

TRABAJO FIN DE GRADO EN INGENIERÍA EN TECNOLOGÍAS IN-DUSTRIALE

•

DISEÑO DE LA INSTALACIÓN ELÉCTRICA DE UN HOTEL DE 61 HABITACIONES SITUADO EN ALDAIA (VALENCIA)

AUTOR: Añón Ferrer, Alejandro

TUTOR: Cañas Peñuelas, César Santiago

COTUTOR: Catalán Izquierda, Saturnino

Curso Académico: 2020-21

RESUMEN

En este proyecto de final de grado se ha llevado a cabo el dimensionamiento de la instalación eléctrica de baja tensión del hotel. El hotel dispone de una superficie total útil de 3569.87m², y una capacidad de 61 habitaciones.

Se realiza el diseño de los circuitos necesarios para dar servicio a todas las dotaciones necesarias en el hotel. Se han tenido en cuenta en el diseño las características específicas de los locales de pública concurrencia, aunque se ha omitido de forma intencionada el diseño de los circuitos de emergencia.

Se ha incluido en este proyecto el diseño del centro de transformación, que alimenta a toda la instalación eléctrica diseñada.

Junto a la memoria del proyecto se adjunta el presupuesto, así como los planos necesarios para la correcta visualización de la instalación eléctrica, los cuales incluyen los esquemas unifilares, además de incluir los cálculos necesarios.

Palabras Clave: Hotel, instalación eléctrica, dispositivos de protección, potencia, sección.

RESUM

En aquest projecte de final de grau s'ha dut a terme el dimensionament de la instal·lació elèctrica de baixa tensió de l'hotel. L'hotel disposa d'una superfície total útil de 3569.87m², i una capacitat de 61 habitacions.

Es realitza el disseny dels circuits necessaris per a donar servei a totes les dotacions necessàries a l'hotel. S'han tingut en compte en el disseny les característiques específiques dels locals de pública concurrència, encara que s'ha omés de manera intencionada el disseny dels circuits d'emergència.

S'ha inclòs en aquest projecte el disseny del centre de transformació, que alimenta a tota la instal·lació elèctrica dissenyada.

Al costat de la memòria del projecte s'adjunta el pressupost, així com els plans necessaris per a la correcta visualització de la instal·lació elèctrica, els quals inclouen els esquemes unifilars, a més d'incloure els càlculs necessaris.

Paraules clau: Hotel, instal·lació elèctrica, dispositius de protecció, potència, secció.

SUMMARY

In this final degree Project, the design of the hotel's low voltage electrical installation has been carried out. The hotel has a total useful area of 3569.87m², and a capacity of 61 rooms.

The design of the circuits necessary to service all the necessary equipment in the hotel is carried out.

The specific characteristics of the premises of public concurrence have been taken into account in the design, although the design of the emergency circuits has been intentionally omitted.

The design of the transformation center, which feeds the entire electrical installation designed, has been included in this Project.

Along with the Project report, the Budget is attached, as well as the necessary plans for the correct visualization of the electrical installation, which include the uniform diagrams, in addition to including the necessary calculations.

<u>Keywords:</u> Hotel, electrical installation, protection devices, power, section.

<u>ÍNDICE</u>

RESUME	N	1
RESUM.		2
SUMMA	RY	3
1. INT	RODUCCIÓN	6
1.1	Objetivo del proyecto:	6
1.2	Emplazamiento:	6
1.3	Descripción del Edificio:	6
1.4	Normativa aplicada	8
2. INS	TALACIÓN ELÉCTRICA	9
2.1	Iluminación	9
2.2	Potencia estimada	10
2.3	Centro de Transformación	19
2.4	Transformador	20
2.5	Distribución Líneas Generales	21
2.6	Esquema de distribución	25
2.7	Instalación de puesta a tierra	26
2.8	Líneas Secundarias	29
2.9	Alumbrado de emergencia	33
2.9	1 Alumbrado de evacuación	33
2.9	2 Alimentación alumbrado emergencia	33
2.10	Potencia Eléctrica	35
2.11	Conductores	39
3. Me	dición y Presupuesto	44
4. Plai	nos	59
4.1	Distribución en planta	59
4.2	Distribución alumbrado y tomas de corriente	62
4.3	Alumbrado de Emergencia	73
4.4	Centro de Transformación	76
4.5	Esquemas Unifilares	78
ANEXO I	. CÁLCULOS	87
ANEX	O I.I. Canalizaciones eléctricas	87
ANEX	O I.II. Protecciones	99
ANEX	O I.III. Protección frente a contactos directos e indirectos	119

	yecto de diseño de la instalación eléctrica de un hotel de 61 habitaciones ANEXO I.IV. Instalación de tierra	
,	ANEXO I.V. Dialux	 125
,	ANEXO I.VI	 130
6.	Bibliografía	 131
7.	Conclusiones	 132

1. INTRODUCCIÓN

1.1 Objetivo del proyecto:

A través de este proyecto se desea llevar a cabo la distribución y el dimensionamiento de los elementos necesarios (tales como la sección de los cables, la disposición de los cuadros secundarios, del cuadro general, los interruptores automáticos y los diferenciales) para la instalación eléctrica de un hotel que consta de 61 habitaciones en un total de 4 plantas, cumpliendo con la normativa del Reglamento Electrotécnico para Baja Tensión (REBT).

1.2 Emplazamiento:

El solar en el que se encuentra el hotel de este proyecto es en la calle Centro Comercial Bonaire, KM 345 perteneciente a la ciudad de Aldaia y cuya disposición se puede observar en los planos adjuntos.

1.3 Descripción del Edificio:

En la planta baja se haya una entrada principal desde la calle hacia la recepción del hotel, además de los vestíbulos para la espera cuya superficie total es de 252.37 m². A su izquierda, se encuentra la entrada al restaurante, el cual cuenta con una sala principal de 281.5 m². En la zona de los trabajadores del restaurante, aparece la zona de preparado frío con 13.18 m², la zona de preparado caliente con 21.1125 m², los baños de hombres y mujeres de 11.25 m² cada uno, la bodega con 22.74 m², y finalmente la zona de refrigeración que cuenta con 9.1125 m². En su totalidad, la superficie útil de todo el restaurante es de 369.93 m². En esta zona, los clientes contarán también con un gimnasio de 54.075 m².

En la parte derecha de la recepción, se sitúa todo lo relacionado con la administración del hotel, y es el lugar donde se encuentra el gerente del hostal, el gerente administrativo, secretaría, la sala de recursos humanos, la zona de relaciones públicas, la habitación que contiene todos los archivos del hotel, y otra con la caja de seguridad. También cabe destacar que aquí se ubican los vestidores para los empleados del hotel. En resumen, todas estas salas necesitan una superficie de 298.275 m².

En la parte posterior del restaurante, se localizan zonas que utilizan los empleados, así como el comedor con 22.5 m², la lavandería con 37.5 m², el cuarto en el cual los empleados registran su llegada y salida del turno con 18.75 m², y una habitación con los sistemas de vigilancia que ocupa una superficie de 18.75 m². Teniendo en cuenta estas zonas, la superficie dedicada a éstas es de 172.5 m². Por último, en la planta baja se encuentran los ascensores, y junto a ellas la sala donde se localiza la maquinaria de dichos elevadores, acompañado de un montacargas. En su totalidad, esto requiere de una superficie de 35.727 m². Una vez descrita la planta baja, para la realización y construcción es necesario tener disponible una parcela de 1128.802 m².

A través de dos ascensores colocados entre recepción y el vestíbulo, se puede acceder a las demás plantas del edificio. Al lado de éstas se encuentran las escaleras. También hay otras esclareas en la parte posterior, cerca del gimnasio de la planta baja, a través de la cual los residentes pueden bajar directamente sin pasar por el lobby.

En la primera planta en la zona de la izquierda se hayan 3 habitaciones grandes, las cuales contienen una sala de estar, un centro de trabajo, un baño y un dormitorio con una cama doble. La superficie total de estas estancias es de 55.202 m². Enfrente de las habitaciones, en el otro lado de la planta, se ubican 3 salas de conferencias de diferentes capacidades (22, 30 y 52 personas), además de un cuarto de baño para hombres y mujeres en el pasillo. El área total ocupada por esta zona es de 312.9 m².

En la zona izquierda, situado entre la zona de habitaciones y los ascensores, se encuentra el cuarto de ropería, en el cual los residentes depositan su ropa sucia para que los empleados del hotel puedan limpiarlas en la lavandería.

En la parte posterior a las habitaciones y las escaleras, se halla el cuarto del cuadro eléctrico, con una superficie de 75 m². En su totalidad, el área que ocupa la primera planta es de 582 m².

En la segunda planta, se sitúan dos habitaciones grandes exactamente iguales a las descritas anteriormente, y 16 habitaciones pequeñas, las cuales sólo tienen espacio para el dormitorio con una cama de matrimonio y un baño. El tamaño de estas habitaciones es de 29.7 m² cada una. En el mismo puesto que en la primera planta, se localizan los ascensores y la zona de ropería. Con todo esto, la superficie ocupada en la segunda planta es de 614.1 m².

La tercera y la cuarta planta son iguales. Tienen las mismas habitaciones y la misma disposición de estas mismas. En este piso se encuentran 20 habitaciones pequeñas con la misma área que las descritas anteriormente, y al igual que en las demás plantas, se halla el cuarto de ropería en la misma disposición que en las demás plantas. Por lo tanto, la superficie utilizada en estas dos plantas es de 622.49 m².

Cabe destacar que, en el cálculo de las superficies, no se ha tenido en cuenta los pasillos, razón por la cual la superficie de las plantas son diferentes entre sí. Si los tenemos en cuenta, la superficie de la primera y segunda son exactamente iguales. Lo mismo sucede con la tercera y cuarta planta, mientras que la planta baja será mayor ya que cuenta con el restaurante. En definitiva, la superficie total útil de la estancia es de 3569.87 m².

1.4 Normativa aplicada

Para llevar a cabo dicho proyecto, la normativa a seguir para la instalación eléctrica ha sido el Reglamento Electrotécnico de Baja Tensión e Instrucciones Técnicas Complementarias R.D. 842/2002.

Dentro de dicho Reglamento, los archivos necesarios han sido:

- ITC-BT-01 Terminología.
- ITC-BT-02 Normas de referencia en el Reglamento electrotécnico de baja tensión.
- ITC-BT-08 Sistemas de conexión del neutro y de las masas en redes de distribución de energía eléctrica.
- ITC-BT-10 Previsión de cargas para suministros de baja tensión
- ITC-BT-12 Instalaciones de enlace. Esquemas
- ITC-BT-13 Instalaciones de enlace. Cajas generales de protección
- ITC-BT-14 Instalaciones de enlace. Línea general de alimentación
- ITC-BT-15 Instalaciones de enlace. Derivaciones individuales.
- ITC-BT-17 Instalaciones de enlace. Dispositivos generales e individuales de mando y protección. Interruptor de control de potencia.
- ITC-BT-18 Instalaciones de puesta a tierra.
- ITC-BT-19 Instalaciones interiores o receptoras. Prescripciones generales
- ITC-BT-20 Instalaciones interiores o receptoras. Sistemas de instalación.
- ITC-BT-21 Tubos y canales protectoras.
- ITC-BT-22 Protección contra sobreintensidades.
- ITC-BT-24 Protección contra los contactos directos e indirectos.
- ITC-BT-27 Instalaciones interiores. Locales que contienen una bañera o ducha.
- ITC-BT-28 Instalaciones en locales de pública concurrencia.

También ha sido necesaria la normativa UNE-EN 12464-1, la cual indica la iluminancia media en las distintas salas y pasillos pertenecientes al hotel.

2. INSTALACIÓN ELÉCTRICA

2.1 Iluminación

Para el cálculo de los puntos de luz de cada sala del hotel, se ha recurrido al uso del programa "Dialux", a través del cual, permite obtener la iluminancia media del local, así como la iluminancia máxima y mínima, y la relación entre la iluminancia mínima y la media. También es posible obtener una vista en planta de la sala representado con isolíneas, a través de las cuales es posible conocer al detalle la iluminancia en cada zona. Con el fin de conocer la iluminancia media (Em) necesaria, se ha recurrido a la norma UNE-EN 12464-1. Cabe destacar que para el restaurante, no hay una Em requerida, sino que deberá adaptarse a las necesidades. De dicha forma, y a través de varias páginas web sobre diseño de restaurante, se ha optado por conseguir una iluminancia media mínima de 150 lx. El resto de las salas están sometidas a la norma comentada anteriormente. En el ANEXO I.V, es posible visualizar una tabla con los resultados obtenidos por "Dialux", así como la iluminaria utilizada en cada caso. En los planos es posible observar la disposición de dichas iluminarias, siendo éste el resultado final obtenido y propuesto para la instalación.

2.2 Potencia estimada

Para la realización del cálculo estimado de potencia, se ha seguido lo indicado en la guía técnica del REBT, más específicamente en la Guía-BT-25, la cual indica la iluminación, las tomas de uso general necesarias para una habitación, así como la potencia prevista por cada una de éstas. También señala los factores de simultaneidad y de utilización. Esta Guía también ha sido utilizada para el diseño de salas como recursos humanos o centro de cómputo, atendiendo a las necesidades especiales de cada habitación (por ejemplo, el uso de ordenadores en las estancias administrativas, o el uso de proyectores en las salas de juntas).

De dicha manera, la potencia necesaria para cada una de las habitaciones del hotel es la siguiente:

2.2.1 HABITACIONES:

Habitación Pequeña		Potencia prevista (W)	Factor Utilización	Factor Simultaneidad	Potencia (W)
Entrada					
Punto de Luz	1				25
Base 16A (2P+T)	1	3450	0.25	0.2	172.5
Dormitorio					
Punto de Luz	3				75
Base 16A (2P+T)	4	3450	0.25	0.2	690
Bomba de Calor	1	3450	0.375	-	1293.75
Baño					
Punto de Luz	2				50
Base 16A (2P+T)	2	3450	0.5	0.4	1380
Total					3686.25
Nº Habitaciones Pequeñas con Coeficiente Simultaneidad					32.8
Potencia Total (W)					120909

Tabla 1

Habitación Grande		Potencia Prevista (W)	Factor Utilización	Factor Simultaneidad	Potencia (W)
Salón					
Puntos de Luz	2				50
Base 16A (2P+T)	5	3450	0.25	0.2	862.5
Dormitorio					
Puntos de Luz	3				75
Base 16A (2P+T)	3	3450	0.25	0.2	517.5
Baño					
Puntos de Luz	2				50
Base 16A (2P+T)	2	3450	0.5	0.4	1380
General					
Bomba de Calor	1	3450	0.4	-	1380
Total					4315
Nº Habitaciones Grandes con coeficiente de simultaneidad					4.6
Potencia Total (W)					19849

Tabla 2

2.2.2 RESTAURANTE:

En el cálculo de la potencia mínima necesaria para la bomba de calor, se ha utilizado una fórmula que permite aproximar de manera orientativa la potencia para el local. Dicha fórmula viene dada por la página https://www.caloryfrio.com/calefaccion/calefaccion-instalaciones-componentes/calcular-la-potencia-calorifica-para-una-casa-o-habitacion.html. La ecuación es la siguiente:

Potencia (W) =
$$A \times B \times C \times D \times 85$$
 (1)

De donde,

A: Superficie del recinto.

B: Orientación. Dependiendo de la orientación, el local recibe una mayor o menor cantidad de luz solar.

- Norte = 1.12
- Sur = 0.92
- Este = 1
- Oeste = 1

C: Aislamiento. En función del tipo de aislamiento, el local tendrá mejor o peor eficiencia energética.

- Ventanal y tabique dobles = 0.93
- Ventanal sencillo y tabique dobles o ventanal dobles y tabique sencillo = 1
- Ventanal y tabique sencillos = 1.10

D: Zona climática. En el caso de Valencia, la zona climática correspondiente es B, y por lo tanto obtiene un valor de 0.95.

De dicho modo, el valor de la potencia requerida es de:

$$P(W) = 281.5 \times 1.12 \times 1 \times 0.95 \times 85 = 25458 W = 25.46 KW$$

Para la potencia obtenida, se decide utilizar el modelo "Bomba de calor Unidad exterior Midea V6 MV6-i280WV2GN1-E", cuya tensión es trifásica y requiere una potencia de 28 KW.

Respecto a las tomas de corriente de uso general, se ha propuesto el diseño de situar una base de 16A por cada 30m². La superficie del restaurante es de 281m², por lo tanto serán necesarias 10 tomas. Con dicha cantidad es suficiente para satisfacer los recursos necesarios en cada momento. En referencia a los factores de utilización y de simultaneidad, se ha optado por realizar una estimación, ya que es muy poco probable que se dé la situación en la cual se encuentren las 10 tomas siendo utilizadas simultáneamente. El factor de utilización también ha sido diseñado según las referencias de la ITC-BT-25, con el fin de tener una referencia a la hora de aproximar dicho factor.

Por lo tanto, la potencia estimada del restaurante es la siguiente:

Restaurante	Cantidad	Factor de Utilización	Factor de Simultaneidad	Potencia (W)
Iluminación	-	-	-	1067
Toma de Uso General	10	0.5	0.25	4312.5
Bomba de Calor	1	-	-	28000
Total				33379.5

Tabla 3

2.2.3 COCINA:

Dentro de la cocina, se encuentran tres salas (cocinado en caliente, cocinado en frío y la bodega) las cuales se incluyen juntas para la estimación de potencia. Los electrodomésticos que se disponen en este local son un microondas y una freidora (cuya potencia ha sido escogida mediante la estimación media de su consumo particular), una cámara frigorífica, un congelador industrial, un horno de convección eléctrico y un lavavajillas.

Los modelos utilizados se describen a continuación:

	Modelo
Cámara Frigorífica	CPMR2160x1760
Congelador Industrial	CW196
Horno de Convección Eléctrico	RMSTAR2
Lavavajillas	CLBE50

Tabla 4

Una vez descritos los modelos, también es necesario el uso de tomas de corrientes extra para los casos en los que sean necesarios. Como mínimo, se decide colocar una base de 16A en cada sala que conforma la cocina. En referencia a lo anterior mencionado, finalmente se instalan dos tomas de corriente en la zona de preparado en caliente, otras dos en la zona de preparado en frío, y solamente una en la bodega. El criterio de los factores de utilización y de simultaneidad es el mismo que el del restaurante. Así pues, la potencia estimada para esta zona es la siguiente:

Cocina	Cantidad	Factor de Utilización	Factor de Simultaneidad	Potencia (W)
Iluminación				378
Cámara Frigorífica				1250
Congelador Industrial				700
Freidora				1500
Horno de Convección Eléctrico				3100
Lavavajillas				3600
Microondas				1000
Base 16A (2P+T) Bodega + Preparado				
en Caliente + Preparado en Frío	5	0.5	0.25	2156.25
Total				13684.25

Tabla 5

2.2.4 ADMINISTRACIÓN:

Respecto a la zona de administración, es necesario conocer la potencia media de un ordenador y de un proyector, las cuales son 200 W y 300 W respectivamente.

Respecto al resto de salas en las cuales es necesario el uso de tomas de corriente, el diseño ha sido el mismo que el utilizado en las habitaciones, siendo su factor de utilización de 0.2, y el factor de simultaneidad de 0.25.

Debido a que se ha utilizado dicho diseño, para el caso del baño situado en el local del gerente general, el factor de utilización será de 0.5, y el factor de simultaneidad de 0.4.

Con el fin de evitar que la tabla no sea repetitiva, cabe destacar que la potencia de la bomba de calor será de 3450W, mientras que su factor de utilización será de 0.5, resultando que en el peor de los casos, dicha maquinaria estaría en funcionamiento 12 horas al día.

Una vez comentado lo anterior, se muestra el resumen del cálculo de la potencia estimada para esta zona, con todas las habitaciones que la contienen:

Centro de Cómputo + Archivo General	Cantidad	Potencia (W)
Iluminación	-	528
Ordenador	9	1800
Bomba de Calor	1	1725
Relaciones Públicas		
Iluminación	-	440
Ordenador	1	200
Toma de Uso General	3	517.5
Bomba de Calor	1	1725
Recursos Humanos		
Iluminación	-	440
Ordenador	1	200
Toma de Uso General	2	345
Bomba de Calor	1	1725
Gerente Administrativo		
Iluminación	-	198
Ordenador	1	200
Toma de Uso General	2	345
Bomba de Calor	1	1725
Secretaría		
Iluminación	-	330
Ordenador	2	400
Bomba de Calor	1	1725

Gerente General		
Iluminación	-	198
Ordenador	1	200
Toma de Uso General	1	172.5
Baño	1	690
Bomba de Calor	1	1725
Sala de Juntas		
Iluminación	-	528
Ordenador	1	200
Proyector	1	300
Toma de Uso General	1	172.5
Bomba de Calor	1	2587.5
Potencia Total Administración (W)	21342	

Tabla 6

2.2.5 COMEDOR DE EMPLEADOS:

En el comedor de los empleados, a nivel de diseño de la sala, se ha decidido colocar dos microondas, una cafetera y una máquina expendedora, cuyas potencias son 1000W, 1200W y 800W, respectivamente. El diseño del factor de utilización de los microondas y de la cafetera se realizará según lo indicado en el ITC-BT-25, y por lo tanto tendrá un valor de 0.2, mientras que la máquina expendedora permanece encendida durante las 24 horas del día. Respecto al factor de simultaneidad, se ha decidido no tenerlo en cuenta, ya que tendría un impacto relativamente bajo respecto a la potencia total requerida por la sala.

En cuanto a la bomba de calor, el criterio de diseño es el mismo que el utilizado para las salas de administración, resultando el factor de utilización de 0.5.

Por lo tanto, la potencia necesaria será:

Comedor Empleados	Potencia (W)	Factor de Utilización	Potencia Prevista (W)
Iluminación	66	-	66
Microondas	1000	0.2	400
Máquina de Café	12000	0.2	240
Máquina Expendedora	800	1	800
Bomba de Calor	3450	0.5	1725
Total			3231

Tabla 7

2.2.6 GIMNASIO:

Dentro del recinto, los únicos objetos que requieren de una toma de corriente son las cintas de correr. Debido al tamaño, se ha decidido colocar dos. La potencia consumida por esta máquina es de 1000W, y teniendo en cuenta que el gimnasio estará abierto 12 horas al día, y que no estarán siendo utilizadas durante todo el horario, se ha diseñado el factor de utilización de 0.375. Sin embargo, tal y como se ha dimensionado en el restaurante, se dispondrá de una base de corriente de 16A por cada 10m². La superficie del gimnasio es de 54.075m². y por lo tanto se hará uso de 6 tomas de corriente. De dicha manera, la potencia estimada será:

Gimnasio	Potencia (W)	Factor de Utilización	Cantidad	Potencia Prevista (W)
Iluminación	232	-	-	232
Cinta de Correr	1000	0.375	2	750
Base 16A (2P+T)	3450		6	20700
Bomba de Calor	3450	0.5	1	1725
Total				23407

Tabla 8

2.2.7 LAVANDERÍA:

Para conocer la cantidad de lavadoras y secadoras necesarias, así como su capacidad, se ha realizado un cálculo estimado de la masa de ropa que el hotel necesitaría limpiar, teniendo en cuenta el factor de simultaneidad utilizado en las habitaciones, según lo estipulado en el reglamento correspondiente (BT-10).

Una vez calculado, se decide que es necesario el uso de dos lavadoras con una capacidad de 70kg, y cuyo consumo es de 7500W cada una, mientras que respecto a las secadoras, se opta por la opción de utilizar tres con la capacidad de 30kg, las cuales tienen un consumo unitario de 1300W. Los modelos han sido seleccionados de una página web que comercializa con equipos para la hostelería, y son los siguientes:

Modelo
LCA-70T2
DE-36T2

Tabla 9

En consecuencia, la potencia prevista es la siguiente:

Lavandería	Potencia (W)
Iluminación	176
Lavadoras	15000
Secadoras	3900
Total	19076

Tabla 10

2.2.8 SALAS DE CONFERENCIAS:

Situadas en la primera planta, se ha previsto que haya un ordenador y un proyector en cada una de las salas. Tal y como se ha hecho anteriormente, según el ITC-BT-25, se ha colocado una toma de corriente por cada $10m^2$. Los resultados dependiendo de la superficie se podrá visualizar en la tabla expuesta posteriormente. Cabe destacar que en el caso en el cual el resultado sea decimal, se realizará un redondeo al entero superior.

Debido a que dichas salas no serán utilizadas con gran frecuencia, se ha decidido tener en cuenta los factores de utilización y de simultaneidad, siguiendo con lo estipulado en el ITC-BT-25.

Para el cálculo de la potencia de la bomba de calor, debido a que las salas de conferencias no se pueden asimilar a las viviendas, se ha optado por el uso de la fórmula (1), utilizada en el cálculo del restaurante. En definitiva, la potencia estimada será la siguiente:

Sala 22 Personas	Superficie	Cantidad	Potencia (W)	Fu	Fs	Potencia Prevista (W)
Iluminación						440
Ordenador + Proyector						500
Toma de Uso General	59.475	6	3450	0.2	0.25	1035
Bomba de Calor						5378.919
Sala 30 Personas						
Iluminación						550
Ordenador + Proyector						500
Toma de Uso General	77.475	8	3450	0.2	0.25	1380
Bomba de Calor						7006.839
Sala 52 Personas						
Iluminación						1232
Ordenador + Proyector						500
Toma de Uso General	128.4	13	3450	0.2	0.25	2242.5
Bomba de Calor						11612.496
Total						32377.754

2.2.9 CUARTO DE MÁQUINAS:

Por último, falta conocer la potencia consumida por el montacargas y los ascensores. Para el primero, se ha seleccionado una plataforma capaz de elevar cargas medias comprendidas entre 200 y 500kg, y cuyo motor permite operar entre 5.5 y 40CV. En este caso, se ha optado por una potencia media estimada de 30CV, por lo que, en términos de vatios, corresponde a 22380W. En relación con el ascensor, se ha seleccionado un elevador hidráulico con una capacidad de 6 personas, y cuya potencia consumida es de 9500W. En resumen, la potencia estimada es:

Cuarto de Máquinas	Potencia (CV)	Potencia (W)
Ascensor	25.4691689	19000
Montacargas	30	22380
Total	55.4691689	41380

Tabla 12

En definitiva, la potencia requerida por el hotel es de:

	Potencia (W)
Habitaciones Pequeñas	120909
Habitaciones Grandes	19849
Restaurante	63567
Cocina	28778
Potencia Total Administración	21342
Comedor Empleados	3231
Gimnasio	2707
Lavandería	19076
Salas de Conferencias	32378
Cuarto de Máquinas	41380
Total	353217

Tabla 13

2.3 Centro de Transformación

Debido a que la potencia del hotel es superior a 200 KW, es necesaria la implementación de un centro de transformación. En este caso, las dimensiones del centro de transformación serán de 6.88m de ancho x 3.18m de largo x 2.58m de alto.

Dentro del hotel, en la planta baja, se ubica un local vacío cuyas dimensiones son 7.06m de ancho x 7.65m de largo x 4.5m de alto, por lo tanto es factible la instalación del centro de transformación dentro del propio hotel.

