to 0.999) 

Genus 0.296 (0.124 to 0.505) 0.737 (0.059 to 0.998) 

KEGGs subset   

All-KEGGs 0.295 (0.126 to 0.490) -0.725(-0.999 to -0.061) 

CH4-KEGGs 0.107(0.013 to 0.264) 0.460(-0.941 to 0.996) 

KEGGs-DA 0.339(0.145 to 0.566) -0.699(-0.998 to -0.020) 

 

Strong genetic correlations were estimated between the microbiota aggregated 

variables (PC1) and methane emission both for taxonomy and functionality, with absolute 

values for taxonomy ≥0.70, with at least 82% of the posterior distribution higher than 0.5 

(Table 3). The PCs aggregating KEGG functions showed negative genetic correlation with 

methane emissions. The sign of this genetic correlation depended on the side of the PC which 

KEGGs-DA-High fell on. Genes associated to larger methane fell on the negative sign of the 

PCs. Genetic correlations between PCs and methane emissions from PC2 to PC5 were close 

to zero with a large uncertainty on the estimates. An exception was the aggregated variable 

for KEGGs directly involved in the methanogenesis pathway. This set of KEGGs showed 
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positive but weaker genetic correlation with methane, and large 95%HPD overlapping zero. 

This suggests that standalone information from methanogenesis pathway is not sufficient to 

describe the complex processes in the rumen that lead to methane production and other 

pathways that fed with substrates to these genes must be considered.  Residual correlations 

between PC1 and methane emissions were small at any taxonomic level and were not 

statistically different from zero. Similar results were obtained for KEGG PCs. 

 

DISCUSSION 

 

Cows are obligate dependent on their rumen microbiota to live. Indispensable 

functions such as rumen pH homeostasis, forage fiber fermentation or volatile fatty acids 

production are possible thanks to microorganisms inside their digestive tract. The 

methanogenesis regulate the rumen homeostasis during feed digestion, although it is also a 

loss of energy for the animal (Johnson and Johnson, 1995). Changes in ruminal microbiota 

composition can improve health, productive performance (Wallace et al., 2019), feed 

efficiency (Delgado et al., 2018) and methane emissions (Difford et al., 2018). However, 

rumen microbiome is a complex ecosystem of interrelated microorganisms, and there is not 

a straightforward strategy to modulate this microbial system (Wallace et al., 2019; Martínez-

Álvaro et al., 2020; Saborío-Montero et al., 2020). This study evaluated the rumen 

microbiome composition using Nanopore long reads. Bacteroidetes, Firmicutes and 

Fibrobacteres were the most abundant phyla in the rumen metagenome in this study.  Both 

Bacteroidetes and Firmicutes are common phyla in multiple environments, including animal 

digestive tracts. Bacteroidetes fraction is majorly composed by Prevotella, which covers a 

group of anaerobic gram-negative saccharolytic bacteria (Shah and Collins, 1990), whose 

large abundance in the digestive microbiota has been previously reported in both ruminant 

(Pitta et al., 2010; Li et al., 2020, Lee et al., 2012, Lopes et al., 2015) and monogastric species 

(Crespo-Piazuelo et al., 2018; Han et al., 2018). A wide representation of polysaccharide 

fermenters is represented in the rumen communities (Seshadri et al., 2018). Fibrobacteres 

comprises a small group of cellulose-degrading bacteria usually present in ruminant digestive 

system (Ransom-Jones et al., 2012). Our results were similar to previous findings using 
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different sequencing strategies (Wallace et al., 2019; Martínez-Álvaro et al., 2020). Previous 

studies also showed that nanopore sequencing is comparable to Illumina sequencing at the 

genus level using amplicons, while accurate taxonomic assignment at species level from 

Nanopore sequencing provides some benefits (Heikema et al., 2020). Longer reads improve 

classification at genus level, yielding better overall taxonomic classification due to the higher 

information content per read (Brandt et al., 2020). Longer reads also enable multiple genes 

presence within the same read, which might be particularly useful for functional assessments 

(Brandt et al., 2020). Nanopore sequencing offers an alternative strategy for metagenomics 

studies over amplicon-based approaches providing both taxonomical and functional 

information simultaneously, and for microbes from all superkingdom.  

