
Escola Tècnica Superior d’Enginyeria Informàtica

Universitat Politècnica de València

A Conditional Slicing Tool for Maude

Final Year Project

Ingeniería Informática

Author:
Julia Sapiña Sanchis

Supervisors:
María Alpuente Frasnedo

Francisco Frechina Navarro

Valencia, September 2012

Abstract

In this work we develop Julienne, an online trace slicer for the high
performance rewriting logic language Maude.

Trace slicing is a widely used technique for execution trace analysis that
is effectively used in program debugging, analysis and comprehension. Our
slicing tool allows us to systematically trace back reverse dependences and
causality along Maude computation traces by means of an algorithm that
dynamically simplifies the trace and elides useless data that do not influence
the final result.

We describe the main facilities provided by the tool as well as the features
and architecture of the tool. The tool is particularly suitable for analyzing
complex, textually large execution traces such as those delivered by Maude
model checkers.

2

Keywords

Slicing, Rewriting Logic, Maude, Julienne.

3

Contents

Introduction 9

1 Slicing 11
1.1 What is Slicing? . 11
1.2 Types of Slicing . 12

1.2.1 Backward Trace Slicing 13
1.2.2 Incremental Slicing . 14

2 Julienne Online Trace Slicer 15
2.1 Providing the Maude Specification 15
2.2 Providing the Execution Trace 15
2.3 Navigating through the Trace 16
2.4 Specifying the Slicing Criterion 17
2.5 Performing the Slice . 18
2.6 Trace Slice Results . 19

3 Implementation 22
3.1 Technologies . 22

3.1.1 Maude . 22
3.1.2 HyperText Mark-up Language 23
3.1.3 Cascading Style Sheets 23
3.1.4 JavaScript . 24

3.2 Implementation Details . 25
3.2.1 Graphical User Interface 25

3.2.1.1 General Decisions 25
3.2.1.2 Slider . 26
3.2.1.3 Hiding Irrelevant Data 26

3.2.2 Selecting the Slicing Criterion 27
3.2.2.1 Subterm position 28
3.2.2.2 Common technical details 29
3.2.2.3 Meta-level representation 30
3.2.2.4 Source-level representation 31

4

Contents 5

3.2.2.5 State Map Structure 32

4 Using Julienne 35
4.1 Crossing River Example . 35
4.2 Bank Example . 40

Conclusions and Future Work 47

Bibliography 48

List of Figures

2.1 Julienne showing a list of predefined examples and loading
the Bank with error example specification. 16

2.2 Maude execution trace loaded in Julienne. 17
2.3 Generation of a Maude execution trace by providing both the

initial and final state. 18
2.4 Julienne flashing in red and alerting the user about a possible

mistake in the provided information. 19
2.5 Information displayed (in source-level representation) after press-

ing state transition arrow. 20
2.6 Slicing criteria fixed in the states 20 and 21 of the execution

trace. 20
2.7 Result obtained after applying the backward-slicing technique

with the slicing criterion described in Figure 2.6. 21

3.1 Original versus sliced trace. 27
3.2 Position tree of a state expressed in meta-level representation. 29
3.3 Position tree of a state expressed in source-level representation. 30

4.1 Julienne showing a specification of the crossing river example. 36
4.2 Generation of a Maude execution trace by providing the initial

and final state in source-level representation. 37
4.3 A Maude execution trace of 56 states with a selected slicing

criterion in the last state. 37
4.4 Original and sliced trace states after applying the backward-

slicing technique with the slicing criterion described in Figure
4.3. 38

4.5 Sliced trace showing a reduction of 77% with respect to the
original execution trace. 39

4.6 Julienne showing a Maude bank specification with an error
in one of its rules. 40

4.7 Execution trace provided as an example for the faulty Bank
specification. 41

6

List of Figures 7

4.8 A 22 state execution trace of the faulty Bank specification
with the minus symbol selected as the slicing criterion. 42

4.9 Snapshot of the tool after applying the backward-slicing tech-
nique in Figure 4.8. 43

4.10 Original versus sliced trace for the Bank example. 44
4.11 States 8 and 9 of the execution trace displayed in Figure 4.9

with a slicing criterion specified in state 9. 45
4.12 Snapshot of Julienne after applying the backward-slicing

technique in Figure 4.11. 45
4.13 Table of results of Figure 4.12. 46

List of Tables

3.1 Breakdown of a map by elements and their correspondence
with the associated state. 33

8

Introduction

Software systems commonly generate large and complex execution traces,
whose analysis (or even simple inspection) is extremely time-consuming and,
in some cases, is not feasible to perform by hand. Trace slicing is a technique
that simplifies execution traces by focusing on selected execution aspects,
which makes it well suited to program analysis, debugging, and monitoring
[7].

Rewriting Logic (RWL) is a very general logical and semantic framework
that is particularly suitable for formalizing highly concurrent, complex sys-
tems (e.g., biological systems [6] and Web systems [2, 5]). RWL is efficiently
implemented in the high-performance system Maude [8]. Rewriting logic-
based tools, like the Maude-NPA protocol analyzer, Maude LTLR model
checker, and the Java PathExplorer runtime verification tool (just to men-
tion a few [13]), are used in the analysis and verification of programs and
protocols wherein the states are represented as algebraic entities that use
equational logic and the transitions are represented using conditional rewrite
rules. These transitions are performed modulo conditional equational the-
ories that may also contain algebraic axioms such as commutativity and
associativity. The execution traces produced by such tools are usually very
complex and are therefore not amenable to manual inspection. However, not
all the information that is in the trace is needed for analyzing a given piece
of information in a given state of the trace. For instance, consider the follow-
ing rules that define (a part of) the standard semantics of a simple imper-
ative language: 1) crl <while B do I, St> => <skip, St> if <B, St>
=> false /\ isCommand(I), 2) Then, in the execution trace <while false
do X := X + 1, {}> → <skip, {}> → {}, we can observe that the state-
ment X := X + 1 is not relevant to compute the output {}. Therefore, the
trace could be simplified by replacing X := X + 1 with a special variable •
and by enforcing the compatibility condition isCommand(•). This condition
guarantees the correctness of the simplified trace [4]. In other words, any
concretization of the simplified trace (which instantiates the variable • and
meets the compatibility condition) is a valid trace that still generates the
target data that we are observing (in this case, the output {}).

