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Abstract

The study of urban flows has been a field of interest in modern fluid mechanics for more
than twenty years. The knowledge of how an airflow behaves in urban canopies presents many
different applications, such as urban planning, air quality studies or the prediction of pollutant’s
propagation. Initially, the methodologies used to study this kind of problems typically involved
a partial or full experimental approach. This is rather inconvenient, as it tends to be extremely
expensive. Modern turbulent computational fluid mechanics have enhanced the tools available to
study urban turbulent flow as it allows a fully computational approach.

The main objective of this project is to develop a set of tools that allows to systematically
solve the flow in a simplified urban environment. The flow simulation will be carried through a
“Well-Resolved Large-Eddy Simulation” by means of the code Nek5000. Then, the flow is analysed
using a custom-made statistic toolbox, that allows to obtain the averaged parameters that are
typically used in turbulent flow analysis. In addition, the project presents a secondary objective,
which is the development of a series of routines that allow to easily analyse the key parameters of
turbulent simulations, such as mesh resolution or boundary layer quantities.
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1

Introduction

1.1 General concepts

The modern world is characterized by the dominance of urban environments. From the indus-
trial revolution to our times, the vast majority of the world has been shifting from the countryside
to cities raising the density of those urban areas. This trend along with the current challenges about
sustainability has put the focus on the study of the vitality of cities. In this way, the discipline of
urban sustainability emerges as a transversal field, that inevitably requires the symbiotic conflu-
ence of engineering, social, political, and economic infrastructures [8]. Traditionally the focus was
driven towards the socioeconomic topics, as they were factors of high influence on the stability and
vitality of urban areas. However, due to the environmental degradation that has our world, and in
particular the industrialized world, has suffered from now more than a decade, topics related to the
environment and its preservation have emerged in both the public opinion and scientific community.
It is well known, that sustainability is a broad field in which the study of many different topics is
required to have a clear image of its inner workings.

One of the recently developed areas of study in the sustainability field applied in urban en-
vironments is urban air quality. This discipline focuses mainly on the creation and propagation
of pollutants and how these interact with the environment. Therefore, a fundamental part of this
area of study is the flow. Being able to properly characterize the flow in an urban environment is
fundamental in the production of quality studies in urban air pollution. It is in this part where
modern fluid dynamics can make a significant contribution. The focus will be driven not on the
air analysis per se but on the study and characterization of the flow in an urban environment. For
this matter, several studies have been performed in recent times, applying different approaches to
the characterization of the flow.

In 1988, Oke [23] identified that in a two-obstacle array, there are three fundamental regimes
that depend on the streamwise distance between those obstacles. These regimes have a strong influ-
ence on the behavior of the flow and its effect on the surroundings. In this way, the work presented
by Oke [23] set simple criteria to identify the general behavior of the flow given a particular urban
canopy. However, the observations presented by the author are based on empirical descriptions of
the flow that do not allow to fully characterize the driving processes of the flow. Hence, the need
to apply more sophisticated methods.

1



1.2 Motivation and objectives

The objective of the present work is to study the physics that drive the behavior of the flow
in urban environments. In this way, our objective is to simulate the aforementioned flow regimes
to understand the physical processes that drive the turbulence in urban environments. Torres [35]
developed a series of tools that allow to simulate and study flows in urban environments. The
present project aims at extending his work.

To do so, we will build a systematic approach to simulate and study the flow in urban envi-
ronments. The idea is to generate a series of simulations in idealized urban environments such that
we can study the flow regimes identified by Oke [23]. In this way, using the work of Torres [35] as
a baseline, we will build the required tools to design, run and analyze flow simulations in urban
environments. The developed tools aim at setting the ground for more complex studies related to
urban sustainability, e.g. pollutant dispersion analysis, thermal analysis etc.

In particular, our objective is to develop a series of large-eddy simulations (LES) over a
simplified urban environment to produce turbulent statistics. The analysis of the flow statistics
will be the main tool to study the physical processes that take place in the urban canopy. Producing
flow statistics, as we have mentioned, requires the integration of many different tools required to
design, run, and post-process the simulations cases. The aforementioned tools will be presented
and thoroughly discuss over the different sections of the present report.

1.3 Historical perspective

In this section, a revision of the current situation of the different studies around the char-
acterization of flows in urban environments is presented. The main objective is to provide a clear
presentation on the works relevant to the study here reported. Note that the literature on urban
flows is vast, thus not every aspect of the available research will be covered. In this way, the presen-
tation will fundamentally focus on the experimental and large-eddy simulations studies, considering
only major application cases.

As far as the structure is concerned, we will be dividing the analysis into two major sections.
On the one hand, the experimental literature will be covered. On the other hand, the major
research lines in numerical simulations will be also introduced, specially large-eddy simulation for
being our method of preference.

1.3.1 Experimental studies of urban turbulent flows

The study of flows, as many other physical disciplines, has evolved rapidly in the last decades
shifting from an almost pure experimental approach to a numerical strategy of study. Although
numerical simulations are gaining ground year after year, one can not ignore the importance of
empirical approaches both historically and currently. In this way, it seems consistent to have a
clear picture of the current state of experimental studies of urban turbulent flows.

There are two major approaches in the experimental description of urban turbulent flows.
On the one hand, there is the probing approach. Generally, it consists of selecting an urban area
and installing a series of probes that allow obtaining some characteristics of the flow. On the other
hand, there are wind tunnel studies. Those mainly consist of the manufacturing of scale models

2



that are then tested under some set of conditions inside a wind tunnel. In addition, some studies
also present purely empirical characterizations of urban flow.

1.3.1.1 Empirical description of urban turbulent flows

Let us begin with the description of empirical work. Those works focus on the description of
the flow’s behavior in urban environments. Although those studies appear to be more qualitative
than quantitative, their reading brings a clear understanding of the implications of urban flows,
thus their inclusion in the current presentation.

Zajic et al. [45], recovered the work of Oke [23] on the behavior of idealized urban turbulent
flows to provide, in addition to experimental measurements, a very neat description of the flow
behavior in urban environments. Their study gathers the flow behavior in the Central Business
District (CBT)1 of Oklahoma city using atmospheric data. They obtained results on the airflow
patterns, stability conditions, and turbulence properties of the area, providing evidence on the
influence of the built environment on the area’s thermal effects. Nevertheless, they describe how
the flow behavior is influenced depending on the structure of the urban environments. They present
three distinct flow regimes. On the one hand, there is the isolated roughness regime characterized
by a very small interaction between the wake produced by the individual building. This flow regime
is found in canopies where the distance between the buildings is large. On the other hand, when
the building separation is small, the flow appears to skim over the street canyon. In addition, there
is an intermediate case, where wake interaction is found. Zajic et al. [45] present a systematic
method to segregate flow regimes. They define a series of aspect ratios and in particular:

1

λhg
=

{
separation between buildings

height

}
=
g

h
(1.1)

Using the metric presented in Equation 1.1 they can differentiate the afore-stated flow regimes
using a series of heuristics,

• For g/h > 2.5 the flow is in isolated roughness regime

• For 1.4 < g/h < 2.4 the flow is in the wake interference regime

• For g/h < 1.4 the flow is skimming regime

Note that the afore-mentioned heuristics are the result of the observations and a subsequent ideal-
ization of the flow regimes. In this way, these criteria are a simplification that might differ from the
actual behavior of the flow. It is easy to see that under this criteria the interaction between building
wakes in the spanwise direction is not considered. Zajic et al. [45] treat the urban canopies as two
dimensions at this stage of the analysis. One can make the parallelism between this description
and the classical way to approach aerodynamic theory, where one starts by understanding the flow
over an airfoil to extend the theory to three-dimensional wings. Figure 1.1 shows the graphical
schemes of the afore-mentioned flow regimes.

Later on, Zajic et al. [45] treat the effects of three dimensional flow in urban canopies. They
very rightly observe that when dealing with a 3D description of the flow, the effects of the vertical
side edges become significant. Following the same procedure, they define two additional aspect

1The term CBT is here used to specify the type of urban environment the study focuses on. In this case, the
study deals with a tall building area where there is not an important separation between such buildings
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Figure 1.1: Flow regimes in a two dimensional obstacle cluster. Extracted from Zajic et al. [45]

ratios, this time considering the spanwise and longitudinal dimensions of the building, w and b
respectively.

1

λhw
=
w

h

λhb =
h

b

(1.2)

They observe that for taller building, i.e. building for which λhb > 1 “the recirculation bubble be-
hind the building is overwhelmed by the side separation layer” (Zajic et al. [45]). This phenomenon
creates intense turbulences that can destroy the separation bubble.
Moreover, Zajic et al. [45] also treated the influence of non-uniform heights in an idealized urban
canopy in two dimensions. Generally speaking, they found that the greater the difference in heights
the bigger the vorticity is. Hence, the greater the difference in height the bigger the disturbance of
the medium.
To close the descriptive part of their work, Zajic et al. [45] added a study on the effects of the
incidence of the flow over an urban canopy. Appraising the descriptive section of the work pre-
sented by Zajic et al. [45], one can see the limitations of the empirical description. Despite being a
very complete presentation on the flow behavior in urban surroundings, the methodology appears
somehow limited by the idealization. In fact, such a study provides a clear understanding of the
flow structure at a macro level. However, questions on the particular structure of the turbulence
as well as in application cases remain unanswered, e.g. how much is the surrounding flow disturbed
by the turbulence?, how would the disturbance be affected in more complex canopies ?, etc. This
limitation leaves room for the use of numerical simulations that provide a more detailed description
of the flow structures.

Other studies provide a wider description of those flows choosing different scales in the study.
While Zajic et al. [45] focused on a rather small scale in the urban environment, i.e. analyzing the
urban canopy, other studies focus on wider scales, treating the flow at regional or city scale. Britter
and Hanna [2] precisely distinguish four scales in the study of urban flows. Table 1.1 gathers the
scales presented by Britter and Hanna [2].

The different scales respond both to the flows behavior and the methodology available to
describe it. Once again, the study presents, in addition to the flow description, both experiments
and modeling, but for the moment let us focus exclusively on the flow description.

Regional and city scales Britter and Hanna [2] consider the regional scale as a vast area that
is principally affected by the urban area, i.e. the city scale. Although the area per se can not be
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Scale Length

Regional up to 100 or 200 km
City up to 10 or 20 km
Neighbourhood up to 1 or 2 km
Street up to 100 or 200 m

Table 1.1: Scales of the study and the correspondent scale length. Adapted from Britter and
Hanna [2]

considered 2, the flow behavior at a city level has an impact at the regional scale and thus it is
worth considering the interaction between those two scales.
The flow description is actually focused at the city scale . The city scale is defined by Britter and
Hanna [2] as the diameter of the average urban area, i.e. the area over which flow variations can
be averaged out. The city area is characterized by having large obstacles and hence a large drag
force. The authors then introduce the average obstacle height following the averaging approach
that characterizes the area in question. Britter and Hanna [2] describe three major sublayers in
the city scale.

1. Inertial sublayer: It is defined as the area in which the boundary layer has integrated
the perturbations introduced by the obstacles. In this way, the layer can be considered as a
pseudo-free stream layer, and thus it’s possible to apply the standard atmospheric models.
This is actually a well-known assumption in theoretical aerodynamics where the effects in-
duced by the flow perturbation are neglected in the region far from the obstacle. Note that the
inertial sublayer is placed at the outer band. Figure 1.2 presents a schematic representation
of the different sublayers.

2. Urban canopy sublayer: This is the layer where the flow is directly affected by the ob-
stacles. In this way, a given point in the flow is affected by the presence of a local obstacle,
modifying its trajectory.

3. Roughness sublayer: This layer contains the urban sublayer and it is extended to meet the
inertial sublayer. It corresponds to a transient band, where the flow progressively integrates
the perturbations introduced in the urban canopy sublayer. As in any transitional problem
the idealization of this particular area is limited.

Neighbourhood and street scales In this part of Britter and Hanna [2] describe the flow
at a local level. The neighborhood scale consists of a series of arbitrarily distributed obstacles.
Those canopies are treated as idealized geometries such that both their description and testing
are feasible. The neighborhood scales actually correspond to the description presented by Zajic
et al. [45], where the authors present how the spacing in the obstacles affects the resulting flow.
Once again, the concepts of skimming and isolated roughness regimes arise as an idealization of
flow behavior. As far as the street scale is concerned the authors assess this smaller scale from
the application’s perspective. In fact, Britter and Hanna [2] present how, at such a small scale,
minor local variable elements such as traffic or pedestrian are affected and affect the flow. In this

2The characterization of a flow over a region of 100 to 200 km appears to be an arduous task. Taking into account
the interaction of the elements in such an area, thermal variations, etc. one realizes that implementing a model at
that scale would very probably lead to significant inefficiencies. Note that models do exist at those levels and even
higher levels, e.g. atmospheric models. However, such models focus on the macro level rather than on an actual
characterization of the flow behavior.
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Figure 1.2: City scale sublayer scheme. Extracted from Britter and Hanna [2].

way, the characterization of the flow under those conditions appears to be significantly harder as
the variability of the cases has increased. Once again, the encountered difficulties leave room for
the implementation of computational methodologies. However, Britter and Hanna [2] advert that
the computational approaches still require an important idealization and thus have to be properly
appraised.

1.3.1.2 Open-environment testing of urban turbulent flows: Full-scale and reduced
models

Urban flow experiments can be generally divided into wind tunnel and full-scale. The ob-
jective of this part and the one that follows is to expose and compare both methodologies while
appraising the current work on both areas. Full-scale probing distinguishes itself from other method-
ologies for being carried in a significantly less controlled environment. This approach, is valuable
precisely for that reason. By testing in the actual environment, one could expect the results to be
more trustworthy than the ones obtained in control conditions. However, full-scale testing has its
own challenges, as data gathered in uncontrolled environments tends to carry noise and inconsis-
tencies. In this way, some of the available literature is simply oriented to study the suitability of
full-scale testing, comparing it with other experimental or numerical methodologies, in the frame
of a given application.

Vita et al. [43] present a full study on the assessment of pedestrian distress in urban en-
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vironments comparing full-scale experimental techniques with wind-tunnel approaches as well as
numerical methodologies. Their study is focused at a street level, thus conditions are somewhat
constrained, in the sense that no strong variability in the environmental conditions is expected
apart from the wind variation which precisely what’s being tested.
As far as the experimental setup is concerned, Vita et al. [43] distributed eight sonic anemometers
over the streets at a two meters distance from the ground. In addition to those probes, a reference
anemometer is permanently working. This reference probe was placed at the roof of a 62 meters
height tower on a 10 meters mast with the purpose of reading the baseline conditions in the undis-
turbed zone. Both reference and testing probes were configured to record three-dimensional data.
Note, that the testing zone was selected to be specially gusted, precisely because the objective was
to assess the different methodologies used in pedestrian distress studies.
The full-scale testing aimed to obtain data on mean flow speed. In addition, the data is also used
to help to characterize the flow. Once the data recovered, it was compared with the results of wind
tunnel experiments and numerical simulations.
The mean wind-speed data presented a good qualitative agreement with the wind-tunnel data,
both having the same trendline over the measurement positions. However, the wind tunnel data
didn’t lie within the standard deviation range found in the full-scale measurements with exception
of some measurement positions. This mismatch suggests that either the full-scale measurements
or the wind-tunnel experiments have a major error. The authors appear to decline for the full-
scale data, considering the wind-tunnel a more limited tool. Later on Vita et al. [43] compare
the results with numerical simulations (RANS and LES) and deduce that the wind-tunnel data
fail to reproduce the full-scale results, particularly in the recirculation region. In conclusion, the
authors clearly present the full-scale results as the main verification tool in the study. In this way,
the limitations appear to lie in the other methodologies. However, Vita et al. [43] also discuss the
limitations of the study in the environment considered. From the simulations, they found that
the velocity streamlines present a rather complex flow. Thus, it seems plausible that the efficacy
of using eight uniformly distributed probes over a straight line will inevitably have its limitations
in terms of flow characterisation. In addition, mean velocity measurements are, as a magnitude,
limited to describe the behaviour of the flow. Hence the need of introducing numerical simulations.
Recapitulating, the study presented by Vita et al. [43] provides a clear picture of the suitableness of
the available methods and their relations in terms of results. The fundamental conclusion exposed
by the authors suggests the integration of a multi-method approach for maximising the validity
and understanding of a given problem study.

The previous paragraph focused on the use of full-scale testing as a “sanity check” for further
studies. However, literature is found on studies that rely on full-scale testing as the sole method-
ology. Hirose et al. [14] presented a project was to study wind-induced natural ventilation in cities
and how those are affected by the surroundings urban flows. The study fully relies on an outdoor
approach that although was not full-scale it is still related to the aforementioned concepts precisely
for being an outdoor experiment. The experimental setup consisted of a 512 cubical blocks matrix
where each block had a height of 1.5 meters. The total dimensions of the models were 100 × 50
m2. Note that the site was oriented such that wind typically flows in the length-wise direction.

The packing density of the site is roughly at 25%. The data acquisition system was composed
of 700 sonic anemometers equipped with a TR90-T probe. Those were installed at a half-height
distance from the top of the block. In addition, acrylic plates with pressure tabs were also installed
in the northwestern and southeastern faces of the block.

Using the afore-mentioned setup two datasets were collected. From the analytical perspec-
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Figure 1.3: Experimental site scheme. Extracted from Hirose et al. [14].

tive, the study rests on two major axes. On the one hand, the study of approaching flow conditions
is characterised for using the well-known statistical descriptions of turbulent flows. On the other
hand, the study revolved around the relation between the pressure difference and the velocity. Note,
that both axes incorporate the use of time-averaged statistics as the principal metric to describe the
flow. More precisely, Hirose et al. [14] examined the probability distribution of the velocity at the
horizontal wind direction by means of the streamwise velocity magnitude, the velocity’s standard
deviation as well as the velocity range, i.e. minimal and maximal velocities, under both southeast-
ern and northwestern winds. As far as the relation between pressure and velocity is concerned,
their relation was examined by means of the pressure coefficient, derived for every position using
the least-squares method. Then, the results were plotted in terms of the pressure difference as a
function of the streamwise velocity, combining both data points with regressed lines. Analysing the
results in terms of the pressure coefficient, Hirose et al. [14] observed that the pressure coefficient
values increased with height in the upper-half positions while remain constant in the lower half of
the block. Regarding the spanwise direction, the authors also observed that the pressure coefficient
was higher at the edges than it was at the block’s centre. Regarding the aforementioned obser-
vations, the authors conclude that ”a stable vortex with very low wind speed might be generated
in the cavities between two blocks and the approaching flows over the blocks might only skim the
air at the upper parts of the cavity” (Hirose et al. [14]). In fact, the flow regime described by the
authors corresponds to the now well-known, skimming flow regime, introduced through the work
of Zajic et al. [45], in §1.3.1.1. Moreover, from the sole observation of the pressure distribution, the
authors concluded that no pressure scale effects were found under the considered setup.
An additional part of the study focused on the analysis of temporal variation in both wind speed
and pressure coefficient on specifically targeted blocks. Those temporal variations are obtained in-
cluding a low-pass filtering operation in both speed and pressure. By inspection of the afore-stated
quantities Hirose et al. [14] report that the temporal variation in the pressure terms presented a
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Figure 1.4: Acrylic plates disposition. Extracted from Hirose et al. [14].

clear coincidence with the characteristic values of approaching flow. Thus, they argue that the
ventilation rates of the buildings in such conditions might temporarily vary due to such variations.
This last statement actually reinforces the advantage of open-environment experiments precisely for
being able to show variations and discrepancies that happen to be missed in controlled-environment
conditions.
As a final comment on the work of Hirose et al. [14], one shall assess the limitations of the afore-
presented study. Following the appraisal reported by the authors, further research might be needed
to assess the effects of small-scale turbulent flow within the canopy layer. The authors propose
more complete air data measurements allowing the gather three-dimensional flow statistics. To that
proposal, one can add the implementation of turbulent numerical simulations, such as large-eddy
simulation (LES) or even a direct numerical simulation (DNS), that precisely allow to appraise the
smaller flow structures.

Coming back to the work of Zajic et al. [45], early on we introduced the idealised description
presented by the authors as a result of the integration of the work of Oke [23]. However, the cur-
rent study also reports an experimental section complementing the idealised flow behaviour and in
particular the analysis of flow regimes. Recall that Zajic et al. [45] focused on the particularities
of urban flow in Central Business District (CBD) areas and in particular in Park Avenue street.
From the experiment’s perspective, the test area was equipped with three-dimensional ultrasonic
anemometers, radiation and infrared temperature sensors as well as thermistors, a soil heat flux
plate, a soil water content sensor, and a Doppler lidar. This measurement system was replicated
in three different sites. Moreover, an additional measurement system was placed in a semi-rural
adjoint site to serve as a control experiment, i.e. to help distinguish the effects caused by the urban
environment.
Combining both the principal and control experimental system Zajic et al. [45] were able to recover
data concerning flow, thermal, and soil in the urban environment considered. In this way, their
analysis is then focused precisely on those areas, i.e. characterising the flow in terms of both pat-
terns and thermal effects. From the thermal point of view, the characterisation of heat tranfer in
the CBD showed, as one could expect, that the heat capacity is higher in the urban environment
than it is in the semi-rural environment. This can be explained, as Zajic et al. [45] comment, by
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the presence of additional heat influxes such as the anthropogenic heat flux. To that matter, other
phenomena, such as “radiation trapping” make the temperature significantly higher in the case of
urban environments. The afore-statement phenomenon leads to non-development of a stable strat-
ification inside the test area, Zajic et al. [45] explain. To the heat analysis, Zajic et al. [45] added a
full appraisal of the flow patterns in the CBD area. Although results “showed a high sensitivity to
large-scale wind direction changes” (Zajic et al. [45]), the authors manage to observe that “close to
the canyon edges large vortices form in the horizontal plane and flow tends to channel through an
opening on the northern row of buildings” (Zajic et al. [45]). Additionally, the authors compared
the obtained results with pre-existent literature on the topic, concluding that a sufficient match
was found. This last statement shows that the use of a canonical approach, i.e. considering the
obstacles as idealised geometries is actually consistent with open-environment results. This matter
is particularly interesting for us since numerical simulations precisely rely on the use of idealised
geometries and their consistency with the physical phenomena. Furthermore, Zajic et al. [45] fin-
ished their exposition with a statistical description of the flow in order to characterise turbulence
intensities and how they relate with exogenous factors such as wind direction, time period, etc. The
results in this past study showed, as one could expect, that higher levels of turbulence were found
in the upper parts of the buildings. However, at a pedestrian level, turbulence was influenced by
the surrounding buildings, i.e. the spanwise obstacle location, rather than any other factor in the
vertical direction.

To close the current section, let us draw some thoughts on the importance of open-environment
tests and their place in urban flow research. The previous lines were dedicated to the presentation
of some of the major works in the discipline. At this stage, it seems clear that open-environment
testing in both full-scale and models brings an unquestionable value to the understanding of the
flow in particular applications. In fact, the strength of these methods rely precisely on the charac-
terisation of specific cases. In this way, if one wants to analyse the flow conditions in, for instance,
a specific part of the city, directly probing the part to be analysed provides significantly valuable
information. However, the open-environment resting presents severe flaws in the flow description.
Although the majority of open-environment studies recover the available literature on empirical
flow descriptions, the detailed behaviour of the flow remains unexplained. From the application’s
perspective, if one considers design-oriented or purely scientific applications, which tend to have
a broader application range, open-environment techniques happen to fall short. This limitation
leaves room for the introduction of either additional experimental methodologies, e.g. wind-tunnel
testing, or fully numerical approaches.

1.3.1.3 Close-environment testing of urban turbulent flows: Wind-tunnel experi-
ments and alternative techniques

The alternate fundamental approach when dealing with experimentation in fluid mechanics
is the close-environment approach, i.e. the testing in indoor controlled conditions. This technique
is based on the validity of data extrapolation from the measurements made in the scaled model to
the actual system considered. This part will be dedicated to the exposition and appraisal of some
of the available literature on the topic. Once again, the same dichotomy appears to form. On the
one hand, there are studies that focus on the sole evaluation of the techniques. Those are what
we have called technical or fundamental studies. Their motivation is almost exclusively to assess
and compare the performance of the given experimental techniques in the frame of turbulent urban
flows. On the other hand, one might find a kaleidoscope of studies on particular problems where
the techniques in question are applied to solve that particular problem. We have denominated
those as applied studies. Following the afore-stated dichotomy, the revision here reported will be
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founded dividing the studies in fundamental and applied. Furthermore, some additional lines will
be dedicated to an alternate study that applies enhanced measurement techniques.

Fundamental studies: Appraising the performance of experimental techniques Evalu-
ating a study technique is a fundamental part in the setting of both its adequacy and application
range. The following lines will be dedicated to the exposition of the available literature appraising
the performance of wind-tunnel experiments within the turbulent urban flows framework.

One of the fundamental studies on the appraisal of both experimental and numerical tech-
niques is the now well-known work presented by Vita et al. [43], where wind-tunnel measurements
are compared with full-scale modeling as well as numerical simulations. Note, that in this part only
the wind tunnel part of the studies will be addressed, refer to §1.3.1.2 for a full explanation full-
scale experiment section of the report. Recall that Vita et al. [43] were studying the performance of
various techniques within the framework of pedestrian safety. In this way, their approach consists
on reproducing the street-level test in full-scale open-environment over a scaled-model such that
it can be tested in the wind tunnel. The chosen probe system was composed of a combination of
three different types of probes. Firstly, Irwin probes were used to determine the mean wind speed.
Although Irwin sensors are not the most performant system for such endeavour, their accuracy was
estimated sufficient for the task. Their principal advantage lies in their omnidirectionally which
eases the installation process since no realignment is needed. Secondly, multi-hole probes such as
Cobra probes were used to measure the incoming wind speed on the top of the model. Multi-
hole probes are typically used in high-resolution measurements of turbulent flows. However, those
probes are limited by their insensitivity to flows slower than two meters per second as well as their
directionality. In this way, their exclusive use does not appear to be possible in the application
considered by Vita et al. [43]. The third measurement system is hot-wire anemometry, which over-
comes the limitations of the two aforementioned systems. Nevertheless, hot-wire probes present
limitations in terms of spatial resolution and sensitivity to wind direction. Recapitulating, Irwin
and hot-wire probes were used independently to measure the flow at pedestrian level, i.e. over the
model. In addition, a Cobra probe was used to obtain data on the incoming wind speed. As far as
the results are concerned, the discussion of the methodologies was previously introduced in §1.3.1.2
and thus we encourage the avid reader to recall the conclusion there drawn.

On the same line, one might cite the work Gadilhe et al. [10], which despite being signifi-
cantly older than the work of Vita et al. [43], thus more limited in the literature included, provides a
clear assessment on the verification of measurements systems and models in urban turbulent flows.
The work reported by Gadilhe et al. [10] consisted on the comparison of the numerical prediction
of wind flow with the data recovered from a boundary layer wind tunnel experiment. In this way,
the approach incorporates the same motivation of the previously mentioned study. However, they
differ on the viewpoint as the work of Gadilhe et al. [10] uses the wind tunnel experiment as a
verification method rather than as a subject of study. From the experimental point of view, a
predictive model was developed to be able to compare the results with the measurement obtained
in the wind tunnel. Then a scaled model of the testing site was developed to be rested in the wind
tunnel under suburban wind conditions. Figure 1.5 provides a schematic view of the testing site,
i.e. the model introduced in the wind tunnel, as well as the locations of the probes used in the
data acquisition system.