Con el fin de evitar la aparición de tensiones de contacto elevadas en el exterior de la instalación, las puertas y rejillas metálicas que dan al exterior del centro no tendrán contacto eléctrico alguno con masas conductoras que, a causa de defectos o averías, sean susceptibles de quedar sometidas a tensión.

En el piso del Centro de Transformación se instalará un mallazo electrosoldado, con redondos de diámetro no inferior a 4mm. formando una retícula no superior a 0,30x0,30m. Este mallazo se conectará como mínimo en dos puntos opuestos de la puesta a tierra de protección del Centro. Dicho mallazo estará cubierto por una capa de hormigón de 10 cm como mínimo. Con esta medida se consigue que la persona que deba acceder a una parte que pueda quedar en tensión, de forma eventual, estará sobre una superficie equipotencial, con lo que desaparece el riesgo de la tensión de contacto y de paso interior.

En el ANEXO I.III. están los cálculos realizados para la protección del centro de transformación frente a contactos directos e indirectos. Además, en los apartados 2.10 y 2.11 se exponen otras opciones con tal de prevenir dichos contactos y aumentar así la seguridad de la instalación.

2.4 Transformador

En el caso del hotel, el transformador utilizado será seco, y permite la conversión de una tensión de 20KV a 400V, y cuya potencia aparente es de 400KVA. Los cables de salida del transformador serán 2 circuitos con 3 conductores cuya sección es de 240mm², además de un neutro con una sección de 240mm². Dichos cables serán de aluminio, con una tensión asignada de 0.6/1KV, y cuyo aislamiento será de polietileno reticulado (XLPE).

Según los cálculos del ANEXO I.III, se puede observar que la intensidad de cortocircuito en el lado secundario del transformador es de 14430A, siendo ésta la intensidad máxima posible dentro de la instalación eléctrica del hotel. Con esto, será necesario que los fusibles de las líneas principales tengan un poder de corte superior.

2.5 Distribución Líneas Generales

Primeramente, es necesario conocer el recorrido de las líneas principales de la instalación, la disposición de los cuadros, tanto principales como secundarios, así como donde se sitúa el centro de transformación dentro del propio hotel. Todo esto es posible visualizarlo en las siguientes imágenes:

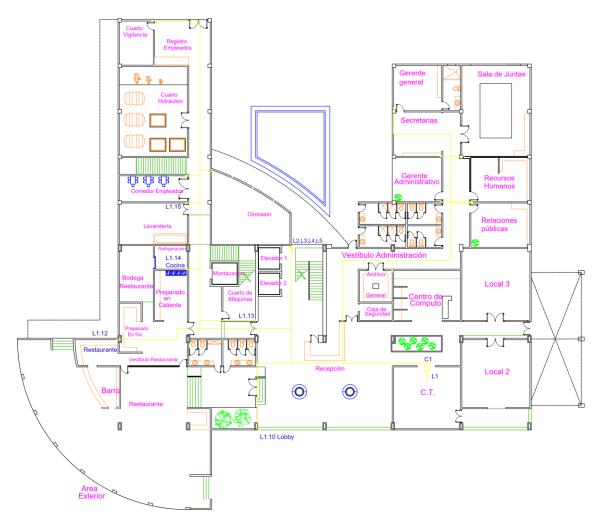


Imagen 1. Planta Baja

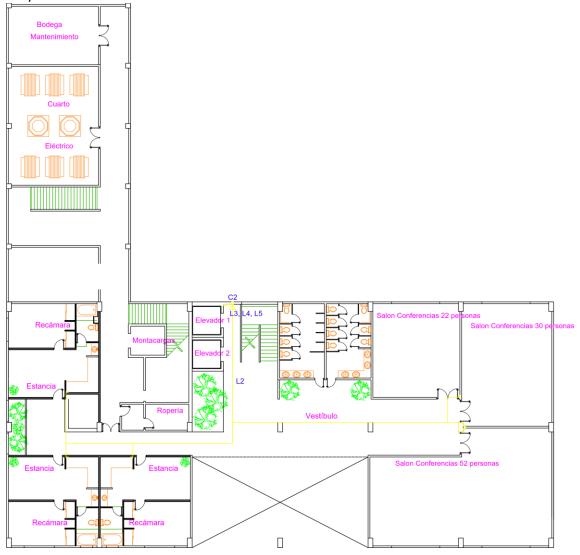


Imagen 2. Primera Planta

Con tal de evitar información repetitiva, se ha omitido el resto de plantas, ya que lo verdaderamente importante es la posición de los cuadros principales, colocándose en la misma posición que en los anteriores, pero cada uno en su respectiva planta.

Es posible obtener una visión más detallada en los planos 5.1, 5.2, 5.3, 5.4 y 5.5, a través de los esquemas unifilares, donde es posible visualizar cada cuadro secundario. En dichos esquemas se sitúan en la posición de los diferenciales y de los automáticos.

Dentro del centro de transformación se sitúa el cuadro general de baja tensión (CGBT), y a partir del cual surgirán 4 líneas generales denominadas derivaciones individuales, cuya finalidad consiste es suministrar energía eléctrica. Los conductores a utilizar para las distintas derivaciones serán de cobre, aislados y unipolares, con una tensión asignada de 450/750V, además de ser no propagadores del incendio y con emisión de humos y opacidad reducida.

En el caso del proyecto, se han diseñado las derivaciones de tal manera que cada una corresponde a una planta del hotel. Tal y como se puede observar en la imagen 1 y en la imagen 2, la línea 2 (L2) se desplaza verticalmente hasta llegar al falso techo de la primera planta. Ocurre

Proyecto de diseño de la instalación eléctrica de un hotel de 61 habitaciones exactamente lo mismo con las líneas L3, L4 y L5. Al final de cada una de estas líneas se coloca un cuadro, y a partir de éste surgen las diferentes líneas hacia los cuadros secundarios.

El método de instalación de la canalización seleccionado será el tipo B, y el cableado transcurre a través de huecos en la obra.

Una vez explicadas las diferentes derivaciones, las longitudes de cada una de ellas son las siguientes:

	Longitud (m)
Planta Baja	1
Primera Planta	37.76
Segunda Planta	41.79
Tercera Planta	45.31
Cuarta Planta	48.83

Tabla 14

Al comienzo de cada derivación se disponen de los dispositivos de protección necesarios. Con el fin de asegurar la protección frente a cortocircuitos, se realizará mediante el uso de fusibles. Respecto a la protección contra contactos directos e indirectos, se hará uso de interruptores diferenciales (I.D.), de tal manera que son capaces de detectar la corriente de defecto en el caso de un fallo de aislamiento. También hay que tener en cuenta el uso de Interruptores Automáticas Generales (I.G.A.), ya que estos se encargan de las pequeñas corrientes de cortocircuitos y de las sobrecargas.

Según los cálculos del ANEXO I.II, los fusibles a utilizar para llevar a cabo la protección son los siguientes:

Circuito	Fusible (A)	Pc (kA)
L1	400	120
L2	100	120
L3	200	120
L4	250	120
L5	250	120

Tabla 15

Respecto a la sección de los conductores, éstos se obtienen tal y como se indica en el ANEXO I.I:

Circuito	Sección	
L1	2(4x95+TTx50)mm ² Cu	
L2	4x25+TTx16mm ² Cu	
L3	4x95+TTx50mm ² Cu	
L4	4x95+TTx50mm ² Cu	
L5	4x95+TTx50mm ² Cu	

Tabla 16

2.6 Esquema de distribución

Para este caso, al tratarse de una instalación en la cual el centro de transformación se encuentra dentro de la parcela, según lo establecido en el ITC-BT-08, el esquema de distribución podrá ser cualquiera de las 3 posibles opciones. Dichos esquemas son el esquema TN, el esquema TT y el esquema IT.

Se ha optado por un esquema de distribución TT, ya que en el caso de un esquema TN, es necesario la implementación de otro cable protector por el cual tendría que pasar la corriente de cortocircuito, y con el fin de evitar fallos en dicho cable, se opta a que dicha corriente circule por la tierra. Por otra parte, el esquema IT sólo es necesario en ocasiones en las que es necesario mantener el suministro eléctrico incluso cuando se detecte algún fallo, no siendo éste el caso.

La puesta a tierra del neutro del transformador (Rb) utilizada en este esquema de distribución será mediante picas, cuya resistencia ha de ser menor a 30 ohmios, tal y como se describe en el ITC-BT-08.

2.7 Instalación de puesta a tierra

La instalación de la toma de tierra debe asegurar que las corrientes de defecto a tierra y las corrientes de fuga puedan circular sin generar peligro alguno, otorgando especial hincapié en las solicitaciones térmicas, mecánicas y eléctricas.

La disposición de las tomas de tierra, en función del esquema TT, y tal y como indica el ITC-BT-18, es la siguiente:

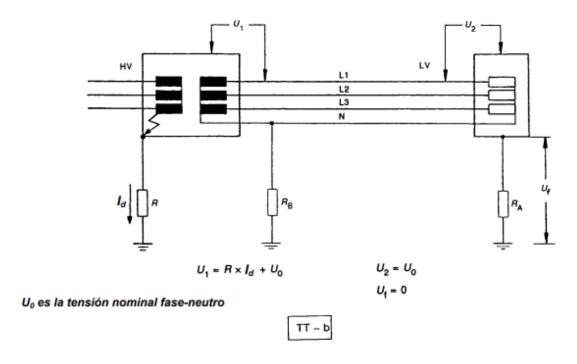


Imagen 3. Esquema TT

A la vista del esquema, será necesario el dimensionamiento de la puesta a tierra del centro de transformación, la puesta a tierra del neutro de la instalación del hotel, y la puesta a tierra de las masas presentes en la instalación eléctrica.

La profundidad de las tomas de tierra deberá ser en todo caso superior a los 0.50m.

La resistencia de las tomas de tierra debe ser dimensionada de tal forma que dicha resistencia no pueda dar lugar a tensiones de contacto superiores a 50V, ya que dicho local se considera seco. Por otro lado, esta resistencia del electrodo depende de sus dimensiones, de su forma y de la resistividad del terreno. Dicha resistividad ha sido estimada según los valores medios de la zona, siendo ésta de 150 Ω xm.

Los conductores seleccionados para unir los diferentes electrodos de la instalación serán de cobre desnudo, cuya sección es de 50mm².

El electrodo adecuado para la puesta a tierra del centro de transformación (Rt) tendrá una geometría en anillo, siendo sus dimensiones de 7x2.5m. Dicho electrodo se situará a una profundidad de 0.50m, y la longitud de las picas será de 2m. El número total de picas necesarias es de 8. Todo lo mencionado anteriormente se ha llevado a cabo siguiendo los cálculos del ANEXO I.IV.

Proyecto de diseño de la instalación eléctrica de un hotel de 61 habitaciones Respecto a la puesta a tierra del neutro (Rb), según lo indicado en el ANEXO I.IV, la geometría de los electrodos será de picas en hilera, estableciéndolas a una profundidad de 0.50m. Se necesitará un total de 3 picas de 2m e longitud cada una, y existiendo una separación entre cada una de ellas de 3m.

A continuación, se describe el método de cálculo de los conductores de protección, para el cual se hará uso de la siguiente imagen, extraída del ITC-BT-18 (tabla 2), la cual establece la relación entre las secciones de los conductores de protección y los de fase:

Sección de los conductores de fase de la instalación S (mm²)	Sección mínima de los conductores de protección S _p (mm²)
S ≤ 16	S _p = S
16 < S ≤ 35	S _p = 16
S > 35	$S_p = S/2$

Imagen 4. Sección conductores de protección

Para que sea posible utilizar esta tabla, el material de los conductores de protección y de los de fase debe ser el mismo. La sección de dichos conductores podrá visualizarse posteriormente, cuando se introduzca los conductores de la instalación.

La toma a tierra de las masas del hotel deberá seguir las instrucciones de la siguiente tabla, la cual está disponible en el ITC-BT-26:

3.3 Puntos de puesta a tierra

Los puntos de puesta a tierra se situarán:

- a) En los patios de luces destinados a cocinas y cuartos de aseo, etc., en rehabilitación o reforma de edificios existentes.
- b) En el local o lugar de la centralización de contadores, si la hubiere.
- c) En la base de las estructuras metálicas de los ascensores y montacargas, si los hubiere
- d) En el punto de ubicación de la caja general de protección.
- e) En cualquier local donde se prevea la instalación de elementos destinados a servicios generales o especiales, y que por su clase de aislamiento o condiciones de instalación, deban ponerse a tierra.

Imagen 5. Puntos de puesta a tierra

Según la tabla, se ha decidido colocar la toma de tierra de la instalación eléctrica del hotel en la base de las estructuras metálicas de los ascensores y montacargas, existiendo una distancia entre la toma a tierra del centro de transformación y la toma a tierra de las masas del hotel de

Proyecto de diseño de la instalación eléctrica de un hotel de 61 habitaciones 22.14m. Se ha optado por esta elección ya que el centro de transformación se encuentra dentro de dicho hotel, y por lo tanto los contadores y la caja general de protección se sitúan dentro del mismo local. Según los cálculos del centro de transformación, la resistencia a tierra del mismo (Rt) es de 11.4Ω , mientras que la resistencia a tierra del neutro (Rb) será de 20.25Ω (inferior a la resistencia máxima admisible impuesta por el ITC-BT-08 de 30Ω), situado a una distancia de 11.94m del centro de transformación, tal y como se indica en el plano 4.2. Con dicha distancia se asegura que exista independencia entre ambas resistencias.

Respecto a la puesta a tierra de las masas del hotel (Ra), se dispondrá de un conductor de cobre desnudo de 35mm^2 de sección, y se hará uso de picas verticales de 14 mm de diámetro enterradas a 2 m de profundidad. Con esto, la resistencia calculada será de 9.95Ω , dato que cumple con la resistencia máxima admisible de 166Ω .

El cálculo de las resistencias se ha realizado en el ANEXO I.IV.

2.8 Líneas Secundarias

Cada línea del circuito eléctrico ha de tener protección. Para esta sección, será necesario el uso de interruptores magnetotérmicos (I.M.), cuya función es prevenir de las corrientes de cortocircuito, además de cortar la corriente eléctrica en el caso de que se supere la potencia para la cual fue diseñada dicho circuito. Junto a los I.M., también se utilizarán interruptores diferenciales (I.D.), cuyo propósito es el de prevenir contra contactos indirectos sobre la instalación.

En la salida de un subcuadro, ésta puede dividirse en diferentes líneas las cuales tienen funciones diferentes. Por ejemplo, una línea puede utilizarse para la iluminación de la sala, mientras que otra puede emplearse para las tomas de uso general. Hay que destacar que para cada una de estas líneas es necesario un I.M., mientras que un solo I.D. es suficiente para la protección del conjunto de líneas. Sin embargo, en máquinas eléctricas las cuales son sensibles a sufrir defectos (debido a la exposición frente al agua, por ejemplo), es preferible usar un I.D. únicamente para esa línea, mientras que seguirá siendo necesario la protección del circuito general con otro I.D.

Hay que destacar que si se hace uso de dos diferenciales en una misma línea, el que se sitúe aguas arriba deberá tener una sensibilidad superior, ya que en el caso de que ésta fuese igual, cuando se produce el fallo en la línea específica que se quiere proteger, el I.D. principal también detecta la corriente de defecto, y por lo tanto no tendría sentido el uso de dos I.D. con la misma sensibilidad. Según lo estipulado en el ITC-BT-25, la sensibilidad mínima será de 30mA, pudiendo utilizar otros diferenciales con intensidad superior si están conectados en serie.

En el caso de la instalación, se conoce la longitud de los cables, y por lo tanto es posible calcular la corriente de fugas, la cual indica cual será la sensibilidad mínima requerida por cada línea. Será necesario conocer la capacidad parásita del cable (cobre en este caso), siendo esta de $0.3~\mu\text{C}/(\text{km}~\text{x}~\text{fase})$. Mediante la consulta de varias fuentes, estas indican que la capacidad parásita en corrientes de baja frecuencia (50Hz) es despreciable, lo cual es posible confirmar a través de los cálculos del ANEXO I.VI. En definitiva, la sensibilidad mínima de los distintos I.D. situados en las líneas será de 30mA.

El cálculo de cada una de las protecciones se podrá visualizar en el ANEXO I.II. Hay que tener en cuenta que la intensidad nominal del interruptor diferencial será la misma que la seleccionada para el interruptor magnetotérmico. En el caso de un interruptor automático, el bloque diferencial se encuentra incorporado dentro de éste.

A continuación su muestra un resumen de las diferentes protecciones utilizadas para cada circuito. Con el fin de simplificar, no se han puesto las protecciones de todas las habitaciones, ya que sólo hay dos tipos, y la protección de estas es igual, indiferentemente de la planta en la que se encuentre. Además, se ha optado por mostrar sólo la planta baja. La tabla completa es posible localizarla en el ANEXO ...I.II. En dicha tabla, se describen los siguientes apartados:

- In: Intensidad nominal.
- U: Tensión nominal.
- Ir: Intensidad regulable.
- Is: Sensibilidad.
- Pc: Poder de corte.

Planta Baja					
L1.1 Centro de Computo + Archivo General	In	U	Ir	Is	Рс
IM Subcuadro L1.1	25	230			6
ID Subcuadro L1.1	25	230		30	
IM Subcuadro L1.1 C1 Iluminación Arch	10	230			6
IM Subcuadro L1.1 C1 Iluminación Comp	10	230			6
IM Subcuadro L1.1 C2 Toma de Uso General 1/2	16	230			6
IM Subcuadro L1.1 C2 Toma de Uso General 2/2	16	230			6
IM Subcuadro L1.1 C8 Bomba de Calor	25	230			6
L1.2 Relaciones Públicas	In	U	Ir	Is	Рс
IM Subcuadro L1.2	25	230			6
ID Subcuadro L1.2	25	230		30	
IM Subcuadro L1.2 C1 Iluminación	10	230			6
IM Subcuadro L1.2 C2 Toma de Uso General	16	230			6
IM Subcuadro L1.2 C8 Bomba de Calor	25	230			6
L1.3 Recursos Humanos	In	U	Ir	Is	Рс
IM Subcuadro L1.3	25	230			6
ID Subcuadro L1.3	25	230		30	
IM Subcuadro L1.3 C1 Iluminación	10	230			6
IM Subcuadro L1.3 C2 Toma de Uso General 1/2	16	230			6
IM Subcuadro L1.3 C2 Toma de Uso General 2/2	16	230			6
IM Subcuadro L1.3 C8 Bomba de Calor	25	230			6
L1.4 Gerente Administrativo	In	U	Ir	Is	Рс
IM Subcuadro L1.4	25	400			6
ID Subcuadro L1.4	25	400		30	
IM Subcuadro L1.4 C1 Iluminación	10	230			6
IM Subcuadro L1.4 C2 Toma de Uso General	16	230			6
IM Subcuadro L1.4 C8 Bomba de Calor	25	230			6
L1.5 Secretaría	In	U	Ir	Is	Рс
IM Subcuadro L1.5	25	230			6
ID Subcuadro L1.5	25	230		30	
IM Subcuadro L1.5 C1 Iluminación	10	230			6
IM Subcuadro L1.5 C2 Toma de Uso General	16	230			6
IM Subcuadro L1.5 C8 Bomba de Calor	25	230			6

Tabla 17

L1.6 Gerente General	In		U	Ir	Is	Рс	
IM Subcuadro L1.6		25	230				6
ID Subcuadro L1.6	2	25	230		30		
IM Subcuadro L1.6 C1 Iluminación	:	10	230				6
IM Subcuadro L1.6 C2 Toma de Uso General	:	16	230				6
IM Subcuadro L1.6 C5 Baño	:	16	230				6
IM Subcuadro L1.6 C8 Bomba de Calor	2	25	230				6
L1.7 Sala de Juntas	In		U	Ir	Is	Рс	
IM Subcuadro L1.7	2	25	230				6
ID Subcuadro L1.7	2	25	230		30		
IM Subcuadro L1.7 C1 Iluminación	:	10	230				6
IM Subcuadro L1.7 C2 Toma de Uso General	:	16	230				6
IM Subcuadro L1.7 C8 Bomba de Calor		25	230				6
L1.8 Pasillos Administración	In		U	Ir	Is	Рс	
IM Subcuadro L1.8	2	25	230				6
ID Subcuadro L1.8		25	230		30		
IM Subcuadro L1.8 C1 Iluminación		10	230				6
L1.9 Alumbrado Emergencia Pasillos Administración	In		U	Ir	Is	Рс	
IM Subcuadro L1.9	2	25	230				6
ID Subcuadro L1.9	:	25	230		30		
IM Subcuadro L1.9 C1 Iluminación	2	10	230				6
L1.10 Lobby	In		U	Ir	Is	Рс	
IM Subcuadro L1.10	Į,	50	400				6
ID Subcuadro L1.10	(63	400		300		
IM Subcuadro L1.10 C1 Iluminación	:	10	230				6
IM Subcuadro L1.10 C2 Toma de Uso General	:	16	230				6
IM Subcuadro L1.10 C8 Bomba de Calor	4	40	400				6
ID Subcuadro L1.10 C8 Bomba de Calor	4	40	400		30		
L1.11 Alumbrado Emergencia Lobby	In		U	Ir	Is	Рс	
IM Subcuadro L1.11	:	25	230				6
ID Subcuadro L1.11	2	25	230		30		
IM Subcuadro L1.11 C1 Iluminación	:	10	230				6
L1.12 Restaurante	In		U	Ir	Is	Рс	
IM Subcuadro L1.12	(63	400				6
ID Subcuadro L1.12	(63	400		300		
IM Subcuadro L1.12 C1 Iluminación	:	10	230				6
IM Subcuadro L1.12 C2 Toma de Uso General		16	230				6
IM Subcuadro L1.12 C8 Bomba de Calor	(63	400				6
ID Subcuadro L1.12 C8 Bomba de Calor		63	400		30		

Tabla 18

Proyecto de diseño de la instalación eléctrica de		iotei		nab					
L1.13 Cuarto de Máquinas	In		U		Ir	Is		Рс	
IA Subcuadro L1.13		100	4	00	85	5	300		36
IM Subcuadro L1.13 Montacargas		50	4	00					6
ID Subcuadro L1.13 Montacargas		63	4	00			30		
IM Subcuadro L1.13 Ascensores		40	4	00					6
ID Subcuadro L1.13 Ascensores		40	4	00			30		
L1.14 Cocina	In		U		Ir	Is		Рс	
IM Subcuadro L1.14		50	2	30					6
ID Subcuadro L1.14		63	2	30			300		
IM Subcuadro L1.14 C1 Iluminación		10	2	30					6
IM Subcuadro L1.14 Electrodomésticos Bodega		16	2	30					6
IM Subcuadro L1.14 Cocina		50	2	30					6
IM Subcuadro L1.14 Electrodomésticos Cocina		16	2	30					6
IM Subcuadro L1.14 Horno		20	2	30					6
ID Subcuadro L1.14 Horno		25	2	30			30		
IM Subcuadro L1.14 Lavavajillas		20	2	30					6
ID Subcuadro L1.14 Lavavajillas		25	2	30			30		
L1.15 Lavandería	In		U		Ir	Is		Рс	
IM Subcuadro L1.15		40	4	00					6
ID Subcuadro L1.15		40	4	00			300		
IM Subcuadro L1.15 C1 Iluminación		10	2	30					6
IM Subcuadro L1.15 Lavadoras		32	4	00					6
ID Subcuadro L1.15 Lavadoras		40	4	00			30		
IM Subcuadro L1.15 Secadoras		25	2	30					6
ID Subcuadro L1.15 Secadoras		25	2	30			30		
L1.16 Comedor Empleados	In		U		Ir	Is		Рс	
IM Subcuadro L1.16		32	2	30					6
ID Subcuadro L1.16		40	2	30			30		
IM Subcuadro L1.16 C1 Iluminación		10	2	30					6
IM Subcuadro L1.16 C2 Toma de Uso General		32	2	30					6
IM Subcuadro L1.16 C8 Bomba de Calor		25	2	30					6
L1.17 Gimnasio	In		U		Ir	Is		Рс	
IM Subcuadro L1.17		25	2	30					6
ID Subcuadro L1.17		25	2	30			30		
IM Subcuadro L1.17 C1 Iluminación		10	2	30					6
IM Subcuadro L1.17 C2 Toma de Uso General		16	2	30					6
IM Subcuadro L1.17 C8 Bomba de Calor		25	2	30					6
L1.18 Cuarto de Vigilancia	In		U		Ir	Is		Рс	
IM Subcuadro L1.18		25	2	30					6
ID Subcuadro L1.18		25	2	30			30		
IM Subcuadro L1.18 C1 Iluminación		10	2	30					6
IM Subcuadro L1.18 C2 Toma de Uso General		16	2	30					6
IM Subcuadro L1.18 C8 Bomba de Calor		25	2	30					6

Tabla 19

2.9 Alumbrado de emergencia

Conforme al ITC-BT-28, la alimentación del alumbrado de emergencia debe ser automática con corte breve. Esto significa que la alimentación automática debe estar disponible en un tiempo máximo de 0.5 segundos.

Dentro del alumbrado de emergencia, existe el alumbrado de seguridad y el alumbrado de reemplazamiento. Dentro de un hotel, sólo es necesario del uso del alumbrado de seguridad, ya que éste es el necesario para garantizar la seguridad de las personas que evacuen una zona. Dicho alumbrado deberá entrar en funcionamiento automáticamente cuando se produzca un fallo del alumbrado general, o en el caso de que la tensión sea inferior del 70% de su valor nominal. Las distintas fuentes de energía que se necesite para esta instalación deberán de ser propias.

2.9.1 Alumbrado de evacuación

Dentro de la ruta de evacuación, el alumbrado deberá proporcionar, a nivel del suelo y en el eje de los pasos principales, una iluminancia horizontal mínima de 1 lux.

En los puntos en los que se encuentren los equipos de las instalaciones de protección contra incendios que exijan utilización manual y en los cuadros de distribución del alumbrado, la iluminancia mínima será de 5 lux.

La relación entre la iluminancia máxima y la mínima en el eje de los pasos principales será menor de 40.

El alumbrado de seguridad deberá situarse en los aseos generales de planta y en las habitaciones, y obviamente en el recorrido de evacuación.

El modelo de la luminaria es "PHILIPS RS060B 1xLED5-36-/830", y la distribución de la iluminaria en planta es posible visualizarla en los planos 4.3.

