

Estudio, análisis y modelización de la estructura del **Exchange House de SOM en Londres**, mediante SAP2000

TRABAJO FINAL DE GRADO | GRADO EN FUNDAMENTOS DE LA ARQUITECTURA | CURSO 2019-2020 ESCUELA TÉCNICA SUPERIOR DE ARQUITECTURA DE VALENCIA

Autora: Laura Avellán Carrión Tutor: David Gallardo Llopis

Departamento: Mecánica de los Medios Continuos y Teoría de las Estructuras

ÍNDICE

1	II	NTRODUCCIÓN	2
	1.1 1.1	Resumen y palabras clave 1.1 Resumen	2
		1.2 Resum	2
	1.3	1.3 Abstract	2
	1.2	Objetivos y metodología	2
2	Α	NÁLISIS ARQUITECTÓNICO	3
	2.1	Bruce Graham, Srinivasa Iyengar y la firma SOM.	Ĵ
	2.2	Ubicación de la obra Exchange House	į
	2.3	Descripción del edificio	;
3	Α	NÁLISIS ESTRUCTURAL Y CONSTRUCTIVO	9
	3.1	Definición del sistema estructural	9
	_	1.1 El arco parabólico como sistema estructural	ç
		1.2 Documentación gráfica del cuerpo principal 1.3 Detalles	12 16
	3.2	Construcción	18
4	ľ	MODELO DE ANÁLISIS	21
	4.1	Simplificación geométrica en AutoCad	25
	4.2	Inserción de materiales y secciones en SAP2000	26
	4.3	Condiciones de enlace en SAP2000	30
	4.4	Inserción de acciones en SAP2000	33
	4.4	4.1 Cargas permanentes	33
		4.2 Cargas variables	35
		4.3 Cargas accidentales	40
		4.4 Acciones sobre el modelo de cálculo simplificado	42
	4.5	Combinación de acciones 5.1 Combinaciones para ELS	52 53
		5.2 Combinaciones para ELU	53
		5.3 Inserción de las combinaciones en el programa	54
5	II	NTERPRETACIÓN DE LOS RESULTADOS	57
	5.1	Comprobación de los Estados Límite de Servicio	57
	5.2	Comprobación de los Estados Límite Últimos	67
6	С	CONCLUSIÓN	68
7	В	BIBLIOGRAFÍA	69
8	ĺľ	NDICE DE TABLAS	71
9	ĺľ	NDICE DE FIGURAS	72
10		NEVO	70

1 INTRODUCCIÓN

1.1 Resumen y palabras clave

1.1.1 Resumen

El objetivo del trabajo es desarrollar un estudio sobre la estructura del Exchange House, edificio ubicado en el centro financiero de Londres, proyectado por la firma SOM y finalizado el año 1990. Dicho análisis se realiza mediante la herramienta informática SAP2000, incorporando el modelo con las simplificaciones y los detalles adecuados para que los resultados sean lo más fieles posibles a la realidad. A partir de los resultados del análisis efectuado, se extraen conclusiones de la validez del modelo y la respuesta estructural del edificio.

Palabras clave: SOM, Exchange House, estructura metálica, análisis, SAP2000, arco.

1.1.2 **Resum**

El objectiu del treball és desenvolupar un estudi sobre l'estructura de l'Exchange House, edifici ubicat al centre financer de Londres, projectat per la firma SOM i finalitzat l'any 1990. Aquest anàlisi es realitza mitjançant el programa informàtic SAP2000, incorporant el model amb les simplificacions i els detalls adequats per a que els resultats siguen els més fiables possibles a la realitat. A partir dels resultats obtinguts de l'anàlisi, s'extreuen conclusions de la validesa del model y la resposta estructural del edifici.

Paraules clau: SOM, Exchange House, estructura metàl·lica, anàlisi, SAP2000, arc.

1.1.3 Abstract

This dissertation addresses the Exchange House structure, a building located in the London's financial hub which has been designed by the firm SOM and finished in 1990. As for the analysis, SAP2000 is the main structural software tool to be used. By implementing a simplified model and underpinning it with suitable details, the results can be modelled in a very accurate and real perspective. Conclusions are derived from these results, allowing us to assess the validity of the building's structural performance.

Keywords: SOM, Exchange House, steel structure, analysis, SAP2000, arch.

1.2 Objetivos y metodología

La finalidad de este trabajo académico es aprender a utilizar la herramienta de cálculo SAP2000, de manera avanzada, a través del análisis detallado de la particular e innovadora estructura del edificio *Exchange House*. Se analizarán las estrategias empleadas para construir un edificio puente, capaz de salvar grandes luces extrayendo conclusiones por medio de un modelo de cálculo simplificado.

Se parte de un análisis detallado del Exchange House, recopilando información del arquitecto e ingeniero que lideraron el diseño del edificio, de la propia obra, y de su emplazamiento, que jugó un papel fundamental en las decisiones proyectuales. Para el análisis se redibujan los planos generales y los detalles de la estructura para mayor comprensión del funcionamiento de esta. A partir de la documentación bibliográfica se realiza un modelo de cálculo simplificado al que se añadirá unas cargas estimadas y el predimensionamiento de los elementos estructurales. El programa de cálculo y análisis estructural SAP2000 será la herramienta empleada para obtener resultados sobre las deformaciones y la capacidad resistente de la estructura del edificio. A partir de estos resultados se podrán extraer conclusiones extrapolables a otras situaciones donde la estructura es un reto estructural y arquitectónico.

ANÁLISIS ARQUITECTÓNICO 2

2.1 Bruce Graham, Srinivasa Iyengar y la firma SOM.

El edificio Exchange House fue llevado a cabo por el equipo de ingenieros y arquitectos de la firma norte americana Skidmore, Owings and Merrill, también conocida como SOM. Dos de sus miembros fueron los encargados de dirigir el diseño del edificio Exchange House: el ingeniero Srinivasa Iyengar (1934-2019) y el arquitecto Bruce Graham (1925-2010).

Las siglas SOM corresponden al nombre de sus fundadores: Louis Skidmore (1897-1962), Nathaniel A.Owings (1903-1984) y John O. Merrill (1896-1975). El año 1936 los dos arquitectos Skidmore y Owings se unieron para trabajar en Chicago, sin embargo, se enfocaron en proyectos alejados del campo de la ingeniería como exposiciones en museos o casas unifamiliares. Más tarde el equipo tuvo un nuevo integrante, el ingeniero Merrill, que aportó una visión que complementaba las debilidades del equipo. En 1937 Owings y Merril permanecieron en el despacho de Chicago, y Skidmore se trasladó a una nueva oficina en la ciudad de Nueva York. La firma destacaba por sus rápidos diseños y por la manera eficaz de programar y organizar los procesos constructivos. A partir del periodo de postguerra se identificaban con un estilo ecléctico internacional moderno, importado de sus colaboradores. Al estudio se unieron estudiantes de Mies Van der Rohe, estudiantes del MIT influenciados por el movimiento moderno escandinavo, y además se unió el arquitecto Gordon Bunshaft (1909-1990) que fue gran seguidor de Le Corbusier. (Schittich, 2015)

En 1950 Gordon Bunshaft lideró el diseño de proyectos como el edificio Lever House (Figura 2.1-1). Pronto se incorporaron al equipo otros arquitectos (Walter Netsch, Bruce Graham, Myron Goldsmith) e ingenieros, cuyos proyectos marcaron un antes y un después en el skyline de Chicago. Del equipo de ingenieros cabe destacar la participación de Fazlur R. Khan (1929-1982), que se incorporó en 1955 con dos másteres y una tesis doctoral de la Universidad de Illinois. Khan trabajó mano a mano con los dos diseñadores del edificio Exchange House. (Schittich, 2015)

Bruce Graham nació en Colombia, pero pasó su infancia en Puerto Rico. A los 15 años recibió una beca para estudiar ingeniería en la Universidad de Dayton en Ohaio. En 1943 se alistó a la marina estadounidense para servir en Filipinas durante la segunda guerra mundial, etapa en la que practicó como ingeniero civil. A su vuelta, en 1948, realizó la carrera de arquitectura en la Universidad de Pensilvania y una vez graduado se trasladó a Chicago donde trabajó para el estudio Holabird, Root & Burgee. En 1960 se convirtió en miembro de la firma SOM, coincidiendo con la incorporación de Srinnivasa Iyengar. Después de los reconocidos proyectos realizados junto a Iyengar y Khan en la primera etapa como integrante del estudio SOM, Bruce Graham continuó incorporando a su porfolio rascacielos como Three First National Plaza, Madison Plaza y Quaker Tower. También participó en el plan urbano Chicago 21 de 1973, en el que se proponía la rehabilitación de los alrededores del distrito financiero de Chicago (Chicago Loop). No sólo intervino en Chicago y Nueva York, sino que también diseñó edificios en todo el mundo, destacando su participación en el máster plan de Canary Wharf (Figura 2.1-2) y en el complejo financiero Broadgate (Figura 2.2-3), ambos en Londres. El edificio de análisis del trabajo fue realizado junto al ya mencionado Srinivasa Iyengar, y forma parte del complejo Broadgate. (Grimes, 2010)

Stoller (SOM | Lever House, n.d.)

Figura 2.1-1. Lever House. Fuente: Ezra Figura 2.1-2. Complejo Canary Wharf en 2012. Fuente: Jason Hawkes (SOM | Canary Wharf Master Plan, n.d.)

El también conocido como Hal Iyengar nació en la ciudad de Mysore, India. Al igual que su padre, Iyengar decidió adentrarse en el mundo de la ingeniería y se graduó en ingeniería civil en la Universidad de Mysore el año 1955. Dos años después realizó un máster en ingeniería hidráulica y civil por el Instituto Indio de Ciencia de Bangalore. En 1957, guiado por su interés por las estructuras, se trasladó a Estados Unidos donde estudió un máster de ingeniería de estructuras en la Universidad de Illinois. Al mismo tiempo, en la ciudad de Chicago, recibió un puesto como investigador financiado por el departamento de defensa norteamericano. (Weingardt, n.d.)

El año 1960 Hal Ivengar conoció al director de SOM y el mismo día se le ofreció un puesto dentro de la firma donde trabajó durante 40 años. Junto con el ya mencionado ingeniero Fazlur Kahn, trabajaron en softwares para el cálculo y análisis de edificios, estos programas fueron empleados para la realización del John Hancock Center (Figura 2.1-3). Esta torre de 100 plantas se encuentra en el norte de la Michigan Avenue en Chicago y fue diseñada en 1963 y completada en 1970, junto con el arquitecto Bruce Graham y junto a su mentor Kahn. Los niveles inferiores de la torre son oficinas mientras que los superiores son residencias. También trabajó con ambos profesionales en la Sears Tower (Figura 2.1-4), conocida actualmente como Willis Tower, el edificio más alto del mundo entre los años 1982 y 1998. La torre Willis, de 110 plantas, está compuesta por una estructura celular con una malla rígida que unía los 9 volúmenes que componen la geometría final de la torre. Asimismo, Ivengar además fue el perito estructural de edificios como la torre Petronas en Malasia. (Weingardt, n.d.)

Junto a otros pioneros de SOM impulsó el uso de la estructura como herramienta para realzar los aspectos arquitectónicos de los edificios. Por esto, a pesar de estar en el lado más técnico del proceso proyectual, Hal lyengar se interesó por estudiar arte para así reforzar sus conocimientos sobre arquitectura y responder a todo tipo de estilos arquitectónicos. (Weingardt, n.d.)

Figura 2.1-3. John Hancock Center. Fuente: Ezra Stoller (SOM | North Michigan Avenue, Figura 2.1-4. Sears Tower. Fuente: Ezra

Stoller (SOM | Willis Tower, n.d.)

El ingeniero se convirtió en el director del departamento de estructuras de la firma SOM de 1975 a 1992. A partir de 1992 lyengar trabajó en su propia firma llamada Structural Design International, pero continuó siendo el consultor de la firma norteamericana. En este último periodo de su vida participó en importantes obras como el museo Guggenheim de Bilbao diseñado junto a Frank Ghery, finalizado en 1997. (Kamin, 2019)

Figura 2.1-5. Museo Guggenheim Bilbao. Fuente: Erika Ede (El Edificio | Guggenheim Bilbao Museo, n.d.)

El edificio puente Exchange House recibió el prestigioso 25-Year Award otorgado por el American Instituto of Architect's (AIA) en 2015. Este premio reconoce la intervención en todo su conjunto: la ingeniería, la arquitectura y la respuesta urbana. (SOM | SOM's Exchange House at Broadgate in London Wins Prestigious AIA 25-Year Award, n.d.).

2.2 Ubicación de la obra Exchange House

A partir de mediados de los años 80, el tejido urbano y el paisaje de la ciudad de Londres experimentó cambios debidos a la edificación de nuevas áreas y al reemplazo de antiguos edificios por nuevas promociones, es decir, comenzó una expansión territorial y un aumento de densidad edificatoria. Esta etapa de optimismo interno especulativo se prolonga hasta el momento de la enorme intervención de la firma americana SOM en el *Broadgate complex*, que recibió los permisos urbanísticos en tan solo 6 semanas. Durante todo los 80, el desarrollo y uso de la electrónica en los lugares de trabajo impulsaron un cambio en la manera de diseñar la arquitectura de oficinas, surgiendo la necesidad de espacios más amplios, y con capacidad para almacenamiento y servicios (Allinson & Thornton, 1993). Esta nueva idea de espacios de trabajo se ve reflejada en el proyecto Exchange House.

El edificio de oficinas Exchange House, diseñado en 1990 por miembros de SOM (Bruce Graham como arquitecto principal y Hal lyengar como ingeniero), forma parte del mencionado complejo *Broadgate* en Londres (*SOM* | *Broadgate* – *Exchange House*, n.d.). El complejo financiero, comercial y de reunión social tiene aproximadamente 13 hectáreas y acoge grandes plazas y edificios en altura que se han ido construyendo y modificando hasta la actualidad. (*What Is Broadgate?* | *Broadgate*, n.d.)

El plan urbanístico se desarrolla alrededor de la actual estación de *Liverpool Street*. Junto a dicha estación, se encontraba también la estación de *Broad Street* que fue demolida para construir el complejo multi-funcional (Figura 2.2-1).

Desde el 1984 al 1992 se llevaron a cabo 10 fases de ejecución: las 4 primeras fueron diseñadas por Arup Associates, y las 6 restantes por SOM (Allinson & Thornton, 1993). A partir de 1992 se construye la plaza *Exchange*, la torre *Broadgate*, el edificio *201 Bishopsgate* y el edificio *5 Broadgate*; además se han llevado a cabo mejoras y rehabilitaciones de la plaza *Finsbury Avenue*, del edicio 199 *Bishopsgate* y del *Broadgate Circle* (*Our Journey* | *Broadgate*, n.d.).

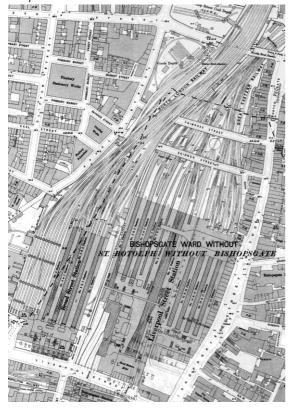


Figura 2.2-1. Estaciones Broad Street y Liverpool Street en 1896. Fuente: (Disused Stations, Broad Street, n.d.)

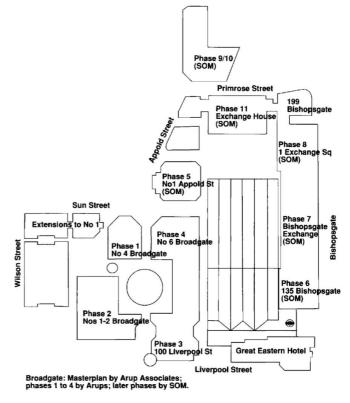


Figura 2.2-2. Distribución de la intervención de Arup y SOM en el complejo Broadgate. Fuente: Allinson & Thornton, 1993

Mientras que las vías de la antigua estación de *Broad Street* se eliminaron por completo del lugar, la estación de *Liverpool Street* debía seguir operando, lo que supuso un condicionante clave en las decisiones de diseño de la actuación urbanística. Como se aprecia en la Figura 2.2-2 y la Figura 2.2-1, el edificio Exchange House se sitúa al norte de la estación de *Liverpool Street*, de modo que se debía permitir la continuidad y el funcionamiento de las vías del tren, no sólo durante la vida útil del edificio, sino también durante su ejecución. (Schittich, 2015)

El requisito impuesto por el entorno llevó a una solución de edificio puente que consigue salvar 78 metros de luz a través de una estructura de arcos parabólicos. Las fachadas principales vuelcan a la calle *Primrose* y a una de las tres grandes plazas del complejo, que también construida sobre las vías de tren (Figura 2.2-4). (Schittich, 2015)



Figura 2.2-4. Plaza Exchange después y antes de ser construida. A la derecha vías de la estación Liverpool Street. Fuente: Alan Delancey (SOM | Broadgate-Exchange House, n.d.)

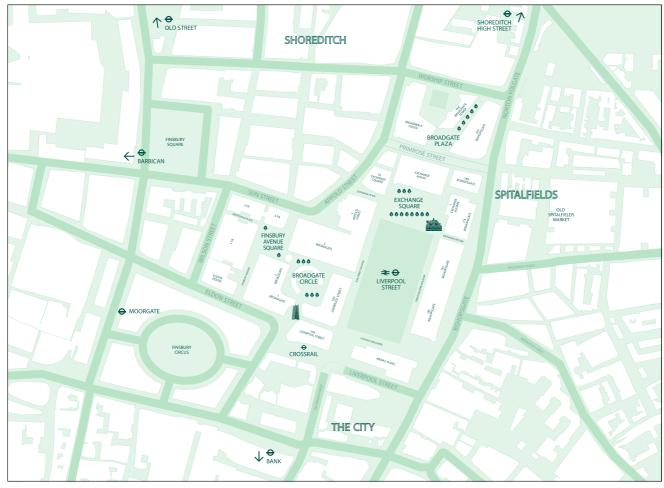


Figura 2.2-3. Mapa del complejo Broadgate de Londres en la actualidad. Fuente: (Getting Here / Around | Broadgate, n.d.)

2.3 Descripción del edificio

La obra Exchange House está compuesta por un cuerpo principal diáfano de 10 plantas y 51.000 m² al que se adhieren dos torres y un bloque de menor altura (SOM | Skidmore, Owings & Merrill LLP, n.d.). El acceso al edificio se realiza a través de un vestíbulo situado en el centro de la planta baja del cuerpo principal. En su interior hay un par de escaleras mecánicas que conectan con la primera y segunda planta, y ocho elevadores que dan acceso a todas las plantas del edificio, incluida la planta de sótano. Tanto el cerramiento del vestíbulo como las cajas de los ascensores son de vidrio, de manera que se crea un efecto de planta baja libre. Además, dicho nivel se funde con la plaza Exchange Square a través de una escalinata que recorre la longitud del edificio. Se genera continuidad visual y espacial desde la calle Primrose hasta el corazón de la plaza.

Figura 2.3-1. Hall principal de acceso de vidrio. Fuente: Alan Williams (SOM | Broadgate-Exchange House, n.d.)

Figura 2.3-2. Vista del edificio desde la Exchange Square. Fuente: Lucas Blair Simpson (SOM | Broadgate-Exchange House, n.d.)

El forjado de la planta baja tiene dos grandes perforaciones, una circular y otra rectangular, con escaleras que dan acceso a pequeños comercios y a un espacio para la administración. Debajo de dicho nivel se encuentran las vías de tren ya existentes.

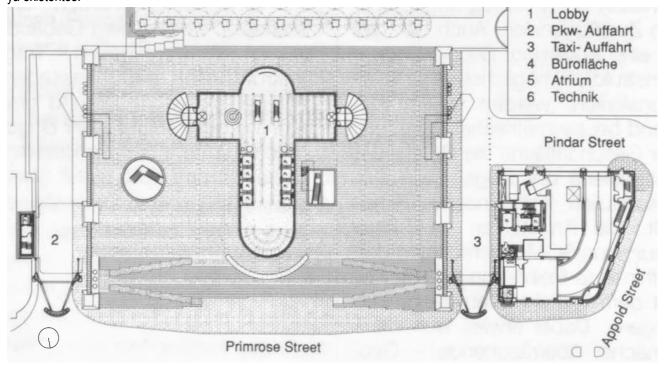


Figura 2.3-3. Plano de la planta baja del Exchange House. Fuente: Lueder, 1993

En las torres ubicadas en los laterales exteriores del edificio se concentran los servicios, de modo que se libera la planta del cuerpo principal creándose un espacio flexible únicamente interrumpido por los ascensores. Las escaleras de evacuación también se llevan fuera del cuerpo principal, salvo una de ellas, colocada en el centro de la planta para el cumplimiento de los recorridos de evacuación. Las escaleras exteriores se diseñan en armonía con el resto del edificio formando parte de la imagen general que se tiene de la obra (Figura 2.3-4).

Figura 2.3-5. Vista de la planta baja desde la calle Primrose. Fuente: Nick Figura 2.3-4. Escaleras de evacuación exteriores. Guttridge (BroadGate Exchange House | SOM-Arch2O.Com, n.d.)

Fuente: (SOM | Broadgate-Exchange House, n.d.)

A partir de la cuarta planta, los forjados se perforan en el pórtico central de forma que aparecen dos grandes atrios simétricos rematados por una cubierta inclinada de vidrio. Estas perforaciones dejan ver como los arcos de descarga van atravesando el edificio, y permiten iluminar y comunicar espacialmente las ocho últimas plantas. Las dos primeras plantas están dedicadas a servicios de transacciones, mientras que las ocho restantes están destinadas a oficinas.

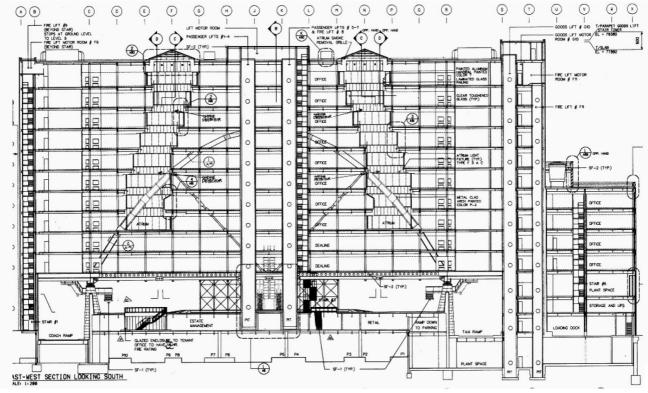


Figura 2.3-6. Plano original con la sección longitudinal del edificio. Fuente: (Exchange House En Broadgate, de SOM, Gana el premio 25 años AIA | Sobre arquitectura y más | desde 1998, n.d.)

3 ANÁLISIS ESTRUCTURAL Y CONSTRUCTIVO

3.1 Definición del sistema estructural

3.1.1 El arco parabólico como sistema estructural

El cuerpo principal tiene un gran interés gracias a un sistema estructural que permite salvar una luz de 78 metros. Su estructura, que trabaja de forma independiente a las torres y al edificio anexo, está compuesta por 4 arcos parabólicos, 2 al exterior y 2 al interior del edificio, a los que van unidos los pilares del edificio. Los arcos están situados paralelos entre sí, y separados formando vanos de 18.5, 15 y 18.5 metros. Los pilares, que se encuentran por encima de los arcos trabajan a compresión, mientras que los pilares situados en el interior del arco trabajan a tracción (Figura 3.1-1). La geometría de la parábola se eligió como la más eficiente frente a cargas uniformes. Las fuerzas de los soportes llegan al arco y éste las transmite hasta los apoyos, de manera que el arco trabaja principalmente a compresión axial, generándose momentos de flexión mínimos (lyengar et al., 1993). Esta solución final supuso un ahorro en acero del 30%, frente a una idea inicial de sistema con celosías (Schittich, 2015).

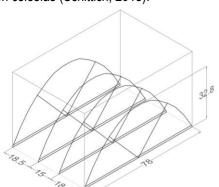


Figura 3.1-2. Disposición de los arcos. Fuente: creación propia

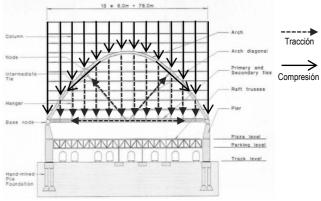


Figura 3.1-1. Transferencia de cargas de los pilares al arco. Fuente: Iyengar et al., 1993

Para entender de forma directa y sencilla el funcionamiento del arco como elemento estructural se parte de analizar el comportamiento de una cuerda. Si se agarran los extremos de la cuerda y se cuelga un peso en el punto medio, adoptará una forma en "V", encontrándose en tensión axial pura (tracción). Además, las manos que sujetan la cuerda tienden a cerrarse y a bajar, por lo que para mantener las manos en una posición fija se tiende al equilibrio con una reacción contraria, es decir, haciendo fuerza hacia afuera y hacia arriba (Figura 3.1-4). Si se congelara y se invirtiera dicha posición, suponiendo que el material usado fuese uno resistente como la madera, la reacción de las manos frente a la carga puntual sería hacia dentro y hacia arriba (Figura 3.1-3). (Sandaker et al., 2011)

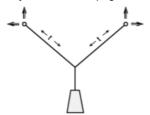


Figura 3.1-4. Hipótesis de cordón traccionado. Fuente: Sandaker et al., 2011

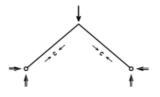


Figura 3.1-3. Hipótesis de geometría comprimida. Fuente: Sandaker et al., 2011

Si la cuerda se somete a una carga vertical uniformemente distribuida adoptará la forma de una parábola, de modo que el cable estaría en tensión. Si de nuevo se invierte la forma del cable y se emplea un material rígido sometido a la misma carga uniformemente distribuida, el arco parabólico reaccionará a dicha carga trabajando a compresión pura. (Sandaker et al., 2011)

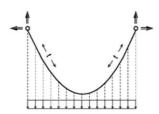


Figura 3.1-6. Hipótesis de cordón traccionado sometido a carga lineal uniformemente distribuida. Fuente: Sandaker et al., 2011

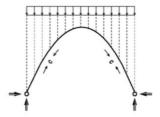


Figura 3.1-5 Hipótesis de geometría comprimida sometida a carga lineal uniformemente distribuida. Fuente: Sandaker et al., 2011

La forma funicular de la parábola se genera bajo una condición de carga concreta. Sin embargo, en la arquitectura una estructura de arcos está sometida a cargas variables, como pueden ser las cargas vivas, que implicaría una alteración en la forma funicular. La propia estructura necesitaría reajustarse para asegurar que el arco trabaja únicamente a compresión, situación que provocaría grandes esfuerzos en el edificio. (Sandaker et al., 2011).