9

List of Tables 10

The Julienne slicing tool [1] is based on the conditional slicing technique
described in [4] that slices an input execution trace with regard to a set of
target symbols (which occur in a selected state of the trace), by propagating
them backwards through the trace so that all pieces of information that
are not an antecedent of the target symbols are simply discarded. Unlike
standard backward tracing approaches, which are based on a costly, dynamic
labelling procedure [3, 12], in [4], the relevant data are traced back by means
of a less expensive, incremental technique of matching refinement. Julienne
generalizes and supersedes a previous unconditional slicer mentioned in [3].
The system copes with the extremely rich variety of % program conditions
that occur in Maude theories (i.e., equational conditions s = t, matching
conditions p := t, and rewrite expressions t ⇒ p) by taking into account
the precise way in which Maude mechanizes the conditional rewriting process
so that all those rewrite steps are revisited backwards in an instrumented,
fine-grained way.

In order to formally guarantee the strong correctness of the generated
trace slice, the instantiated conditions of the equations and rules are recur-
sively processed, which may imply slicing a number of (originally internal)
execution traces, and a Boolean compatibility condition is carried, which
ensures the executability of the sliced rewrite steps.

Chapter 1

Slicing

1.1 What is Slicing?

Slicing is a term introduced by Mark Weiser in 1979 to describe a tech-
nique that elides irrelevant segments of a program with respect to a point of
interest, referred to as the slicing criterion.

The main goal of this technique is to isolate all the segments of a program
that contribute to determine the state of the specified slicing criterion into a
much more lightened new program, while preserving all the possible control
and data dependences. Furthermore, both original and sliced programs must
behave exactly the same as the slicing criterion is concerned.

The following is a very simple example that illustrates this concept. Given
the following program excerpt:

(1) a = 1
(2) b = 2
(3) c = 3
(4) d = a + c
(5) f = b + c
(6) g = d + f

The result of slicing it by using d as the slicing criterion is:

(1) a = 1
(2) b = 2
(3) c = 3
(4) d = a + c
(5) f = b + c
(6) g = d + f

as b, f and g do not affect the value of d. By using instead f as the slicing
criterion the result would be:

11

Chapter 1. Slicing 12

(1) a = 1
(2) b = 2
(3) c = 3
(4) d = a + c
(5) f = b + c
(6) g = d + f

As before, we can remove the lines of code that do not affect the slicing
criterion, which in this case are the first, fourth and sixth. Finally, by using
g as the slicing criterion the result witnesses the statement that all programs
are slices of themselves, albeit possibly not the most useful one:

(1) a = 1
(2) b = 2
(3) c = 3
(4) d = a + c
(5) f = b + c
(6) g = d + f

Slicing has many application areas in software engineering, including de-
bugging, verification, measurement, maintenance... etc. Either performed
manually or automatically, the benefits of slicing in areas mentioned above
are obvious. In case of performing a task manually, it is clear that by remov-
ing irrelevant information the user can focus on the relevant aspects of the
problem and therefore work more quickly and accurately. Moreover, in case
of performing the task automatically, the required time for completing the
computing can be greatly improved if we manage to remove the irrelevant
data from the computation.

1.2 Types of Slicing

Slicing techniques can be classified in many forms depending on the chosen
criteria. Moreover, we can distinguish slicing the source code, as illustrated in
the previous section, from the slicing of execution traces as our tool Julienne
does. One of the most common classifications also distinguish different forms
of slicing such as the static, dynamic or conditional slicing.

Static slicing is the type of slicing in which we do not consider any partic-
ular execution of the program, that is, we slice a program with independence
of the input data. The opposite of static slicing is the dynamic slicing in
which we consider the possible values of the input data. Finally, conditional
slicing fills the gap between static and dynamic slicing and “preserves the

Chapter 1. Slicing 13

semantics of the slicing criterion only for those inputs that satisfy a boolean
condition” [17]. The following is an example showing the differences of static
and dynamic slicing. Given the following source code and the input value
of 10 for the variable a:

(1) load(a)
(2) if (a < 0)
(3) a = 0
(4) b = a + 1

The result of applying static slicing with the slicing criterion specified as
b yields the sliced program:

(1) load(a)
(2) if (a < 0)
(3) a = 0
(4) b = a + 1

Whereas the result of applying dynamic slicing with the same slicing
criterion is as follows:

(1) load(a)
(2) if (a < 0)
(3) a = 0
(4) b = a + 1

The difference, as previously mentioned, is that the dynamic slicing de-
tects that lines 2 and 3 of the source code do not affect the value of the
provided slicing criterion for the given input value of a, and therefore
can be safely removed.

1.2.1 Backward Trace Slicing

Backward trace slicing is the type of slicing that consists of performing
the slicing of an execution trace that is processed from back to front using a
slicing criterion that is fixed on the final state of the trace.

This project focuses on the Julienne, which applies the backward trace
slicing technique for conditional rewrite theories [1] [4] by slicing a given
execution trace with respect to a slicing criterion that is specified in any
selected state of the trace, not only the final one. The possibility of fixing
the slicing criterion in any state of the trace, except for the first one, is one of
the many new features developed in this project. This technique traces back

Chapter 1. Slicing 14

relevant data by means of an incremental technique of matching refinement
that is much more lighter than previous backward tracing approaches [1].

A very detailed approach to this technique, including definitions and ex-
amples can be found in [4].