2.9.2 Alimentación alumbrado emergencia

Según lo indicado en el ITC-BT-28, los locales de pública concurrencia deberán disponer de una fuente propia de energía, las cuales están constituidas por baterías de acumuladores, aparatos autónomos o grupos electrógenos. El caso particular de esta instalación, se ha optado por la selección de un grupo electrógeno cuya potencia es de 42 kVA. La elección de dicha potencia se ha obtenido teniendo en cuenta la potencia máxima admisible que es capaz de demandar cada circuito de alumbrado de emergencia. En la siguiente tabla se podrá observar un resumen de la potencia de cada circuito, así como la potencia máxima necesaria:

Circuito	Potencia (W)	Potencia Máxima Admisible (W)
Lobby	256	5750
Administración	54	5750
Primera Planta	372	5750
Segunda Planta	390	5750
Tercera Planta	390	5750
Cuarta Planta	390	5750
Total	1852	34500

Tabla 20

2.10 Potencia Eléctrica

Una vez realizada la explicación de la disposición de los diferentes dispositivos de protección de la instalación eléctrica, a continuación se detalla la potencia instalada en las diferentes líneas que componen el hotel:

Circuito	Descripción	Potencia (W)	Factor Simultaneidad
L1	Planta Baja	163200	
L2	Primera Planta	40250	
L3	Segunda Planta	83030	0.7
L4	Tercera Planta	89355	0.7
L5	Cuarta Planta	89355	0.7

Tabla 21

El factor de simultaneidad ha sido calculado teniendo en cuenta el número de habitaciones en cada planta, y siguiendo las instrucciones del ITC-BT-10.

En las siguientes tablas aparece el concepto de la potencia máxima admisible. Esto se refiere a la potencia máxima que será capaz de demandar la respectiva línea eléctrica sin que el interruptor magnetotérmico salte. Esta es la potencia que se ha utilizado en el cálculo de las líneas principales (L1, L2, L3, L4 y L5).

	Planta Baja						
Cir-		l lanca zaja					
cuito	Descripción	Potencia (W)	Potencia Máxima Admisible (W)	Alimentación			
L1.1	Centro de Computo + Archivo General	4053	5750	Monofásica			
L1.2	Relaciones Públicas	2882.5	5750	Monofásica			
L1.3	Recursos Humanos	2710	5750	Monofásica			
L1.4	Gerente Administrativo	2468	5750	Monofásica			
L1.5	Secretaría	2455	5750	Monofásica			
L1.6	Gerente General	2985.5	5750	Monofásica			
L1.7	Sala de Juntas	3788	5750	Monofásica			
L1.8	Pasillos Administración	524	5750	Monofásica			
L1.9	Alumbrado Emergencia Administración	54	5750	Monofásica			
L1.10	Lobby	22529.5	20000	Trifásica			
L1.11	Alumbrado Emergencia Lobby	258	5750	Monofásica			
L1.12	Restaurante	29239.5	25200	Trifásica			
L1.13	Cuarto de Máquinas Elevadoras	42000	40000	Trifásica			
L1.14	Cocina	11528	20000	Trifásica			
L1.15	Lavandería	19076	16000	Trifásica			
L1.16	Comedor Empleados	2799.75	5750	Monofásica			
L1.17	Gimnasio	9457	5750	Monofásica			
L1.18	Cuarto Vigilancia	488	5750	Monofásica			

Tabla 22

	Primera Planta							
Cir-								
cuito	Descripción	Potencia (W)	Potencia Máxima Admisible (W)	Alimentación				
L2.1	Pasillos	667	5750	Monofásica				
L2.2	Alumbrado Emergencia	372	5750	Monofásica				
L2.3	Habitación 1	5190	5750	Monofásica				
L2.4	Habitación 2	5190	5750	Monofásica				
L2.5	Habitación 3	5190	5750	Monofásica				
L2.6	Sala Conferencias 22 Personas	1975	5750	Monofásica				
L2.7	Sala Conferencias 30 Personas	2257.5	5750	Monofásica				
L2.8	Sala Conferencias 52 Personas	3370.75	5750	Monofásica				

Tabla 23

	Segunda Planta								
Circuito	Descrición	Potencia (W)	Potencia Máxima Admisible	Alimentación					
L3.1	Pasillos	783	5750	Monofásica					
L3.2	Alumbrado Emergencia	390	5750	Monofásica					
L3.3	Habitación 4	5190	5750	Monofásica					
L3.4	Habitación 5	4511.25	5750	Monofásica					
L3.5	Habitación 6	4511.25	5750	Monofásica					
L3.6	Habitación 7	4511.25	5750	Monofásica					
L3.7	Habitación 8	4511.25	5750	Monofásica					
L3.8	Habitación 9	4511.25	5750	Monofásica					
L3.9	Habitación 10	4511.25	5750	Monofásica					
L3.10	Habitación 11	4511.25	5750	Monofásica					
L3.11	Habitación 12	4511.25	5750	Monofásica					
L3.12	Habitación 13	4511.25	5750	Monofásica					
L3.13	Habitación 14	4511.25	5750	Monofásica					
L3.14	Habitación 15	4511.25	5750	Monofásica					
L3.15	Habitación 16	4511.25	5750	Monofásica					
L3.16	Habitación 17	5190	5750	Monofásica					
L3.17	Habitación 18	4511.25	5750	Monofásica					
L3.18	Habitación 19	4511.25	5750	Monofásica					
L3.19	Habitación 20	4511.25	5750	Monofásica					
L3.20	Habitación 21	4511.25	5750	Monofásica					

Tabla 24

	Tercera Planta							
Circuito	Descripción	Potencia (W)	Potencia Máxima Admisible (W)	Alimentación				
L4.1	Pasillos	870	5750	Monofásica				
L4.2	Alumbrado Emergencia	390	5750	Monofásica				
L4.3	Habitación 22	4511.25	5750	Monofásica				
L4.4	Habitación 23	4511.25	5750	Monofásica				
L4.5	Habitación 24	4511.25	5750	Monofásica				
L4.6	Habitación 25	4511.25	5750	Monofásica				
L4.7	Habitación 26	4511.25	5750	Monofásica				
L4.8	Habitación 27	4511.25	5750	Monofásica				
L4.9	Habitación 28	4511.25	5750	Monofásica				
L4.10	Habitación 29	4511.25	5750	Monofásica				
L4.11	Habitación 30	4511.25	5750	Monofásica				
L4.12	Habitación 31	4511.25	5750	Monofásica				
L4.13	Habitación 32	4511.25	5750	Monofásica				
L4.14	Habitación 33	4511.25	5750	Monofásica				
L4.15	Habitación 34	4511.25	5750	Monofásica				
L4.16	Habitación 35	4511.25	5750	Monofásica				
L4.17	Habitación 36	4511.25	5750	Monofásica				
L4.18	Habitación 37	4511.25	5750	Monofásica				
L4.19	Habitación 38	4511.25	5750	Monofásica				
L4.20	Habitación 39	4511.25	5750	Monofásica				
L4.21	Habitación 40	4511.25	5750	Monofásica				
L4.22	Habitación 41	4511.25	5750	Monofásica				

Tabla 25

	Cuarta Planta							
Circuito	Descripción	Potencia (W)	Potencia Máxima Admisible (W)	Alimentación				
L5.1	Pasillos	870	5750	Monofásica				
L5.2	Alumbrado Emergencia	390	5750	Monofásica				
L5.3	Habitación 42	4511.25	5750	Monofásica				
L5.4	Habitación 43	4511.25	5750	Monofásica				
L5.5	Habitación 44	4511.25	5750	Monofásica				
L5.6	Habitación 45	4511.25	5750	Monofásica				
L5.7	Habitación 46	4511.25	5750	Monofásica				
L5.8	Habitación 47	4511.25	5750	Monofásica				
L5.9	Habitación 48	4511.25	5750	Monofásica				
L5.10	Habitación 49	4511.25	5750	Monofásica				
L5.11	Habitación 50	4511.25	5750	Monofásica				
L5.12	Habitación 51	4511.25	5750	Monofásica				
L5.13	Habitación 52	4511.25	5750	Monofásica				
L5.14	Habitación 53	4511.25	5750	Monofásica				
L5.15	Habitación 54	4511.25	5750	Monofásica				
L5.16	Habitación 55	4511.25	5750	Monofásica				
L5.17	Habitación 56	4511.25	5750	Monofásica				
L5.18	Habitación 57	4511.25	5750	Monofásica				
L5.19	Habitación 58	4511.25	5750	Monofásica				
L5.20	Habitación 59	4511.25	5750	Monofásica				
L5.21	Habitación 60	4511.25	5750	Monofásica				
L5.22	Habitación 61	4511.25	5750	Monofásica				

Tabla 26

2.11 Conductores

La canalización utilizada para el recorrido de los conductores es de tipo B. En el caso de que dichos cables sean utilizados para la iluminación, o para el recorrido desde los cuadros principales hasta los diferentes subcuadros de cada planta que transcurren por los pasillos, su método de instalación será a través del falso techo. En el resto de caso, su método de instalación será empotrados en obra. El material utilizado será el cobre (Cu), y se empleará un aislamiento de PVC, cuya tensión asignada será 450/750 V.

Los métodos de cálculo utilizados son los de la intensidad de corriente máxima que soportan los cables, y la caída de tensión máxima permisible. Para esta instalación, dicha caída de tensión será del 3%. Entre estos dos métodos de cálculo, se deberá escoger la sección más desfavorable en cada caso.

Para la elección de la sección de los conductores, hay que tener en cuenta la tabla 1 del ITC-BT-25, la cual indica lo siguiente:

	Tabla 1. Características eléctricas de los circuitos ⁽¹⁾								
Circuito de utilización	Interruptor Automático (A)	Máximo nº de puntos de utilización o tomas por circuito	Conductores sección mínima mm² (5)	Tubo o conducto Diámetro mm (3)					
C ₁ Iluminación	200	0,75	0,5	Punto de luz ⁽⁹⁾	10	30	1,5	16	
C ₂ Tomas de uso general	3.450	0,2	0,25	Base 16A 2p+T	16	20	2,5	20	
C ₃ Cocina y horno	5.400	0,5	0,75	Base 25 A 2p+T	25	2	6	25	
C ₄ Lavadora, lavavajillas y termo eléctrico	3.450	0,66	0,75	Base 16A 2p+T combinadas con fusibles o interruptores automáticos de 16 A (8)	20	3	4 (6)	20	
C₅ Baño, cuarto de cocina	3.450	0,4	0,5	Base 16A 2p+T	16	6	2,5	20	
C ₈ Calefacción	(2)				25		6	25	
C ₉ Aire acondicionado	(2)				25		6	25	
C ₁₀ Secadora	3.450	1	0,75	Base 16A 2p+T	16	1	2,5	20	
C ₁₁ Automatización	(4)				10		1,5	16	

- La tensión considerada es de 230 V entre fase y neutro. La potencia máxima permisible por circuito será de 5.750 W Diámetros externos según ITC-BT 19
- Diametros externos segun ITC-BT 19
 La potencia máxima permisible por circuito será de 2.300 W
 Este valor corresponde a una instalación de dos conductores y tierra con aislamiento de PVC bajo tubo empotrado en obra, según tabla 1 de ITC-BT-19. Otras secciones pueden ser requeridas para otros tipos de cable o condiciones de instalación
 En este circuito exclusivamente, cada toma individual puede conectarse mediante un conductor de sección 2,5 mm² que parta de una caja de derivación del circuito de 4 mm².
- (7) Las bases de toma de corriente de 16 A 2p+T serán fijas del tipo indicado en la figura C2a y las de 25 A 2p+T serán del tipo indicado en la figura ESB 25-5A, ambas
- de la norma UNE 20315.

 Los fusibles o interruptores automáticos no son necesarios si se dispone de circuitos independientes para cada aparato, con interruptor automático de 16 A en cada circuito, el desdoblamiento del circuito con este fin no supondrá el paso a electrificación elevada ni la necesidad de disponer de un diferencial adicional.

 El punto de luz incluirá conductor de protección.

Imagen 6. Tabla 1 del ITC-BT-25

Cabe destacar que en la actualidad se utilizan bombas de calor que son capaces de proporcionar tanto frío como calor. Debido a que en la tabla, los valores de la sección mínima, del diámetro del tubo, y de la intensidad nominal del interruptor automático son iguales, no genera problema alguno a la hora de la lectura de dicha tabla.

Proyecto de diseño de la instalación eléctrica de un hotel de 61 habitaciones Mediante el uso de las fórmulas del ANEXO I.I, se procede a realizar el cálculo de las canalizaciones eléctricas necesarias para la instalación.

En la siguiente tabla, se representa también el diámetro exterior de los tubos protectores, siguiendo las indicaciones de la tabla 5 presente en la ITC-BT-21:

Cir-			Longitud		Diá-
cuito	Descripción	Método de Instalación	Total	Sección	metro
	Centro de Computo + Ar-				
L1.1	chivo General				
	C1 Iluminación Archivo	Falso Techo 450/750V,		2x1.5+TTx1.5	
	General	PVC	6.57	mm² Cu	
	C1 Iluminación Centro de	Falso Techo 450/750V,		2x1.5+TTx1.5	
	Computo	PVC	28.75		
	C2 Toma de Uso General	Empotrado en Obra		2x2.5+TTx2.5	
	1/2	450/750V, PVC	4.92	mm² Cu	20
	C2 Toma de Uso General	Empotrado en Obra		2x2.5+TTx2.5	
	2/2	450/750V, PVC	14.66		20
		Empotrado en Obra		2x6+TTx6mm ²	
	C8 Bomba de Calor	450/750V, PVC	10.24	Cu	25
L1.2	Relaciones Públicas				
		Falso Techo 450/750V,		2x1.5+TTx1.5	
	C1 Iluminación	PVC	18.96	mm² Cu	
		Empotrado en Obra		2x2.5+TTx2.5	
	C2 Toma de Uso General	450/750V, PVC	8.97	mm² Cu	20
		Empotrado en Obra		2x6+TTx6mm ²	
	C8 Bomba de Calor	450/750V, PVC	8.91	Cu	25
L1.3	Recursos Humanos				
		Falso Techo 450/750V,		2x1.5+TTx1.5	
	C1 Iluminación	PVC	18.97	mm² Cu	
	C2 Toma de Uso General	Empotrado en Obra		2x2.5+TTx2.5	
	1/2	450/750V, PVC	4.85	mm² Cu	20
	C2 Toma de Uso General	Empotrado en Obra		2x2.5+TTx2.5	
	2/2	450/750V, PVC	4.11	mm² Cu	20
		Empotrado en Obra		2x6+TTx6mm ²	
	C8 Bomba de Calor	450/750V, PVC	8.91	Cu	25
L1.4	Gerente Administrativo				
		Falso Techo 450/750V,		2x1.5+TTx1.5	
	C1 Iluminación	PVC	15	mm² Cu	
		Empotrado en Obra		2x2.5+TTx2.5	
	C2 Toma de Uso General	450/750V, PVC	10.29	mm² Cu	20
		Empotrado en Obra		2x6+TTx6mm ²	
	C8 Bomba de Calor	450/750V, PVC	7.7	Cu	25

Tabla 27

Proyec	yecto de diseño de la instalación eléctrica de un hotel de 61 habitaciones						
Cir-			Longitud		Diá-		
cuito	Descripción	Método de Instalación	Total	Sección	metro		
L1.5	Secretaría						
	C1 Iluminación	Falso Techo 450/750V, PVC	22.44	2x1.5+TTx1.5 mm ² Cu			
	C2 Toma de Uso General	Empotrado en Obra 450/750V, PVC	5.24		20		
	C8 Bomba de Calor	Empotrado en Obra 450/750V, PVC	7.68	2x6+TTx6mm ² Cu	25		
L1.6	Gerente General						
	C1 Iluminación	Falso Techo 450/750V, PVC	19.72	2x1.5+TTx1.5 mm ² Cu			
	C2 Toma de Uso General	Empotrado en Obra 450/750V, PVC	9.02		20		
	C5 Baño	Empotrado en Obra 450/750V, PVC	7.05		20		
	C8 Bomba de Calor	Empotrado en Obra 450/750V, PVC	2.49	2x6+TTx6mm ² Cu	25		
L1.7	Sala de Juntas						
	C1 Iluminación	Falso Techo 450/750V, PVC	33.89	2x1.5+TTx1.5 mm ² Cu			
	C2 Toma de Uso General	Empotrado en Obra 450/750V, PVC	9.9		20		
	C8 Bomba de Calor	Empotrado en Obra 450/750V, PVC	13.7	2x6+TTx6mm ² Cu	25		
L1.8	Pasillos Administración						
	C1 Iluminación	Falso Techo 450/750V, PVC	23.23	2x1.5+TTx1.5 mm ² Cu			
L1.9	Alumbrado Emergencia Administración						
	C1 Iluminación	Falso Techo 450/750V, PVC	27.081	2x2.5+TTx1.5 mm ² Cu			
L1.1 0	Lobby						
	C1 Iluminación	Falso Techo 450/750V, PVC	110.04				
	C2 Toma de Uso General	Empotrado en Obra 450/750V, PVC	40.33	2x2.5+TTx2.5 mm ² Cu	20		
	C8 Bomba de Calor	Empotrado en Obra 450/750V, PVC	23.93	2x10+TTx10m m ² Cu	32		
L1.1 1	Alumbrado Emergencia Lobby						
	C1 Iluminación	Falso Techo 450/750V, PVC	107.14	2x1.5+TTx1.5 mm ² Cu			

Tabla 28

	to de diseño de la insta	lación eléctrica de un hotel		aciones	D:4
Cir-	D	MAKIN IN INTERPRETATION	Longitud	Sección	Diá-
cuito	Descripción	Método de Instalación	Total		metro
L1.12	Restaurante				
		Falso Techo 450/750V,		2x1.5+TTx1.5m	
	C1 Iluminación	PVC	83.09	m ² Cu	
	C2 Toma de Uso Ge-	Empotrado en Obra		2x2.5+TTx2.5m	
	neral	450/750V, PVC	53.19	m ² Cu	20
		Empotrado en Obra		4x25+TTx16m	
	C8 Bomba de Calor	450/750V, PVC	1.82	m² Cu	50
14.42	Cuarto Máquinas				
L1.13	Elevadoras	5		1 1C TT 1C	
		Empotrado en Obra	0.4-	4x16+TTx16m	
	Montacargas	450/750V, PVC	8.17		40
		Empotrado en Obra		4x10+TTx10m	
	Ascensores	450/750V, PVC	6.84	m² Cu	32
L1.14	Cocina				
		Falso Techo 450/750V,		2x1.5+TTx1.5m	
	C1 Iluminación	PVC	29.58		
	Electrodomésticos	Empotrado en Obra		2x2.5+TTx2.5m	
	Bodega	450/750V, PVC	15.41	m² Cu	20
	Electrodomésticos	Empotrado en Obra		2x2.5+TTx2.5m	
	Cocina	450/750V, PVC	21	m² Cu	20
		Empotrado en Obra		2x2.5+TTx2.5m	
	Horno	450/750V, PVC	23	m ² Cu	20
		Empotrado en Obra		2x2.5+TTx2.5m	
	Lavavajillas	450/750V, PVC	19.78	m² Cu	20
L1.15	Lavandería				
		Falso Techo 450/750V,		2x1.5+TTx1.5m	
	C1 Iluminación	PVC	15.05	m ² Cu	
		Empotrado en Obra		4x6+TTx6mm ²	
	Lavadoras	450/750V, PVC	14.05	Cu	25
		Empotrado en Obra		2x4+TTx4mm ²	
	Secadoras	450/750V, PVC	14.06	Cu	20
L1.16	Comedor Empleados				
		Falso Techo 450/750V,		2x1.5+TTx1.5m	
	C1 Iluminación	PVC	7	m² Cu	
	C2 Toma de Uso Ge-	Empotrado en Obra		2x6+TTx6mm ²	
	neral	450/750V, PVC	18.22	Cu	25
		Empotrado en Obra		2x6+TTx6mm ²	
	C8 Bomba de Calor	450/750V, PVC	9.68	Cu	25
L1.17	Gimnasio				
		Falso Techo 450/750V,		2x1.5+TTx1.5m	
	C1 Iluminación	PVC	23.4	m ² Cu	
	C2 Toma de Uso Ge-	Empotrado en Obra		2x2.5+TTx2.5m	
	neral	450/750V, PVC	4.52	_	20
		Empotrado en Obra		2x6+TTx6mm ²	
	C8 Bomba de Calor	450/750V, PVC	11.76		25
	23 DOMING GC COLOT	Tabla 29	11.70	- Ju	

Tabla 29

Cir- cuito	Descripción	Método de Instalación	Longitud Total	Sección	Diá- metro
cuito	Cuarto de Vigilan-	Wetodo de instalación	Total		metro
L1.18	cia				
		Falso Techo 450/750V,		2x1.5+TTx1.5m	
	C1 Iluminación	PVC	7.68	m² Cu	
	C2 Toma de Uso	Empotrado en Obra		2x2.5+TTx2.5m	
	General	450/750V, PVC	8.41	m² Cu	20
	C8 Bomba de Ca-	Empotrado en Obra		2x6+TTx6mm ²	
	lor	450/750V, PVC	1.74	Cu	25

Tabla 30

Cabe destacar que en esta tabla no se han colocado todas las plantas, con el fin de reducir información. Para poder visualizar la tabla completa, ésta se puede encontrar en el ANEXO I.I, en la cual se han omitido las habitaciones, debido a que el diseño de cada una es igual. Las habitaciones 1, 2, 3, 4 y 17 son las habitaciones grandes, mientras que el resto corresponden con las pequeñas, hasta llegar a una ocupación total de habitaciones de 61.

Finalmente, sólo resta por indicar el cableado de las líneas principales (L1, L2, L3, L4 y L5), las cuales son las encargadas de proveer de corriente a los diferentes subcuadros partiendo del cuadro principal correspondiente.

Circuito	Descripción	Método de Instalación	Longitud Total	Sección
L1 1/2	Planta Baja	Falso Techo 450/750V, PVC	48.15	2(4x95+TTx50) mm ² Cu
L1 2/2	Panta Baja	Falso Techo 450/750V, PVC	55.81	2(4x95+TTx50) mm ² Cu
L2 1/2	Primera Planta	Falso Techo 450/750V, PVC	26.14	4x35+TTx16mm ² Cu
L2 2/2	Primera Planta	Falso Techo 450/750V, PVC	29.35	4x35+TTx16mm ² Cu
L3 1/2	Segunda Planta	Falso Techo 450/750V, PVC	19.94	4x95+TTx50mm ² Cu
L3 2/2	Segunda Planta	Falso Techo 450/750V, PVC	36.17	4x95+TTx50mm ² Cu
L4 1/2	Tercera Planta	Falso Techo 450/750V, PVC	30.91	4x120+TTx70mm ² Cu
L4 2/2	Tercera Planta	Falso Techo 450/750V, PVC	37.13	4x120+TTx70mm ² Cu
L5 1/2	Cuarta Planta	Falso Techo 450/750V, PVC	30.91	4x120+TTx70mm ² Cu
L5 2/2	Cuarta Planta	Falso Techo 450/750V, PVC	37.13	4x120+TTx70mm ² Cu

Tabla 31

3. Medición y Presupuesto

La medición y el presupuesto de la presente obra se ha realizado mediante el programa Arquímedes versión estudiantes, y los precios de cada elemento ha sido seleccionado en base al generador de precios de cype, al cual es posible acceder mediante su página web: www.genera-dordeprecios.info

PRESUPUESTO HOTEL

Presupuesto parcial nº 1 Centro de Transformación

Código	Ud	Denominación	Medición	Precio	
1.1 UIC020.L	Ud	Celda de línea, de 24 kg 365x735x1740 mm, con tálico, embarrado de co posiciones conectado/s rios para su correcta in Total Ud	n aislamiento integral d obre e interruptor-secc seccionado/puesto a tid stalación.	le SF6, formada po ionador tripolar ro erra. Incluso acces	or cuerpo me- otativo de 3 sorios necesa-
			•	7.066,31	14.132,62
1.2 IUC020.S	Ud	Celda de seccionamien nominal, 450x735x174 cuerpo metálico, emba rios necesarios para su	0 mm, con aislamiento irrado de cobre e interr	integral de SF6, fo	ormada por
		Total Ud	.: 1,000	6.024,21	6.024,21
1.3 IUC020.F	Ud	Celda de protección co tensidad nominal, 4700 mada por cuerpo metá polar rotativo de 3 pos bles combinados. Inclu	k735x1740 mm, con ais lico, embarrado de cob iciones conectado/seco so accesorios necesario	lamiento integral re, interruptor-se ionado/puesto a os para su correcta	de SF6, for- ccionador tri- tierra y fusi- a instalación.
		Total Ud	.: 1,000	3.731,62	3.731,62
1.4 IUC020.M	Ud	Celda de medida, de 24 mada por cuerpo metá dida. Incluso accesorios Total Ud	lico, embarrado de cob s necesarios para su co	re y transformado	ores de me-
1.5 IUC040	Ud	Centro de transformaci de 6080x2380x3045 mi aparamenta necesaria. Total Ud	m, apto para contener l Incluso transporte y de	hasta dos transfor	madores y la
1.6 IUC030	ud	Cuadro de baja tensión deslizantes, de 4 salida en carga. Incluso acces	s con base portafusible orios necesarios para s	vertical tripolar o u correcta instalac	lesconectable ción.
1.7 IUC010	ud	Total ud Transformador trifásico kVA de potencia, de 24 y 420 V de tensión del de conexión Dyn11. Inoción. Total ud	o en baño de aceite, con kV de tensión asignada secundario en vacío, de cluso accesorios necesa	a, 20 kV de tensió : 50 Hz de frecuen	n del primario cia, y grupo

PRESUPUESTO HOTEL

Presupuesto parcial nº 2 Cables

Código	Ud	Denominación	Medición	Precio	
2.1 IEH010.1	m	Cable unipolar H07V-K, sien fuego clase Eca, con conduc sección, con aislamiento de ción.	tor multifilar de cob	re clase 5 (-K) de	1,5 mm² de
		Total m:	7.430,280	0,65	4.829,68
2.2 IEH010.2	m	Cable unipolar H07V-K, sien fuego clase Eca, con conduc sección, con aislamiento de ción.	tor multifilar de cob	re clase 5 (-K) de	2,5 mm² de
		Total m:	5.706,420	0,83	4.736,33
2.3 IEH010.4	m	Cable unipolar H07V-K, sien fuego clase Eca, con conduc sección, con aislamiento de ción.	tor multifilar de cob	re clase 5 (-K) de	4 mm² de
		Total m:	42,180	1,07	45,13
2.4 IEH010.6	m	Cable unipolar H07V-K, sien fuego clase Eca, con conduc sección, con aislamiento de ción.	tor multifilar de cob	re clase 5 (-K) de	6 mm² de
		Total m:	2.333,510	1,59	3.710,28
2.5 IEH010.10	m	Cable unipolar H07V-K, sien fuego clase Eca, con conduc sección, con aislamiento de ción.	tor multifilar de cob	re clase 5 (-K) de	10 mm² de
		Total m:	105,990	2,32	245,90
2.6 IEH010.16	m	Cable unipolar H07V-K, sien fuego clase Eca, con conduc sección, con aislamiento de ción.	tor multifilar de cob	re clase 5 (-K) de	16 mm² de
		Total m:	98,160	3,30	323,93
2.7 IEH010.25	m	Cable unipolar H07V-K, sien fuego clase Eca, con conduc sección, con aislamiento de ción.	tor multifilar de cob	re clase 5 (-K) de	25 mm² de
		Total m:	7,280	6,94	50,52
2.8 IEH010.35	m	Cable unipolar H07V-K, sien fuego clase Eca, con conduc sección, con aislamiento de ción.	tor multifilar de cob	re clase 5 (-K) de	35 mm² de

2.9 IEH010.50

m Cable unipolar H07V-K, siendo su tensión asignada de 450/750 V, reacción al fuego clase Eca, con conductor multifilar de cobre clase 5 (-K) de 50 mm² de sección, con aislamiento de PVC (V). Incluso accesorios y elementos de sujeción.