El arco debe tener una dimensión de sección transversal importante debido a la tendencia que los elementos comprimidos tienen a pandear. Como consecuencia, la propia sección del arco es capaz de aportar cierta resistencia a cambios de forma de la estructura frente a variaciones de cargas. Como conclusión, "a medida que el perfil del arco se acerca más a la forma funicular para una condición de carga particular, mayores serán los esfuerzos de compresión generados al transmitir la carga, y menor será el comportamiento a flexión" (Sandaker et al., 2011).

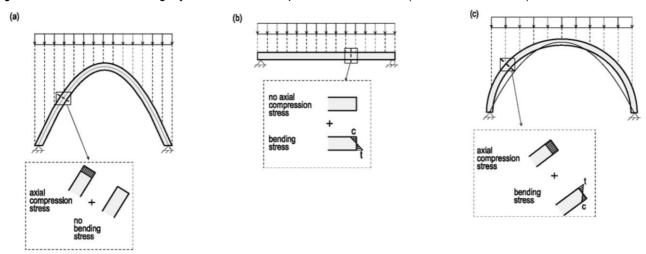


Figura 3.1-7. Variaciones de las condiciones de esfuerzos de acuerdo con la geometría de la estructura. Fuente: Sandaker et al., 2011

A pesar de que las cargas a las que está sometida la estructura del Exchange House son fundamentalmente uniformes (el edificio es casi simétrico), los arcos están diseñados tanto para patrones de cargas simétricas como asimétricas. Bajo un patrón de cargas simétrico, el arco tiende a chafarse cuando hay más carga sobre la parte central, y a estrechase cuando la carga más alta se encuentra cerca de los extremos. Los tirantes horizontales situados a la altura de los extremos de los arcos juegan un papel importante a la hora de que no se produzcan modificaciones en la forma del arco debidas a este tipo de cargas simétricas. (Iyengar et al., 1993)

Las acciones asimétricas provocan una oscilación en el plano del arco (Figura 3.1-10). Los tirantes diagonales aportan la rigidez suficiente para conservar la forma ideal del arco eliminando el movimiento oscilatorio (Figura 3.1-9). Además, mejoran el pandeo del arco en su conjunto, ya que se reduce longitud efectiva y se incrementa la carga crítica (Figura 3.1-8). (Iyengar et al., 1993)

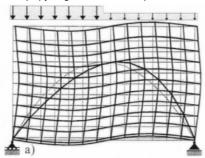


Figura 3.1-10. Deformación bajo carga asimétrica sin tirantes. Fuente: Iyengar et al., 1993

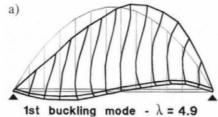


Figura 3.1-11. Pandeo sin tirantes. Fuente: Iyengar et al., 1993

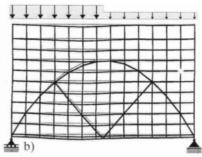


Figura 3.1-9. Deformación bajo carga asimétrica con tirantes. Fuente: Iyengar et al., 1993

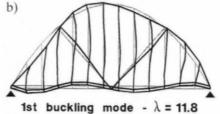
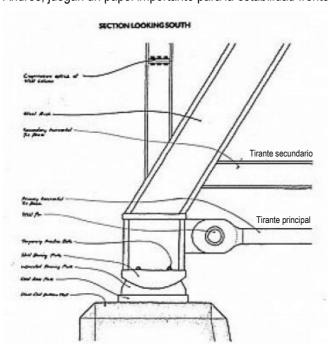



Figura 3.1-8. Pandeo con tirantes. Fuente: Iyengar et al., 1993

Como se aprecian en la Figura 3.1-5, en los apoyos de los arcos se produce una reacción vertical y otra horizontal. "Las magnitudes de las fuerzas de compresión y las reacciones horizontales de los apoyos, no solo depende de las cargas aplicadas, sino también de las proporciones ancho-alto del arco. Cuanto más chato sea el arco mayor será el axil y mayor será la reacción horizontal" (Sandaker et al., 2011). El punto de transferencia de las cargas al terreno debe ser lo suficientemente efectivo para que se produzca un estado de equilibrio y no se altere la geometría del arco. Esto puede llevar a necesitar soportes masivos cuando el suelo no es suficientemente resistente o en situaciones como la del edificio de estudio, ya que los apoyos de los arcos se encuentran muy por encima del nivel del terreno. (Sandaker et al., 2011)

El edificio descansa sobre 8 nudos, correspondientes con el inicio y el final de los arcos, que a su vez se apoyan sobre una cimentación de grandes muros recubiertos de piedra. Dichos apoyos permiten ciertas rotaciones y deslizamientos horizontales para adaptarse a las contracciones y dilataciones de la estructura. La manera en la que el edificio tiene contacto con el terreno clarifica el concepto de "edificio en el aire" mencionado por los diferentes autores consultados en este trabajo. De la huella del edificio únicamente el 5% corresponde a la cimentación (SOM | SOM's Exchange House at Broadgate in London Wins Prestigious AIA 25-Year Award, n.d.). La pequeña dimensión de los nudos en proporción al resto del edificio muestra la relevancia de los tirantes horizontales de los arcos. Estos tirantes atan los extremos del arco, de modo que la reacción horizontal no se da solo en los soportes, sino también en dichos tirantes. Cada arco está compuesto por dos tirantes, uno principal y articulado al apoyo, y otro secundario situado por encima del principal y soldado al arco.

Las celosías verticales situadas en los laterales del vano central aportan rigidez frente al viento en dirección a las fachadas laterales este y oeste, y dan estabilidad al plano perpendicular a los arcos (Figura 3.1-13). La restricción de desplazamiento¹ de los 4 apoyos intermedios (extremos final e inicial de los arcos interiores) junto con las cruces de San Andrés, juegan un papel importante para la estabilidad frente al viento. (Schittich, 2015)

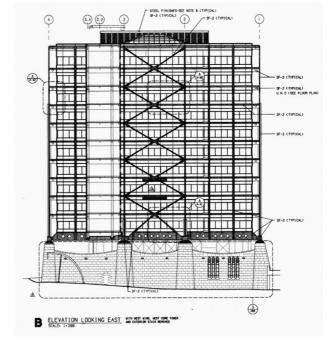


Figura 3.1-12. Alzado de los apoyos. Fuente: (SOM | Broadgate-Exchange House-Structural Engineering, n.d.)

Figura 3.1-13. Alzado lateral oeste del edificio. Fuente: (Exchange House En Broadgate, de SOM, Gana el premio 25 años AIA | Sobre arquitectura y más | desde 1998, n.d.)

Se emplea un forjado colaborante de chapa grecada que apoya sobre vigas en celosía de aproximadamente 1 metro de alto. Las celosías se encuentran en los vanos de 18,5 metros, es decir en los exteriores, mientras que en el vano central de 15 metros se utilizan perfiles en I. Ambos tipos de vigas están dispuestas cada 3 metros, sin embargo, la conexión de estas con los pilares se realiza cada 6 metros. La disposición de los elementos horizontales del forjado en la cubierta principal es la misma que en las plantas tipos, pero en lugar de vigas en celosía se emplean perfiles en I de gran canto. En el primer forjado se utiliza un entramado de vigas aligeradas tipo I que conectan con los pilares y con grandes vigas situadas en los laterales del edificio, también aligeradas, que se puede ver en el punto siguiente de este trabajo.

¹ El análisis detallado de los desplazamientos permitidos en los 8 apoyos del edificio aparece detallado en el apartado a del punto 4.3 de este trabajo.

La estructura se puede clasificar en dos tipos de sistemas: un sistema principal y otro secundario. Los elementos pertenecientes al sistema principal son los arcos de descarga, los tirantes en diagonal y el tirante principal de cada arco, las cruces de San Andrés, los 8 puntos de apoyo y los pilares (comprimidos y traccionados). El resto de los elementos se clasificarían dentro del sistema secundario, entre los que se encuentran los perfiles horizontales tipo I que atan los pilares comprimidos. Estos perfiles, situados a la altura de cada planta, reducen la longitud de pandeo de los pilares situados por encima del arco, ya que al estar comprimidos pueden pandear. Los elementos traccionados no requieren de atado por lo que dicha malla solo se dispone por encima del arco. (Schittich, 2015)

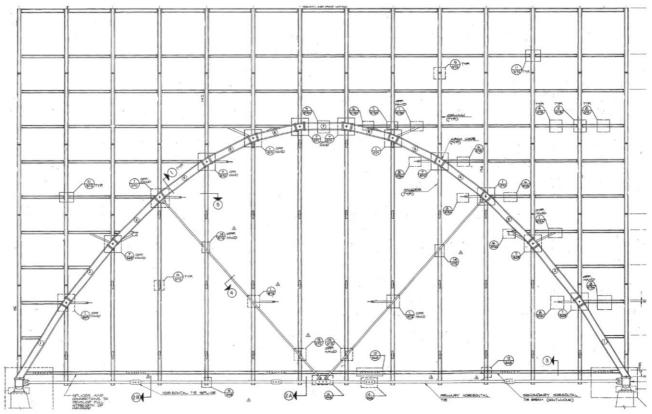
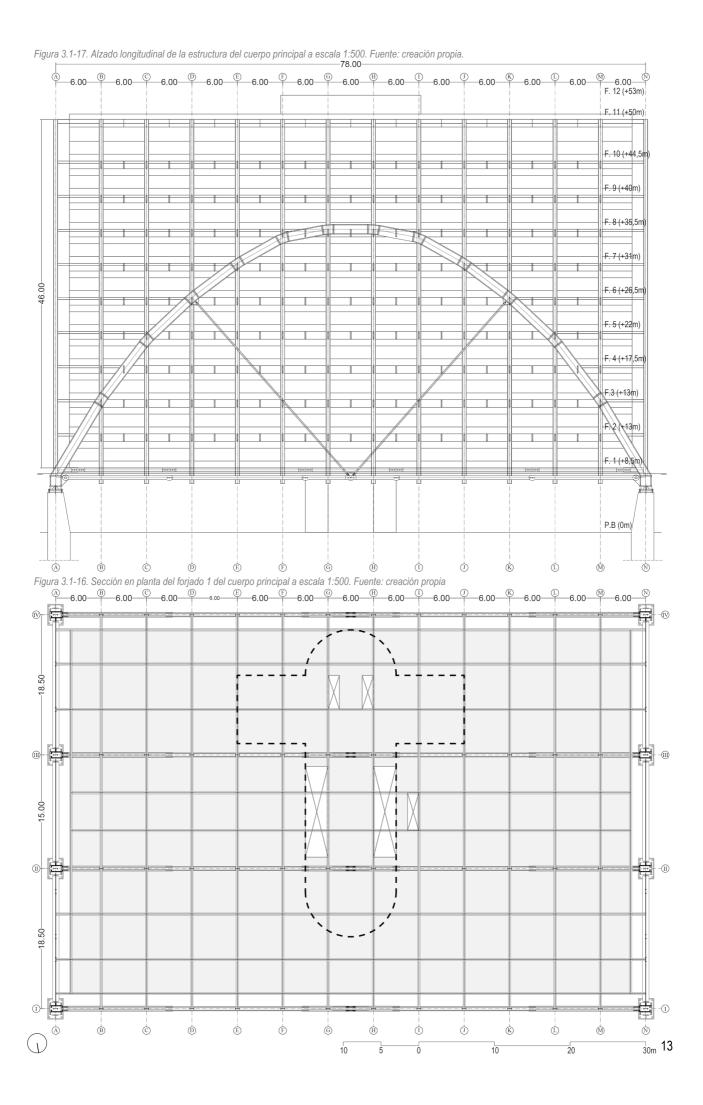


Figura 3.1-14. Elementos estructurales en el plano de los arcos exteriores. Fuente: Schittich, 2015.


Los elementos estructurales situados en la corteza del edificio quedan vistos, convirtiéndose la propia estructura en la imagen de la obra. Estos elementos están desfasados aproximadamente 2 metros de la fachada. Este hueco permite dejar expuestos los elementos metálicos sin necesidad de usar recubrimientos contra el fuego. La piel compuesta por los arcos, los soportes, y los perfiles de atado horizontal, se arriostra a los forjados interiores por medio de perfiles tubulares en diagonal. Estas diagonales situadas en los planos de los forjados enlazan los pilares con las vigas intermedias (aquellas que no atestan directamente con los pilares). Al igual que sucede con los perfiles horizontales de atado de pilares, las diagonales no son necesarias en los pilares traccionados de dentro del arco (Schittich, 2015).

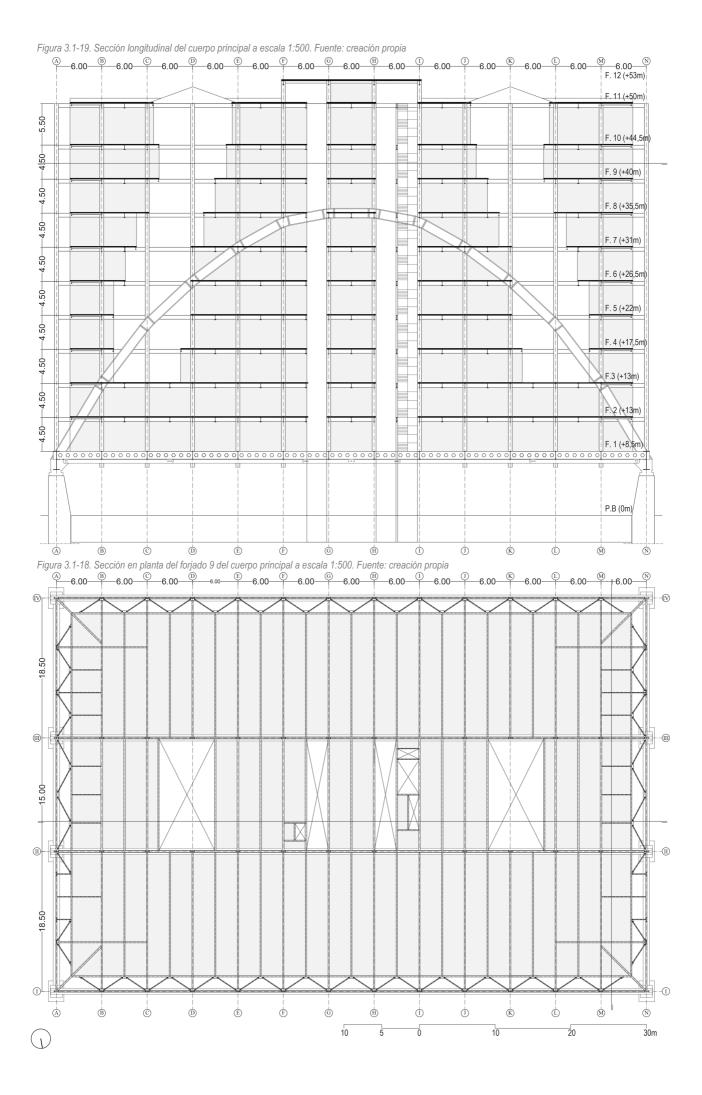


Figura 3.1-15. Encuentro arco con pilares y tirantes. Fuente: (NICK GUTTRIDGE-SOM-Broadgate, n.d)

3.1.2 Documentación gráfica del cuerpo principal

En este punto se muestran los planos del cuerpo principal que han sido redibujados a escala 1:500 a partir de ejes cuyas medidas se han obtenido de la documentación bibliográfica. Se realiza un predimensionamiento con perfiles británicos de dimensiones estimadas a partir de proporciones en imágenes y detalles constructivos de revistas. Los datos aportados por la bibliografía únicamente hacen alusión al perfil utilizado para los pilares, siendo éstos UB 533. Los ejes de los diferentes elementos estructurales se convierten en la base para el posterior modelo de cálculo simplificado que se introducirá en el programa SAP2000.

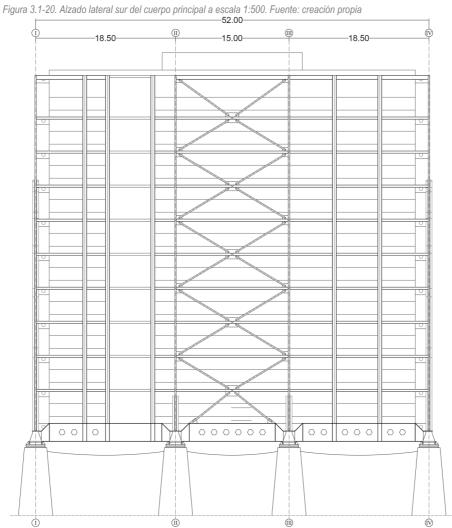
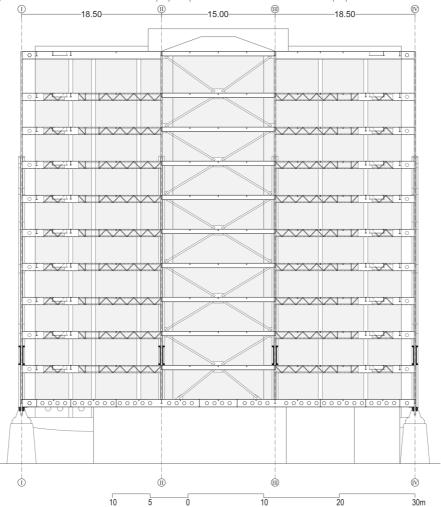



Figura 3.1-21. Sección transversal del cuerpo principal a escala 1:500. Fuente: creación propia

3.1.3 **Detailes**

Los apoyos del edificio y los tirantes horizontales que enlazan los extremos de los arcos se encuentran a la altura del primer forjado. En este nivel los elementos estructurales son diferentes al resto de forjados del edificio. Para comprender cómo funciona el último paso de la transmisión de las cargas hacia el terreno (forjados colaborantes>vigas en celosía/vigas UB>pilares>arcos>apoyos en extremos de arcos) se realiza una axonimetría detallada del encuentro de los arcos con el primer forjado. Los tirantes horizontales (principal y secundario), las diagonales, y los arcos están compuesto por perfiles dobles de modo que los pilares pasan por medio de ellos.

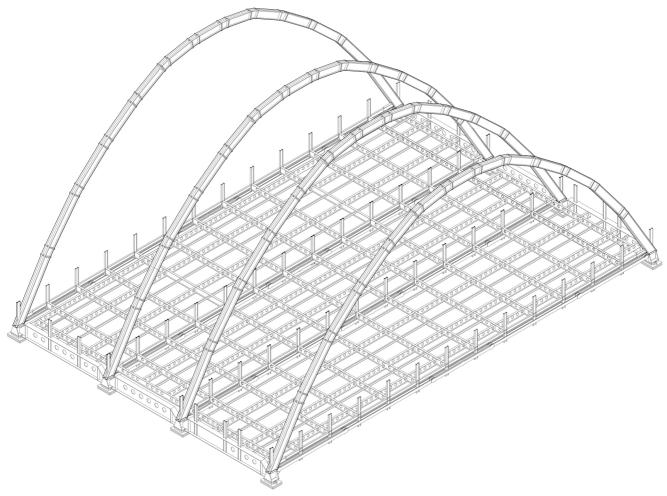


Figura 3.1-23. Axonometría del encuentro de los arcos con el forjado primero. Fuente: creación propia

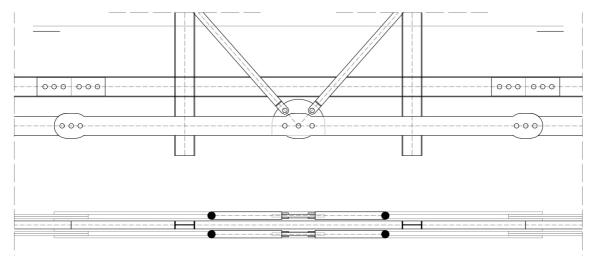
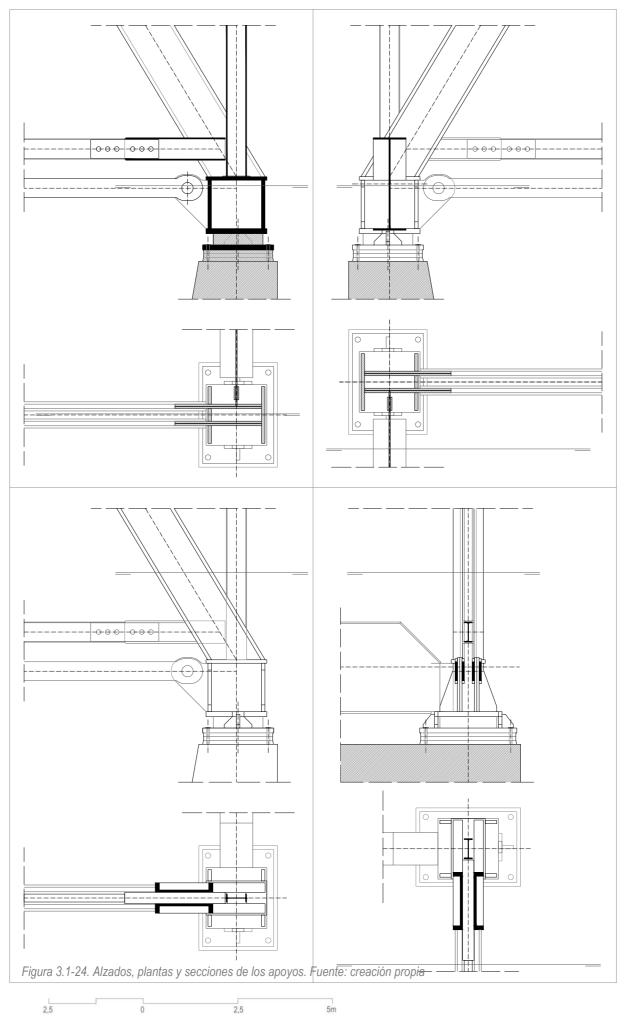



Figura 3.1-22. Sección y alzado del encuentro entre los tirantes y los pilares traccionados a escala 1:100. Fuente: creación propia

2.5 0 2.5 5m

3.2 Construcción

Debido a la necesidad de mantener en funcionamiento las vías de tren de la estación de Liverpool Street, la cimentación del edificio se realizó con grupos de 2 y 3 pilotes de hormigón armado realizados *in situ*.

Los arcos se construyeron empleando puntales temporales colocados en la futura posición de los pilares del interior del arco, actuando como soportes comprimidos (Figura 3.2-1). Estos puntales se apoyaban en la gran celosía (de aproximadamente 4 metros de altura) que soporta la planta baja, capaz de resistir el peso de la estructura metálica hasta la octava planta, sin contar el peso del forjado colaborante. Una vez se finalizaron los arcos y sus tirantes, se elevó la estructura 50 mm desde los 8 apoyos de acero inoxidable, de modo que los puntales pudieron retirarse simultáneamente para que el arco fuese cargado de manera uniforme. (Schittich, 2015)

Figura 3.2-1. Proceso de ejecución del arco de descarga soportado por puntales. Fuente: John Davies (AIA Honors SOM's Broadgate Exchange House with 25-Year Award | ArchDaily, n.d.)

Los enlaces *in situ* entre los diferentes elementos estructurales metálicos se realizan con uniones atornilladas. Estas uniones son claramente visibles en los enlaces de los perfiles de los pilares, en los tirantes horizontales, en la unión de los diferentes segmentos que conforman los arcos, y en las placas de los apoyos. (Schittich, 2015)

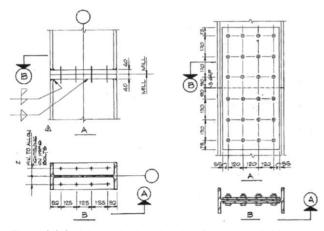


Figura 3.2-2. A la izquierda unión de pilares comprimidos y a la derecha unión de pilares traccionados. Fuente: Schittich, 2015

Figura 3.2-3. Uniones atornilladas de los elementos estructurales metálicos. Fuente: (London-Exchange House-EmbArch, n.d.)

Que los arcos de descarga estén compuestos por segmentos, no sólo facilita su puesta en obra, sino que también responde a un apropiado comportamiento estructural. Cada segmento va de pilar a pilar en línea recta debido a que las cargas que son transmitidas al arco a través de los soportes son puntuales. La pendiente de cada segmento es proporcional a la carga vertical recibida. (Schittich, 2015)

El estudio del efecto del fuego en este edificio se dividió en cuatro fases. En la primera fase, se determinó la naturaleza del fuego teniendo en cuenta las dimensiones en planta, la cantidad de material combustible y el aporte de aire al fuego. La segunda fase consistió en relacionar dichos parámetros con un prototipo de temperatura y llama. En la tercera fase se calculó la transferencia de calor a los perfiles metálicos para determinar la máxima temperatura soportada por el acero. Para este cálculo se tuvieron en cuenta factores como la proximidad de los perfiles al fuego y su forma. Además, se consideró que durante la transferencia de calor se produce: una ganancia radial de calor debido al propio fuego, una ganancia de calor por convección debido a los gases calientes que rodean el acero; y una pérdida de calor debida a la atmósfera. El resultado de este análisis concluyó en que la temperatura del edificio estaba por debajo de la temperatura crítica. En la última y cuarta fase, se analizó el edificio bajo la temperatura obtenida, lo que supondría una reducción de la resistencia de los materiales y la capacidad que tendría el edificio de soportar sus cargas estimadas en una situación de incendio y después de él. (Iyengar et al., 1993)

Como se ha comentado anteriormente, la estructura que queda expuesta al exterior no tiene ningún tipo de protección frente al fuego. Los perfiles metálicos y sus uniones están protegidos frente a la corrosión, primero se eliminó el óxido y la cascarilla de laminación, y después se cubrieron con pintura aluminizada, tanto en los perfiles expuestos de la piel, como en los que quedarán cubiertos y protegidos en el interior del edificio. (Iyengar et al., 1993)

Figura 3.2-4. Vista general del proceso constructivo del edificio. Fuente: Schittich, 2015

Figura 3.2-6. Colocación de las vigas en celosías de los vanos exteriores. Fuente: John Davies. (A closer look at SOM's AIA Twenty-Five Year Award-Winning Broadgate Exchange House, n.d.)

Figura 3.2-5. Vistas hacia la estación de Liverpool Street antes de la construcción de la plaza Exchange. Fuente: John Davies. (A closer look at SOM's AIA Twenty-Five Year Award-Winning Broadgate Exchange House, n.d.)