The model was built on a 1/100 scale basis. The measurement focuses exclusively on velocity which
was acquired in the 60 points shown in Figure 1.5 by means of hot-wire anemometers. The Reynolds
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Figure 1.5: Schematic view of the wind-tunnel model prototype and sensor location. Extracted
from Gadilhe et al. [10].

number, as described by Gadilhe et al. [10], was defined using the cross-section’s hydraulic diameter
and was roughly Re = 106. The analytical strategy applied by Gadilhe et al. [10] consisted of a
two axes approach. Firstly, the authors analysed the wind velocity at a constant plane place 1.5
meters above the ground. That part of the study focused on the symmetry of the problem, checking
the velocity magnitude and components evolution with the vertical coordinate. In this way, it can
be observed that “the transversal and vertical velocities are close to zero both in the wind tunnel
experiment and in the numerical simulation” (Gadilhe et al. [10]). In addition, it’s also observed
that “in the square, the church [structure] and backward flow make the wind velocity decrease
(Gadilhe et al. [10]). As far as dispersion is concerned, there is a reasonable agreement between
the model and the wind-tunnel experiment in the whole domain with the exception of the inlet and
outlet ports. In a second part of the analysis, Gadilhe et al. [10] focus on the wind velocity gradients,
taking vertical measurements at some points of the recirculation area, i.e. two on the square and
one behind the church. In such areas, the computed vertical velocity component is negative, which is
translated in a downward motion while the measured value is positive, i.e. upward motions. On the
contrary, “wind intensities are in good agreement” (Gadilhe et al. [10]). The study concludes with
a discussion on the methods implemented. Recalling the data comparison between both methods,
we saw that the computed data faithfully matched the experimental values in the vast majority
of the domain, with exception of the inflow and outflow areas. This discrepancy might have its
origin in the computation of the inflow conditions, which includes a significant approximation of the
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turbulence intensities in the area. In addition, wind tunnel measurements also present their own
limitations. Gadilhe et al. [10] explain that at recirculation and wake regions, the measurements
might not be reliable. They proposed some solutions, such as the inclusion of laser anemometry.
Nevertheless, the overall conclusion reached by the authors suggests that “further comparative
studies are required” (Gadilhe et al. [10]).

Applied studies: Wind-tunnel on specific urban environments As stated at the beginning
of this section, the studies are mainly divided in fundamental or technical and applied. Fundamental
studies were covered in the previous paragraph. Now it is time to focus on the specific application
presented in some of the available literature. Note that the studies here assessed will be significantly
less generic than the ones belonging to the previous paragraph.

Weerasuriyaa et al. [44] presented a study on the effect of twisted winds at a pedestrian
level using a scaled model of the Tsuen Wan street in Hong Kong inside a boundary layer wind-
tunnel. The setup consisting in a series of wooden vanes twisted with a turning table such that
the straight-streamlined flow was curves to obtain twisted wind conditions. The twist was set to
obtain four distinct cases, at 15 and 30 degrees turning close-wise and counter-clockwise. The
measurement system consisted of a five-point probing system to obtain data on mean flow velocity,
turbulence intensities, and yaw angles. At each point, the afore-stated magnitudes “were measured
at 12 discrete heights from 10 mm to 1000 mm for a sampling period of 65 seconds” (Weerasuriyaa
et al. [44]).
From the conclusions perspectives, the authors showed how twisted winds have a direct influence
on the pedestrian-level wind found in the particular case considered, i.e. Tsuen Wan (Hong Kong).
They found how twisted winds can cause more than 35% difference in wind speed at a street level
among other conclusions. From the appraisal’s perspective, the authors explain that in this study
the wind profiles were artificially generated and thus result particularly “clean”. In fact, in an
uncontrolled environment, the wind would not fully blow from a single direction and hence the
resulting twisted wind would very probably be different from the one obtained in the wind tunnel.
In conclusion, this study is an example of how the afore-described techniques are useful to assess
the flow condition over a specific area. However, the application range of the observations proposed
by Weerasuriyaa et al. [44] is clearly more limited. That is why our intentions with its inclusion
were simply illustrative.

Enhanced measurement techniques: PIV methodology To close the exposition on exper-
imental studies, let us introduce an additional study that introduces an enhanced measurement
technique, the stereoscopic particle image velocimetry (PIV) system. The work reported by Mon-
nier et al. [20], is a research-oriented study that aims to test the applicability of PIV methodologies
in the investigation of flows over an urban-like obstacle array. The study incorporates an a priori
modelling section which purpose is to parametrise the atmospheric boundary layer (ABL). To do
so, Monnier et al. [20] run an close-loop wind tunnel experiment, following the work of Najib et
al. [21]. This is done using a counter jet consisting of a “60 mm diameter steel tube placed on the
floor of the wind tunnel and spans its entire width”(Monnier et al. [20]). The measurement system
introduced in the wind-tunnel consists of an array of three hot wires mounted over “a vertical
traverse system enabling measurement of the velocity profiles starting from a position close to the
floor [...] and extending approximately 400 mm above it” (Monnier et al. [20]).
From the geometry’s perspective, the PIV experiment is run over a 120 obstacle array-oriented as
shown in Figure 1.6.
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Figure 1.6: PIV setup and obstacle array. Extracted from Monnier et al. [20].

Note that when dealing with PIV system, the geometry is not only limited by any given study-
related limit, it is also deeply influenced by the requirements on the PIV resolution. In fact, Monnier
et al. [20] explain that the height H in the setup considered in Figure 1.6 was actually influenced
by the spacial resolution of the stereoscopic PIV.
The fundamental principle behind the PIV system lies in the introduction of some particles, the
seeding, to be measured by means of a sensor. In this way, the seeding is detected by a data acqui-
sition system which then characterises the flow. One of the major inconveniences of the PIV system
is the calibration process. In fact, a new calibration is required for each independent data plane,
which importantly elongates the testing time. This limitation was solved by Monnier et al. [20] by
setting “the whole system up on a single plate sitting on a two-axis traverse system located under
the wind tunnel” (Monnier et al. [20]). The full setup is shown in Figure 1.6. As far as seeding is
concerned, the system includes atomisers to ensure sufficiently small particles. Those are injected
by three inlets at the floor of the installation.
The analysis presented by the authors focused in three fundamental areas. Firstly, Monnier et
al. [20] analysed the effect of the mean flow incidence angle on the streamlines considering the
skimming and wake interference flow regimes. In the null incidence case, the flow structures ap-
peared to be identical to the idealisation proposed by Oke [23]. In fact, two recirculation regions are
formed, the largest being placed at the bottom of the upper block and the smaller, secondary region
formed in the upper part of the bottom block. Nevertheless, some differences with the idealised
behaviour described by Oke [23] are found. The authors observed that in the isolated roughness
regime, “the wake created by the upstream block interacts with the secondary recirculation up-
stream of the downstream block” (Monnier et al. [20]). In addition, the authors also analysed a
non-null incidence case, tilting the incoming flow by −4.5 degrees. Under those conditions, the
skimming flow regime happens to be non-dependent on the incidence of the flow. However, the
streamlines are now slightly tilted as well and the recirculation zone is modified, migrating from
a purely symmetrical structure to an unsymmetrical one. Turbulent statistics are assessed by the
computation of different quantities. Perhaps, one of the most critical ones might be the turbulent
kinetic energy (TKE). Monnier et al. [20] present, in the case of wake interference regime, the
presence of two large TKE regions close to edges as well as another one located at mid-span. In
addition, if a non-null incidence angle is set, “the central high TKE level region disappears and
a highly turbulent regions is created in the region where the stagnation point exists and the sec-
ondary recirculation region splits” (Monnier et al. [20]). Furthermore, the study also includes the
appraisal of the problem’s vorticity as well as the analysis of the velocity gradient tensor.
In conclusion, Monnier et al. [20] verified the correlation between obstacle spacing and flow regimes
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as it was enunciated by the idealised approach presented by Oke [23]. Under this description, the
wake flow in the skimming condition happens to be fundamentally two-dimensional, for the null
incidence angle case. On the contrary, under wake interference conditions, only the primary part of
the recirculation region presented a two-dimensionality. The TKE analysis showed that the wake
interference regime happens to induce a much more important energy exchange between the flow
within the streets and the fluid above. As far as the flow incidence is concerned, it was shown
that this angle has a significant effect on the mean streamlines under the wake interference regime.
The afore-presented work was expanded later on in a study working on the study of the turbulent
structure itself. Once again, Monnier et al. [19] used the PIV methodology to characterise the flow
in an idealised urban environment, this time focusing on the understating of turbulent structures.

The afore-reported lines have provided a general picture of the available literature on the
topic here discussed. Appraising experimental techniques one can see that open-environment ap-
proaches appear to provide more reliable results when dealing with specific application studies
where one’s aim is to characterise the flow over a specific urban area. However, when looking for
a wider description of urban flow physics, open-environment strategies appear to be limited. This
limitation might be solved using close-environment techniques, which present better results in such
endeavours. Nevertheless, we have seen that standard close-environment methods such as wind
tunnel experiments are still limited in the characterisation of the actual physic of the problem.
Enhanced techniques, such as the PIV methodology do provide better results but at the expense of
a more complex implementation. Despite the afore-stated improvement, the PIV technique is still
limited in the smaller scales of turbulent motion.

1.3.2 Numerical simulations in urban turbulent flows

Numerical techniques also known as computational fluid mechanics start developing around
the fifties as an alternative methodology to study the behaviour of flows. With the improvement
of computers and numerical methods, the applicability of those methods has completely exploded
within our time. Nowadays, the number of available techniques, variants, and applications is vast.
Nevertheless, one can simply orient the different methodologies with the respect to the amount of
modeling that is included. In this way, at one extreme lie actual models, such as the approaches
used in applied aerodynamics, e.g. Theodorsen’s model, while on the other extreme one would
find pure numerical methods, such as direct numerical simulations where the solution is computed
at every flow scale. In between those two, one would encounter the rest of methodologies, i.e.
Reynolds-averaged Navier-Stokes (RANS), large-eddy simulations (LES) among many others.

This part of the historical perspective will be structured, precisely, following the afore-mention
classification. In this way, the exposition will be organised in a three-axis scheme, starting with
the literature involving a significant part of modelling, then presenting some of the works on DNS
and LES, to finish with a brief exposition on the new techniques currently being developed.

1.3.2.1 Modelling numerical techniques in urban turbulent flows: RANS and others

The following lines will be dedicated to the presentation of some of the available literature
involving a significant amount of modelling. Note, that many numerical techniques involve the use
of modelling, e.g. LES typically use turbulence models the subscales of the flow. However, during
the current presentation, only works explicitly involving an important amount of modelling will be
considered.
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Lien et al. [17], presented a work focusing on the predictive capabilities of modelling tech-
niques within the frame of urban environments. In particular, their studies present two models
applied independently to be compared with one another as well as with an experiment. On the
one hand, the authors presented a classic unsteady RANS (URANS), involving the use of a two-
equation k − ε model to compute the turbulence. On the other hand, Lien et al. [17] focused on a
partially resolved numerical simulation (PRNS). This numerical methodology can be considered a
hybrid approach since it combines a classic RANS with an LES. This concept was introduced by
Shih and Liu [33] and was here applied within the context of urban flows. The idea behind the
method is to exploit the strength of both methods, i.e. having a better accuracy and validity in
the results than what is obtained in RANS while keeping cost controlled.
As far as the application is concerned, the models were tested over two independent cases to be
compared with the experimental data available. Firstly a regular obstacle array is considered. The
authors integrate the numerical results of Meinders and Hanjalic [18] which basically presented a
flow characterisation precisely over the array here considered. Figure 1.7 show the array used in
both the experiment presented by Meinders and Hanjalic [18] and the PRNS presented by Lien et
al. [17]. Note that the calculations were performed on a mesh of 45×45×45 in the three Cartesian
components.

The results were analysed essentially by comparison of the streamwise velocity profile. Lien et

Figure 1.7: Array used in the first case of the PRNS. Extracted from Lien et al. [17].

al. [17] explain that the accordance between PNRS and experimental results was significantly better
than in the case of a URANS. In addition, the prediction of the recirculation area was also better
in the case of the PNRS comparing with the URANS. These first results confirm the initial guess
that the authors had and it is consistent with the conception of the methods which aim lied on the
improvement of the URANS approach. Note that Lien et al. [17] don’t question the validity nor
the limits of the experimental data provided by Meinders and Hanjalic [18]. In this way, one could
legitimately question the validity of the experimental data.
The second part of the analysis recovered the Joint Urban 2003 experiment presented by Allwine
et al. [1] which aim was to characterise the flow in a central business district (CBD) in Oklahoma
City. Lien et al.[17], approached this part of the study analysing the flow field on its own as well
as developing a dispersion model from the data obtained with the PRNS. Flow field results were
assessed using two metrics, i.e. means speed and wind direction. The flow field was computed

16



using “urbanSTREAM coupled with the steady inflow conditions determined from an interpola-
tion of the flow field” (Lien et al. [17]). The results are then compared with the aforementioned
experimental data. The quantities were analysed with respect to height. In the case of mean flow
speed, the matching between simulation and experimental values is reasonably correct, especially
as height grows. On the contrary, Lien et al. [17] show that in terms of wind direction no match
is found between both datasets. In addition, the authors run the case using RANS and PRNS
methods separately, showing that PRNS values happen to have a better agreement than the RANS
“values for z ≤ 200” (Lien et al. [17]). Once again, the obtained results are consistent with the
initial hypothesis formulated by the authors. The dispersion model is developed using exclusively
the flow statistics obtained in the PNRS. In this case, “the predictions for mean concentration at
or near the mean plume centreline are quite food , with the predicted within a factor of about two
of the observed concentration” (Lien et al. [17]). Despite the good plume’s agreement, a deeper
analysis reveals a discrepancy between the predicted and the actual values. In fact, the predicted
centreline happens to be too far east.
In conclusion, the authors conclude that the considered numerical scheme provides reasonably ac-
curate results, without having to commit to a great computational cost. Using the dispersion
model, the authors showed that the interpolated data could reproduce the many features of the
flow. However, Lien et al. [17] warn that the afore-exposed results are preliminary and that some
further optimisation might be needed to actually reach the complete potential of the technique.
Nevertheless, the authors conclude with an encouraging note on the potential of predictive capa-
bilities in the analysis of urban flows.

Some studies combine the use of modelling with higher-accuracy methods such as DNS. The
main idea this time is to use some modelling to obtain specific conditions that are then used to run
a better simulation scheme. Vinuesa et al. [40] combine lower quality simulation with a DNS in
order to improve the efficiency of the simulation. The main procedure consist of running the lower
quality simulation to solve the zero-pressure gradient (ZPG) boundary layer in order to incorporate
those results in the principal simulation, i.e. the DNS, as a time-dependent inflow condition. The
objective of the studies is to show that DNS methodologies can be used in geometries more complex
than the classical canonical geometries over which those simulations are historically applied. To do
so, they define a complex canonical geometry, i.e. a cylinder over which the simulation will be run.
Figure 1.8 shows the domain of both the precursor and the main simulation. It’s easy to see that,
the authors have optimised the domain by reducing the height of the precursor distribution since
its sole purpose is to simulate the ZPG boundary layer, and thus a smaller domain is sufficient.

As far as methodology is concerned, the precursor simulation is run using a Fourier-Chebyshev
spectral code, SIMSON. The SIMSON code can simulate simple geometries very efficiently since it
takes advantage of Fourier expansions in both homogenous directions, i.e. spanwise and streamwise.
However, SIMSON code is limited in terms of the complexity of the geometry applied. On the
contrary, the spectral-based code Nek5000 is applied in the main simulation provides more flexibility
but it is less efficient in the computations. In this way, the approach presented by Vinuesa et al. [40],
exploits the advantages of both methods, i.e. the efficiency of the SIMSON code is used in the
parts where no geometry is found, and those results are included within the framework of Nek5000
to be applied in a complex geometry case. The coupling between the methods is done by means
of a time-dependent Dirichlet condition that feeds to the main simulation with the solution fields
obtained in the precursor computations.
Two test cases are considered in the study presented by Vinuesa et al. [40], one using a laminar
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Figure 1.8: Simulation setup showing both the main and precursor simulation’s domain. Note that
the precursor simulation domain is in dashed line whereas the continuous lines correspond to the
main simulation’s domain. Extracted from Vinuesa et al. [40].

3 inflow and another with a turbulent one. The analysis focus in the comparison between both
cases within the frame of instantaneous fields and time-averaged statistics. Note that in this case
the results will be described very briefly since our interest actually lies on the afore-described
technique rather than in the results. The authors comment that both simulations exhibit the
proper behaviour of a turbulent simulation. Thus, the transition to turbulence mechanism appears
to function properly. “The flow behind the cylinder is massively separated and exhibits a self-
sustained oscillation in both cases, as well as large areas of reversed flow” (Vinuesa et al. [40]).
Both simulations capture the near-wall streaks. In the case of the laminar inflow, streaks are only
visible after the obstacle, which is consistent with the transition to turbulence. However, comparing
the aforementioned structures with the turbulent inflow case, one can see that the streaks are less
structured in the laminar inflow case. The authors suggest this might be caused precisely by the
transition to turbulence. Furthermore, the obstacle’s effects appear to be more pronounced in
the laminar inflow case. Some additional differences are found by inspection of the instantaneous
captures of the normalised streamwise velocity fields. In fact, “instantaneously, both wakes have a
similar half-width of around 0.8d right after the obstacle, up to x ≈ 2.6d. However, as one moves
downstream the turbulent wake becomes wider than the one in the laminar-inflow simulation,
reaching its maximum half-width of around 4d at x ≈ 13d compared with the half-span of the
laminar-inflow case of approximately 3d” (Vinuesa et al. [40]).
In conclusion, the authors explain that the results have sufficient quality and the simulation cost
is significantly better than the cost that such simulation would have been carrying if fully run
using DNS. Nevertheless, Vinuesa et al. [40] also conclude that the spanwise width resulted to be
insufficient for the case considered and thus needs to be raised in further applications.
As a final comment on the study here presented, one can easily see that the work of Vinuesa et
al. [40], despite not analysing an actual urban canopy, sets the technical basis to use a hybrid
methodology that was not applied in such application cases. Furthermore, they also provide an

3Note that the main simulation applies a tripping force strategy to induce the transition to turbulence. In this
way, no matter the inflow considered, the main simulation will be turbulent.
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example of how numerical simulations can be used to improve the existent techniques both within
the numerical and experimental frameworks.

1.3.2.2 Direct Numerical Simulations and Large-Eddy Simulations studies

The previous paragraphs were dedicated to the introduction of some techniques that involved
a significant part of modelling in the solution process. The current paragraph will be dedicated
to higher quality solution methods, especially to large-eddy simulations (LES) for being those the
object of the work here reported.

Before presenting some of the available literature on urban LES, let us make some comments
on the use of DNS in the context of urban flows. As discussed before, DNS have been histori-
cally applied to canonical geometries. This is partially due to the high computational cost and
the unease to apply it to complex geometries. Nevertheless, studies have attempted to apply this
kind of work to more complex geometries and bigger domains. For instance, one can mention the
work of Vinuesa et al. [40] that was introduced in §1.3.2.1. However, within the frame of urban
environments, this kind of geometries still remain relatively simple and small. Perhaps, the main
limitation of DNS in the case of urban environments is precisely the size of the domains and thus
the computational cost. In fact, urban canopies tend to have an important size, e.g. the experiment
presented by Hirose et al. [14] reported in Figure 1.3. Therefore, improvements need to be made
on the numerical schemes such that DNS can be applied in feasible time. That is precisely what
was aimed and exposed in the work of Vinuesa et al. [40]. Nevertheless, LES, if properly set, can
provide very similar results to DNS while keeping a significantly lower cost. That is why, LES is
the method of choice in the work here presented, as we will see later on. The avid reader might
consult §2.2.2 for an early explanation of the general LES methodology.

Once again the application of those methodologies typically aims to have some degree of
flow prediction within the context of the case. Garćıa-Sánchez et al. [11] presented a study which
objective was to study the uncertainty sources that lie beneath the LES method while comparing
it with a RANS and an experiment. The study is run within the context of urban flows and in fact,
the experimental data is recovered from the now well-known Joint Urban 2013 Experiment.
The LES simulation is run using the OpenFOAM coding environment. The considered domain
differ in the RANS and LES cases. In fact, the domain was chosen smaller in the LES case
with the purpose of constraining computational cost, the authors argue. In addition, the RANS
domain allows different inflow-outflow directions, thus reproducing a changing wind direction. On
the contrary, in the LES wind direction is fixed. In both cases, the domains cover the zone of
interest, i.e. Oklahoma downtown. The mesh was created keeping a cost-resolution balance, i.e.
determining refinement zones, four in total, where the element size varies. In this way, mesh
resolution progressively increases towards the city’s downtown while keeping computational cost
controlled. Figure 1.9 shows a schematic representation of the zones.

Following the afore-mentioned meshing approach, five levels of refinement are defined starting from
a coarser resolution at the city level and progressively increasing resolution, thus reducing the
element size, up to the finest area at the park. Refinement is actually one of the most common
and effective techniques to ensure a sufficient resolution while keeping cost controlled. In fact, this
technique will be used in the application cases here considered.
Garćıa-Sánchez et al. [11] assess results by means of flow visualisation, considering both flow fields
and time-averaged statistics. Flow fields are visualised at eight meters height and reveal “how the
flow impacts the buildings generating recirculation areas with large-scale unsteady structures in
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Figure 1.9: Two-dimensional scheme on the refinement areas in the LES domain. Extracted from
Garćıa-Sánchez et al. [11].

the wakes of the geometries” (Garćıa-Sánchez et al. [11]). Time-averaged statistics show that there
is a very good agreement between the LES and RANS results in terms of the mean velocity with
the exception of some localised areas where LES predicts a stronger acceleration. Furthermore, by
analysing the trend of the difference one can see that the upstream zones of the domain present
bigger discrepancies in terms of the mean velocity. A deeper analysis of the turbulence reveals bigger
discrepancies between the methods, LES outperforms RANS at a rough 80% in the turbulent kinetic
energy compared with experimental data. In addition, “the LES produces turbulence spectra that
are in good agreement with the measurements regarding the scales and energy content of the
turbulence” (Garćıa-Sánchez et al. [11]).
The authors conclude by highlighting the need for verification in numerical simulations, precisely
at the areas where there is better agreement between RANS and LES. In fact, Garćıa-Sánchez et
al. [11] found in such areas the sensitivity of RANS to inflow is high. For the authors, this fact
suggests that “a higher-fidelity turbulence model does not guarantee a better prediction of the
flow in areas with large uncertainty related to the inflow boundary condition” (Garćıa-Sánchez et
al. [11]). Thus leaving room for improvement.
In conclusion, the authors here present a vast evaluation of the uncertainties that underlie numerical
simulations and in particular LES. Their final closing sustains that while LES provides very useful
information on the flow structures, in some areas the obtained results show insignificant variation
from RANS results. While this last statement is certainly true, one must keep in mind that the
quality of LES lies very importantly on mesh resolution. In this way, depending on the “standard”
applied the quality of the result might vary. For instance, the Linné Flow Centre at KTH Royal
Institute of Technology is known for using well-resolved LES. Those simulations, as it will be
exposed further on, have a quality very close to DNS methods.

1.3.2.3 Enhanced techniques: Application of machine learning methods to the study
of urban turbulent flows

DNS or LES despite being complex techniques that are still under development within the
frames of urban flows are well-known techniques that have been providing results in several domains
of physical studies. However, regardless of the application considered when dealing with flow sim-
ulation, it seems that one is always confronted with the cost-quality dilemma. Either one chooses
to have a very good quality simulation at the expense of cost or one chooses to have a simulation
with less cost and thus with low quality. This is particularly true in the study of urban turbulent
flows as domains tend to be large and flows complex. That is why new studies have tried to apply
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different methodologies to ease the cost of such simulations. Machine learning is one of the trending
techniques to deal with vast amounts of data. In this way, part of the recent research is focusing
on the application of machine learning (ML) to urban turbulent flows. The main underlying idea
is to be able to train neural networks to reproduce and predict flow solutions.

Xiao et al. [6] presented a study of turbulent airflows modelling using a neural network.
Their aim was to develop a fast-running non-intrusive reduced order model (NIROM) for predict-
ing turbulent airflows within urban environments. Figure 1.10 shows the fundamental steps in the
production of the NIROM.

Figure 1.10: NIROM off-line production stages. Extracted from Xiao et al. [6].

In this study the feeding model is assumed to be known. Thus the first actual step in the pro-
duction of the NIROM is to obtain the proper orthogonal decomposition (POD) functions. This
is done using a singular value decomposition (SVD) method which is applied over the snapshot
matrix data. Xiao et al. [6] explain that they chose to apply the method simultaneously to all ve-
locity components. This approach aims to capture the correlations that arise between the velocity
components naturally.
Once the functions are obtained, a Gaussian process regression (GPD) is run to obtain the surface
representation here needed. This operation consist of the application of linear combinations of
Gaussian-shape basis functions. The main advantage of this method, Xiao et al. [6] comment, lies
in the small amount of data required to make it function. Other methods are available to obtain the
surface functions, e.g. feed-forward neural networks. However, these typically involve optimisation
problems difficult to properly solve.
Now that the POD have been fully characterised, the NIROM is derived. To do so, the authors
train a neural network to predict the behaviour of the flow governing equations. The idea is that
one trains the network using the high-fidelity model in order to obtain a system that will, later
on, predict the behaviour of those equations, this time without the need of snapshots. Note that
the snapshots are projected over a reduced space spanned by the POD base functions obtained
previously.
To validate the NIROM, Xiao et al. [6] modelled the airflow around London South Bank University.
They demonstrated the ability of the network to “reproduce snapshots and [...] that NIROM is
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capable of making predictions beyond the range of the snapshots” (Xiao et al. [6]). In fact, the
results showed that the method can accurately represent the vast majority of the dynamics showed
in the high-fidelity model. They observed that means flow is very well predicted even using a small
amount of POD base functions. However, the Reynold stresses required a higher amount of base
functions to be properly represented. Thus using a high number of POD base functions, it appears
that a vast amount of quantities can be predicted. As far as computational cost is concerned,
the authors argue that even with a high number of POD functions, the network “is six orders of
magnitude times faster than the high-fidelity model” (Xiao et al. [6]). Nevertheless, the authors
also add that further studies research will be needed to be able to expand the capabilities of this
methodology to further domains.

1.3.3 Final comments on the historical perspective

Finally to close the historical perspective section let us report some general concepts on the
literature. The previous lines were dedicated to briefly explain some of the available literature in
experiments and simulations on urban flows. Generally speaking, we saw how experiments tend
to provide better results when applying over the specific study of an urban area while simulations
were more useful to understand the behaviour of the flow.

Focusing on numerical simulations, it appears that the range of applicability and the quality
of the process is somehow confronted. This is that either the method is high-quality but tailored for
a given application or the method can be generally applied but the quality is reduced. In addition,
coming back to the different methodologies it appears that the only method that can provide a deep
description of the flow turbulence is LES, besides DNS. In this way, for theoretical applications,
i.e. the study of the actual physics of turbulent flows, LES appear to be the right methodology.
That is why this project will be focusing in that precise methodology and specifically in creating a
systematic procedure to create high-quality LES in urban environments.

The previous section was dedicated to the presentation and discussion of the available lit-
erature in urban flows. However, the study of urban environments is a vast and interdisciplinary
domain related to many scientific fields. In this way, the historical perspective here present in-
evitably falls short of gathering the would corpus related to urban environments. That is why we
highly recommend the avid reader to consult the work of Torres et al. [36] for a thorough review
on the available methods to study urban flows.
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2

Theoretical background

Now that a general picture has been given on the past and current situation of the scientific
research on urban flows, it is time to get into the fluid’s physics, both from the descriptive and
formal point of view. In this part, the idea is to provide the reader with a sufficient understanding of
the behaviour of the flow in urban environments as well as the mathematics that allows to describe
it.

2.1 Flow physics : Theory in Fluid Mechanics

First of all, as the method behind any numerical resolution, it is advisable to try to under-
stand the physics of the fluid in an empirical approach before getting into mathematical tools that
allow to fully describe the flow’s behaviour.

Flows in their general conception can be classified by means of different characteristics. For
instance, one could classify the flow by a general aspect such as it composition but also with more
specific parameters such as the speed or the pressure. Several options are available and their
selection strongly depends on the problem that one is solving. However, one of the most common
ways to classify a flow is by its behaviour. In fact, flow behaviour can mainly be constrained into
two categories, laminar and turbulent flow. Their characteristics are significantly distinct to the
point of being able to distinguish one another at plain sight. In addition, their solving is also very
distinct as it requires the use of different methods and involves distinct assumptions. Those among
many facts are the reason why the way of classifying the flows is so widely used. Note, that in the
work here exposed, only turbulent flows will be described, as all the cases further studied will be
dealing with turbulent flows.