The results of this study highlight the complexity of the rumen microbiome, and the 

difficulty to disentangle their association with methane production. There remains a need to 

reduce the dimensionality of the problem for investigating applied genetic and nutritional 

solutions. It is important to point out that metagenomic data are compositional, and changes 

in the RA of some microbes will inevitably change the RA of some others. Modulating their 

relative abundance through nutrition or genetics is cumbersome, with many microbes and 

functions depending on each other. Acting on many variables simultaneously complicates 

the design of diets and breeding programs. We tackle these limitations by aggregating the 

metagenome information in few variables using PCA. The first PC separated Bacteria from 

Eukaryota composition. As shown in the previous sections, a larger abundance of Eukaryota 

were associated to larger methane emissions (Guyader et al., 2014), and some Bacteria, such 

as Proteobacteria indicated lower methane emission (Tapio et al., 2017; Granja-Salcedo et 

al., 2019; Saborío-Montero et al., 2020). Therefore, a positive correlation between methane 

emissions and PC1 at all taxonomic levels was expected, as most eukaryotes fell on positive 

PC1 values, whereas bacteria fell on the negative side. Those PCs explained a relevant 

amount of the rumen microbial composition (7 to 31%). The RA of Archaea genera most 

positively correlated with PC1 was Methanobrevibacter spp., which is a well described 

hydrogenotrophic methanogen from the Methanobacteriaceae family; followed by 

Methanosphaera spp., a methanogen from the same family that uses hydrogen to reduce 

methanol to methane (Bonin and Boone, 2006). In a previous study Martínez-Álvaro et al. 
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(2020), found that both Methanobrevibacter spp. and Methanosphaera spp. genera grouped 

together into the cluster of rumen microbiota that most variance explained of methane 

emissions in beef cattle. These results are consistent with the biological association found 

between methane and PC1. The KEGGs-DA clearly clustered the KEGGs-DA-High, from 

those in the KEGGs-DA-Low. Aggregated variables using KEGGs improved the 

interpretation of the genetic correlation with methane.   

Previous results showed a causal relationship between certain genera and methane 

emissions (Saborío-Montero et al., 2020). We also evaluated the causality of PC variables on 

methane emissions, although they did not show a causal effect different from zero (results 

not shown). PC1 is a compendium of several taxa, which might generate noise or have 

opposite effects on methane, impairing the possibility of inferring a causal effect. However, 

and indirect response on methane production is expected if associated microorganisms are 

also modulated.  

The host organism also exerts some control on the microbiome composition. For instance, 

eating behavior, rumen size and morphology, or its physiology may favor certain type of 

microorganisms. A novel strategy was proposed in this study: principal components from a 

PCA on the metagenome composition were used in bivariate analyses to estimate variance 

components and calculate heritability and genetic correlations with methane. The results 

showed that the core microbiome complexity can be captured by these heritable (~0.30) 

variables which are also genetically correlated with methane emissions at all taxonomic and 

functional levels. These results are supported by previous finding suggesting that the core 

rumen microbiome is heritable (Roehe et al., 2016; Gonzalez-Recio et al., 2017; Difford et 

al., 2018; Saborío-Montero et al., 2020). The principal components capturing partial 

information from the rumen microbiome composition could be incorporated into a breeding 

program. The positive genetic correlations between methane emissions and PC1 support the 

biological hypothesis that larger RA of eukaryotic microorganisms increase methane 

production. This association is explained due to the role of eukaryote as host for endo-

symbiotic archaea (Hackstein and de Graaf, 2013) as well as a direct pathway of eukaryote 

genes linked to methane production (Liu et al., 2015). Highest posterior density for genetic 

correlation estimates were large, explained by the limited size of the data set, nonetheless the 