4 MODELO DE ANÁLISIS

Tras un análisis previo y riguroso de la estructura, se crea un modelo de cálculo simplificado del que se extraerán conclusiones. Para dibujar la geometría se utiliza el programa AutoCad y posteriormente se recurre al programa SAP2000 para asignar secciones y cargas y para establecer condiciones de enlace en los diferentes elementos. El programa SAP2000 es el encargado de calcular la estructura del modelo realizado, una vez definidas las hipótesis de carga.

El edificio de oficinas *Exchange House* en Londres está compuesto por un cuerpo principal, un bloque anexo en cada lateral de dicho cuerpo, dos escaleras de evacuación exteriores y una planta de sótano. Para el modelo simplificado únicamente se tendrá en cuenta el cuerpo principal debido al gran interés de los arcos de descarga, de los grandes tirantes, de los apoyos y de la geometría en general.

4.1 Simplificación geométrica en AutoCad

Los diferentes elementos estructurales se representan por medio de dos entidades de dibujo: **barras** (comando LINEA o *LINE*) y **elementos finitos planos** (comando 3DCARA o *3DFACE*). Los nudos en los extremos de barra y en los vértices de elementos finitos se generarán automáticamente en el programa SAP2000.

La disposición y dimensiones de las entidades corresponden con los ejes de la estructura real dibujados a partir de datos encontrados en referencias bibliográficas.

- Distancia entre pórticos: 6 metros
- Distancia entre arcos: 18,5 metros, 15 metros y 18,5 metros
- Distancia entre forjados: 4,5 metros en todas las plantas menos en la última (5,5 metros)
- Longitud total de las fachadas principales: 78 metros
- Longitud total de las fachadas laterales: 52 metros
- Altura total de la estructura: 46 metros más el casetón

Entre el inicio y el final del arco de descarga aparecen dos tirantes horizontales, uno principal articulado en el apoyo y otro secundario soldado al arco por encima del principal. Para el modelo de cálculo simplificado se dibuja un único tirante horizontal que incluirá ambas secciones.

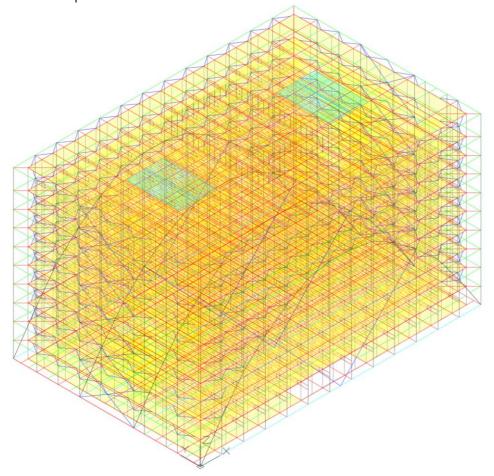


Figura 4.1-1. Geometría del modelo de cálculo simplificado. Fuente: creación propia

Figura 4.1-2. Capas AutoCad. Fuente: creación propia

Tabla 4.1-1. Elementos estructurales y constructivos asignados a barras y a elementos finitos modelados.

ENTIDAD	CAPA AUTOCAD	TIPO	DESCRIPCIÓN	SECCIÓN	MATERIAL	
	3d Arco	1_Arco segmentado	Trabaja a compresión	Perfiles en C		
	3d Tirante horizontal	2_Tirante horizontal	Trabaja a tracción	Placas biarticuladas + UB 533		
	2d Disconder	3_Tirantes en diagonal	Estabiliza frente a acciones asimétricas y mejora la resistencia frente al pandeo del arco	Tubular circular biarticulado		
	3d Diagonales	4_Tirantes de enlace	Conecta las cerchas intermedias con los soportes	Tubular circular biarticulado		
		5 _Cruz de San Andrés	Estabiliza frente a la acción del viento	UB 203		
		6 _Soportes principales comprimidos	Transmite a compresión las cargas al arco	IID 533		
	3d Soportes	7_Soportes principales traccionados	Transmite a tracción las cargas al arco	UB 533		
		8_Soportes casetón	Transmite a compresión las cargas de la cubierta	UB 203		
BARRAS		9 _Viga lateral de gran canto (forjado 1)		Chapas soldadas	Metal	
BARRAS		10_ Viga principal (forjado 1 y cubierta)		UB 1016		
	3d Vigas	11_Viga interior	Transmisión de las cargas	UB 533		
		12_Viga perimetral de mayor canto		UB 610		
		13_Viga perimetral de menor canto		UB 533		
	3d Celosías	14_Viga en celosía	Transmisión de las cargas UKT152 + 2L 75.8			
	3d Brochales	15_Brochales	Transmisión de las cargas	UB 305		
	3d Zunchos	16_Zunchos	Delimitación de los huecos	UB 203		
	3d Correas lucernario	17_Correas lucernario	Transmisión de las cargas	UB 305		
		18 _Atado horizontal de soportes (forjados 1-10)		UB 305		
	3d Perfiles de atado	19 _Atado horizontal de soportes (forjado 11)	Estabilidad frente al pandeo	UB 533		
		20 _Atado longitudinal en el plano del forjado		UB 203		
	3d Chapa	21_Chapa grecada (cubierta)	Forindo do chana calabaranta	Losa 19 cm	Metal y	
	grecada	22_Chapa grecada (forjado tipo)	Forjado de chapa colaborante	Losa 13 cm	hormigón	
ELEMENTOS FINITOS	3d Chapas celosía	23_Chapa metálicas	Alma de celosías en encuentro con pilares exteriores	Chapa 16 mm	Metal	
LIMI109	3d Fachadas	24_Fachada	Cerramiento ligero	None (elemento no estructural)	Panel sándwich y vidrio	
	3d Lucernario	25_Lucernario	Cubierta ligera	None (elemento no estructural)	Vidrio	



Figura 4.1-3. Geometría del modelo de cálculo de los elementos exteriores de la estructura.fuente: creación propia

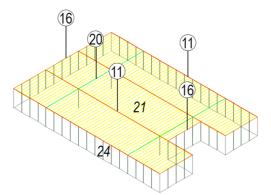


Figura 4.1-4. Geometría del modelo de cálculo de los elementos del casetón. Fuente: creación propia

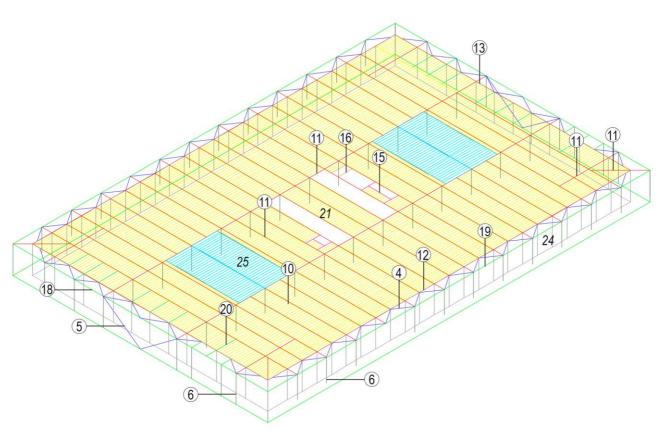


Figura 4.1-7. Geometría del modelo de cálculo de los elementos de la cubierta principal. Fuente: creación propia

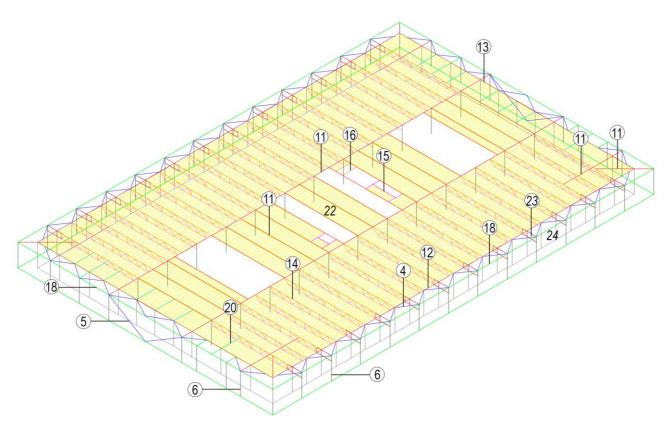


Figura 4.1-6. Geometría del modelo de cálculo de los elementos del forjado tipo con atrios (forjado del 3 al 10). Fuente: creación propia

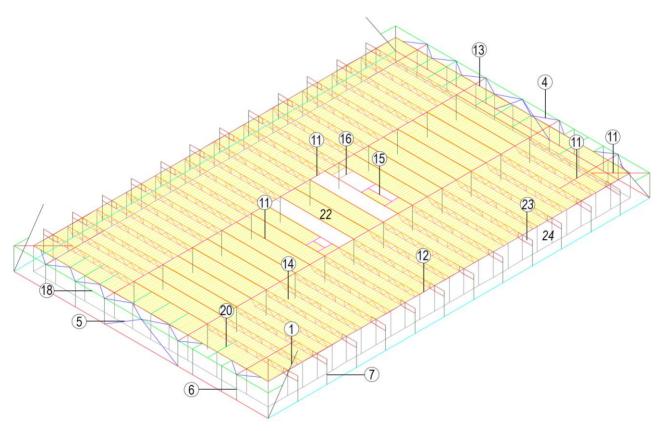


Figura 4.1-8. Geometría del modelo de cálculo de los elementos del forjado sin atrios (forjado 2). Fuente: creación propia

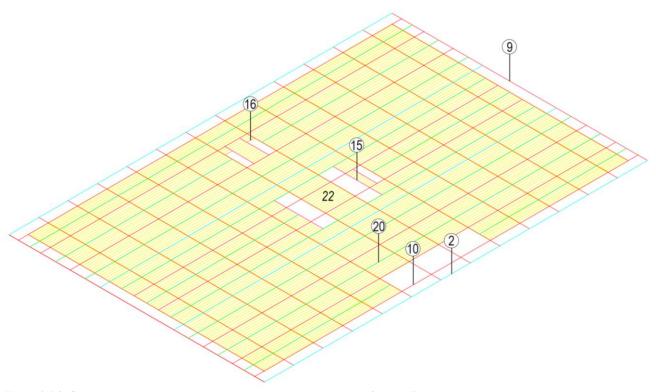


Figura 4.1-9. Geometría del modelo de cálculo de los elementos del primer forjado. Fuente: creación propia

4.2 Inserción de materiales y secciones en SAP2000

Las diferentes capas de AutoCad se importan al programa SAP2000 a partir del cual se asignan secciones a las barras (*frames*) y a los elementos finitos (*shells*). Previo a la asignación de materiales y secciones se debe definir el tipo de sección para cada geometría.

<u>BARRAS/FRAMES.</u> A la geometría tipo barra se le puede asignar directamente un perfil de catálogo o bien, dibujar perfiles compuestos en el caso de secciones más complejas y fuera de catálogo. En el modelo de cálculo del trabajo se recurre a ambos tipos de secciones.

Definición por catálogo [Define → Section Properties → Frame sections → Import New Property... → Steel → Base de datos]:

- UB 203x102x23 S275. Perfil británico

Elementos con la sección: cruz de san Andrés (5), soportes casetón (8), zunchos (16), perfiles de atado longitudinal en el plano del forjado (20)

- UB 305x102x25 S275. Perfil británico

Elementos con la sección: perfiles de atado horizontal de soportes (18), brochales (15)

- UB 533x210x82 S275. Perfil británico

Elementos con la sección: soportes principales comprimidos (6), soportes principales traccionados (7), vigas interiores (11), viga perimetral de menor canto (13), atado horizontal de soportes del forjado 11 (19)

- **UB 610x229x101 S275.** Perfil británico

Elementos con la sección: viga perimetral de mayor canto (12)

- **UB 1016x305x249 S275.** Perfil británico

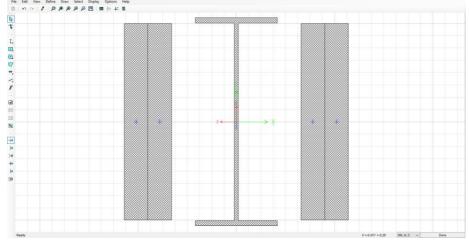
Elementos con la sección: viga principal entramado del primer forjado y del forjado de cubierta (10)

2L 75x5/0 \$275. Perfil europeo

Elementos con la sección: diagonales y montantes de la viga en celosía (14)

- **UKT152x76x12 S275** (sección en T). Perfil británico

Elementos con la sección: cordón superior e inferior de la viga en celosía (14)

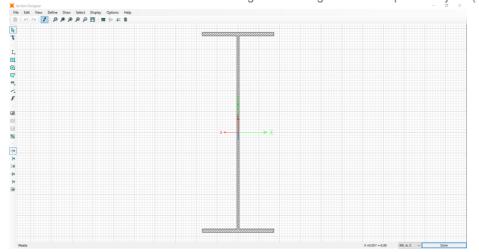

- **Tubo redondo D101.6x3.6 S275.** Perfil europeo

Elementos con la sección: tirantes de enlace (4)

Diseño de la sección [Define → Section Properties → Frame sections → Add New Property... → Other → Section designer]:

Doble placa 50cm (6 cm espesor) + UB 533x210x82 S275². Diseño particular

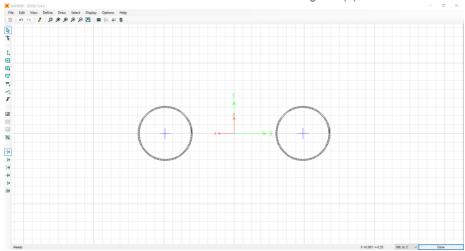
Elementos con la sección: tirante horizontal (2)


Name	Plate1		
Material	S275		
Color			
X Center	0,195		
Y Center	0		
Thick	0,06		
Width	0,5		
Rotation	90		
Notation	90		
Shape Properties	- I/Wide Flange		
Shape Properties	- I/Wide Flange UB533X210X82		
Shape Properties	- I/Wide Flange		
Shape Properties	- I/Wide Flange UB533X210X82		

Material	S275
Color	
X Center	0
Y Center	0
Height	0,5283
Top Width	0,2088
Top Thick	0,0132
Web Thick	9,600E-03
Bot Width	0,2088
Bot Thick	0,0132
Rotation	0

Figura 4.2-1. Sección y propiedades de los tirantes horizontales de los arcos. Fuente: creación propia mediante SAP2000

² Como se puede apreciar en el punto 3 de este trabajo, el inicio y el final del arco está unido por dos tirantes uno principal y otro secundario. Como se realiza una simplificación de la geometría, se insertan ambas secciones en un misma barra para que el alargamiento del tirante del modelo sea equivalente al de la realidad.


- Perfil de chapas soldadas 2410x86cm (4 y 3 cm espesor). Diseño particular Elementos con la sección: viga lateral de gran canto en primer forjado (9)

Name	ISection1				
Material	\$275				
	3273				
Color					
X Center	0				
Y Center	0				
Height	2,41				
Top Width	0,86				
Top Thick	0,04				
Web Thick	0,03				
Bot Width	0,86				
Bot Thick	0,04				
Rotation	0				
C Model	S Model				
211					

Figura 4.2-2. Sección y propiedades de las vigas laterales de gran canto en primer forjado. Fuente: creación propia mediante SAP2000


Doble tubo redondo D193.7x4.5. A partir de perfiles europeos Elementos con la sección: tirantes en diagonal (3)

Name	TUBO-D193.7X4.5-1		
Material	S275		
Color			
X Center	0,245		
Y Center	0		
Outer Diameter	0,1937		
Wall	4,500E-03		
C Model	S Model		
OK	Cancel		

Figura 4.2-3. Sección y propiedades de las diagonales de los arcos. Fuente: creación propia mediante SAP2000

- Perfiles en C 1300x25cm (9 y 6 cm espesor). Diseño particular Elementos con la sección: arco segmentado (1)

Name	Channel2		
Material	S275		
Color			
X Center	0,275		
Y Center	0		
Height	1,3		
Width	0,25		
Flange Thick	0,09		
Web Thick	0,06		
Rotation	0		
Flipped	No		
C Model	S Model		
ОК	Cancel		

Figura 4.2-4. Sección y propiedades de los segmentos de los arcos. Fuente: creación propia mediante SAP2000

<u>ELEMENTOS FINITOS/SHELLS.</u> Para definir la geometría de los elementos finitos, además del material, se introduce el espesor, ya que la forma (ancho y alto) viene definida por la geometría importada desde AutoCad.

El forjado colaborante está compuesto por una chapa metálica y por hormigón, pero en este caso, para definir dichos forjados se realizará una simplificación considerando este tipo de forjado como una losa maciza. Los datos que se deben introducir en el programa SAP2000 son los espesores de losa equivalentes al peso (membrane) y a la inercia (bending) del forjado de chapa colaborante. De manera que, para obtener la dimensión membrane se transforma la sección de un forjado colaborante a sección rectangular con igual área, y para obtener la dimensión bending se transforma dicha sección aligerada a sección rectangular con igual inercia. Además, se debe indicar al programa que dichos elementos finitos trabajan fundamentalmente en una única dirección (forjado unidireccional); en la dirección secundaria a las grecas la flexión, cortante y axil secundarios serán menores que en la dirección principal (que tendrán factor 1). Los datos de espesor se indican en [Define >Section Properties >Area Sections...] y los datos de trabajo en la pestaña [Set Modifiers...].

Sabiendo los espesores de losa del proyecto a partir de información bibliográfica, se recurre a un catálogo comercial (Arval, ArcelorMittal forjados, modelo cofraplus 60) para conocer más datos sobre las propiedades del forjado colaborante seleccionado para el modelo de cálculo.

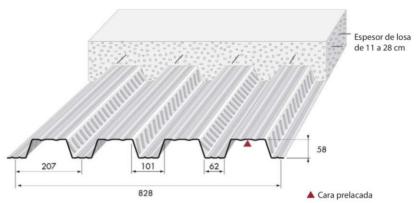


Figura 4.2-5. Forjado colaborante cofraplus 60. Fuente: Catálogo comercial de Arval, ArcelorMittal forjados

Forjado colaborante Cofraplus 60 0,75mm (LOSA 19 cm) HA-25

Elementos con la sección: chapa grecada cubierta (21)

Alto de la greca: 5,8 cm | Intereje de la greca: 20,7 cm

Alto de la capa de compresión: 19-6=13 cm

Ancho medio de la greca: 8,55 cm (para el cálculo se supone que el ancho de las grecas es de 90, no inclinado) 🖳

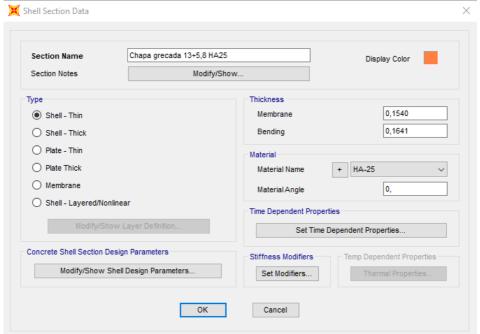


Figura 4.2-6. Propiedades del forjado colaborante de 19 mm. Fuente: creación propia mediante SAP2000

Obtención del espesor membrane y bending

Área (cm²) = alto greca x ancho medio greca + alto capa de compresión x intereje greca = 318,69 cm² Área por metro (cm²) = área / intereje greca x 100 = 1539,57 cm²= 0,153957 m²

Membrane (por 1 metro de longitud) = 0,1540 m

Centro de gravedad = [(alto greca x ancho medio greca x alto greca)/2 + alto capa compresión x intereje greca x (alto greca + alto capa compresión)/2] / [alto greca x ancho medio greca + alto capa compresión x intereje greca] = 10,84 cm Inercia (cm⁴) = (ancho medio greca x alto greca³)/12 + alto greca x ancho medio greca x (centro gravedad – alto greca)² + (intereje greca x alto capa de compresión³)/12 + intereje greca x alto capa de compresión x (alto greca + alto capa compresión – centro gravedad – alto capa compresión/2)² = 7628,79 cm⁴

Inercia por metro (cm⁴) = inercia / intereje greca x 100 = 36854,04 cm⁴

Bending = $[(inercia \times 12/100)^{1/3}] / 100 = 0,1641 \text{ m}^4$

Obtención factores modificadores

 $m22 y v23 = [(inercia \times 12/100)^{1/3}] / 100 = 0,4968 m^4$

f22 = alto capa compresión / (alto greca + alto capa compresión) = 0,6915

- Forjado colaborante Cofraplus 60 0,75mm (LOSA 13 cm)

Elementos con la sección: chapa grecada forjado tipo (22)

Alto de la greca: 5,8 cm | Intereje de la greca: 20,7 cm

Alto de la capa de compresión: 13-6=7 cm

Ancho medio de la greca: 8,55 cm (para el cálculo se supone que el ancho de las grecas es de 90, no inclinado) \Box

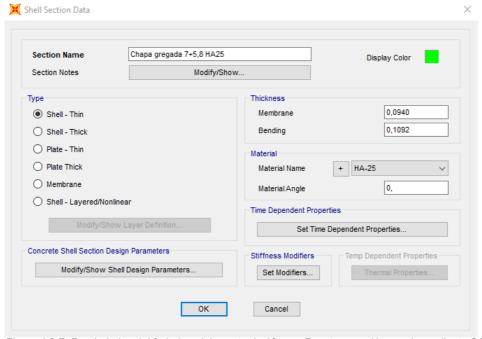


Figura 4.2-7. Propiedades del forjado colaborante de 13 mm. Fuente: creación propia mediante SAP2000

Obtención del espesor membrane y bending

Área (cm²) = alto greca x ancho medio greca + alto capa de compresión x intereje greca = 194,49 cm² Área por metro (cm²) = área / intereje greca x 100 = 939,57 cm² = 0,093957 m²

Membrane (por 1 metro de longitud) = 0,0940 m

Centro de gravedad = [(alto greca x ancho medio greca x alto greca)/2 + alto capa compresión x intereje greca x (alto greca + alto capa compresión)/2] / [alto greca x ancho medio greca + alto capa compresión x intereje greca] = 7,67 cm lnercia (cm⁴) = (ancho medio greca x alto greca³)/12 + alto greca x ancho medio greca x (centro gravedad – alto greca)² + (intereje greca x alto capa de compresión³)/12 + intereje greca x alto capa de compresión x (alto greca + alto capa compresión – centro gravedad – alto capa compresión/2)² = 2243,99 cm⁴

Inercia por metro (cm4) = inercia / intereje greca x 100 = 10840,54 cm4

Bending = [(inercia x $12/100)^{1/3}$] / $100 = 0,1092 \text{ m}^4$

Factores modificadores

 $m22 \text{ y } v23 = \text{alto capa compresión}^3 / (bending x 100)^3 = 0,2637$

f22 = alto capa compresión / (alto greca + alto capa compresión) = **0,5469**

Sección None. Elementos sin función estructural, transmiten las cargas a la estructura.

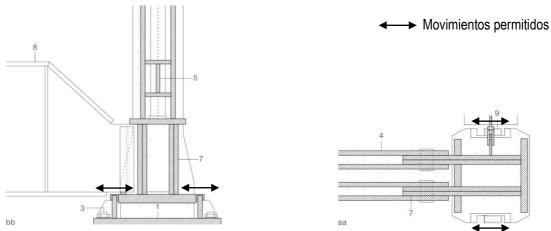
Elementos con la sección: fachada (24), lucernario (25)

4.3 Condiciones de enlace en SAP2000

Previo al cálculo del modelo, se establece una serie condiciones a determinados nudos de la estructura.

a) APOYOS

El edificio descansa sobre cuatro pares de nudos situados en los laterales del edificio. Cada apoyo es el lugar de enlace entre el arco de descarga y los tirantes horizontales. El diseño de los nudos permite desplazamientos horizontales de la estructura (en dos direcciones ortogonales) en caso de contracciones y/o dilataciones debidas a variaciones térmicas. Estos movimientos se regulan gracias a la ranura en forma de U de la placa de apoyo superior de la unión. Además, los soportes permiten la rotación alrededor del eje y.



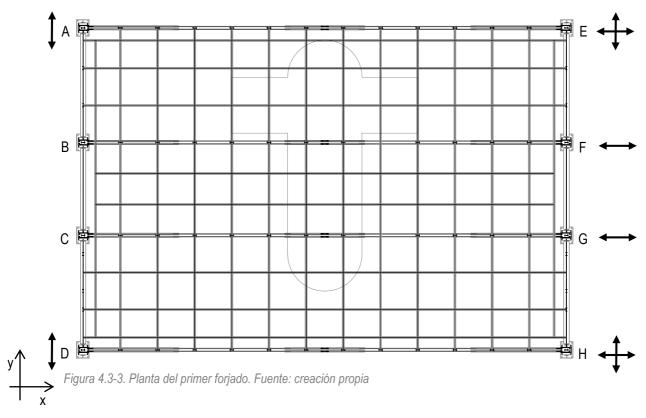

Figura 4.3-2. Sección. Desplazamiento en y. Fuente: Schittich, 2015

Figura 4.3-1. Planta. Desplazamiento en x. Fuente: Schittich, 2015

Según el funcionamiento real de la estructura:

<u>Desplazamiento en x (dirección de los arcos)</u>: los nudos iniciales de los arcos tienen los desplazamientos restringidos (nudos A, B, C, D), mientras que en los nudos finales el movimiento está permitido (nudos E, F, G, H).

<u>Desplazamiento en y (dirección principal acción del viento)</u>: solo se permite el desplazamiento en los nudos de los arcos exteriores (A, E, D, H). El vano central es el que aporta estabilidad frente al viento, por ello aparecen cruces de San Andrés y el movimiento en y de los dos pares de nudos está restringido (B, C, F, G).

Asignación de las condiciones de los nudos previamente definidas en SAP2000 [Assign → Joint → Restraints...]. El eje 1 corresponde con el eje x, el eje 2 con el y, y el eje 3 con el z.

Nudos A, D Nudos B, C X Assign Joint Restraints X Assign Joint Restraints Restraints in Joint Local Directions Restraints in Joint Local Directions ✓ Translation 1 ✓ Rotation about 1 ✓ Translation 1 ✓ Rotation about 1 ✓ Translation 2 Rotation about 2 Translation 2 Rotation about 2 ✓ Translation 3 ✓ Rotation about 3 ✓ Translation 3 ✓ Rotation about 3 Fast Restraints Fast Restraints OK Close Apply Close

Figura 4.3-5. Restricciones de movimiento en nudos A y D. Fuente: creación propia mediante SAP2000

Figura 4.3-4. Restricciones de movimiento en nudos B y C. Fuente: creación propia mediante SAP2000

Figura 4.3-7. Restricciones de movimiento en nudos E y H. Fuente: creación propia mediante SAP2000

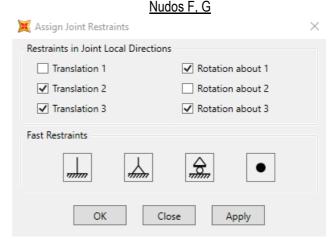


Figura 4.3-6. Restricciones de movimiento en nudos F y G. Fuente: creación propia mediante SAP2000

b) TIRANTES

En la estructura encontramos diferentes tipos de tirantes articulados en sus dos extremos:

- <u>TIPO A: tirantes horizontal principales</u> situados en el plano de lo arco y que se une a los apoyos. Giran en torno al eje local 3.
- <u>TIPO B: tirantes en diagonal</u> situados en el plano del arco y que se une al tirante horizontal y al arco. Giran en torno al eje local 3.
- <u>TIPO C: tirantes de enlace</u> situados en el plano del forjado y que se unen los elementos verticales y a los forjados. Giran en torno al eje local 2.