2.1.1 Turbulent flow

Let us for the moment blindly assume that the flow in an urban environment is fully turbulent,
the complete explanation will be developed in further parts. Turbulent flows are quite common in
our everyday life. Whether one is in front of a waterfall, seeing the smoke coming out of a chimney,
or using a household sink, one is exposed to turbulent flow. Empirically, as Pope enunciated in
his work Turbulent flows [26], can be understood as an unsteady, irregular, and seemingly chaotic
flow for which the prediction of the motion of every droplet would be unpredictable. From this
simple definition, one can already imagine that the problem will be characterized by an important
degree of complexity which, as it will be exposed in further parts, will require the use of rather
sophisticated numerical tools.
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An implicit fact of the description afore-presented is that the turbulent flow is inevitably
characterised by an irregular variation in both space and time. This is particularly the case for the
velocity. Obviously, depending on the studied case, one might neglect some of the variability but
in its most general form, one should consider full variability for this kind of flows. This is one of
the sources of complexity in the study of turbulent flows even in the most simple cases. Figure 2.1,
presents the time history of the axial velocity in a turbulent jet.

Figure 2.1: Time history of the axial component of the velocity on the centreline of turbulent jet.
From Thong and Warhaft [34]. Extracted from Pope [26]

.

One can see that there is not any visible trend in the curve presented in Figure 2.1 and that
the variability within the curve is too important to even try to fit a model. In this way, the reader
might now have an idea of the degree of complexity to which we are exposed in this kind of study.
A direct consequence of this is the need for statistical tools. Those kinds of tools will be presented
in further sections.

Moreover, as stated in the first paragraph, our world is full of turbulent flows which make
that engineering applications can not ignore them. As far as the engineering toolbox is concerned
many approaches are concerned going from the use of empirical models to the full resolution of the
fluid mechanics equation with numerical tools. The resolution methodology will be presented in
further sections.

Now that a qualitative description of a turbulent flow has been given it is time to formalise a
more proper definition. This is where the Reynolds number needs to be introduced. The Reynolds
number is a non-dimensional coefficient developed by Osborne Reynolds while he was studying the
transition from laminar to turbulent flows in pipes. In his experimental investigation of the motion
of water [28], Reynolds observed that there was a relation between the fluid behaviour and relation
of the dimensional properties in the body to be studied. The results he presented complemented
the insights provided by Stokes which focused on the development of the equation of motion, but,
in Reynolds words, “might contain evidence which had been overlooked, of the dependence of the
character of motion on a relation between the dimensional properties and the external circumstances
of motion”[28]. The result, mainly distilled from his experimental observations, can be synthesised
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in the following expression,

Re =
Ul

ν
(2.1)

In this way, the Reynolds number can be understood as the ratio between the dynamic and
viscous forces.
The Reynolds number is the main parameter that is used to distinguish laminar and turbulent
flows. In the Reynolds experiment if the Reynolds number was below 2300 the flow is laminar,i.e.
the flow does not change with time [26]. On the contrary if Re > 4000, the flow is fully turbulent.

Now that it is clear what a turbulent flow is and how one can identify it, it is time to get
into the tools that allow describing such a physical problem.

2.1.2 Fluid mechanics equations

The main objective in the subsection is to introduce the mathematical expressions that allow
describing a turbulent flow and that are the ground base of the solution process. Note that for the
moment, the resolution schemes will not be tackled as they belong more to the discipline of nu-
merical methods than to the physics of fluids itself. Also note, that it’s assumed that the reader is
familiarised with the basic equations of motion and physical principles, as those won’t be reviewed
in the current text.

In the following lines, the full Navier–Stokes equations will be progressively built starting
with the description of the physical principles that exude the terms composing the equations up to
the full expression of those.

Before getting into the inner details behind the physics of the flow, it is advisable to review
some of the basic concepts that constitute the foundation of the derivations in fluid mechanics.
Note, that in both this preliminary exposition and the derivation of the Navier–Stokes equations,
the work here presented will be following the reasoning once exposed by Stephen B. Pope in his
masterpiece Turbulent flow [26], please consult the mentioned text for more complete derivations
and comments.

2.1.2.1 Continuum media and general properties of the fluid

When dealing with liquids and gases, two approaches have been historically present in sci-
entific works. On one side, considering the fluid as a system of study by itself, one can look at a
microscopic level how the fluid’s particles behave. On the other side, one can consider that the
flow is a continuous medium and hence analyse it at a macroscopic level, i.e. without taking into
account the motion of each of the particles that compose the fluid. This is what is known as the
continuum hypothesis and it’s the foundation of the analysis that is here exposed.

The continuum hypothesis can be justified, as exposed by Pope [26], by comparing the orders
of magnitudes of the mean velocities of the molecules and the smaller geometric length scale that
in which a flow can be described. The findings presented by Pope show a difference in more than
three orders of magnitude between the molecular velocities and the smallest of the length scale.
Hence, for the applications of the work here presented, one can safely assume that differences at a
molecular level are not significant at the level of the whole fluid, i.e. the continuum hypothesis holds.

25



Once assuming the continuum hypothesis, the differences in the molecular scales are ignored
and one can start invoking the continuum variables that will be, in their most general representation
functions of space and time in macroscopic scales. Note that in the whole set of mathematical
descriptions and derivations the continuum hypothesis is assumed and therefore all the variables
will be continuum variables.

2.1.2.2 Continuity equation

Historically in fluid mechanics, it is common to start by the mass conservation principle and
therefore with the continuity equation as a starting point in the derivation of the fluid’s equation.
Note, that it is assumed that the reader is familiar to the concept of control volume as well as the
Lagrangian and Eulerian reference systems.

Consider a general control volume, the mass conservation principle can be written in the
following form,

∂ρ

∂t
+∇(ρU) = 0 (2.2)

Equation 2.2 is known as the continuity equation. It is the mathematical representation of the
mass conservation principle, i.e. that no mass can be created nor destroyed in the process.

As far as the components of Equation 2.2 are concerned, the time derivative term is known
as the accumulation term. It represents the quantity of matter that is accumulated in the control
volume for a given time duration. The gradient term describes the amount of matter that that going
inside or outside the control volume. Note that Equation 2.2 is the most general expression of the
continuity equation, meaning that depending on the case one might simplify it assuming a steady
flow which makes the time derivative term vanish or assuming that the flow is incompressible, i.e.
ρ is constant.

2.1.2.3 Momentum equation

While the continuity equation already provides a significant amount of information, it is clear
that the mass conservation principle is, by itself, insufficient to fully describe the behaviour of the
flow, since it does not consider how forces are interacting with the control volume among many
other things.

From classical mechanics theory, it is at this time well known that when dealing with the
equations of motion of any system, Newton’s second law needs to arise. Newton’s second law basi-
cally relates the acceleration of a given particle to the forces that are affecting the system. As far
as the momentum equation is concerned, it is simply the application of Newton’s Second Law to a
control volume, using the terms that allow describing the momentum in a fluid.

Before getting the full formulation of the momentum equation, following Pope’s[26] approach,
the different forces have to be formulated. When dealing with flows, two types of forces are typically
involved. One the one hand, surface forces, which are mathematically described by the symmetric
stress tensor, τij(x, t). On the other hand, body forces, which are forces that are applied in the
whole control volume. In this case, for the vast majority of applications, it is the gravitational
forces that is interesting. Many formulations are available for this term. In the work here presented
Pope’s[26] formulation will be followed and hence the gravitational force is described in terms of
the gravitational potential, i.e.

g = −∇ (Ψ) (2.3)
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Now, by direct application of Newton’s Second Law,

ρ
DUj
Dt

=
∂τij
∂xi
− ρ ∂Ψ

∂xj
(2.4)

Assuming that the fluid is Newtonian, the stress tensor can be replaced by its corresponding
expression, and Equation 2.4 can be expressed as:

ρ
DUj
Dt

= µ
∂2Uj
∂x2

i

− ∂P

∂xj
− ρ ∂Ψ

∂xj
(2.5)

Equation 2.5, is known as the Navier–Stokes equations. In this case the equation are presented in
tensor notation. Introducing the modified pressure, i.e. replacing P by the following expression:

P = p− ρΨ (2.6)

Equation 2.5 can be written as,
DU

Dt
= −1

ρ
∇p+ ν∇2U (2.7)

Now, by looking at different terms in the Navier–Stokes equations (Equation 2.5 and Equation
2.7), the reader can remark the use of the total derivative, which is by itself taking into account
both the time variation of the velocity and the variation which respect to space. Note that in the
expressions here presented, the forcing terms considered are pressure and gravitational force. Any
additional terms related with forcing should be added by summation in its correct form depending
on whether it’s a surface or body force.

2.1.2.4 Passive scalar equation

Up to this point, the continuity and momentum equation have been covered. However, one
might very well how to consider additional quantities such as the temperature or any other mag-
nitude related to the flow. In fact, the equations presented up to this point do not consider such
additional quantities explicitly. That is why some addition expression needs to be introduced.

Let us consider a passive scalar φ(x, t) that is conserved over the flow. The term “passive”
denotes a significant assumption that it is introduced when dealing with this kind of magnitudes,
it’s assumed that the magnitude in question does not have an effect on the material properties of
the flow, i.e. on the velocity, pressure etc.

In a constant property flow, the conservation of the passive scalar can be expressed in math-
ematical terms by means of the following expression,

D

Dt
(φ(x, t)) = Γ∇2φ(x, t) (2.8)

Note that the diffusivity here represents the diffusion of the property considered. For instance, if
one is considering the temperature as the passive scalar expressed in Equation 2.8, the diffusivity
Γ, would be the thermal diffusivity.

With Equation 2.8, one can introduce some additional magnitudes of interest in the study
of the flow. Please, consult the works by Pope[26] for a complete derivation of the passive scalar
conservation equation as well as a deeper study on its implications.
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2.1.2.5 Vorticity equation

The afore-stated equations are considered basic in fluid mechanics and thus need to be intro-
duced whenever trying to find the behaviour of any flow, both laminar and turbulent. However, it
is well known that turbulent flows are rotational flows, i.e. vorticity needs to be taken into account.
That is why to conclude the exposition on the Fluid’s equation an additional equation needs to be
introduced.

Before getting into the vorticity equation, let us introduce the vorticity concept. Vorticity is
tool that is used to describe the local spinning of the flow. Mathematically, the vorticity is known
to be the curl of the velocity, i.e.

ω(x, t) = ∇×U (2.9)

By applying the curl to the Navier–Stokes equations (Equations 2.5 and 2.7), one can obtain the
vorticity equation (Equation 2.10).

Dω(x, t)

Dt
= ν∇2ω(x, t) + ω(x, t)∇U (2.10)

2.1.2.6 Synthesis: Fluid Mechanics Equations

In the previous lines, the different equations relevant for the analysis of a turbulent flow. As
a conclusion to this section, let us recap the most relevant expressions.

Continuity equation :
∂ρ

∂t
+∇(ρU) = 0

Momentum equation :
DU

Dt
= −1

ρ
∇p+ ν∇2U

Passive scalar equation :
D

Dt
(φ(x, t)) = Γ∇2φ(x, t)

Vorticity equation :
Dω(x, t)

Dt
= ν∇2ω(x, t) + ω(x, t)∇U

(2.11)

With the different expressions synthesised in Equation 2.11, the fluid mechanics theory is considered
complete. In the following sections, the methodology to solve those equations the cases of interest
will be presented among other concepts.

2.1.3 Flow statistics

The study of turbulent flows is the study of flow statistics. In fact, the statistical terms are
the main tool that we have in order to understand the evolution of the physical processes within
a turbulent flow. In §2.1.1 we introduced the idea that turbulent flows are characterised by their
random nature. In this way, as it is typical in random processes, the different physical quantities
need to be studied using statistical terms. In the present section, we introduce the theoretical
background on turbulent flow statistics.

2.1.3.1 Statistical quantities and Reynolds equations

In §2.1.2 we derived the governing equations of the flow, i.e. Navier–Stokes equations. How-
ever, as we have mentioned earlier, the random nature of turbulent flows requires the use of sta-
tistical variables to study the evolution of the flow. Starting from the Navier–Stokes equation, we
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can use those statistical variables to derive a new set of equations, i.e. the Reynolds equations,
that govern turbulent flows [26]. In the present section, we will derive those expressions.

The most basic expressions of the Reynolds equations are those that govern the mean velocity
field, i.e. 〈U(x, t)〉. In 1894, Reynolds presented an approach to deal with the velocity fields in
turbulent flows. He assumed that the actual velocity field in a turbulent flow can be decomposed
into a mean velocity term and a fluctuation term, i.e.

U(x, t) = 〈U(x, t)〉+ u(x, t) (2.12)

where 〈U(x, t)〉 is the mean velocity field and u(x, t) is the fluctuation term. This transformation
is known as the Reynolds decomposition.

Following Pope’s [26] approach, assuming that the flow is incompressible, from the continuity
equation (Equation 2.11), we can write:

∇ ·U = ∇ · (〈U〉+ u) = 0 (2.13)

Since both the mean velocity field and the fluctuation term are solenoidal [26], it naturally follows
that the mean of the continuity equation is:

∇ · 〈U〉 = 0 (2.14)

and therefore the fluctuation is given by:

∇ · u = 0 (2.15)

The next natural step is to focus on the momentum equation (Equation 2.11). To do so, we will
first derive the mean of the substantial derivative in conservative form, i.e.:〈

DUj
Dt

〉
=
∂ 〈Uj〉
∂t

+
∂ 〈UiUj〉
∂xi

(2.16)

By using the Reynolds decomposition, the non-linear term 〈UiUj〉 becomes:

〈UiUj〉 = 〈(〈Ui〉+ ui)(〈Uj〉+ uj)〉 = 〈Ui〉 〈Uj〉+ 〈uiuj〉 (2.17)

Note that the term 〈uiuj〉 is a covariance known as the Reynolds stresses. Later on we will see that
this term has as special importance in the description of the flow dynamics. From the substantial
derivative and the expression of the non-linear term we derive:〈

DUj
Dt

〉
=
∂ 〈Uj〉
∂t

+
∂

∂xi
(〈Ui〉 〈Uj〉+ 〈uiuj〉) =

∂ 〈Uj〉
∂t

+ 〈Ui〉
∂Uj
∂xi

+
∂ 〈uiuj〉
∂xi

(2.18)

This last result can be rewritten using the substantial derivative [26], i.e.:〈
DUj
Dt

〉
=
D 〈Uj〉
Dt

+
∂ 〈uiuj〉
∂xi

(2.19)

where D/Dt = ∂/∂t+ 〈U〉 · ∇. As described by Pope [26], using the expression introduced in the
previous lines, the terms are linear in U and p, hence it is significantly simpler to take the average
of the momentum equation presented in Equation 2.11. Thus the Reynolds equations are given by:

D 〈Uj〉
Dt

= ν∇2 〈Uj〉 −
∂ 〈uiuj〉
∂xi

− 1

ρ

∂ 〈p〉
∂xj

(2.20)

As we can see the Reynolds equations only differ from the momentum equation in the Reynolds
stresses terms. As we have mentioned, the Reynolds stresses have great importance in the turbu-
lence. Thus, this term can not be neglected in the governing equations of turbulent flows. In the
next section, we will study specifically the expressions and physical interpretation of the Reynolds
stresses.
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2.1.3.2 Reynolds stresses

In the previous section, we derived the expression of the Reynolds equation. The sole differ-
ence between these equations and the momentum equation lies in the Reynolds stresses. In this
way, the objective of the present section is double. On the one hand, we aim to provide a formal
definition of the terms. On the other hand, we will study the physical implications of the different
stresses.

The Reynolds equations (Equation 2.20) can be written in the following form [26]:〈
DUj
Dt

〉
=

∂

∂xi

[
µ

(
∂ 〈Ui〉
∂xj

+
∂ 〈Uj〉
∂xi

)
− 〈p〉 δij − ρ 〈uiuj〉

]
(2.21)

This alternate form of the Reynolds equations, shows three stresses terms, i.e. the viscous stress,
the isotropic stress, and the Reynolds stress. The viscous stress contains the momentum transfer at
a molecular level [26] and it is directly dependent on the mean velocity fields. The isotropic stress
−〈p〉 δij represents the stress generated by the mean pressure field. Finally, the Reynolds stresses
describe the stresses generated by the fluctuation terms.

It is easy to see that the Reynolds stresses are components of a symmetric second-order
tensor [26]. The diagonal components are normal stresses while the off-diagonal components are
shear stresses. In its principal axes, it can be shown that the off-diagonal components are null and
that the diagonal component are the eigenvalues of the tensor [26]. Hence, the Reynolds stress
tensor is symmetric positive semidefinite. The distinction between normal and shear stresses is
dependent on the selection of the reference system [26]. Although it is very common to refer to
stresses as normal and shear, we find convenient to develop a distinction that does not depend on
the reference system. In this way we can define the deviatoric anisotropic part of the stress in terms
of the Reynolds stress component 〈uiuj〉 and the isotropic stress −2kδij/3, i.e.:

aij = 〈uiuj〉 −
2kδij

3
(2.22)

Thus the Reynolds stress tensor can be re-defined in terms of the anisotropy tensor as:

〈uiuj〉 = 2k

(
δij
3

+ bij

)
(2.23)

where bij = aij/2k is the normalised anisotropy tensor [26]. Note that the anisotropic components
have great importance in the momentum equation since it is the term that affects the momentum
transport. On the contrary, isotropic stress are absorbed in the modified mean pressure terms [26].

In general cases, i.e. three-dimensional turbulent flows, four governing equations are needed
to describe the motion of the flow. Those are the Reynolds equations combined with either the
mean continuity equation or the Poisson equation (that described the mean pressure variation)
[26]. However, there are more than four variables in the system that arises from the combination of
the equations mentioned above. This is known as a closure problem [26]. In his way, due to their
unclosed nature, the Reynolds equation can not be directly solved. Instead, one needs to determine
the Reynolds stresses with alternates methods. Later on, we will present the simulation method-
ology that we use in the application cases to obtain turbulent statistics –that include Reynolds
stresses.
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The Reynolds stress tensor allows to obtain additional properties of the turbulent flow. In
fact, using the trace of the Reynolds stress tensor, one can define the turbulent kinetic energy
(TKE), i.e.:

k =
1

2
〈uiui〉 (2.24)

As we will see later on, the analysis of TKE is essential in the understanding of turbulent flows.
This quantity is especially important in the characterisation of the turbulent boundary layer, as
it serves as a verification metric to ensure that the flow incoming the simulation region is actually
turbulent. Further sections will be dedicated to the practical computation of the TKE terms as
well as to the methodology applied to verify the turbulent boundary layer.

2.1.3.3 Kinetic energy and turbulent budgets

In the previous lines we defined the concept and expression of the turbulent kinetic energy
(Equation 2.24) using the trace of the Reynolds stress tensor. Following the approach implemented
in the derivation of the Reynolds stress composition, the mean of the overall kinetic energy of the
flow can be decomposed in two component:

〈E(x, t)〉 = E(x, t) + k(x, t) (2.25)

where E(x, t) is the kinetic energy of the mean flow and k(x, t) is the turbulent kinetic energy.

From the Navier–Stokes equations one can derived the expression for the kinetic energy of
the flow, following Pope’s approach [26] we obtain:

DE

Dt
+∇ ·T = −2νSijSij (2.26)

with Sij , Ti the rate-of-strain tensor and the flux of energy respectively. Those are defined as:

Sij ≡
1

2

(
∂Ui
∂xj

+
∂Uj
∂xi

)
Ti ≡

Uip

ρ
− 2νUjSij

(2.27)

Taking the mean of the Equation 2.26, the equation of the mean kinetic energy is given by:

D 〈E〉
Dt

+∇ · (〈uE〉+ 〈T〉) = −(ε+ ε) (2.28)

where εij ≡ 2µSijSij , εij ≡ 2ν 〈sijsij〉, Sij = 〈Sij〉 and sij = Sij − 〈Sij〉.

The first term on the left-hand side of Equation 2.28 describes the dissipation due to the
mean flow whereas the second term describes the turbulent dissipation. Note that the dissipation
of the mean flow is typically of order Re−1 compared to other terms [26]. Thus, in a wide range of
applications the term ε is neglected. On the contrary the dissipation due to the turbulence, i.e. ε
is central to describe the physics of turbulent flows.

The equations of the mean flow kinetic energy and turbulent kinetic energy can be rewritten
using the dissipation terms:

DE

Dt
+∇ ·T = 〈uiuj〉

∂ 〈Ui〉
∂xj

− ε

Dk

Dt
+∇ ·T′ = −〈uiuj〉

∂ 〈Ui〉
∂xj

− ε
(2.29)

31



The first term of the right-hand side of Equation 2.29 is know as the production P, i.e.:

Pij ≡ −〈uiuj〉
∂ 〈Ui〉
∂xj

(2.30)

As we will see later on, this term –along with the dissipation term– has great importance in the
study of the turbulence. Note that production is usually positive, thus it has a “source” effect
on the turbulent kinetic energy equation [26]. In this way, as we will present in further section,
positives values in production imply that there is an increase of the turbulent kinetic energy in the
region. From Equation 2.29 it is easy to see that the production budget has great importance in the
description of the variation of the kinetic energy in both the mean flow and the fluctuations. The
action of the mean velocity gradients working on the Reynolds stresses reduce the kinetic energy
of the mean flow and transfers it to the fluctuating velocity field, thus increasing the quantity k.
In this way, the production term allows to describe one of the most important energy transfers
processes, i.e. the transfer of energy from the mean velocity fields to the turbulent fields.

The second term in the right-hand side turbulent kinetic energy equation (Equation 2.29),
as we have mentioned, is the turbulent kinetic energy dissipation. In this case, the fluctuating
velocity gradients working against the fluctuating deviatoric stresses transform the kinetic energy
into internal energy [26]. Theoretically, we expect a negative correlation between the produc-
tion and the dissipation term. In this way, in the high-production, we would expect to have low
dissipation. As we have mentioned early on, production and dissipation are some of the most im-
portant budget terms to understand the physics of turbulent flows. In this way, as we will present
later on, a significant amount of focus is put in an efficient computation and analysis of those terms.

The production and dissipation terms can be rewritten using exclusively the mean and fluc-
tuation velocity fields, i.e.:

Pij = −〈uiuk〉Ujk − 〈ujuk〉Uik
εij = −2µ 〈uikujk〉

(2.31)

Using the expressions above and defining a series of additional term we can link the substantial
derivative of the Reynolds stress tensor with the budget terms. This is known as the budget
equation:

Bij ≡
D 〈uiuj〉
Dt

= Pij + εij + Tij + Πs
ij + Πd

ij + Vij (2.32)

The terms at the right-hand side of the equality presented in Equation 2.32 are known as produc-
tion, dissipation, turbulent diffusion, pressure-velocity correlation, pressure diffusion and viscous
diffusion and are defined as:

Pij = −〈uiuk〉Ujk − 〈ujuk〉Uik
εij = −2µ 〈uikujk〉
Tij = 〈uiujuk〉k
Πs
ij = 〈p(uij + uji)〉

Πd
ij = − [〈pui〉 δjk + 〈puj〉 δik]
Vij = µ 〈uiuj〉kk

(2.33)

where δij is Kronecker’s delta. The terms presented in Equation 2.33 are the complete list of
budgets that are classicaly analysed in the study of turbulent flows. However, depending on the
particualr application, some of the terms might be neglected, as they do not provide information on
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the physical processes taking place in the case considered. As far as the computation of the different
terms, further sections will be dedicated to the implementation of the computational schemes used
to obtain the budget terms.

2.2 Computational Theory

In the previous section, the Fluid Mechanics equations were briefly introduced. The idea
now is to present some of the methodologies that can be used in order to solve the afore-stated
equations. Note, that the available literature on this matter is way too vast to be fully considered
in the work here presented, hence, only methods suitable to the problem studied in this project
will be considered.

Before getting into the details of the methodology used, let us present a general introduction
of the workflow in computational fluid mechanics.

2.2.1 Workflow in Computational Fluid Mechanics

Any project in computational fluid dynamics generally follows a scheme consisting in pre-
processing, solving and postprocessing.

Preprocessing Preprocessing covers all the necessary steps that precede the solving process of
the numerical problem in question. This phase starts by the setting of the physics to be studied. It
is clear that one should start by trying to understand the physics behind the problem since as it will
be exposed in further sections, it is essential to be able to validate the results obtained. Once the
physics are sufficiently known, the mathematical model needs to be evaluated, i.e. the equations
needed to describe the physics are gathered. Finally, it is time to set the solution strategy to used,
i.e. the numerical methods that will be applied. Although each method has its own characteristics
and limitations, some stages in the solution process are common to the vast majority of them.
The starting point in the resolution scheme typically involves the discretisation of several quantities,
very often space and time. Conceptually, the idea is to numerically solve the equations in a limited
amount of points, hence the continuous domain needs to be discretised in a set of points. Note, that
in general terms and within a method, the greater the number of points the better the solution.
However, with the increase of points, the computational cost is raised as well, thus, a trade-off
between accuracy and cost needs to be attained. Further details on this matter will be given on
the specific problem that will be presented later.
Another important matter when solving partial differential equations such as the Navier–Stokes
equations are boundary conditions. In fact, to be able to find a solution, the values of some
quantities, for instance, the velocity need to given a priori. Once again this depends on the
physical understanding that one has on the problem.
When dealing with turbulent flow, there is an additional step to be considered. Typically it is
very convenient to have a model for the turbulent quantities of interest. The use of such models
avoids solving the equations in the complete range of points in space and time, saving an important
amount of computational cost. Note, that the simulations in which the Navier–Stokes equations
are solved in the full range are known as Direct Numerical Simulations (DNS). No further details
will be given around DNS since those methods are out of the scope of the work here presented.
Also note, that once again many different models are available. The next section will be dedicated
to the presentation of the methods that are interesting for the problem here solved.
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Solving Once the equations are set, and the domain is discretised, a solution scheme is applied.
At this stage, the physics of the problem play a secondary role since, from this perspective it is
just a numerical problem to be solved. Note that computational fluid dynamics problems tend to
involve large amounts of data. Hence, an efficient solving scheme is mandatory such that solutions
are feasible.

Postprocessing After solving the problem, it is necessary to treat the data such that conclu-
sions can be obtained. The treatment will be very dependent on the problem and its application.
Postprocessing could go from simply plotting the computed quantities to the use of those quantities
in an additional computational process. For instance, when dealing with turbulent flows it is very
common to obtain the statistics of several magnitudes such as the velocities.

Now that a brief introduction on the main stages in fluid simulations, let us focus on the
methods that are useful to the problem that will be introduced in further chapters.

2.2.2 Turbulent Modelling: large-eddy imulations

Although the computational cost has not been directly addressed up to this point, it is one
of the most critical concepts along with stability and accuracy when dealing with fluid mechan-
ics simulations. In fact, one needs to ensure that the problem can be solved with the available
computational power in feasible time. This is particularly important when dealing with turbulent
flow simulations, as it is the case in the work here presented. Focusing only on accuracy, direct
numerical simulations (DNS) clearly provide the best results, since those kinds of simulations solve
the equations describing the problems, e.g. the Navier–Stokes equations, in every scale of points.
However, DNS tend to have a very important simulation cost and usually have problems when the
complexity of the geometry is increased. Although the problems that will be addressed in further
sections do not present an important geometrical complexity, DNS will not be considered as a
simulation strategy. In fact, for the problems here treated the raise in accuracy obtained by using
DNS does not justify its use. Hence, an alternative has to be considered. The natural tendency, as
in any other engineering application, is to develop models.

Models allow to obtain solutions without solving the equations in every scale. Since the
equations are not solved in every point it is clear that some information is lost and therefore the
accuracy of the method decreases. It is part of the preprocessing task to determine which model
provides sufficient accuracy to solve the problem in question. This is usually done by analysing the
pre-existent literature. Many different models of turbulence are available, each one having different
levels of accuracy. In the work here presented, the Large-Eddy model will be applied.

2.2.2.1 Fundaments of Large-Eddy Simulations

The basic idea behind large-eddy Simulations (LES) is that large motions are directly
represented, i.e. solved, whereas the smaller motion are modelled. The motivation behind is based
on the fact that computational cost is not uniformly distributed over the scale. For instance,
when dealing with DNS simulations the vast majority of the computational cost is produced by
the smaller scales (Pope 2010 [26]). Hence, by modelling the smaller scales one could significantly
improve the computational cost of the method. In addition, as described by Pope (2010 [26] ),
the energy and anisotropy are mainly contained in the large scales which are affected by the flow
geometry and hence are not universal. On the contrary, smaller scales tend to have, to some extent,
a universal character. Under this assumption, it seems that the LES approach could be an efficient
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way to reduce computational costs.

Fundamentally any LES can be stripped into four main steps which are key to the inner
workings of the method. Note, that this description follows the approach presented by Pope [26]
as well as its notation.