A DIMENSIONAL REDUCTION APPROACH TO MODULATE THE CORE RUMINAL MICROBIOME ASSOCIATED TO 
METHANE EMISSIONS VIA SELECTIVE BREEDING 

 

 

164 
 

95%HPD did not contain zero. These results highlight that the (co)variation between PCs 

and methane emissions is primarily mediated by the additive genetic relationship between 

those traits. The first principal component could be used in cattle breeding programs as 

representative of the core rumen metagenome to modulate the rumen metagenome towards 

larger efficiency and sustainability, although reproducibility across data sets needs to be 

confirmed. The PCs that aggregated taxonomic information at phylum level, and KEGGs-

DA appeared to have an easier biological interpretation and explain a larger proportion of the 

microbiome variability. However, other taxonomical levels such as genus could also be 

considered. Selection in dairy cattle including the first principal component in the selection 

objective could reduce methane emissions in future generations. 

 

CONCLUSIONS 

 

  Results in this study confirm the importance of Eukaryotes in the rumen microbiome 

and their role in the methanogenesis. Dimensionality reduction was implemented via 

principal component analysis, which allowed us to develop synthetic variables that aggregate 

the whole microbiome diversity (both at taxonomic and functional levels) in few PC 

aggregated variables. This approach simplifies the complexity and enable using these 

variables as phenotypes. The heritability estimates for these PC were relatively large and 

would allow selective breeding. Further, large genetic correlation with methane were 

estimated, which encourage us to pursue further studies using these aggregate variables as 

phenotypes in breeding programs. This strategy could modulate the rumen core metagenome 

and reduce methane production through correlated genetic response. A large enough 

reference population of cows with microbiome and genotype information had to be created 

for genomic selection implementation. However, it is necessary to evaluate possible 

collateral effects that might adversely affect the animal metabolism. Results in this study 

stimulate new opportunities for mitigating greenhouse-gas emissions from livestock, through 

direct modulation of the microbiota composition via animal breeding programs.  
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Recapitulation  

This thesis analyzed the host genetic control over the ruminal microbiota composition 

and their relationships with methane emissions in dairy cattle. For that, different 

methodological approaches were performed. A risk factor analysis for methane emissions 

was carried out aiming to determine risk factors and its impact over methane emissions. 

Productive and conformation traits, methane emissions GEBVs, and microbiota composition 

were evaluated through a probit threshold model. This analysis allowed to disentangle the 

modulation of methane emissions through the microbiota composition and to compare the 

host genetic effect with other phenotypic risk factors. Variance component estimations were 

performed including microbiota and methane emissions through different innovative 

approaches (single microbiota taxa within structural equation models (SEM); whole 

microbiota through microbiota relationship matrices (K); and aggregated microbiota via 

principal component analysis (PCA)). All variance component approaches targeted to 

estimate the partial genetic control of the microbiota composition and methane emissions 

simultaneously. The SEM approach also aimed to infer causality from microbiota over 

methane emissions from the hypothesized model. Several ordination methods to build the Ks 

were also analyzed to compare the accuracy performance of the different K under the 

variance component estimation. A new term, “Holobiability”, was proposed to define the 

proportion of the phenotypic variance explained by the holobiont effects. From the PCA 

approach, a proposal for combining the core rumen microbiota into few aggregated variables 

(PCs), was postulated as an innovative way to include microbiota into animal breeding 

programs. Information of genotypes, phenotypes, and rumen microbiota composition from 

437 Holstein cows belonging to herds of 14 commercial farms at four regions of the Northern 

Spain (País Vasco, Cantabria, Navarra, and Gerona) was used along this thesis.   