2.10 IEH010.70

m Cable unipolar H07V-K, siendo su tensión asignada de 450/750 V, reacción al fuego clase Eca, con conductor multifilar de cobre clase 5 (-K) de 120 mm² de sección, con aislamiento de PVC (V). Incluso accesorios y elementos de sujeción.

2.11 IEH010.95

m Cable unipolar H07V-K, siendo su tensión asignada de 450/750 V, reacción al fuego clase Eca, con conductor multifilar de cobre clase 5 (-K) de 70 mm² de sección, con aislamiento de PVC (V). Incluso accesorios y elementos de sujeción.

2.12 IEH010.120

m Cable unipolar H07V-K, siendo su tensión asignada de 450/750 V, reacción al fuego clase Eca, con conductor multifilar de cobre clase 5 (-K) de 95 mm² de sección, con aislamiento de PVC (V). Incluso accesorios y elementos de sujeción.

PRESUPUESTO HOTEL

Presupuesto parcial nº 3 Canalizaciones

Código	Ud	Denominación	Medición	Precio	Total
3.1 IEO010.20	m	Canalización de tubo curvab de diámetro nominal, con g en elemento de construcció	rado de protección	IP545. Instalación	-
		Total m:	5.748,600	0,98	5.633,63
3.2 IEO010.25	m	Canalización de tubo curvab de diámetro nominal, con g en elemento de construcció	rado de protección	IP545. Instalación	
		Total m:	2.277,310	1,08	2.459,49
3.3 IEO010.32	m	Canalización de tubo curvab de diámetro nominal, con g en elemento de construcció	rado de protección	IP545. Instalación	
		Total m:	30,770	1,29	39,69
3.4 IEO010.40	m	Canalización de tubo curvab de diámetro nominal, con g en elemento de construcció	rado de protección	IP545. Instalaciór	
		Total m:	8,170	1,50	12,26
3.5 IEO010.50	m	Canalización de tubo curvab de diámetro nominal, con g en elemento de construcció	rado de protección	IP545. Instalación	
		Total m:	1,820	1,93	3,51
3.6 IEO040.PB	m	Bandeja perforada de PVC, o impacto 20 julios, propiedad llama, estable frente a los ra perie y frente a la acción de soporte horizontal, de PVC,	des eléctricas: aisla ayos UV y con buer los agentes químic color gris RAL 7035	inte, no propagado n comportamiento cos, con 1 compart 5.	or de la a la intem- cimento, con
		Total m:	1,000	36,45	36,45
3.7 IEO040.PPH	m	Bandeja perforada de PVC, o impacto 20 julios, propiedad llama, estable frente a los raperie y frente a la acción de soporte horizontal, de PVC,	des eléctricas: aisla ayos UV y con buer los agentes químic	inte, no propagado n comportamiento cos, con 1 compart	or de la a la intem-
		Total m:	34,260	27,43	939,75
3.8 IEO040.PPV	m	Bandeja perforada de PVC, o impacto 5 julios, propiedado estable frente a los rayos UV frente a la acción de los age	es eléctricas: aislan V y con buen comp ntes químicos, con	ite, no propagado ortamiento a la in	de la llama, temperie y
		vertical, de PVC, color gris R Total m:	3,500	31,83	111,41
			-,	- , - -	,

3.9 IEO040.SPV

Bandeja perforada de PVC, color gris RAL 7035, de 60x100 mm, resistencia al impacto 10 julios, propiedades eléctricas: aislante, no propagador de la llama, estable frente a los rayos UV y con buen comportamiento a la intemperie y frente a la acción de los agentes químicos, con 1 compartimento, con soporte vertical, de PVC, color gris RAL 7035.

Total m:

33,06

232,08

3.10 IEO040.SPH

Bandeja perforada de PVC, color gris RAL 7035, de 60x100 mm, resistencia al impacto 10 julios, propiedades eléctricas: aislante, no propagador de la llama, estable frente a los rayos UV y con buen comportamiento a la intemperie y frente a la acción de los agentes químicos, con 1 compartimento, con soporte horizontal, de PVC, color gris RAL 7035.

Total m:

34,260

28,65

981,55

3.11 IEO040.TPV

Bandeja perforada de PVC, color gris RAL 7035, de 60x150 mm, resistencia al impacto 20 julios, propiedades eléctricas: aislante, no propagador de la llama, estable frente a los rayos UV y con buen comportamiento a la intemperie y frente a la acción de los agentes químicos, con 1 compartimento, con soporte vertical, de PVC, color gris RAL 7035.

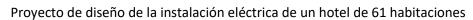
Total m:

24,600

37,07

911,92

3.12 IEO040.TPH


andeja perforada de PVC, color gris RAL 7035, de 60x150 mm, resistencia al impacto 20 julios, propiedades eléctricas: aislante, no propagador de la llama, estable frente a los rayos UV y con buen comportamiento a la intemperie y frente a la acción de los agentes químicos, con 1 compartimento, con soporte horizontal, de PVC, color gris RAL 7035.

Total m:

68,520

32,36

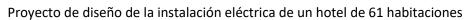
2.217,31

PRESUPUESTO HOTEL

Presupuesto parcial nº 4 Aparamenta

Código	Ud	Denominación	Medición	Precio	Total		
4.1 IEX305.100	ud	Conjunto fusible, formado por fusible de cuchillas, tipo gG, intensidad nal 100 A, poder de corte 120 kA, tamaño T1 y base para fusible de cuunipolar (1P), intensidad nominal 250 A.					
		Total ud:	3,000	33,70	101,10		
4.2 IEX305.200	ud	Conjunto fusible, formado nal 200 A, poder de corte 1 unipolar (1P), intensidad no	20 kA, tamaño T1 y				
4.3 IEX305.250	ud						
		Total ud:	6,000	36,49	218,94		
4.4 IEX305.400	ud	Conjunto fusible, formado por fusible de cuchillas, tipo gG, intensidad nominal 400 A, poder de corte 120 kA, tamaño T2 y base para fusible de cuchillas, unipolar (1P), intensidad nominal 400 A.					
		Total ud:	3,000	45,88	137,64		
4.5 IEX207.100	ud	Interruptor automático en (3P+N,4P,3P+N/2), intensidad de disparo de la intensidad de disparo de tensidad de disparo de 0,03 ms, modelo Vigicompact Node control electrónica Micr	lad nominal 100 A, p lisparo por sobreca corto retardo entre 3 a 10 A, ajuste del t SX100F LV429980, " ologic 2.2.	ooder de corte 36 ga entre 0,4 y 1 x e 1,5 y 10 x Ir, ajus iempo de disparo SCHNEIDER ELECT	kA a 400 V, In, ajuste de te de la in- de 0 a 310 RIC", unidad		
		Total ud:	2,000	2.225,92	4.451,84		
4.6 IEX207.160	ud	Interruptor automático en (3P+N,4P,3P+N/2), intensidad de disparo de la intensidad de disparo de tensidad de disparo de 0,03 ms, modelo Vigicompact Node control electrónica Micro	lad nominal 160 A, p lisparo por sobrecal corto retardo entre 3 a 10 A, ajuste del t SX160F LV430980, "	ooder de corte 36 ga entre 0,4 y 1 x e 1,5 y 10 x Ir, ajus iempo de disparo	kA a 400 V, In, ajuste de te de la in- de 0 a 310		

Total ud:


1,000

2.754,23

2.754,23

Proyecto de diseno de	ia inst	talación electrica de un notel de	61 nabitaciones			
4.7 IEX200.250	ud	Interruptor automático en caja moldeada, con bloque diferencial, tetrapolar (3P+N,4P,3P+N/2), intensidad nominal 250 A, poder de corte 36 kA a 400 V, ajuste de la intensidad de disparo por sobrecarga entre 0,4 y 1 x In, ajuste de la intensidad de disparo de corto retardo entre 1,5 y 10 x Ir, ajuste de la intensidad de disparo de 0,03 a 10 A, ajuste del tiempo de disparo de 0 a 310 ms, modelo Vigicompact NSX250F LV431980, "SCHNEIDER ELECTRIC", unidad de control electrónica Micrologic 2.2.				
		Total ud:	2,000	4.528,40	9.056,80	
4.8 IEX200.400	ud	Interruptor automático en caja moldeada, con bloque diferencial, tetrapola (3P+N,4P,3P+N/2), intensidad nominal 400 A, poder de corte 50 kA a 400 V ajuste de la intensidad de disparo por sobrecarga entre 0,4 y 1 x In, ajuste de la intensidad de disparo de corto retardo entre 1,5 y 10 x Ir, ajuste de la intensidad de disparo de 0,3 a 30 A, ajuste del tiempo de disparo de 0 a 310 modelo Vigicompact NSX400N LV432734, "SCHNEIDER ELECTRIC", unidad de control electrónica Micrologic 2.3.				
		Total ud:	1,000	6.628,58	6.628,58	
4.9 IEX050.10	ud	Interruptor automático magne 10 A, poder de corte 6 kA, curv ELECTRIC".	va C, modelo iK60	ON A9K17610 "SC	HNEIDER	
		Total ud:	87,000	26,97	2.346,39	
4.10 IEX050.16	ud	Interruptor automático magne 16 A, poder de corte 6 kA, curv ELECTRIC".	•			
		Total ud:	141,000	27,36	3.857,76	
4.11 IEX050.20	ud	Interruptor automático magne 20 A, poder de corte 6 kA, curv ELECTRIC".	va C, modelo iK60	ON A9K17616 "SC		
		Total ud:	2,000	27,91	55,82	
4.12 IEX050.25	ud	Interruptor automático magne 25 A, poder de corte 6 kA, curv ELECTRIC".	· •			
		Total ud:	159,000	28,46	4.525,14	
4.13 IEX050.32.A	ud	Interruptor automático magne 32 A, poder de corte 6 kA, curv ELECTRIC".	•	• • •		
		Total ud:	2,000	56,99	113,98	
4.14 IEX050.32B	ud	Interruptor automático magne 32 A, poder de corte 6 kA, curv ELECTRIC".		•		
		Total ud:	1,000	159,80	159,80	
4.15 IEX050.40A	ud	Interruptor automático magne 40 A, poder de corte 6 kA, curv ELECTRIC".	· •			
		Total ud:	1,000	74,90	74,90	

4.16 IEX050.40B		Interruptor automático magnetotérmico, tetrapolar (4P), intensidad nominal				
4.10 IEAU3U.40B	uu	40 A, poder de corte 6 kA, curv ELECTRIC".				
		Total ud:	4,000	188,33	753,32	
4.17 IEX060.25	ud	Interruptor diferencial instanta nominal 25 A, sensibilidad 30 r	<u>-</u>	• •		
		Total ud:	86,000	63,12	5.428,32	
4.18 IEX060.40.AA	ud	Interruptor diferencial instantáneo, de 2 módulos, bipolar (2P), intensidad nominal 40 A, sensibilidad 30 mA, poder de corte 6 kA, clase AC.				
		Total ud:	1,000	64,41	64,41	
4.19 IEX060.40.AB	ud	Interruptor diferencial instanta nominal 40 A, sensibilidad 30 r	<u>-</u>	•	P), intensidad	
		Total ud:	3,000	276,59	829,77	
4.20 IEX060.40.BB	ud	Interruptor diferencial instantáneo, de 4 módulos, tetrapolar (4P), intensidad nominal 40 A, sensibilidad 300 mA, poder de corte 6 kA, clase AC.				
		Total ud:	1,000	238,56	238,56	
4.21 IEX060.63.A	ud	Interruptor diferencial instantáneo, de 4 módulos, tetrapolar (4P), intensidad nominal 63 A, sensibilidad 30 mA, poder de corte 6 kA, clase AC.				
		Total ud:	1,000	327,42	327,42	
4.22 IEX060.63.B	ud	Interruptor diferencial instantáneo, de 4 módulos, tetrapolar (4P), intensidad nominal 63 A, sensibilidad 300 mA, poder de corte 6 kA, clase AC.				
		Total ud:	3,000	308,12	924,36	

PRESUPUESTO HOTEL

Presupuesto parcial nº 5 Mecanismos

Código	Ud	Denominación	Medición	Precio	Total
5.1 IEM060	ud	ra (2P+T), tipo Scl ada 250 V, con ta de color blanco. canismo empotra	pa, de color Instalación		
		Total ud:	443,000	13,81	6.117,83
5.2 IEM010	ud	Caja universal de 1 elemen genos, enlazable por los co tección IP30 e IK07, según cluye las ayudas de albañi	uatro lados, de 70x70 IEC 60439. Instalació	x42 mm, con grad	dos de pro-
		Total ud:	901,000	1,38	1.243,38
5.3 IEM020	ud	nterruptor bipolar (2P), ga nada 250 V, con tecla simp elemento, de color blanco para mecanismo empotra	ole, de color blanco y o. Instalación empotra	marco embellece	dor para 1
		Total ud:	336,000	20,62	6.928,32
5.4 IEM030	ud	Conmutador, gama media V, con tecla simple, de col de color blanco. Instalació canismo empotrado.	or blanco y marco em	bellecedor para 1	L elemento,
		Total ud:	122,000	15,30	1.866,60

Proyecto de diseño de la instalación eléctrica de un hotel de 61 habitaciones PRESUPUESTO HOTEL

Presupuesto parcial nº 6 Iluminación interior

Código	Ud	Denominación	Medición	Precio	Total	
6.1 III100	ud	Luminaria circular de techo Downlight, de 250 mm de diámetro, para 2 lámparas LED de 22 W; con cerco exterior y cuerpo interior de aluminio inyectado, acabado lacado, de color blanco; reflector de aluminio de alta pureza balasto magnético; protección IP20 y aislamiento clase F. Instalación empotrada. Incluso lámparas. El precio no incluye las ayudas de albañilería para instalaciones.				
		Total ud::	240,000	125,48	30.115,20	
6.2 III130	ud	Luminaria cuadrada modula cuerpo de luminaria de cha mas transversales estriadas magnético; protección IP20 cluso lámparas. El precio no nes.	pa de acero acabados; reflector de alumio y aislamiento claseo incluye las ayudas	o lacado, de colo nio, acabado bril F. Instalación en de albañilería pa	r blanco y la- lante; balasto npotrada. In- ra instalacio-	
		Total ud:	258,000	129,82	33.493,56	
6.3 III100.E	ud	Luminaria empotrada tipo l	Ledinaire ClearAcce	nt		
		Total ud:	411,000	33,68	13.842,48	

PRESUPUESTO HOTEL

Presupuesto parcial nº 7 Derivaciones individuales

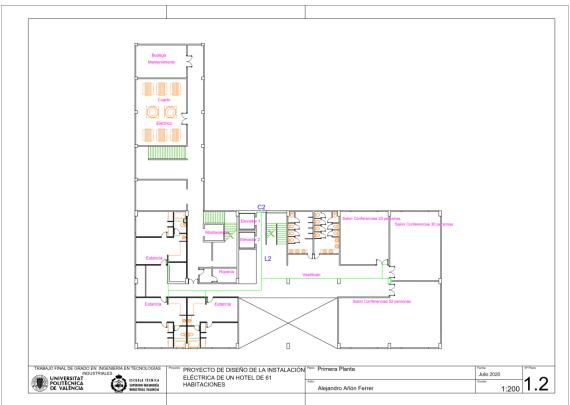
Código	Ud	Denominación	Medición	Precio	Total
7.1 IED010.240	m	Derivación individual trifási cables unipolares con condo 4x240+1G120 mm², siendo	uctores de cobre, R	Z1-K (AS) Cca-s1b,	•
		Total m:	1,000	192,69	192,69
7.2 IED010.35	m	Derivación individual trifási cables unipolares con condu 4x35+1G16 mm², siendo su	Z1-K (AS) Cca-s1b,	•	
		Total m:	37,760	34,02	1.284,60
7.3 IED010.95	m	Derivación individual trifásica fija en superficie para vivienda, formado cables unipolares con conductores de cobre, RZ1-K (AS) Cca-s1b,d1,a1 4x95+1G50 mm², siendo su tensión asignada de 0,6/1 kV			
		Total m:	41,790	81,11	3.389,59
7.4 IED010.120	m	Derivación individual trifási cables unipolares con condu 4x120+1G70 mm², siendo su	uctores de cobre, R	Z1-K (AS) Cca-s1b,	•
		Total m:	94,140	103,60	9.752,90

PRESUPUESTO HOTEL

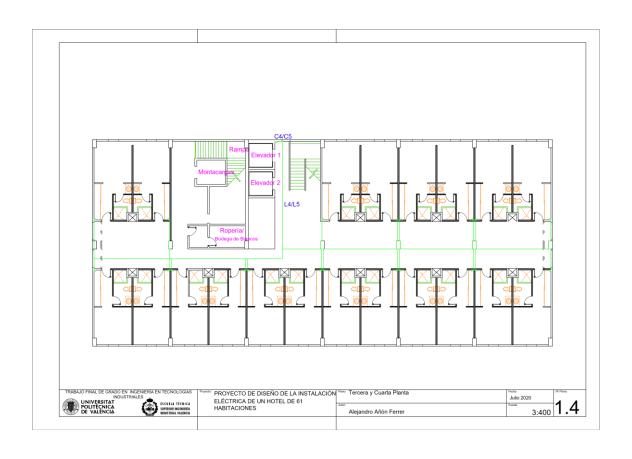
Presupuesto parcial nº 8 Grupo electrógeno

Código	Ud	Denominación	Medición	Precio	Total
8.1 IER10	ud	Grupo electrógeno fijo con cuadro de conmuta tico magnetotérmico.		-	•
		Total ud	.: 1,000	13.250,24	13.250,24

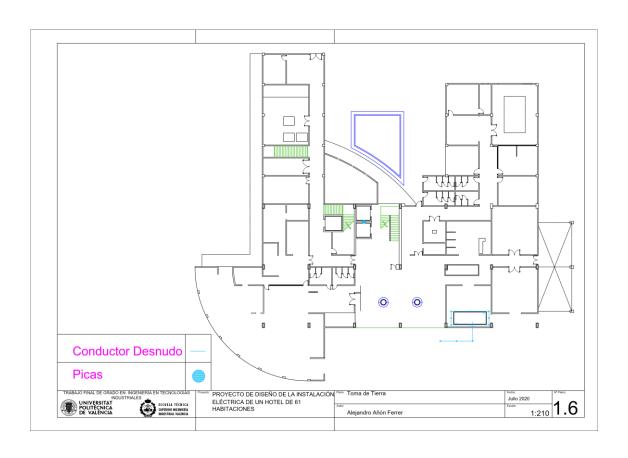
Capítulo	Importe
Capítulo 1 Centro de Transformación	42.421,23
Capítulo 2 Cables	62.415,82
Capítulo 3 Canalizaciones	13.579,05
Capítulo 4 Aparamenta	43.157,65
Capítulo 5 Mecanismos	16.156,13
Capítulo 6 Iluminación interior	77.451,24
Capítulo 7 Derivaciones individuales	14.619,78
Capítulo 8 Grupo electrógeno	13.250,24
Presupuesto de ejecución material	283.051,14
13% de gastos generales	36.796,65
6% de beneficio industrial	16.983,07
Presupuesto de ejecución por contrata	336.830,86
21% IVA	70.734,48
Presupuesto de inversión	407.565,34


Asciende el presupuesto de inversión a la expresada cantidad de CUATROCIENTOS SIETE MIL QUINIENTOS SESENTA Y CINCO EUROS CON TREINTA Y CUATRO CÉNTIMOS.

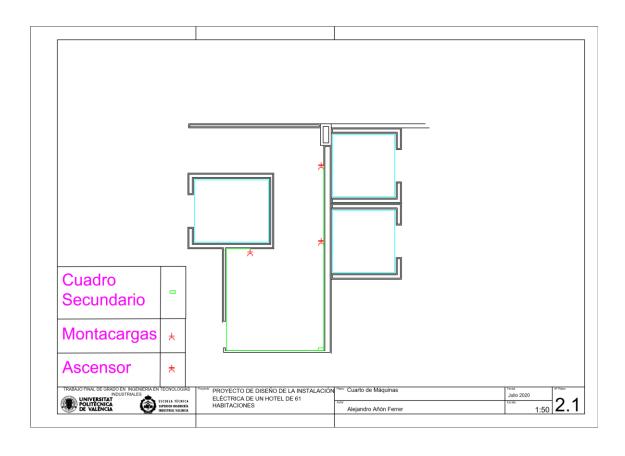
4. Planos

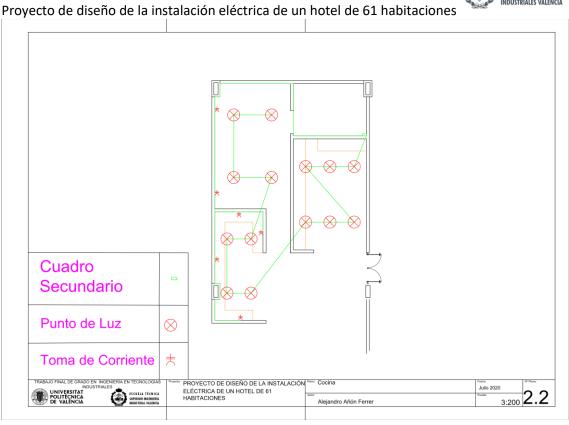

4.1 Distribución en planta

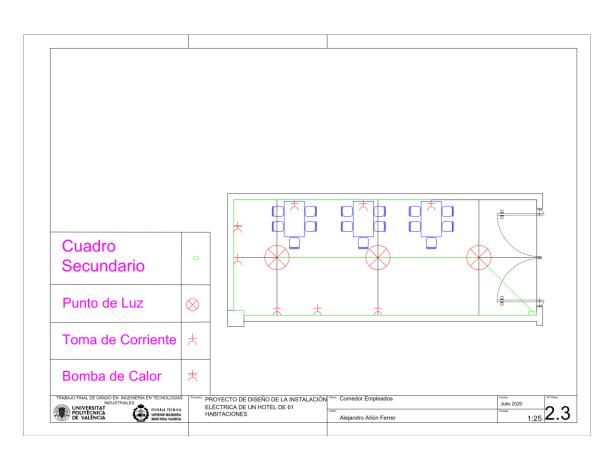




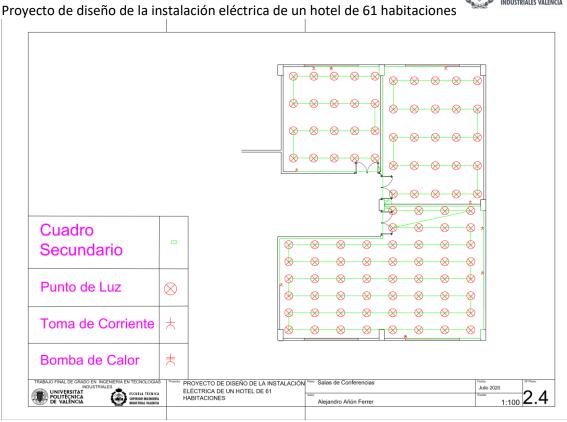
Proyecto de diseño de la instalación eléctrica de un hotel de 61 habitaciones RODUSTRIALES VALENCIA RODUSTRIALES

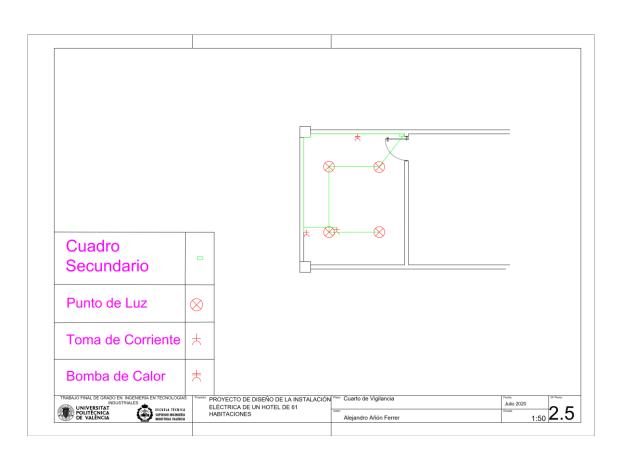


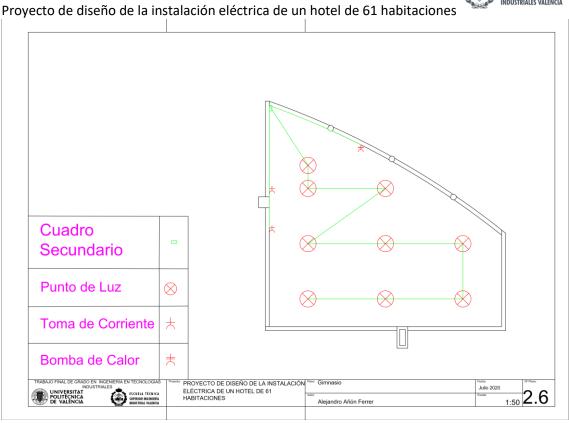




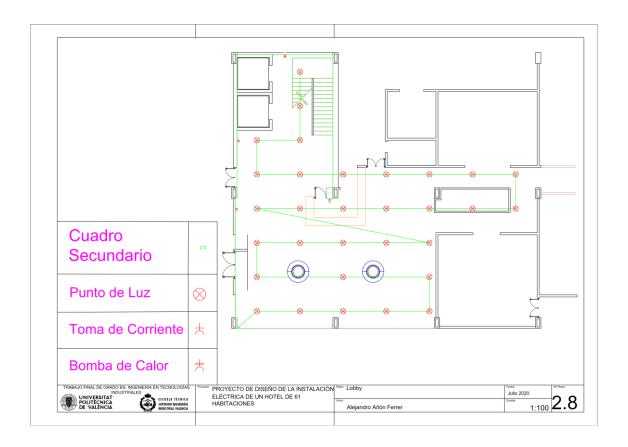
4.2 Distribución alumbrado y tomas de corriente