First of all, during the filtering process velocity is segregated depending on whether it
corresponds to large or small scales. In that way, the velocity term U(x, t) is decomposed in the
sum of a filtered component (i.e. component corresponding to larger scales) U(x, t) and a residual
component ( i.e. component corresponding to smaller scales) u′(x, t). Secondly, the Navier–Stokes
equations are applied to derive the equations involving the filtered components. Thirdly, the
residual-stress tensor is obtained by applying a pre-existent model, for instance in its most simple
version an eddy-viscosity model. Finally, the model filtered equations are solved numerically using
any of the available tools in numerical methods. This last stage will be further developed for the
tool that will be applied in the work here presented.

Now that a general vision of the LES method has been presented it is time to introduce
the specific theory behind the simulation. Note that the aim of this part is to provide a brief
introduction to the theory over which LES are based. However, if the reader is avid to deepen in such
theory, Pope’s work Turbulent Flows and Sagaut’s text Large-Eddy Simulations for Incompressible
Flows [29] cover a complete explanation on the topic. Let us now introduce the formal expression
of the LES filter as exposed on Leonard [16]. Consider a generic function f(x) all the . Using the
notation introduced in the previous paragraph, f(x) should be decomposed in a function containing
the large scales, i.e. f̄(x) and a function gathering the smaller scales, i.e. f ′(x). Note that the
apostrophe over f variable does not represent the derivative of f , but rather a function applied
over the smaller scales. Now, let us define a filter function G which produced the afore-stated
segregation. By integration of the convolution of the function f and the filter function G the large
scales quantity is found.

f̄(x) =

∫
G(x− x′)f(x′)dx′ (2.34)

Applying it now to the velocity term, it is found :

U(x, t) =

∫
G(r,x)U(x, t)dr (2.35)

Note, that the filter function G is actually a transfer function if ones uses the classical control
theory terminology. In that way, this function can take many different forms depending on its
shape. For instance, one could consider some standard transfer functions such as the box function,
the Gaussian function, etc. The selection of the filter function will mainly be dependent on the
particular application of the method.

As stated it the introduction of this section, the filtered quantity U(x, t) and the residual
quantity u′(x, t) are related by superposition, i.e. :

U(x, t) = U(x, t) + u′(x, t) (2.36)

Once the velocity term is filtered, the equations of the filtered components are derived from
the Navier–Stokes equations. Smaller scales are obtained by means of modelling while larger scales
are obtained from any of the numerical methods available. This last stage will be assessed later on.
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Now that some of the basic principles behind the LES method have been presented, it is time
to see this methodology in the perspective of the available strategies to solve this kind of problem.
The next paragraphs will be dedicated to the evaluation of the strengths and weaknesses that LES
have comparing to the other mainstream approaches currently used.

2.2.2.2 LES performance appraisal

The aim in this part is to look at LES with critical eyes by trying to evaluate to strengths
and weaknesses of this approach. The assessment in question will be carried following a qualitative
approach rooted in the available literature on the topic. Note that a finer appraisal could probably
be done following a quantitative approach. However, for the sake of the work here presented a gen-
eral understanding of the performance of the method should be more than sufficient. Nevertheless,
we strongly encourage the avid reader to consult the works of Chapman (1979) [4] as well as the
well-known book of Pope, Turbulent Flows[26].

The appraisal here presented, following Pope’s approach, will be supported on five funda-
mental pillars.

1. Level of description : This criterion is related to the physical characteristics of the flow
and how those relate to the computational method applied. For instance, the use of statistical
quantities such as means can provide a sufficient description for some flows but might not
be enough for other specific cases. The selection of the computational method based on this
criteria will depend on several aspects such as the inner nature of the flow, the application
of the study in question, etc. In practice, once again, this evaluation is based on previous
experience both generally and precisely.

2. Completeness : Completeness is mainly evaluated by inspection of the equations that build
the model and how they relate with the flow. A model is considered complete if the equations
that are involved do not depend on flow specifications. For example, DNS is complete since
the equations are solved at every point and hence no flow specification is required. On the
contrary, a mixing-length model introduces a flow specific quantity, the mixing length, and
hence it is incomplete.

3. Cost : Up to this point cost has already been accessed in several occasions. However, the
main objective in this block is to provide more detailed explanations of the factors that
influence cost in computational fluid dynamics. It is necessary to distinguish between models
and fully computational approaches such as DNS, since they tend to behave very differently
as far as cost is concerned.

(a) Turbulent models : In turbulent models, the cost is mainly related to the mathematical
objects that are inside the model. For instance, if the problem is statically stationary
the cost tends to decrease.

(b) DNS : In direct numerical simulations, there is a strong direct relationship between the
computational cost and the Reynolds number. As the Reynolds number is increased the
cost tends to rapidly raise. This is in fact one of the motivations in developing turbulent
models since high Reynolds number are a well-known characteristic of turbulent flows.

In general, the computational process in any flow simulation can be divided into two main
stages. Firstly, the equations of the simulation need to be solved in order to attain certain
conditions. For instance, one needs to spend some computational power to achieve turbu-
lent conditions. However, further on we will see that there exist ways to reduce the cost in
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this area by “smartly” induce the turbulence, for instance with the use of a tripping force.
This cost will depend on the flow target conditions, the models, and the computational tools
available. However, it is important to know that this is single-time cost, since once the flow
conditions are achieved, one can save the fields and then perform different simulations with
them. Secondly, once the flow conditions are reached, the flow needs to be solved in a specific
geometry. This cost is obviously recurrent since it is the problem itself and hence will be
different for every application. Again, this recurrent cost will depend on the flow conditions,
model applied, computational tools, etc.
In practice, the computational cost is typically assessed in terms of computational time. The
idea is whether a given problem can be solved in feasible time. This is importantly related to
the available computer. The use of supercomputers has allowed up to today to raise the limit
of possible computations. In this area, quantum computing appears to be a very promis-
ing tool. However, its application in fluid mechanics simulations remains unavailable for the
moment. Also note, that there are computational techniques that allow to decrease compu-
tational time, such as the parallel computing protocols, which basically, split the problem to
run it simultaneously in many different processors.

4. Applicability : Not all the models can be applied to every problem or flow. This fact can
be compared with the way in which classical fluid mechanics simplifies the flow equations. In
every model, there are a set of assumptions that have to be coherent in the specific application
considered. For instance, in classical fluid mechanics, one can assume that the flow in a pipe
is one dimensional if the pipe is long enough and its cross-section is constant. However, if the
diameter of the pipe is increased over a certain limit, the one-dimensional flow assumption can
not be applied anymore. The same kind of principles applies in fluid numerical simulations,
especially when dealing with models. Recalling the example of mixing-length models, those
typically include assumptions regarding the flow geometry, hence their applicability range
is constrained to a certain set of flow geometries. In the case of DNS, there are not such
theoretical limitations. However, due to the relation between cost and Reynolds number, one
can state that its applicability is constrained to low or moderate flows.

5. Accuracy : Accuracy is one of the most important aspects of a model. In principle, higher
accuracy implies a better model. However, maximising the accuracy of a model is not an
objective per se, since typically accuracy balances with other factors such as cost or appli-
cability range. Accuracy is usually measured by comparing the numerically solved results
with experimental results. Note, that this process is done for every numerical simulation, but
rather in specific which serve as a reference to further studies.

This appraisal system, far from being perfect or unique, aims to provide different angles of evalua-
tion to a given methodology. Note that there is not a “perfect” model when dealing with numerical
simulation nor one can state that one of the aforementioned pillars is more important than the
others. In practice, the discrimination of a model over another is typically the result of a mixed
evaluation of the afore-stated criteria as well as other factors such as the available resources, ex-
pertise, or application of the specific task.

Now that a brief introduction on the evaluation criteria has been presented, this appraisal
scheme will be applied to the LES method which is the one that will be applied further on. The aim
in this part is to provide the reader with a general picture of the reasoning behind LES selection
as the main computational methodology in the work here presented.
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Level of description It is well known from flow physics that the energy-containing motions are
typically large-scale motions. In this way, since LES does solve the proper fields in large scales,
the level of description is usually sufficient for many different kinds of applications. As far as the
smaller scales are concerned, the level of description might vary depending on the model applied
but usually, they do not present a significant problem in this area. Further on, it will be exposed
how some methodologies allow to increase the level of description and accuracy the smaller scales
will keeping the cost restrained thanks to the use of a well-resolved LES.

Completeness Recall that the completeness of a simulation is determined by whether the
solution depends on the flow. In the particular case of the LES the completeness can not be
assessed for the methodology in general. In fact, the completeness of an LES mainly depends on
the filter width. As Pope’s clearly presents in Turbulent Flows [26], it is very common in turbulent
LES to define the filter width proportional to the local grid size, which is predefined. In such a
case, if the LES solution is dependent on the grid definition parameters, e.g. grid size, the method
is, by definition, incomplete. However, the grid can be defined such that the vast majority of the
energy-containing motion is resolved in the domain, i.e. in the larger scales. This time, contrary to
the prior case, the LES solution will not have such dependence on the grid parameters and therefore
the simulation can be considered complete.

Cost Cost in LES is a deep topic on its own. In fact, the cost of a LES is related to different
factors such as the type of flow or turbulence considered. For instance, if one considers homogenous
isotropic turbulence, 403 modes are sufficient to solve 80% of the energy (Pope [26]). However, the
simulation of a wall-bounded flow would have significantly different resolution requirements and
hence cost. Note that resolution requirements and their study will be concretely assessed further
on, in application cases. One of the most important aspects as far as the cost of LES is concerned,
is the fact of not being dependent on the Reynolds number. This is particularly interesting for
the field here considered, turbulent flow simulation. In addition, this is one of the main factors
of distinction between LES and DNS simulations, since DNS cost increases importantly with the
Reynolds number. This is one of the many reasons why the LES method is preferred over DNS in
the kind of simulations here considered. Note that the main reason one could think to justify the
preference of a DNS over a LES is precision. However, especially when using well-resolved LES, the
small increment of precision is absorbed by the high raise in cost, which makes one lean towards the
LES method, at least in the applications here considered. Although LES is preferable in terms of
cost over a DNS, it is not the most cost-efficient method available. In fact, the cost of LES belongs
to the high-cost section in the general spectrum of the available methodologies. For instance, a
Reynolds-Averaged Navier–Stokes (RANS) model would in the vast majority of cases have a lower
cost than a LES. However, cost is always analysed as a counter-factor to precision, accuracy, and
applicability, which are significantly better in a LES. The discrimination of one method over will
be fundamentally dependent on the application considered.

Applicability The range of applicability of the LES is wide comparing with other methodologies,
especially for constant density flows over which this method is generally applicable. However, the
cost will be a key factor in the applicability of the method. In practice, the cost and complexity
of the problem to solve will determine the applicability of the method. In other words depending
on the level of complexity and the cost of the methods considered, one will discriminate a method
over another. In addition, the degree of description provided it is also a fundamental factor that
determines the applicability of the method. It is clear that more rudimentary methods are typically
easier to apply and more cost-efficient. However, the level of description in such methods usually
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limits their applicability as they, simply can not describe an important set of problems. For instance,
the range of applicability of RANS methods is way more constrained than the range of LES methods
(Pope 2010 [26]) even if DNS methods are typically more expensive. This is due to the level of
description of LES methods which allows to apply it to more complex problems such as aeroacoustic
problems, unsteady turbulent problems, etc. In addition, combined with statistical modeling in
the subgrid scales, LES are applicable to even more complex problems such as molecular reaction
in flows or molecular mixing.

Accuracy As presented in the begging of §2.2.2.2, accuracy is one of the most important aspects
when evaluating a given computational method. Appraising accuracy requires a proper comparison
of the method’s performance over a wide range of flows. For simple boundary layer flows the avail-
able literature appears to present that LES are accurate enough to be applied in such endeavours.
However, Pope [26] suggests that the range of tested flows is not large enough to state that for
every kind of simple boundary layer flow the method would be accurate enough. Note that even
though the accuracy of general LES methods still needs to be properly evaluated, in the following
section an enhanced version of LES will be presented and discussed, the well-resolved LES. In fact,
well-resolved LES provide an accuracy close to DNS while keeping the cost contained.

2.2.2.3 Enhanced LES : Well-resolved LES

Well-resolved boundary layer simulations is a term to describe a LES which have particularly
constrained resolution conditions and hence accuracy. In fact, by setting a fine resolution over
the scales one can significantly improve the accuracy of the method to achieve a performance
close to DNS methods. Schlatter et al. [30] develop a method based on two modifications of the
approximate deconvolution model (ADM) approach and they compare it with the results obtained
from a fully resolved DNS. The two modifications introduced are ADM-2D and the RT-3D, which,
as stated are modifications of the standard ADM, known as ADM-3D. The ADM-2D is based on
two-dimensional filtering and decomposition over the homogenous wall-parallel directions instead
of the three-dimensional that is proposed in the standard method. In addition, both variations
include a modified version of the non-dimensional Navier–Stokes equations which include a relation
term −χ(I −QNG)ui. The relaxation parameter χ is defined by Schlatter et al. (2004)[30] as,

χ(t+ ∆t) = χ(t)
F2(t+ ∆t)|χ=0 − F2(t)

F2(t+ ∆t)|χ=0 − F2(t+ ∆t)|χ=χ(t)
(2.37)

where F2 is the second-order velocity structure function and ui is the filtered velocity.
The rest of the magnitudes forming the relaxation term are given by the high-pass filtered also
presented in the work of Schlatter et al. [30].

HN = I −QNG (2.38)

where, QN is the approximate inverse of the primary low-pass filter, G. Schlatter et al. [30] ex-
plain how the deconvolution term is maintained over the whole process in both the transient and
turbulent phases. In this way, “the advantages of the ADM techniques are retained, although this
model is not as general as the original formulation since it is restricted to filtering in two dimensions
only” (Schlatter et al. [30]). For the RT-3D modification, the relaxation term is evaluated in three
dimensions. However, the main difference with respect to other methodologies lies in the evaluation
of the non-linear terms. In fact, those terms are computed from the filtered quantities. The main
difference between the RT approach and the ADM approach, as stated by Schlatter et al. [30] is
that the first does not use the deconvolved quantities for the non-linear terms. However, the RT-3D
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modification has proven to be “as general as the standard ADM procedure” (Schlatter et al. [30])
even if the afore-mentioned deconvolved quantities are not applied over the non-linearities. The
study presented by Schlatter et al. [30] concludes that the methods here treated converge in terms
of resolution to the results provided by DNS methods. In particular, their study demonstrates that
with a proper treatment of the spatial directions, one can “faithfully represent the relevant physical
features of the flow” (Schlatter et al. [30]) . This fact supports the simulation choice of the work
here presented to select a well-resolved LES over a DNS.

Negi et al. [22] get further in the study of the performance of LES, this time focusing on
the afore-presented RT3D variant. In the work of Schlatter et al. [?], it is proved that the RTD3
method is reliable in predicting both the location and flow structures found in transitional flows
solved in DNS. In the work here referred, Negi et al. [22] consider both the transition and the
fully turbulent phase over an airfoil. However, it is the LES appraisal and comparison that is
interesting in the work here presented. In their study, Negi et al. [22] use a much finer resolution
than the standard LES resolution which is actually “close to the coarse DNS resolutions used in
turbulent flows” (Negi et al. [22]). The results of the study show that a “good agreement with the
DNS is found for the mean velocity and all the kinetic energy budget terms (including the total
dissipation)” (Negi et al. [22]). Once again the results of the study here addressed are consistent
with the selection of well-resolved LES method over a DNS method since they require performance
is achieved and the costs are constrained, as presented in § 2.2.2.2.

2.2.3 Numerical Method : Nek5000

To close the purely theoretical description of the present work, the numerical tools will be
assessed. The main objective in the current section is to describe the foundations of the numerical
tools that will be applied further on. Note, that the actual programming process will be addressed
later on in this report since the purpose of the current description is to present the theory behind
the tool and not the practical functioning.

Recalling §2.1.1, by this point, it is known that in addition to the simulation type and the
equations that are considered, the selection of the numerical method to run the simulation is a key
part of the process to solve any computational fluid dynamics problem. The computational code
applied to the application problems here studied will be Nek5000.

2.2.3.1 General Aspects

Nek5000 is an open-source Navier–Stokes solver developed by Fisher among many others at
the Argonne National Laboratory in the United States of America. Nek5000 was designed to solve
incompressible laminar, transient, and turbulent problems. In addition, it is also possible to solve
heat transfer and species transport problems at low Reynolds numbers. From the computing point
of view, typically, Nek5000 using a parallel computing approach by means of the MPI protocol.
Although it is possible to use the tool in a serial mode, i.e. without benefiting from the MPI
protocol, during the applications presented further on, it will be used in parallel computing mode
such that the problem can be efficiently solved. The source code is coded in f77 such that it can
be compiled with any Fortran compiler available. Note, that at this point no more details on the
practicalities of the code will be presented since the object of this exposition is to present the theo-
retical foundations of the method. Please refer to § 3.1.2 for a description of the practical workflow
of the tool.
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Numerically, the tool is based on a spectral-elements method allowing to map complex ge-
ometries by means of a high-order spatial discretisation of the domain achieved with the Galerkin
approximation. As far as the distribution of points within the elements is concerned, Nek5000
uses the Gauss-Lobatto-Legendre quadrature, also known as the GLL quadrature. In addition, the
version that is here considered, is formulated in algebraic type, i.e. PN − PN−2. This means that
the velocity is expressed with a polynomial of order N whereas the pressure is formulated with a
polynomial of order N − 2. Further on, the numerical and mathematical concepts here introduced
will be properly developed.

2.2.3.2 Navier–Stokes discretisation: Spectral-element method

As introduced in §2.2.1 a key part of the preprocessing stage consists of the discretization of
the domain. In the following lines, we will focus on describing the spectral-element method,
since it is the foundation of one of the computational tools applied in this work. Note, that this part
will be focused on the spectral discretisation of the Navier–Stokes equations presented in §2.1 fol-
lowing the method presented by Patera in A spectral element method for fluid dynamics: Laminar
flow in a channel expansion [25]. The method presented consists of a combination of finite-elements
method (FEM) and Spectral Methods which aims to exploit the advantages that both methods have
to offer. On the one hand, FEM as described in Patera [25], presents the generality advantage,
allowing their application to many different kinds of problems. In fact, finite-element methods are
used in a wide range of engineering disciplines such as structural analysis, heat transfer problems,
etc. On the other hand, spectral elements have proved to be more accurate. A combination of both
allows having an accurate tool without excessively narrowing the applicability range of the method.

Although finite-element and spectral-element methods are typically considered independent,
both are based on the same fundamental procedure. As described in Patera [25], the finite-element
procedure and therefore the spectral procedure is based on the division of space in small portions,
the elements. In each of the elements, a series of expansions are applied following a weighted-residual
technique. The main advantage of the finite-element methods is found in their generality. In fact,
by choosing quadratic elements, one can apply this methodology to all sorts of problems, which is
obviously a great advantage. However, this generality is balanced with a significant difficulty to
produce an accurate solution, hence the development of spectral methods. Spectral methods, do
not provide such generality, but they do have much better accuracy.

Let the definition of the spaces be the starting point for the development of the spectral
elements method (SEM) formulation. The spaces are defined as,

L2(Ω) =

{
f : Ω→ R|

√∫
Ω
|f |2dΩ <∞

}
(2.39)

In addition, the following subset is also defined,

H1
0 (Ω) =

{
f ∈ L2(Ω)|∂f

∂x
∈ L2(Ω)

}
(2.40)

Moreover, an additional space is introduced for the pressure.

L2
0(Ω) =

{
f ∈ L2(Ω)|

∫
Ω
fdΩ = 0

}
(2.41)
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Time discretisation As stated in the introductory sections of computational theory the nu-
merical methods are based on the discretisation of space and time. In this way, the methodology
consists on transforming continuous magnitudes into discrete magnitudes by means of the discreti-
sation operation.

Let us consider a general time-dependent problem in the following form:

∂u

∂t
= L[u]; u(t0,x) = u0 (2.42)

Note that in Equation 2.42 the space magnitudes and operators are supposed to be gathered in the
operator L.

For time variable a backward finite differentiation scheme is applied. Mathematically,

k∑
j=0

bju
n+1−j = ∆tL[un+1] (2.43)

It is easy to see that the backward scheme presented in Equation 2.43, is an implicit scheme.
Implicit schemes have proven to be computationally demanding processes (Fisher et al. [9]) and
hence it is preferable to find a alternate form such that the implicit form is avoided. By operating,

L[un+1] =

k∑
j=0

ajL[un+1−j ] (2.44)

Equation 2.44 is the final expression of the scheme that is introduced in the coding of Nek5000.
Further on, the specific routines that assess this expression will be presented.

Space discretisation Now, as far as the space discretisation scheme is concerned, we will focus
on the PN −PN discretisation since this is the general representation of the scheme. Before getting
into the details of the method, let us reformulate the Navier–Stokes equations into a more convenient
expression. Recall Equation 2.5 as well as the well-known definition of the substantial derivative.
In addition, consider the following parameter,

τ = µ

[
∇ (u) +∇ (u)T − 2

3
∇ · uI

]
(2.45)

By combining both Equation 2.5 and Equation 2.45, the following expressions for the Navier–Stokes
equations are found :

ρ

(
∂u

∂t
+ u · ∇ (u)

)
= −∇ (p) +∇ · τ + f

∇ · u = 0

(2.46)

Note, that the Navier–Stokes equations can be considered as a set of non-linear advection-diffusion
equations constrained with pressure. This particularity allows to adapt some of the pre-existent
literature on the advection-diffusion equation.

Recall Equation 2.42. Applying that expression to the Navier–Stokes equations presented in
Equation 2.46, the following expressions are obtained:

ρ (L[u] + u · ∇ (u)) = −∇ (p) +∇ · τ + f

⇔ L[u] = −u · ∇ (u)− 1

ρ
∇ (p) +∇ · τ + f

(2.47)

42



Using the nomenclature presented by Fisher et al. [9], some terms are can be gathered in terms of
non-linear terms, N(u) and viscous terms, L(u).

• N(u) = ρu · ∇ (u)

• L(u) = ∇ · τ = ∇ · µ
[
∇ (u) +∇ (u)T − 2

3∇ · uI
]

Hence, the first expression shown in Equation 2.46, i.e. the momentum equation in differential
form can be expressed as,

ρ
∂u

∂t
= −∇ (p) +N(u) + L(u) + f (2.48)

Fisher et al. [9] remark that for stability reasons, the non-linear terms need to be solved by
means of an explicit method whereas the implicit are solved using implicit ones.

Time integration Now that both space and time discretisations have been formulated, the next
step is to develop the integration schemes. Once again, the formulation presented by Fisher et
al. [9] is followed, since it is the foundational base of Nek5000.
Applying the time discretisation scheme proposed in Equation 2.43 to the terms forming Equation
2.48, it is found:

k∑
j=0

bj
∆t

un+1−j = −∇
(
pn+1

)
+N(un+1) + L(un+1) + fn+1 (2.49)

Due to the nature of the non-linear terms, this part of the equation needs to be extrapolated.
Fisher et al. [9] propose:

N(un+1) =
k∑
j=1

ajN(un+1−j) (2.50)

Now, coming back to Equation 2.49, it is easy to see that the right-hand terms can be split into:

bj
∆t

un+1−j
∣∣∣
j=0

+

k∑
j=1

bj
∆t

un+1−j =
b0
∆t

un+1 +

k∑
j=1

bj
∆t

un+1−j (2.51)

Replacing the afore-mentioned terms in Equation 2.49 while sorting explicit and implicit terms,
the following expression is found:

b0
∆t

un+1 = −∇
(
pn+1

)
+ L(un+1)−

k∑
j=1

bj
∆t

un+1−j +
k∑
j=1

ajN(un+1−j) + fn+1 (2.52)

By inspection, one can see that the three last terms in the right-hand side of Equation 2.52 are
explicit and depend on the previous velocity step. Note that the forcing term f also exhibits this
dependency although it is not explicitly written. Hence, following Fisher et al. [9] procedure, those
terms can be gathered in the unique term F(un). In this way, Equation 2.52 is rewritten as follows:

b0
∆t

un+1 = −∇
(
pn+1

)
+ L(un+1) + F(un) (2.53)

By direct application of the vector identity, the viscous term can be reformulated as follows:

L(un+1) = µ
4

3
∇
(
∇ · un+1

)
− µ

k∑
j=1

aj∇× (∇× un+1−j) (2.54)
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Now, let us define the another term grouping the second term in the left-hand side of the equality
presented in Equation 2.54 with the afore-defined F(un) term.

F̃(un) = F(un) + µ
k∑
j=1

aj∇× (∇× un+1−j) (2.55)

Hence, Equation 2.52 can be expressed solving the pressure term by means of the term shown in
Equation 2.55,

∇
(
pn+1

)
= − b0

∆t
un+1 − µ4

3
∇
(
∇ · un+1

)
+ F̃(un) (2.56)

Equation 2.56 can be recognised to be very close the the pressure Laplace equation. In
fact, the Laplace equation is known to be the divergence of the terms presented in Equation 2.56
(Fisher et al. [9]). For a matter of convenience, let us consider the following parameter QT such
as QT = ∇ (u). (Fisher et al. [9]). By taking the divergence of Equation 2.56 one can obtain the
pressure Laplace equation in the following form.

∇ · ∇
(
pn+1

)
= − b0

∆t
Qn+1
T −∇ · µ4

3
∇
(
Qn+1

)
+∇ · F̃(un) (2.57)

By integration over the space Ω and considering that for incompressible flows QT = 0 it is found:∮
∇
(
pn+1

)
· n · qdS =

∮
µ∇

(
Qn+1
T

)
· n · qdS +

∮
F̃(un) · n · qdS (2.58)

where ndS = dΩ.
At this stage the boundary conditions for the pressure can be obtained by taking the normal the
pressure term solved in Equation 2.56. Expressed in terms of L(un+1) and F (un+1), this is :

∇
(
pn+1

)
· n = − b0

∆t
un+1 · n + L(un+1) · n + F(un+1) · n (2.59)

Taking into account the partial separation of the Laplace terms that is in fact incorporated inside
F̃(un) ( Fisher et al. [9]) one can find that,

∇
(
pn+1

)
· n = − b0

∆t
un+1 (2.60)

Finally, using the expression of the computed pressure and recalling Equation 2.57, the well-know
Helmholtz equation which is the one that will be incorporated in the tool to be solved.

b0
∆t

un+1 − µ∆un+1 = −∆pn+1 +
µ

3
∇
(
Qn+1

)
− F(un) (2.61)

2.2.3.3 Representation of the magnitudes within the elements

Note that § 2.2.3.2 was dedicated to the understanding of the Navier–Stokes discretisation
using the spectral-element method. At that point, the main objective was to divide a continuous
domain into a series of elements. Now, within those elements the pressure and velocity are expressed
by means of high-order Lagrange interpolants of Legendre polynomials over a specific quadrature
of points the Gauss–Lobatto–Legendre quadrature. The following paragraphs will be dedicated to
the introduction of those mathematical tools.
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Legendre polynomials The Legendre polynomials are used as base functions in order to repre-
sent the magnitudes in question. Following the approach exposed by Arfken and Weber [12], the
function formulation will be introduced by means of a generating function.
Consider the following generating function formula [12],

g(t, x) =
1√

1− 2xt+ t2
=
∞∑
n=0

Pn(x)tn with |t| < 1 (2.62)

Arfken and Weber [12] prove that:
|Pn(cos (θ)) ≤ 1| (2.63)

where θ is the angular coordinate in the polar reference system.
From Equation 2.63 it is easy to see deduce that the series expansion presented in Equation 2.62 is
convergent ∀ |t| < 1. This statement is in fact very convenient since in Equation 2.62 the generating
function was precisely defined for |t| < 1, hence the series are convergent for the whole range of t
values considered.
From the binomial theorem it is known that the middle term of the equality shown in Equation
2.62 can be expanded by means of the following infinite series,

1√
1− 2xt+ t2

=

∞∑
n=0

(2n)!

22n(n!)2
(2xt− t2)n (2.64)

In addition, the term (2xt− t2)n can be written as a series by means of a double series expansion.
In this way, Equation 2.64 can be rewritten as,

1√
1− 2xt+ t2

=
∞∑
n=0

[n/2]∑
k=0

(−1)k
(2n− 2k)!

22n−2kk!(n− k)!(n− 2k)!
(2x)n−2ktn (2.65)

Finally by recalling the second equality presented in Equation 2.62, the Legendre polynomials are
found,

Pn(x) =

[n/2]∑
k=0

(−1)k
(2n− k)!