 

Dealing with compositionality of microbiome  

 Compositional data are parts of some whole which only carry relative information 

(Lovell et al., 2015). Compositionality in datasets can lead to spurious correlations, distorting 

the results of the study. The centered log-ratio transformation (CLR) has been suggested as 

an appropriate way to deal with compositionality of datasets (Gloor et al., 2017). In this 

thesis, CLR was performed to the microbiome dataset in the Risk Factor, K and PCA 
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analyses. Despite of this difference in the microbiota data analysed (transformed and not-

transformed microbiota), all the approaches yielded similar conclusions of high prevalence 

of eukaryote being preponderant in methane emissions rising. Similar results of CLR over 

microbiota having a small effect over main conclusions of the study had been reported before 

by Martínez-Álvaro et al. (2020), who obtained similar correlation structure between 

variables, and similar composition of larger clusters between transformed and not 

transformed data from their network analysis. These observed similarities do not change the 

compositionality nature of microbiota, which should be controlled through procedures 

analogous to CLR, to avoid artefactual or spurious correlations between variables.      

 

Association of microbiota with methane emissions 

Until now, evidence of methane emissions in dairy cows is strictly dependent on 

methane production by methanogenic archaea (Hook et al., 2010), though, a pathway linking 

direct production of methane to eukaryotes in the presence of oxygen (not the case in rumen) 

has been proposed (Liu et al., 2015). The archaea-methane association and the presence of 

methanogenic archaea in every ruminant, in addition to their relationships with other 

microorganisms, generates complex microbiota ecological networks. There was a positive 

association between the relative abundance of eukaryote and methane emissions, regardless 

of the statistical approach considered. This association has been reported previously 

(Guyader et al., 2014). The biological phenomenon behind this associations might rely on 

the endosymbiotic relationships between archaeas and eukaryotes (Hackstein and de Graaf, 

2013). Some protozoa (belonging to the eukaryotes superkingdom) provide a high H2 

availability to archaeas (Belanche et al., 2014), through mitochondria like structures rich in 

H2 called hydrogenosomes, responsible for H2 supplying to surrounded archaea (Hackstein 

and de Graaf, 2013), and with protozoal size being a key factor influencing the number of 

methanogens per protozoal cell (Belanche et al., 2014).    

The association between the RA of archaea and methane emissions was not as evident 

as that from eukaryotes; However, there was a positive association between some well-

known methanogenic archaeas and methane emissions. For instance, the Methanobrevibacter 

spp. genus was positively associated to methane emissions in the SEM analysis, with a 

positive rate of change in methane emissions per unit change in the relative abundance of this 
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genus. The Methanobrevibacter spp. genus also showed the highest probability, of all archaea 

genera, of classifying cows into the upper quartile for methane concentration and methane 

intensity, per unit change in its relative abundance in the risk factors analysis. The 

Methanobrevibacter spp. genus has been previously associated to high methane emissions in 

ruminants. Wallace et al. (2015) reported abundances of 2.5 times larger in high compared 

to low methane emitting animals. Another study by Zhou et al. (2009) analyzed feed 

efficiency, showing prevalence of Methanobrevibacter spp. 2.26 times higher in inefficient 

animals and concluded that methanogenic ecology in the rumen may play relevant roles in 

the differences for methane gas production between cattle with different feed efficiencies. 

That study also found 1.92 times higher prevalence of Methanosphaera spp. in inefficient 

animals. Concordantly, the Methanobrevibacter spp. and Methanosphaera spp. were the two 

archaeal genera that showed the highest positive correlations (0.29 and 0.23, respectively) 

with PC1 in the PCA analysis of this thesis, with PC1 being genetically correlated (0.737, 

95%HPD = 0.059 to 0.998) with methane concentration. Those two genus had been grouped 

together, in a previous study (Martínez-Álvaro et al., 2020), into the cluster of rumen 

microbiota that most variance explained of methane emissions in beef cattle. The archaea 

relationship with methane emissions were biologically more plausible when the associations 

were analysed at a more specific taxonomic level (e.g., genus). Hence, point out that to using 

more specific taxonomic levels may better explain this association.  

Most bacteria showed negative associations with methane emissions along this thesis. 