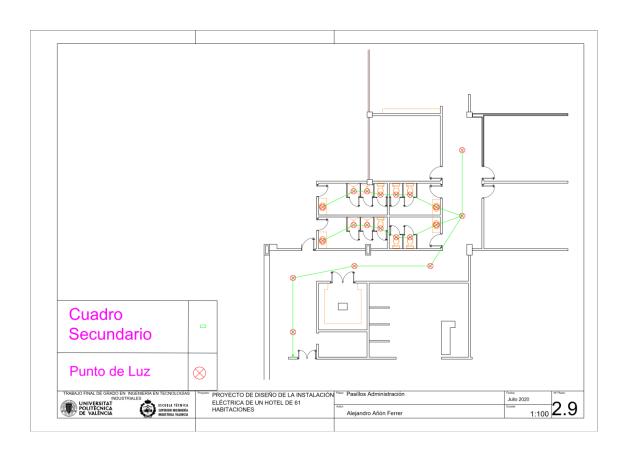


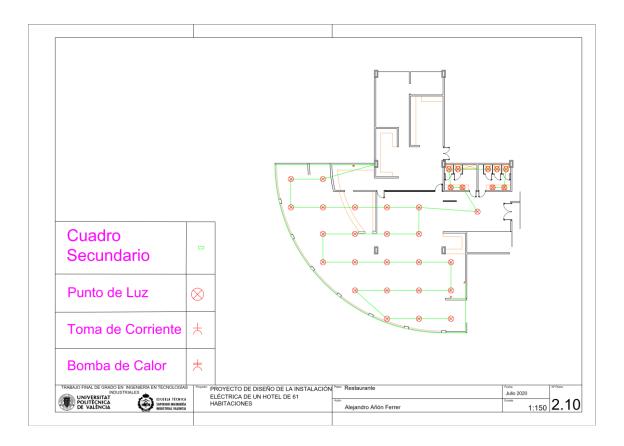


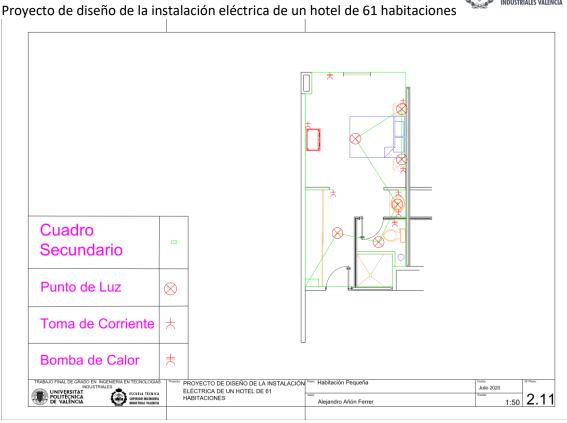


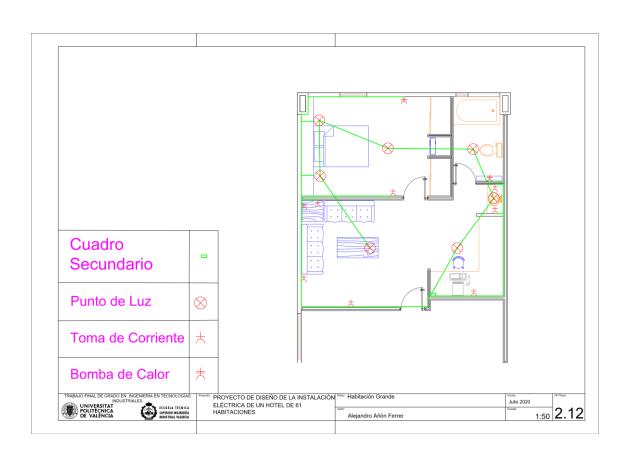


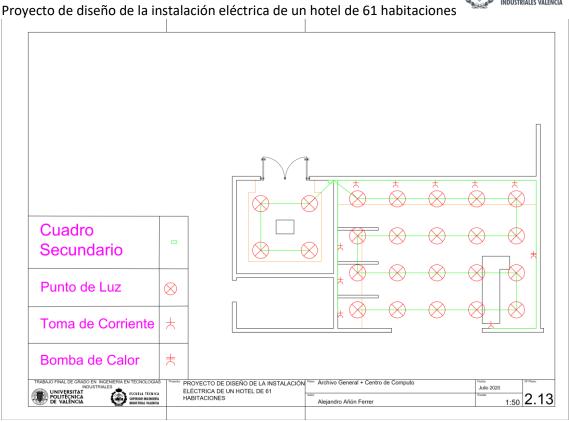


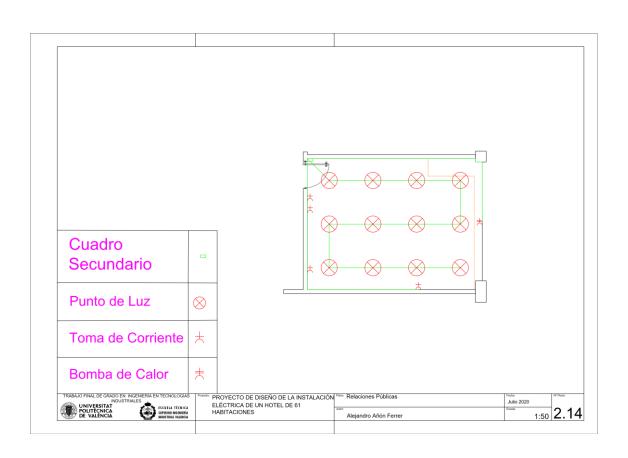


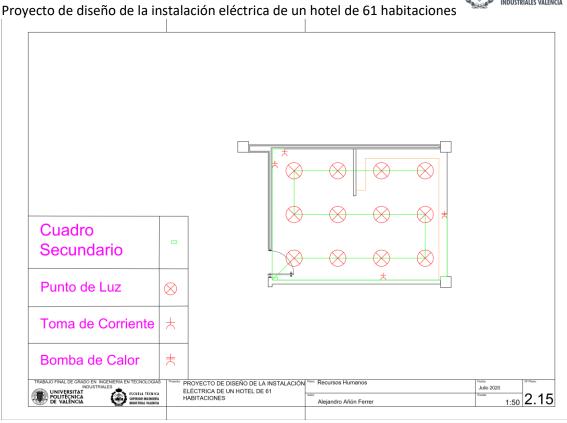


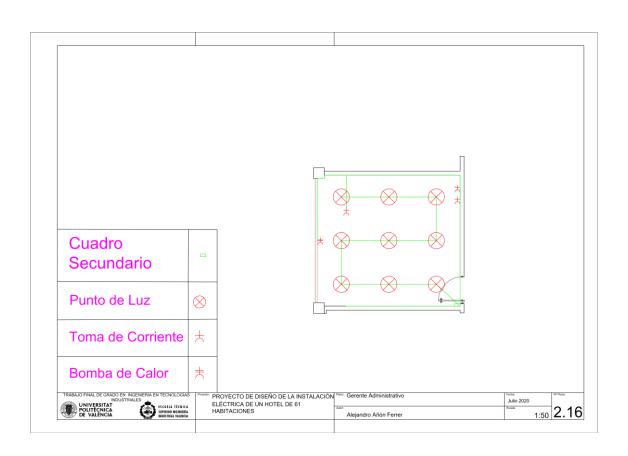


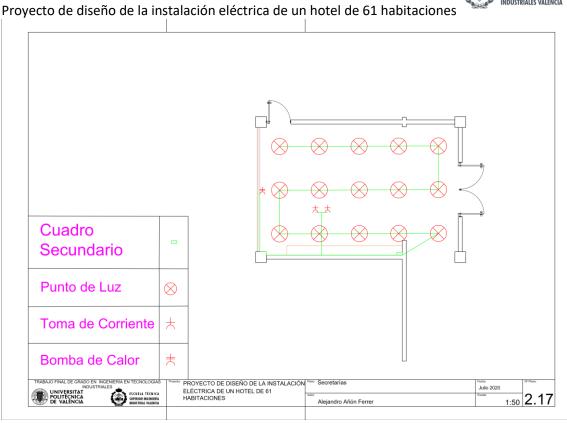


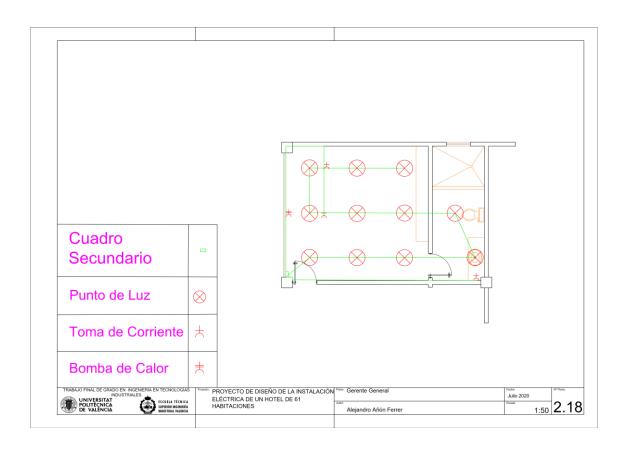


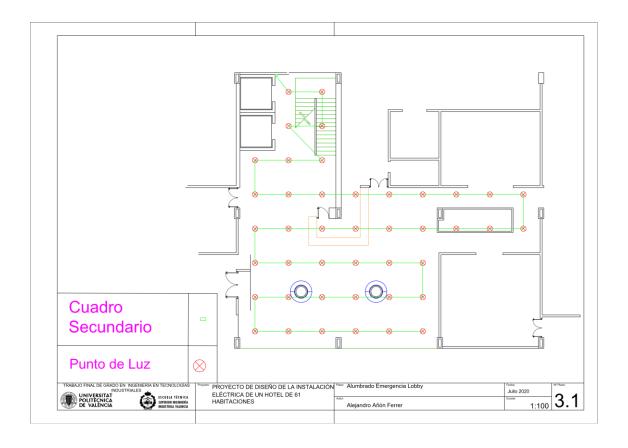


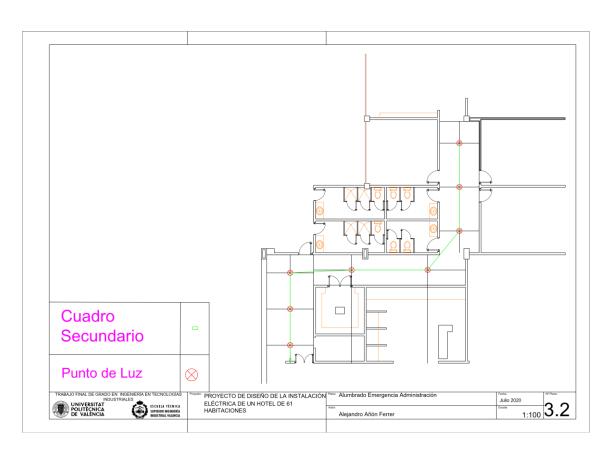


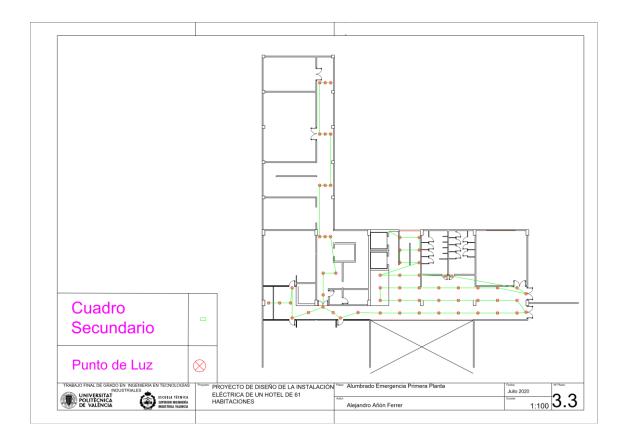


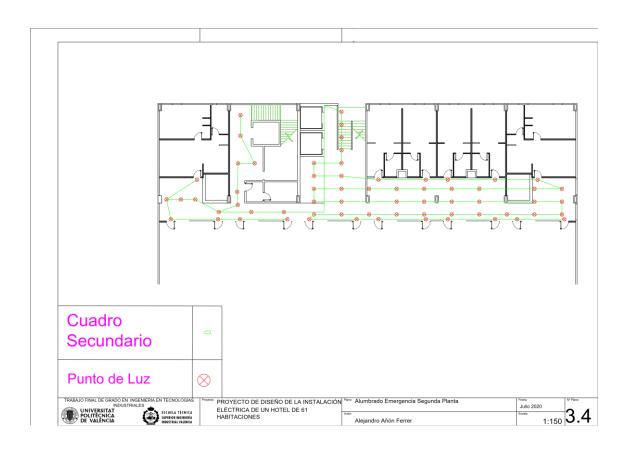




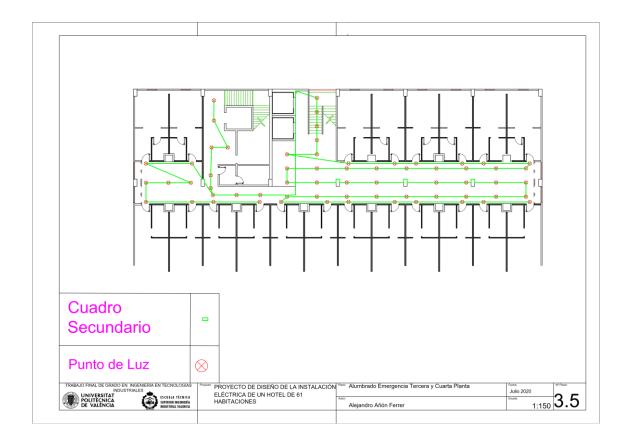


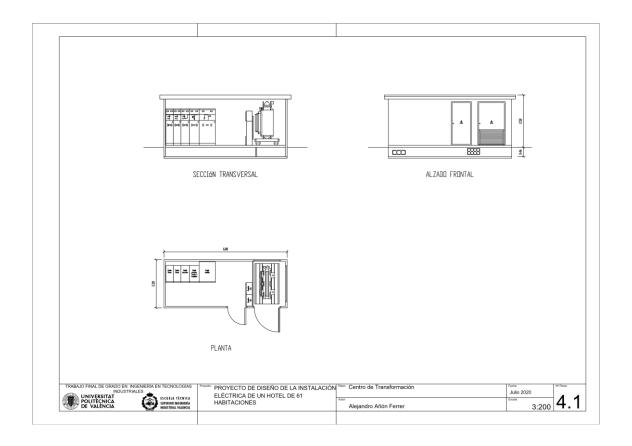


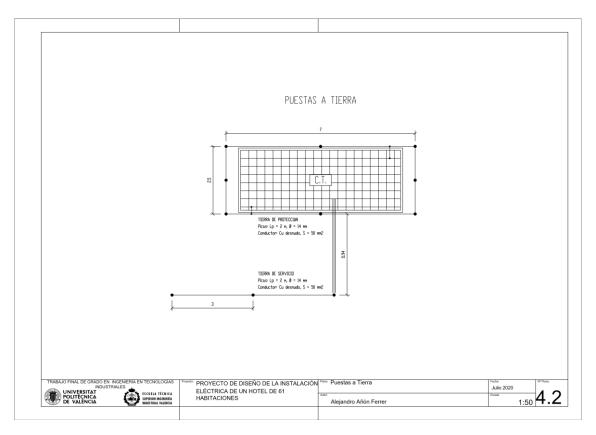

Proyecto de diseño de la instalación eléctrica de un hotel de 61 habitaciones Cuadro Secundario Punto de Luz Toma de Corriente Bomba de Calor **Bomba de



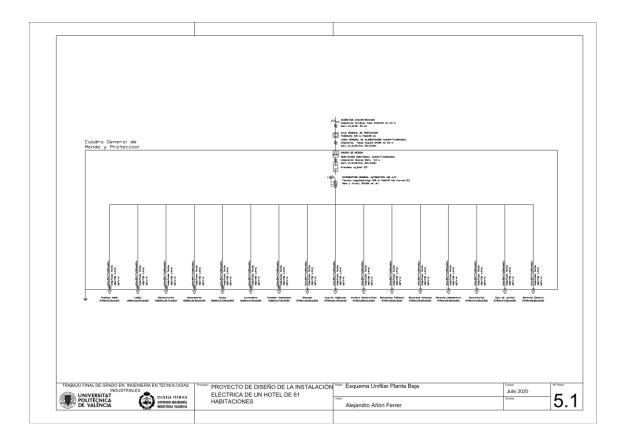
4.3 Alumbrado de Emergencia

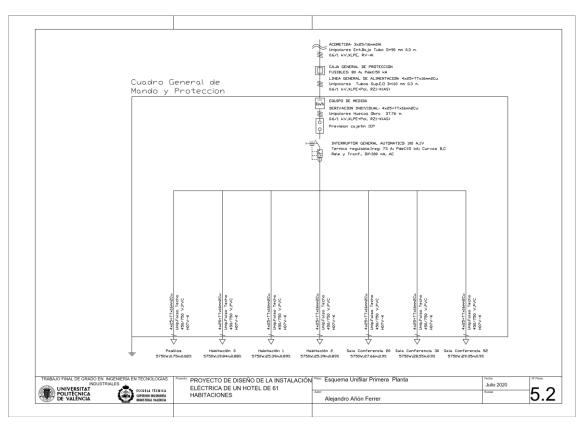






4.4 Centro de Transformación




Proyecto de diseño de la instalación eléctrica de un hotel de 61 habitaciones PROYECTO DE DISEÑO DE LA INSTALACIÓN ELÉCTRICA DE UN HOTEL DE 61 HABITACIONES UNIVERSITAT POLITECNICA DE VALENCIA

Alejandro Añón Ferrer

4.5 Esquemas Unifilares

Proyecto de diseño de la instalación eléctrica de un hotel de 61 habitaciones

Constructivo de diseño de la instalación eléctrica de un hotel de 61 habitaciones

Constructivo de diseño de la instalación eléctrica de un hotel de 61 habitaciones

Constructivo de diseño de la instalación eléctrica de un hotel de 61 habitaciones

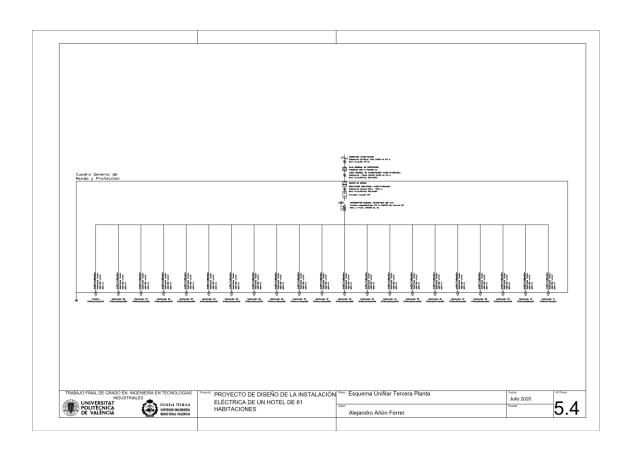
Constructivo de diseño de la instalación eléctrica de un hotel de 61 habitaciones

Constructivo de diseño de la instalación eléctrica de un hotel de 61 habitaciones

Constructivo de diseño de la instalación eléctrica de un hotel de 61 habitaciones

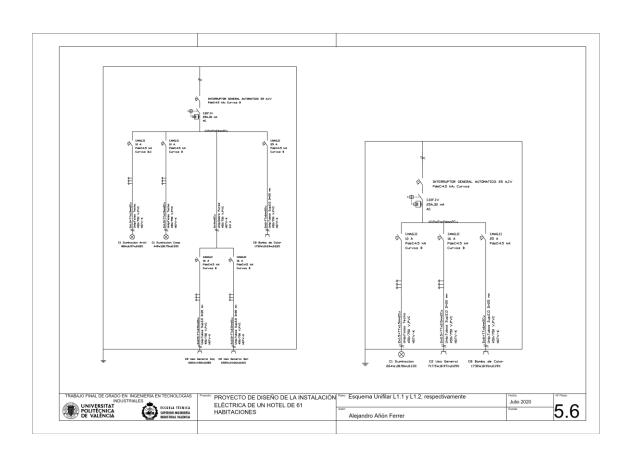
Constructivo de diseño de la instalación eléctrica de un hotel de 61 habitaciones

Constructivo de diseño de la instalación eléctrica de un hotel de 61 habitaciones

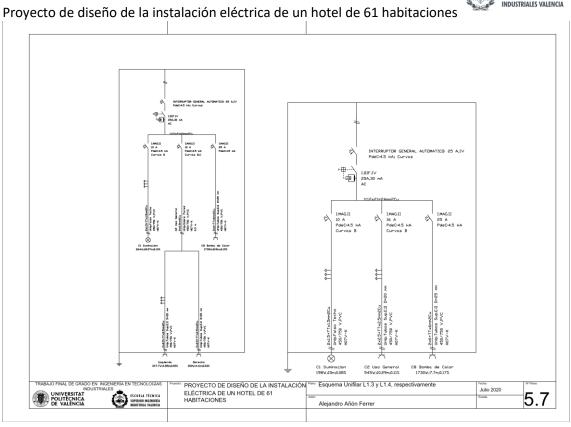

Constructivo de diseño de la instalación eléctrica de un hotel de 61 habitaciones

Constructivo de diseño de la instalación eléctrica de un hotel de 61 habitaciones

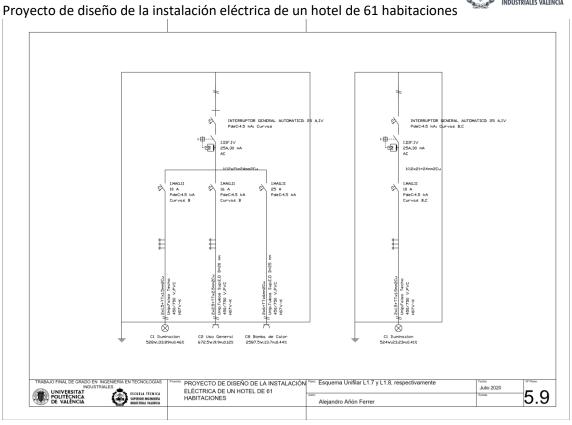
Constructivo de diseño de la instalación eléctrica de un hotel de 61 habitaciones

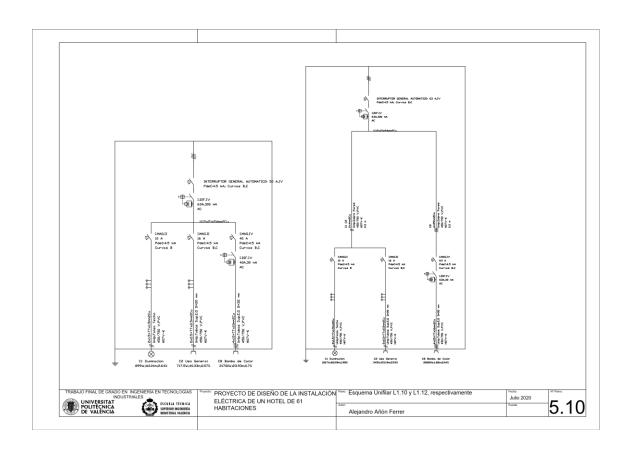

Constructivo de diseño de la instalación eléctrica de un hotel de 61 habitaciones

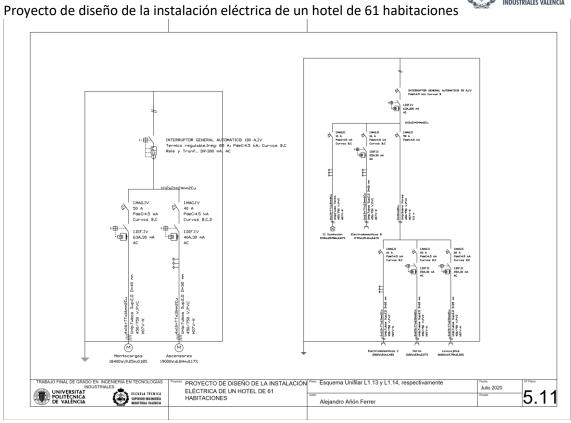
Constructivo de la instalación eléctrica de un hotel de 61 habitación eléc

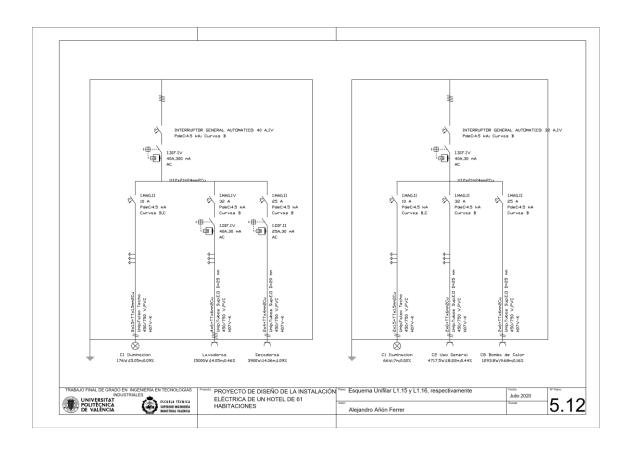


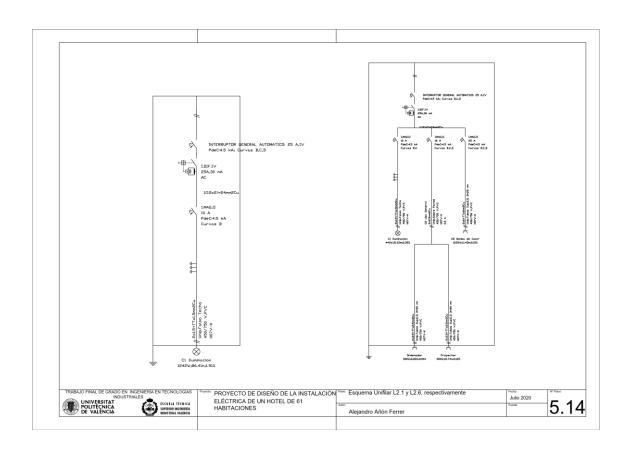
Proyecto de diseño de la instalación eléctrica de un hotel de 61 habitaciones NOUSTRIALES VALENCIA LONGO COMPONO DE CONDO EN PROPRIO DE LA NOTALACIÓN - Esquema Unifina Cuarta Planta UNIVERSITA DE CONDO EN PROPRIO DE LA NOTALACIÓN - Esquema Unifina Cuarta Planta LECCRICA DE UN HOTEL DE 61 HABITACIONES SECURICA DE UN HOTEL DE 61 HABITACIONES SECURICA DE UN HOTEL DE 61 HABITACIONES 5.5