1.2.2 Incremental Slicing

Incremental slicing refers to the possibility to ask for multiple consecu-
tive applications of a particular slicing technique in order to achieve a more
accurate slicing. In any application of the selected slicing technique, the slic-
ing criterion can either be redefined completely or simply refined to achieve
better results.

Our new version of Julienne supports incremental slicing by allowing
the user to slice a provided execution trace any number of times by specifying
a slicing criterion in any state, except for the first state, up to the state in
which the previous slicing was performed. An example of an incremental
slicingn, performed using Julienne, can be found in Section 4.2.

Chapter 2

Julienne Online Trace Slicer

Julienne [1] is an online trace slicer tool developed by members of the
Extensions of Logic Programming (ELP) research group at the Department
of Information System and Computation inside the Universitat Politècnica
de València. The first version of this tool allowed to apply the backward-
slicing technique [4] in order to slice Maude execution traces. The new and
extended version of the tool developed in the current project adds some useful
features without neglecting the previous existing ones. The new features can
be classified in two major categories, those oriented to ease the task of slicing
to the user, that is, improving the usability of the tool, and those adding
some advanced functionality. The following sections explain in detail the
use, features and implementation of the new tool Julienne.

2.1 Providing the Maude Specification

The first step while using Julienne is to provide the Maude specification
that will be used in the subsequent steps. The user has the choice of either
provide a new, custom specification or selecting one of the examples that
Julienne provides for evaluation purposes, which will be copied automati-
cally in the text input area as it is selected.

2.2 Providing the Execution Trace

After providing the specification, the next step is to provide a valid ex-
ecution trace. If the user has previously selected one of the given examples
as input specification, there will be one execution trace already loaded that,
of course, can be replaced if desired. If not, there are two ways to provide
it. The first way is to copy a valid (i.e., with no syntax errors and related
to the previously provided specification) execution trace. The second way is
use the trace generator with which Julienne is endowed by specifying two
valid states, initial and final, of the desired execution trace. Julienne trace

15

Chapter 2. Julienne Online Trace Slicer 16

Figure 2.1: Julienne showing a list of predefined examples and loading the
Bank with error example specification.

generator will find, if it is possible, one execution trace that leads from the
given initial state to the final one. This last way of obtaining an execution
trace by means of the trace generator can be done by giving the states either
at the meta-level or source-level representation.

At this point, an error can arise because of a mistake in the provided
specification, provided states, execution trace, or because there is no path
leading from the given initial state to the final one. In case of error, the
corresponding input text area will flash in red and a proper message will
alert the user as shown in Figure 2.4.

2.3 Navigating through the Trace

Once the user has provided a valid specification and execution trace,
Julienne will show in a slider all the states of the trace, from the first to
the last one, offering the possibility of viewing the information also in source-
level or meta-level representation. This way, the user can visit any state by
using the navigation buttons or by specifying a particular state and pressing

Chapter 2. Julienne Online Trace Slicer 17

Figure 2.2: Maude execution trace loaded in Julienne.

the Go button. Then, the user can select the slicing criterion in any of the
states, not only in the last state.

In addition, by pressing the arrow that symbolizes the transition between
states, Julienne displays useful information about that particular transi-
tion, as shown in Figure 2.5.

2.4 Specifying the Slicing Criterion

The next step in our methodology is to specify the desired slicing criterion.
This task can be performed by highlighting with the mouse any part of the
considered relevant text of any state with the exception, of course, of the
first one, as it does not have any previous state and the slicing is performed
backwards. The user can select as many criteria as she wants in any of the
states but only those selected in the earliest state will be considered as the
slicing criterion. For example, if Julienne shows an execution trace of 22
states like the one in Figure 2.6 and the user selects some text in states 5,
10 and 20, the slicing criterion will be retrieved from the 5th state.

Also, while selecting the slicing criterion, the user can left-click any se-

Chapter 2. Julienne Online Trace Slicer 18

Figure 2.3: Generation of a Maude execution trace by providing both the
initial and final state.

lected text to remove the highlighting or just select the Clear slicing criterion
button, which will remove all the slicing criteria previously specified.

2.5 Performing the Slice

After specifying the slicing criterion, the backward-slicing technique is
applied and the delivered sliced trace will be displayed together with the
original trace up to the state where the slicing process started to be applied.
That means that, if the execution trace has 22 states and the user selects a
slicing criterion in the 20th state, the new trace will only have the first 20
states. However, if the user feels that the criterion was useless or wants to
specify a different one, just by selecting the Restore original trace button,
the original trace will be fully restored as expected.

At this point, the user has the possibility of either restore the full origi-
nal trace and perform another different slice or slice even more the current
sliced trace in the same way the original trace was sliced to remove further
unnecessary information. This is what we refer with incremental slicing and

Chapter 2. Julienne Online Trace Slicer 19

Figure 2.4: Julienne flashing in red and alerting the user about a possible
mistake in the provided information.

will be shown in more detail in Section 4.2.
Additionally, another useful feature that is only available when a sliced

trace is displayed is the possibility of partially hide irrelevant information by
means of the Hide irrelevant data checkbox.

2.6 Trace Slice Results

Each time a slice is performed, by selecting the Show trace slice button,
the user can access to a table that contains all the information of the slicing
process, that is, the number of steps, the rule applied at each step, the original
trace and the sliced trace. This information can be displayed in either source-
level or meta-level representation and, in both representations, the irrelevant
information can be partially hidden by means of the Hide irrelevant data
checkbox, a feature that is also available while navigating the sliced trace.

Chapter 2. Julienne Online Trace Slicer 20

Figure 2.5: Information displayed (in source-level representation) after press-
ing state transition arrow.

Figure 2.6: Slicing criteria fixed in the states 20 and 21 of the execution
trace.

Chapter 2. Julienne Online Trace Slicer 21

Figure 2.7: Result obtained after applying the backward-slicing technique
with the slicing criterion described in Figure 2.6.

Chapter 3

Implementation

3.1 Technologies

In this section we briefly comment the different technologies that we have
used to develop Julienne.