For instance, Prevotella spp., Succinimonas spp. and Succiniclasticum spp. genera showed 

negative genetic correlations with methane concentration in the SEM study. Those genera 

are from the Bacteroidetes, Proteobacteria and Firmicutes phyla, respectively. Concordantly 

with the SEM study, an increment of the relative abundance of three mentioned phyla, would 

have the lowest probability of classifying cows into the upper quartile of methane 

concentration, in the risk factors study. Larger relative abundance of Bacteroidetes and  

Prevotella spp. had been previously related to lower abundance of Methanobrevibacter spp. 

and better feed efficiency in dairy cattle (Delgado et al., 2018). The association between 

better feed efficiency and lower methane emissions lies on the basis of energy loss through 

methane emissions (Tapio et al., 2017; Mizrahi and Jami, 2018). A possible explanation for 

the negative association between bacteria and methane emissions is that bacteria relative 
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abundance is inversely dependent of the relative abundance of eukaryotes and archaea, given 

the compositional nature of microbiome (Gloor et al., 2017), thus relating larger proportion 

of bacteria to smaller proportion of eukaryote and archaea. Perhaps, rather than the mentioned 

mathematical issue, it could be related to the ecological associations between protozoa and 

bacteria, in which protozoa predate on bacteria (Newbold et al., 2015), thereby, resulting in 

larger bacterial presence as protozoa prevalence diminish, with subsequent reduction on 

methane emissions. Other plausible explanation could be a direct effect from bacteria 

competing with methanogens for H2 uptake, generating a methane emissions reduction. This 

latter hypothesis has been studied for bacteria genera such as Selenomonas spp. using H2 for 

fumarate and nitrite reduction, or Blautia spp. using H2 for acetogenesis (Greening et al., 

2019).   

The genus was the most specific taxonomic level assigned for microbiota within this 

thesis, which may pose a limitation of the study. More specific taxonomic levels informed 

better about biological relationships, as showed by the association between methane 

emissions and archaea. Lower taxonomic levels than genus (i.e. species) might have informed 

of associations not evidenced at the available classifications. Despite of this limitation, longer 

reads obtained through nanopore sequencing improves taxonomical classification at genus 

level (Brandt et al., 2020), compared to amplicon sequencing; which has previously showed 

misclassification at genus or lower taxonomic levels (Poretsky et al., 2014). Longer reads 

from nanopore sequencing allows better overall classification, due to the higher information 

content per read; Therefore, more reliable taxonomy assignation than amplicon sequencing 

(Brandt et al., 2020). Other advantage of nanopore over amplicon sequencing is its capacity 

of taxonomic assignation for microbiome from all superkingdom. However, reading species 

level is challenging even with long reads, as reference databases are yet incomplete.  

 

Host genetic control over the methane emissions  

The probit threshold models (Gianola, 1982), showed that the holobiont effect exerts 

some influence on methane emissions. The probability of a cow of being classified in the 

upper quartile for methane concentration (ppm CH4) and methane intensity (ppm CH4 /kg 

milk) was mainly affected by conformation traits, as well as by the microbiota. Results from 

the risk factor analysis showed that larger scores for conformation traits related to structure 
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and capacity (body depth, chest width, BCS, loin fortress, overall structure and capacity 

value, body weight and stature) resulted in increased probability of classifying cows into the 

upper quartile for methane concentration. Conformation traits are heritable (Rupp and 

Boichard, 1999; Miglior et al., 2017) and some of them are genetically correlated with 

methane emissions (López-Paredes et al., 2020). In addition to that, the rumen size has been 

previously related to enteric methane emissions (Goopy et al., 2014; Kamke et al., 2016), 

with larger rumen size having greater mean retention time of digesta, resulting in larger 

methane emissions (Barnett et al., 2012). Hence, we can assume that larger animals have 

bigger rumen, and therefore larger mean retention time of digesta, associated to higher 

methane emissions. From this assumption, it is straightforward to presume that rumen size is 

a heritable trait transmitted from one generation to another and, likely, genetically correlated 

with methane emissions. The mean heritability estimate for methane concentration in the 

SEM approach was 0.12 (ranging from 0.09 to 0.18 depending on the bivariate model). When 

the microbiota was included as whole through K, it ranged from 0.15 to 0.17 depending on 

the distance metric used. Similar values were obtained in the PCA approximation: 0.16 

(95%HPD = 0.02 to 0.35). The accuracy between heritability estimates from SEM, K and 

PCA statistical approaches supports the variance component estimation between methods. 