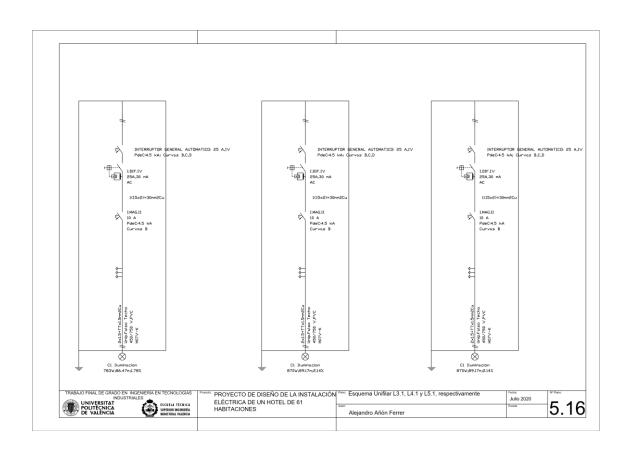




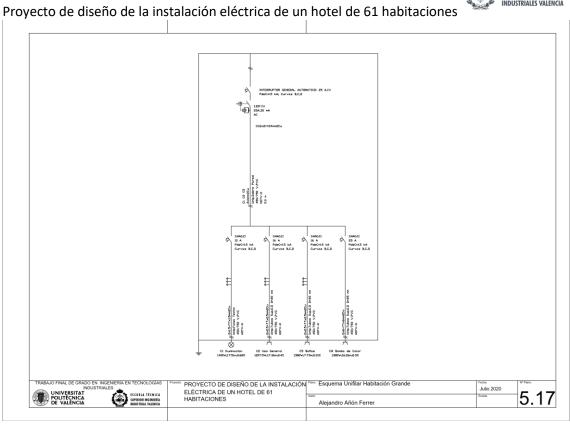


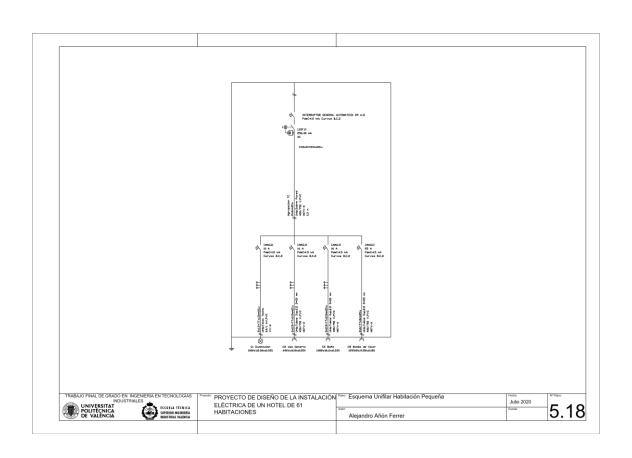






Proyecto de diseño de la instalación eléctrica de un hotel de 61 habitaciones | Interprise concess automotivo de la instalación eléctrica de un hotel de 61 habitaciones | Interprise concess automotivo de la instalación eléctrica de un hotel de 61 habitaciones | Interprise concess automotivo de la instalación eléctrica de un hotel de 61 habitaciones | Interprise concess automotivo de la instalación eléctrica de un hotel de 61 habitaciones | Interprise concess automotivo de la instalación eléctrica de un hotel de 61 habitaciones | Interprise concess automotivo de la instalación eléctrica de un hotel de 61 habitaciones | Interprise concess automotivo de la instalación eléctrica de un hotel de 61 habitación eléctrica de un hotel eléctrica de un





ANEXO I. CÁLCULOS

ANEXO I.I. Canalizaciones eléctricas

XLPE, EPR = 90°C PVC = 70°C

Fórmulas

```
Emplearemos las siguientes:
Sistema Trifásico
      I = Pc / (1,732 \times U \times Cosj \times R) = amp (A) (1)
       e = (L x Pc /( k x U x n x S x R)) + (L x Pc x Xu x Senj / (1000 x U x n x R x Cosj)) = voltios (V)
      (2)
Sistema Monofásico:
      I = Pc / (U \times Cosj \times R) = amp (A) (3)
       e = (2 x L x Pc / (k x U x n x S x R)) + (2 x L x Pc x Xu x Senj / (1000 x U x n x R x Cosj)) = vol-
      tios (V) (4)
En donde:
       Pc = Potencia de Cálculo en Watios.
      L = Longitud de Cálculo en metros.
       e = Caída de tensión en Voltios.
      K = Conductividad.
      I = Intensidad en Amperios.
       U = Tensión de Servicio en Voltios (Trifásica ó Monofásica).
       S = Sección del conductor en mm<sup>2</sup>.
       Cos j = Coseno de fi. Factor de potencia.
       R = Rendimiento. (Para líneas motor).
       n = N^{o} de conductores por fase.
      Xu = Reactancia por unidad de longitud en mW/m.
Fórmula Conductividad Eléctrica
K = 1/r (5)
r = r_{20}[1+a (T-20)] (6)
T = T_0 + [(T_{max} - T_0) (I/I_{max})^2] (7)
Siendo,
K = Conductividad del conductor a la temperatura T.
r = Resistividad del conductor a la temperatura T.
r_{20} = Resistividad del conductor a 20°C.
        Cu = 0.018
        AI = 0.029
a = Coeficiente de temperatura:
        Cu = 0.00392
        AI = 0.00403
T = Temperatura del conductor (°C).
T_0 = Temperatura ambiente ({}^{\circ}C):
        Cables enterrados = 25°C
        Cables al aire = 40°C
T<sub>max</sub> = Temperatura máxima admisible del conductor (°C):
```


Proyecto de diseño de la instalación eléctrica de un hotel de 61 habitaciones I = Intensidad prevista por el conductor (A).

I_{max} = Intensidad máxima admisible del conductor (A).

PLANTA BAJA:

Cálculo de la DERIVACION INDIVIDUAL

- Tensión de servicio: 400 V.

- Canalización: F-Unip.o Mult. Bandeja Perforada

- Longitud: 1 m; Cos j: 0.8; Xu(mW/m): 0;

- Potencia a instalar: 180450 W.

- Potencia de cálculo:

180450 W.(Coef. de Simult.: 1)

I=180450/(1,732x400x0.8)=325.58 A. (1)

Se eligen conductores Unipolares 4x240+TTx120mm²Cu

Nivel Aislamiento, Aislamiento: 0.6/1 kV, XLPE+Pol - No propagador incendio y emisión humos

y opacidad reducida -. Desig. UNE: RZ1-K(AS) I.ad. a 40°C (Fc=1) 490 A. según ITC-BT-19

Dimensiones bandeja: 200x60 mm. Sección útil: 9650 mm².

Caída de tensión:

Temperatura cable (°C): 62.07 (7)

e(parcial)=1x180450/47.69x400x240=0.04 V.=0.01 % (4.5% MAX.) (2)

Cálculo de la Línea: Izquierda

- Tensión de servicio: 400 V.

- Canalización: B1-Unip.o Mult. Falso Techo - Longitud: 64.49 m; Cos j: 0.8; Xu(mW/m): 0;

- Datos por tramo

Tramo	1	2	3	4	5	6	7	8
Longitud (m)	16.84	13.86	0.92	5.63	7.25	3	0.65	16.34
Pot. Nudo (kW)	11.5	25.2	40	20	16	16	5.75	5.75

Tabla 32

Potencia a instalar: 140200 W.Potencia de cálculo: 140200 W.

I=140200/(1,732x400x0.8)=252.96 A. (1)

Se eligen conductores Unipolares 2(4x120+TTx70)mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, PVC. Desig. UNE: H07V-K

I.ad. a 40°C (Fc=1) 416 A. según ITC-BT-19

Caída de tensión:

Temperatura cable (°C): 51.09 (7)

e(parcial)=36.35x140200/(49.52x400x2x120)=1.07 V.=0.27 % (3% MAX.) (2)

Proyecto de diseño de la instalación eléctrica de un hotel de 61 habitaciones Cálculo de la Línea: Administración

- Tensión de servicio: 400 V.

Canalización: B1-Unip.o Mult. Falso Techo
 Longitud: 55.81 m; Cos j: 0.8; Xu(mW/m): 0;

- Datos por tramo

Tramo	1	2	3	4	5
Longitud (m)	28.04	11.16	0.15	5	11.46
Pot. Nudo (kW)	5.75	5.75	11.5	11.5	5.75

Tabla 33

Potencia a instalar: 40250 W.Potencia de cálculo: 40250 W.

I=40250/1,732x400x0.8=72.62 A. (1)

Se eligen conductores Unipolares 2(4x120+TTx70)mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, PVC. Desig. UNE: H07V-K

I.ad. a 40°C (Fc=1) 416 A. según ITC-BT-19

Caída de tensión:

Temperatura cable (°C): 40.91 (7)

e(parcial)=41.49x40250/51.35x400x2x120=0.34 V.=0.08 % (6.5% MAX.) (2)

Para el resto de plantas, el planteamiento a seguir será el mismo que el mencionado anteriormente.

Otras zonas de especial interés son las habitaciones, y por lo tanto se adjunta el cálculo de los dos tipos:

HABITACIÓN GRANDE:

DEMANDA DE POTENCIAS

- Potencia total instalada:

Circuito	Potencia (W)
C1 Iluminación	1400
C2 Uso General	1207.5
C5 Baños	1380
C8 Bomba de Calor	1380
Total	5367.5

Tabla 34

Potencia Instalada Alumbrado (W): 1400
Potencia Instalada Fuerza (W): 3967.5
Potencia Máxima Admisible (W): 13856

Cálculo de la Línea: C1 Iluminacion

- Tensión de servicio: 230 V.

- Canalización: B1-Unip.o Mult.Falso Techo
- Longitud: 17.51 m; Cos j: 1; Xu(mW/m): 0;

- Datos por tramo

Tramo	1	2	3	4	5	6	7
Longitud (m)	2.04	2.28	1.98	3.15	2.75	2.07	3.24
Pot. nudo (W)	200	200	200	200	200	200	200

Tabla 35

- Potencia a instalar: 1400 W.
- Potencia de cálculo: (Según ITC-BT-44): 1400 W.

I=1400/230x1=6.09 A. (1)

Se eligen conductores Unipolares 2x1.5+TTx1.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, PVC. Desig. UNE: H07V-K

I.ad. a 40°C (Fc=1) 15 A. según ITC-BT-19

Caída de tensión:

Temperatura cable (°C): 44.94 (7)

e(parcial)=2x9.44x1400/50.61x230x1.5=1.51 V.=0.66 % (3% MAX.) (2)

Cálculo de la Línea: C2 Uso General

- Tensión de servicio: 230 V.

- Canalización: B1-Unip.Tubos Superf.o Emp.Obra
- Longitud: 17.36 m; Cos j: 0.8; Xu(mW/m): 0;

- Datos por tramo

Tramo	1	2	3	4	5	6	7
Longitud (m)	1.61	4.45	2.93	2.69	0.78	2	2.9
Pot. nudo (W)	172.5	172.5	172.5	172.5	172.5	172.5	172.5

Tabla 36

Potencia a instalar: 1207.5 W.Potencia de cálculo: 1207.5 W.

I=1207.5/230x0.8=6.56 A. (1)

Se eligen conductores Unipolares 2x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, PVC. Desig. UNE: H07V-K

I.ad. a 40°C (Fc=1) 21 A. según ITC-BT-19

Diámetro exterior tubo: 20 mm.

Caída de tensión:

Temperatura cable (°C): 42.93 (7)

e(parcial)=2x10.37x1207.5/50.97x230x2.5=0.85 V.=0.37 % (3% MAX.) (2)

Cálculo de la Línea: C5 Baños

- Tensión de servicio: 230 V.

- Canalización: B1-Unip.Tubos Superf.o Emp.Obra
- Longitud: 7.73 m; Cos j: 0.8; Xu(mW/m): 0;

- Datos por tramo

Tramo	1	2
Longitud (m)	6.05	1.68
Pot. Nudo (W)	690	690

Tabla 37

Potencia a instalar: 1380 W.Potencia de cálculo: 1380 W.

I=1380/230x0.8=7.5 A. (1)

Se eligen conductores Unipolares 2x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, PVC. Desig. UNE: H07V-K

I.ad. a 40°C (Fc=1) 21 A. según ITC-BT-19

Diámetro exterior tubo: 20 mm.

Caída de tensión:

Temperatura cable (°C): 43.83 (7)

e(parcial)=2x6.89x1380/50.81x230x2.5=0.65 V.=0.28 % (3% MAX.) (2)

Cálculo de la Línea: C8 Bomba de Calor

- Tensión de servicio: 230 V.

- Canalización: B1-Unip.Tubos Superf.o Emp.Obra
- Longitud: 16.26 m; Cos j: 0.8; Xu(mW/m): 0;

Potencia a instalar: 1380 W.Potencia de cálculo: 1380 W.

I=1380/230x0.8=7.5 A. (1)

Se eligen conductores Unipolares 2x6+TTx6mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, PVC. Desig. UNE: H07V-K

I.ad. a 40°C (Fc=1) 36 A. según ITC-BT-19

Diámetro exterior tubo: 25 mm.

Caída de tensión:

Temperatura cable (°C): 41.3 (7)

e(parcial)=2x16.26x1380/51.27x230x6=0.63 V.=0.28 % (3% MAX.) (2)

HABITACIÓN PEQUEÑA:

DEMANDA DE POTENCIAS

- Potencia total instalada:

Circuito	Potencia (W)
C1 Iluminación	1000
C2 Uso General	690
C5 Baños	1380
C8 Bomba de Calor	1293.8
Total	4363.8

Tabla 38

Potencia Instalada Alumbrado (W): 1000
Potencia Instalada Fuerza (W): 3363.8
Potencia Máxima Admisible (W): 4600

Cálculo de la Línea: C1 Iluminacion

- Tensión de servicio: 230 V.

- Canalización: B1-Unip.o Mult.Falso Techo- Longitud: 10.36 m; Cos j: 1; Xu(mW/m): 0;

- Datos por tramo

Tramo	1	2	3	4	5
Longitud (m)	2.31	1.56	1.56	2.89	2.04
Pot. Nudo (W)	200	200	200	200	200

Tabla 39

- Potencia a instalar: 1000 W.

- Potencia de cálculo: (Según ITC-BT-44): 1000 W.

I=1000/230x1=4.35 A. (1)

Se eligen conductores Unipolares 2x1.5+TTx1.5mm²Cu

Nivel Aislamiento, Aislamiento: 0.6/1 kV, PVC. Desig. UNE: VV-K

I.ad. a 40°C (Fc=1) 15 A. según ITC-BT-19

Caída de tensión:

Temperatura cable (°C): 42.52 (7)

e(parcial)=2x6.06x1000/51.05x230x1.5=0.69 V.=0.3 % (3% MAX.) (2)

Cálculo de la Línea: C2 Uso General

- Tensión de servicio: 230 V.

- Canalización: B1-Unip.Tubos Superf.o Emp.Obra

- Longitud: 16.8 m; Cos j: 1; Xu(mW/m): 0;

- Datos por tramo

Tramo	1	2	3	4
Longitud (m)	4.12	3.49	6.68	2.51
Pot. Nudo (W)	172.5	172.5	172.5	172.5

Tabla 40

Potencia a instalar: 690 W.Potencia de cálculo: 690 W.

I=690/230x1=3 A. (1)

Se eligen conductores Unipolares 2x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, PVC. Desig. UNE: H07V-K

I.ad. a 40°C (Fc=1) 21 A. según ITC-BT-19

Diámetro exterior tubo: 20 mm.

Caída de tensión:

Temperatura cable (°C): 40.61 (7)

e(parcial)=2x10.7x690/51.4x230x2.5=0.5 V.=0.22 % (3% MAX.) (2)

Cálculo de la Línea: C5 Baño

- Tensión de servicio: 230 V.

- Canalización: B1-Unip.Tubos Superf.o Emp.Obra

- Longitud: 8.11 m; Cos j: 1; Xu(mW/m): 0;

- Datos por tramo

Tramo	1	2
Longitud (m)	6.57	1.54
Pot. Nudo (W)	690	690

Tabla 41

Potencia a instalar: 1380 W.Potencia de cálculo: 1380 W.

I=1380/230x1=6 A. (1)

Se eligen conductores Unipolares 2x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, PVC. Desig. UNE: H07V-K

I.ad. a 40°C (Fc=1) 21 A. según ITC-BT-19

Diámetro exterior tubo: 20 mm.

Caída de tensión:

Temperatura cable (°C): 42.45 (7)

e(parcial)=2x7.34x1380/51.06x230x2.5=0.69 V.=0.3 % (3% MAX.) (2)

Cálculo de la Línea: C8 Bomba de Calor

- Tensión de servicio: 230 V.

- Canalización: B1-Unip.Tubos Superf.o Emp.Obra

- Longitud: 9.35 m; Cos j: 1; Xu(mW/m): 0;

- Potencia a instalar: 1293.8 W.- Potencia de cálculo: 1293.8 W.

I=1293.8/230x1=5.63 A. (1)

Se eligen conductores Unipolares 2x6+TTx6mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, PVC. Desig. UNE: H07V-K

I.ad. a 40°C (Fc=1) 36 A. según ITC-BT-19

Diámetro exterior tubo: 25 mm.

Caída de tensión:

Temperatura cable (°C): 40.73 (7)

e(parcial)=2x9.35x1293.8/51.38x230x6=0.34 V.=0.15 % (3% MAX.) (2)

Otro de los puntos críticos de la instalación es el cuarto de máquinas, debido al uso de motores y a la alta demanda de potencia requerida.

CUARTO DE MÁQUINAS:

DEMANDA DE POTENCIAS

- Potencia total instalada:

Circuito	Potencia (W)
Montacargas	18400
Ascensores	19000
Total	37400

Tabla 42

- Potencia Instalada Fuerza (W): 37400
- Potencia Máxima Admisible (W): 47110.4 (Al tratarse de motores, se multiplica por 1.25. Si hay más de un motor en serie, sólo se multiplica la potencia del primer motor)

Cálculo de la Línea: Montacargas

- Tensión de servicio: 400 V.
- Canalización: B1-Unip.Tubos Superf.o Emp.Obra
- Longitud: 9.25 m; Cos j: 0.8; Xu(mW/m): 0; R: 1
- Potencia a instalar: 18400 W.
- Potencia de cálculo: (Según ITC-BT-47):

18400x1.25=23000 W.

I=23000/1,732x400x0.8x1=41.5 A. (1)

Se eligen conductores Unipolares 4x16+TTx16mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, PVC. Desig. UNE: H07V-K

I.ad. a 40°C (Fc=1) 59 A. según ITC-BT-19

Diámetro exterior tubo: 40 mm.

Caída de tensión:

Temperatura cable (°C): 54.84 (7)

e(parcial)=9.25x23000/48.88x400x16x1=0.68 V.=0.17 % (3% MAX.) (2)

Cálculo de la Línea: Ascensores

- Tensión de servicio: 400 V.

- Canalización: B1-Unip.Tubos Superf.o Emp.Obra

- Longitud: 6.84 m; Cos j: 0.8; Xu(mW/m): 0; R: 1

- Datos por tramo

Tramo	1	2
Longitud (m)	4.04	2.8
Pot. Nudo (W)	9.5	9.5

Tabla 43

- Potencia a instalar: 19000 W.

- Potencia de cálculo: (Según ITC-BT-47): 9500x1.25+9500=21375 W.

I=21375/1,732x400x0.8x1=38.57 A. **(1)**

Se eligen conductores Unipolares 4x10+TTx10mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, PVC. Desig. UNE: H07V-K

I.ad. a 40°C (Fc=1) 44 A. según ITC-BT-19

Diámetro exterior tubo: 32 mm.

Caída de tensión:

Temperatura cable (°C): 63.05 (7)

e(parcial)=5.6x21375/47.53x400x10x1=0.63 V.=0.16 % (3% MAX.) (2)

A continuación, se muestran unas tablas con el resumen de las secciones de cada sala de todas las plantas del hotel, eliminando las habitaciones de las plantas tercera y cuarta, ya que el diseño de éstas es igual, independientemente de la planta en la cual se ubiquen. Por lo tanto, las secciones son las siguientes:

Cir-			Longitud		Diá-
cuito	Descripción	Método de Instalación	Total	Sección	metro
	Centro de Computo + Ar-				
L1.1	chivo General				
	C1 Iluminación Archivo	Falso Techo 450/750V,		2x1.5+TTx1.5	
	General	PVC	6.57	mm² Cu	
	C1 Iluminación Centro de	Falso Techo 450/750V,		2x1.5+TTx1.5	
	Computo	PVC	28.75	mm² Cu	
	C2 Toma de Uso General	Empotrado en Obra		2x2.5+TTx2.5	
	1/2	450/750V, PVC	4.92		20
	C2 Toma de Uso General	Empotrado en Obra		2x2.5+TTx2.5	
	2/2	450/750V, PVC	14.66		20
		Empotrado en Obra		2x6+TTx6mm ²	
	C8 Bomba de Calor	450/750V, PVC	10.24	Cu	25
L1.2	Relaciones Públicas				
		Falso Techo 450/750V,		2x1.5+TTx1.5	
	C1 Iluminación	PVC	18.96	mm² Cu	
		Empotrado en Obra		2x2.5+TTx2.5	
	C2 Toma de Uso General	450/750V, PVC	8.97	mm² Cu	20
		Empotrado en Obra		2x6+TTx6mm ²	
	C8 Bomba de Calor	450/750V, PVC	8.91	Cu	25
L1.3	Recursos Humanos				
		Falso Techo 450/750V,		2x1.5+TTx1.5	
	C1 Iluminación	PVC	18.97	mm² Cu	
	C2 Toma de Uso General	Empotrado en Obra		2x2.5+TTx2.5	
	1/2	450/750V, PVC	4.85	mm² Cu	20
	C2 Toma de Uso General	Empotrado en Obra		2x2.5+TTx2.5	
	2/2	450/750V, PVC	4.11	mm² Cu	20
		Empotrado en Obra		2x6+TTx6mm ²	
	C8 Bomba de Calor	450/750V, PVC	8.91	Cu	25
L1.4	Gerente Administrativo				
		Falso Techo 450/750V,		2x1.5+TTx1.5	
	C1 Iluminación	PVC	15		
		Empotrado en Obra		2x2.5+TTx2.5	
	C2 Toma de Uso General	450/750V, PVC	10.29		20
		Empotrado en Obra		2x6+TTx6mm ²	
	C8 Bomba de Calor	450/750V, PVC	7.7	Cu	25

Tabla 44

Cir-			Longitud	Carai é a	Diá-
cuito	Descripción	Método de Instalación	Total	Sección	metro
L1.5	Secretaría				
		Falso Techo 450/750V,		2x1.5+TTx1.5	
	C1 Iluminación	PVC	22.44		
		Empotrado en Obra		2x2.5+TTx2.5	
	C2 Toma de Uso General	450/750V, PVC	5.24	mm ² Cu	20
		Empotrado en Obra		2x6+TTx6mm ²	
	C8 Bomba de Calor	450/750V, PVC	7.68	Cu	25
L1.6	Gerente General				
		Falso Techo 450/750V,		2x1.5+TTx1.5	
	C1 Iluminación	PVC	19.72	mm ² Cu	
		Empotrado en Obra		2x2.5+TTx2.5	
	C2 Toma de Uso General	450/750V, PVC	9.02	mm² Cu	20
	CE De Se	Empotrado en Obra	7.05	2x2.5+TTx2.5	20
	C5 Baño	450/750V, PVC	7.05	mm² Cu	20
	CO Dombo do Color	Empotrado en Obra	2.40	2x6+TTx6mm ²	25
	C8 Bomba de Calor	450/750V, PVC	2.49	Cu	25
L1.7	Sala de Juntas	Felo Tech 450/750V		2.45.77.45	
	C4 11	Falso Techo 450/750V,	22.00	2x1.5+TTx1.5	
	C1 Iluminación	PVC	33.89	mm ² Cu	
	C2 Toma do Uso Conoral	Empotrado en Obra	0.0	2x2.5+TTx2.5 mm ² Cu	20
	C2 Toma de Uso General	450/750V, PVC Empotrado en Obra	9.9	2x6+TTx6mm ²	20
	C8 Bomba de Calor	450/750V, PVC	13.7	Cu	25
L1.8	Pasillos Administración	430/7300, FVC	13.7	Cu	23
L1.8	Pasilios Auministración	Falso Tocho 450/750V		2x1.5+TTx1.5	
	C1 Iluminación	Falso Techo 450/750V, PVC	23.23	mm ² Cu	
	Alumbrado Emergencia	rvc	23.23	min cu	
L1.9	Administración				
21.5	/ Commission	Falso Techo 450/750V,		2x2.5+TTx1.5	
	C1 Iluminación	PVC	27.081	mm² Cu	
L1.1					
0	Lobby				
		Falso Techo 450/750V,		2x1.5+TTx1.5	
	C1 Iluminación	PVC	110.04	mm² Cu	
		Empotrado en Obra		2x2.5+TTx2.5	
	C2 Toma de Uso General	450/750V, PVC	40.33	mm² Cu	20
		Empotrado en Obra		2x10+TTx10m	
	C8 Bomba de Calor	450/750V, PVC	23.93	m² Cu	32
L1.1	Alumbrado Emergencia				
1	Lobby				
		Falso Techo 450/750V,		2x1.5+TTx1.5	
	C1 Iluminación	PVC	107.14	mm² Cu	

Tabla 45

C: n			l a naitu d		D:4
Cir- cuito	Descripción	Método de Instalación	Longitud Total	Sección	Diá-
L1.12	Restaurante	Metodo de instalación	TOLAI		metro
L1.12	Restaurante	Falso Techo 450/750V,		2x1.5+TTx1.5m	
	C1 Iluminación	PVC	83.09		
	C2 Toma de Uso Ge-	Empotrado en Obra	05.05	2x2.5+TTx2.5m	
	neral	450/750V, PVC	53.19		20
		Empotrado en Obra		4x25+TTx16m	
	C8 Bomba de Calor	450/750V, PVC	1.82	m² Cu	50
L1.13	Cuarto Máquinas Elevadoras				
L1.13	Elevadoras	Empotrado en Obra		4x16+TTx16m	
	Montacargas	450/750V, PVC	8.17		40
	Wiontacargas	Empotrado en Obra	0.17	4x10+TTx10m	40
	Ascensores	450/750V, PVC	6.84		32
L1.14	Cocina	130/1301/110	0.01	64	02
	Cooma	Falso Techo 450/750V,		2x1.5+TTx1.5m	
	C1 Iluminación	PVC	29.58		
	Electrodomésticos	Empotrado en Obra		2x2.5+TTx2.5m	
	Bodega	450/750V, PVC	15.41	m² Cu	20
	Electrodomésticos	Empotrado en Obra		2x2.5+TTx2.5m	
	Cocina	450/750V, PVC	21	m² Cu	20
		Empotrado en Obra		2x2.5+TTx2.5m	
	Horno	450/750V, PVC	23		20
		Empotrado en Obra		2x2.5+TTx2.5m	
	Lavavajillas	450/750V, PVC	19.78	m² Cu	20
L1.15	Lavandería				
		Falso Techo 450/750V,	4-0-	2x1.5+TTx1.5m	
	C1 Iluminación	PVC	15.05		
	Lavadoras	Empotrado en Obra 450/750V, PVC	14.05	4x6+TTx6mm ²	25
	Lavauoras	Empotrado en Obra	14.03	2x4+TTx4mm ²	23
	Secadoras	450/750V, PVC	14.06	Cu	20
L1.16	Comedor Empleados	130/1301/110	2 1100	Cu	
	Confedor Empleados	Falso Techo 450/750V,		2x1.5+TTx1.5m	
	C1 Iluminación	PVC	7	m ² Cu	
	C2 Toma de Uso Ge-	Empotrado en Obra		2x6+TTx6mm ²	
	neral	450/750V, PVC	18.22	Cu	25
		Empotrado en Obra		2x6+TTx6mm ²	
	C8 Bomba de Calor	450/750V, PVC	9.68	Cu	25
L1.17	Gimnasio				
		Falso Techo 450/750V,		2x1.5+TTx1.5m	
	C1 Iluminación	PVC	23.4		
	C2 Toma de Uso Ge-	Empotrado en Obra		2x2.5+TTx2.5m	
	neral	450/750V, PVC	4.52	m ² Cu	20
	CO D l	Empotrado en Obra	44.70	2x6+TTx6mm ²	2.5
	C8 Bomba de Calor	450/750V, PVC	11.76	Cu	25