Figura 4.3-9. Tirante tipo A. Fuente: (SOM | Broadgate-Exchange House, n.d.)

Figura 4.3-8. Tirantes tipo B y C. Fuente: (SOM | Broadgate-Exchange House, n.d.)

Asignación de la condición de biarticulación en SAP2000 [Assign → Frame → Releases/Partial Fixity...].

	Rele	ase		Frame Partial Fixity Springs				
	Start	End	Start		End			
xial Load								
hear Force 2 (Major)								
hear Force 3 (Minor)								
orsion								
Moment 22 (Minor)	✓	✓	0	kN-m/rad	0	kN-m/rad		
Moment 33 (Major)								
			Class All Pales	in Fame				
			Clear All Relea	ises in Form				

Figura 4.3-11. Condición de biarticulación en los tirantes tipo C. Fuente: creación propia mediante SAP2000

me Releases	Rele	ase		Frame Part	ial Fixity Springs	
	Start	End	Start		End	
Axial Load						
Shear Force 2 (Major)						
Shear Force 3 (Minor)						
Torsion						
Moment 22 (Minor)						
Moment 33 (Major)	✓	✓	0	kN-m/rad	0	kN-m/rad
			Clear All Releases	s in Form		

Figura 4.3-10. Condición de biarticulación en los tirantes tipo A y B. Fuente: creación propia mediante SAP2000

Además, a los tres tipos de tirantes se les quitará el peso propio [Assign → Frame → Property Modifiers ... → Mass=0, Weight=0]. Tanto a las barras, como a las propiedades de las secciones.

4.4 Inserción de acciones en SAP2000

En esta fase de introducción de datos en el programa, se realiza una estimación de las cargas a las que estaría sometida la estructura del edificio. Para la aproximación de las acciones se sigue lo establecido en el apartado *Documento Básico - Seguridad Estructural - Acciones en la edificación (DB-SE-AE)* del *Código Técnico de la Edificación (CTE)*.

4.4.1 Cargas permanentes

Las cargas permanentes que se tienen en cuenta en este modelo son aquellas que hacen referencia al <u>peso propio</u> de la estructura, revestimientos, tabiquería, cerramientos, falsos techos, instalaciones y equipos fijos.

En el caso del peso propio de la estructura, el programa asigna automáticamente el peso de cada elemento estructural en función de las secciones (área y densidad del material) previamente definidas. Se debe tener en cuenta que la estructura que queda en el interior de la fachada se encuentra convencionalmente revestida de acuerdo con las normas británicas *British Standards (BS)* para la protección contra el fuego (lyengar et al., 1993). Sin embargo, el peso de dichos revestimientos se considera despreciable para el análisis de este modelo simplificado. Para aludir a la hipótesis de este tipo de cargas se utiliza la abreviatura **DEAD**.

A pesar de no disponer de la información específica sobre los tipos de revestimientos (pavimentos y falsos techos), fachadas, instalaciones y equipos fijos, las estimaciones siguientes servirán para conocer el funcionamiento de la estructura. Para el peso propio de solados se recurre a las tablas de pesos del *Anejo C* del *DB-SE-AE*.

Como se trata de plantas diáfanas, no se tendrá en cuenta la carga permanente de peso propio de la tabiquería. Sí se tendrá en cuenta el peso propio de los vidrios situados alrededor de los huecos de los atrios. Dicha carga se introduce como carga lineal y toma un valor de **0,35 kN/m²**, obtenido del *Anejo C* del *DB-SE-AE*.

Se supone que la solución constructiva de la fachada principal es de muro cortina que cuelga del forjado superior. Por ello, se aplica una carga lineal uniformemente distribuida. Para la fachada del casetón se aplica la carga de manera superficial a los elementos finitos. Se estima una carga de las fachadas de **1,5 kN/m²**, incluyendo la carpintería en el caso del muro cortina.

Para aludir a la hipótesis de las cargas muertas permanentes se emplea la abreviatura CMP.

T. I.I. A A A M. I I.	1		
Tabla 4.4-1. Valor de	ias cardas muertas	permanentes por metro	cuadrado de superficie.

Localización	Forjado	Solado (kN/m²)	Tabiquería (kN/m²)	F.techo+inst (kN/m²)	Equipo fijo (kN/m²)	Total CMP (kN/m²)
Planta tipo (interior edificio)	1-10	1	-	0,5	-	1,5
Planta cubierta (núcleo com.)	11	1	-	0,5	2,5	4,5
Planta cubierta (lucernario)	11	0,35	-	-	-	0,35
Planta cubierta (gravas)	11	2,5	-	0,5	-	3 3
Cubierta casetón (gravas)	12	2,5	-	0,5	-	2,5

Tabla 4.4-2. Valor de la carga muerta permanente de la fachada principal por metro lineal.

Localización de la fachada principal	Forjado del que cuelga la fachada	Altura de la fachada (m)	CMP (kN/m²)	CMP (kN/m)
Plantas inferiores	2-10	4,5	1,5	6,75
Última planta	11	5,5	1,5	8,25

³ En dos zonas de la cubierta principal de grava, junto al casetón, se considera una carga adicional de 2,5 kN/m² debida a equipos fijos.

Tabla 4.4-3. Valor de la carga muerta permanente de los cerramientos de los atrios por metro lineal.

Localización de los cerramientos del atrio	Forjado del que cuelga el cerramiento	Altura de la fachada (m)	CMP (kN/m²)	CMP (kN/m)
Plantas inferiores	4-10	4,5	0,35	1,6
Última planta	11	5,5	0,35	2

Tabla C.2 Peso por unidad de superficie de elementos de cobertura

Materiales y elementos	Peso kN/m²	Materiales y elementos	Peso kN/m²
Aislante (lana de vidrio o roca)		Tablero de madera, 25 mm espesor	0,15
por cada 10 mm de espesor	0,02	Tablero de rasilla, una hoja	
Chapas grecadas, canto 80 mm,		una hoja sin revestir	0,40
Acero 0,8 mm espesor	0,12	una hoja más tendido de yeso	0,50
Aluminio, 0 8 mm espesor	0,04	Tejas planas (sin enlistonado)	
Plomo, 1,5 mm espesor	0,18	ligeras (24 kg/pieza)	0,30
Zinc, 1,2 mm espesor	0,10	corrientes (3,0 kg/pieza)	0,40
Cartón embreado, por capa	0,05	pesadas (3,6 kg/pieza)	0,50
Enlistonado	0,05	Tejas curvas (sin enlistonado)	
Hoja de plástico armada, 1,2 mm	0,02	ligeras (1,6 kg/pieza) 0,4	
Pizarra, sin enlistonado		corrientes (2,0 kg/pieza)	0,50
solape simple	0,20	pesadas (2,4 kg/pieza) 0,60	
solape doble 0,30		Vidriera (incluida la carpintería)	
Placas de fibrocemento, 6 mm espesor	0,18	vidrio normal, 5 mm espesor	0,25
<u> </u>		vidrio armado, 6 mm espesor	0,35

Figura 4.4-1. Tabla C.2 del Anejo C del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009

Tabla C.5 Peso propio de elementos constructivos

Elemento		Peso			
Forjados		kN / m ²			
	Chapa grecada con capa de hormigón; grueso total < 0,12 m	2			
	Forjado unidireccional, luces de hasta 5 m; grueso total < 0,28 m	3			
	Forjado uni o bidireccional; grueso total < 0,30 m	4			
	Forjado bidireccional, grueso total < 0,35 m	5			
	Losa maciza de hormigón, grueso total 0,20 m	5			
Cerramientos y particiones (para una altura libre del orden de 3,0 m) incluso enlucido					
	Tablero o tabique simple; grueso total< 0,09 m	3			
	Tabicón u hoja simple de albañilería; grueso total < 0,14 m	5			
	Hoja de albañilería exterior y tabique interior; grueso total < 0,25 m	7			
Solados (inclu	yendo material de agarre)	kN / m ²			
	Lámina pegada o moqueta; grueso total < 0,03 m	0,5			
	Pavimento de madera, cerámico o hidráulico sobre plastón; grueso total < 0,08 m	1,0			
	Placas de piedra, o peldañeado; grueso total < 0,15 m	1,5			
Cubierta, sobre forjado (peso en proyección horizontal)					
	Faldones de chapa, tablero o paneles ligeros	1,0			
	Faldones de placas, teja o pizarra	2,0			
	Faldones de teja sobre tableros y tabiques palomeros	3,0			
	Cubierta plana, recrecido, con impermeabilización vista protegida	1,5			
	Cubierta plana, a la catalana o invertida con acabado de grava	2,5			
Rellenos		kN / m ³			
	Agua en aljibes o piscinas	10			
	Terreno , como en jardineras, incluyendo material de drenaje ⁽¹⁾	20			

⁽¹⁾ El peso total debe tener en cuenta la posible desviación de grueso respecto a lo indicado en planos.

Figura 4.4-2. Tabla C.5 del Anejo C del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009

4.4.2 Cargas variables

c) Sobrecarga de uso

Para la obtención de los valores de la sobrecarga de uso se recurre a la Tabla 3.1 del *Documento Básico - Seguridad Estructural - Acciones en la edificación (DB-SE-AE).*

Para aludir a la hipótesis de sobrecarga de uso se emplea la abreviatura SCU.

Tabla 4.4-4. Valor de la sobrecarga de uso por metro cuadrado de superficie.

Localización	Forjado	Categoría de uso	Subcategoría de uso	Carga uniforme (kN/m²)
Planta tipo (interior edificio)	1-10	B. Zonas administrativas	-	2
Planta cubierta (núcleo com.) y planta tipo (escaleras)	11	B. Zonas administrativas	-	3 ⁴
Planta cubierta 11 (lucernario)		G. Cubiertas accesibles únicamente para conservación	G1. Cubiertas ligeras sobre correas (sin forjado)	0,4
11 unicamente nara		G1. Cubiertas con inclinación inferior al 20°	1	
Cubierta casetón gravas)	12	G. Cubiertas accesibles únicamente para conservación	G1. Cubiertas con inclinación inferior al 20°	1

Tabla 3.1. Valores característicos de las sobrecargas de uso

Cate	egoría de uso	Subc	ategorías de uso	Carga uniforme [kN/m²]	Carga concentrada [kN]
Α	Zonas residenciales	A1	Viviendas y zonas de habitaciones en, hospitales y hoteles	2	2
		A2	Trasteros	3	2
В	Zonas administrativas	IS .			2
	Zonas de acceso al público (con la excep- ción de las superficies pertenecientes a las categorías A, B, y D)	C1	Zonas con mesas y sillas	3	4
		C2	Zonas con asientos fijos	4	4
С		С3	Zonas sin obstáculos que impidan el libre movimiento de las personas como vestíbulos de edificios públicos, administrativos, hoteles; salas de exposición en museos; etc.	5	4
		C4	Zonas destinadas a gimnasio u actividades físicas	5	7
		C5	Zonas de aglomeración (salas de conciertos, estadios, etc)	5	4
D	Zonas comerciales	D1	Locales comerciales	5	4
		D2	Supermercados, hipermercados o grandes superficies	5	7
Е	Zonas de tráfico y de aparcamiento para vehículos ligeros (peso total < 30 kN)				20 (1)
F	Cubiertas transitables ac	biertas transitables ac <u>cesibles sólo privadamente</u> ⁽²⁾			
_	Cubiertas accesibles únicamente para con- servación ⁽³⁾	G1 ⁽⁷⁾	Cubiertas con inclinación inferior a 20°	1 ^{(4) (6)} 0.4 ⁽⁴⁾	2
G		G2	Cubiertas ligeras sobre correas (sin forjado) (5) Cubiertas con inclinación superior a 40°	0.4	2

Figura 4.4-3. Tabla 3.1 del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009

⁴ "3. En las zonas de acceso y evacuación de los edificios de las zonas de categorías A y B, tales como portales, mesetas y escaleras, se incrementará el valor correspondiente a la zona servida en 1 kN/m²" (Ministerio de Fomento, 2009).

d) Viento

Para la estimación de la acción del viento se recurre a lo establecido en el punto 3.3 del DB-SE-AE puesto que el edificio cumple con las siguientes generalidades:

- Se sitúa a una altitud menor de 2.000 metros.
- Es una construcción de esbeltez inferior a 6.

Se considera la acción del viento en cubierta despreciable.

La acción del viento se expresa como:

Presión:
$$q_e = q_b \cdot c_e \cdot c_p$$

Succión: $q_e = q_b \cdot c_e \cdot c_s$

q_b Presión dinámica del viento

Su valor depende de la situación geográfica del edificio y se expresa como:

$$q_b = \frac{1}{2} \cdot \delta \cdot v_b^2 = 0.5 \cdot 1.25 \cdot 21.5^2 = 288.91 \frac{N}{m^2} = 0.28891 \text{ kN/m}^2$$

- δ corresponde a la densidad del aire, y se recomienda tomar el valor de 1,25 kg/m³
- v_b corresponde al valor básico de la velocidad del viento. Para obtener este dato se recurre al UK National Annex to Eurocode 1. Actions on structures. General actions. Wind actions. Para la localización: Primrose St EC2a, London, UK el valor básico es de 21,5 m/s.

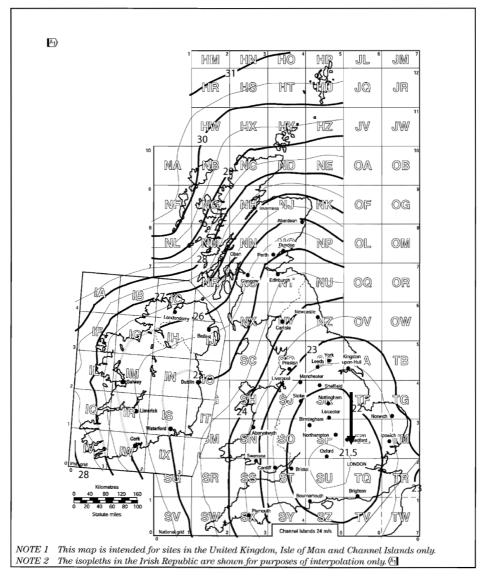


Figura 4.4-4. Mapa con los valores básicos de la velocidad del viento en Reino unido. Fuente: UK National Annex to Eurocode 1. Wind actions

c_e Coeficiente de exposición

El coeficiente de exposición "tiene en cuenta los efectos de las turbulencias originadas por el relieve y la topografía del terreno" (Ministerio de Fomento, 2009). Ya que el edificio tiene una altura mayor a 30 metros y menor a 200 metros, el valor del coeficiente de exposición se obtiene con lo establecido en el Anejo D.2 del DB-SE-AE.

El coeficiente de exposición se expresa como:

$$c_e = F \cdot (F + 7 \cdot k) = 0.5526 \cdot (0.5526 + 7 \cdot 0.24) = 1.2338$$

 $F = k \cdot ln\left(\frac{\max(z, Z)}{L}\right) = 0.24 \cdot ln\left(\frac{10}{1}\right) = 0.5526$

Tabla D.2 Coeficientes para tipo de entorno

	Grado de aspereza del entorno	Parámetro			
	Grado de aspereza dei entorno	k	L (m)	Z (m)	
1	Borde del mar o de un lago, con una superficie de agua en la dirección del viento de al menos 5 km de longitud	0,156	0,003	1,0	
П	Terreno rural Ilano sin obstáculos ni arbolado de importancia	0,17	0,01	1,0	
Ш	Zona rural accidentada o llana con algunos obstáculos aislados, como árboles o construcciones pequeñas	0,19	0,05	2,0	
IV	Zona urbana en general, industrial o forestal	0,22	0,3	5,0	
٧	Centro de negocios de grandes ciudades, con profusión de edificios en altura	0,24	1,0	10,0	

Figura 4.4-5. Tabla D.2 del Anejo D del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009

c_n, c_s Coeficiente eólico

Teniendo en cuenta la geometría del edificio, ortogonal y simétrica, se obtienen los coeficientes eólicos de presión y el de succión en función de la esbeltez del plano perpendicular a la acción del viento.

- Fachada norte-sur (principal): ancho 78m, alto 47m. Esbeltez: 0,6
- Fachada este-oeste (lateral): ancho 52m, alto 47m. Esbeltez: 0,9

Tabla 3.5. Coeficiente eólico en edificios de pisos

		Esbeltez en el plano paralelo al viento					
	< 0,25	0,50	0,75	1,00	1,25	≥ 5,00	
Coeficiente eólico de presión, c _p	0,7	0,7	0,8	0,8	0,8	0,8	
Coeficiente eólico de succión, cs	-0,3	-0,4	-0,4	-0,5	-0,6	-0,7	

Figura 4.4-6. Tabla 3.5 del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009

La acción del viento se insertará en el programa de manera simplificada, considerando la presión y succión igual en toda la longitud de fachada.

Fachada norte-sur (principal)

$$q_{e,presión} = q_b \cdot c_e \cdot c_p = 0.28891 \cdot 1.2338 \cdot 0.8 = 0.285 \, kN/m^2$$

 $q_{e,succión} = q_b \cdot c_e \cdot c_s = 0.28891 \cdot 1.2338 \cdot (-0.4) = -0.143 \, kN/m^2$

Fachada este-oeste (lateral)

$$q_{e,presión} = q_b \cdot c_e \cdot c_p = 0.288.91 \cdot 1.2338 \cdot 0.8 = 0.285 \, kN/m^2$$

 $q_{e,succión} = q_b \cdot c_e \cdot c_s = 0.288.91 \cdot 1.2338 \cdot (-0.5) = -0.178 \, kN/m^2$

Para aludir a la hipótesis de sobrecarga de viento se emplea la abreviatura **SCV**.

e) Acciones térmicas

Las variaciones de temperatura del ambiente, la orientación y el nivel de exposición del edificio pueden generar deformaciones en los elementos estructurales del mismo. En el caso del *Exchange House*, gran parte de la estructura queda completamente expuesta, creándose una piel de perfiles metálicos alrededor de las fachadas. Estos perfiles están únicamente recubiertos por pintura de color oscura que protege contra la corrosión. Se consideran cargas térmicas de acuerdo con el punto 3.4 del *DB-SE-AE*⁵. Para aludir a la hipótesis de carga térmica se emplea la abreviatura **TMP**.

En este modelo simplificado únicamente se insertarán las cargas térmicas a la parte de estructura que queda a la intemperie. Para obtener las temperaturas extremas se recurre a las figuras NA.1 y NA.2 del anexo nacional BS NA EN 1991-1-5: UK National Annex to Eurocode 1. Actions on structures. General actions. Thermal actions.

Invierno (Contracción): Ta mínima = Temperatura extrema (más baja) en Londres: -10 °C

Verano (Dilatación): Ta máxima = Temperatura extrema (más alta) en Londres + incremento tabla 3.7

Fachadas norte y este: **35** + 4 = 39 °C Fachadas sur y oeste: **35** + 42 = 77 °C

Carga térmica (°C) = Variación de temperatura

En fachadas norte y este $\Delta T^{\underline{a}} = 39 - 10 = 29^{\circ}\text{C}$

En fachadas sur y oeste $\Delta T^{\underline{a}} = 77 - 10 = 67^{\circ}\text{C}$

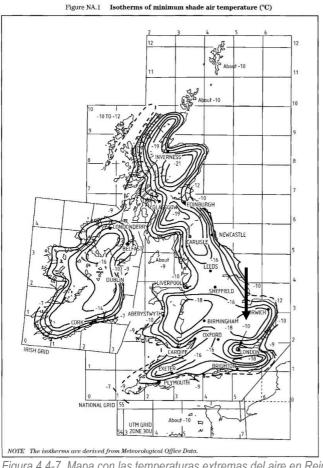


Figura 4.4-7. Mapa con las temperaturas extremas del aire en Reino unido. Fuente: UK National Annex to Eurocode 1. Thermal

Tabla 3.7 Incremento de temperatura debido a la radiación solar

Color de la superficie			
Muy claro	Claro	Oscuro	
0 ℃	2 ℃	4 °C	
18 °C	30 °C	42 °C	
	Muy claro 0 °C	Muy claro Claro 0 °C 2 °C	

Figura 4.4-8. Tabla 3.7 del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009

⁵ Según el anexo nacional BS NA EN 1991-1-5: UK National Annex to Eurocode 1. Actions on structures. General actions. Thermal actions, se toman como valores de la radiación solar los establecidos en la tabla 5.2 del Eurocódigo EN 1991-1-5, coincidiendo con los datos de la tabla 3.7 del DB-SE-AE.

f) Nieve

De acuerdo con el punto 3.5 del DB-SE-AE, la carga de nieve se expresa como:

$$q_n = \mu \cdot s_k$$

Debido a que el edificio se encuentra en un país diferente, se recurre a la norma BS EN 1991-1-3:2003 y al anexo nacional de UK para determinar la carga de nieve. Dicha carga se considera en una situación de diseño persistente/transitoria y se expresa como:

$$s = \mu_i \cdot c_e \cdot c_t \cdot s_k = 0.8 \cdot 1 \cdot 1 \cdot 0.5 = 0.4 \ kN/m^2$$

s_k <u>Valor característico de la carga de nieve sobre un terreno horizontal</u>

Este valor se obtiene a partir del mapa encontrado en el anexo nacional BS NA EN 1991-1-3:2003 UK National Annex to Eurocode 1. Actions on structures. General actions. Snow loads. Para la ciudad de Londres, el valor característico de la carga de nieve será de **0,50 kN/m²**.

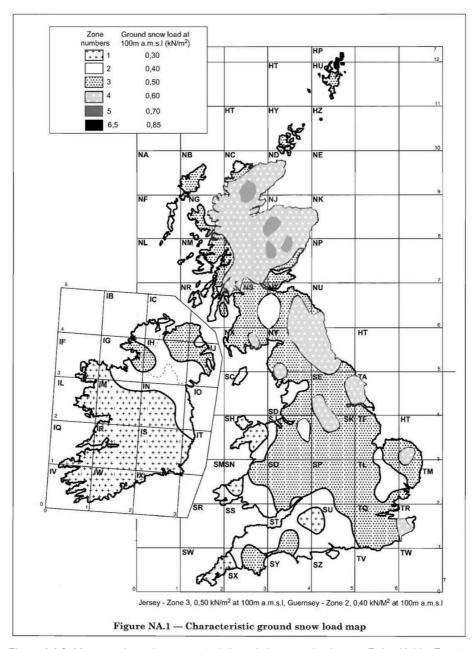


Figura 4.4-9. Mapa con los valores característicos de la carga de nieve en Reino Unido. Fuente: UK National Annex to Eurocode 1. Snow Loads

μ_i Coeficiente de forma de la cubierta

Al tratarse de una cubierta plana y con un parapeto que impide la evacuación de la nieve por los límites de la cubierta, el coeficiente de forma se define de acuerdo con lo definido en la tabla 5.2 del documento *BS EN 1991-1-3:2003.* La cubierta del modelo se considera *monopitch y*, por tanto, el coeficiente de forma es **0,8**.

Table 5.2: Snow load shape coefficients

Angle of pitch of roof α	0° ≤ α ≤ 30°	30° < α < 60°	α≥60°
μ_{l}	0,8	0,8(60 - α)/30	0,0
μ_2	0,8 + 0,8 \alpha/30	1,6	

Figura 4.4-10. Tabla 5.2 del EN 1991-1-3 con los coeficientes de forma de la cubierta. Fuente: Eurocódigo

c_e Coeficiente de exposición

El valor recomendado por el anexo nacional en todo el Reino Unido y en todo tipo de topografías es de 1,0

c_t Coeficiente térmico

El valor recomendado por el anexo nacional en todo el Reino Unido y para todo tipo de materiales es de 1,0

Para aludir a la hipótesis de sobrecarga de nieve se emplea la abreviatura SCN.

4.4.3 Cargas accidentales

Dentro de las acciones accidentales cabe mencionar el efecto del <u>sismo</u> en la estructura.

La Norma de Construcción Sismorresistente (NCSE-02) define la aceleración sísmica de cálculo como:

$$a_c = S \cdot \rho \cdot a_b$$

Siendo:

- S el coeficiente de amplificación del terreno
- ρ el coeficiente adimensional de riesgo
- a_h la aceleración sísmica básica

De acuerdo con la Figura 2.1 del NCSE-02, Madrid tiene una aceleración sísmica básica menor a 0,04g. Como se aprecia en el *European Seismic Hazard Map*, la ciudad de Londres está situada en una zona de bajo riesgo (*low hazard area*), igual a la de Madrid. Las zonas de bajo riesgo del mapa europeo están coloreadas con tonos azulados y verdosos, y tienen una aceleración básica inferior a 0.1g.

Debido al bajo riesgo sísmico en Londres, se considera la acción del sismo despreciable y por tanto no se tendrá en cuenta para el análisis del modelo simplificado.