The heritability estimates for methane emissions in this thesis are close to that reported for 

this trait from other studies (Difford et al., 2018; van Engelen et al., 2018; Lassen and Difford, 

2020; Zhang et al., 2020). The estimated heritability indicates that there is an opportunity to 

select for lower enteric methane emissions to tackle this trait through animal breeding 

programs. 

 

Host genetic control over the microbiota composition  

 Heritability estimates for microbiota single genus in the SEM study showed a mean 

heritability value for the genus analyzed of 0.25, with a wide range (0.08 to 0.48) depending 

on the genus studied. Similar heritabilities estimates have been previously reported for single 

taxa (Wallace et al., 2019). A close heritability to that obtained from single genus in the SEM 

study, was obtained in the PCA study for the aggregated microbiota into PC1 (0.30, 95% 

HPD = 0.12 to 0.50). Similar results (0.29 ±0.11) were obtained for the proportion of variance 

explained by host genetic markers, for a PC1 limited to selected archaeal ruminal OTUs, in 
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a previous study using an amplicon sequencing based approach (Zhang et al., 2020). There 

was consistency between SEM and PCA statistical approaches, reaching similar results for 

the heritability estimation of microbiota. This moderate heritability for microbiota indicates 

that there would be a quite fast response to selection for this phenotype. Genetic correlations 

between microbiota relative abundance and methane concentration were found through the 

SEM variance component estimation analyses. Methane concentration showed moderate 

positive genetic correlations (> 0.50) with some eukaryote genera (i.e. Stentor spp., 

Pseudocohnilembus spp., Paramecium spp, Oxytricha spp., Stylonychia spp. and 

Neocallimastix spp.), as well as moderate but negative genetic correlations (< −0.40) with 

some bacteria genera (i.e. Prevotella spp. and Succinimonas spp.). Analogous results were 

obtained from the variance components estimation using PC1, with large genetic correlations 

(> 0.70) between PC1 and methane concentration, in which PC1 values increased along the 

relative abundance of eukaryote. The microbiota dimensionality reduction through PCA 

approach has advantages over the single genus SEM approach. The PCA aggregates the core 

microbiota into a single vector explaining most of the variance from the original variables 

(PC1). The analysis of the core microbiota, as an aggregated variable in a single vector, 

allows to include it as a phenotype in an animal breeding program context. This thesis 

provides information on the possible inclusion of microbiota composition as a proxy for 

methane emissions and other correlated traits of interest through genomic selection in animal 

breeding programs. 

 

Causality of microbiome over methane emissions 

 The SEM approach was performed to infer causality from single microbiota genus 

over methane emissions. This approach has been used before to infer causality from 

associated traits in animal production (Wu et al., 2007; Rosa et al., 2011; De Los Campos et 

al., 2014). However, this is an innovative approach in metagenomics, as a methodology to 

deal with the “driver-passenger dilemma” to infer causality rather than association. In 

addition to the positive association found between eukaryotes and methane emissions 

discussed before, the SEM analyses established a causal relationship from single taxa from 

all eukaryotes analyzed (Stentor spp., Pseudocohnilembus spp., Paramecium spp., Oxytricha 

spp., Stylonychia spp., Neocallimastix spp., Tetrahymena spp. and Ichthyphthirius spp.) over 
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the methane concentration. Larger relative abundance of eukaryotes boosted methane 

concentration. The study of the role of microbiome as cause or effect has been previously 

tackled in ruminants (Morgavi et al., 2012; O’Hara et al., 2020), but as far as we know, not 

under a SEM approach. The case of microbiota relative abundances, as the causative factor 

affecting methane emissions variation in ruminants, fits neatly into a recursive rather than 

into a simultaneous association. The biological support for the latter affirmation lies on the 

evidence of methanogenic archaea being imperative for enteric methane production in 

ruminants, as well as in the physiological phenomenon of methane emissions itself. The 

release of methane from the rumen prevents from a negative feedback of methane production, 

thereby supporting the hypothesis of the mentioned recursive association. The findings of the 