Tabla 46

Cir-			Longitud	6	Diá-
cuito	Descripción	Método de Instalación	Total	Sección	metro
L1.1					
8	Cuarto de Vigilancia				
		Falso Techo 450/750V,		2x1.5+TTx1.5	
	C1 Iluminación	PVC	7.68		
	62 T d. H C	Empotrado en Obra	0.44	2x2.5+TTx2.5	20
	C2 Toma de Uso General	450/750V, PVC	8.41	mm ² Cu	20
	C8 Bomba de Calor	Empotrado en Obra 450/750V, PVC	1.74	2x6+TTx6mm ²	25
12.4		450/7500, PVC	1.74	Cu	25
L2.1	Pasillos Primera Planta	Folia Took 450/750\/		2x1.5+TTx1.5	
	C1 Iluminación	Falso Techo 450/750V, PVC	86.41	2X1.5+11X1.5 mm ² Cu	
		PVC	80.41	mm Cu	
L2.2	Alumbrado Emergencia Primera Planta				
LZ.Z	T TATICI O TIONICO	Falso Techo 450/750V,		2x1.5+TTx1.5	
	C1 Iluminación	PVC	140.76	mm ² Cu	
L2.3	Habitación 1		210170	······ cu	
22.3	Traditación 1	Falso Techo 450/750V,		2x1.5+TTx1.5	
	C1 Iluminación	PVC	17.51		
		Empotrado en Obra	_	2x2.5+TTx2.5	
	C2 Toma de Uso General	450/750V, PVC	17.36	mm² Cu	20
		Empotrado en Obra		2x2.5+TTx2.5	
	C5 Baño	450/750V, PVC	7.73	mm² Cu	20
		Empotrado en Obra		2x6+TTx6mm ²	
	C8 Bomba de Calor	450/750V, PVC	16.26	Cu	25
L2.4	Habitación 2				
		Falso Techo 450/750V,		2x1.5+TTx1.5	
	C1 Iluminación	PVC	17.51		
		Empotrado en Obra		2x2.5+TTx2.5	
	C2 Toma de Uso General	450/750V, PVC	17.36	mm² Cu	20
	CE D- %-	Empotrado en Obra	7.70	2x2.5+TTx2.5	20
	C5 Baño	450/750V, PVC	7.73	mm ² Cu	20
	C8 Bomba de Calor	Empotrado en Obra 450/750V, PVC	16.26	2x6+TTx6mm ²	25
L2.5		430/7300, 200	10.20	Cu	23
LZ.5	Habitación 3	Falso Techo 450/750V,		2x1.5+TTx1.5	
	C1 Iluminación	PVC	17.51	mm ² Cu	
	CI HUITIIII (CIOTI	Empotrado en Obra	17.51	2x2.5+TTx2.5	
	C2 Toma de Uso General	450/750V, PVC	17.36	mm ² Cu	20
		Empotrado en Obra	27.55	2x2.5+TTx2.5	20
	C5 Baño	450/750V, PVC	7.73	mm² Cu	20
		Empotrado en Obra		2x6+TTx6mm²	
	C8 Bomba de Calor	450/750V, PVC	16.26	Cu	25

Tabla 47

Cir-			Longitud	Cassián	Diá-
cuito	Descripción	Método de Instalación	Total	Sección	metro
	Sala de Conferencias				
L2.6	22 Personas				
		Falso Techo 450/750V,		2x1.5+TTx1.5	
	C1 Iluminación	PVC	31.23	mm² Cu	
	C2 Toma de Uso Gene-	Empotrado en Obra		2x2.5+TTx2.5	
	ral 1/2	450/750V, PVC	6.22	mm² Cu	20
	C2 Toma de Uso Gene-	Empotrado en Obra		2x2.5+TTx2.5	
	ral 2/2	450/750V, PVC	12.74	mm ² Cu	20
		Empotrado en Obra		2x6+TTx6mm ²	
	C8 Bomba de Calor	450/750V, PVC	11.45	Cu	25
	Sala de Conferencias				
L2.7	30 Personas				
		Falso Techo 450/750V,		2x1.5+TTx1.5	
	C1 Iluminación	PVC	40.68	mm² Cu	
	C2 Toma de Uso Gene-	Empotrado en Obra		2x2.5+TTx2.5	
	ral 1/2	450/750V, PVC	6.47	mm² Cu	20
	C2 Toma de Uso Gene-	Empotrado en Obra		2x2.5+TTx2.5	
	ral 2/2	450/750V, PVC	14.07		20
		Empotrado en Obra		2x6+TTx6mm ²	
	C8 Bomba de Calor	450/750V, PVC	14.07	Cu	25
	Sala de Conferencias				
L2.8	52 Personas				
		Falso Techo 450/750V,		2x2.5+TTx2.5	
	C1 Iluminación	PVC	106.81		
	C2 Toma de Uso Gene-	Empotrado en Obra		2x2.5+TTx2.5	
	ral 1/2	450/750V, PVC	13.39		20
	C2 Toma de Uso Gene-	Empotrado en Obra		2x2.5+TTx2.5	
	ral 2/2	450/750V, PVC	12.24		20
		Empotrado en Obra		2x6+TTx6mm ²	
	C8 Bomba de Calor	450/750V, PVC	22.93	Cu	25

Tabla 48

Cir-			Longitud	Cassián	Diá-
cuito	Descripción	Método de Instalación	Total	Sección	metro
L3.1	Pasillos Segunda Planta				
		Falso Techo 450/750V,		2x1.5+TTx1.5	
	C1 Iluminación	PVC	86.47	mm² Cu	
	Alumbrado Emergencia				
L3.2	Segunda Planta				
		Falso Techo 450/750V,		2x1.5+TTx1.5	
	C1 Iluminación 1/2	PVC	43.75	mm² Cu	
		Falso Techo 450/750V,		2x1.5+TTx1.5	
	C1 Iluminación 2/2	PVC	156.84	mm ² Cu	
L3.3	Habitación 4				
		Falso Techo 450/750V,		2x1.5+TTx1.5	
	C1 Iluminación	PVC	17.51		
		Empotrado en Obra		2x2.5+TTx2.5	
	C2 Toma de Uso General	450/750V, PVC	17.36		20
		Empotrado en Obra		2x2.5+TTx2.5	
	C5 Baño	450/750V, PVC	7.73		20
		Empotrado en Obra		2x6+TTx6mm	
	C8 Bomba de Calor	450/750V, PVC	16.26	² Cu	25
L3.4	Habitación 5				
		Falso Techo 450/750V,		2x1.5+TTx1.5	
	C1 Iluminación	PVC	10.36		
		Empotrado en Obra		2x2.5+TTx2.5	
	C2 Toma de Uso General	450/750V, PVC	16.8	mm ² Cu	20
		Empotrado en Obra		2x2.5+TTx2.5	
	C5 Baño	450/750V, PVC	8.11		20
		Empotrado en Obra		2x6+TTx6mm	
	C8 Bomba de Calor	450/750V, PVC	9.35	² Cu	25

Tabla 49

ESCUELA TÉCNICA SUPERIOR INGENIEROS INDUSTRIALES VALENCIA

Proyecto de diseño de la instalación eléctrica de un hotel de 61 habitaciones

Cir-			Longitud	Sección	Diá-
cuito	Descripción	Método de Instalación	Total	Seccion	metro
L4.1	Pasillos Tercera Planta				
		Falso Techo 450/750V,		2x1.5+TTx1.5	
	C1 Iluminación	PVC	89.17	mm² Cu	
	Alumbrado de Emergencia				
L4.2	Tercera Planta				
		Falso Techo 450/750V,		2x1.5+TTx1.5	
	C1 Iluminación 1/2	PVC	55.2		
		Falso Techo 450/750V,		2x1.5+TTx1.5	
	C1 Iluminación 2/2	PVC	151.14	mm² Cu	
L4.3	Habitación 22				
		Falso Techo 450/750V,		2x1.5+TTx1.5	
	C1 Iluminación	PVC	10.36		
		Empotrado en Obra		2x2.5+TTx2.5	
	C2 Toma de Uso General	450/750V, PVC	16.8		20
		Empotrado en Obra		2x2.5+TTx2.5	
	C5 Baño	450/750V, PVC	8.11		20
		Empotrado en Obra		2x6+TTx6mm	
	C8 Bomba de Calor	450/750V, PVC	9.35	² Cu	25
L5.1	Pasillos Cuarta Planta				
		Falso Techo 450/750V,		2x1.5+TTx1.5	
	C1 Iluminación	PVC	89.17	mm² Cu	
	Alumbrado de Emergencia				
L5.2	Cuarta Planta				
		Falso Techo 450/750V,		2x1.5+TTx1.5	
	C1 Iluminación 1/2	PVC	55.2		
		Falso Techo 450/750V,		2x1.5+TTx1.5	
	C1 Iluminación 2/2	PVC	151.14	mm² Cu	
L5.3	Habitación 42				
		Falso Techo 450/750V,		2x1.5+TTx1.5	
	C1 Iluminación	PVC	10.36		
		Empotrado en Obra		2x2.5+TTx2.5	
	C2 Toma de Uso General	450/750V, PVC	16.8		20
		Empotrado en Obra		2x2.5+TTx2.5	
	C5 Baño	450/750V, PVC	8.11	mm² Cu	20
		Empotrado en Obra		2x6+TTx6mm	

Tabla 50

9.35 ² Cu

450/750V, PVC

C8 Bomba de Calor

25

ANEXO I.II. Protecciones

Fórmulas Cortocircuito

* IpccI = Ct U / (
$$\sqrt{3}$$
 Zt) (8)

Siendo,

Ipccl: intensidad permanente de c.c. en inicio de línea en kA.

Ct: Coeficiente de tensión.

U: Tensión trifásica en V.

Zt: Impedancia total en mohm, aguas arriba del punto de c.c. (sin incluir la línea o circuito en estudio).

* IpccF = Ct
$$U_F / (2 Zt)$$
 (9)

Siendo,

IpccF: Intensidad permanente de c.c. en fin de línea en kA.

Ct: Coeficiente de tensión.

U_F: Tensión monofásica en V.

Zt: Impedancia total en mohm, incluyendo la propia de la línea o circuito (por tanto es igual a la impedancia en origen mas la propia del conductor o línea).

* La impedancia total hasta el punto de cortocircuito será:

$$Zt = (Rt^2 + Xt^2)^{1/2}$$
 (10)

Siendo,

Rt: $R_1 + R_2 + \dots + R_n$ (suma de las resistencias de las líneas aguas arriba hasta el punto de c.c.)

 $Xt: X_1 + X_2 + \dots + X_n$ (suma de las reactancias de las líneas aguas arriba hasta el punto de c.c.)

$$R = L \cdot 1000 \cdot C_R / (K \cdot S \cdot n)$$
 (mohm) (11)

$$X = Xu \cdot L / n \qquad (mohm) \tag{12}$$

R: Resistencia de la línea en mohm.

X: Reactancia de la línea en mohm.

L: Longitud de la línea en m.

C_R: Coeficiente de resistividad.

K: Conductividad del metal.

S: Sección de la línea en mm².

Xu: Reactancia de la línea, en mohm por metro.

n: nº de conductores por fase.

* tmcicc =
$$Cc \cdot S^2 / IpccF^2$$
 (13)

Siendo,

tmcicc: Tiempo máximo en sg que un conductor soporta una Ipcc.

Cc= Constante que depende de la naturaleza del conductor y de su aislamiento.

S: Sección de la línea en mm².

IpccF: Intensidad permanente de c.c. en fin de línea en A.

* tficc = cte. fusible / IpccF² (14)

Siendo,

tficc: tiempo de fusión de un fusible para una determinada intensidad de cortocircuito. IpccF: Intensidad permanente de c.c. en fin de línea en A.

* Lmax = 0,8 U_F /
$$(2 \cdot I_{F5} \cdot \ddot{O}(1,5 / K \cdot S \cdot n)^2) + (Xu / (n \cdot 1000))^2$$
 (15)

Siendo,

Lmax: Longitud máxima de conductor protegido a c.c. (m) (para protección por fusibles)

U_F: Tensión de fase (V)

K: Conductividad

S: Sección del conductor (mm²)

Xu: Reactancia por unidad de longitud (mohm/m). En conductores aislados suele ser 0,1.

n: nº de conductores por fase

Ct= 0,8: Es el coeficiente de tensión.

C_R = 1,5: Es el coeficiente de resistencia.

I_{F5} = Intensidad de fusión en amperios de fusibles en 5 sg.

* Curvas válidas.(Para protección de Interruptores automáticos dotados de Relé electromagnético).

CURVA B IMAG = 5 In
CURVA C IMAG = 10 In
CURVA D Y MA IMAG = 20 In

Fórmulas Sobrecargas

 $lb \le ln \le lz$ (16)

 $12 \le 1,45 \text{ lz } (17)$

Donde:

Ib: intensidad utilizada en el circuito.

Iz: intensidad admisible de la canalización según la norma UNE 20-460/5-523.

In: intensidad nominal del dispositivo de protección. Para los dispositivos de protección regulables, In es la intensidad de regulación escogida.

12: intensidad que asegura efectivamente el funcionamiento del dispositivo de protección. En la práctica 12 se toma igual:

- a la intensidad de funcionamiento en el tiempo convencional, para los interruptores automáticos (1,45 In como máximo).
 - a la intensidad de fusión en el tiempo convencional, para los fusibles (1,6 In).

Se procede al cálculo de la protección frente a cortocircuitos en la planta baja, debido a que la corriente de cortocircuito más alta se produce en el punto más cercano a la protección. También este es el punto más interesante de las cuatro plantas porque es el circuito principal que más potencia consume.

PLANTA BAJA:

Cortocircuito

	Longi-		Ipccl (kA)	P de			tficc	
	tud		(8) (10)	С	IpccF	tmcicc	(s)	Curvas
Denominación	(m)	Sección	(11)	(kA)	(A) (9)	(s) (13)	(14)	Válidad
LÍNEA GENERAL	1	4x240+TT	14.43	50	6457.	28.24	0.94	400
ALIMENTACIÓN	1	x120Cu	14.45	50	87	20.24	0.94	400
DERIVACIÓN IN-	1	4x240+TT	14.33	15	6415.	28.62		400.P.C
DIVIDUAL	1	x120Cu	14.55	13	17	20.02		400;B,C
	64.49	2(4x120+	14.24		4668.	34.95		
Izquierda	04.49	TTx70)Cu	14.24		26	54.95		
	55.81	2(4x120+	14.24		4848.	32.41		
Administración	55.81	TTx70)Cu	14.24		38	52.41		

Tabla 51

Como Ipccl = 14.33kA → PdeC = 15kA

Cálculo de la DERIVACION INDIVIDUAL

- Tensión de servicio: 400 V.

Canalización: F-Unip.o Mult.Bandeja Perfor
 Longitud: 1 m; Cos j: 0.8; Xu(mW/m): 0;

- Potencia a instalar: 180450 W.

- Potencia de cálculo:

180450 W.(Coef. de Simult.: 1)

I=180450/1,732x400x0.8=325.58 A. (1)

Prot. Térmica:

I. Aut./Tet. In.: 400 A. Térmico reg. Int.Reg.: 370 A. (16) (17)

Protección diferencial:

Relé y Transfor. Diferencial Sens.: 30 mA. Clase AC.

La intensidad Ib utilizada en (16) es la intensidad calculada en (1). Para el resto de circuitos, el método es el mismo, pero con la diferencia de la corriente de cortocircuito, que disminuye conforme se aleja de la protección principal. Otra zona interesante para poder visualizar el poder de corte es en el restaurante.

RESTAURANTE:

Cálculo de la Línea: C1 Iluminacion

- Tensión de servicio: 230 V.

Canalización: B1-Unip.o Mult.Falso Techo
 Longitud: 83.09 m; Cos j: 1; Xu(mW/m): 0;

- Datos por tramo

Tramo	1	2	3	4	5	6	7	8	9	10
Longitud (m)	5.46	3.56	3.14	3.56	3.56	3.56	3.56	2.95	3.56	3.56
Pot. Nudo (W)	29	29	29	29	29	29	429	29	29	29

Tabla 52

Tramo	11	12	13	14	15	16	17	18	19	20
Longitud (m)	3.56	3.14	3.56	3.56	3.56	3.56	3.14	3.56	3.56	3.56
Pot. Nudo (W)	29	29	29	29	29	29	429	29	29	29

Tabla 53

Tramo	21	22	23
Longitud (m)	4.74	3.56	3.56
Pot. Nudo (W)	29	29	29

Tabla 54

- Potencia a instalar: 1067 W.

- Potencia de cálculo: (Según ITC-BT-44):

1067 W.

I=1067/230x1=4.64 A. (1)

Se eligen conductores Unipolares 2x1.5+TTx1.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, PVC. Desig. UNE: H07V-K

I.ad. a 40°C (Fc=1) 15 A. según ITC-BT-19

Caída de tensión:

Temperatura cable (°C): 42.87 (7)

e(parcial)=2x37.16x1067/50.98x230x1.5=4.51 V.=1.96 % (3% MAX.) (2)

Prot. Térmica:

I. Mag. Bipolar Int. 10 A. (16) (17)

Cálculo de la Línea: C2 Uso General

- Tensión de servicio: 230 V.

- Canalización: B1-Unip.Tubos Superf.o Emp.Obra

- Longitud: 53.19 m; Cos j: 0.8; Xu(mW/m): 0;

- Datos por tramo

Tramo	1	2
Longitud (m)	49.78	3.41
Pot. Nudo (W)	172.5	172.5

Tabla 55

Potencia a instalar: 345 W.Potencia de cálculo: 345 W.

I=345/230x0.8=1.88 A. (1)

Se eligen conductores Unipolares 2x2.5+TTx2.5mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, PVC. Desig. UNE: H07V-K

I.ad. a 40°C (Fc=1) 21 A. según ITC-BT-19

Diámetro exterior tubo: 20 mm.

Caída de tensión:

Temperatura cable (°C): 40.24 (7)

e(parcial)=2x51.48x345/51.47x230x2.5=1.2 V.=0.52 % (3% MAX.) (2)

Prot. Térmica:

I. Mag. Bipolar Int. 16 A. (16) (17)

Cálculo de la Línea: C8 Bomba de Calor

- Tensión de servicio: 400 V.

- Canalización: B1-Unip.Tubos Superf.o Emp.Obra

- Longitud: 1.82 m; Cos j: 0.8; Xu(mW/m): 0;

- Potencia a instalar: 28000 W.

- Potencia de cálculo: 28000 W.

I=28000/1,732x400x0.8=50.52 A. (1)

Se eligen conductores Unipolares 4x25+TTx16mm²Cu

Nivel Aislamiento, Aislamiento: 450/750 V, PVC. Desig. UNE: H07V-K

I.ad. a 40°C (Fc=1) 77 A. según ITC-BT-19

Diámetro exterior tubo: 50 mm.

Caída de tensión:

Temperatura cable (°C): 52.91 (7)

e(parcial)=1.82x28000/49.21x400x25=0.1 V.=0.03 % (3% MAX.) (2)

Prot. Térmica:

I. Mag. Tetrapolar Int. 63 A. (16) (17)

Protección diferencial:

Inter. Dif. Tetrapolar Int.: 63 A. Sens. Int.: 30 mA. Clase AC.

Cortocircuito

	Longi-		Ipccl (kA) (8)	P de C	IpccF	tmcicc	Curvas	
Denominación	tud (m)	Sección	(10) (11)	(kA)	(A) (9)	(s) (13)	Válidas	
DERIVACIÓN IN-	0.3	4x25+TTx	1.71	4.5	766.48	21.75	63.D C	
DIVIDUAL	0.5	16Cu	1./1	4.5	700.46	21./5	63;B,C	
	83.09	2x1.5+TTx	1.68	4.5	71.88	5.76	10.P	
C1 Iluminación	83.09	1.5Cu	1.08	4.5	/1.00	5.76	10;B	
	53.19	2x2.5+TTx	1.68	4.5	163.52	3.09	16;B,C	
C2 Uso General	33.19	2.5Cu	1.00	4.5	105.52	3.09	10,6,0	
C8 Bomba de	1.82	4x25+TTx	1.7	4.5	756.03	14.46	62.D C	
Calor	1.02	16Cu	1.7	4.5	750.05	14.40	63;B,C	

Tabla 56

Posteriormente, se muestra una tabla con el resumen de las características principales de los dispositivos de protección de cada sala de la instalación eléctrica del hotel. Al igual que en Anexo anterior, se han omitido las habitaciones de las tercera y cuarta planta, exactamente por la misma razón. Con lo cual, los dispositivos instalados son los siguientes:

Planta B	aja				
L1.1 Centro de Computo + Archivo General	In	U	Ir	Is	Рс
IM Subcuadro L1.1	25	230			6
ID Subcuadro L1.1	25	230		30	
IM Subcuadro L1.1 C1 Iluminación Arch	10	230			6
IM Subcuadro L1.1 C1 Iluminación Comp	10	230			6
IM Subcuadro L1.1 C2 Toma de Uso General 1/2	16	230			6
IM Subcuadro L1.1 C2 Toma de Uso General 2/2	16	230			6
IM Subcuadro L1.1 C8 Bomba de Calor	25	230			6
L1.2 Relaciones Públicas	In	U	Ir	Is	Рс
IM Subcuadro L1.2	25	230			6
ID Subcuadro L1.2	25	230		30	
IM Subcuadro L1.2 C1 Iluminación	10	230			6
IM Subcuadro L1.2 C2 Toma de Uso General	16	230			6
IM Subcuadro L1.2 C8 Bomba de Calor	25	230			6
L1.3 Recursos Humanos	In	U	Ir	Is	Pc
IM Subcuadro L1.3	25	230			6
ID Subcuadro L1.3	25	230		30	
IM Subcuadro L1.3 C1 Iluminación	10	230			6
IM Subcuadro L1.3 C2 Toma de Uso General 1/2	16	230			6
IM Subcuadro L1.3 C2 Toma de Uso General 2/2	16	230			6
IM Subcuadro L1.3 C8 Bomba de Calor	25	230			6

Tabla 57

L1.4 Gerente Administrativo	In	U	Ir	Is	Рс	
IM Subcuadro L1.4	25	400				6
ID Subcuadro L1.4	25	400		30		
IM Subcuadro L1.4 C1 Iluminación	10	230				6
IM Subcuadro L1.4 C2 Toma de Uso General	16	230				6
IM Subcuadro L1.4 C8 Bomba de Calor	25	230				6
L1.5 Secretaría	In	U	Ir	Is	Рс	
IM Subcuadro L1.5	25	230			(6
ID Subcuadro L1.5	25	230		30		
IM Subcuadro L1.5 C1 Iluminación	10	230				6
IM Subcuadro L1.5 C2 Toma de Uso General	16	230				6
IM Subcuadro L1.5 C8 Bomba de Calor	25	230				6
L1.6 Gerente General	In	U	Ir	Is	Рс	
IM Subcuadro L1.6	25	230				6
ID Subcuadro L1.6	25	230		30		
IM Subcuadro L1.6 C1 Iluminación	10	230				6
IM Subcuadro L1.6 C2 Toma de Uso General	16	230			(6
IM Subcuadro L1.6 C5 Baño	16	230				6
IM Subcuadro L1.6 C8 Bomba de Calor	25	230			(6
L1.7 Sala de Juntas	In	U	Ir	Is	Рс	
IM Subcuadro L1.7	25	230				6
ID Subcuadro L1.7	25	230		30		
IM Subcuadro L1.7 C1 Iluminación	10	230				6
IM Subcuadro L1.7 C2 Toma de Uso General	16	230				6
IM Subcuadro L1.7 C8 Bomba de Calor	25	230			(6
L1.8 Pasillos Administración	In	U	Ir	Is	Рс	
IM Subcuadro L1.8	25	230			(6
ID Subcuadro L1.8	25	230		30		
IM Subcuadro L1.8 C1 Iluminación	10	230			(6
L1.9 Alumbrado Emergencia Pasillos Administración	In	U	Ir	Is	Pc	
IM Subcuadro L1.9	25	230			(6
ID Subcuadro L1.9	25	230		30		
IM Subcuadro L1.9 C1 Iluminación	10	230			(6
L1.10 Lobby	In	U	Ir	Is	Pc	
IM Subcuadro L1.10	50	400			(6
ID Subcuadro L1.10	63	400		300		
IM Subcuadro L1.10 C1 Iluminación	10	230				6
IM Subcuadro L1.10 C2 Toma de Uso General	16	230				6
IM Subcuadro L1.10 C8 Bomba de Calor	40	400				6
ID Subcuadro L1.10 C8 Bomba de Calor	40	400		30		

Tabla 58

L1.11 Alumbrado Emergencia Lobby	In		U		Ir		Is		Pc	
IM Subcuadro L1.11		25		230						6
ID Subcuadro L1.11		25		230				30		
IM Subcuadro L1.11 C1 Iluminación		10		230						6
L1.12 Restaurante	In		U		Ir		Is		Рс	
IM Subcuadro L1.12		63		400						6
ID Subcuadro L1.12		63		400				300		
IM Subcuadro L1.12 C1 Iluminación		10		230						6
IM Subcuadro L1.12 C2 Toma de Uso General		16		230						6
IM Subcuadro L1.12 C8 Bomba de Calor		63		400						6
ID Subcuadro L1.12 C8 Bomba de Calor		63		400				30		
L1.13 Cuarto de Máquinas	In		U		Ir		Is		Рс	
IA Subcuadro L1.13		100		400		85		300		36
IM Subcuadro L1.13 Montacargas		50		400						6
ID Subcuadro L1.13 Montacargas		63		400				30		
IM Subcuadro L1.13 Ascensores		40		400						6
ID Subcuadro L1.13 Ascensores		40		400				30		
L1.14 Cocina	In		U		Ir		Is		Рс	
IM Subcuadro L1.14		50		230						6
ID Subcuadro L1.14		63		230				300		
IM Subcuadro L1.14 C1 Iluminación		10		230						6
IM Subcuadro L1.14 Electrodomésticos Bodega		16		230						6
IM Subcuadro L1.14 Cocina		50		230						6
IM Subcuadro L1.14 Electrodomésticos Cocina		16		230						6
IM Subcuadro L1.14 Horno		20		230						6
ID Subcuadro L1.14 Horno		25		230				30		
IM Subcuadro L1.14 Lavavajillas		20		230						6
ID Subcuadro L1.14 Lavavajillas		25		230				30		
L1.15 Lavandería	In		U		Ir		Is		Рс	
IM Subcuadro L1.15		40		400						6
ID Subcuadro L1.15		40		400				300		
IM Subcuadro L1.15 C1 Iluminación		10		230						6
IM Subcuadro L1.15 Lavadoras		32		400						6
ID Subcuadro L1.15 Lavadoras		40		400				30		
IM Subcuadro L1.15 Secadoras		25		230						6
ID Subcuadro L1.15 Secadoras		25		230				30		
L1.16 Comedor Empleados	In		U		Ir		Is		Рс	
IM Subcuadro L1.16		32		230						6
ID Subcuadro L1.16		40		230				30		
IM Subcuadro L1.16 C1 Iluminación		10		230						6
IM Subcuadro L1.16 C2 Toma de Uso General		32		230						6
IM Subcuadro L1.16 C8 Bomba de Calor	FO	25		230						6