Figura 4.4-11. Mapa sísmico de la norma sismorresistente NCSE-02. Fuente: Ministerio de Fomento, 2009

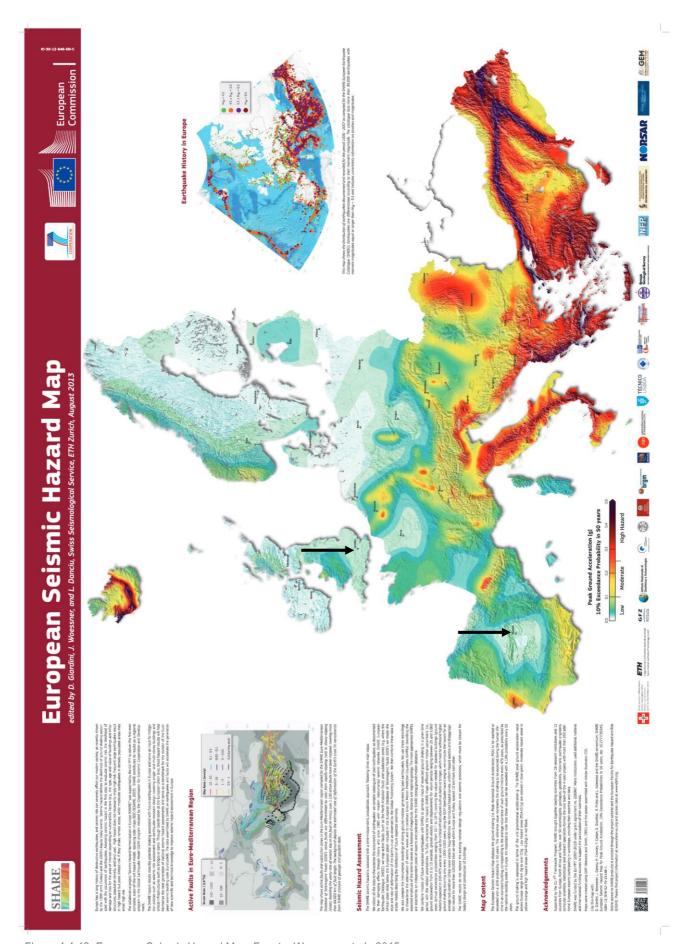


Figura 4.4-12. European Seismic Hazard Map. Fuente: Woessner et al., 2015

4.4.4 Acciones sobre el modelo de cálculo simplificado

ACCIONES PERMANENTES (G)

CMP. Peso propio revestimientos, tabiques, instalaciones y equipos fijos

Forjado primero (1) CMP: -1,5 kN/m²

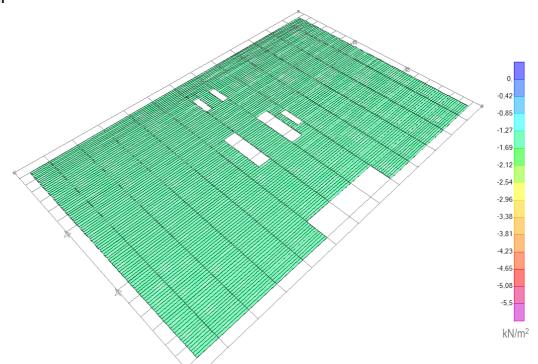


Figura 4.4-13. Cargas permanentes en el primer forjado. Fuente: creación propia mediante SAP2000

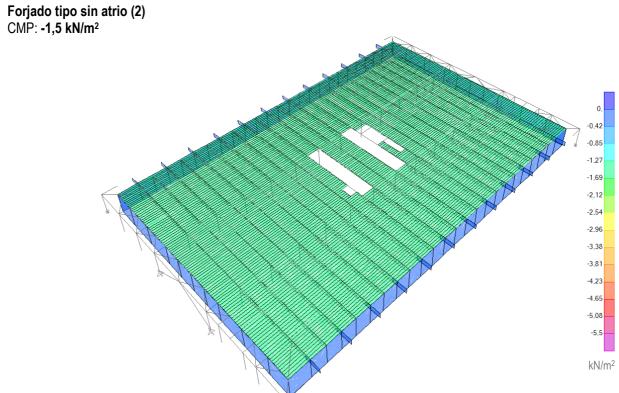


Figura 4.4-14. Cargas permanentes en el segundo forjado. Fuente: creación propia mediante SAP2000

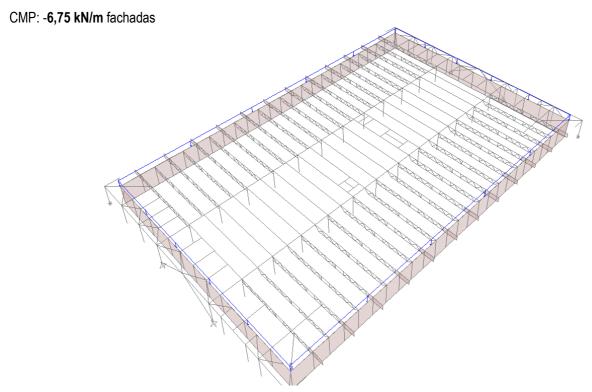
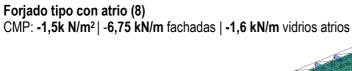



Figura 4.4-15. Peso propio de las fachadas en el segundo forjado. Fuente: creación propia mediante SAP2000

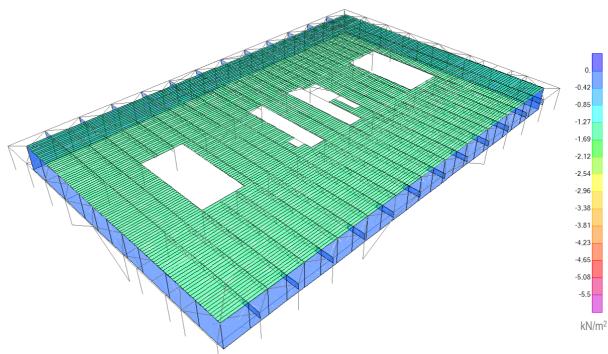


Figura 4.4-16. Cargas permanentes en el forjado tipo con atrios. Fuente: creación propia mediante SAP2000

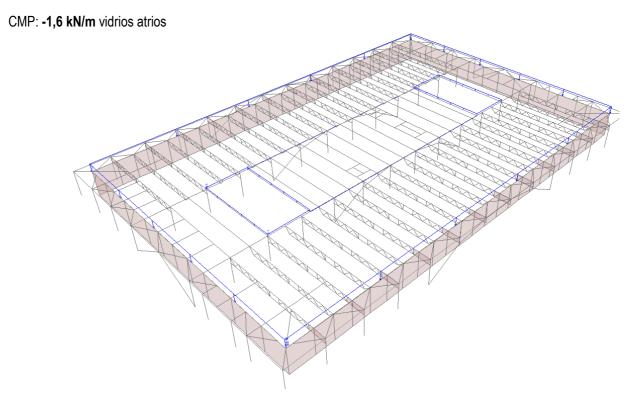


Figura 4.4-17. Peso propio de las fachadas y los cerramientos de los atrios el forjado tipo. Fuente: creación propia mediante SAP2000

Forjado cubierta principal (11) CMP: -4,5 kN/m² sala de máquinas | -3 kN/m² cubierta | -0,35 kN/m² lucernario | -5,5 kN/m² equipos fijos

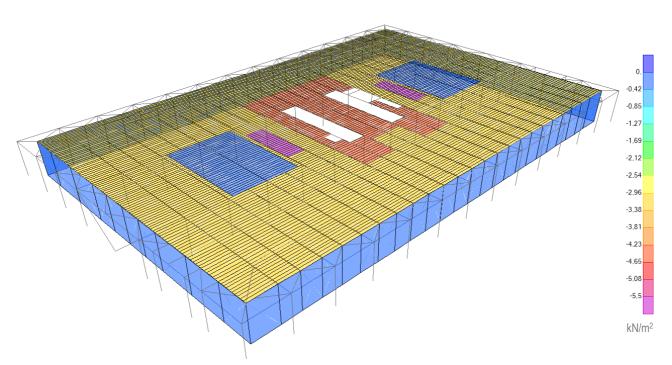


Figura 4.4-18. Cargas permanentes en la cubierta principal. Fuente: creación propia mediante SAP2000

CMP: -8,25 kN/m fachadas | -2 kN/m vidrios atrios

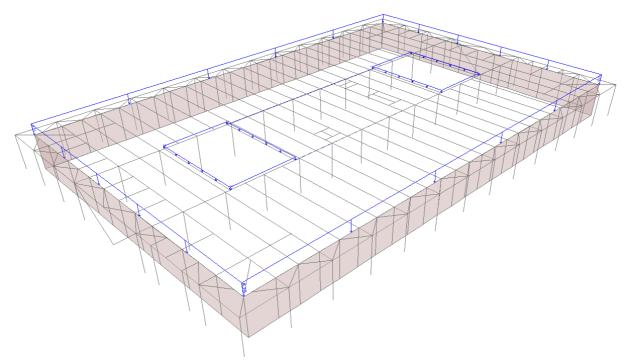


Figura 4.4-19. Peso propio de las fachadas y los cerramientos de los atrios la cubierta principal. Fuente: creación propia mediante SAP2000

Forjado cubierta casetón (12) CMP: -3 kN/m² | -1,5 kN/m² fachadas

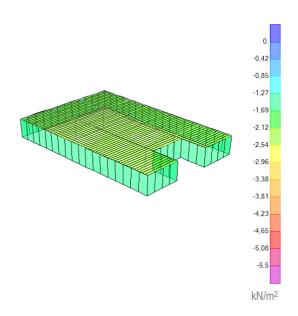


Figura 4.4-20. Cargas permanentes en el casetón. Fuente: creación propia mediante SAP2000

ACCIONES VARIABLES (Q)
SCU. Sobrecarga de uso
Forjado primero (1)

SCU: -2 kN/m² | -3 kN/m² escaleras

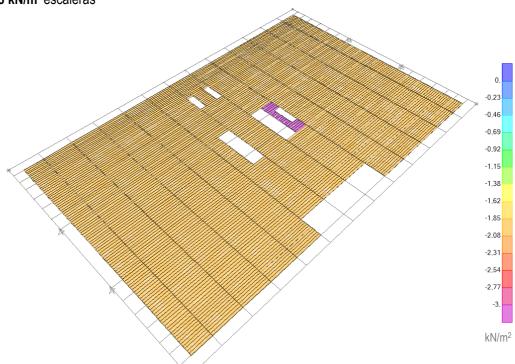


Figura 4.4-21. Sobrecarga de uso en el primer forjado. Fuente: creación propia mediante SAP2000

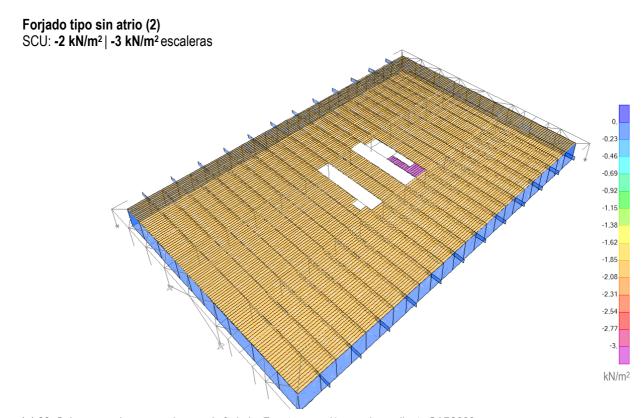


Figura 4.4-22. Sobrecarga de uso en el segundo forjado. Fuente: creación propia mediante SAP2000

Forjado tipo con atrio (8) SCU: -2 kN/m² | -3 kN/m² escaleras

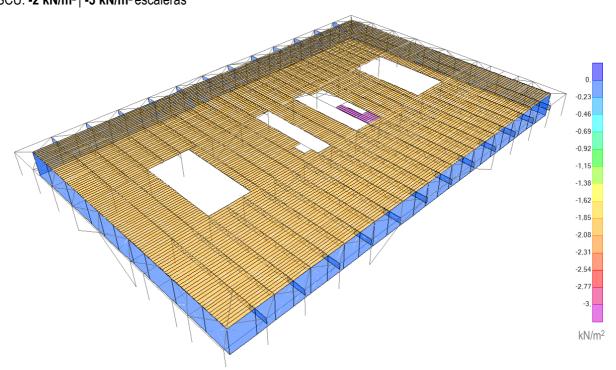


Figura 4.4-23. Sobrecarga de uso en el forjado tipo con atrios. Fuente: creación propia mediante SAP2000

Forjado cubierta principal (11) SCU: -1 kN/m² | -3 kN/m² escaleras | -0,4 kN/m² lucernario

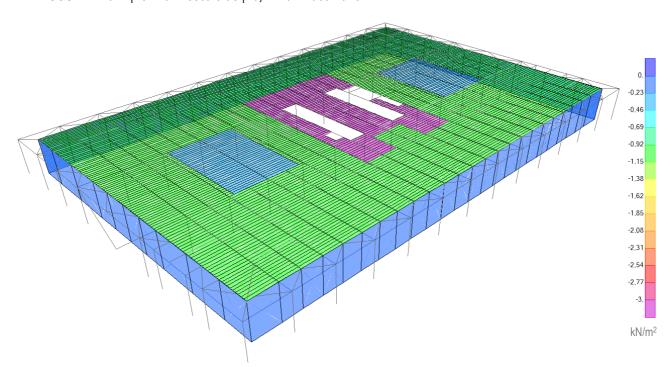


Figura 4.4-24. Sobrecarga de uso en la cubierta principal. Fuente: creación propia mediante SAP2000

SCU: -1 kN/m²

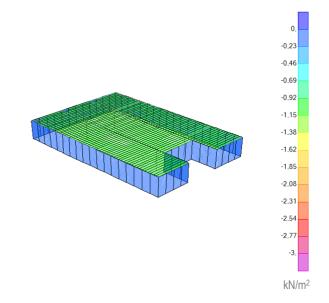


Figura 4.4-25. Sobrecarga de uso en el casetón. Fuente: creación propia mediante SAP2000

SCV. Sobrecarga de viento SCVx presión 0,285 kN/m²

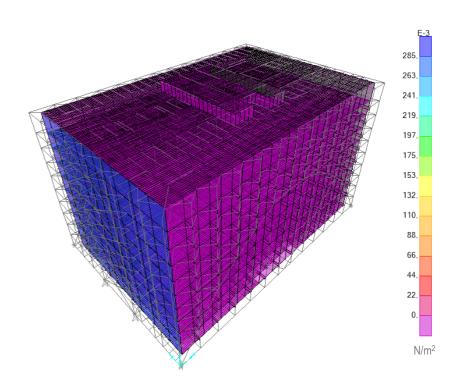


Figura 4.4-26. Sobrecarga de viento en las fachadas laterales. Presión del viento. Fuente: creación propia mediante SAP2000

SCVx succión 0,143 kN/m²

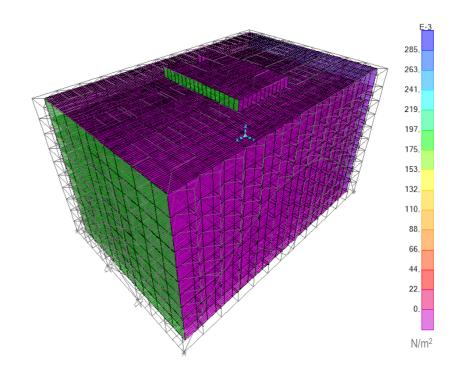


Figura 4.4-27. Sobrecarga de viento en las fachadas laterales. Succión del viento. Fuente: creación propia mediante SAP2000

SCVy presión 0,285 kN/m²

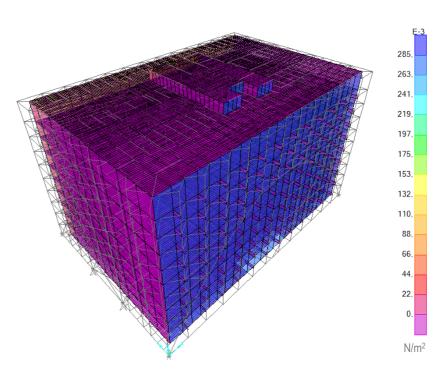


Figura 4.4-28. Sobrecarga de viento en las fachadas principales. Presión del viento. Fuente: creación propia mediante SAP2000

SCVy succión 0,178 kN/m²

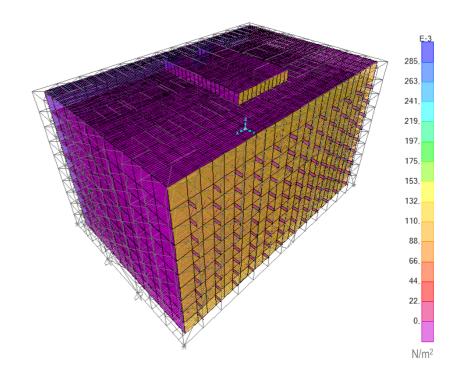


Figura 4.4-29. Sobrecarga de viento en las fachadas principales. Succión del viento. Fuente: creación propia mediante SAP2000

TMP. Acciones térmicas
En fachadas sur y oeste 67°C
Enfachadas norte y este 29°C
En barras (frames)

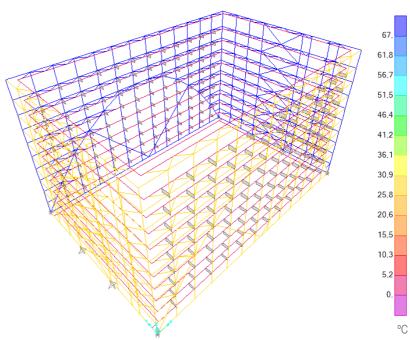


Figura 4.4-30. Cargas térmicas en barras. Fuente: creación propia mediante SAP2000

En elementos finitos (shells)

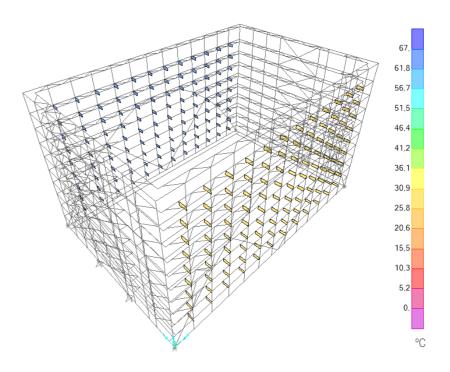


Figura 4.4-31. Cargas térmicas en elementos finitos. Fuente: creación propia mediante SAP2000

<u>SCN. Sobrecarga de nieve</u> Cubierta principal y cubierta del casetón

SCN: -0,4 kN/m²

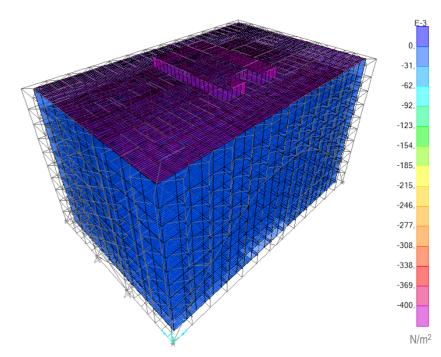


Figura 4.4-32. Sobrecarga de viento en las cubiertas. Fuente: creación propia mediante SAP2000

4.5 Combinación de acciones

Para el cálculo lineal de la estructura (superposición de cargas), se elaboran combinaciones de acciones según lo establecido en el punto 4 del *Documento Básico - Seguridad Estructural (DB-SE)* del *Código Técnico de la Edificación (CTE)*. Las combinaciones están formadas por hipótesis de carga y por coeficientes de ponderación.

Para aludir a las hipótesis de carga del modelo se usan las abreviaturas resumidas en la siguiente tabla:

Tabla 4.5-1. Nomenclatura hipótesis de cargas

Clasificación	Abreviatura	Descripción
ACCIONES	DEAD	Peso propio de la estructura
PERMANENTES G	CMP	Peso propio de revestimientos, tabiques, instalaciones y equipos fijos
	SCU	Sobrecarga de uso
ACCIONES	SCV	Sobrecarga de viento dirección x (SCVx), dirección y (SCVy) +presión -succión
VARIABLES Q	TMP	Sobrecarga por temperatura
	SCN	Sobrecarga de nieve en cubierta

La norma diferencia las combinaciones relativas a estados límite últimos (ELU) y las relativas a estados límite de servicio (ELS). Los **estados límite últimos** se asocian al colapso o fallo de la estructura, y si se sobrepasan, se pone en riesgo la seguridad de las personas. Por otro lado, los **estados límite de servicio** están asociados a las deformaciones y vibraciones de la estructura, y si se superan, puede alterarse el confort de los usuarios y/o los elementos constructivos pueden dañarse. En las combinaciones para ELU se aplica un coeficiente parcial de seguridad según la Tabla 4.1 del DB-SE, mientras que las combinaciones para ELS, como tienen un nivel de riesgo menor, se aplica un coeficiente igual a 1. Los coeficientes de simultaneidad de la tabla 4.2 del DB-SE aparecen en ambas combinaciones.

Tabla 4.2 Coeficientes de simultaneidad (ψ)

(1)			
	Ψ0	Ψ1	Ψ2
Sobrecarga superficial de uso (Categorías según DB-SE-AE)			
Zonas residenciales (Categoría A)	0,7	0,5	0,3
Zonas administrativas(Categoría B)	0,7	0,5	0,3
Zonas destinadas al público (Categoría C)	0,7	0,7	0,6
 Zonas comerciales (Categoría D) 	0,7	0,7	0,6
 Zonas de tráfico y de aparcamiento de vehículos ligeros con un peso total inferior a 30 kN (Categoría E) 	0,7	0,7	0,6
Cubiertas transitables (Categoría F)		(1)	
Cubiertas accesibles únicamente para mantenimiento (Categoría G)	0	0	0
Nieve			
para altitudes > 1000 m	0,7	0,5	0,2
• para altitudes ≤ 1000 m	0,5	0,2	0
Viento	0,6	0,5	0
Temperatura		0,5	0
Acciones variables del terreno	0,7	0,7	0,7

⁽¹⁾ En las cubiertas transitables, se adoptarán los valores correspondientes al uso desde el que se accede.

Figura 4.5-1. Tabla 4.2 del DB-SE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009

4.5.1 Combinaciones para ELS

Se considera únicamente las acciones permanentes G

$$G_{k,i}$$

Combinación de acciones casi permanentes, cuyos efectos son de larga duración

$$G_{k,i} + \Psi_{2,1} \cdot Q_{k,1}$$

$$\begin{aligned} G_{k,j} + \Psi_{2,1} \cdot Q_{k,1} \\ - & \text{ELSqpu} = \textbf{1} \cdot \textbf{G} + \textbf{1} \cdot \textbf{0}, \textbf{3} \cdot \textbf{SCU} \end{aligned}$$

Se consideran las acciones variables Q por separado

$$G_{k,j} + Q_{k,1}$$

- ELSu = 1·G + 1·SCU
- $ELSvx + = 1 \cdot G + 1 \cdot SCVx$
- ELSvx- = 1·G 1·SCVx
- $ELSvy+ = 1 \cdot G + 1 \cdot SCVy$
- ELSvy- = 1·G 1·SCVy
- ELSt = $1 \cdot G + 1 \cdot TMP$
- ELSn = 1·G + 1·SCN

4.5.2 Combinaciones para ELU

Tabla 4.1 Coeficientes parciales de seguridad (γ) para las acciones

Tipo de verificación (1)	Tipo de acción	Situación persiste	nte o transitoria
		desfavorable	favorable
	Permanente Peso propio, peso del terreno	1,35	0,80
Resistencia	Empuje del terreno	1,35	0,70
	Presión del agua	1,20	0,90
	Variable	1,50	0
		desestabilizadora	estabilizadora
	Permanente		
Estabilidad	Peso propio, peso del terreno	1,10	0,90
LStabilidad	Empuje del terreno	1,35	0,80
	Presión del agua	1,05	0,95
	Variable	1,50	0

⁽¹⁾ Los coeficientes correspondientes a la verificación de la resistencia del terreno se establecen en el DB-SE-C Figura 4.5-2. Tabla 4.1 del DB-SE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009

Se verifica la resistencia de la estructura para una situación persistente o transitoria desfavorable, por tanto, los coeficientes serán de mayoración.

Se considera únicamente las acciones permanentes G

$$\sum_{j\geq 1} \gamma_{G,j} \cdot G_{k,j}$$
- ELUp = 1,35·G

Combinación de acciones casi permanentes, cuyos efectos son de larga duración

$$\sum_{j\geq 1} \gamma_{G,j} \cdot G_{k,j} + \gamma_{Q,1} \cdot \Psi_{2,1} \cdot Q_{k,1}$$

ELUqpu = 1,35·G + 1,50·0,3·SCU

Se consideran las acciones variables Q por separado

$$\sum_{i>1} \gamma_{G,j} \cdot G_{k,j} + \gamma_{Q,1} \cdot Q_{k,1}$$

- ELUu = 1,35·G + 1,50·SCU
- ELUvx+ = 1,35·G + 1,50·SCVx
- ELUvx- = 1,35·G 1,50·SCVx
- ELUvy+ = 1,35·G + 1,50·SCVy
- ELUvy- = 1,35·G 1,50·SCVy
- ELUt = 1.35·G + 1.50·TMP
- ELUn = 1,35·G + 1,50·SCN

Combinación para situaciones persistentes o transitorias. Siendo Q_{k,1} la acción variable principal

$$\sum_{j\geq 1} \gamma_{G,j} \cdot G_{k,j} + \gamma_{Q,1} \cdot Q_{k,1} + \sum_{i>1} \gamma_{Q,i} \cdot \Psi_{0,i} \cdot Q_{k,i}$$

Variable principal: uso

- ELUuvx+tn = 1,35·G + 1,50·SCU + 1,50·0,6·SCVx + 1,50·0,6·TMP + 1,50·0,5·SCN
- ELUuvx-tn = 1,35·G + 1,50·SCU 1,50·0,6·SCVx + 1,50·0,6·TMP + 1,50·0,5·SCN
- ELUuvy+tn = 1,35·G + 1,50·SCU + 1,50·0,6·SCVy + 1,50·0,6·TMP + 1,50·0,5·SCN
- ELUuvy-tn = 1,35·G + 1,50·SCU 1,50·0.6·SCVy + 1,50·0.6·TMP + 1,50·0.5·SCN

Variable principal: viento

- ELUvx+utn = 1,35·G + 1,50·SCVx + 1,50·0,7·SCU + 1,50·0,6·TMP + 1,50·0,5·SCN
- ELUvx-utn = 1,35·G 1,50·SCVx + 1,50·0,7·SCU + 1,50·0,6·TMP + 1,50·0,5·SCN
- ELUvv+utn = 1.35·G + 1.50·SCVv + 1.50·0.7·SCU + 1.50·0.6·TMP + 1.50·0.5·SCN
- ELUvy-utn = 1,35 G 1,50 SCVy + 1,50 0,7 SCU + 1,50 0,6 TMP + 1,50 0,5 SCN

Variable principal: temperatura

- ELUtuvx+n = 1,35·G + 1,50·TMP + 1,50·0,7·SCU + 1,50·0,6·SCVx + 1,50·0,5·SCN
- ELUtuvx-n = 1,35·G + 1,50·TMP + 1,50·0.7·SCU 1,50·0.6·SCVx + 1,50·0.5·SCN
- ELUtuvy+n = 1,35·G + 1,50·TMP + 1,50·0,7·SCU + 1,50·0,6·SCVy + 1,50·0,5·SCN
- ELUtuvy-n = 1,35·G + 1,50·TMP + 1,50·0,7·SCU 1,50·0,6·SCVy + 1,50·0,5·SCN

Variable principal: nieve

- ELUnuvx+t = 1,35·G + 1,50·SCN + 1,50·0,7·SCU + 1,50·0,6·SCVx + 1,50·0,6·TMP
- ELUnuvx-t = 1,35·G + 1,50·SCN + 1,50·0,7·SCU 1,50·0,6·SCVx + 1,50·0,6·TMP
- ELUnuvy+t = 1,35·G + 1,50·SCN + 1,50·0.7·SCU + 1,50·0.6·SCVy + 1,50·0.6·TMP
- ELUnuvy-t = 1,35·G + 1,50·SCN + 1,50·0,7·SCU 1,50·0,6·SCVy + 1,50·0,6·TMP

4.5.3 Inserción de las combinaciones en el programa

En primer lugar, se definen las hipótesis de carga según el tipo de acción [Define →Load Patterns...]. Para viento y sismo se desactiva la opción de comprobación con normativa. En segundo lugar, se debe indicar que el cálculo se realizará de manera lineal [Define →Load Cases...→Linear Static]. Finalmente se introducen las combinaciones de acciones acción [Define →Load Combinations...].