3.1.1 Maude

Maude is a high-performance reflective language and system created by
José Meseguer at the Stanford Research Institute International (SRI Inter-
national) and licensed under the terms of the GNU General Public License.
The official version is currently being developed by an international team [8]
of researchers, although any user can access and modify its source code. Usu-
ally, the modifications are given in the form of separate modules which can
be included by means of a key word. Some of the principal characteristics of
Maude described in [16] are the following:

• Based on rewriting logic.

• Wide-spectrum.

• Multiparadigm.

• Reflective.

• Internal Strategies.

In our tool, Maude plays a key role since it is the language we also used to
implement the backward-slicing technique described in [4], as well as generate
the state maps and the encoded messages that contain the results to be
delivered from the Maude system to Julienne.

The first version of our tool had all the developed Maude code contained
in an ad hoc module named ConditionalSlicing. This second version of the
tool slightly modifies this module and has all the new developed code in a new

22

Chapter 3. Implementation 23

different module named Julienne, which also includes the ConditionalSlicing
module, as it makes use of it.

3.1.2 HyperText Mark-up Language

The HyperText Mark-up Language (HTML) is a mark-up language cre-
ated in 1990 by Tim Berners-Lee at the Conseil Européen pour la Recherche
Nucléaire (CERN), shortly after establishing [14] the bases for the HyperText
Transfer Protocol (HTTP) and therefore the World Wide Web.

In October of 1994, Berners-Lee founded the World Wide Web Consor-
tium (W3C), in order to coordinate the efforts to continue developing, main-
taining and extending this language. Currently, the W3C foundation is re-
sponsible for developing and publishing the standards of this language. In
January of 2008 the last version of the standard, HTML5, was published as
a working draft and it is expected to be fully developed by 2014, although
nowadays almost all browsers support it entirely.

Being an online tool, Julienne is developed using HTML in collaboration
with other languages. In particular, HTML was used to create the bases of
the interface, whose appearance and behaviour where modified later by means
of CSS and JavaScript, respectively. We focused on extending a previous
version of the tool as well as adapting it to the last version of the HTML
standard, HTML5. The primary reasons to such decision were to offer the
same experience to the user regardless of the browser that is being used and
to extend the life of the code as much as possible.

3.1.3 Cascading Style Sheets

Cascading Style Sheets (CSS) is a style sheet language created [15] in 1994
by Håkon Wium Lie, also at CERN. The primary purpose of this language is
to cover a gap intentionally left by HTML with respect to styling documents
in order to achieve different visual representations of a document without
modifying it and only associating a style sheet.

Being closely related to HTML, CSS standards are developed and pub-
lished by the same organization as HTML, the W3C. At the present time,
the last fully developed version available is CSS3, although since September
29, 2009, a new draft for CSS4 was started. However, unlike the HTML5
standard, which is fully supported by all major browsers despite not being
completely developed, CSS4 is not yet supported by any of them, so we chose
to use the CSS3 standard in our tool.

In Julienne, CSS3 was used to configure the appearance of all elements
of the GUI, that is, specifying their size, font, color, position, margins, ...

Chapter 3. Implementation 24

etc. This was achieved following two different strategies. The first strategy
is useful to specify the style information of highly customized elements and
consists in specifying all the desired rules directly for the element. The second
strategy is useful when different elements share the same values of attributes;
for example background color or image, line widths, ... etc. In order to
specify the value of those attributes, instead of repeating each rule for each
element, CSS3 allows all the desired rules to be grouped within a class and
then associate the class to any number of elements. An HTML element can
have many associated classes and thus benefit from all of them. In case of
conflict, that is, an element has associated two classes which specify different
values for the same attribute, the browser will determine the most specific
rule and apply it. Furthermore, this second strategy is ideal for changing
the visual appearance of elements dynamically, that is, we can associate and
detach previously specified classes to an element by means of JavaScript in
response to any user interaction.

3.1.4 JavaScript

JavaScript is a scripting language formalized in the ECMAScript lan-
guage standardized by Ecma International - European Association for Stan-
dardizing Information and Communication Systems, founded in 1961, in the
ECMA-262 specification and ISO/IEC 16262. Currently, the most recent
revision of the ECMA-262 standard specification is v. 5.1, published in June
2011.

Despite of its name, JavaScript is not an evolution from the Java language,
although it is influenced by it in terms of naming conventions. In fact,
JavaScript is influenced by languages C, Java, Perl and Python and even
though it has its utility outside the web environment, it is there where shows
its full potential.

In Julienne, JavaScript is used client-side to implement all the be-
haviour of the tool except for the calculations related to the application of the
backward-slicing technique and generations of state maps. This behaviour
ranges from the very simple task of highlighting one button when the mouse
is over it to the most complicated task of decryption of a state map and the
subsequent calculus of the position of the slicing criterion. The following list
contains some significant features of the tool that were implemented by using
JavaScript:

• The slider displaying the states of an execution trace.

• All the animations between steps in the tool.

Chapter 3. Implementation 25

• Display of errors.

• Recovery of the specified slicing criterion.

• Calculus of the positions of the terms included in the slicing criterion.

• Hiding or showing of irrelevant data.

• Change of the displayed information format depending on whether nor-
mal or advanced mode is enabled.

• Display of the relevant information of the transitions between states.

3.2 Implementation Details

In this section we give a detailed review about the main insight of the
implementation. We summarize the most relevant characteristics and argue
the implementation decisions taken.

3.2.1 Graphical User Interface

Let us start by describing the front-end of the tool.

3.2.1.1 General Decisions

When this project was started, the first aspect that was addressed was
improving the visual appearance of Julienne. This allowed us to have a
first contact with some of its code and somehow become familiar with it. In
this aspect, we decided to change the previous white background with one in
a darkest gray tone in order avoid eye strain in case of prolonged exposure.
Also, some minor details like aligns, position of elements and text font and
size were altered just for designing purposes. All these changes were made by
modifying the HTML and CSS code, which was also reorganized and updated
to the latest available standard by avoiding the use of deprecated elements.
This decision was more important than it firstly appears, as each browser
can behave differently to the same non-standardized or outdated code and
we wanted to offer the same experience to all users regardless of the browsers
they were using to access Julienne.