SEM analyses contributed to the elucidation of microbiome acting as a cause rather than as 

an effect, over the methane emissions phenotype. Limitations from the SEM study were that 

all genera were analysed one at a time, thus informing of their single associations. The partial 

genetic control exerted by the host over each genus was also estimated, through the variance 

component estimation. However, it lacked to inform of the genetic modulation of methane 

emissions from the whole microbiota. The microbiota relationship matrices (Ks) approach 

analysis was performed to estimate the whole microbiota effect over methane emissions. 

 

Single taxa vs whole microbiome effect over methane emissions 

 The whole microbiota was integrated into Ks through different methods. Similarly, 

as for the genomic relationship matrix (G), the K matrices had n × n dimensions, where n 

was the number of animals used to build G and K. The conformability between G and K 

allowed to generate a square interaction matrix (G#K) through the Hadamard (“#”) product 

between them. All matrices had identical dimensions, which allowed to include them together 

into mixed models. The K approach to integrate whole microbiota has been approached 

previously (Ross et al., 2013; Camarinha-Silva et al., 2017; Khanal et al., 2020); However, 

the evaluation of performance accuracy between Ks has not been reported before in a 

variance component estimation framework, as far as known. The accuracy comparison from 

the variance component analyses, was possible due to the conformability of the G, K and 

G#K matrices, for the GBLUP, MBLUP, HBLUP and HiBLUP. The Holobiability from the 

HiBLUP model was larger than the combination of the heritability and the proportion of the 
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phenotypic variance explained by the microbiome effect. This result suggests that the G and 

K interaction accounts for a certain proportion of the phenotypic variance, that variated 

according to the K included into the model. The HiBLUP showed to be the most plausible 

model according to the deviance information criterion (DIC), suggesting that holobiont 

modeling could outperform the classical approaches used so far, but more research should be 

done before affirming this. A clear limitation from the K analyses is that microbiome 

information remains dimensionally unmanageable to estimate the host genetic control over 

the whole microbiota. Its matrix shape precludes the assignment of genetic parameters 

estimates. Another limitation linked to the K analyses is the impossibility of allocate a single 

microbiome value for each animal, which might allow its inclusion as phenotype into 

breeding programs. The PCA analyses tackled both limitations by conferring a vectorial 

shape to the microbiota, allowing the estimation of host genetic control, as well as a single 

microbiota value for each animal.  

 

Microbiome dimensionality reduction  

 The whole microbiome was aggregated, through PCA, into principal components 

(PCs). The PCs contain the maximized variance from the original variables (Macciotta et al., 

2010). The PCs were vectors of coordinates, containing aggregated microbiome variables, 

with a single value for each animal. The vectorial shape of the PCs allowed to consider them 

as phenotypes. The PCs were then included into bivariate models jointly with methane 

emissions. The inclusion of the whole microbiota information as PCs into variance 

component estimation is a novelty in this thesis. It allowed the estimation of the host genetic 

control over the core microbiota, which reached moderate values (≈ 0.30) for PC1 at all 

taxonomic levels. It also allowed to estimate the genetic correlation of the core microbiota 

with methane concentration, yielding large positive values (> 0.70). The PC1 separated 

eukaryotes from bacteria and archaea, where animals with larger proportions of eukaryote 

had larger values of PC1, supporting the direct effect of eukaryotes on methane emissions 

from previously obtained in the risk factors and SEM analyses. The PCs inclusion into 

bivariate animal models accomplished to estimate the host genetic effect over methane 

emissions and the core microbiota simultaneously, and finally the genetic correlation 

between the core microbiota and methane emissions.   
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Implications 

The inclusion of microbiome into animal breeding programs through aggregated 

variables (PCs) could accelerate the reduction of methane emissions from livestock. The 

larger heritability of the core microbiome compared with that from methane emissions and 

the high genetic correlation among both traits is encouraging. The response to selection is 

dependent on heritability, with faster response to selection for traits with larger heritabilities. 