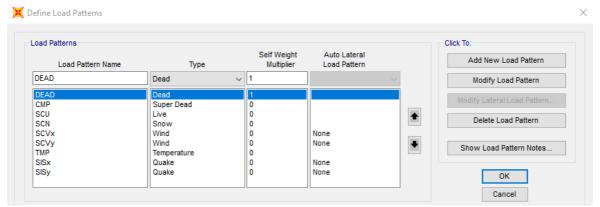


Figura 4.5-3. Hipótesis de carga definidas para el modelo de cálculo. Fuente: creación propia mediante SAP2000

Listado de combinaciones definidas en el programa SAP20006

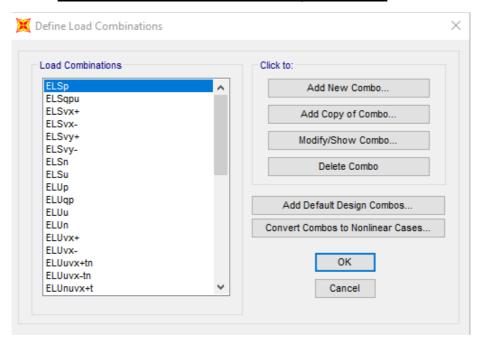


Figura 4.5-6. Combinaciones de acciones. Fuente: creación propia mediante SAP2000

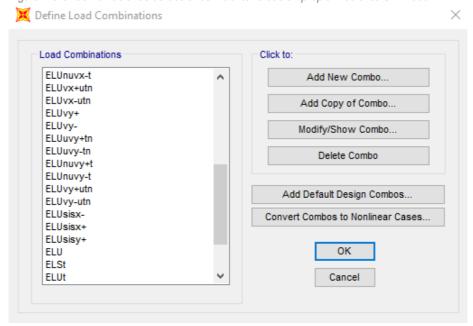


Figura 4.5-5. Combinaciones de acciones. Fuente: creación propia mediante SAP2000

Figura 4.5-4. Combinaciones de acciones. Fuente: creación propia mediante SAP2000

⁶ Aunque aparecen las combinaciones de sismo en el listado (ELUsisx+, ELUsisx-, ELUsisy+ y ELUsisy-), las acciones accidentales no se han tenido en cuenta para el cálculo del modelo. La justificación se encuentra en el punto 4.4.3.

Entrada de datos en una de las combinaciones de ELS

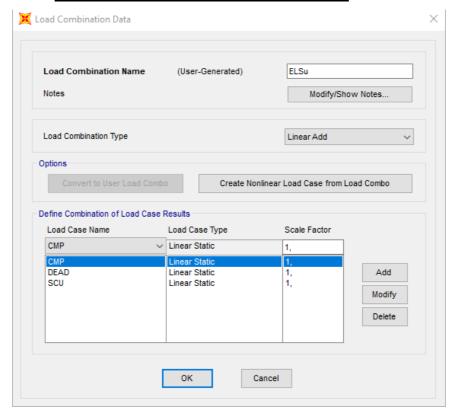


Figura 4.5-7. Combinación ELSu. Fuente: creación propia mediante SAP2000.

Entrada de datos en una de las combinaciones de ELU

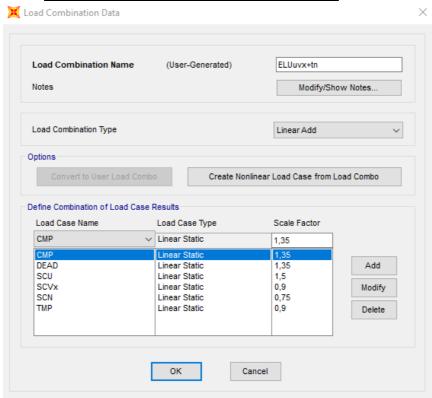


Figura 4.5-8. Combinación ELUuvx+tn. Fuente: creación propia mediante SAP2000

5 INTERPRETACIÓN DE LOS RESULTADOS

5.1 Comprobación de los Estados Límite de Servicio

En este apartado se verifica que la estructura tiene un comportamiento apto de manera que no se superan los valores límite admisible relacionados con las deformaciones según lo establecido en el apartado SE 2 Aptitud de Servicio del Documento Básico - Seguridad Estructural (DB-SE) del Código Técnico de la Edificación (CTE). Las vibraciones y el desgaste no se tendrán en cuenta en este modelo de cálculo simplificado.

a) Flechas

Se debe comprobar la flecha en tres situaciones:

Considerando la integridad de elementos constructivos.

Se verifica que las deformaciones de los elementos estructurales horizontales, producidas después de su puesta en obra, no dañan elementos constructivos como tabiques interiores o vidrios en fachada (Ministerio de Fomento, 2009). Para ello se tiene en cuenta una combinación de acciones característica **ELSintcon** la cual integra la sobrecarga de uso, y además el peso propio de elementos constructivos colocados después de los tabiques, como puede ser el caso de los falsos techos. El peso propio del forjado nunca influirá. Se estima un porcentaje del 20% de carga CMP correspondiente al peso propio del falso techo.

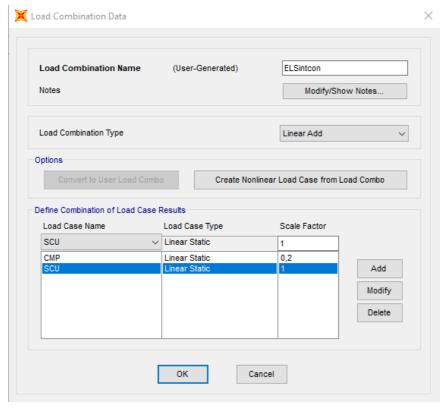


Figura 5.1-1. Combinación de acciones considerando la integridad de los elementos constructivos. Fuente: creación propia mediante SAP2000

En el caso de este edificio interesa comprobar la flecha en:

- <u>Forjado primero (1)</u>: en las vigas principales (10, Tabla 4.1-1) que coinciden con los cerramientos de vidrio del hall de acceso situado en la parte central de la planta.
- <u>Forjados intermedios (del 2-10)</u>: en las vigas perimetrales (12 y 13, Tabla 4.1-1) de las cuales cuelgan los muros cortina de vidrio correspondientes a las fachadas. También en los centros de las vigas del pórtico intermedio (11, Tabla 4.1-1), donde cuelgan los cerramientos de vidrio de los atrios.
- <u>Forjado de la cubierta principal (11)</u>: en las vigas perimetrales (12 y 14, Tabla 4.1-1) de las cuales cuelgan los muros cortina de vidrio correspondientes a las fachadas. También en los centros de las vigas del pórtico intermedio (11, Tabla 4.1-1), donde apoya el lucernario.
- <u>Forjado de la cubierta del casetón</u>: en los centros de las vigas (11, Tabla 4.1-1) que se encuentran sobre las fachadas del casetón.

En el punto 4.3.3.1 del DB-SE se fija una limitación de flecha de 1/500 en pisos con tabiques frágiles.

Tabla 5.1-1. Limitación de flecha considerando la integridad de los elementos constructivos

FORJADO	ELEMENTO ESTRUCTURAL	PUNTO 1 dz1 (m)	PUNTO 2 dz2 (m)	Δdz (m) dz2-dz1	DISTANCIA ENTRE PUNTOS L (m)	FLECHA (mm) 2·L/Δdz	LIMITACIÓN DE FLECHA
Primer forjado (1)	10_Viga principal	-0,0176	-0,0404	0,0228	9,5	833	
Forjados	12_Viga perimetral de mayor canto	-0,0086	-0,0249	-0,0163	37	920	
intermedios (2-10)	13_Viga perimetral de menor canto	-0,0113	-0,025	-0,0137	7,5	1095	
	11_Viga interior	-0,0199	-0,0371	-0,0172	7,5	872	
Forjado	12_ Viga perimetral de mayor canto	-0,0121	-0,0222	-0,0101	7,5	1485	1/500
cubierta principal (11)	13_Viga perimetral de menor canto	-0,0062	-0,0188	-0,0126	37	5873	
	11_Viga interior	-0,0234	-0,0282	-0,0048	7,5	3125	
Forjado casetón (12)	11_Viga interior	-0,0274	-0,0361	-0,0087	7,5	1724	

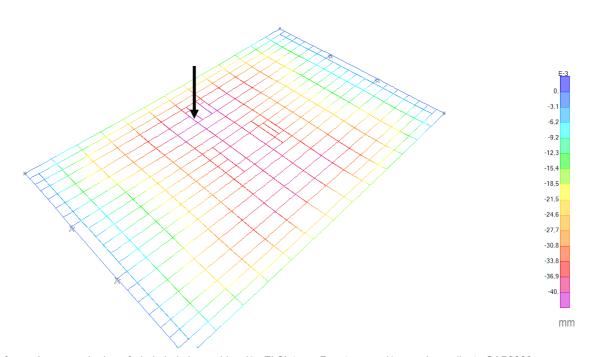


Figura 5.1-2. Deformaciones en el primer forjado bajo la combinación ELSintcon. Fuente: creación propia mediante SAP2000

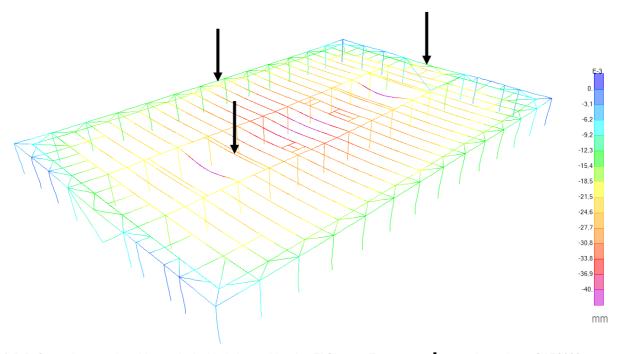


Figura 5.1-5. Deformaciones en la cubierta principal bajo la combinación ELSintcon. Fuente: creadón propia mediante SAP2000

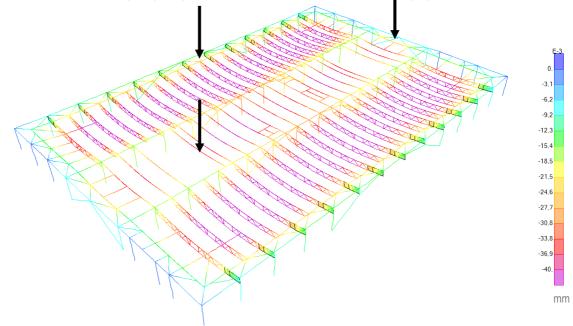


Figura 5.1-3. Deformaciones en el forjado tipo con atrio bajo la combinación ELSintcon. Fuente: creación propia mediante SAP2000

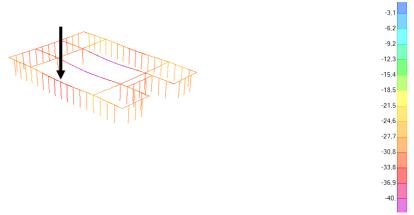


Figura 5.1-4. Deformaciones en la cubierta del casetón bajo la combinación ELSintcon. Fuente: creación propia mediante SAP2000 mm

Considerando el confort de los usuarios.

Se verifica que las deformaciones de los elementos estructurales horizontales, producidas por acciones de corta duración, no influyen negativamente en el confort de los usuarios. Se debe considerar no sólo por el hecho de notar que el forjado está en pendiente, sino también porque puede hacer que el forjado entre en vibración. Para esta verificación se tiene en cuenta únicamente la sobrecarga de uso **SCU**.

En el caso de este edificio interesa comprobar la flecha en:

- Forjado primero (1): en las vigas principales (10, Tabla 4.1-1).
- <u>Forjados intermedios (del 2-10)</u>: en los centros de las vigas en celosía (14, Tabla 4.1-1) y en los centros de las vigas del pórtico intermedio que une las celosías (11, Tabla 4.1-1).
- <u>Forjado de la cubierta principal (11)</u>: en los centros de las vigas principales de los pórticos exteriores (10, Tabla 4.1-1) y en los centros de vigas del pórtico intermedio (11, Tabla 4.1-1).

En el punto 4.3.3.1 del DB-SE se fija una limitación de flecha de 1/350.

Tabla 5.1-2. Limitación de flecha considerando el confort de los usuarios

FORJADO	ELEMENTO ESTRUCTURAL	PUNTO 1 dz1 (m)	PUNTO 2 dz2 (m)	Δdz (m) dz2-dz1	DISTANCIA ENTRE PUNTOS L (m)	FLECHA (mm) 2·L/Δdz	LIMITACIÓN DE FLECHA
Primer forjado (1)	10 _Viga principal	-0,0142	-0,0342	0,0200	9,5	950	
Forjados intermedios	14_Viga en celosía	-0,0202	-0,0437	-0,0235	8,25	702	
(2-10)	11_Viga interior	-0,018	-0,0358	0,0178	7,5	843	1/350
Forjado cubierta	10_Viga principal	-0,0111	-0,0225	-0,0114	9,75	1711	
principal (11)	11 _Viga interior	-0,0257	-0,0345	0,0088	7,5	1705	

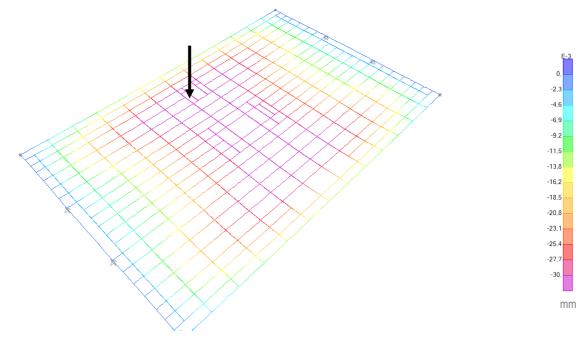


Figura 5.1-6. Deformaciones en el primer forjado bajo la combinación SCU. Fuente: creación propia mediante SAP2000

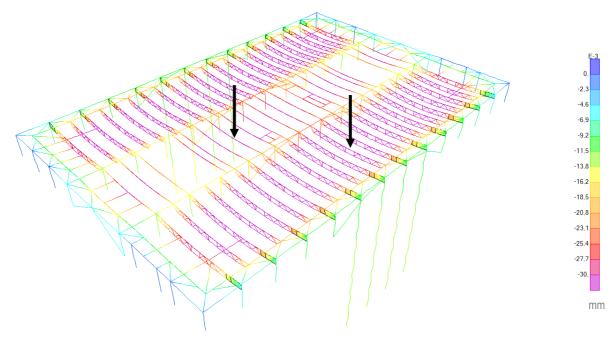


Figura 5.1-7. Deformaciones en el forjado tipo con atrios bajo la combinación SCU. Fuente: creación propia mediante SAP2000

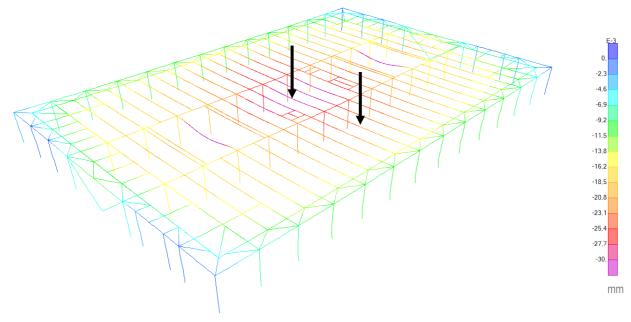


Figura 5.1-8. Deformaciones en la cubierta principal bajo la combinación SCU. Fuente: creación propia mediante SAP2000

Considerando la apariencia de la obra.

Se verifica que las deformaciones de los elementos estructurales horizontales no influyen en la apariencia de la obra. Para ello se tiene en cuenta la combinación de acciones casi permanentes **ELSqpu**, que considera las cargas permanentes G y la sobrecarga de uso SCU.

En el caso de este edificio interesa comprobar la flecha en:

- Forjado primero (1): en las vigas principales (10, Tabla 4.1-1).
- <u>Forjados intermedios (del 2-10)</u>: en los centros de las vigas en celosía (14, Tabla 4.1-1) y en los centros de las vigas del pórtico intermedio que une las celosías (11, Tabla 4.1-1).
- <u>Forjado de la cubierta principal (11)</u>: en los centros de las vigas principales de los pórticos exteriores (10, Tabla 4.1-1) y en los centros de vigas del pórtico intermedio (11, Tabla 4.1-1).
- Forjado de la cubierta del casetón: en los centros de las vigas (11, Tabla 4.1-1).

En el punto 4.3.3.1 del DB-SE se fija una limitación de flecha de 1/300.

Tabla 5.1-3. Limitación de flecha considerando la apariencia de la obra

FORJADO	ELEMENTO ESTRUCTURAL	PUNTO 1 dz1 (m)	PUNTO 2 dz2 (m)	Δdz (m) dz2-dz1	DISTANCIA ENTRE PUNTOS L (m)	FLECHA (mm) 2·L/∆dz	LIMITACIÓN DE FLECHA
Primer forjado (1)	10_Viga principal	-0,0226	-0,0508	-0,0282	9	638	
Forjados intermedios	14_Viga en celosía	-0,0669	-0,1129	-0,0460	8,25	359	
(2-10)	11_Viga interior	-0,0573	-0,1007	-0,0434	7,5	346	
Forjado cubierta	10 _Viga principal	-0,0585	-0,0938	-0,0353	8,25	467	1/300
principal (11)	11 _Viga interior	-0,0804	-0,0953	-0,0149	7,5	1007	
Forjado casetón (12)	11_Viga interior	-0,0795	-0,1254	-0,0459	7,5	327	

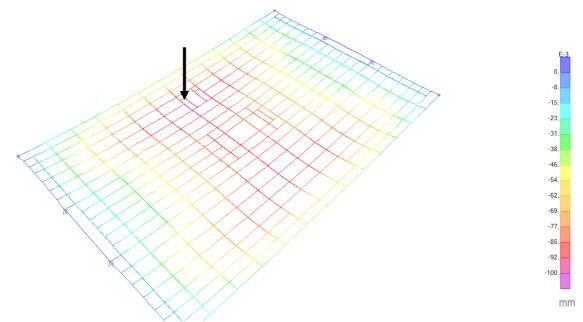


Figura 5.1-9. Deformaciones en el primer forjado bajo la combinación ELSqpu. Fuente: creación propia mediante SAP2000

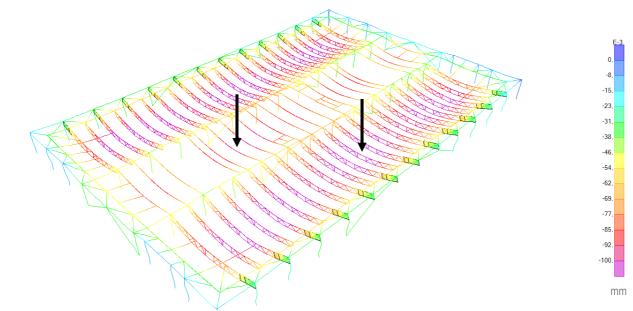


Figura 5.1-11. Deformaciones en el forjado tipo con atrio bajo la combinación ELSqpu. Fuente: creación propia mediante SAP2000

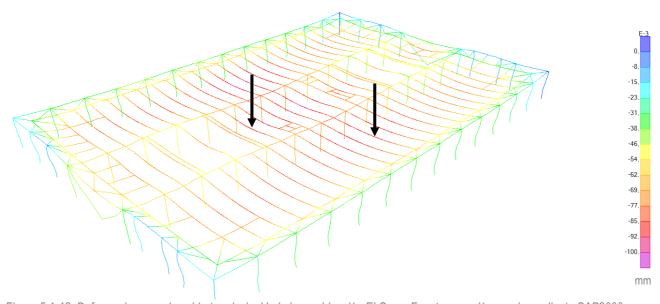


Figura 5.1-12. Deformaciones en la cubierta principal bajo la combinación ELSqpu. Fuente: creación propia mediante SAP2000

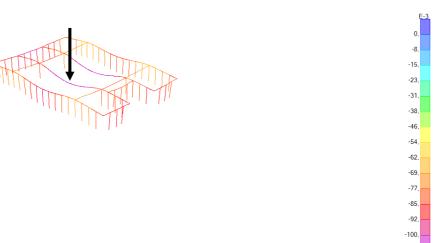


Figura 5.1-10. Deformaciones en el forjado del casetón bajo la combinación ELSqpu. Fuente: creación propia mediante SAP2000 mm

b) Desplomes

Al igual que en la comprobación a flecha, en el punto 4.3.3.2 del DB-SE se consideran dos situaciones en las que se debe comprobar los desplomes.

Considerando la integridad de elementos constructivos.

Se verifica que la estructura global tiene suficiente resistencia lateral ante cualquier combinación de acciones característica (Ministerio de Fomento, 2009). En este caso la combinación será la que incluye la acción del viento en dirección y ELSvy. Se analiza el desplazamiento horizontal en la dirección y ya que en el plano yz se encuentran las celosías verticales (cruces de San Andrés) que dan rigidez a la estructura frente a la acción del viento. Aunque en el apartado d del punto 4.4 de este trabajo, se aprecie que los valores de la carga de viento son mayores en el plano opuesto (perpendicular a yz), ha de tenerse en cuenta que la estructura real tiene dos edificios anexos en los laterales que aportarían rigidez frente a la carga de viento en la dirección x. Por este motivo se considera relevante realizar únicamente el análisis de la carga SCVy.

En el punto 4.3.3.2 del DB-SE se fija una limitación de desplome total de 1/500 y una limitación de desplome local de 1/250.

T. I. I. E. A. A. D I	1! (. 1 . 1 . 1 . 1	1 1	
Tabla 5.1-4. Desplazamientos	horizontales totales	v locales debidos a la i	carda de viento
Tabla off II Booplazallilolitoo	monizonicaroo totaroo	, localed acolade a la	ourga ao vionto.

COMBINACIÓN	TIPO DE DESPLOME	PUNTO 1 INFERIOR dz1 (m)	PUNTO 2 SUPERIOR dz2 (m)	DESPLOME (mm)	ALTURA ENTRE PUNTOS (m)	LIMITACIÓN (mm)	
ELSvy+ presión	total	-7,97·10 ⁻⁶	0,0392	39,21	46	Altura · 1/500	92
ELSvy+ presión	local	0,0338	0,0362	2,4	4,5	Altura · 1/250	18
ELSvy- succión	total	5,28·10 ⁻⁶	-0,0315	36,78	46	Altura · 1/500	92
ELSvy- succión	local	-0,0288	-0,0309	2,1	4,5	Altura · 1/250	18

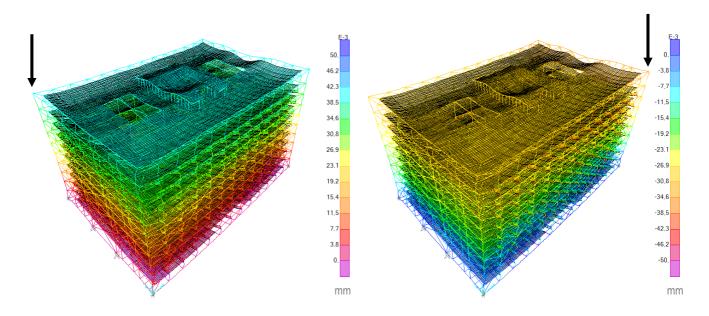


Figura 5.1-14. Desplomes bajo la combinación ELSv presión. Figura 5.1-13. Desplomes bajo la combinación ELSv succión. Fuente: creación propia mediante SAP2000

Fuente: creación propia mediante SAP2000

Considerando la apariencia de la obra.

Se verifica que la estructura global tiene suficiente resistencia lateral ante cualquier combinación de acciones casi permanentes (Ministerio de Fomento, 2009). En este caso, se aplicará la combinación **ELSqpu** también en dirección y, ya que la dirección x se considera arriostrado por los dos bloques laterales anexos no incluidos en el modelo de cálculo simplificado.

En el punto 4.3.3.2 del DB-SE se fija una limitación de desplome relativo de 1/250.

Tabla 5.1-5 Desplazamientos horizontal local debidos acciones casi permanentes

COMBINACIÓN	TIPO DE DESPLOME	PUNTO 1 INFERIOR dz1 (m)	PUNTO 2 SUPERIOR dz2 (m)	DESPLOME (mm)	ALTURA ENTRE PUNTOS (m)	LIMITACI	ÓN (mm)
ELSqpu	local	0,0042	0,0059	1,7	5,5	Altura · 1/250	22

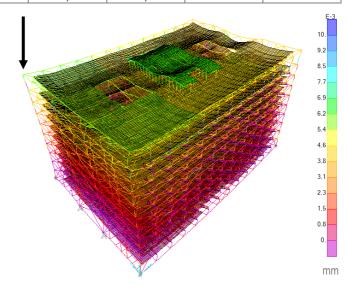


Figura 5.1-15. Desplomes bajo la combinación ELSqpu. Fuente: creación propia mediante SAP2000

c) Deslizamientos horizontales de los apoyos

Como puede apreciarse en el apartado a del punto 4.3 de este trabajo, los apoyos permiten ciertos desplazamientos horizontales en caso de dilataciones y/o contracciones de la estructura debidas a la carga térmica. La geometría de la placa superior permite el movimiento horizontal hasta un límite que se obtiene de los detalles constructivos de la bibliografía. En este apartado se comprueba que los movimientos de los nudos del modelo no supera el límite impuesto por el diseño del apoyo (entre 4 y 5 cm) y, por tanto, el uso de la herramienta de [Assign → Frame → Releases/Partial Fixity...] es válida para el análisis del edificio.