2nk!(n− k)!(n− 2k)!
xn−2k (2.66)

Note, that there exist alternate forms of Equation 2.66 which present different advantages depend-
ing on their application. For instance, one could consider Rodriguez’s formula or the Schlaefli
Integral forms (Arfken and Weber [12]). Although for the purpose of the section here presented
the considered form should be more than enough for the reader to have an idea on the theoretical
foundations of the method, for a matter of convenience, an alternate form will be introduced. The
generating function g(t, x) from which the Legendre polynomials were derived can be generalised to
obtain the ultraspherical polynomials. In this case, the following equality gives the polynomials:

1

(1− 2xt+ t2)α
=

∞∑
n=0

C(α)
n (x)tn, (2.67)

where C
(α)
n (x) are the ultrapherical polynomials. Note, that those polynomials will be useful during

the derivation of the Gauss-Lobatto-Legendre quadrature expressions
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Gauss-Lobatto-Legendre quadrature In the previous section we introduced the Legendre
polynomials which, as stated, serve as base functions in the representation of magnitudes within
the elements. From the grid-point’s perspective, a distribution scheme needs to be developed.
Nek5000 utilises the Gauss-Lobatto-Legendre quadrature in order to distribute the points within
the elements.
The Gauss-Lobatto-Legendre (GLL) quadrature could be understood as some kind of evolution
from the classical Gauss quadrature. In fact , the main distinction between the GLL quadrature
and the Gaussian one is that the former considers the extreme points in the integration interval
whereas the later does not[27]).
Now, following the procedure presented by Brix et al. [3], consider two parameters k and N such
that 0 ≤ k ≤ N . Consider also a given GLL node defined as εNk of order N . Then, by definition
the GLL nodes of order N are the N + 1 zeros of the following polynomial expression:

(1− x2)L′N (x) (2.68)

where L′n(x) is the derivative of the N th Legendre polynomial as formulated in Equation 2.66.
By differentiation over the ultraspherical polynomials (Equation 2.67), the derivative of the Leg-
endre polynomials can be obtained:

L′N (x) =
1

2
P

( 3
2

)

N−1(x) (2.69)

The GLL nodes are distributed in ascending order, i.e. εNk < εNk+1 forming a grid of order N . In

addition, the nodes are symmetrically distributed with respect to the origin, i.e. εNk = −εNk ( Brix
et al. [3]).
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3

Problem setup and Implementation

This chapter will be focusing on the practicalities of the flow simulations. In fact, this chapter
will be complementing the comments gathered in the previous chapter, now focusing on the imple-
mentation of the set of tools applied in this work. Note that in this case the theoretical derivations
and explanations will be kept minimal since the main objective of this part is to provide a full guide
on the process of designing and running a high-order spectral simulation using the well-resolved
LES methodology implemented in Nek5000.

The structure of the exposition here presented will be based on the well-known scheme §2.2.1
which is actually the general approach to any physical simulations. More precisely, the description
will start with the routines in both Nek5000 and MATLAB necessary to set up the case, then
the characteristics of the solving process, and finally, the postprocessing tools needed during the
different stages of the analysis.

3.1 Preprocessing tools and routines

In § 2.2.1 we described how any flow simulation starts through a series of implementations
that built the different inputs of the solution tool. In addition to the solver’s inputs, some specific
tools need to be developed in order to produce an a priori analysis to determine certain parameters
that are key to the well-solving of the problems. Such tools and analysis will also be covered as a
part of the preprocessing stages.

The exposition here presented will be built over three fundamental axes, which describe the
thinking and design processes followed in the application problems. First of all, the mesh has to be
generated. Secondly, the mesh files, among others are input into the Nek5000 solver, such that the
resolved fields and statistics are obtained. Finally, the output files from Nek5000 are combined with
a set of tools that produces the quantities of interest. The afore-stated structure is the fundamental
procedure, in general terms, that will be applied in each of the cases presented further on. The next
lines will be dedicated to providing the reader with a good understanding of how those processes
are designed and carried out.

3.1.1 Mesh generation

The generation of the mesh is actually a topic on its own, for which several tools and studies
are available. However, the purpose of the work here presented is not the study of meshes but
rather the study of flows in urban environments. Hence, the mesh generation process relies on a
platform of cloud parallel computing which allows, among many other things, to generate the mesh
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in Nek5000 format. The platform was developed in collaboration with Parallel Works Inc. [24]. It
is based on the Swift parallel computing scripting language as well as the Parsl parallel scripting
library. However, the user’s experience is a semi-programming experience. The routines to compile
and run the case are built-in inside the system such that the user changes a series of parameters
that define the setup of the workflow. Nevertheless, the platform still allows the user to see the files
and check the programming errors. In this way, the system is oriented to both users and developers.
The advantage of this platform lies in the fact that it allows to automate complex procedures such
that given a series of parameters the system directly runs the routines and outputs the results.

3.1.1.1 Workflow setup and processes

The main workflow that is used in the present study is an urban environment that generates
the mesh, among many other input files, of a domain with a given number of building-like obstacles.
The parameters that are input in the workflow can be gathered mainly in two groups, geometrical
and mesh parameters. To those two groups, the simulation parameters are added. Those parameters
are actually influencing the simulation and with exception of the boundary conditions will not be
affecting the mesh and will be redefined in the Nek5000 setup run locally. In fact, the Parallel
Works platform is prepared to run some small cases. However, due to the size and nature of the
problems here considered, the simulations are in a specific Nek5000 setup outside the platform.
Hence, Parallel Works is only applied in the mesh-generation stage.

Geometrical parameters This set of parameters defines both the type and dimensions of the
domain. In fact, the geometry is generated from the centre of the first obstacle. The origin of the
coordinate system is centred in the intersection of the first obstacle’s centreline with the bottom
horizontal plane. Then the different obstacles are located with respect to the origin following the
structure shown in Figure 3.1.

Note that the dimensions shown in Figure 3.1 are scaled as a function of the height of the
building-like obstacle h. This allows a fast rescaling of the cases by changing a single parameter.
Moreover, the number of obstacles and their disposition is determined following a matrix approach
by means of the parameters I and J . The I quantity determines the number of rows while J
determines the number of columns. For instance for {I, J} = {2, 3} the resulting geometry is
a matrix composed of six obstacles disposed as shown in Figure 3.1. As far as the workflow’s
limitations are concerned, theoretically, the workflow is prepared to handle all kinds of cases.
However, limitations might appear in the computational resources. In the work here presented,
the platform is used a “mesh generator”, hence the limitations of the computational resources
do not represent a significant limitation since the mesh generation process does not result in an
extraordinary computational cost.

Mesh parameters and generation process Along with the geometrical and dimensional pa-
rameters the second fundamental part of this process involves the definition of the sizes of the
elements that form the mesh. Recall that the main idea of “elements” methods such as FEM or
SEM is to discretise the space in a certain number of elements. The computational object that
gathers those elements is the mesh. Generally, for non-uniform elements three size parameters
are enough to determine the size of the element, one for each direction. However, the mesh here
considered follows a refinement scheme such that the element size is reduced as one approaches
the walls of the obstacles. Refinement is a very common approach in those kinds of simulations
as it allows to have a greater resolution at the key areas without having to reduce the size of the
elements in the whole domain. Note, that reducing the size of the elements increases resolution but
also cost, as for a given set of dimensions the number of elements will increase. In the workflow
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Figure 3.1: Geometrical parameters defining the mesh

here considered the mesh is progressive in the wall-normal direction to the obstacles. In fact, in the
regions near the obstacles the size element will expand in the normal direction from the minimal
value at the wall dmin to the maximal value defined in the near-obstacle zone, domax at a defined
expansion rate r. Note, that this is only applied in the near-obstacle areas, the rest of the domain
has a fixed element size that is determined by three parameters {dxmax, dymax, dzmax}. Figure
3.2 shows a two-dimensional cut of the z-plane for an example mesh. In the figure, one can see how
the mesh is progressive in the direction normal to the obstacle.
Note, that the mesh is not only refined in the near-obstacle areas but also in the bottom y-plane.
In fact, it is important to have a fine mesh in that area especially at the surroundings of the inflow
since the boundary layer is solved in that area. Later on, we will see how solving the boundary
layer properly is a critical stage in the well functioning of a turbulent flow simulation.

The parameters defining the mesh in the platform are gathered in Table 3.1.
From the processing point of view, the platform starts by generating the mesh using the

gmshtool, then the gmsh data is translated to the Nek5000 format. gmsh is a “three dimen-
sional finite element mesh generator with build-in CAD engine and post-processor”(Geuzaine and
Remacle [13]). This tool provides a systematic and simple way to generate three dimensional
meshes. Although the tool provides a full development environment, in this case the generation
tool is integrated with the meshing platform. The main advantage of gmsh over other mesh gen-
erators that directly implement Nek5000 format is the versatility of the coding process which is
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Figure 3.2: Two-dimensional cut at plane z/h = −0.5 for the final simulation mesh

Parameter Description

dxmax Maximum element size in the x - direction

dymax Maximum element size in the y - direction

dzmax Maximum element size in the z - direction

dmin Minimum element size in the wall-normal directions

domax Maximum element size in the near-obstacle region

r Expansion rate of the elements in the wall-normal directions

Table 3.1: Mesh parameters

significantly more flexible in the gmsh tool. In fact, an alternative meshing tool was actually tried
outside the platform to check whether a Nek5000 tool was more convenient than using the meshing
platform. The Nek5000 built-in genbox tool was tried. This tools allows to mesh the domain by
means of different “boxes” containing the discretised elements. Although this tool could be di-
rectly implemented in the Nek5000 workflow without having to use alternative systems, the design
and processing of the mesh is actually more complex having to deal with non-compatibilities and
boundary condition mismatches quite frequently. That is why the gmsh tool within the meshing
platform was selected. Once the gmsh file (.geo) is generated, a Nek5000 routine is implemented
such that Nek5000 files are produced. The function that enables to transform the .geo file into a
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Nek5000 format file (.re2) is the gmsh2re2 routine.
Now, for a simple case, the afore-stated routines and files are sufficient to define the mesh. How-
ever, in bigger cases, such as the ones that will be considered further on, it might be convenient to
run the simulation using a parallel computing tool such as MPI. In such cases, an additional file is
needed to set how the elements will be splitting over the different processors. The genmap file runs
a recursive spectral bisection to determine the elements’ split. This tool is also implemented in the
meshing platform although in the bigger cases it appears to have memory problems. Hence in the
application cases, the genmap function is actually run locally. The function in question produced a
.ma2 file which is actually the mesh file required in addition to the .re2 file when running Nek5000
in parallel mode. Figure 3.3 serves as a visual synthesis of the afore-explained processes.

Figure 3.3: Meshing workflow using both the platform and the Nek5000 tools.

3.1.1.2 Computational resources

To conclude with the presentation on mesh generation, the last topic to cover is related to the
computational resources that are involved in the mesh generation. Before getting to the insights of
the computational resources available in the meshing platform let us make a note on the concept
of parallel computing. Both the meshing platform and Nek5000 run following a parallel computing
approach.

Parallel Computing Parallel computing, is a type of computation strategy in which several pro-
cesses are executed simultaneously. Traditionally, all computers worked in serial processing. Under
this strategy, the Central Processing Unit or CPU processes a single computation or instruction at
a time. Although, from Moore’s law it’s known that the computing power of humankind doubles
every few years, there exists a vast domain of problems big enough to be able to solve it using
conventional serial methods. That is why more efficient ways to solve big computations were devel-
oped. The tools here performed run under a particular type of parallel computing which involves
the use of a multi-core processor. The main idea is to split the problem into smaller problems that
are solved simultaneously using the multiple processors available. Figure 3.4 shows graphically the
fundamental differences between the serial and parallel approaches. Consider a given computa-
tional problem composed of IN operations. Consider also the time variable t assumed to start at
t1. It is easy to see that for a given time unit the parallel approach can process more operations
than the serial approach, hence solving the problem faster.

As far as the particular protocols are concerned, several choices are possible. In the case of
both Nek5000 and the computational resources used in the Parallel Works platform, the Message
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Figure 3.4: Serial computing vs Parallel computing.

Passing Interface (MPI) is applied. MPI is a standard library to “pass information”, i.e. distribut-
ing tasks and operations throughout the cores. The MPI protocol is compatible with a wide range
of programming languages such as C and Fortran. To explain the inner working of MPI one should
recall the way common computers treat information. A process inside a computer is typically a
program counter and an address space. MPI ensures the right communication between processes
by means of synchronisation and data transfer from a given address to another one. This interface
works in a cooperation scheme, i.e. any data transfer involves two distinct processes, one sending
the information and another one receiving it. Hence the synchronisation and transmission process
run simultaneously. Note, that there exists another version of the interface, MPI-2 which is used
in one-sided operations, i.e. involving just one process.

3.1.2 Nek5000 setup

This part will be focusing on the Nek5000 setup environment and in particular on the basic
files that are required before launching any simulation. Nek5000 is a computational tool that
was developed by Fisher et al. [9] at Argonne National Laboratory. The whole system is built
on a combination of Fortran and C files and it can be directly run in the terminal only using a
classic Fortran and C compiler. Hence, the tool is not particularly user-friendly and requires some
expertise before working properly. However, it is precisely the absence of superfluous rendering
that makes the tool so versatile and efficient that it is still preferred over commercial software in
complex flow simulation.
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3.1.2.1 Basic structure and files

The most basic structures to have into consideration are files, folders, and paths. From the
operability point of view, the are a series of rules that is convenient to follow.

• The fundamental routines that form the basic container of the Nek5000 solver are located in
an independent container that is never edited.

• Each case should have a folder that locates the files that define the simulation and geometry
of the specific case. The general folder is then divided into the compile and the run folders,
as those operations are operated sequentially and require different files.

The afore-stated rules are simple guidelines to the good organisation of the simulations files. How-
ever, those are not requirements for the functioning of the tool. In addition, sometimes a specific
toolbox needs to be applied and hence change the structure of the operation scheme.

Every Nek5000 simulation is defined by three fundamental files,

1. .usr file

2. .rea or .par file when using the newer versions of Nek

3. SIZE file

In addition, if the system is working in parallel run a mapping file is needed such that the element’s
distribution throughout the cores is set. Please refer to §3.1.1.1 for a complete explanation of how
the map generation routine works.
Moreover, some additional files such as the SESSION.NAME contain key information, e.g. paths,
key files’ name etc. In the following lines, the basic functionalities of the main files will be exposed.
Note that the particular content of the routines found will vary with the simulation. Hence, in
the work here presented only the fundamental characteristics, common to all simulations, will be
covered. In addition, some specific routines that are especially interesting for the application cases
will be also introduced.
The routines included in those files are coded in Fortran 77 programming language. Typically, in
F77 programs the different routines are introduced in the same file one after another. Starting with
the subroutine command and closing with end, the different routines can be programmed one after
another in the same file. Then the command include allows to read data from external files to be
used in the routines.

.usr file Table 3.2 gathers the principal routines, common to the vast majority of simulation,
that can be found in the .usr file. The uservp routine is actually imputing the main parameters
of the governing equations. In fact, those parameters are all input by means of three variables:
udiff, utrans and ifield. In this way, the variable represent different parameters depending on the
equation over which they are applied. Table 3.3presents the definition of those variables as a func-
tion of the equation to which they are applied. The userdat routine is called after the distribution
of the GLL points and hence allows to change the elements if the topology remains constant. In
addition, it allows changing the BC defined in the .rea file if there are any. On the contrary, the
userdat2 file is called after the GLL distribution and therefore the elements can not be modified.
However, the routine allows changing the mesh coordinates and boundary conditions. In general,
it only allows affine transformations on the geometry. The userf routine allows to define a forcing
term to be applied. In fact, it is sometimes interesting to be able to include an external force in
the computations. For instance, imagine a case in which a flow is moving around a paddle that is
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Routine Call schedule Description

uservp Once per processor & once per point in
every processor

Contains variable properties & gov. eq.

userdat Once per processor for all points Allows element & the boundary condi-
tions defined in .rea file modification

userdat2 After GLL points distribution Allows affine transformation

userf Once per processor & once per point Allows to define forcing terms

userbc Once per processor Boundary conditions (BC) definition

useric Once per processor Initial conditions (IC) definition

userchk Once per processor after each time step Solution checking & modification

Table 3.2: .usr file main routines.

Equation
Parameter in the equation
udiff utrans ifield

Momentum ρ µ 1
Energy ρcp k 2
Passive Scalar (ρcp)i ki i-1

Table 3.3: Parameters assigned in the uservp routine. Extracted from Fisher et al. [9].

moving in the counter direction powered by an electric motor. In such a case, that external force
should be consider on in the userf routine. However, late on we will see how introducing a forcing
term can be used as a computational tool to induce the turbulence, even no external force is applied
in the physical system.
From mathematical theory it is well known that time-dependent partial differential equations sys-
tems require the use of both boundary and initial conditions. Boundary conditions are specified in
the userbc routine in the .usr file whereas Initial conditions are introduced in the useric routine.
Typically BCs are assigned to the correspondent elements’ faces by means of the code specified in
Table 3.4. In this way, the user only has to input the code and the implementation of the BC will
be carried out by the pre-existent Nek5000 routines. However, if one wants to impose a particular
BC different from the common types then it will have to be implemented manually in the .usr file.
For instance, one could think about the Dong condition which later on will be introduced.

Nek code Description Mathematical formulation

O Open or outflow condition
Non-stress formulation: [−pI + ν(∇ (u))] · n = 0

Stress formulation1: [−pI+ν(∇ (u)+∇ (u)T )] ·n = 0]

SYM Symmetric condition2 u · n = 0
(∇ (u · t)) · n = 0

P Periodic condition Assigns last point to the first point via u(x) = u(x +
L)

W Wall condition u = 0

v Dirichlet condition u = f(x)

Table 3.4: Nek5000 pre-exist boundary conditions. Extracted from Fisher et al. [9].
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As far as the initial conditions are concerned, Nek5000 allows different specifications:

• Null initial conditions: The default option.

• Fortran function: This option allows the user to specify a function as initial condition.
Note, that this function can only be space-dependent.

• Presolv: This option is characteristic of temperature problems, in which the temperature
conduction problem is solved and used as initial condition.

Note that initial conditions might be incompatible depending on the setup, geometry, etc. A careful
study of both boundary and initial conditions is required in terms of the computational methods
and the physical problem. In fact, one needs to ensure that the boundary conditions are consistent
with the physical problem that one tries to simulate but one should ensure that the boundary
conditions will be adequate from the computational point of view.

.rea file This file, in contrast with the .usr4 file, does not contain a series of Fortran routines
but rather a list of parameters that control the simulation. The .rea file is composed of three
fundamental sections that gather different types of information.

Parameters The first section of the .rea file is dedicated to the simulation parameters
that control the run. Those can be both physical and computational. For instance, viscosity,
conductivity, number of timesteps, etc. In addition, Nek5000 also allows a certain number of
uncategorised parameters which can be used to introduce some parameters in the .usr file directly
from the .rea file. This can be useful in order to deal with parameters that are frequently changing
in some given set of simulations. In addition the passive scalar parameters presented in Table 3.3
can be specified in this file instead of introducing them in the uservp routine of the .usr file. Once
again, choosing to introduce a parameter in the .rea file over the .usr file will depend on how
frequently it is changed. Later on we will see how the simulation process takes place and how it’s
faster to change parameters in the .rea file, ceteris paribus, since only the run has to be repeated.
Finally, the parameters’ section in the .rea file also contains some logical controls that allow to
enable and disable some properties of the simulation, e.g. unsteady or steady simulation.

Mesh and BC The .rea file also contains information on the geometry and curvature which
is found in a list of the locations in the cartesian reference system of the eight vertices defining
the element for every element constituting the domain. Also, this section lists the curves that
might be present when dealing with complex geometries. Curves are classified using a single letter
code: C for circle, s for sphere and m for midside-node positions associated with quadratic edge
displacement. In the application cases presented further on, this section will remain empty as the
urban environment is modelled only with straight lines. Note, that the curves are limited by the
order of the spectral method. The curved surface can be “as high order as the polynomial used in
the spectral method” (Fisher et al. [9]).
Boundary conditions are also specified in the .rea file. BCs are listed for each face of the elements
forming the domain.

1Depending on the formulation two situations are considered. In the non-stress formulation, the boundary is
actually open whereas on the stress formulation it’s a free traction boundary condition

2In the SYM condition, if the normal vector n and the tangent vector t are not aligned then the stress formulation
has to be used.
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Output information The last section of .rea file contains the output information param-
eters. Those can be gathered into three groups,

1. Restart conditions: If the simulation is not starting a null time, it is in this section where
the field that serves as the starting point is specified. Note, that it is possible to use different
source files for the different variables, e.g. velocity and temperature fields could be introduced
from two different files (Fisher et al. [9]).

2. Output specifications

It is important to note that typically Nek operates with .rea and .re2 files. The main distinction
between those is that the first is in ASCII format while the second is in binary format. In fact, the
afore-stated parameters which memory requirement is a function of the number of elements (e.g.
geometry parameters) are typically in the .re2 file. Recall that the .re2 file was introduced in §
3.1.1.1 since it is generated by the Parallel Works platform. Note that the data transfer from .rea
to .re2 can be disabled by changing the negative sign in front of the number of elements parameter
in the .rea file. During the application presented further on the simulations will be carried using
both .rea and .re2 files.

SIZE file The SIZE file determines the size of the problem to solve. It gathers the parameters
that define the sizes of the geometrical objects of the simulation. For instance, it includes the
number of spatial points within the elements, the number of elements per core etc. Note, that
this files is critical in the well functioning of the simulation as it controls the memory usage of the
vast majority data structures. Also note that any change in this file requires the revaluation of the
whole simulation process from compiling to the simulation’s run. Table 3.5 gathers the principal
parameters that can be found SIZE file.

Parameter Description

ldim Determines the dimensions considered in the simulation, i.e. ldim = 2 for a
two-dimensional simulation and ldim = 3 for a three-dimensional one.

lx1 Polynomial order of the approximation

lxd Polynomial order of the integration for convective terms

lx2 Determines the formulation of the Navier-Stokes equations solver. lx2 = lx1
implies the use of PN − PN formulation whereas lx2 = lx1− 2 implies the use of
the PN − PN−2 formulation. 3

lelt Maximum number of elements per processor

lp Maximum number of processors

lelg Maximum number of elements to be used in the simulation

Table 3.5: SIZE file main parameters

The SIZE file, as previously stated, controls the vast majority of the memory allocation
since it determines the size of the problem. Careful planning on memory allocation is advisable
since the computational resources needed will be strongly dependent on such allocation.
“Per-processor memory requirements for Nek5000 scale roughly as 400 8-byte words per allocated
gridpoint” (Fisher et al. [9]). The number of allocated grid points per core can be computed from
the lx1 parameter using the formula proposed by Fisher et al. [9].

nmax = lx1 ∗ ly1 ∗ lz1 ∗ lelt (3.1)
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where lx1 = ly1 = lz1 for the three-dimensional case and lx1 = ly1 , lz1 = 1 for the two-dimensional
case.

3.1.3 A priori analysis

The last stage in the preprocessing of any computational fluid mechanics case requires an a
priori approach. The principle behind the design of Fluid Mechanic simulation is that one designs
a small baseline case with the sole motivation of extracting a series of qualitative and quantitative
information to be able to design a proper final case. In this way, the baseline case results form the
combination of the available literature, one’s experience, and intuition on the problem to solve.

The next lines will be dedicated to expose the qualitative and quantitative tools used in this
project to design the cases and verify their validity. Note, that the vast majority of these tools
require a baseline solved case

3.1.3.1 Boundary-layer analysis

The fundaments of the a priori analysis here presented is centred on two basic domains. On
one hand, the mesh resolution. On the other hand, the boundary layer analysis. In both cases, the
analysis requires a previous simulation, which as stated is the results of either previous studies or
a guessing strategy.

Generally, the boundary layer of a fluid is defined as the layer of fluid in the near-wall region
over which the velocity of the fluid changes from the null value at the wall to the free-stream value.
Being able to solve the boundary layer properly, i.e. having enough resolution to represent the
solution is a critical part in any flow simulation. However, in the simulations here considered, the
turbulence is induced by means of a tripping force mechanism. Therefore, it is especially crucial to
check that the turbulent regime and boundary layer are well established before the “test zone”.

The considered appraisal methodology consists of computing a series of parameters either for
their sole evaluation or for their comparison with the ZPG correlations. Therefore, the presentation
here reported will be founded on those two axes.

Boundary-layer parameters A wide range of parameters both physical and artificial are avail-
able to describe a turbulent boundary layer. Here, only the parameters applied during the analysis
will be considered. Note that, the parameters are here considered at wall, i.e. typically the first
set of elements such that y 6= 0 is taken into account. Table 3.6 gathers the parameters that will
be included in the analysis.

In the following lines the different parameters will be discussed and formulated.

Boundary-layer thickness: δ99 This parameter is defined as the boundary layer thickness
evaluated at the point where the velocity is the 99% of the free-stream velocity. In this way, there
is no mathematical expression to be presented here. However, this parameter requires a careful
selection of the point where the 99% of the velocity is considered.

3Recall the formulation of the Navier-Stokes solver in §2.2.3.2.
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Parameter Description

θ Momentum thickness
τw Local wall shear stress
δ99 Boundary-layer thickness considered at the point where the velocity U is 99% of

the free-stream velocity U∞
Cf Skin-friction coefficient
uτ Friction velocity evaluated at the wall6

Reθ Reynolds number computed as a function of the momentum thickness
Reτ Reynolds number computed as a function of the friction velocity

Table 3.6: Boundary-layer analysis parameters.

Momentum parameters One of the physical quantities that can provide an important
amount of information is the momentum. One can define the momentum thickness as,

θ =

∫ +∞

0

U(y)

U∞

(
1− U(y)

U∞

)
dy (3.2)

where U(y) is the horizontal velocity at a given y and U∞ is the free stream velocity. In practice
the momentum thickness is computed numerically by means of any integration numerical method.
In this case, the integral will be evaluated using the MATLAB built-in trapezoidal integration
function trapz.
Using the expression presented in Equation 3.2 one can define the Reynolds number as a function
of the momentum’s thickness, i.e.

Reθ =
U∞Θ

ν
(3.3)

Note that the Reynolds number generally relates the kinematic forces with the viscous forces. In
this case, the kinematics are evaluated using the momentum thickness of the boundary layer as
characteristic length. The main advantage of the Reynolds number and in fact any other non-
dimensional parameter is that one can very easily compare it with other cases without taking into
consideration the dimensional differences between those cases.
Typically, both the momentum thickness and Reθ are computed for a given z-plane as a function of
the x-coordinate. In this way, one can obtain a graphical representation of the quantities’ evolution.
There are alternative ways of characterising the thickness of the boundary layer. For instance, one
can consider the displacement thickness δ∗, which is defined as the normal distance to a reference
plane that locates the lower edge of a hypothetical inviscid fluid of uniform velocity that has the
same flow rate as that of the real fluid [32]. Using the aforementioned metrics one can define a
non-dimensional parameter that aims at expressing the relation between both magnitudes, i.e. the
shape ratio which is defined as the ratio between the displacement and momentum thickness, i.e.:

H =
δ∗

θ
(3.4)

Friction parameters Following the same approach applied in the momentum parameters,
one can define the shear stress at the wall as,

τw = µ

(
dU

dy

)
w

(3.5)

where the velocity derivative can be directly from the simulation or can be computed using the
different available methods such as finite differences.

58



Using the shear stress at the wall the friction velocity can be defined as,

uτ =

√
τw
ρ

(3.6)

The Reynolds number can therefore be computed using the friction velocity and the boundary layer
thickness δ99.

Reτ =
uτδ99

ν
(3.7)

Finally, the friction coefficient can be defined by the combination of the shear wall stress and the
well-known dynamic pressure,

Cf =
τw

1
2ρU

2
∞

(3.8)

Rota-Clauser parameter The Rota Clauser parameter is a parameter that aims at study-
ing the influence of the streamwise pressure gradient in flow simulations. Mathematically, it is
defined as:

β =
δ∗

τw

dP

dx
(3.9)

where δ∗, is the displacement thickness of the boundary layer, τw is the shear stress and dP/dx is
the pressure gradient in the streamwise. The aforementioned parameter, as we will see later on,
is used to characterise the pressure gradient of the boundary layer and to determine whether the
turbulent boundary layer has an adverse-pressure gradient.