After those changes were made and new buttons and checkboxes that
matched the new design were created, we focused in other major interface
changes explained in the following sections.

Chapter 3. Implementation 26

3.2.1.2 Slider

One of the new features in this version was the ability to navigate through
the states of an execution trace. This was achieved by adapting and heavily
modifying a very simple JavaScript slider available at http://innominepixel.
wordpress.com. Requirements like displaying always two slides containing a
pair of states of the execution trace and adding some additional navigation
controls were tricky to implement and substantially changed the original
code. In addition, as some jQuery animation effects were added just to
transmit to the user the feeling of sliding from one state to another, some
restrictions were needed in order to disable the navigation controls while an
animation was being performed.

Additionally, one of the features previously mentioned in this document,
that is, the ability to access the information of each transition, was achieved
by adapting the jQuery Popup Window plug-in available at http://www.
mywebdeveloperblog.com. Figure 2.5 shows the result of this adaptation.

The entire code of the slider is available in the slicer.js file of the tool.

3.2.1.3 Hiding Irrelevant Data

One of the most useful features that Julienne offers is the ability of hid-
ing irrelevant data, either in source-level or meta-level representation, both
during the navigation of a sliced trace and when accessing the table results.
This feature was accomplished through a series of substitutions which follow
a similar strategy to the one used when highlighting the slicing criterion. The
main idea is to wrap the irrelevant text inside an open and close span tags
with an associated CSS class that, instead of specifying a background color,
specifies a different font color, lighter than the usual.

The corresponding substitutions were made by means of the JavaScript
replace function, using both literal and regular expressions. The use of regu-
lar expressions was mandatory in order to match the structure of the meta-
level representation of a state and hide nested irrelevant terms while preserv-
ing other terms in higher positions. However, because of the limitations of
JavaScript with respect to the regular expression language, some terms had
to be protected before starting the recursive replacement task. This is done
by first adding specific marks and then deleting those marks after the work
was done.

Chapter 3. Implementation 27

Figure 3.1: Original versus sliced trace.

3.2.2 Selecting the Slicing Criterion

Older versions of Julienne dealt with the problem of selecting the slicing
criterion in different ways.

The most simple approach was to let the user specify the positions of

Chapter 3. Implementation 28

the terms that will be considered as the slicing criterion and then pass them
to the backward-slicing operator in Maude. This approach was immediately
neglected because of the difficulty that implies for the user to manually count
each term in very complicated Maude specifications.

The better approach so far was the use of a pattern-matching language
that, executed in Maude, could get the position of the term used as slicing
criterion and then perform it. This approach, however, had two major prob-
lems. The first problem was the need for the user to provide a valid pattern.
This implied not only to know the syntax of the pattern-matching language,
but to have some ability to build a pattern that would match the desired
term later considered as the slicing criterion. The second problem was that,
in some cases, a unique valid pattern could match inevitably more than one
term, the desired one and others.

The main idea in all the considered approaches was to ease the task of
providing a slicing criterion to the user as much as possible. Therefore, we
focused in this aspect and the user is only required to select the data of
interest by clicking the mouse, either in the meta-level representation or in
the source format of the state.

Because of the way it was implemented (described in the next subsec-
tions), this idea had some positive side-effects: Firstly, the simplicity for the
user was a major point. Secondly, the user did not need to provide a valid
syntax pattern nor selection. Just by selecting one or more characters, all
terms with at least one selected character would be part of the slicing cri-
terion. This means that, in this aspect, all the problems resulting from the
complexity and lack of knowledge of the specification were solved. Thirdly,
the user could easily make multiple-terms and complex criteria. And last but
not least, graphically viewing the slicing criterion as highlighted text of the
corresponding state has proved to be very helpful to the user.

3.2.2.1 Subterm position

Any execution state of a given Maude specification can be represented as
an ordered collection of terms. The structure of this collection can be easily
identified while reading a meta-level representation of the state, although
determining the exact position of each term manually can be very complex
depending on the considered Maude specification.

For instance, given the next state in meta-level representation:

’_;_[’debit[’Alice.Id,’s_^30[’0.Zero]],’_;_[’<_|_>[’Alice
.Id,’s_^100[’0.Zero]],’credit[’Alice.Id,’s_^50[’0.Zero]]]]

Chapter 3. Implementation 29

the following Figures (3.2 and 3.3) show the correspondence between the
state and its associate position tree in both source-level and meta-level rep-
resentation.

’_;_
(λ)

’debit
(λ.1)

’Alice.Id
(λ.1.1)

’s_ˆ30
(λ.1.2)

’0.Zero
(λ.1.2.1)

’_;_
(λ.2)

’<_|_>
(λ.2.1)

’Alice.Id
(λ.2.1.1)

’s_ˆ100
(λ.2.1.2)

’0.Zero
(λ.2.1.2.1)

’credit
(λ.2.2)

’Alice.Id
(λ.2.2.1)

’s_ˆ50
(λ.2.2.2)

’0.Zero
(λ.2.2.2.1)

Figure 3.2: Position tree of a state expressed in meta-level representation.

Just by observing the state and its corresponding position tree it is ob-
vious that, starting from the root of the tree, which is addressed by the
Lambda, the meta-level representation of a tree can be built by traversing
the tree using a depth-first left-to-right strategy.