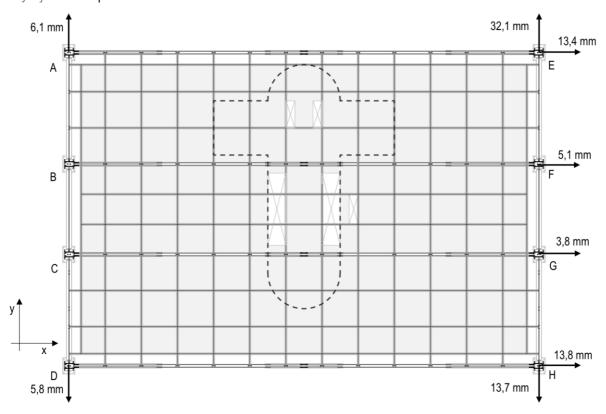
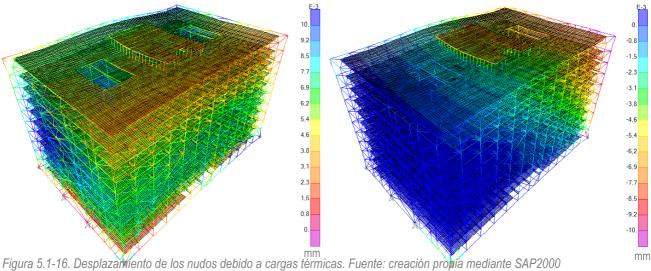



Tabla 5.1-6. Desplazamientos de los nudos debidos a las cargas térmicas

EJES	DESPLAZAMIENTO DE LOS NUDOS (mm)									
	Α	В	С	D	Е	F	G	Н		
Ux	restringido	restringido	restringido	restringido	13,4	5,1	3,8	13,8		
Uy	6,1	restringido	restringido	-5,8	32,1	restringido	restringido	-13,7		

5.2 Comprobación de los Estados Límite Últimos

Para la comprobación que los perfiles metálicos asignados al modelo de cálculo cumplen a resistencia se utiliza la herramienta de peritaje automático de SAP2000. Los resultados aportados por el programa se muestran en forma de ratios. Para que el perfil metálico pueda darse como válido el valor de ratio no debe superar la unidad, ya que cuando lo supera significa que se hace uso de los coeficientes de seguridad de las combinaciones.

En una primera comprobación de los perfiles del predimensionamiento, se aprecia que la gran mayoría no cumple. Esto puede ser por varios motivos por lo que se siguen diferentes pasos para detectar dónde puede hallarse el problema:

- Se ajusta manualmente el pandeo de los elementos, ya que el programa no puede detectarlo automáticamente y muchos de los perfiles están atados por el forjado y por otros perfiles metálicos. Se modifica el pandeo en el cordón superior de la celosía, en los perfiles perimetrales y en los pilares que tiene un atado horizontal en cada planta.
- El siguiente paso que se realiza para que el modelo resista es aumentar el tamaño de alguno de los perfiles.
- Con esta última modificación se observa que siguen sin cumplir por lo que se identifican los esfuerzos a los que están sometidas las barras, y se detecta que el acero asignado no es suficientemente resistente. Por lo que se aumenta el tipo de acero a S450.

Debido a que el predimensionamiento se realiza a través de detalles de revistas, se concluye que éstos pueden ser constructivos y no representan las dimensiones de los perfiles reales. Se cambian los siguientes elementos:

- 8_Soportes casetón con UB 203 → UB 305x102x25
- 11_Viga interior con UB 533 \rightarrow UB 610x229x101s
- 14_Viga en celosía con UKT152 + 2L 75·8 → UKT210x267x41 + 2L 75·8
- 15_Brochales con UB 305 → UB 533x210x82

Los perfiles utilizados no disminuyen de sección a medida que se alejan de la cota cero. Esto se ve claramente reflejado en los resultados de resistencia de los pilares, que se aproximan más a la unidad cuando más bajo se sitúan.

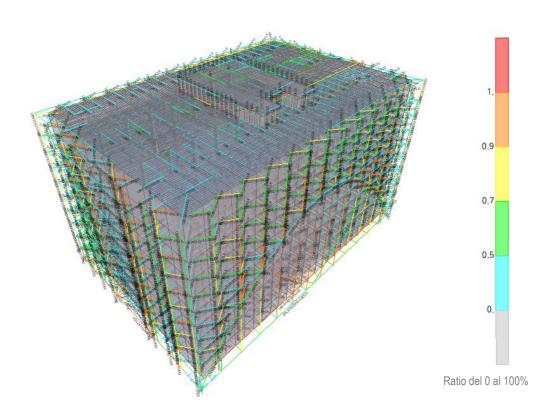


Figura 5.2-1. Resultado de resistencia de la estructura metálica. Fuente: creación propia mediante SAP2000

6 CONCLUSIÓN

El estudio contextual de la obra Exchange House me ha permitido conocer la trayectoria y relevancia de la firma SOM desde sus inicios hasta la actualidad, ofreciendo un incontable número de proyectos donde la estructura es la protagonista. Además, he podido conocer a profesionales del mundo de la arquitectura e ingeniería que han estado involucrados en dichos diseños. Asimismo, me ha resultado muy inspirador haber elegido este edificio, no solo por su carácter estructural sino por el entorno en el que se encuentra, el complejo financiero *Broadgate* de Londres. Cabe destacar el gran atractivo arquitectónico que ofrece este lugar innovador donde, de nuevo, la firma SOM ha dejado una gran huella. Desde esta perspectiva, se ha analizado la funcionalidad del edificio, así como su integración con las vías de la estación Liverpool Street.

Una vez comprendido el contexto en el que surge este proyecto, se ha procedido a estudiar el funcionamiento de su estructura a partir de publicaciones, artículos y demás referencias bibliográficas. Sin duda, se ha tratado de un proceso tedioso dada la falta de planos originales disponibles y la baja calidad de los mismos. No obstante, gracias a las fotografías de la obra se ha podido extraer la información más relevante para llevar a cabo este Trabajo de Fin de Grado. Esto ha sido posible porque la estructura es la propia imagen del edificio, quedando expuesta a la vista del espectador. Así, con la herramienta de dibujo AutoCad he podido recrear todos los elementos que integran la estructura con el fin de entender su funcionamiento y proceder al diseño del modelo de cálculo simplificado de una manera más clara. De esta forma, se llega a la conclusión que, cuando se está proyectando la obra de otro autor, es de vital importancia contar con documentos válidos en los que basarnos.

En cuanto al dibujo del modelo de cálculo, la dificultad se encontró en la simplificación de los apoyos, ya que en ellos convergen varios elementos y sus ejes no coinciden en un mismo punto. Gracias a la simetría y ortogonalidad de la planta, el modelo se pudo modificar en diferentes ocasiones de forma rápida hasta dar con la solución más apropiada. Insertado el modelo simplificado en el programa de cálculo y análisis SAP2000, se procedió al diseño de las secciones y a su asignación a las barras y elementos finitos. Muchas de estas secciones tuvieron que diseñarse desde cero, sin prontuario, debido a sus grandes dimensiones y complejidad. En este sentido, las enormes luces del edificio implican soluciones particulares. También cabe mencionar el proceso de estimación de las cargas a las que estaría sometido el edificio. Al encontrarse fuera de España, se tuvo que recurrir a anexos británicos para obtener datos de temperatura, viento y nieve, alargando así este proceso. A su vez, es sorprendente que las cargas térmicas aplicadas en la localización de Londres fuesen, según la normativa británica, las mismas que las estipuladas en el DB-SE-AE del Código Técnico de la Edificación, es decir, muy elevadas para elementos expuestos a la intemperie. Por lo tanto, se concluye que las cargas térmicas tienen un gran impacto en la estructura del edificio, que se ve reflejado en el diseño de los apoyos. Estos permiten diferentes movimientos para adaptarse a dilataciones y contracciones de la estructura.

Finalmente, los resultados demuestran que se cumplen las limitaciones de deformaciones establecidas por el código técnico. A pesar de que la flecha total es elevada, entorno a 10 centímetros, dadas las dimensiones de las luces del proyecto (la menor luz es de 15 metros) la normativa da por válidos los resultados obtenidos. Es interesante valorar cómo reacciona la estructura metálica a las cargas térmicas, puesto que gran parte de ella queda completamente expuesta sin ningún tipo de recubrimiento. Luego, se analiza el desplazamiento en los apoyos y se comprueba que estos no superan la distancia límite permitida por el diseño de estos nudos.

Asimismo, los perfiles definidos en el predimensionamiento, aunque son válidos para los estados límite de servicio, no cumplen a resistencia. La modificación del pandeo y el aumento del tamaño de algunos perfiles seguía sin ser suficiente. Manteniendo un tipo de acero convencional S275, la estructura debería crecer más del doble, alternativa que queda descartada por alejarse demasiado de la estructura real. Por lo tanto, para que los perfiles de este edificio tan peculiar pudieran cumplir con secciones de elementos visiblemente esbeltos, el tipo de acero debe ascender al S450. Esto tiene sentido ya que se trata de un edificio prácticamente suspendido en el aire. Cabe recordar que la presencia de los arcos como elementos de descarga juega un papel fundamental para reducir la cantidad de acero requerido.

7 BIBLIOGRAFÍA

- A closer look at SOM's AIA Twenty-Five Year Award-winning Broadgate Exchange House. (n.d.). Retrieved September 6, 2020, from https://bustler.net/news/4152/a-closer-look-at-som-s-aia-twenty-five-year-award-winning-broadgate-exchange-house
- AIA Honors SOM's Broadgate Exchange House with 25-Year Award | ArchDaily. (n.d.). Retrieved September 6, 2020, from https://www.archdaily.com/585620/aia-honors-som-s-broadgate-exchange-house-with-25-year-award
- Allinson, K., & Thornton, V. (1993). The City of London. In *Guide to London's Contemporary Architecture*. https://doi.org/10.1016/b978-0-7506-0782-7.50006-7
- British Standards. (2005). UK National Annex to Eurocode 1. Actions on structures. General actions. Wind actions. In *European Committee for Standardization*. https://doi.org/ICS 91.010.30; 93.040
- BroadGate Exchange House | SOM Arch2O.com. (n.d.). Retrieved September 6, 2020, from https://www.arch2o.com/broad-gate-exchange-house-som/
- Disused Stations: Broad Street Station. (n.d.). Retrieved September 6, 2020, from http://www.disused-stations.org.uk/b/broad_street/
- El edificio | Guggenheim Bilbao Museo. (n.d.). Retrieved September 6, 2020, from https://www.guggenheim-bilbao.eus/el-edificio
- Exchange House en Broadgate, de SOM, gana el Premio 25 años AIA | Sobre Arquitectura y más | Desde 1998. (n.d.). Retrieved September 6, 2020, from https://www.metalocus.es/es/noticias/exchange-house-en-broadgate-de-som-gana-el-premio-25-anos-aia
- Getting here / Around | Broadgate. (n.d.). Retrieved September 6, 2020, from https://www.broadgate.co.uk/getting-here/around
- Grimes, W. (2010, March 10). Bruce J. Graham, Chicago Architect Who Designed Sears Tower, Dies at 84 The New York Times. https://www.nytimes.com/2010/03/10/arts/design/10graham.html?ref=obituaries
- Iyengar, H., Baker, W., & Sinn, R. (1993). The Broadgate Exchange House, London, UK. *Structural Engineering International*. https://doi.org/10.2749/101686693780607651
- Kamin, B. (2019, July 10). Srinivasa 'Hal' Iyengar, structural engineer who helped design landmarks from Chicago to London to Spain, dies at 85 Chicago Tribune. https://www.chicagotribune.com/columns/blair-kamin/ct-biz-iyengar-obituary-kamin-0711-20190710-o35bd7bxw5aujdwtbzegwdjci4-story.html
- London Exchange House embArch. (n.d.). Retrieved September 4, 2020, from http://www.embarch.com/london-exchange-house
- Ministerio de Fomento. (2009). Documento Básico SE Seguridad Estructural. In *Código Técnico de la Edificación*.
- NCSE-02 Norma de Construcción Sismorresistente: Parte general y edificación., Catálogo general de publicaciones oficiales (2009).
- NICK GUTTRIDGE SOM Broadgate. (n.d.). Retrieved September 6, 2020, from http://www.nickguttridge.com/som-broadgate/ikojsi2yb7w3vkdomgxp0ywmhklj2z
- Our journey | Broadgate. (n.d.). Retrieved August 27, 2020, from https://www.broadgate.co.uk/our-journey
- Sandaker, B. N., Eggen, A. P., & Cruvellier, M. R. (2011). *The Arch and the Vault* (pp. 320–348) [Bookitem]. Routledge. https://doi.org/10.4324/9780203716113-16
- Schittich, C. (2015). SOM structural engineering (C. Schittich (Ed.)) [Book]. Detail, Institut für

- Internationale Architektur-Dokumentation.
- SOM | 875 North Michigan Avenue (formerly John Hancock Center). (n.d.). Retrieved September 6, 2020,
- https://www.som.com/projects/875_north_michigan_avenue_formerly_john_hancock_center SOM | Awards. (n.d.). Retrieved September 6, 2020, from https://www.som.com/about/awards
- SOM | Broadgate Exchange House. (n.d.). Retrieved August 27, 2020, from https://www.som.com/projects/broadgate_exchange_house
- SOM | Broadgate Exchange House Structural Engineering. (n.d.). Retrieved September 6, 2020, from https://www.som.com/projects/broadgate__exchange_house__structural_engineering
- SOM | Canary Wharf Master Plan. (n.d.). Retrieved September 6, 2020, from https://www.som.com/projects/canary_wharf_master_plan
- SOM | Lever House. (n.d.). Retrieved September 5, 2020, from https://www.som.com/projects/lever_house
- SOM | Skidmore, Owings & Merrill LLP. (n.d.). Retrieved August 27, 2020, from https://www.som.com/
- SOM | SOM's Exchange House at Broadgate in London Wins Prestigious AIA 25-Year Award. (n.d.-a).

 Retrieved September 4, 2020, from https://www.som.com/news/soms_exchange_house_at_broadgate_in_london_wins_prestigious_aia_25-year_award
- SOM | SOM's Exchange House at Broadgate in London Wins Prestigious AIA 25-Year Award. (n.d.-b).

 Retrieved September 5, 2020, from https://www.som.com/news/soms_exchange_house_at_broadgate_in_london_wins_prestigious_aia_25-year_award
- SOM | Willis Tower (formerly Sears Tower). (n.d.). Retrieved September 6, 2020, from https://www.som.com/projects/willis_tower_formerly_sears_tower
- Weingardt, R. G. (n.d.). Richard Buckminster Fuller and Srinivasa Iyengar [Article]. *Leadership and Management in Engineering*, 3(2), 104–107. https://doi.org/10.1061/(ASCE)1532-6748(2003)3:2(104)
- What is Broadgate? | Broadgate. (n.d.). Retrieved August 27, 2020, from https://www.broadgate.co.uk/about-Broadgate
- Woessner, J., Laurentiu, D., Giardini, D., Crowley, H., Cotton, F., Grünthal, G., Valensise, G., Arvidsson, R., Basili, R., Demircioglu, M. B., Hiemer, S., Meletti, C., Musson, R. W., Rovida, A. N., Sesetyan, K., Stucchi, M., Anastasiadis, A., Akkar, S., Engin Bal, I., ... Zschau, J. (2015). The 2013 European Seismic Hazard Model: key components and results. *Bulletin of Earthquake Engineering*, *13*(12), 3553–3596. https://doi.org/10.1007/s10518-015-9795-1

ÍNDICE DE TABLAS

Tabla 4.1-1. Elementos estructurales y constructivos asignados a barras y a elementos finitos modelados.	22
Tabla 4.4-1. Valor de las cargas muertas permanentes por metro cuadrado de superficie.	33
Tabla 4.4-2. Valor de la carga muerta permanente de la fachada principal por metro lineal.	33
Tabla 4.4-3. Valor de la carga muerta permanente de los cerramientos de los atrios por metro lineal.	34
Tabla 4.4-4. Valor de la sobrecarga de uso por metro cuadrado de superficie.	35
Tabla 4.5-1. Nomenclatura hipótesis de cargas	52
Tabla 5.1-1. Limitación de flecha considerando la integridad de los elementos constructivos	58
Tabla 5.1-2. Limitación de flecha considerando el confort de los usuarios	60
Tabla 5.1-3. Limitación de flecha considerando la apariencia de la obra	62
Tabla 5.1-4. Desplazamientos horizontales totales y locales debidos a la carga de viento.	64
Tabla 5.1-5 Desplazamientos horizontal local debidos acciones casi permanentes	65
Tabla 5.1-6. Desplazamientos de los nudos debidos a las cargas térmicas	66

ÍNDICE DE FIGURAS

Figura 2.1-2. Lever House. Fuente: Ezra Stoller (SOM Lever House, n.d.)	3
Figura 2.1-1. Complejo Canary Wharf en 2012. Fuente: Jason Hawkes (SOM Canary Wharf Master Plan, n.d.)	3
Figura 2.1-3. John Hancock Center. Fuente: Ezra Stoller (SOM North Michigan Avenue, n.d.)	4
Figura 2.1-4. Sears Tower. Fuente: Ezra Stoller (SOM Willis Tower, n.d.)	4
Figura 2.1-5. Museo Guggenheim Bilbao. Fuente: Erika Ede (El Edificio Guggenheim Bilbao Museo, n.d.)	4
Figura 2.2-1. Estaciones Broad Street y Liverpool Street en 1896. Fuente: (Disused Stations, Broad Street, n.d.)	5
Figura 2.2-2. Distribución de la intervención de Arup y SOM en el complejo Broadgate. Fuente: Allinson & Thornton,	, 1993 5
Figura 2.2-3. Mapa del complejo Broadgate de Londres en la actualidad. Fuente: (Getting Here / Around Broadgate	•
n.d.)	6
Figura 2.2-4. Plaza Exchange después y antes de ser construida. A la derecha vías de la estación Liverpool Street.	
Fuente: Alan Delancey (SOM Broadgate-Exchange House, n.d.)	6
Figura 2.3-1. Hall principal de acceso de vidrio. Fuente: Alan Williams (SOM Broadgate-Exchange House, n.d.)	7
Figura 2.3-2. Vista del edificio desde la Exchange Square. Fuente: Lucas Blair Simpson (SOM Broadgate-Exchang	-
House, n.d.)	,° 7
Figura 2.3-3. Plano de la planta baja del Exchange House. Fuente: Lueder, 1993	7
Figura 2.3-4. Escaleras de evacuación exteriores. Fuente: (SOM Broadgate-Exchange House, n.d.)	8
Figura 2.3-5. Vista de la planta baja desde la calle Primrose. Fuente: Nick Guttridge (BroadGate Exchange House	•
Arch2O.Com, n.d.)	30W- 8
Figura 2.3-6. Plano original con la sección longitudinal del edificio. Fuente: (Exchange House En Broadgate, de SOI	•
Gana el premio 25 años AIA Sobre arquitectura y más desde 1998, n.d.)	
	8
Figura 3.1-1. Transferencia de cargas de los pilares al arco. Fuente: lyengar et al., 1993	9
Figura 3.1-2. Disposición de los arcos. Fuente: creación propia	9
Figura 3.1-3. Hipótesis de geometría comprimida. Fuente: Sandaker et al., 2011	9
Figura 3.1-4. Hipótesis de cordón traccionado. Fuente: Sandaker et al., 2011	,9
Figura 3.1-6 Hipótesis de geometría comprimida sometida a carga lineal uniformemente distribuida. Fuente: Sandak al., 2011	er et 9
Figura 3.1-5. Hipótesis de cordón traccionado sometido a carga lineal uniformemente distribuida. Fuente: Sandaker	•
2011	9
Figura 3.1-7. Variaciones de las condiciones de esfuerzos de acuerdo con la geometría de la estructura. Fuente:	·
Sandaker et al., 2011	10
Figura 3.1-8. Pandeo con tirantes. Fuente: lyengar et al., 1993	10
Figura 3.1-9. Deformación bajo carga asimétrica con tirantes. Fuente: lyengar et al., 1993	10
Figura 3.1-10. Deformación bajo carga asimétrica sin tirantes. Fuente: lyengar et al., 1993	10
Figura 3.1-11. Pandeo sin tirantes. Fuente: lyengar et al., 1993	10
Figura 3.1-12. Alzado de los apoyos. Fuente: (SOM Broadgate-Exchange House-Structural Engineering, n.d.)	11
Figura 3.1-13. Alzado de los apoyos: 1 defite: (Com Bloadgate-Exchange Flouse-Ottdetdrat Engineering, fi.d.) Figura 3.1-13. Alzado lateral oeste del edificio. Fuente: (Exchange House En Broadgate, de SOM, Gana el premio 2	
años AIA Sobre arquitectura y más desde 1998, n.d.)	11
Figura 3.1-14. Elementos estructurales en el plano de los arcos exteriores. Fuente: Schittich, 2015.	12
Figura 3.1-15. Encuentro arco con pilares y tirantes. Fuente: (NICK GUTTRIDGE-SOM-Broadgate, n.d)	12
Figura 3.1-16. Sección en planta del forjado 1 del cuerpo principal a escala 1:500. Fuente: creación propia	13
Figura 3.1-17. Alzado longitudinal de la estructura del cuerpo principal a escala 1:500. Fuente: creación propia.	13
Figura 3.1-18. Sección en planta del forjado 9 del cuerpo principal a escala 1:500. Fuente: creación propia	14
Figura 3.1-19. Sección longitudinal del cuerpo principal a escala 1:500. Fuente: creación propia	14
Figura 3.1-20. Alzado lateral sur del cuerpo principal a escala 1:500. Fuente: creación propia	15
Figura 3.1-21. Sección transversal del cuerpo principal a escala 1:500. Fuente: creación propia	15
Figura 3.1-22. Sección y alzado del encuentro entre los tirantes y los pilares traccionados a escala 1:100. Fuente:	10
creación propia	16
Figura 3.1-23. Axonometría del encuentro de los arcos con el forjado primero. Fuente: creación propia	16
Figura 3.1-23. Axonomenta del encuentro de los arcos con el lorjado primero. Fuente: creación propia Figura 3.1-24. Alzados, plantas y secciones de los apoyos. Fuente: creación propia	17
Figura 3.2-1. Proceso de ejecución del arco de descarga soportado por puntales. Fuente: John Davies (AIA Honors	
SOM's Broadgate Exchange House with 25-Year Award ArchDaily, n.d.)	18
oom s broaugate Exchange house with 20-1ear Awaru Archibany, II.u.)	10