ZPG correlations When dealing with turbulent boundary layers (TBL), typically one distin-
guishes adverse-pressure gradient (APG) from zero-pressure gradient (ZPG) turbulent boundary
layers. The main distinction between the APG and ZPG boundary layer can be very easily un-
derstood by considering the pressure term in the momentum equation. Recall Equation 2.11 and
consider the pressure gradient term axially, i.e. dp

dx being x the axial coordinate. In the APG

boundary-layer the static pressure grows with the flow, i.e. dp
dx > 0. On the contrary when dealing

with ZPG boundary layer the pressure remains constant, i.e. dp
dx = 0. Vinuesa et al. [42] presented a

study on the conditions that make a APG turbulent boundary layer well-behaved, i.e. independent
from the inflow and exempt of numerical artefacts. In addition, their studies propose a series of
empirical correlations that predict the ReΘ evolution of the friction coefficient Cf in both APG
and ZPG TBL. In the analysis here presented only the ZPG TBL is considered since it is the one
to be applied during the applications.
The empirical correlations here considered is formulated as the friction coefficient as a function
of the momentum Reynolds number ReΘ. In particular two correlations are considered, a first
approach considers exclusively the logarithmic variation of ReΘ and hence at some point “misses”
the flow effect at low Reynolds numbers. A second approach includes higher-order terms outside
the logarithm expression considered in the first approach. The use of higher-order terms allows
retaining the effects of the flow at low Reynolds numbers. Following the formulation presented by
Vinuesa et al. [42], Equations 3.10 and 3.11 gather the correlation expression for the two afore-stated
approach, respectively.

Cf = 2

[
1

κ
ln (ReΘ) + C

]−2

(3.10)

6The expression ”at the wall” is here used only as a matter of emphasis since the magnitude in question can only
be defined in the vicinity of the wall.
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Cf = 2

[
1

κ
ln (ReΘ) + C +

D0 ln (ReΘ)

ReΘ
+

D1

ReΘ

]−2

(3.11)

As in any empirical correlation the value of the coefficients are determined by the combination
of the available data sets and empirical experience. In this case, the parameters presented by
Vinuesa et al. [42] are gathered in Table 3.7. The afore-presented correlations are implemented as

Case κ C D0 D1

ZPG TBL 0.384 4.127 220 -1945
APG TBL with constant β = 1 0.361 5.300 250 -2100
APG TBL with constant β = 2 0.349 6.886 260 -2500

Table 3.7: Empirical simulation coefficients. Extracted fromVinuesa et al. [42] .

a MATLAB function such that they can be compared with the case Cf . The comparison is done
plotting the friction coefficient’s evolution as a function of the Reynolds number ReΘ.

3.1.3.2 Resolution analysis

The concept of resolution is the result of combining the domain dimensions with the element
dimensions. It appears to be logical that for a given domain if one decreases the element size,
ceteris paribus, the number of elements needed to cover the domain will increase. Previously, it was
discussed how increasing the number of elements tends to improve the precision of the simulation
although it also increases the cost. Those ideas are all gathered in the resolution analysis. Once
again, the objective is to have a sufficient resolution in the domain’s critical zones while ensuring
that the simulation remains cost-efficient. Please recall §2.2.2.2 for the full discussion on cost in
LES.

In the work here presented resolution is appraised using two methodologies. Firstly by the
inspection of grid spacing evolution in each direction. Secondly, comparing grid spacing with the
Kolmogorov scales.

Normalised grid spacing analysis The analysis here introduced consists of producing a graph-
ical representation of grid spacing evolution as a function of space coordinates. Once the plot is
produced the evolution of such spacing is confronted to the available literature and one’s own ex-
perience. Typically, those magnitudes are evaluated in the domain’s key areas, i.e. in the zones
of interest either from the study’s or simulation’s perspective. In the case of urban environments,
interesting areas tend to be around building-like obstacles. However, in turbulent simulations, it
is commonly interesting to check the resolution in areas where the turbulent boundary layer is
computed and developed. In the work here presented, normalised grid spacing analysis will be
applied in every spatial direction over the zone enclosed by the inflow and the first obstacle, since
it’s precisely there where the turbulent boundary layer is solved.
The normalised quantities are given by the following expressions.

∆x+ =
uτ∆x

ν
; ∆y+ =

uτ∆y

ν
; ∆z+ =

uτ∆z

ν
(3.12)

where {∆x,∆y,∆z} are the grid spacing in the x, y, z directions, respectively and uτ is the friction
velocity. Note, that the expression presented in Equation 3.12 might be applied over different points
depending on the considered direction. Also note that the grid spacing is evaluated in vector form,
i.e. the local spacing for every pair of adjoining points is computed such that for N points in a
given direction the grid spacing vector will have N − 1 components.
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Kolmogorov-scale analysis The second analysis applied on the simulation’s resolution is based
on the comparison of mesh scales with the Kolmogorov scales, by means of a ratio between the mesh
elements volume and the Kolmogorov length scales. In fact, urban environment flow simulations
typically involve complex flow which happens to be far from the wall. In such flow condition, the
normalised grid spacing analysis does not hold, hence this alternative method is applied. The idea
behind this analytical tool is to analyse the afore-mentioned ratio in given sections of the domain.
Once again, the actual interpretation of the quantity is based on previous experience and the
available literature. Later on, the statistic toolbox will be introduced as the main tool to compute
several of the terms here applied. Again, in this case a baseline simulation is required in this part
of the analysis.

Energy cascades and Kolmogorov hypothesis Before getting to define the Kolmogorov
scales, one should refer to the concept of energy cascade. The concept was introduced by Richardson
in the early twenties to describe the flow structures’ behaviour in the turbulence. He argued that
the turbulence is made by a series of eddies that of different sizes which have their own characteristic
length, time, and velocity. From fluid theory, it is known that kinetic energy is introduced in the
turbulence by the larger scales which is then transfer to the smaller scales and finally is dissipated
by viscous mechanisms. In this way, larger eddies will have a greater characteristic velocity and
hence the viscous effects will have lower importance. As one decreases in the eddies’ size, the
kinetic energy decreases, and hence the viscous effects become more and more important, up to the
point, in the smallest scales where sole viscous dissipation mechanisms are present. The concept
of energy cascade precisely refers to that energy transformation throughout the scales. The length
scales in the larger eddies have been found to be very close to the flow scales (Pope [26]). However,
Richardson did not assess the size of the smaller eddies, responsible for the viscous dissipation.
Kolmogorov advanced Richardson’s theory following a series of hypotheses sustained on the fact
that both velocity and time scales decrease with the length scale. In this way, the first hypothesis
consists of assuming that, contrary to large-scale motions, small-scale motions are statistically
isotropic (Pope [26]). In fact, Kolmogorov argued that as energy flows down the cascade all the
information concerning the shape of the eddies is lost. Under this assumption, the geometry of the
small-scale eddied is independent of the mean flow field, boundary conditions, etc. In this way,
“the statistics of the small-scale motions are in a sense universal” (Pope [26]). From the modelling
perspective, the two fundamental mechanisms in the energy cascade are the energy-transfer rate
from larger scales to smaller scales and the viscous dissipation rate, concerning the smaller-scales
eddies. Those processes are evaluated with the Kolmogorov similarity hypothesis which states that
the statistics of the smaller-scale motions in fully turbulent flows are universal and can be exclusively
described with the kinematic viscosity ν and the viscous dissipation ε. From the combination of
the isotropy and similarity hypotheses, the Kolmogorov scales are formulated.

Kolmogorov scales formulation The length, velocity, and time Kolmogorov scales, re-
spectively {η, uη, τη}, are expressed exclusively with ν and ε as follows.

η =

(
ν3

ε

) 1
4

; uη = (εν)
1
4 ; τη =

(ν
ε

) 1
2

(3.13)

Although Equation 3.13 presents the three Kolmogorov scales, in the analysis here presented the
only scale considered is the length scale η.

Assessing resolution with the Kolmogorov scale Now, that the scales have been
introduced it’s time to introduce the evaluation procedure. The volume of a given element can be
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computed as the product of the element size in each direction. From the volume, one can define
the parameter h as the cubic root of the volume of a given element.

h = 3
√

∆x ·∆y ·∆z (3.14)

Note, that h as well as the Kolmogorov length scale is evaluated for each element. Hence, two
vectors can be related to the spatial location of the element. This is particularly useful to obtain
contour plots over the domain. Later on, we will see how the Kolmogorov scales are computed in the
workflows here considered and how they introduce the use of an interpolation mesh which typically
is smaller than the solution mesh. Hence, very often one has to interpolate the Kolmogorov scale
to fit the solution mesh.
Finally, combining Equation 3.13 and Equation 3.14 one obtains the evaluation parameter hη,

hη =
h

η
=

3
√

∆x ·∆y ·∆z
4
√

(ν3)/ε
(3.15)

hη is computed for each of the elements in the solution mesh and then is plot using a contour
plotting tool. In this way, the resolution can be assessed in every part of the considered domain.

3.2 Solution process

Once the preprocessing phase if completed and the setup is fixed, the next phase consists on
running the simulation, i.e. solving the equations to obtain the solution fields among many other
files. Note, that the solution process will be only presented in general terms as it doesn’t carry an
important amount of implementation in our case.

3.2.1 Fundamental stages in the solving process

Figure 3.5 combines the files presented in the preprocessing stage with the processes that
take place in the solving stages.

Solving process The two principal processes that form the solving block are compiling and
running, which are executed sequentially. As it is shown in Figure 3.5 part of the preprocessing
files are compiled using the makenek routine which produces the nek5000 executable file. The file in
question carries the “skeleton” of the simulation, i.e. the equations to solve, the SIZE parameters
etc. Then, this executable file is run using the MPI running platform, mpirun. During the running
process, some additional files coming from the preprocessing stage have to be included. On the one
hand, the geometry files need to be included. Recall §3.1.1.1 for the full description on how those
files are generated and what properties characterise them. The run process, i.e. the simulation, is
controlled with the .rea or .par file 7 which contains not only the parameters defining the equations
but also the control parameters, e.g. the number of time-steps to be simulated, how often are the
field files written etc. In addition, depending on the workflow, the simulation might save additional
files such as restart files or statistic files. Later on, the statistic toolbox will be introduced and we
will see how the .rea or .par file control the toolbox’s output. In practice, one might save some

7Originally Nek5000 simulation could only run using the .rea file which mainly consist on a list of parameters.
Newer Nek versions allow the use of .par file instead. This last is built following a “description approach”, i.e. the
parameters are assigned to specific variables instead of just being listed. The .par file provides a more user-friendly
approach however it tends to be more limited when dealing with specific workflow in which non-standard parameters
are required. Once the selection of one over the other will depend on the specific workflow considered.
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Figure 3.5: Solving process stages.

field files at the beginning of the simulation to check the correct implementation of the conditions
and then wait till the end to save the fields of interest. In fact, in three-dimensional simulation field
files tend to occupy an important amount of disk space, hence one should only save the fields that
are useful for the study in question. Note, that one needs to simulate a sufficient amount of time
to have a convergent solution, i.e. the solution does not depend on any simulation or numerical
parameter. As far as the file format is concerned, field files are saved following a five-digit numerical
system (.fxxxxx ), e.g. the fist file will be save as .f00001, the tenth file as .f00010, etc.
Note that while field files and restart files are a standard output of Nek’s solution process, λ2

criterion and statistic files are actually part of a setup developed by the Linné Flow Centre at KTH
Royal Insitute of Technology to provide a series of quantities that are useful in the analysis here
performed.

Solution process appraisal The are several advantages in having a two-stage process in the
solving scheme. Firstly, having the compiling and running processes segregated allows to very
easily change the simulation parameters without having to repeat the whole process. This fact
combined with the restart capabilities allows to incorporate pieces of a previous simulation into a
given simulation and change a particular simulation parameter 8. Secondly, the compiling process
allows detecting some errors that might be present in the setup without having to do the much
longer running process. This is a clear advantage for debugging as the simulation process takes
an important amount of time. However, the compile process focus on the element constitution,
i.e. integration order, formulation scheme, etc. Hence, important sources of mistakes related to
the geometry are not appraised during the compile process. The nek5000 file run using mpirun
contains a checking routine that allows to verify the fundamental properties of the simulation such
as boundary conditions, mesh, etc. Those routines are executed at the begging of the simulation
such that it can be interrupted if any of the checks in question fails.

8Note that this capability has some restrictions. One cannot make significant modifications in the geometry or
element’s constitution and use a restart field that is significantly different. In fact, changing the SIZE file very
usually requires the clean and compilation of the whole dataset.
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3.2.2 Special routines in the solving process: Tripping

§3.2.1 was dedicated to the presentation of the simulation process in general. The current
section will be rather focusing on some specific routines that are not standard in the platform but
are fundamental in the workflows applied later on. The idea now is not to cover the inner workings
of the Nek processes but rather to present some tools that are applied during the solution process
but are not included in a Nek5000 standard workflow. Concretely we will focus on the tripping
routine since it’s a fundamental part of the simulation that does not produce any output.

The tripping routine is a numerical tool applied in turbulent simulations to induce turbulence.
The main idea behind is to be able to achieve a fully turbulent boundary layer rapidly from a non-
turbulent inflow. Without the use of a tripping force method, one needs to importantly raise the
Reynolds number and simulate till the flow becomes turbulent, thus increasing cost. The tripping
methodology here presented was designed by Schlatter and Örlü precisely to study the transition
to turbulence in DNS.

Physical similarity The numerical tripping methodology is inspired by an actual physical
method implement in wind tunnel experiments. Wind tunnels tend to be limited in terms of size,
power, and thus experimental capabilities. However, the tested prototypes correspond to flying
objects which, at some point, will face turbulent boundary layers, for which classical wind tunnels
can not very usually provide the testing conditions. In order to solve this problem, the transition
is induced by means of adhesive bands over which are distributed some kinds of “perturbators”,
e.g. a series of dots, such that the flow is disturbed and the turbulence is induced. The numerical
approach here presented aims to reproduce this kind of behaviour in the simulation. The main idea
is to introduce a weak random volume force in the forcing terms of the Navier–Stokes equation
acting in the wall-normal direction such that those disturbances are created in the simulation flow.
Once the disturbances are set, those will grow in the simulation thus creating turbulent flow.

Tripping formulation Schlatter and Örlü [31] present the mathematical formulation of the
tripping force here reported. The actual forcing term introduced in the Navier-Stokes equations is
given by Equation 3.16.

F2 = exp

([
x− x0

lx

]2

−
[
y

ly

]2
)
g(z, t) (3.16)

where {lx, ly} represent the Gaussian discretisation of the forcing region and g(z, t) is the forcing
function. Note, that the force is applied in the lower y-plane of the domains around the x0 position.
The forcing function is the element that actually introduces the randomness in the force varying
both in time and space.

Tripping implementation Now that the mathematical formulation has been introduced it’s
time to deal with the implementation of the tripping force within the Nek5000 framework. Recalling
Table 3.2, we saw that forcing terms are usually implemented within the userf routine. However,
the complexity of the tripping force requires the call of additional function as well as a separate
file where the forcing function is implemented.
In the setup here considered the tripping force function is called in the userf routine in order to
allocate the force terms, which are outputs of the tripping force function, in the Nek5000 stan-
dardised format. The function in question is actually in an independent set of files which are all
part of the tripping toolbox. One of the fundamental files of the toolbox is the TRIPD file which
controls the different subroutines that allow to compute the tripping force terms. Note that for a
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matter of convenience, the complete tripping toolbox is not found in Appendix. In addition to the
afore-stated terms, the function requires an initialisation as well as periodic checks. Those are im-
plemented in the .usr file more precisely in the userchk routine. In addition, the input parameters
that define the tripping force are introduced in the simulation in a specific file, theforparam.i file.

Tripping force solution Summarising the previous points, the routine here presented basically
applies a random force on a specific part of the domain to induce the transition to turbulence. The
user defines amplitude, span-wise length, and temporal frequency as well as the location of the
tripping line. Then the routine generates a series of random forces which produce very particular
flow structures that are responsible for inducing the turbulence.

Figure 3.6: Isosurface level curves of the tripping force in a single box domain.

Figure 3.6 shows an example domain developed to test the tripping routine. In this case, the
location of the tripping line happens to be at the inflow. Once the origin is fixed, the tripping forces
vary in every spatial direction due to the randomness of the process. Note that the scale of the
structures can be controlled using the input parameters files. In fact, one needs to properly adjust
the terms such that the simulation properly works, e.g. an oversize tripping force could cause the
simulation to explode. One needs to keep in mind that the tripping terms are numerical objects
whose sole purpose is to induce the turbulence. Hence, one should try to minimise the collateral
effects since this force is not part of the physical description of the problem.
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3.3 Postprocessing

The last stage in the implementation of a flow simulation consists of treating the obtained
numerical results such that a proper analysis can be carried out. Once again, this process will
be strongly dependent on the application of the simulation as well as the tools involved. In our
case postprocessing will be founded on two pillars. On one hand, a qualitative approach, in which
both mesh and solutions are inspected. On the other hand, a quantitative approach obtaining and
assessing flow statistics. Note, that processing considers the treatment of the obtained data and
not the verifications that might be needed to ensure the quality of the simulation. Recall that the
resolution analysis presented in §3.1.3 serves both to design the final simulation and to check it
once the simulation is finished. In this way, no verification will be presented in the current section.

3.3.1 Qualitative postprocessing: Results visualisation

In § refsec:3.2 the solution process was presented concluding in the simulation’s output, the
solution fields. The simplest postprocessing procedure consists of the solution’s visualisation. Sev-
eral tools are available for the Nek5000 format. In fact, Nek5000 provides a built-in solution viewer
Postnek which allows to directly see the solution in Nek’s platform. However, Postnek is a quite
rudimentary tool thus limited to more complex analytical needs. That is why typically Nek users
rely on external tools to visualise the solution.

3.3.2 Quantitative post-processing: Statistics toolbox

The statistic toolbox is a set of Nek5000 and MATLAB routines developed with the purpose
of computing turbulence statistics in Nek5000. The technicalities of the toolbox can be found in
the work of Vinuesa et al. [39]. In addition, further studies show how the toolbox is applied and
how the obtained data can be used in the characterisation of turbulent flows. In this area, one
might highlight the works of Vinuesa et al. [38], [41], for showing precisely that application. The
toolbox is implemented transversally throughout the Nek5000 workflow, i.e. statistic routines are
run in every stage of the workflow from compiling to postprocessing. However, in the lines here
presented we will focus mainly on the postprocessing part for being the most interesting one.

3.3.2.1 Statistic toolbox workflow

Firstly let us comment on the general working of the toolbox such that the reader might
have an idea of how this is implemented. As stated in the previous paragraph, the statistic toolbox
incorporates files in every stage of the typically Nek5000 solution process. However, the toolbox
also requires some additional processes that happen outside Nek.

Compiling and running the statistic toolbox Firstly we will assess the required setup within
the classical Nek5000 workflow, i.e. in the compile and run phases. Recall the Nek5000 solution
process described in §3.2. The compile stage’s output is the nek5000 which contains the fundamen-
tal information to be simulated in the running phase. Thus, it seems consistent to introduce the
statistic’s computations framework at this stage. Concretely, the statistic routines are introduced
in the compiling folder which are then called in the well-known .usr file. Then, after compiling the
nek5000 file is produce and then has to be simulated in the running folder. During the running
process statistic computations and writing, protocols are controlled within the .rea file environment
just as the rest of the simulation. More precisely four parameters are actually added in the .rea file
such that one can control the statistic’s simulation. Vinuesa et al. [39] present a list of the control
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parameters that control the simulation. Find those gathered in Table 3.8.

Name Number Description

STAT COMP p068 Determines the number of time steps between the samples used to
compute the time-averaging the statistic quantities.

STAT OUTP p069 Determines the time-step interval between the writing of statistic
field files. e.g. a STAT OUTP of ten implies that the files will be
written every 10 time-steps.

CHKPTSTEP p070 Determines the time-step interval between the writing of restart
files

IFCHKPTRST p071 Determines whether the simulation starts from a null time, i.e.
from initial conditions, or it is started using restart files

Table 3.8: Statistic toolbox control parameters.

From the routine’s perspective, the process starts with the initialisation of the variables in
the subroutine stat avg the first time that the statistics toolbox is called in the simulation. Then,
if “the current step is a multiple of STAT COMP then the subroutine stat compute is called to
perform the statistic computation” (Vinuesa et al. [39]). In addition, if the step happens to be a
multiple of STAT OUTP then the computed statistics are written in a field. The output of this
toolbox, in the 3D version, consists of 44 time-averaged variables13 stored in 11 files which are all
named using the prefix sXX where XX denotes the number of the statistic file, starting from s01
and closing with s11. In addition, the Nek fields numbering system is also applied here, i.e. the
suffix .fXXXXX is used the eleven files. Hence, for each time-step over which the statistics are
saved, i.e. multiple of STAT OUTP, eleven files are saved starting at .f00001. From now on, we
will refer to the eleven output files as s-files. Note, that typically one saves statistics at the middle
and end of a given simulation, thus in this case the disk occupancy of those files, despite being
important, is not a limiting factor.

General postprocessing workflow Once the s-files are obtained, there are several routines that
need to be implemented in order to post-process the statistic quantities. Firstly the time average
of the run if computed. This operation consists of taking the statistic files obtained during the
simulation and taking the time average. There is a particular routine in the postprocessing folder
inside the toolbox. This operation produces 22 files following the same naming system with the
exception of the prefix which this time is aXX. We will call those the a-files. The a-files contain
the three-dimensional turbulence statistics and several derivatives. Now, from the format’s point
of view those files are identical to the solution field files and thus can be visualised with VisIt or
any other graphical tool compatible with the Nek format. However, a further postprocessing is also
possible by interpolating the results in a mesh and transferring the interpolated files to MATLAB.
Later on, this part will be specifically assessed.

3.3.2.2 Statistic’s postprocessing: MATLAB routines

Now that the general workflow in the statistic toolbox has been introduced, we will focus
on the last part of the postprocessing stages, i.e. the interpolation of the a-files as well as further

13The 44 time-averaged variables include both fundamental variables such as the velocities as well derivative and
tensor variables. Find the complete list of variables in the work of Vinuesa et al. [39]
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steps. In fact, it’s precisely this stage that it’s the most interesting since it’s almost custom-made
for the cases.

Interpolation mesh First of all the interpolation mesh has to be created. This time the mesh
is generated using a MATLAB script which creates the grid-points that are afterward transformed
into a suitable Nek format. This mesh is not held to the same quality standard as the solution
mesh, i.e. this mesh will be significantly simpler in terms of resolution and methodology. In fact,
no spectral methods are here applied only a uniform or progressive point distribution. As far as
resolution is concerned, the number of points will be significantly lower having thus a much coarser
resolution. Note that mesh resolution is not a critical factor this time since the interpolation mesh
is exclusively used to represent the statistic results and thus no computations are carried over it.
The interpolation mesh is built by removal, i.e. the domain is filled with points and then some of
those points are removed in order to produce the obstacle’s geometry.

Interpolation mesh generation As stated in the previous lines, the domain is firstly
filled with points and then the obstacle are “carved” over it. The points are distributed over the
domain by means of several stencils which are then reproduced in order to fill the domain. In
fact, a series of x-coordinate are set over which y and z stencils are distributed. As far as the
stencil are concerned, in the whole range of application cases, the meshes are uniform in x, z and
double-progressive 14 in y.
Once the stencils are set, the data is reproduced such that the full three-dimensional space is covered
and the data is split in coordinate form. The obtained format consists of three coordinate vectors
{x, y, z} which contain sequentially the coordinates of every grid-point. The next step consists of
selecting the coordinates that correspond to the obstacle’s location and remove such points. This
can very easily be achieved using the find MATLAB built-in function. Note that this operation is
the fundamental removal operation and thus has to be repeated for every obstacle in the domain.
Finally, a series of standardised commands allow to transform the MATLAB distribution of points
into a Nek-compatible format. The output files consist of three .fort files, one per direction, that
contain the grid-point’s coordinates.

Interpolation process Once the mesh is created, an alternative .usr file is run in a distinct
folder in order to interpolate the statistic files over the interpolation mesh. This new .usr file is
used with the sole purpose of doing the interpolation thus all the non-related parameters are put to
zero. In addition, the interpolation routine is introduced in the userchk Nek function. The function
in question loads the interpolation mesh (in .fort format) and interpolates the statistic files over
it. The result is the int fld file which contains the interpolated results. Those results are read in
MATLAB to be further post-processed.

Interpolated fields postprocessing The final stage in this process consists on loading the
interpolated fields to MATLAB such that one can apply further computations using this data.
This procedure starts by reading the interpolated data in MATLAB. Then the data is separated
using in terms of fields using a MATLAB cell data structure.

Further postprocessing To close the statistic toolbox description, one shall make some com-
ments on the available steps after the obtaining aforementioned quantities. From this particular

14The term double-progressive here signifies that the domain’s length in the y-direction is here split in two in order
to produce two progressive stencils. This is done in order to concentrate grid-points not only at the domain’s bottom
but also in the y mid-plane.
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point and further on, the analysis applied is fully dependent on the nature of the study being carried
out. In this way, the current paragraph is more of an example than it is a prescription. In our case,
the statistics are partially used not only to analyse the case from which those have been extracted
but also to generate better cases. Recall the a priori analysis introduced in §3.1.3 and how the
quantities used in the boundary layer analysis depended on both velocities and their derivatives.
Thus to be able to compute those quantities one has to use the afore-mentioned quantities. From
the workflow’s perspective, one launches a preliminary simulation to compute the quantities needed
to obtain the a priori analysis such that the actual simulation can be designed. In addition, this
approach allows to debugging of the tools applied.
Moreover, in the case of a final simulation the afore-presented quantities are actually interesting
on their since they are the statistic quantities of the flow. By having those quantities in MATLAB
format one can easily analyse them using any method of preference.
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4

Simulation and Results

4.1 Introduction

In the previous chapters, we introduced the different theoretical foundations of the tools
that allow us to study turbulent urban flows. The objective of the present chapter is to show
and discuss the results of this project. In this way, we will produce three cases consisting of two
obstacles in order to study the turbulent flow statistics of the flow regimes identified by Oke [23].
The aim is to understand the physical processes that drive flow behaviour in the three flow regimes.

As we have mentioned in previous sections, the design of LES typically requires to start with
a small case and scale up to simulations that provide useful physical information. In our case, we
recovered the work of Torres [35] in which a preliminary simulation and an actual case are pre-
sented. In this way, the setup presented in this work was used as a baseline to produce the three
simulations here presented. We highly recommend the avid reader to consult reference [35] for a
complete presentation of the preliminary and baseline simulations.

The present chapter will be divided into four sections. Firstly, we will present the setup of
the three cases, i.e. the design of the geometry and the conditions of the flow. Secondly, we will
gather the computational information of the simulations cases, i.e. running time, computational
cost etc. Thirdly, we will validate the flow input in the simulation area. In fact, as we will see
later on, in LES it is indispensable to validate the conditions of the boundary layer in order to
ensure that the flow entering the area of study is properly solved. Finally, in the last section, we
will present the results of the three cases and discuss the physical processes that are found in those
simulations.

4.2 Preprocessing and setup

In §3.1 we explained how the preprocessing is one of the most important steps in fluid me-
chanics simulations. The present section will be dedicated to introducing the geometry and design
of the three cases as well as the flow conditions that allow to simulate turbulent urban flows.

4.2.1 Geometrical design

In §3.1.1.1 we introduced the processes used in the meshing platform to define the geometry
and generate the mesh. Recall that the domain is built using a series of parameters which are
gathered in Figure 3.1 and it is normalised using the obstacle’s height. In this case, we aim at
producing three cases in which the streamwise distance between the obstacles is varied such that
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the three cases identified by [23] are simulated. Note that Oke [23] identified that the main driver
of the flow regimes is the streamwise distance between the obstacles. In this way, we took the
references presented by Oke [23] in order to produce the different simulations.
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Figure 4.1: Geometrical scheme of the domain.

Figure 4.1 shows a schematic representation of the xy and xz planes of the domain. As it can
be seen in the figure, the origin of the reference frame is centred with the first obstacle such that the
array of obstacles develops on the positive side of the domain. Note that the letters A to F name
the different faces of the domain. Those will be recalled later on during the boundary conditions
definition. The dimensions shown in Figure 4.1 can be expressed following the meshing platform
nomenclature, i.e. using the quantities shown in Figure 3.1. Table 4.1 gathers the parameters
introduced in the meshing platform following the nomenclature defined in Figure 3.1.