3.2.2.2 Common technical details

The selection of the slicing criterion was implemented by means of an
adaptation of a free licensed jQuery plug-in named jQuery Text Highlighter.
In essence, this plug-in allows us to wrap the selected text with the HTML
tag span, which does absolutely nothing, but whose style can be edited
by means of CSS like any other HTML element. For example we can provide
a background color, and thus create the effect that the contained text is
highlighted. Also, the span tags were very distinctive, mostly because they
had a custom CSS class specified inside, making it easy to find out later which
parts of the text that represented the state were selected (those surrounded
by open and close span tags), and then calculate the affected terms and their
positions.

Chapter 3. Implementation 30

;
(λ)

debit
(λ.1)

Alice
(λ.1.1)

30
(λ.1.2)

0
(λ.1.2.1)

;
(λ.2)

<_|_>
(λ.2.1)

Alice
(λ.2.1.1)

100
(λ.2.1.2)

0
(λ.2.1.2.1)

credit
(λ.2.2)

Alice
(λ.2.2.1)

50
(λ.2.2.2)

0
(λ.2.2.2.1)

Figure 3.3: Position tree of a state expressed in source-level representation.

For this strategy to work, because of the limitations of the HTML text
area component, one previous change had to be made. It is impossible to edit
the text area component so that the text inside can have multiple distinct
styles and also insert span tags, hence, in order to achieve this effect, the
states were shown inside div elements, conveniently formatted to achieve the
appearance of an original text area component.

3.2.2.3 Meta-level representation

As the meta-level representation of any state has a strong, easy to identify,
pattern, it is possible to identify the position of, not only a term, but a single
character of a term without having any semantic knowledge of it. This is
achieved by parsing the state and modifying a variable keeping the current
position, starting with Lambda, in three different ways, as we find the non-
escaped characters “[”, “]” or “,”.

Finding a “[” character means that the current position has to be deepened
by one. The opposite effect, that is, to raise one level the current position, has
to be made when a non-escaped “]” character is found. The last character, “,”
just increases by one the value of it, as if we travelled to the immediate right
branch of the tree of positions representing the state explained in Section
3.2.2.1.

With this strategy, just by parsing the entire state character by character
and updating the current position at each step if needed, we can easily find

Chapter 3. Implementation 31

each relevant position, which are those found while reading between an open
span tag and its corresponding close tag. The result will be an array of
relevant positions to be provided directly to the backward-slicing operator in
Maude.

3.2.2.4 Source-level representation

While the meta-level representation had a very distinctive pattern that is
common to all possible states, regardless of their specifications, a source-level
representation did not have any. This was the main problem to solve, not
only in this section, but in the entire new version of the tool.

One of the beauties of Maude is that it provides the means for the user
to create complex models whose states can be represented in many, many
forms, often limited by his imagination. This makes literally impossible to
find a pattern common to all these possible states. Nevertheless, with our
approach, this can be easily solved.

At this point, we need to explain that a source-level representation of a
state in Julienne is the result of a custom Maude operation, dt, named for
downTerm, whose main goal is to lower a given state in meta-level represen-
tation from the meta-level to the source-level. This operator dt recursively
builds the state in source-level representation by translating each term step
by step according to the Maude specification provided, and placing them in
the correct order.

Once we know how a source-level representation of a state is built, we
can easily think that, besides translating each term into its source-level rep-
resentation, we can translate it into any kind of information that will help
us to find the position of any character of the state, that is, we can write the
information needed to create a map of the state. Also, with regard to the
efficiency of this process, both the calculation of the position of each term
and the building of the map can be performed in parallel with the generation
of the source-level representation state while using dt, as all three functions
run throughout the text in the same recursively manner.

With this new information, the formerly very complicated task of finding
the positions of the selected terms is greatly eased. First of all, we do not
need the information of the state anymore, nor we need to have any semantic
knowledge of it. We only need the indices of the selected text inside the string
that represents it. The easiest way of obtaining this is to create a mask of the
state by replacing any found character, spaces included, with, for example,
“n” if it is not wrapped inside a span tag and “S” if it is. Then, we only have
to read the map sequentially.

As explained in Section 3.2.2.5, each element of the map contains two

Chapter 3. Implementation 32

data. The first one describes how many characters the second data will affect.
This second data just describes the position of those characters. Once we
read an element of the map, we can easily get a substring of the mask starting
at the current value of the pointer used to read, and with the length given
by the value of the first data of the read element. Then, if this substring
contains the character “S”, the position of the term is included in the result
array of positions. At the end, just by building the map, the algorithm that
is able to get the positions of the terms is even simpler than the used for
meta-level representation.

3.2.2.5 State Map Structure

As mentioned in Section 3.2.2.4, in order to retrieve the slicing criterion
specified by the user in the source representation of a state, it is useful to
construct a map of it. The fact that Julienne allows the slicing criterion to
be fixed in any state of the execution trace except for the first one implies
that all those states need to be mapped.

Being Julienne an online web application, the server hosting our tool
needs to deliver this information, along with the two representations of each
state, to the user, so the size of all this new generated information needs to
be lightened as much as possible, as it is affected by the considered Maude
specification and the number of states of the execution trace, which can be
huge. The positive side is that this operation only needs to be performed
once per execution trace provided, regardless of the number of slices later
required by the user.

The minimum information needed to retrieve a position of a term inside
a state is both its position according to the string of characters that repre-
sents that state and its position according to the tree of positions described
in Section 3.2.2.1. For example, given the bank specification described in
Section 4.2 and this state in meta-level representation:

’_;_[’debit[’Alice.Id,’s_^30[’0.Zero]],’_;_[’<_|_>[’Alice
.Id,’s_^100[’0.Zero]],’credit[’Alice.Id,’s_^50[’0.Zero]]]]

The result of calling the dt operator with them as arguments will be:

debit(Alice,30) ; < Alice | 100 > ; credit(Alice,50)

and the generated map will be:

c6p.1c5p.1.1c1p.1c2p.1.2X.1.2.1c1p.1c3pc2p.2.1c5p.2.1.1
c3p.2.1c3p.2.1.2X.2.1.2.1c2p.2.1c3p.2c7p.2.2c5p.2.2.1
c1p.2.2c2p.2.2.2X.2.2.2.1c1p.2.2

Chapter 3. Implementation 33

Let us explain these results. First, the map is a sequence of concatenated
elements each consisting of two data components. The first component begins
with the c character and describes how many characters will affect the second
data. This second data begins with the p character and describes the position
of those characters according with the tree of positions explained in Section
3.2.2.1.

