APPENDIX A

Tools used and relationship
between the studied masters
degree to this work

A.1 Tools used

As for the tools used, we used many standard hardware implementation and verification
tools, as well as scripting languages and simulation frameworks.

A.1.1. Xilinx Vivado

For synthetising the Selene SoC design we used Vivado on its CLI (Command Line Inter-
face) mode.

With this mode of Vivado there was no need to use the graphical user interface and
thus, efficient scripts could be written. The whole syntetization process is based on "GNU
make" and Vivado TCL scripts.

In order to use our target VCU118 board, the usage of Vivado to synthetize the bit-
stream to be uploaded is mandatory as there is no other tool that can syntetize bitstreams
for Xilinx FPGA boards.

We also extensively used the Vivado library and IP-core suite to implement our mem-
ory controller and some core functionality of our SoC, such as the accelerators, created
with Vivado HLS and ported into our design with Vivado.

A.1.2. Mentor Graphics Questasim

For simulating the Selene SoC and our proposed implementations we used the Ques-
tasim simulator. This simulator offers great tools for debugging by offering step by step
debugging for Verilog processes and mixed SV (System verilog) and VHDL simulation.

We extensively used the memory snooping capabilities, the waveform tool and the
breakpoints tool. The majority of complex mechanisms that we implemented on the SE-
LENE SoC where designed using the Questasim to debug and verify.

We extensively used the Questasim IDE to edit and debug our code, and the Ques-
tasim waveform tool debug it and ensure the system has the expected behaviour. We also
made use of the TCL scripting language inside the Questasim tool to ease the debugging
process.

55

56 Tools used and relationship between the studied masters degree to this work

® Questa Sim-64 *

Fie Edt View Comple Simulate Add Wave Tools Layowt Bookmarks Window Help

B8-EEH-8 (B@o2 0 AE W 0 R STHAE|| YE bt B wclEDEE
|8-4.28-8| PR IR e e o e N N I

Itestbenchicpucpucoreliax noc instance/Nolnitiators 2
Itestbenchicpucpu/coreliax noc_instance/NoTargets 1
Itestbenchicpuicpu/coreliax noc_instancelck 1
Itestbenchicpu/cpu/coreliaxi noc_instancelrst 1

B4 ftestbenchicpuicpulcoreiaxi noc instancelax from _target {{LHL}HUULU} {00,

“.a. ftestbenchicpuicpuicoredia noc. instancelax to_target {0000} {0ODDD00OX...

£ ftestbenchicpuicpulcorediaxi noc_instancelzxi from infiator

3. ftestbenchicpulcpulcorefiaxi noc_instancelaxi to_initiator

£ festhenchicpulcpu/coreiai noc instancelshy_ports. req D00} PXXKXKXX...

& ftestbenchicpulcpulcoreliaxi noc_instancalsly_ports_resp pro0{pogn...| 7

010 0POOGEI} N 0 1.0 0 (XXX 00] {00} 0 XX 000000 D000J000000000000

XX {00}-{000}
0
XXX} {0000000000...

a8’ o
£ ftestbenchicpucpucorel/axi_noc_instance/mst_ports_tfeq
B ftestbenciicpuicpucoreiau_ noc_instance/mst_ports fesp

Figure A.1: Questasim waveform screenshot

A.1.3. GNU Make

Make gets its knowledge of how to build your program from a file called the
makefile, which lists each of the non-source files and how to compute it from
other files. When you write a program, you should write a makefile for it, so
that it is possible to use Make to build and install the program.[25]

The GNU Make tool is an indispensable tool to automate compilation workloads in-
side a big project such as the SELENE H2020 Project. We extensively used the Make
tool to create a tree of make targets, integrating our VCU118 specific workflow with the
existing generic Gaisler GRLIB make hierarchy.

A.1.4. Shell scripting, GRMON scripting and Python scripting

For the obtention and parsing of the majority of results of this work we used a combi-
nation of C software programs running on the SELENE SoC and shell scripts used to
interface with GRMON and obtain the results of the programs running on the FPGA.

This project uses a wide variety of bash scripts, shell scripts, GRMON scripts and
python scripts to obtain the results on a CSV (Comma separated value) manner. This csv
files are necessary to easily import the results into Microsoft Excel and Google Sheets, the
two graphing programs used on this work to obtain the presented graphs.

We used Python to further parse the results of reading the PMU memory addresses
with GRMON, converting from hexadecimal to decimal the values and assigning the
overflow bit correctly to each of the read results.

A.2 Relation between the studied maters degree and this work 57

A.2 Relation between the studied maters degree and this work

There is a strong relation between the studied masters degree and this work. This mas-
ters degree is the computer architecture and networking masters degree. In this masters
degree there is a strong focus on interconnection networks and computer architecture,
specially at the microprocessor level.

The strong focus on interconnection networks of this master made it much easier to
understand the concepts used on this work and the structure of the AMBA AHB stan-
dard. The REC (Redes en chip) on chip networks subject was specially relevant for this
work, as we had a seminar directly orientated to the AMBA AHB standard.

This masters degree also focuses on designing small paper-like works with latex, giv-
ing us the tools and expertise to easily create this TFM on latex already knowing how to
use this PDF creation language.

Finally, the studied masters degree also puts a strong emphasis on chip design and
internal chip structure with its ATP subject. Where I understood the internal architecture
of a complex processor and the importance of the memory subsystem, as well as the in-
determinism that this memory subsystem can produce. This understanding of computer
processors was also used on this work to better understand the traffic needs of the Selene
NOEL-V cores.

	Tools used and relationship between the studied masters degree to this work
	Tools used
	Xilinx Vivado
	Mentor Graphics Questasim
	GNU Make
	Shell scripting, GRMON scripting and Python scripting

	Relation between the studied maters degree and this work