From the design perspective, some guidelines need to be considered to ensure the well func-
tioning of the simulation. Firstly, the distance from the inflow to the first obstacle must be large
enough to ensure that the flow is fully turbulent before interacting with the obstacles. Recall that
turbulence is induced with a tripping force at the surroundings of the inflow. In this way, the inflow
Reynolds number is low since the transition to turbulence is produced by the tripping force. Hence,
a certain distance is needed such that the flow fully transition to turbulence. From the combina-
tion of the preliminary simulation and previous experience, the inflow-obstacle distance was set to
ten. Later on, the characteristics of the turbulent boundary-layer (TBL) are assessed. A similar
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Parameter Skimming Flow (SF) Wake Interference
(WI)

Isolated Roughness
(IR)

R Lin h× h 10 10 10
R L h× h 1.75 2.5 4.5
R Lout h× h 4.25 4.5 6.5
h 1 1 1
R H h× h 3 3 3
R wx h× h 0.5 0.5 0.5
R wz h× h 0.5 0.5 0.5
R W h× h 4 4 4
I 1 1 1
J 2 2 2

Table 4.1: Geometrical setup parameters for the SF, WI and IR cases following the nomenclature
of the meshing platform [24].

reasoning can be applied to the outflow of the domain. In fact, the outflow must be separated from
the obstacle area such that the boundary condition does not affect the flow in the area of interest,
i.e. the obstacle region. Note that the streamwise distance between the obstacles is different in the
SF, WI, and IR cases. Thus, the outflow must be adjusted such that the distance between the wall
of the second obstacle and the limit of the domain is kept constant. In this way, as the distance
between obstacles is increased, the position of the outflow is moved away. However, it is important
to recall that the size of the elements of the mesh is progressive in the directions normal to the
walls of the obstacles. In fact, the elements are expanded in the region between obstacles. Thus,
one needs to ensure that the distance is large enough to allow the elements to expands in both
directions. This fact is only restrictive in the SF case as the rest of the cases already imposes larger
distances between the obstacles. Secondly, the vertical upper boundary of the domain, i.e. face B
in Figure 4.1, needs to have a sufficient separation such that the flow structures are not affected by
the boundary. It is easy to see that separation between boundary and region of interest is critical
in any of the directions considered. Nevertheless, in the case of the upper vertical boundary, it is
particularly important since many of the structures of interest occur in the upper section of the
obstacle.

In conclusion, combining the experience extracted from the work of Torres [35] with previous
knowledge, cases were designed to be physically relevant while maximising the efficiency of the
simulations and the rest of processes used to produce the cases.

4.2.2 Mesh design

As we presented in §3.1.1.1, the meshing process requires the input of two sets of parameters.
On the one hand, the dimensions of the domain and the obstacles that are found within. Those were
vastly covered in the previous section and the values considered in the three simulation cases are
gathered in Table 4.1. On the other hand, the meshing process needs the so-called mesh parameters.
Those are used to define the size of the elements that form the mesh as well as the expansion found
in the near obstacle region. Note that since the mesh is an spectral element mesh, within the
elements a seven-point Gauss-Lobatto-Legendre quadrature is found. However, the aforementioned
parameters only deal with the element distribution and therefore have no control over the point
distribution placed within the elements.
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Once again, the selection of the mesh parameters is the result if several design-test loops
in which different meshes are created and tested. The main difficulty lies in the selection of an
optimal resolution, i.e. one that is fine enough to properly represent flow structures while keeping
computational costs constrained. In our case, we used the work of Torres [35] as the baseline to
design the meshes of the three simulations considered. The parameters considered in the three
cases are gathered in Table 4.2.

Parameter Skimming Flow (SF) Wake Interference
(WI)

Isolared Roughness
(IR)

dxmax 0.25 0.28 0.35

dymax 0.15 0.15 0.15

dzmax 0.15 0.15 0.15

dmin 0.006 0.006 0.006

domax 0.05 0.05 0.05

r 1.13 1.13 1.13

Table 4.2: Meshing parameters for the preliminary and final simulations.

By inspection, one can see that only the size of the elements in the streamwise direction is
varied between the obstacles. This is due to the fact that the streamwise length of the domain is
the only dimension of the domain that changes between the cases. Thus, to maintain the same
resolution, one needs to adjust the size of the elements in the streamwise direction. Although
the distance between the obstacles is also varied along the cases, the parameters that control the
refinement of the mesh are kept constant. This is due to the fact that the refined area is designed
taking into account the regions that are the most interesting from the physical analysis and not
considering the separation between obstacles. As an illustration, in Figure 4.2, we present a graph-
ical representation of the mesh used in the simulation of the SF case. The refinement is applied in
the wall-normal direction in every side of the obstacle such that a volume with finer resolution is
created around the obstacle. Note that it is particularly important to have a fine resolution at the
edges and upper horizontals face of the obstacles since it is in that region where the flow structures
need to be represented with more details.

As far as resolution is concerned, a proper resolution study will be presented later on. Nev-
ertheless, by simple inspection, one can see that grid-point 1 concentration is significantly higher
in the near-obstacle region so it is resolution. Furthermore, the mesh is generally progressive over
the lower vertical wall face, i.e. in the y/h ≈ 0 zone. This resolution requirement is set to ensure
that the turbulent boundary layer (TBL) is properly solved in the pre-obstacle region. During the
resolution analysis it is precisely this region that is analysed.

1Note that it is important to distinguish between element and grid-points. Recall that spectral-element methods
are based on a series of elements that contain a distribution of points within. This is particularly critical in the meshing
and resolution analysis processes. In fact, in the meshing process only element resolution is defined. However, the
elements contain a GLL distribution of seven points, thus having a finer resolution. Both the graphical representation
of the mesh and the resolution analysis grid-points are considered, i.e. the GLL points in each of the elements.
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Figure 4.2: Two-dimensional cut at plane x/h = 1.75 for the SF case simulation mesh.

4.2.3 Boundary conditions

To close the setup presentation the last main topic to assess is the definition of boundary
conditions (BC). Boundary conditions are a mathematical requirement of any PDE such that the
solution scheme can be run. In §3.1.2 we explained how BC are implemented in the Nek5000 setup
and which are the particular routines that make use of them. Recall that boundary conditions are
set by assigning a letter code to the element faces. This code was presented in Table 3.4.

All the cases considered were designed using the x-direction as the streamwise direction, thus
having the inflow and outflow at the extremes of the x-axis. In Figure 4.1 we named the different
faces in the domain using letters A to F. This notation will be applied in the following lines to
link boundary conditions with the domain faces. Note that boundary conditions are kept the same
in the three simulations considered. Table 4.3 gathers the BC applied at the boundaries of the
domain. In addition to the BC listed in the table, one needs to add the faces of the obstacle which
are set as walls.

Boundary conditions are constrained by the physics of the problem and the stability of the
numerical method. From the physical perspective, the idea is to simulate an open urban environ-
ment. In this way, the ON condition was set at face B in order to simulate an open boundary.
Periodicity is set in the spanwise direction to ensure that the spanwise boundaries do not affect
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Face BC Description

A v This BC is applied at the inflow by means of the Dirichlet condition. In par-
ticular, a Blasius profile is applied.

B ON This BC is a combination of an outflow and Dirichlet condition. In fact, a
zero-stress condition (O) is applied in the normal direction to the boundary
whereas a Dirichlet condition is applied in the other two.

C O The stabilised Dong’s [5] outflow condition is applied.

D W Wall condition is considered at the bottom horizontal plane.

E and F P Periodic conditions are applied in the spanwise boundaries.

Table 4.3: Boundary conditions applied in the final simulation

the flow. Finally, Dong’s condition is applied precisely to set an outflow without adverse upstream
effects. This last condition is precisely important from the stability’s perspective.

The outflow condition here considered provides a stabilised outflow. Dong et al. [5] presented
a method that allows to maximise the truncation at the outflow boundary without inducing adverse
effects in the flow. In fact, the method allows “the influx of kinetic energy into the domain through
the outflow boundaries” (Dong et al. [5]) while preventing the uncontrolled growth in the energy that
is introduced in the domain. In this way, the method ensures the stability of the simulation during
the afore-mentioned operation. As far as the algorithm is concerned, it “is developed on top of
a rotational velocity-correction type strategy to de-couple the pressure and velocity computation”
(Dong et al. [5]). In conclusion, Dong’s outflow condition provides better performance than a
standard outflow condition, allowing a reduction in the outflow distance and thus reducing the
computational cost.

4.3 Simulation run

In §3.2.1 we saw how the solving process works. In particular one might recall Figure 3.5
which gathers the different stages in the solution process as well a the files that characterise each
of those stages. The main objective of the present section is not to describe the solution process
extensively considered in §3.2.1, but rather give some information about the particularities of the
simulations developed during the project.

As it was mentioned on several occasions, three final simulations were run during the present
project, i.e. one for each of the flow regimes identified by Oke [23]. All the simulations were run
using a PN − PN−2 formulation and the flow conditions at the entrance of the obstacle region are
identical in each of the cases. The simulations are run in the PN − PN−2 formulation and the
solution meshes contain roughly 105 million grid-points. The inflow consists of a laminar Blasius
profile with a unitary characteristic length Reynolds number of Reδ∗ = 450. It is easy to see that
the Reynolds number at the inflow is laminar. Recall our simulations included a tripping force in
the region near the inflow that induced the turbulence. In this way, despite having a laminar flow
at the inflow we are able to get a turbulent flow in the near-obstacle region. In §4.4 we show how
the flow conditions evolve in the pre-obstacle region in order to find a fully turbulent flow around
the obstacles.

The three simulations were carried in the Cray XC40 system “Beskow” located in the PDC
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Centre for High Performance Computing at KTH Royal Institute of Technology. The “Beskow”
supercomputer contains 67 456 cores and a 156.4 TB primary memory. In the present project, 2048
cores were used in each of the simulations considered.

4.4 Validation

Flow simulations are powerful tools to study the physical properties of fluids in different
environments. However, due to the numerical nature of the simulations, it is mandatory to validate
the conditions of the simulation before conducting any analysis. A failure to do so could result
in flawed results and, by extensions, in flawed conclusions. The present section will be dedicated
to validating the simulations run during the project. Our validation process is founded on two
fundamental pillars. On the one hand, we validate mesh used in the solution process i.e. we ensure
that the resolution of the mesh is fine enough to properly solve the boundary layer. On the other
hand, we analyse the boundary layer in the pre-obstacle region in order to assess the flow incoming
the obstacle region.

4.4.1 Resolution analysis

The theoretical foundations of resolution analysis were introduced in the §3.1.3.2 through
the concepts of grid spacing and Kolmogorov scales. The present section will be dedicated to
the presentation and analysis of the resolution used in the simulation meshes. Note that at this
stage we will mainly focus on the pre-obstacle region since it is in that region where the turbulent
boundary layer is developed. In this way, since the pre-obstacle region is identical in the three sim-
ulations, we will only present a single resolution analysis that is valid for the three simulation cases.

As it was explained in the theoretical sections, our resolution analysis is based on the spatial
evolution of the grid-spacing normalised with the friction velocity in the pre-obstacle region. In
Figure 4.3 we show the z–averaged normalised grid-spacing in the streamwise, wall-normal, and
spanwise directions. Note that we only consider the pre-obstacle region, i.e. −10 ≤ x/h ≤ −1,
since it is in this region where the boundary layer is developed. Recall, that those quantities are
obtained from the grid-spacing, i.e. the distance between grid-points averaged in the spanwise
direction and normalised using the friction velocity. Those metrics have been carefully studied in
the available literature (e.g. the work of Negi et al. [22]) and therefore, provide useful criteria to
assess the resolution of our meshes. In Figure 4.3, we see that the streamwise grid-spacing curve
presents many oscillations that expand over the whole considered domain. Those oscillations are
the results of the GLL quadrature, that as we know varies along the streamwise direction. Thus,
the oscillations correspond to the variation of the space between the points within a given element
and mark the limit between the elements.

The resolution criteria developed by Negi et al. [22] states that a well-resolved LES should
fulfil ∆x+ < 19. As we can see in the figure, the z–averaged normalised grid-spacing in the stream-
wise direction ranges between ∆x+ = 5 and ∆x+ = 40 in the considered domain. However, the
mean the z–averaged normalised grid-spacing is always below ∆x+ = 15. Thus, despite not fulfill-
ing the well-resolved condition in all the points in the streamwise direction, on average, the mesh
considers meets the well-resolved criteria. In the wall-normal direction, Negi et al. [22] establishes
that resolution should verify ∆y+ < 0.65. In Figure 4.3 (right) we observe that the z–averaged
normalised grid-spacing in the wall-normal direction spreads from ∆y+ = 0.15 to ∆y+ = 0.3. Thus,
in the pre-obstacle region, the resolution criteria for the wall-normal direction is vastly verified.
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Figure 4.3: Streamwise evolution of the normalised grid-spacing in the streamwise (left), wall-
normal (right) and spanwise (bottom) directions. The discontinuous black line represents the mean
normalised grid-spacing. The red and blue lines in the bottom graphical representation show the
minimal and maximal spanwise z-averaged normalised grid-spacing, respectively. The normalised
grid-spacing in the streamwise and wall-normal direction are averaged using the spanwise coordi-
nate.

In the same way, the well-resolved criteria presented by Negi et al. [22] dictates that grid-spacing
in the spanwise direction should verify ∆z+ < 9. Note that, contrary to the streamwise and
wall-normal directions, in the spanwise direction no spatial averaging is consider. In addition, grid-
spacing is computed considering the minimum and maximum values of point separation within the
elements. As we can see in Figure 4.3 (bottom), the maximum and minimum normalised grid-
spacing spread from ∆z+ = 10 to ∆z+ = 25 and from ∆z+ = 3 to ∆z+ = 7, respectively. It is
clear that for the minimum normalised grid-spacing the well-resolved criteria is fulfilled thoroughly.
That is not the case fr the maximum normalised grid-gridspacing which lowest value is ∆z+ = 10.
Nevertheless, for x/h > −9 the mean normalised grid-spacing in the spanwise direction verifies the
criteria established by Negi et al. [22] and therefore it ensure that the resolution is adequate in the
vast majority of the pre-obstacle region. Note that the inflow is located at x/h = −10 and the
tripping force is applied x/h = −9. Therefore, the boundary layer develops in −9 < x/h < 0. In
this way, it is critical to have a proper resolution between x/h = −9 and x/h = 0 since the flow
solved in that region will be incoming the obstacle region, i.e. the region where results are taken.

In conclusion, our resolution analysis shows that our simulations are well-resolved LES. Thus,
in principle, the solution meshes should be able to solve the turbulent structures adequately. Later
on, we will see that more conditions related to flow conditions need to be verified to ensure the
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quality of the simulations. Nevertheless, at this stage, we can affirm that our solution meshes have
a proper resolution.

4.4.2 Boundary-layer analysis

The second part of the validation, consists of analysing the boundary layer developed in
the pre-obstacle region. This step in the validation process is particularly important since the
quality of the solution of the turbulent boundary layer (TBL) determines the quality of the results
obtained in the obstacle region. To study turbulent boundary layers, as we described in §3.1.3.1,
there are several quantities that help us check the validity of the solution flow fields. In the present
section, we will divide the analysis into two main axes. On the one hand, we will analyse de
streamwise evolution of several TBL quantities in the pre-obstacle region. Those quantities will
provide significant information on the development of the TBL in the pre-obstacle region. On the
other hand, we will compare several of the quantities introduced in §3.1.3.1 with those of a canonical
TBL. Comparing the quantities obtained from the flow simulation with the reference dataset we
aim at verifying the quality of the solution in the pre-obstacle area.

4.4.2.1 Streamwise variation of the boundary-layer quantities

Non-dimensional numbers are one of the most useful tools in fluid mechanics since they
allow to characterise a given flow independently from the geometrical characteristics of the case
in which the flow is studied. The main non-dimensional number in flow analysis is the Reynolds
number, which, as we introduced in §3.1.3.1, can be defined with different physical properties of
the flow. Our analysis will start precisely with the analysis of the streamwise evolution of the
Reynolds numbers introduced in §3.1.3.1. In Figure 4.4 we present the streamwise evolution of
the Reynolds number identified with the momentum thickness and the Reynolds number identified
with the friction velocity. Those quantities are computed using the interpolation mesh methodology
introduced in §3.3.2.2 and averaging in the spanwise direction.
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Figure 4.4: z-averaged streamwise evolution of the Reynolds number identified with the momentum
thickness (left) and the Reynolds number identified with the friction velocity (right).

By inspection, it is easy to see that both Reynolds numbers grow with the streamwise co-
ordinate. Recall that the inflow is placed at x/h = −10 and that the tripping force is applied at
x/h = −9. In this way, the perturbation introduced with the tripping force induces the turbulence
over the region 8 ≤ x/h ≤ −1 which explains the growth in both the Reynolds number identified
with the momentum thickness and the Reynolds number identified with the friction velocity. For
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both quantities, the maximum is found at x/h = −2 which values correspond to that of a fully
turbulent flow. In general terms, the curves presented in Figure 4.4 show that the boundary layer
develops correctly over the pre-obstacle region, transitioning from a laminar boundary layer to a
turbulent boundary layer. In Figure 4.5 we present the streamwise variation of two additional
quantities. On the left-hand side of the figure we can find the streamwise evolution of the shape
factor H, i.e. the displacement thickness to momentum thickness ratio. On the right-hand side,
we have the streamwise evolution of the boundary-layer thickness evaluated at the 99% of the free-
stream velocity.
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Figure 4.5: z-averaged streamwise evolution of the shape factor (left) and the boundary-layer
thickness evaluated at .

By inspection, we can see that the shape factor decreases with the streamwise coordinate.
Physically, this behaviour indicates that the displacement thickness is decreasing relative to the
momentum thickness which is consistent with our expectations since the TBL is developing with
the streamwise coordinate. As far as the values are concerned, the laminar Blasius profile typically
presents a shape factor of H = 2.59 [32] while turbulent flows typically have values of the order of
H = 1.4. The evolution of the shape factor with the streamwise coordinate is consistent with the
evolution of the Reynolds number identified with the momentum thickness (Figure 4.4) since an
increase in the momentum thickness, ceteris paribus, is translated into an increase of the Reynolds
number identified with the momentum thickness and a decrease of the shape factor. Thus, as the
flow approaches the obstacle region, the shape factor tends to that of a fully turbulent flow. In this
same way, the boundary-thickness increases with the streamwise coordinate. This phenomenon can
be explained by the fact that as the flow approaches the obstacle, the adverse-pressure gradient
(APG) induced by the presence of the obstacle tends to increase the thickness of the boundary
layer. Once again, this result is consistent with our previous findings.

In conclusion, the different metrics show that the boundary layer develops properly in the pre-
obstacle region, transitioning from a laminar boundary layer to a fully turbulent boundary layer.
Note that other metrics were analysed e.g. the Reynolds number identified with the displacement
thickness and results were consistent with the statements here presented. In this way, can affirm
that the boundary layer incoming the obstacle region is an APG TBL, and thus it is adequate to
study the physics of turbulent urban flows.
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4.4.2.2 Comparison of the boundary-layer quantities with a reference TBL

To close the validation section we will compare several of the TBL quantities to that of refer-
ences datasets. The idea in this part is to evaluate whether the boundary layer of our simulations
tends to canonical boundary layers available in the literature. In Figure 4.6 we present the Rota-
Clause parameter as well as the friction coefficient in the pre-obstacle region. Note that in this
case the evolution is represented as a function of the Reynolds number identified with the momen-
tum thickness such that it is possible to compare the simulated data with the reference database.
The database used to compare the different quantities corresponds to the LES of a zero-pressure
gradient (ZPG) turbulent boundary layer (TBL) presented by Eitel-Amor et al. [7], in which they
simulated a spacially evolving ZPG TBL with Reynolds numbers up to Reθ = 8300.
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Figure 4.6: Evolution of the z-averaged Rota-Clause parameter (left) and the friction coefficient
(right) with the Reynolds number identified with the momentum thickness. The dashed line rep-
resents the data from the ZPG TBL gathered by Eitel-Amor et al. [7].

As we can see in Figure 4.6, the Rota-Clause parameter increases with Reθ. Recall that the
Reynolds number identified with the momentum thickness increases with the streamwise coordi-
nate in the pre-obstacle region. Hence the Rota-Clause parameter increases with the streamwise
coordinate, reaching its maximum in the vicinity of the obstacle. It is known that the Rota-Clause
parameter allows measuring the magnitude of the adverse pressure gradient in a TBL. In this way,
as it can be seen in the figure, there small yet significant APG induced by the presence of the obsta-
cles. Comparing with the reference database, we see that in the vast majority of the pre-obstacle
region there is a great discrepancy between our results and the reference database. This discrep-
ancy is precisely explained by the presence of the APG. In fact, the work presented by Eitel-Amor
et al. [7] simulated a ZPG TBL which has an almost null Rota-Clause parameter. Note that our
values are only close to the reference for low values of Reθ, i.e. far apart from the obstacles, where
the pressure gradient is almost non-existent. The friction coefficient decreases almost linearly with
the Reθ, which is consistent with our theoretical expectations since the Reynolds number and the
friction coefficients are known to have an inverse relation [35]. From the physical point of view, the
Reynolds number can be understood as the ratio between the inertial and viscous forces. In addi-
tion, it is known that friction is mainly driven by viscous forces. Hence, as the Reynolds number
increases the viscous forces decrease with respect to the inertial and so does the friction coefficient.

In Figure 4.7 one can find the z-averaged mean streamwise velocity and the first component
of the Reynolds stress tensor for the normalised wall-normal scales. We include different positions
in the streamwise direction and compare with the data provided by Eitel-Amor et al. [7]. Note that
all the quantities are expressed in “+” units, i.e. normalised with the friction velocity. Also, note
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Figure 4.7: Evolution of the z-averaged mean streamwise velocity (left) andz-averaged first com-
ponent of the Reynolds stress tensor in the wall-normal direction. Blue, red, yellow, purple and
green lines correspond to x/h = −7, x/h = −6, x/h = −5, x/h = −4 and x/h = −3, respectively.
The red dots represent the mean velocity and first component of the Reynolds stress tensor for the
ZPG TBL presented by Eitel-Amor et al. [7]. All the quantities are normalised using the friction
velocity.

that we have excluded the profiles x/h < −7 and x/h > 3 since in those regions the flow either is
transitional or there is an influence of the obstacle. By inspection, one can see that for the vast
majority of scales, regardless of the profile considered, both the mean streamwise velocity and the
first component of the Reynolds stress tensor coincide with the values of the reference. This is
especially true in the vicinity of the wall. In general terms, the results presented in Figure 4.7 indi-
cate that our TBL is canonical and hence that the flow in the pre-obstacle region is solved correctly.

To close the validation of the flow, we focus on the turbulent kinetic energy (TKE) budgets.
As we have explained in the theoretical sections, the TKE budgets are terms that allow to study
specific properties of the turbulent flows. In the following section, we will show that the TKE
budgets have great importance in the analysis of the physical processes that take place in urban
environments. However, at this stage, we will use the aforementioned quantities as an additional
metric to validate the turbulent boundary layer. TKE budgets terms contain products with crossed
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partial derivatives, which tend to have great difficulties to converge. In this way, the validation of
TKE budgets allows to check whether the flow structures are properly converged.
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Figure 4.8: Evolution of the TKE budget terms with the normalised wall-normal coordinate at
x/h = −4. Blue, red, green, cyan, black, and magenta lines represent the production, dissipation,
turbulent transport, viscous diffusion, velocity-pressure correlation, and convection terms. Dots
represent the terms obtained from the dataset gathered by Eitel-Amor et al. [7].

In Figure 4.8, the six budget terms are represented as a function of the wall-normal coordinate
normalised with the friction velocity. The terms are computed in a fixed streamwise position, i.e.
x/h = −4 and the terms are plotted along with the data extracted from the work of Eitel-Amor2 et
al. [7]. Note that we have selected this particular streamwise position since it is the position where
we can find a fullTBL without a strong influence of the obstacle. By inspection, we can see that
for the vast majority of wall-normal scales our budget terms coincide with those of the reference
database which indicates that the boundary layer is behaving like a canonical TBL. The slight
discrepancies in some of the terms are due to the fact that our TBL has an APG while the TBL of
the database has no pressure gradient. In fact, closer to the obstacle e.g., x/h = −2 the magnitude
of the discrepancies increases since the APG is greater. As far as the evolution of the budget terms
is concerned, we find that the budget terms are consistent with our theoretical expectations. In this

2The data from the reference database is selected using the Reynolds number identified with the momentum
thickness.
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way, Figure 4.8 shows that the boundary layer behaves as a canonical TBL. Thus, we can affirm
that the flow is fully converged and properly solved.

The objective of this section was to validate the flow incoming the obstacle region. From the
streamwise evolution of the boundary layer quantities, we concluded that the flow in the vicinity
of the obstacles was a fully turbulent flow. From the comparison with the reference database,
we observed that our TBL is a canonical TBL which indicates that the flow structures have been
solved properly. In conclusion, with the previous analysis we can ensure that the flow incoming the
obstacles region corresponds to that of a TBL and thus, that the simulation is functioning correctly.

4.5 Results and discussion

The present section will be dedicated to the analysis of the results obtained during the sim-
ulation. Contrary to prior analysis, the full domain is now considered and the attention will be
driven towards the obstacles instead of the region that precedes them. The results are presented
correspond to fully converged time-averaged statistics for the skimming flow (SF), wake interfer-
ence (WI), and isolated roughness (IR) cases. As we know, to represent the results an interpolation
process is applied to reduce the number of points in the representation. In this case, we have inter-
polated the results in a series of spanwise and wall-normal planes such that contour representations
can be obtained. Particularly, in the following lines different statistical quantities will be presented
and discussed in the planes3 z/h = 0 and y/h = 0.25. As far as the representation is concerned,
all the quantities will be represented using pcolor plots in which an interpolation is applied in the
shading to provide a smoother colouring. Note that the scale of the color-scales is manually fixed
in order to show the most important regions of the quantity.

The discussion will be based on three main pillars. Firstly, we will focus on the mean veloc-
ities, presenting the relevant quantities in the spanwise and wall-normal planes. Secondly, we will
analyse several components of the Reynolds stress tensor since, as we know, provide very relevant
information on the fundamental mechanisms of the turbulence. Finally, budget terms will be pre-
sented and discussed. For all the quantities considered, the three simulation cases are presented and
discusses. Overall, we aim at understanding the impact of the distance between obstacles in the dif-
ferent statistical quantities and by extension in the physical processes that take place in the domain.

Before analysing flow statistics, it is interesting to have a general idea of the flow structures
that are formed over the obstacles in the SF case. Figure 4.9 shows vortical structures over the first
obstacle using the λ2 criterion for vortex identification presented by Jeong and Hussain [15]. By
inspection, one can see that the structures from the incoming TBL interact with the first obstacle
forming a fluid layer attached to the edges of the obstacle. This layer is very fast detached forming
vortical motion that is then carried to the second obstacle. This behaviour has many implications
on the study of urban flows as the fluid structures arriving to the second obstacle and significantly
more disturbed than the ones at the first obstacle. Depending on the application considered the
afore-described phenomenon might be critical.

3Note that for the z/h = 0 in addition to the time averaging, we have averaged 100 z-planes in the vicinity of
z/h = 0 in order to improve the obtained results.
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Figure 4.9: Vortical structures in the SF case identified with the λ2 method [15] represented using
an isosurface at −80 and it is colored by streamwise velocity, where dark blue and red represent
low and high velocity, respectively. The isosurface is scaled with both the free-stream velocity U∞
and the height of the obstacles h, and it is colored by streamwise velocity, where dark blue and red
represent low and high velocity, respectively.

4.5.1 Time-averaged mean velocities

The first part of the discussion here presented aims at analysing the time-averaged mean
velocities in the streamwise, wall-normal, and spanwise direction. In Figure 4.10 we present the
time-averaged streamwise velocity fields for the SF, WI and IR cases at z/h = 0 and y/h = 0.25.
Note that the length of the streamwise coordinate increases with the cases to maintain the same
distance between the obstacles and the end of the represented domain. By inspection, it is easy
to see that the flow regimes identified by Oke [23] can be recognised. In the top representations,
i.e. the SF case, we observe that the main flow does not penetrate the space between the obstacle
forming a sort of cavity.
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Figure 4.10: Time-averaged streamwise velocity fields for the SF (top), WI (middle) and IR (bot-
tom) cases at z/h = 0 (left) and y/h = 0.25 (right).