Moreover, it is possible that two terms in meta-level representation will
merge into one single joint representation. This happens with the natural
numbers, as their meta-level representation comprises two related terms (e.g.
’s_ˆX[’0.Zero], being X a given number). In order to cover those cases,
the second data of an element can describe more than one position and thus
need to be delimited, in our case with the X character.

Finally, since the root of the tree of positions is always Lambda, it is
implicit and does not need to be reflected in the map, so an empty second
component can be given, meaning that the position is λ itself.

Map element Length Characters Positions
c6p.1 6 debit(λ.1

c5p.1.1 5 Alice λ.1.1
c1p.1 1 , λ.1

c2p.1.2X.1.2.1 2 30 λ.1.2, λ.1.2.1
c1p.1 1) λ.1
c3p 3 _;_ λ

c2p.2.1 2 <_ λ.2.1
c5p.2.1.1 5 Alice λ.2.1.1
c3p.2.1 3 _|_ λ.2.1

c3p.2.1.2X.2.1.2.1 3 100 λ.2.1.2, λ.2.1.2.1
c2p.2.1 2 _> λ.2.1
c3p.2 3 _;_ λ.2

c7p.2.2 7 credit(λ.2.2
c5p.2.2.1 5 Alice λ.2.2.1
c1p.2.2 1 , λ.2.2

c2p.2.2.2X.2.2.2.1 2 50 λ.2.2.2, λ.2.2.2.1
c1p.2.2 1) λ.2.2

Table 3.1: Breakdown of a map by elements and their correspondence with
the associated state.

With all this in mind, going back to our example, the first element will
be c6p.1. This means that the first six characters of the source-level repre-

Chapter 3. Implementation 34

sentation of the state will correspond to the λ.1 position, that is, "debit(".
The next element of the map is c5p.1.1, which means that the next five
characters, "Alice", will be part of the term with position λ.1.1. And so
the map is read sequentially together with the source-level representation of
the state.

Chapter 4

Using Julienne

4.1 Crossing River Example

The simplest example provided for evaluation purposes in the Julienne
distribution package is the well-known problem of the crossing river. One of
the many variants of the statement of this problem is as follows:

There is a man, a wolf, a goat and a cabbage in one side of
a river that need to cross to the other side by means of a boat.
The boat can only accommodate one traveller besides the man,
but leaving the wolf and the goat together without his supervision
will cause the wolf to eat the goat and so leaving the goat with the
cabbage.

First of all, we have to load the corresponding specification by selecting the
crossing-river example as shown in Figure 4.1. The next step is to provide a
valid execution trace. In this example, instead of using the default execution
trace provided by Julienne, we generate a different trace by providing both
initial and final states in source-level representation. Our initial state will
correspond to the state with all four passengers standing at the left side of the
river and our final state will be that with them safely carried to the opposite
side. By pressing the Generate trace button, Julienne will generate one
of the possible solutions to this problem and will display it as the provided
execution trace.

Now, we press the Next button to start slicing. As Figure 4.3 shows, the
previously generated execution trace has 56 states. We now chose as the
slicing criterion the term of the last state describing the side of the river that
the wolf is at, that is, right.

After pressing the Slice button, the sliced trace states will be displayed
along with the original trace states, as Figure 4.4 shows. We can observe
that many sliced states are marked with the ***deleted*** text. This
means that the state is substantially the same as the preceding one and can
be safely omitted.

35

Chapter 4. Using Julienne 36

Finally, by pressing the Show trace slice button, we can consult all the
information in a condensed table, along with some additional data about the
reduction achieved, which in this example is 77% of the original trace (Figure
4.5).

Figure 4.1: Julienne showing a specification of the crossing river example.

Chapter 4. Using Julienne 37

Figure 4.2: Generation of a Maude execution trace by providing the initial
and final state in source-level representation.

Figure 4.3: A Maude execution trace of 56 states with a selected slicing
criterion in the last state.

Chapter 4. Using Julienne 38

Figure 4.4: Original and sliced trace states after applying the backward-
slicing technique with the slicing criterion described in Figure 4.3.

Chapter 4. Using Julienne 39

Figure 4.5: Sliced trace showing a reduction of 77% with respect to the
original execution trace.

Chapter 4. Using Julienne 40

4.2 Bank Example

In this second example, also provided within the Julienne distribution
package, we work with a very basic Maude specification of a bank system.
There are three basic rules, credit, debitERR and transfer. Obviously
by its name, the rule labelled as debitERR is introduced to illustrate some
problems.

Figure 4.6: Julienne showing a Maude bank specification with an error in
one of its rules.

The first rule, credit, adds some amount of money to a bank account.
The second rule, debitERR subtracts it, as if we charge the account with any
amount of money, and the transfer rule just moves some money from an
account to another one. As we will discover later, the problem is that the
debitERR does not check if there is enough money to be withdrawn from the
given account.

Once we load the specification, we press the Next button and get a default
execution trace also provided by Julienne. As this trace is affected by the
error we want to discover, we just press Next again to move forward to the
trace navigation step.

Chapter 4. Using Julienne 41

Figure 4.7: Execution trace provided as an example for the faulty Bank
specification.

After we reach this step, we can clearly observe that the given execution
trace has 22 states and the last one contains a term that describes a bank
account, whose holder is Charlie, with negative balance. In order to discover
the error that causes such a negative balance, we specify as the slicing crite-
rion the minus symbol and then slice the trace by pressing the Slice button.

Following the first application of the backward-slicing technique the sliced
trace will appear and we will be able to consult all the information in the
available table by pressing the Show trace slice button. It shows that a
reduction of 75% has been achieved with respect to the original trace.