Tabla 59

L1.17 Gimnasio	In	U	Ir	Is	Рс
IM Subcuadro L1.17	25	230			6
ID Subcuadro L1.17	25	230		30	
IM Subcuadro L1.17 C1 Iluminación	10	230			6
IM Subcuadro L1.17 C2 Toma de Uso General	16	230			6
IM Subcuadro L1.17 C8 Bomba de Calor	25	230			6
L1.18 Cuarto de Vigilancia	In	U	Ir	Is	Pc
IM Subcuadro L1.18	25	230			6
ID Subcuadro L1.18	25	230		30	
ID Subcuadro L1.18 IM Subcuadro L1.18 C1 Iluminación	25 10	230 230		30	6
				30	6

Tabla 60

Primera	Planta					
L2.1 Pasillos Primera Planta	In	U	Ir	Is	Рс	
IM Subcuadro L2.1	25	230				6
ID Subcuadro L2.1	25	230		30		
IM Subcuadro L2.1 C1 Iluminación	10	230				6
L2.2 Alumbrado Emergencia Primera Planta	In	U	Ir	Is	Рс	
IM Subcuadro L2.2	25	230				6
ID Subcuadro L2.2	25	230		30		
IM Subcuadro L2.2 C1 Iluminación	10	230				6
L2.3 Habitación 1	In	U	Ir	Is	Рс	
IM Subcuadro L2.3	25	230				6
ID Subcuadro L2.3	25	230		30		
IM Subcuadro L2.3 C1 Iluminación	10	230				6
IM Subcuadro L2.3 C2 Toma de Uso General	16	230				6
IM Subcuadro L2.3 C5 Baño	16	230				6
IM Subcuadro L2.3 C8 Bomba de Calor	25	230				6
L2.4 Habitación 2	In	U	Ir	Is	Рс	
IM Subcuadro L2.4	25	230				6
ID Subcuadro L2.4	25	230		30		
IM Subcuadro L2.4 C1 Iluminación	10	230				6
IM Subcuadro L2.4 C2 Toma de Uso General	16	230				6
IM Subcuadro L2.4 C5 Baño	16	230				6
IM Subcuadro L2.4 C8 Bomba de Calor	25	230				6
L2.5 Habitación 3	In	U	Ir	Is	Pc	
IM Subcuadro L2.5	25	230				6
ID Subcuadro L2.5	25	230		30		
IM Subcuadro L2.5 C1 Iluminación	10	230				6
IM Subcuadro L2.5 C2 Toma de Uso General	16	230				6
IM Subcuadro L2.5 C5 Baño	16	230				6
IM Subcuadro L2.5 C8 Bomba de Calor	25	230				6
L2.6 Sala de Conferencias 22 Personas	In	U	Ir	Is	Рс	
IM Subcuadro L2.6	25	230				6
ID Subcuadro L2.6	25	230		30		
IM Subcuadro L2.6 C1 Iluminación	10	230				6
IM Subcuadro L2.6 C2 Toma de Uso General	16	230				6
IM Subcuadro L2.6 C8 Bomba de Calor	25	230				6
L2.7 Sala de Conferencias 30 Personas	In	U	Ir	Is	Рс	
IM Subcuadro L2.7	25	230				6
ID Subcuadro L2.7	25	230		30		
IM Subcuadro L2.7 C1 Iluminación	10	230				6
IM Subcuadro L2.7 C2 Toma de Uso General	16	230				6
IM Subcuadro L2.7 C8 Bomba de Calor	25	230				6

Tabla 61

L2.8 Sala de Conferencias 52 Personas	In	U	Ir	Is	Рс
IM Subcuadro L2.8	25	230			6
ID Subcuadro L2.8	25	230		30	
IM Subcuadro L2.8 C1 Iluminación	10	230			6
IM Subcuadro L2.8 C2 Toma de Uso General	16	230			6
IM Subcuadro L2.8 C8 Bomba de Calor	25	230			6

Tabla 62

Segunda Planta						
L3.1 Pasillos Segunda Planta	In	U	Ir	Is	Рс	
IM Subcuadro L3.1	25	230			6	5
ID Subcuadro L3.1	25	230		30)	
IM Subcuadro L3.1 C1 Iluminación	10	230			6	5
L3.2 Alumbrado Emergencia Segunda Planta	In	U	Ir	Is	Рс	
IM Subcuadro L3.2	25	230			6	5
ID Subcuadro L3.2	25	230		30)	
IM Subcuadro L3.2 C1 Iluminación 1/2	10	230			6	5
IM Subcuadro L3.2 C1 Iluminación 2/2	10	230			6	5
L3.3 Habitación 5	In	U	Ir	Is	Pc	
IM Subcuadro L3.3	25	230			6	5
ID Subcuadro L3.3	25	230		30)	
IM Subcuadro L3.3 C1 Iluminación	10	230			ϵ	5
IM Subcuadro L3.3 C2 Toma de Uso General	16	230			ϵ	5
IM Subcuadro L3.3 C5 Baño	16	230			6	5
IM Subcuadro L3.3 C8 Bomba de Calor	25	230			ϵ	5
L3.4 Habitación 6	In	U	Ir	Is	Pc	
IM Subcuadro L3.4	25	230			6	5
ID Subcuadro L3.4	25	230		30)	
IM Subcuadro L3.4 C1 Iluminación	10	230			6	;
IM Subcuadro L3.4 C2 Toma de Uso General	16	230			6	ĵ
IM Subcuadro L3.4 C5 Baño	16	230			6	;
IM Subcuadro L3.4 C8 Bomba de Calor	25	230			6	5

Tabla 63

Tercera Planta						
L4.1 Pasillos Tercera Planta	In	U	Ir	Is	Рс	
IM Subcuadro L4.1	25	230			6	
ID Subcuadro L4.1	25	230		30		
IM Subcuadro L4.1 C1 Iluminación 1/2	10	230			6	
IM Subcuadro L4.1 C1 Iluminación 2/2	10	230				
L4.2 Alumbrado Emergencia Tercera Planta	In	U	Ir	Is	Рс	
IM Subcuadro L4.2	25	230			6	
ID Subcuadro L4.2	25	230		30		
IM Subcuadro L4.2 C1 Iluminación	10	230			6	
L4.3 Habtitación 22	In	U	Ir	Is	Рс	
IM Subcuadro L4.3	25	230			6	
ID Subcuadro L4.3	25	230		30		
IM Subcuadro L4.3 C1 Iluminación	10	230			6	
IM Subcuadro L4.3 C2 Toma de Uso General	16	230			6	
IM Subcuadro L4.3 C5 Baño	16	230			6	
IM Subcuadro L4.3 C8 Bomba de Calor	25	230			6	

Tabla 64

Cuarta Planta							
L5.1 Pasillos Cuarta Planta	In	U	Ir	Is	Рс		
IM Subcuadro L5.1	25	230			6		
ID Subcuadro L5.1	25	230		30			
IM Subcuadro L5.1 C1 Iluminación	10	230			6		
L5.2 Alumbrado Emergencia Cuarta Planta	In	U	Ir	Is	Рс		
IM Subcuadro L5.2	25	230			6		
ID Subcuadro L5.2	25	230		30			
IM Subcuadro L5.2 C1 Iluminación 1/2	10	230			6		
IM Subcuadro L5.2 C1 Iluminación 2/2							
L5.3 Habitación 42	In	U	Ir	Is	Рс		
IM Subcuadro L5.3	25	230			6		
ID Subcuadro L5.3	25	230		30			
IM Subcuadro L5.3 C1 Iluminación	10	230			6		
IM Subcuadro L5.3 C2 Toma de Uso General	16	230			6		
IM Subcuadro L5.3 C5 Baño	16	230			6		
IM Subcuadro L5.3 C8 Bomba de Calor	25	230			6		

Tabla 65

ANEXO I.III. Protección frente a contactos directos e indirectos

Para el cálculo de las corrientes de cortocircuito utilizaremos las siguientes expresiones:

- Intensidad primaria para cortocircuito en el lado de Alta Tensión:

Iccp = Scc /
$$(1,732 \cdot Up)$$
; siendo:

Scc = Potencia de cortocircuito de la red en MVA.

Up = Tensión compuesta primaria en kV.

Iccp = Intensidad de cortocircuito primaria en kA.

- Intensidad secundaria para cortocircuito en el lado de Baja Tensión (despreciando la impedancia de la red de Alta Tensión):

Iccs =
$$(100 \cdot S) / (1,732 \cdot Ucc (\%) \cdot Us)$$
; siendo:

S = Potencia del transformador en kVA.

Ucc (%) = Tensión de cortocircuito en % del transformador.

Us = Tensión compuesta en carga en el secundario en V.

Iccs = Intensidad de cortocircuito secundaria en kA.

Cortocircuito en el lado de Baja Tensión:

Transformador	Potencia (kVA)	Us (V)	Ucc (%)	Iccs (kA)
Trafo 1	400	400	4	14.43

Tabla 66

Tensiones en el exterior del centro de transformación:

Por otra parte, la tensión de paso en el exterior vendrá dada por las características del electrodo y la resistividad del terreno según la expresión:

$$U'p = Kp \cdot r \cdot Id = 0.0162 \cdot 150 \cdot 500 = 1215 \text{ V.}$$
 (18)

Tensiones en el interior del centro de transformación:

La existencia de una superficie equipotencial conectada al electrodo de tierra, hace que la tensión de paso en el acceso sea equivalente al valor de la tensión de contacto exterior.

U'p (acc) = Kc · r · Id =
$$0.0335 \cdot 150 \cdot 500 = 2512.5 \text{ V}$$
. (19)

Tensiones admisibles:

Para la obtención de los valores máximos admisibles de la tensión de paso exterior y en el acceso, se utilizan las siguientes expresiones:

Up =
$$10 \cdot Uca$$
, adm · ($1 + (6 \cdot r) / 1000$) V. (20)
Up (acc) = $10 \cdot Uca$, adm · ($1 + (3 \cdot r + 3 \cdot r_H) / 1000$) V. (21)
Uca, adm \rightarrow Tabla 67
Uc = Uca, adm · ($1 + (1.5 \cdot r) / 1000$) V (22)
 $t = t' + t''$ s. (23)

Siendo:

Up = Tensión de paso admisible en el exterior, en voltios.

Up (acc) = Tensión en el acceso admisible, en voltios.

Uc = Tensión de contacto admisible, en voltios.

Uca, adm = Tensión de contacto aplicada admisible, en voltios.

t = Tiempo de duración de la falta, en segundos.

t' = Tiempo de desconexión inicial, en segundos.

t´´ = Tiempo de la segunda desconexión, en segundos.

 R_H = Resistividad del suelo del C.T, hormigón, 3000 Ω xm.

R = Resistividad del terreno, 150 Ω xm.

t (s)	Uca, adm (V)
0.05	735
0.1	633
0.2	528
0.3	420
0.4	310
0.5	204
1	107
2	90
5	81
10	80
>10	50

Tabla 67

Según los datos de la red proporcionados por la compañía suministradora, el tiempo de duración de la falta es:

$$t' = 0.5 s.$$

$$t = t' = 0.5 s.$$

Sustituyendo valores:

Uca, adm = 204 V.
 Up (acc) =
$$10 \cdot 204 \cdot (1 + (3 \cdot 150 + 3 \cdot 3000) / 1000) = 21318 \text{ V.}$$
 (21)
 Up = $2040 \cdot (1 + (6 \cdot 150) / 1000) = 3876 \text{ V.}$ (20)

En resumen, se observa que se cumple con la normativa a través de la siguiente tabla:

Concepto	Valor calculado	Condición	Valor admisible
Tensión de paso en el exterior	U'p = 1215 V.	M	Up = 3876 V.
Tensión de paso en el acceso	U'p (acc) = 2512.5 V.	¥I	Up (acc) = 21318 V.

Tabla 68

ANEXO I.IV. Instalación de tierra

Las características de la red de alimentación son:

- · Tensión de servicio, U = 20000 V.
- · Puesta a tierra del neutro:
 - -20.25Ω .
- · Nivel de aislamiento de las instalaciones de Baja Tensión, Ubt = 6000 V.
- · Características del terreno:
 - · r terreno (Wxm): 150.
 - · r_H hormigón (Wxm): 3000.

PUESTA A TIERRA DEL CT.

Para el cálculo de la resistencia de la puesta a tierra de las masas (Rt), la intensidad y tensión de defecto (Id, U_F), se utilizarán las siguientes fórmulas:

· Resistencia del sistema de puesta a tierra, Rt:

$$Rt = Kr \cdot r(W) \quad (22)$$

· Intensidad de defecto, Id:

· Aumento del potencial de tierra, U_F:

$$U_E = Rt \cdot Id (V)$$
 (23)

Los parámetros característicos del electrodo son:

- · De la resistencia, Kr (W/Wxm) = 0.076.
- · De la tensión de paso, Kp (V/((Wxm)A)) = 0.0162.
- · De la tensión de contacto exterior, Kc (V/((Wxm)A)) = 0.0335.

Sustituyendo valores en las expresiones anteriores, se tiene:

Rt = Kr · r =
$$0.076 \cdot 150 = 11.4 \text{ W}$$
. (22)

$$Id = Idmáx = 500 A.$$

$$U_F = Rt \cdot Id = 11.4 \cdot 500 = 5700 \text{ V.}$$
 (23)

Proyecto de diseño de la instalación eléctrica de un hotel de 61 habitaciones PUESTA A TIERRA DEL NEUTRO.

El electrodo adecuado para este caso tiene las siguientes propiedades:

- · Configuración seleccionada: 5/32.
- · Geometría: Picas en hilera.
- · Profundidad del electrodo (m): 0.5.
- · Número de picas: 3.
- · Longitud de las picas (m): 2.
- · Separación entre picas (m): 3.

Los parámetros característicos del electrodo son:

· De la resistencia, Kr (W/Wxm) = 0.135.

Sustituyendo valores:

$$Rt_{NFUTRO} = Kr \cdot r = 0.135 \cdot 150 = 20.25 W.$$
 (22)

PUESTA A TIERRA DE LAS MASAS DEL HOTEL.

Pica vertical

$$Rt = r / L$$
 (23)

Siendo,

Rt: Resistencia de tierra (Ohm)

r: Resistividad del terreno (Ohm·m)

L: Longitud de la pica (m)

- La resistividad del terreno es 150 ohmiosxm.
- El electrodo en la puesta a tierra del edificio, se constituye con los siguientes elementos:

M. conductor de Cu desnudo 35 mm² 22.14 m.

M. conductor de Acero galvanizado 95 mm²

Picas verticales de Cobre 14 mm

de Acero recubierto Cu 14 mm 2 picas de 2m.

de Acero galvanizado 25 mm

Proyecto de diseño de la instalación eléctrica de un hotel de 61 habitaciones

Dichos elementos han sido diseñados de tal manera que el objetivo es obtener una resistencia a tierra válida dentro de los parámetros admisibles, siendo la resistencia de tierra de 9.95 ohmios.

Ra<=UI/Id (24)

Siendo:

- UI = 50V.
- Id = 300mA

Por lo tanto, la resistencia máxima admisible es de 166 ohmios.

ANEXO I.V. Dialux

Para el cálculo de la iluminaria mediante el programa "Dialux", cabe destacar que el plano útil de trabajo ha sido considerado a 0.85m del nivel del suelo. En el cálculo del alumbrado de emergencia, tal y como indica el reglamente, el plano útil será el propio nivel del suelo.

En la tabla que se muestra a continuación, se establecen los valores más significantes obtenidos por el programa, así como la luminaria utilizada, la potencia individual de cada una, y la potencia total necesaria para la iluminación de la sala:

Estancia	Em Requerida	Em Obtenida	Emin/Em	Luminarias
Centro de Computo	500	620	0.47	PHILIPS DN130B LED20S/840
Archivo General	300	451	0.551	PHILIPS DN130B LED20S/840
Relaciones Públicas	500	614	0.494	PHILIPS DN130B LED20S/840
Recursos Humanos	500	615	0.496	PHILIPS DN130B LED20S/840
Gerente Administrativo	500	552	0.495	PHILIPS DN130B LED20S/840
Secretaría	500	687	0.478	PHILIPS DN130B LED20S/840
Gerente General	500	542	0.497	PHILIPS DN130B LED20S/840
Sala de Juntas	500	572	0.416	PHILIPS DN130B LED20S/840
Preparado en Frío	500	629	0.5	PHILIPS RC132V W60L60 LED34S/830 OC
Preparado en Caliente	500	678	0.487	PHILIPS RC132V W60L60 LED34S/830 OC
Bodega	250	278	0.404	PHILIPS DN130B LED20S/840
Comedor Empleados	200	224	0.384	PHILIPS DN130B LED20S/840
Sala Conferencias 22 Personas	500	571	0.443	PHILIPS DN130B LED20S/840
Sala Conferencias 30 Personas	500	528	0.478	PHILIPS DN130B LED20S/840
Sala Conferencias 22 Personas	500	727	0.33	PHILIPS DN130B LED20S/840
Cuarto Vigilancia	200	271	0.611	·
a	200	205	0.404	PHILIPS RC132V W30L120 LED36S/840
Gimnasio	300	305	0.401	
Lavandería	300	357		PHILIPS DN130B LED20S/840
Lobby	300	274		PHILIPS RC132V W60L60 LED34S/830 OC
Pasillos Administración 1/3	100	166	0.33	,
Pasillos Administración 2/3	100	157	0.24	,
Pasillos Administración 3/3	100	157		PHILIPS RC132V W60L60 LED34S/830 OC
Pasillos Primera Planta 1/5	100	203	0.233	•
Pasillos Primera Planta 2/5	100	245	0.204	·
Pasillos Primera Planta 3/5	100	120		PHILIPS RC132V W60L60 LED34S/830 OC
Pasillos Primera Planta 4/5	100	303		PHILIPS RC132V W60L60 LED34S/830 OC
Pasillos Primera Planta 5/5	100			PHILIPS RC132V W60L60 LED34S/830 OC
Pasillos Segunda Planta 1/6	100	120	0.183	•
Pasillos Segunda Planta 2/6	100	304	0.354	·
Pasillos Segunda Planta 3/6	100	270	0.007	PHILIPS RC132V W60L60 LED34S/830 OC
Pasillos Segunda Planta 4/6	100	181	0.263	PHILIPS RC132V W60L60 LED34S/830 OC
Pasillos Segunda Planta 5/6	100	210	0.248	
Pasillos Segunda Planta 6/6	100	396	0.562	PHILIPS RC132V W60L60 LED34S/830 OC

Pasillos Tercera y Cuarta Planta 1/6	100	291	0.318	PHILIPS RC132V W60L60 LED34S/830 OC
Pasillos Tercera y Cuarta Planta 2/6	100	397	0.488	PHILIPS RC132V W60L60 LED34S/830 OC
Pasillos Tercera y Cuarta Planta 3/6	100	280	0.017	PHILIPS RC132V W60L60 LED34S/830 OC
Pasillos Tercera y Cuarta Planta 4/6	100	181	0.263	PHILIPS RC132V W60L60 LED34S/830 OC
Pasillos Tercera y Cuarta Planta 5/6	100	210	0.248	PHILIPS RC132V W60L60 LED34S/830 OC
Pasillos Tercera y Cuarta Planta 6/6	100	396	0.562	PHILIPS RC132V W60L60 LED34S/830 OC
Restaurante	150	177	0.384	PHILIPS RC132V W60L60 LED34S/830 OC

Tabla 69

Estancia	Potencia Unitaria (W)	Cantidad Luminarias	Potencia (W)
Centro de Computo	22	15	330
Archivo General	22	4	88
Relaciones Públicas	22	12	264
Recursos Humanos	22	12	264
Gerente Administrativo	22	9	198
Secretaría	22	15	330
Gerente General	22	9	198
Sala de Juntas	22	24	528
Preparado en Frío	29	4	116
Preparado en Caliente	29	6	174
Bodega	22	4	88
Comedor Empleados	22	3	66
Sala Conferencias 22 Personas	22	20	440
Sala Conferencias 30 Personas	22	25	550
Sala Conferencias 22 Personas	22	56	1232
Cuarto Vigilancia	22	4	88
Gimnasio	29	8	232
Lavandería	22	8	176
Lobby	29	33	957
Pasillos Administración 1/3	29	2	58
Pasillos Administración 2/3	29	2	58
Pasillos Administración 3/3	29	2	58
Pasillos Primera Planta 1/5	29	6	174
Pasillos Primera Planta 2/5	29	2	58

Proyecto de diseño de la instalación	electrica de un notel de	e or napitaciones	
Pasillos Primera Planta 3/5	29	1	29
Pasillos Primera Planta 4/5	29	3	87
Pasillos Primera Planta 5/5	29	11	319
Pasillos Segunda Planta 1/6	29	1	29
Pasillos Segunda Planta 2/6	29	3	87
Pasillos Segunda Planta 3/6	29	20	580
Pasillos Segunda Planta 4/6	29	1	29
Pasillos Segunda Planta 5/6	29	1	29
Pasillos Segunda Planta 6/6	29	1	29
Pasillos Tercera y Cuarta Planta 1/6	29	4	116
Pasillos Tercera y Cuarta Planta 2/6	29	3	87
Pasillos Tercera y Cuarta Planta 3/6	29	20	580
Pasillos Tercera y Cuarta Planta 4/6	29	1	29
Pasillos Tercera y Cuarta Planta 5/6	29	1	29
Pasillos Tercera y Cuarta Planta 6/6	29	1	29
Restaurante	29	23	667

Tabla 70

Cabe destacar que en los pasillos de la primera, segunda, y tercera planta, la relación entre la iluminancia mínima y la media es muy pequeña, y esto es debido a la presencia de las escaleras, las cuales provocan que la iluminancia por debajo suya sea muy pequeña (en la altura del plano útil).

También es curioso que ciertas zonas estén divididas en partes, y esto se debe a que el programa necesita locales cuya geometría sea cuadrada o parecida. Como se puede observar en el plano 2.12, la luminaria del pasillo de la izquierda está en una posición horizontal diferente de lo que sería el vestíbulo principal (derecha). Es por esto por lo que dichas áreas han tenido que ser divididas en diferentes secciones, con tal de poder colocar correctamente las luminarias en los respectivos pasillos.

A continuación, se mostrará un ejemplo de como se recrea una sala, y como se puede observar la iluminancia en está gracias a un mapa e isolíneas proporcionado por el propio programa.

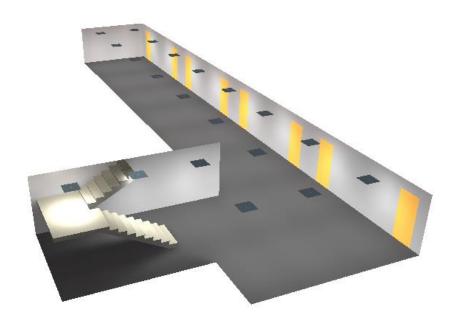


Imagen 7. Vista 3D Pasillo Tercera Planta

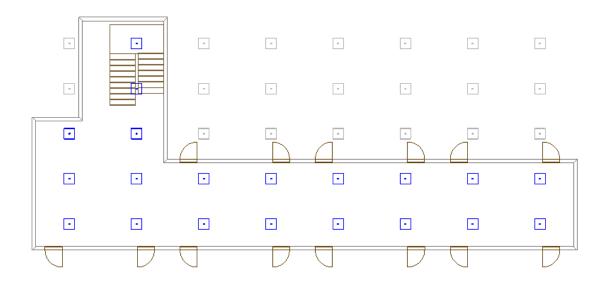


Imagen 8. Vista Superior Pasillo Tercera Planta

En la imagen anterior, se observa claramente el campo de luminarias que crea el programa, siendo útiles las que están resaltadas en azul.

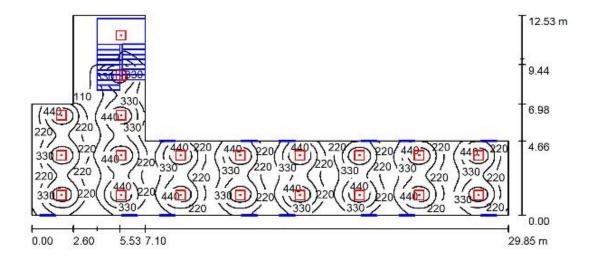


Imagen 9. Isolíneas con el valor de iluminancia

En esta imagen se observa como en la zona de las escaleras, a la altura del plano útil, no aparece la iluminancia, debido a lo explicado anteriormente.

ANEXO I.VI

				Tercera	Cuarta
	Planta Baja	Primera Planta	Segunda Planta	Planta	Planta
L (m)	1	37.76	41.79	45.31	48.83
Cp (μC/km x fase))	0.3	0.3	0.3	0.3	0.3
Uf (V)	230	230	230	230	230
Zp (Ω)	10.61032954	0.280993897	0.253896376	0.234171917	0.217291205
If (mA)	0.021676989	0.818523116	0.905881383	0.982184386	1.058487388

Tabla 71

Siendo las fórmulas utilizadas:

$$Zp = 1/(2 \times \pi \times Cp \times L \times f)$$

$$If = Uf/Zp$$

6. Bibliografía

- https://www.eninter.com
- http://www.montacargasyplataformaselevadoras.es
- https://www.equipoh.com
- https://www.solostocks.com
- https://www.efectoled.com/blog/es/
- https://www.gasfriocalor.com/aerotermia
- https://www.caloryfrio.com
- https://www.expomaquinaria.es
- https://www.makro.es
- http://www.generadordeprecios.info

7. Conclusiones

A través de la realización de este Trabajo de Fin de Grado se ha conseguido detallar las características técnicas de la instalación eléctrica de un hotel. Gracias a la realización de este proyecto, se ha podido observar y diseñar una instalación eléctrica real desde dentro y desde cero, permitiendo así aplicar los conocimientos adquiridos a lo largo del Grado de Ingeniería en Tecnologías Industriales, en especial al Departamento de Ingeniería Eléctrica.

El suministro de la instalación queda asegurado por el centro de transformación, cuya potencia es capaz de suministrar la corriente necesaria para el complejo hotelero en la situación más desfavorable. En el caso de fallo de este, se dispone de un grupo electrógeno el cual asegura el funcionamiento del alumbrado de emergencia, pudiendo así los residentes evacuar la zona sin peligro alguno.

Respecto a la seguridad de las personas, se asegura el mínimo de seguridad gracias a la puesta a tierra de la instalación, provocando que el valor de la tensión a la que puedan estar sometidas y el tiempo máximo sean seguros. Además, con el diseño de las protecciones diferenciales, se asegura la identificación de corrientes de fuga en máquinas sensibles, y por lo tanto se producirá el corte de suministro asegurando así la seguridad de las personas.

En lo que respecta a la instalación, se ha seguido con lo estipulado en el Reglamento Electrotécnico de Baja Tensión (REBT), y por lo tanto siempre se ha cumplido con las condiciones de seguridad mínimas, tanto para las personas, como para los conductores.