In this case free-stream flow form a layer of fluid on both the top and the sides of the obstacles,
leaving a circulation area in the space between the obstacles. Note that the flow inside the cavity
has a negative streamwise velocity, thus the flow in this area is circulating opposite to the free
stream. Since in the SF case the flow is “trapped” inside the space between the obstacles, a circu-
lation is formed. In addition, a stagnation region is found on both the top and front faces of the
first obstacle. As the distance between the obstacles increases, we observe that part of the flow
located on the layer of fluid that enveloped the cavity starts penetrating the space between the
front face of the second obstacle. This phenomenon is clearly visible in the representation of the
WI. In this case, the flow that was initially inside the cavity interacts with the outer layer of fluid
generating a stagnation region in the frontier between both zones. This phenomenon is found in
both the spanwise and wall-normal representations. The flow at the wake of the second obstacle
is not significantly affected by the change in regime. However, one must keep in mind that we are
analysing the mean streamwise velocity, thus changes in the fluctuation are not visible. If we keep
increasing the separation between the obstacles we obtain the IR case in which the two obstacles do
not have a significant influence on each other. As we can see, the flow incoming the second obstacle
is practically identical to the flow incoming the first obstacle. In this way, as it was identified
by Oke [23], the flow around the two obstacles behaves as if the two obstacles were independent.
Although, the description presented by Oke [23] is precise in the vast majority of the domain, on
the top face of the second obstacle we observe that the stagnation zone is significantly smaller than
the stagnation zone found in the first obstacle. Hence, there actually is a small interaction in the
flow caused by the presence of the first obstacle. Note that, despite being small, the aforemen-
tioned interaction might have important effects on physical processes such as the propagation of
the pollutants.

In Figure 4.11 we present the time-averaged wall-normal and spanwise velocity fields for the
different cases at z/h = 0 (left) and y/h = 0.25. In this case, we observe that the distribution of
the mean velocity in the wall-normal direction around the first obstacle is not significantly affected
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by the increase in the distance between the obstacles.

Figure 4.11: Time-averaged wall-normal (left) and spanwise (right) velocity fields for the SF (top),
WI (middle) and IR (bottom) cases at z/h = 0 (left) and y/h = 0.25.

On the contrary, the region of negative wall-normal velocity, i.e. flow circulating downwards, is
affected by the change in regimes. As we can see in the wall-normal representation for the WI and
IR cases, as the distance between the obstacles increases, a region of positive wall-normal velocities
appears attached to the upper-left corner of the second obstacle. In fact, it appears that the flow is
tending towards the reproduction of the pattern visible in the upper-left corner of the first obsta-
cle. However, it is easy to see that the afore-mentioned pattern is far from being reproduced in the
second obstacle, which is consistent with our observations in Figure 4.10. As far as the spanwise
velocity is concerned, in the right representations of Figure 4.11 we see that the behaviour of the
patterns is equivalent to what we commented for the streamwise mean velocity fields. As the dis-
tance between the obstacles is increased, the flow tends to mix in the space between the obstacles
up to the point where the distance is great enough to allow the reproduction of the flow structure
found in the first obstacles on the second.

In conclusion, the analysis of the flow structures reveals that the characteristics of the different
flow regimes identified by Oke [23] are, overall, found in the simulation results. However, as we
have mentioned, some discrepancies are found with the descriptions presented by the author which
can be explained by the fact that the methodology presented by Oke [23] is mainly based on
empirical observations. The present analysis reveals major processes in the physics of turbulent
urban flows that are significant on a series of phenomena of urban environments such as pollutant
propagation or thermal exchanges. Nevertheless, the analysis of mean velocities falls short to
capture the complexity of turbulent flows as it does not capture the effect in the variations of
fluctuations, which are essential in turbulent processes. Further sections will be dedicated to the
study of fluctuations.
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4.5.2 Time-averaged components of the Reynolds stress tensor

The second part of the analysis here presented will focus on the Reynolds stresses. Through-
out the project, all the components of the Reynolds stresses were computed and analysed in several
spanwise and wall-normal planes. However, in this section, we will only present the components
that are more relevant to discuss. In Figure 4.12 we present the time-averaged normal Reynolds
stresses components in the streamwise and wall-normal directions, i.e u2 and v2, for the three cases
considered.

Figure 4.12: Time-averaged normal Reynolds stresses components in the streamwise (left) and
wall-normal (right) directions for the SF (top), WI (middle), IR (bottom) cases at z/h = 0.

Focusing in the streamwise normal Reynolds stress component we can see that in the SF
case the values are relatively small in the whole domain, which indicates that the transport in
the streamwise direction is very efficient in the whole domain. However, in the space between the
obstacle, we find a region with higher values of u2. As we saw in §4.5.1, the streamwise velocity
field in the cavity is negative, hence it is working against the transport and therefore presents
higher values in the streamwise normal Reynolds stress. Thus, the results of the streamwise normal
Reynolds stress component are consistent with the velocity analysis introduced early on. As the
distance between the obstacle is raised, the region of high values is increased both in magnitude and
in extension. The afore-mentioned increase is natural in the WI case, the flow interaction within
the space between the obstacles is much greater than in the SF case. An increase in the interaction
between the fluid layer brings greater fluctuations, which, naturally, reduce the transport efficiency.
Hence the increase in the values of the streamwise normal Reynolds stress component. In addition,
we observe that there is a significant increase in the value of u2 at the wake of the second obstacle.
This increase suggests that the fluctuations in the wake have increased as a result of the interaction
within the cavity formed by the obstacles. This phenomenon contrasts with the mean velocity
analysis in which no difference between the cases was observed in the wake. Once again, in the
IR case, a distinct region is identified in the vicinity of the obstacles. However, for the streamwise
normal Reynolds stress, there are significant differences between the first and second obstacles. In
fact, in the vicinity of the first obstacle, we recognise the region of high Reynolds stress found in
the WI. However, around the second building, this high-value region is significantly more compact
and it is completely attached to the walls of the second obstacle. This is interesting as it shows
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that in the IR case there is a strong influence of the first obstacle in the efficiency of the transport
around the second obstacle. As far as the wall-normal component of the Reynolds stress tensor is
concerned, the analysis is analogous to the one present for the streamwise component. This time,
for the SF case, higher values are found at the front wall of the second obstacle. This region, as
we can see, is reduced with the change of regime while a region with greater values appears in
the middle of the two obstacles. The emergence of this region is explained by the increase in the
fluctuations due to the interaction between the different layers of fluid. Once again, higher values
are found in the wake in the WI and IR cases compared to the SF case.

Figure 4.13: Time-averaged normal Reynolds stresses components in the streamwise (left) and
spanwise (right) directions for the SF (top), WI (middle), IR (bottom) cases at y/h = 0.25.

In Figure 4.13 we show the time-averaged normal Reynolds stresses components in the stream-
wise and spanwise directions for the SF, WI, IR cases at y/h = 0.25. Focusing first on the stream-
wise component, we see that overall the distribution of the stresses is analogous to the results found
in Figure 4.12. However, in the WI and IR plots we find that, contrary to the results found at
z/h = 0, the patterns found in the first obstacle are reproduced in the second, even in the WI
regime. This suggests that the main differences in the transport are driven by the wall-normal di-
rection. In fact, for the IR regimes, we find that the patterns are almost identical. This behaviour
is consistent with our findings in the velocity analysis since the same phenomenon happens to be
visible in the streamwise means velocity representation at y/h = 0.25. As far as the spanwise
Reynolds stress component is concerned, in the SF regime, we find that there is a high-value region
in the front wall of the second obstacle. As the distance between the obstacles is increased, this
region is reduced while another high-value region emerges between the buildings as a result of the
interaction between the fluid layers. Once again, in the IR case, we recognise the structures of the
WI case in the first obstacle. Those results are analogous to the observations presented for the
wall-normal component of the Reynolds stress tensor (Figure 4.12).

In the previous lines, we have presented several representations of the normal Reynolds stress.
However, one needs to analyse the shear stresses as well. That is why, in Figure 4.14 we represent
the time-averaged shear Reynolds stresses at z/h = 0 and y/h = 0.25. The shear Reynolds stresses
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allow to analyse the momentum transport in crossed direction, thus it provides additional informa-
tion on the physical process taking place in turbulent flows.

Figure 4.14: Time-averaged shear Reynolds stresses uv (left) and uw (right) for the SF (top), WI
(middle), IR (bottom) cases at z/h = 0 and y/h = 0.25.

As we can see in Figure 4.14, the greatest values of the shear Reynolds stress uv for the SF
are found in the region between the obstacles. On the contrary, the lowest values are found in the
region of the upper faces of the obstacles, where the values of uv are negative. Once again, this is
consistent with our previous findings as the region between the obstacles is characterised by having
a low momentum transport. As the distance between the obstacles is increased, the region with the
highest values is displaced towards the front wall of the second obstacle while the region with the
lowest values is increased. In fact, in the IR case, we find that the regions are completely separated
and despite, not being identical, the patterns of the shear Reynolds stresses are fully independent
in each of the obstacles. Once again, in the wall-normal plane, we find that the distinction between
the regimes is much neat. As we can see in the representation of uw in Figure 4.14, we can recog-
nise the structures that we found in the velocity representations in the three cases. In fact, as the
distance between the obstacle increases, there is a transition in which the pattern found in the SF
segregates to form two very similar patterns attached at each of the obstacles. This representation
is particularly interesting since it highlights the symmetry of the flow structures in the spanwise
direction. As far as the magnitude of the uw shear stress is concerned, the minimal and maximal
values are attached to the edges of the obstacles, which appears to be natural since those are the
region with the greatest vorticity.

In the previous lines, we have presented several representations of the Reynolds stresses
components for the SF, WI, and IR cases in two different spatial locations. As we have seen, the
analysis of the Reynolds stress tensor allows to determine the characteristics of the momentum
transport in the different region of the domain and how those are affected by the changes in the
geometry that it is introduced throughout the cases. Overall, increasing the distance between
the obstacles results in an expansion of the region with high Reynolds stresses in both the space
between the obstacles and the wake of the second obstacle. However, as we have seen, if the distance
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between the obstacles is great enough (e.g. IR case) there are particular regions that present lower
values of the Reynolds stresses. In conclusion, the Reynolds stress tensor allows to study the
characteristics of momentum transport in the urban canopy which is a key physical process in
many of the phenomena that take place in urban environments such as pollutant transport or
energy dissipation.

4.5.3 Time-averaged TKE budget terms

The final part of the analysis here presented will focus on the study of the budget terms. As
we introduced in the theoretical sections, the budget terms contain very relevant information on
the physics of turbulent flows. In this section, we will mainly consider two binomials of budget
terms. On the one hand, we will present the production–dissipation binomial, that as we know,
deals with the rate of production and dissipation of the turbulent kinetic energy. On the other
hand, we will focus on turbulent transport and viscous diffusion, that account for the movement of
the energy throughout the turbulence. The budget terms are presented for the three flow regimes
considered at the spanwise and wall-normal planes used during the analysis.

Figure 4.15: Time-averaged production (left) and dissipation (right) budgets for the SF (top), WI
(middle), IR (bottom) cases at z/h = 0.

In Figure 4.15 we present the production and dissipation terms for the SF, WI, IR terms
at z/h = 0. As we can see, in the regions far apart from the obstacle both the production and
dissipation, in all the regimes, are null. This is explained by the fact that in the regions separated
from the obstacles the free-stream dominates. In the case of the production, we see that a region
of high production is found at the trail of the first obstacle in the three flow regimes. The location
of this high-production zone is consistent with our findings in the Reynolds stresses analysis. In
addition, the wake of the second obstacle, regardless of the regime, is also characterised by high
production. Once again, this is consistent with our theoretical expectations as well as with our
previous findings. In the SF regime, we find a high production region attached to the front wall
of the second obstacle that is not visible in the WI and IR. This area indicates that for the SF
case there is a high turbulence production in the wall of the second obstacle, which contrasts our
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previous findings. As the distance between the obstacles is raised, the aforementioned region dis-
appears, which suggests that the interaction between the fluid layers reduces the production of
turbulence. Note that, the previous finding is an example of the importance of the budget terms
analysis since this behaviour was not visible in the study of any of the other terms. In Figure
4.16 (left) we show the production term at plane y/h = 0.25. It is easy to see that the analysis
of this plane is consistent with the previous findings. There are high-production regions attached
to the edges of the first obstacle in the three flow regimes. The high-production region located in
the front face of the second obstacle is still visible and the change in the production patterns as
the distance between the obstacles increases is equivalent to what was found in Figure 4.15. In
both representations, we see that in the IR case the production pattern of the first obstacle is not
reproduced in the second. Thus, there is clearly an influence of the first obstacle in the production
of the second, despite the second. In addition, some additional high-production zones appear in
the upper face of the second obstacle in the IR regime.

Figure 4.16: Time-averaged production (left) and dissipation (right) budgets for the SF (top), WI
(middle), IR (bottom) cases at y/h = 0.25.

As far as dissipation is concerned, it is easy to see that the patterns found in the production term are
reproduced in the dissipation plots with an opposite sign. This fact is natural since the production
and dissipation terms are inversely related. In fact, the dissipation accounts for the regions where
turbulence is being dissipated, thus high values in dissipation are translated into low values in pro-
duction. In this way, the regions of high production are found in the dissipation plots as regions of
negative dissipation. Overall, we see that there are no regions with high values of dissipation, thus
we do not find areas in which is the turbulence is significantly reduced. Note that Nek5000 has C0
continuity between the elements [9] and, as we know, the dissipation term is composed by the prod-
uct of cross-derivatives terms. Thus, in the dissipation plots, we find vertical and horizontal lines
that are due to the discontinuities between the elements. It is important to note that those lines
have no physical meaning since they are the results of the limitations of the computational method.

In Figure 4.17 and Figure 4.18 we present the graphical representation of the turbulent
transport and the viscous diffusion for the SF, WI and IR cases at planes z/h = 0 and y/h = 0.25.
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Figure 4.17: Time-averaged turbulent transport (left) and viscous (right) diffusion budgets for the
SF (top), WI (middle), IR (bottom) cases at z/h = 0.

In the SF case, a region with high turbulent transport is found in the upper part of the space
between the obstacle. With the change of flow regime, this region of high turbulence transport
is expanded and displaced towards the first obstacle. As we know, turbulent transport accounts
for energy transportation due to the turbulent structures. The location of this region is consistent
with the results found in the production analysis since the regions with high production coincide
with those of high turbulent transport. In the WI case, it is interesting to see that there is a sig-
nificant expansion of the region with the lowest values of turbulent transport. This indicates that
the interaction between the different layers of fluid in the WI case is not favouring the turbulent
transport in this particular region. In Figure 4.18 we see that, once again, the regions with the
highest turbulent transport coincide with those of high production. Thus, the findings in this figure
are consistent with the aforementioned analysis.

The viscous diffusion accounts for the movement of kinetic energy due to viscous effects. As
we can see in Figure 4.17 and Figure 4.18, the viscous diffusion concentrates in the walls of the
obstacles. This is natural since viscous phenomena occur over the walls of the domain. However,
the regions of high viscous diffusion are not evenly distributed over the wall of obstacles. On
the contrary, those regions concentrate on the right walls of the first and second obstacles. By
comparing the three regimes, one can see that the region of high viscous diffusion located in the
right wall of the first obstacle is only present in the SF case. In this way, it appears that it the
presence of the second obstacle that is inducing the viscous effects on that particular wall. This
phenomenon is consistent with the analysis of the streamwise velocity presented in §4.5.1. Recall
that in the SF case, we found a negative streamwise velocity region in the cavity formed by two
obstacles. In this way, the presence of the second obstacle is directly the flow to the right wall of the
second obstacle, hence increasing the viscous effects on that wall. In addition, Figure 4.18 reveals
that there are two symmetrical regions of high-viscous diffusion attached to the front edges of the
first obstacle. Those regions are visible in the three cases and are consistent with our previous
findings since the front edges of the first obstacle are exposed to high turbulence.
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Figure 4.18: Time-averaged turbulent transport (left) and viscous (right) diffusion budgets for the
SF (top), WI (middle), IR (bottom) cases at y/h = 0.25.

Summing up, in this section we have presented and analyse several budgets terms. The first
part of the analysis dealt with the production and dissipation terms. As we saw, the strongest
production of turbulence is located in the upper part of the cavity and on the wake of the second
obstacle. Naturally, the production of the turbulence is balanced by the dissipation, as it is shown
by the overlapping of the regions of high production with the regions of negative dissipation. In
addition, we have shown that the change of the regime has a strong impact on production and
dissipation. The second part of the analysis focused on turbulent transport and viscous diffusion.
The obtained results showed that there is a greater turbulent transport in the region with high
production of turbulence, i.e. in the wake of the first and second obstacle. In addition, the viscous
diffusion analysis revealed that the location of the second obstacle has a strong impact on the
viscous diffusion of the first obstacle. In conclusion, the analysis of the TKE reveals important
properties on the energy process that takes place in urban environments which have important
implications in different applications related to sustainability and urban planning.
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5

Conclusions

The present section aims to reflect on the objectives enunciated in §1.2. The main objective
of this paper was to study the physical processes that drive the flow in urban environments. To do
so, we developed and analyse three LES in which we solve the distinct flow regimes in an environ-
ment formed by two obstacles. In this way, by changing the distance between the obstacles we have
been able to simulate the flow regimes identified by Oke [23] and to produce the flow statistics.
As far as the development of the project is concerned, we started by design the geometries of the
cases and the simulations. At this stage, we had to deal with the difficulties of large numerical
simulations, such as the cost of simulation or the management of the disk space to save the results
fields. Then, we focused on postprocessing the simulation results. This stage mainly deals with
the treatment and analysis of the quantities that are directly obtained from the simulation solver.
A series of codes were developed to validate the mesh design and the boundary layer. In addition,
particular codes were developed to compute and analyse turbulent statistic terms that, as we know,
are the base of the analysis here presented. Summing up, during the development of this project
we developed all the postprocessing tools required to analyse the physics of urban flows. Using the
aforementioned tools we were able to analyse the physics of the flow in the three regimes consid-
ered, extracting conclusions from the study of the mean velocities, Reynolds stresses, and the TKE
Budgets. Therefore, we can conclude that the main objectives of the project have been fulfilled.

As far as this report is concerned, we started with a compendium of the current literature on
urban flows in which the different methodological perspectives were appraised. Then, we set the
theoretical foundations of the relevant tools in fluid mechanics and computer science to produce
LES. In particular, the third chapter dealt with the full workflow needed to design, run and analyse
LES in urban environments. Finally, in the fourth chapter, we presented the main results of the
project. The design and implementation of the three simulations as presented in the first sec-
tions of the chapter, assessing both the geometrical design and the selection of the flow conditions
fixed during the simulations. Then, flow conditions were validated mainly by analysing the bound-
ary layer and the resolution of the solution mesh. The last section of the chapter dealt with the
turbulent statistics and the analysis of the physical processes that take place in urban environments.

Let us now sum up the conclusion of the analysis presented in the previous chapter. As we
saw, the distance between the obstacles is the main driver of the flow behaviour. From the study
of mean velocities, we saw that the distance between the obstacles was a key factor to determine
the structure of the layers of fluid in the near-obstacle region. For a small distance between the
obstacles, the inner and outer layer of fluid remained mainly segregated. However, as the space
between the obstacles is raised, the inner and outer layers started to mix in the cavity formed by
the obstacles. If the separation between the obstacle continues to increase, we reach a flow regimes
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in which the interaction of the flow surrounding the first and second obstacles is minimal. From
the analysis of the Reynolds stresses and the TKE Budgets, we observed that the separation of the
obstacles also determines the distribution of the intensity of the turbulence and the distribution of
the region with high and low production of turbulence.

To close the present project we will give a few comments on the possible extension of the
analysis and tools here presented. The most direct line of investigation would consist of the addition
of a passive scalar to the governing equations of the simulations. In fact, one of the most relevant
applications of the tools developed during the project is the study of pollutant dispersion. The
conclusions extracted in the present project allow us to better understand the dynamics of the
flow in urban environments, which are a fundamental drive of pollutant dispersion. However, the
inclusion of a passive scalar in the simulations would allow to actually simulate a given pollutant
and, in principle, predict its dynamics. Additionally, one can expand this project by considering
a more realistic setup, e.g. by taking into account compressibility effects and thermal phenomena.
However, this would lead to a significant increase in the complexity of the simulation process.
Alternatively, one of the most simple yet useful expansions of the present work is the application
of our tools to urban planning and design. In fact, one can modify the meshing process to consider
more complex geometries (e.g. obstacle arrays, different heights in the obstacles etc.) such that
particular urban designs can be studied. In this way, one could test a particular urban design
and predict the behaviour of the flow in that urban canopy in order to improve the efficiency and
sustainability of the urban environment.
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6

Plans and blueprints

Due to the nature of the present project, no plans, drawings or blueprints are applicable.
Thus, this page is intentionally left blank.
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7

Solicitation Document

The present chapter aims to report the technical and legal implications of the present study.
In particular we will focus on the work and safety conditions that need to be ensure during the
development of a project of this nature. The whole range of conditions and specification ar un-
derstood within the frame of a computing-oriented project. The solicitation document follows the
specifications established by the Spanish Law. However, due to the international nature of the
work here presented, some of technical or legal specificities of third countries might no be reported.

7.1 Functions of the involved parties

This section will focus on the generalities related with the working conditions and the task
corresponding to each of the parties involved in the project. Note that the present section will
treat legal and advisory measures indistinctly. The exposition will be structured following the title
of the parties involved, i.e. engineer or student, supervisor and advisor.

7.1.1 Functions of the student

The engineer or students is the central party in the well development of the project. Its
fundamental task consist on the implementation, within its limitations, of the simulations and
analysis needed during the project. In addition, he is also responsible for the research project, i.e.
with the help of the tutor, gathering, reading and analysing of the technical and scientific literature
to support the work done in the project. As far as strategy is concerned, the engineer is required to
discuss and plan the strategy to be followed during the project and to ensure, as much as possible,
the well-execution of the plans. Furthermore, he is in charge of the writing of the final report and
presentation as well as the discussion of the documents with the evaluation committee established
by the university board. Finally, from the ethical perspective, the students is required to ensure
the quality and trustworthiness of the resources used during all the stages of the project as well as
the respect of non-plagiarism policy established by the University board.

7.1.2 Functions of the director

The director has the main task of ensuring the well-functioning of the project in general,
planning and supervising the different studies with the student. From the analysis perspective, the
director must also supervise the results to validate the obtained data and conclusion. In addition,
he also provides help with major issues regarding any of the stages of the project. Finally, it is
also his responsibility to provide the necessary equipment, outside the personal sphere, to fulfil
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the project’s objectives, e.g. compute software, hardware etc. Furthermore due to the nature of
the computational resources required in the present project, i.e. the use of a supercomputer, the
director will also assess and execute the operations that need to be covered in the supercomputer.

7.1.3 Functions of the advisor

The advisor is in charge of supporting the work of the student and director as much as
needed. His particular role will be strongly dependent on the nature of its capabilities and the
project’s needs. In the case of the present work, the advisor also helps in orienting the student in
the particular paperwork required by the University where the project is presented.

7.2 Working environment conditions

This section will focus on the particular conditions relative to the working place. Those are
regulated by the Spanish legal edict, Real Decreto 488/1997 which covers the minimal security and
health conditions that need to be ensured by any worker exposed to computing devices, paperwork,
confined environment working place etc. The section will be covered following the classification
contemplate by the Spanish regulatory institutions.

General working environment conditions The following points gather some of the funda-
mental instructions on the cleanness and order of the working-place.

• The working-place must be kept clean and ordered within the standards of health saferty,
i.e. avoiding dust and dirt accumulation in any of the equipments that used during working
sessions.

• Kept within the safety standards storage rooms and storing devices both for personal and
general use.

• Keep the safety infrastructure free from any obstruction that might difficult its used.

• Ensure that the personal waste produced during the working section is properly dispose in
the correspondent containers.

• Temperature, humidity and ventilation must ensure not to put in danger the worker nor be a
source of discomfort. The standard in this area dictates that the temperature should be kept
between 20◦C and 24◦C during the winter and between 23◦C and 26◦C during the summer.
In addition, relative humidity should be kept always within the rang of 45% and 65%.

Lighting and noise Once again the following lines will cover the minimal requirements in terms
of lighting and noise established by the Spanish regulation institutions.

• Lighting conditions will be strongly dependent on the particularities of the task considered.
Nevertheless, the Spanish regulation agency contemplates some minimal requirements de-
scribed in the Real Decreto 486/1997

– Within the limitations encountered, natural light will always be preferred over any al-
ternate source of light as long as the environmental conditions allow it.

– In addition to natural lighting, artificial lighting might be available to complement nat-
ural sources. Artificial sources must be adaptable such that the work can properly set
the the lightning level depending on the moment.
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– Under no circumstance, lights that might put in danger the vision or in general the
health of the workers will be used.

– Illumination systems must be properly distributed such that the lighting level is uni-
formly distributed over the working place. Glares will be avoided as much as possible.

• Noise level is regulated by means of the Real Decreto 1316/989 covering the workplace pro-
tection.

– The law establishes that noise exposure should be minimised as much as possible con-
sidering the technicalities of the working place.

– The maximum noise level defined using the LAeq index is 50dB. The work equipments
and installations must ensure that the afore-stared limit is not surpassed. Nevertheless
if this limits had to be exceeded, the person responsible of the institution must provide
the equipment and instruction needed to ensure the safety of the workers implicated.

Protection and emergency conditions In addition, to the conditions specified in the previous
paragraphs, the company or University department must ensure that the emergency measure, i.e.
exits, equipment, instructions etc., function properly. In addition, it is the responsibility of the
institution to correctly inform the workers on the specificities of the place regarding risk and
emergency measures. Furthermore, the installations must fulfil the fire and electrical standards
established by the regulatory agencies.

Working site conditions Due to the nature of the project, it is expected that the engineer
will spend large periods of time at the work stations, thus it is advisable to cover some ergonomic
guidelines to ensure that worker’s long-term health is not risked. The nature of computational
projects dictates that the worker will spending large period of times in a static position in front
of a screen. In this way, it is advisable to have a proper table setup in order to avoid unnatural
postures that might induce health problems. In this way, the computational resources must be
adjusted to ensure the afore-stated guidelines. It is also advisable to have an office chair that
ensure a good postural stance and it is equipped with wheels to allow mobility. Furthermore,
the worker needs to have enough space in the workstation to move without important mobility
restrictions.
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8

Budget

In this final chapter, the main objective is to estimate the monetary cost of the project here
reported. The vast majority of the cost is concentrated in the work of the parties involved in the
project. Note that very expensive tools are utilised in the present work, e.g. a supercomputer.
However, due to the public nature of the resource and its limited access, no realistic estimation of
the redeemed quantity can be computed. In this way, we will assume that the cost of the supercom-
puter is redeem such that this variable can be excluded. The cost of the Cray XC40 supercomputer
is estimated at 156,000,000 $. However, the redeemed quantity remains unknown.

Monetary quantities will be considered in Swedish krona since the vast majority of the project
was developed in partnership with KTH Royal Institute of Technology located in Stockholm (Swe-
den). Nevertheless, final quantities will be converted to Euros. The cost will be split in two cat-
egories. Firstly, we will consider the cost of work, i.e. the salary that would have been perceived
by the parties. Table 8.1 gathers the estimated cost before takes. Note that salaries for engineer
and thesis director are estimated from the average salary in Sweden for a starting engineer (less
than one year of experience) and an assistant professor. Indirect cost are assumed to be a 30% of
the other cost combined. Finally, taxation is estimated through the SAT which is a 25% in Sweden.

Type Concept Usage time (h) Cost/h (SEK) Total cost (SEK)

Salary
Engineer’s pay 700 130 91,000
Director’s pay 90 250 22,500
Adviser pay 10 200 2000

Fixed cost
External computer − − 12,509.64
Expendable goods − − 500

Indirect costs − − − 38,552.89

Total cost before taxes (SEK) 167,062.53
Total cost before taxes (e) 16,025.65

Total cost after taxes (SEK) 208,828.16
Total cost after taxes (e) 20,032.06

Table 8.1: Cost before taxes

In conclusion, the project cost is estimated at 20,032.06 e.
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