Also, by hiding irrelevant information with the Hide irrelevant data op-
tion, we can clearly see that the first time we have a negative balance in an
account is in state number 9, so the rule applied in the transition from the
8th to 9th states will almost certainly hold the error. Not surprisingly, by
inspecting the information available about the transition, we find out that
the rule applied is debitERR.

Now that we know which transition is holding the error, we can go to
the 9th state and perform another slice in order to further reduce the sliced

Chapter 4. Using Julienne 42

Figure 4.8: A 22 state execution trace of the faulty Bank specification with
the minus symbol selected as the slicing criterion.

trace. We can now chose "- 30" as the slicing criterion and, after applying
the backward-slicing technique again, we obtain the sliced trace described in
Figures 4.12 and 4.13.

If we compare both table results of Figures 4.10 and 4.13, we can notice
that, with the first application of the technique, the relevant information
in the first state of the sliced trace were the account initial balance, the
debit operation and two transfer operations. Those transfer operations do
not appear as relevant in the resulting slice of the second application of the
technique because, in fact, they are not relevant, as they affect the final
balance of the account because their rules are applied after the debitERR is.

To conclude, we can state that this example demonstrates that by slicing
a second time at an early state we can achieve more specific sliced traces and
thus smaller.

Chapter 4. Using Julienne 43

Figure 4.9: Snapshot of the tool after applying the backward-slicing technique
in Figure 4.8.

Chapter 4. Using Julienne 44

Figure 4.10: Original versus sliced trace for the Bank example.

Chapter 4. Using Julienne 45

Figure 4.11: States 8 and 9 of the execution trace displayed in Figure 4.9
with a slicing criterion specified in state 9.

Figure 4.12: Snapshot of Julienne after applying the backward-slicing tech-
nique in Figure 4.11.

Chapter 4. Using Julienne 46

Figure 4.13: Table of results of Figure 4.12.

Conclusions and Future Work

In this project, we have developed a tool for slicing execution traces de-
livered by Maude. In order to achieve better reduction rates in the sliced
execution traces, apart from the chosen slicing technique that we apply, we
focus on aspects that are crucial for the slicing effectiveness: to provide a
suitable slicing criterion and the state of the trace in which the slicing tech-
nique will be applied.

To improve the accuracy of the slicing criterion, which is typically pro-
vided by the user, we endow Julienne with a graphical facility that simpli-
fies the process of identifying and fixing it. Moreover, by allowing the slicing
technique to be applied in any state of the provided execution trace, Juli-
enne offers to the user the possibility to apply the slicing technique in an
incremental way and even change the slicing criterion for each application.
The new version of Julienne offers solutions to both problems and provides
the user with a very friendly working environment to get the best possible
results.

As possible future work, we plan to integrate Julienne with an incre-
mental debugger for Maude which uses backward trace slicing to improve the
debugging experience.

47

Bibliography

[1] Alpuente, M., Ballis, D., Frechina, F., Romero, D.: Julienne: a Trace
Slicer for Conditional Rewrite Theories. In: Proc. FM 2012. Springer
LNCS 7436: 28–32 (2012)

[2] Alpuente, M., Ballis, D., Espert, J., Romero, D.: Model-checking Web
Applications with Web-TLR. In: Proc. ATVA 2010. Springer LNCS
6252: 341–346 (2010)

[3] Alpuente, M., Ballis, D., Espert, J., Romero, D.: Backward Trace Slicing
for Rewriting Logic Theories. In: Proc. CADE 2011. Springer LNCS
6803: 34–48 (2011)

[4] Alpuente, M., Ballis, D., Frechina, F., Romero, D.: Backward Trace
Slicing for Conditional Rewrite Theories. In: Proc. LPAR-18. Springer
LNCS 7180: 62–76 (2012)

[5] Alpuente, M., Ballis, D., Romero, D.: Specification and Verification
of Web Applications in Rewriting Logic. In: Proc. FM 2009. Springer
LNCS 5850: 790–805 (2009)

[6] Baggi, M., Ballis, D., Falaschi, M.: Quantitative Pathway Logic for
Computational Biology. In: Proc. CMSB ’09. Springer LNCS 5688: 68–
82 (2009)

[7] Chen, F., Rosu, G.: Parametric Trace Slicing and Monitoring. In:
TACAS. Springer LNCS 5505: 246–261 (2009)

[8] Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer,
J., Talcott, C.: Maude Manual (Version 2.6):

[9] Clavel, M., Durán, F., Hendrix, J., Lucas, S., Meseguer, J., Ölveczky,
P.C.: The Maude Formal Tool Environment. In: Proc. CALCO.
Springer LNCS 4624: 173–178 (2007)

[10] The julienne Web site (2012), available at:
http://users.dsic.upv.es/grupos/elp/soft.html

48

Bibliography 49

[11] The julienne v. 2 Web site (2012), available at:
http://safe-tools.dsic.upv.es/julienneV2

[12] TeReSe (ed.): Term Rewriting Systems. Cambridge University Press,
Cambridge, UK (2003)

[13] Martí-Oliet, N., Palomino, M., Verdejo, A.: Rewriting logic bibliography
by topic: 1990-2011. Journal of Logic and Algebraic Programming. To
appear (2012)

[14] Berners-Lee, T. Information Management: A Proposal.

[15] Lie, H. W. Cascading HTML Style Sheets: A Proposal.

[16] Clavel, M., Eker, S., Lincoln, P., Meseguer, J.: Principles of Maude.
Electronic Notes in Theoretical Computer Science, Vol. 4: 65–89 (1996)

[17] Gallagher, K., Binkley, D.: Program Slicing. Advances in Computers,
Vol. 43: 1–50 (1996)

[18] Silva, J.: A Vocabulary of Program Slicing-Based Techniques. In: ACM
Comput. Surv. 44, 3. Article 12 (June 2012).