The findings from this thesis indicate that the estimated heritability of the core microbiome 

is near double of that from methane emissions and highly genetically correlated. However, 

both methane emissions and microbiome are difficult to measure traits. Therefore, more cost-

effective methodologies, to sample microbiota from animals under commercial conditions 

are to be studied. There are evidences of bolus and saliva samples being good predictors of 

ruminal microbiota (Tapio et al., 2016), similar sampling approaches as the mentioned before 

could enable large-scale phenotyping. If aggregated variables (PCs) of proxies for rumen 

microbiota behave similarly as in this thesis, microbiome inclusion into breeding programs 

could become feasible. The dimensionality reduction of microbiota through a robust 

methodology (PCA) is considered a relevant contribution of this thesis, for the plausible 

inclusion of microbiota information into animal breeding programs. This thesis also 

contributed to the understanding of association between genotype, microbiota, and methane 

emissions. It also provides information and methodology approaches for the possible 

inclusion of microbiota composition as a proxy for methane emissions and other correlated 

traits of interest through genomic selection in animal breeding programs.  
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• Results in this thesis confirm the importance of eukaryotes in the rumen microbiome and 

their role in the methanogenesis.  

 

• According to the probit threshold models, increments in milk yield as well as in structure 

and capacity scores were risk factors for being classified in the upper quartile of methane 

concentration (ppm). Rumen eukaryotes and some hydrogenotrophic archaea were the 

main phenotypic risk factors in microbiota for both traits. 

 

• This study applied SEM as a tool to integrate genomic, metagenomic and phenotypic 

information in order to jointly analyze plausible biological relationships. Ciliate protozoa 

(7 genus) showed moderate heritabilities and consistent positive genetic correlation to 

CH4 in both statistical model approaches (non-recursive and recursive).  

 

• Models considering a causal relationship of the microbiota over methane emissions are 

statistically more plausible.        

 

• Methane evaluated in this thesis showed enough heritability as to be included in dairy 

cattle breeding programs, in order to obtain more efficient animals while diminishing 

their environmental footprint.  

 

• SEM could be used to also include metagenomic information into genetic evaluations 

analysis accounting for the recursive relationship between traits, and potentially 

increasing the reliability.  

 

• Microbiome relationship matrices can be incorporated into the models used in genetic 

evaluation and variance component estimation in order to account for variance explained 

by the microbiota.  The MDS, CCA and RDA matrices seemed preferable for unbiased 

estimation of variance components.  

 

• Larger GEBVs accuracy can be obtained by including a microbiome effect into the 

model. 
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• Accounting for the genome × microbiome interaction in the HiBLUP model improves 

variance component estimation and might yield more accurate performance predictions 

of methane emissions.  

 

• Considering the holobiont organism and estimating the holobiability in the models must 

be considered in the future due to its potential implications. If the holobiability is 

consistent across studies and its value surpasses heritability value for the trait of interest, 

it might be a better estimator to be included into the selection index, which a priori would 

increase the response to selection. 

 

• Dimensionality reduction can be implemented through PCA in order to include the 

microbiota composition as a trait under selection, both at taxonomic and functional levels. 

This approach simplifies the complexity and enable using these variables as phenotypes.  

 

• The heritability estimates for these PC were relatively large and genetically correlated to 

methane concentration. This strategy could modulate the rumen core metagenome and 

reduce methane production through correlated genetic response.  

 

• A large enough reference population of cows with microbiome and genotype information 

needs to be created for genomic selection implementation. However, it is necessary to 

evaluate possible collateral effects that might adversely affect the animal metabolism.  

 

• Results in this thesis stimulate new opportunities for mitigating greenhouse-gas 

emissions from livestock, through direct modulation of the microbiota composition via 

animal breeding programs.  
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