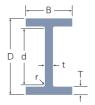
Figura 3.2-3. Uniones atomilladas de los elementos estructurales metálicos. Fuente: (London-Exchange House-EmbArch, n.d.) Figura 3.2-4. Vista general del proceso constructivo del edificio. Fuente: Schittich, 2015 Figura 3.2-5. Vistas hacia la estación de Liverpool Street antes de la construcción de la plaza Exchange. Fuente: John Davies. (A closer look at SOM's AIA Twenty-Five Year Award-Winning Broadgate Exchange House, n.d.) Figura 3.2-6. Colocación de las vigas en celosias de los vanos exteriores. Fuente: John Davies. (A closer look at SOM's AIA Twenty-Five Year Award-Winning Broadgate Exchange House, n.d.) Figura 4.1-2. Geometría del modelo de cálculo se selementos exteriores. Fuente: John Davies. (A closer look at SOM's AIA Twenty-Five Year Award-Winning Broadgate Exchange House, n.d.) Figura 4.1-3. Geometría del modelo de cálculo de los elementos exteriores de la estructura. Fuente: creación propia 21 Figura 4.1-5. Geometría del modelo de cálculo de los elementos exteriores de la estructura. Fuente: creación propia 31 Figura 4.1-6. Geometría del modelo de cálculo de los elementos del forjado tipo con atrios (forjado del 3 al 10). Fuente: creación propia 4.1-7. Geometría del modelo de cálculo de los elementos del forjado sin atrios (forjado 2). Fuente: creación propia 25 Figura 4.1-8. Geometría del modelo de cálculo de los elementos del primer forjado. Fuente: creación propia 26 Figura 4.2-1. Sección y propiedades de las vigas laterales de gran canto en primer forjado. Fuente: creación propia 27 Figura 4.2-2. Sección y propiedades de las diagonales de los arcos. Fuente: creación propia mediante SAP2000 Figura 4.2-3. Sección y propiedades de los diagonales de los arcos. Fuente: creación propia mediante SAP2000 Figura 4.2-4. Sección y propiedades de los diagonales de los arcos. Fuente: creación propia mediante SAP2000 Figura 4.2-5. Forjado colaborante cofraplus 60. Fuente: Catálogo comercial de Arval, ArcelorMittal forjados 28 Figura 4.3-5. Propiedades del forjado colaborante de 19 mm. Fuente: creaci	004E
In d.) 18 Figura 3.2-4. Vista general del proceso constructivo del edificio. Fuente: Schittich, 2015 19 Figura 3.2-5. Vistas hacia la estación de Liverpool Street antes de la construcción de la plaza Exchange. Fuente: John Davies. (A closer look at SOMs AIA Twenty-Five Year Award-Winning Broadgate Exchange House, n.d.) 20 Figura 3.2-6. Colocación de las vigas en celosías de los vanos exteriores. Fuente: John Davies. (A closer look at SOMs AIA Twenty-Five Year Award-Winning Broadgate Exchange House, n.d.) 21 Figura 4.1-1. Capas AutoCad. Fuente: creación propia 22 Figura 4.1-2. Geometría del modelo de cálculo simplificado. Fuente: creación propia 23 Figura 4.1-3. Geometría del modelo de cálculo de los elementos del casetón. Fuente: creación propia 24 Figura 4.1-4. Geometría del modelo de cálculo de los elementos del forjado tipo con atrios (forjado del 3 al 10). Fuente: creación propia 25 Figura 4.1-6. Geometría del modelo de cálculo de los elementos del forjado sin atrios (forjado 2). Fuente: creación propia 26 Figura 4.1-7. Geometría del modelo de cálculo de los elementos del forjado sin atrios (forjado 2). Fuente: creación propia 27 Figura 4.1-8. Geometría del modelo de cálculo de los elementos del forjado sin atrios (forjado 2). Fuente: creación propia 28 Figura 4.1-8. Geometría del modelo de cálculo de los elementos del primer forjado. Fuente: creación propia 29 Figura 4.2-1. Sección y propiedades de los tirantes horizontales de los arcos. Fuente: creación propia mediante 20 SAP2000 21 Figura 4.2-2. Sección y propiedades de las diagonales de los arcos. Fuente: creación propia mediante SAP2000 22 Figura 4.2-3. Sección y propiedades de las diagonales de los arcos. Fuente: creación propia mediante SAP2000 23 Figura 4.2-4. Sección y propiedades de los arcos fuente: creación propia mediante SAP2000 24 Figura 4.2-5. Forjado colaborante cofraplus 60. Fuente: Catáldogo comercial de Arval, ArcelorMittal forjados 25 Figura 4.2-7. Propiedades del forjado colaborante de 19 mm. Fuente: creación propia m	
Figura 3.2-4. Vista general del proceso constructivo del edificio. Fuente: Schittich, 2015 Figura 3.2-5. Vistas hacia la estación de Liverpool Street antes de la construcción de la plaza Exchange. Fuente: John Davies. (A closer look at SOM's Al Twenty-Five Year Award-Winning Broadgate Exchange House, n.d.) Figura 3.2-6. Colocación de las vigas en celosías de los vanos exteriores. Fuente: John Davies. (A closer look at SOM's Al Twenty-Five Year Award-Winning Broadgate Exchange House, n.d.) Figura 4.1-2. Geometría del modelo de cálculo simplificado. Fuente: creación propia Figura 4.1-3. Geometría del modelo de cálculo simplificado. Fuente: creación propia Figura 4.1-5. Geometría del modelo de cálculo de los elementos exteriores de la estructura. Fuente: creación propia Figura 4.1-5. Geometría del modelo de cálculo de los elementos exteriores de la estructura. Fuente: creación propia Figura 4.1-6. Geometría del modelo de cálculo de los elementos del forjado tipo con atrios (forjado el 3 al 10). Fuente: creación propia Figura 4.1-7. Geometría del modelo de cálculo de los elementos del forjado sin atrios (forjado 2). Fuente: creación propia Figura 4.1-8. Geometría del modelo de cálculo de los elementos del primer forjado. Fuente: creación propia Figura 4.1-8. Geometría del modelo de cálculo de los elementos del primer forjado. Fuente: creación propia Figura 4.2-1. Sección y propiedades de las vigas laterales de gran canto en primer forjado. Fuente: creación propia mediante SAP2000 Figura 4.2-3. Sección y propiedades de las diagonales de los arcos. Fuente: creación propia mediante SAP2000 Figura 4.2-4. Sección y propiedades de los segmentos de los arcos. Fuente: creación propia mediante SAP2000 Figura 4.2-5. Forjado colaborante corfaplus 60. Fuente: Catalogo comercial de Arval, ArcelorMittal forjados Figura 4.3-6. Porpiedades del forjado colaborante de 13 mm. Fuente: creación propia mediante SAP2000 Figura 4.3-7. Propiedades del forjado colaborante de 13 mm. Fuente: creación propia mediante SAP2000 Figura 4.3-8. Rest	
Figura 3.2-5. Vistas hacia la estación de Liverpool Street antes de la construcción de la plaza Exchange. Fuente: John Davies. (A closer look at SOMs AlA Twenty-Five Year Award-Winning Broadgate Exchange House, n.d.) 20 Figura 3.2-6. Colocación de las vigas en celosias de los vanos exteriores. Fuente: John Davies. (A closer look at SOMs AlA Twenty-Five Year Award-Winning Broadgate Exchange House, n.d.) 20 Figura 4.1-1. Capas AutoCad. Fuente: creación propia 21 Figura 4.1-2. Geometría del modelo de cálculo simplificado. Fuente: creación propia 21 Figura 4.1-3. Geometría del modelo de cálculo de los elementos del casetón. Fuente: creación propia 23 Figura 4.1-4. Geometría del modelo de cálculo de los elementos exteriores de la estructura. Fuente: creación propia 23 Figura 4.1-5. Geometría del modelo de cálculo de los elementos exteriores de la estructura. Fuente: creación propia 24 Figura 4.1-6. Geometría del modelo de cálculo de los elementos del forjado tipo con atrios (forjado del 3 al 10). Fuente: creación propia 24 Figura 4.1-6. Geometría del modelo de cálculo de los elementos del primer forjado. Fuente: creación propia 25 Figura 4.1-8. Geometría del modelo de cálculo de los elementos del primer forjado. Fuente: creación propia 25 Figura 4.2-1. Sección y propiedades de las vigas laterales de gran canto en primer forjado. Fuente: creación propia mediante SAP2000 27 Figura 4.2-2. Sección y propiedades de las diagonales de los arcos. Fuente: creación propia mediante SAP2000 27 Figura 4.2-3. Sección y propiedades de las diagonales de los arcos. Fuente: creación propia mediante SAP2000 27 Figura 4.2-4. Sección y propiedades de las diagonales de los arcos. Fuente: creación propia mediante SAP2000 27 Figura 4.2-5. Forjado colaborante cofraplus 60. Fuente: Catálogo comercial de Arval, ArcelorMittal forjados 28 Figura 4.3-1. Planta. Desplazamiento en v. Fuente: Schittich, 2015 30 Figura 4.3-3. Planta del primer forjado. Fuente: creación propia mediante SAP2000 27 Figura 4.3-3. Restricciones de movimiento en nudos 8 y	
Davies, (A closer look at SOM's AIA Twenty-Five Year Award-Winning Broadgate Exchange House, n.d.) 20 Figura 3.2-6. Colocación de las vigas en celosías de los vanos exteriores. Fuente: John Davies. (A closer look at SOM's AIA Twenty-Five Year Award-Winning Broadgate Exchange House, n.d.) 20 Figura 4.1-1. Capas AutoCad. Fuente: creación propia 21 Figura 4.1-2. Geometria del modelo de cálculo simplificado. Fuente: creación propia 23 Figura 4.1-2. Geometria del modelo de cálculo de los elementos del casetón. Fuente: creación propia 23 Figura 4.1-4. Geometria del modelo de cálculo de los elementos del casetón. Fuente: creación propia 23 Figura 4.1-5. Geometria del modelo de cálculo de los elementos del forjado tipo con atrios (forjado del 3 al 10). Fuente: creación propia 24 Figura 4.1-6. Geometria del modelo de cálculo de los elementos del forjado tipo con atrios (forjado del 3 al 10). Fuente: creación propia 24 Figura 4.1-7. Geometria del modelo de cálculo de los elementos del forjado sin atrios (forjado 2). Fuente: creación propia 25 Figura 4.1-8. Geometria del modelo de cálculo de los elementos del forjado sin atrios (forjado 2). Fuente: creación propia 25 Figura 4.1-9. Sección y propiedades de los tirantes horizontales de los arcos. Fuente: creación propia 26 Figura 4.2-1. Sección y propiedades de los tirantes horizontales de los arcos. Fuente: creación propia 26 Figura 4.2-2. Sección y propiedades de las diagonales de los arcos. Fuente: creación propia mediante SAP2000 27 Figura 4.2-3. Sección y propiedades de los segmentos de los arcos. Fuente: creación propia mediante SAP2000 27 Figura 4.2-4. Sección y propiedades de los segmentos de los arcos. Fuente: creación propia mediante SAP2000 27 Figura 4.2-5. Forjado colaborante corfaplus 60. Fuente: Catálogo comercial de Arval, Arcelor/Mittal forjados 28 Figura 4.2-7. Propiedades del forjado colaborante de 13 mm. Fuente: creación propia mediante SAP2000 28 Figura 4.3-8. Sección Desplazamiento en v. Fuente: Schittich, 2015 30 Figura 4.3-9. Sección Desplazamiento en	,
Figura 3.2-6. Colocación de las vigas en celosías de los vanos exteriores. Fuente: John Davies. (A closer look at SOM's AIA Twenty-Five Year Award-Winning Bradgate Exchange House, n.d.) Figura 4.1-1. Capas AutoCad. Fuente: creación propia 21 Figura 4.1-2. Geometría del modelo de cálculo simplificado. Fuente: creación propia 21 Figura 4.1-3. Geometría del modelo de cálculo de los elementos del casetón. Fuente: creación propia 23 Figura 4.1-5. Geometría del modelo de cálculo de los elementos del casetón. Fuente: creación propia 25 Figura 4.1-5. Geometría del modelo de cálculo de los elementos del forjado tipo con atrios (forjado del 3 al 10). Fuente: creación propia 27 Figura 4.1-6. Geometría del modelo de cálculo de los elementos del forjado tipo con atrios (forjado del 3 al 10). Fuente: creación propia 26 Figura 4.1-7. Geometría del modelo de cálculo de los elementos del forjado sin atrios (forjado 2). Fuente: creación propia 26 Figura 4.1-8. Geometría del modelo de cálculo de los elementos del primer forjado. Fuente: creación propia 26 Figura 4.2-1. Sección y propiedades de los tirantes horizontales de los arcos. Fuente: creación propia mediante SAP2000 27 Figura 4.2-2. Sección y propiedades de las vigas laterales de gran canto en primer forjado. Fuente: creación propia mediante SAP2000 27 Figura 4.2-3. Sección y propiedades de las diagonales de los arcos. Fuente: creación propia mediante SAP2000 27 Figura 4.2-3. Forjado colaborante cofraplus 60. Fuente: Catálogo comercial de Arval, ArcelorMittal forjados 28 Figura 4.2-6. Propiedades del forjado colaborante de 13 mm. Fuente: creación propia mediante SAP2000 28 Figura 4.3-7. Propiedades del forjado colaborante de 13 mm. Fuente: creación propia mediante SAP2000 29 Figura 4.3-8. Planta del primer forjado. Fuente: creación propia mediante SAP2000 30 Figura 4.3-9. Planta del primer forjado. Fuente: creación propia mediante SAP2000 31 Figura 4.3-9. Restricciones de movimiento en nudos 8 y C. Fuente: creación propia mediante SAP2000 31 Figura 4.3-9.	· · · · · · · · · · · · · · · · · · ·
AlA Twenty-Five Year Award-Winning Broadgate Exchange House, n.d.) Figura 4.1-1. Capas AutoCad. Fuente: creación propia Figura 4.1-2. Geometría del modelo de cálculo simplificado. Fuente: creación propia Figura 4.1-3. Geometría del modelo de cálculo de los elementos del casetón. Fuente: creación propia Zi Figura 4.1-4. Geometría del modelo de cálculo de los elementos del casetón. Fuente: creación propia Zi Figura 4.1-5. Geometría del modelo de cálculo de los elementos del forjado tipo con atrios (forjado del 3 al 10). Fuente: creación propia Figura 4.1-6. Geometría del modelo de cálculo de los elementos de la cubierta principal. Fuente: creación propia Figura 4.1-7. Geometría del modelo de cálculo de los elementos del forjado sin atrios (forjado 2). Fuente: creación propia Figura 4.1-8. Geometría del modelo de cálculo de los elementos del primer forjado. Fuente: creación propia Figura 4.2-1. Sección y propiedades de los tirantes horizontales de los arcos. Fuente: creación propia mediante SAP2000 Figura 4.2-2. Sección y propiedades de las vigas laterales de gran canto en primer forjado. Fuente: creación propia mediante SAP2000 Figura 4.2-3. Sección y propiedades de las diagonales de los arcos. Fuente: creación propia mediante SAP2000 Figura 4.2-4. Sección y propiedades de los segmentos de los arcos. Fuente: creación propia mediante SAP2000 Figura 4.2-5. Forjado colaborante cofraplus 60. Fuente: Catálogo comercial de Arval, ArcelorMittal forjados Figura 4.2-7. Propiedades del forjado colaborante de 19 mm. Fuente: creación propia mediante SAP2000 Figura 4.3-1. Planta. Desplazamiento en x. Fuente: Schittich, 2015 Figura 4.3-3. Planta del primer forjado. Fuente: creación propia 30 Figura 4.3-3. Planta del primer forjado. Fuente: creación propia 31 Figura 4.3-3. Restricciones de movimiento en nudos 8 y D. Fuente: creación propia mediante SAP2000 32 Figura 4.3-3. Tirante tipo 8 y C. Fuente: creación propia mediante SAP2000 33 Figura 4.3-3. Tirante tipo 8 y C. Fuente: (SOM Broadgate-Exchange Hous	· · · · · · · · · · · · · · · · · · ·
Figura 4.1-1. Capas AutoCad. Fuente: creación propia 21 Figura 4.1-2. Geometría del modelo de cálculo simplificado. Fuente: creación propia 23 Figura 4.1-3. Geometría del modelo de cálculo de los elementos del casetón. Fuente: creación propia 24 Figura 4.1-5. Geometría del modelo de cálculo de los elementos exteriores de la estructura. Fuente: creación propia 25 Figura 4.1-6. Geometría del modelo de cálculo de los elementos del forjado tipo con atrios (forjado del 3 al 10). Fuente: creación propia 26 Figura 4.1-6. Geometría del modelo de cálculo de los elementos del forjado tipo con atrios (forjado del 3 al 10). Fuente: creación propia 27 Figura 4.1-7. Geometría del modelo de cálculo de los elementos del forjado sin atrios (forjado 2). Fuente: creación propia 28 Figura 4.1-8. Geometría del modelo de cálculo de los elementos del primer forjado. Fuente: creación propia 29 Figura 4.2-1. Sección y propiedades de los tirantes horizontales de los arcos. Fuente: creación propia mediante SAP2000 20 Figura 4.2-2. Sección y propiedades de las vigas laterales de gran canto en primer forjado. Fuente: creación propia mediante SAP2000 20 Figura 4.2-3. Sección y propiedades de las diagonales de los arcos. Fuente: creación propia mediante SAP2000 21 Figura 4.2-4. Sección y propiedades de los segmentos de los arcos. Fuente: creación propia mediante SAP2000 22 Figura 4.2-5. Forjado colaborante cofraplus 60. Fuente: Catálogo comercial de Arval, ArcelorMittal forjados 28 Figura 4.2-6. Propiedades del forjado colaborante de 19 mm. Fuente: creación propia mediante SAP2000 29 Figura 4.3-7. Propiedades del forjado colaborante de 13 mm. Fuente: creación propia mediante SAP2000 20 Figura 4.3-3. Planta del primer forjado. Fuente: Schittich, 2015 30 Figura 4.3-3. Restricciones de movimiento en nudos P y C. Fuente: creación propia mediante SAP2000 31 Figura 4.3-3. Restricciones de movimiento en nudos P y G. Fuente: creación propia mediante SAP2000 32 Figura 4.3-3. Tirantes tipo B y C. Fuente: (SOM Broadgate-Exchange Hou	
Figura 4.1-2. Geometría del modelo de cálculo simplificado. Fuente: creación propia Figura 4.1-3. Geometría del modelo de cálculo de los elementos del casetón. Fuente: creación propia Figura 4.1-5. Geometría del modelo de cálculo de los elementos exteriores de la estructura. Fuente: creación propia Figura 4.1-5. Geometría del modelo de cálculo de los elementos del forjado tipo con atrios (forjado del 3 al 10). Fuente: creación propia Figura 4.1-6. Geometría del modelo de cálculo de los elementos del acubierta principal. Fuente: creación propia Figura 4.1-7. Geometría del modelo de cálculo de los elementos del forjado sin atrios (forjado 2). Fuente: creación propia Figura 4.1-8. Geometría del modelo de cálculo de los elementos del primer forjado. Fuente: creación propia Figura 4.2-1. Sección y propiedades de los tirantes horizontales de los arcos. Fuente: creación propia mediante SAP2000 Figura 4.2-2. Sección y propiedades de las vigas laterales de gran canto en primer forjado. Fuente: creación propia Figura 4.2-3. Sección y propiedades de los segmentos de los arcos. Fuente: creación propia mediante SAP2000 Figura 4.2-3. Sección y propiedades de los segmentos de los arcos. Fuente: creación propia mediante SAP2000 Figura 4.2-4. Sección y propiedades de los segmentos de los arcos. Fuente: creación propia mediante SAP2000 Figura 4.2-5. Forjado colaborante cofraplus 60. Fuente: Catálogo comercial de Arval, ArcelorMittal forjados Figura 4.2-6. Propiedades del forjado colaborante de 19 mm. Fuente: creación propia mediante SAP2000 Figura 4.3-1. Planta. Desplazamiento en x. Fuente: Schittich, 2015 Figura 4.3-3. Planta del primer forjado. Fuente: creación propia mediante SAP2000 Figura 4.3-4. Restricciones de movimiento en nudos A y D. Fuente: creación propia mediante SAP2000 Figura 4.3-5. Restricciones de movimiento en nudos F y G. Fuente: creación propia mediante SAP2000 Figura 4.3-7. Restricciones de movimiento en nudos F y G. Fuente: creación propia mediante SAP2000 Figura 4.3-1. Condición de biarticulación en los ti	
Figura 4.1-3. Geometría del modelo de cálculo de los elementos del casetón. Fuente: creación propia 23 Figura 4.1-5. Geometría del modelo de cálculo de los elementos exteriores de la estructura. Fuente: creación propia 24 Figura 4.1-5. Geometría del modelo de cálculo de los elementos del forjado tipo con atrios (forjado del 3 al 10). Fuente: creación propia 24 Figura 4.1-6. Geometría del modelo de cálculo de los elementos del forjado tipo con atrios (forjado 2). Fuente: creación propia 24 Figura 4.1-7. Geometría del modelo de cálculo de los elementos del forjado sin atrios (forjado 2). Fuente: creación propia 25 Figura 4.1-8. Geometría del modelo de cálculo de los elementos del primer forjado. Fuente: creación propia 25 Figura 4.2-1. Sección y propiedades de los tirantes horizontales de los arcos. Fuente: creación propia mediante SAP2000 26 Figura 4.2-2. Sección y propiedades de las vigas laterales de gran canto en primer forjado. Fuente: creación propia mediante SAP2000 27 Figura 4.2-3. Sección y propiedades de las diagonales de los arcos. Fuente: creación propia mediante SAP2000 27 Figura 4.2-4. Sección y propiedades de los segmentos de los arcos. Fuente: creación propia mediante SAP2000 27 Figura 4.2-5. Forjado colaborante cofraplus 60. Fuente: Catálogo comercial de Arval, ArcelorMittal forjados 28 Figura 4.2-5. Propiedades del forjado colaborante de 19 mm. Fuente: creación propia mediante SAP2000 28 Figura 4.3-1. Planta. Desplazamiento en x. Fuente: Schittich, 2015 30 Figura 4.3-3. Planta del primer forjado. Fuente: Schittich, 2015 30 Figura 4.3-3. Planta del primer forjado. Fuente: Schittich, 2015 30 Figura 4.3-4. Restricciones de movimiento en nudos B y C. Fuente: creación propia mediante SAP2000 31 Figura 4.3-5. Restricciones de movimiento en nudos S y G. Fuente: creación propia mediante SAP2000 31 Figura 4.3-6. Restricciones de movimiento en nudos F y G. Fuente: creación propia mediante SAP2000 31 Figura 4.3-7. Restricciones de movimiento en nudos F y G. Fuente: creación propia mediante SAP2000 31 Figur	
Figura 4.1-4. Geometría del modelo de cálculo de los elementos exteriores de la estructura. Fuente: creación propia Figura 4.1-5. Geometría del modelo de cálculo de los elementos del forjado tipo con atrios (forjado del 3 al 10). Fuente: creación propia Figura 4.1-6. Geometría del modelo de cálculo de los elementos de la cubierta principal. Fuente: creación propia Figura 4.1-7. Geometría del modelo de cálculo de los elementos del forjado sin atrios (forjado 2). Fuente: creación propia Figura 4.1-8. Geometría del modelo de cálculo de los elementos del primer forjado. Fuente: creación propia Figura 4.2-1. Sección y propiedades de los tirantes horizontales de los arcos. Fuente: creación propia mediante SAP2000 Figura 4.2-2. Sección y propiedades de las vigas laterales de gran canto en primer forjado. Fuente: creación propia mediante SAP2000 Figura 4.2-3. Sección y propiedades de los segmentos de los arcos. Fuente: creación propia mediante SAP2000 Figura 4.2-4. Sección y propiedades de los segmentos de los arcos. Fuente: creación propia mediante SAP2000 Figura 4.2-5. Forjado colaborante cofraplus 60. Fuente: Catálogo comercial de Arval, ArcelorMittal forjados Figura 4.2-6. Propiedades del forjado colaborante de 19 mm. Fuente: creación propia mediante SAP2000 Figura 4.3-1. Planta. Desplazamiento en x. Fuente: Schittich, 2015 Figura 4.3-2. Sección. Desplazamiento en x. Fuente: Schittich, 2015 Figura 4.3-3. Planta del primer forjado. Fuente: creación propia Figura 4.3-4. Restricciones de movimiento en nudos B y C. Fuente: creación propia mediante SAP2000 Figura 4.3-6. Restricciones de movimiento en nudos F y G. Fuente: creación propia mediante SAP2000 Figura 4.3-7. Restricciones de movimiento en nudos F y G. Fuente: creación propia mediante SAP2000 Figura 4.3-8. Tirante tipo A. Fuente: (SOM Broadgate-Exchange House, n.d.) Figura 4.3-9. Tirante tipo A. Fuente: (SOM Broadgate-Exchange House, n.d.) Figura 4.3-10. Condición de biarticulación en los tirantes tipo A y B. Fuente: creación propia mediante SAP2000 Figura 4	
Figura 4.1-5. Geometría del modelo de cálculo de los elementos del forjado tipo con atrios (forjado del 3 al 10). Fuente: creación propia 24 Figura 4.1-6. Geometría del modelo de cálculo de los elementos de la cubierta principal. Fuente: creación propia 25 Figura 4.1-7. Geometría del modelo de cálculo de los elementos del forjado sin atrios (forjado 2). Fuente: creación propia 25 Figura 4.1-8. Geometría del modelo de cálculo de los elementos del primer forjado. Fuente: creación propia 26 Figura 4.2-1. Sección y propiedades de los tirantes horizontales de los arcos. Fuente: creación propia mediante 27 Figura 4.2-2. Sección y propiedades de las vigas laterales de gran canto en primer forjado. Fuente: creación propia 27 Figura 4.2-3. Sección y propiedades de las diagonales de los arcos. Fuente: creación propia mediante SAP2000 28 Figura 4.2-4. Sección y propiedades de los segmentos de los arcos. Fuente: creación propia mediante SAP2000 29 Figura 4.2-5. Forjado colaborante de 19 mm. Fuente: creación propia mediante SAP2000 29 Figura 4.3-1. Planta. Desplazamiento en x. Fuente: Schittich, 2015 Figura 4.3-3. Planta del primer forjado. Fuente: creación propia 30 Figura 4.3-4. Restricciones de movimiento en nudos B y C. Fuente: creación propia mediante SAP2000 31 Figura 4.3-5. Restricciones de movimiento en nudos P y G. Fuente: creación propia mediante SAP2000 31 Figura 4.3-6. Restricciones de movimiento en nudos P y G. Fuente: creación propia mediante SAP2000 31 Figura 4.3-7. Restricciones de movimiento en nudos P y G. Fuente: creación propia mediante SAP2000 31 Figura 4.3-8. Tirantes tipo B y C. Fuente: (SOM Broadgate-Exchange House, n.d.) 31 Figura 4.3-1. Condición de biarticulación en los tirantes tipo A y B. Fuente: creación propia mediante SAP2000 32 Figura 4.3-1. Condición de biarticulación en los tirantes tipo C. Fuente: creación propia mediante SAP2000 32 Figura 4.4-1. Tabla C.5 del Anejo C del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-1.	
Figura 4.1-6. Geometría del modelo de cálculo de los elementos de la cubierta principal. Fuente: creación propia 24 Figura 4.1-7. Geometría del modelo de cálculo de los elementos del forjado sin atrios (forjado 2). Fuente: creación propia 25 Figura 4.1-8. Geometría del modelo de cálculo de los elementos del primer forjado. Fuente: creación propia 25 Figura 4.1-8. Geometría del modelo de cálculo de los elementos del primer forjado. Fuente: creación propia 25 Figura 4.2-1. Sección y propiedades de los tirantes horizontales de los arcos. Fuente: creación propia mediante SAP2000 26 Figura 4.2-2. Sección y propiedades de las vigas laterales de gran canto en primer forjado. Fuente: creación propia mediante SAP2000 27 Figura 4.2-3. Sección y propiedades de las diagonales de los arcos. Fuente: creación propia mediante SAP2000 27 Figura 4.2-4. Sección y propiedades de los segmentos de los arcos. Fuente: creación propia mediante SAP2000 27 Figura 4.2-5. Forjado colaborante cofraplus 60. Fuente: Catálogo comercial de Arval, ArcelorMittal forjados 28 Figura 4.2-6. Propiedades del forjado colaborante de 19 mm. Fuente: creación propia mediante SAP2000 28 Figura 4.3-1. Planta. Desplazamiento en x. Fuente: Schittich, 2015 30 Figura 4.3-3. Planta del primer forjado. Fuente: creación propia mediante SAP2000 30 Figura 4.3-3. Restricciones de movimiento en nudos B y C. Fuente: creación propia mediante SAP2000 31 Figura 4.3-4. Restricciones de movimiento en nudos F y G. Fuente: creación propia mediante SAP2000 31 Figura 4.3-7. Restricciones de movimiento en nudos F y G. Fuente: creación propia mediante SAP2000 31 Figura 4.3-8. Tirante tipo B y C. Fuente: (SOM Broadgate-Exchange House, n.d.) 31 Figura 4.3-9. Tirante tipo A Fuente: (SOM Broadgate-Exchange House, n.d.) 31 Figura 4.3-10. Condición de biarticulación en los tirantes tipo A y B. Fuente: creación propia mediante SAP2000 32 Figura 4.3-11. Condición de biarticulación en los tirantes tipo A y B. Fuente: creación propia mediante SAP2000 32 Figura 4.3-11. Condición de biart	
Figura 4.1-6. Geometría del modelo de cálculo de los elementos de la cubierta principal. Fuente: creación propia Figura 4.1-7. Geometría del modelo de cálculo de los elementos del forjado sin atrios (forjado 2). Fuente: creación propia Figura 4.1-8. Geometría del modelo de cálculo de los elementos del primer forjado. Fuente: creación propia Figura 4.2-1. Sección y propiedades de los tirantes horizontales de los arcos. Fuente: creación propia mediante SAP2000 Figura 4.2-2. Sección y propiedades de las vigas laterales de gran canto en primer forjado. Fuente: creación propia mediante SAP2000 Figura 4.2-3. Sección y propiedades de las diagonales de los arcos. Fuente: creación propia mediante SAP2000 Figura 4.2-4. Sección y propiedades de los segmentos de los arcos. Fuente: creación propia mediante SAP2000 Figura 4.2-5. Forjado colaborante cofraplus 60. Fuente: Catálogo comercial de Arval, ArcelorMittal forjados Figura 4.2-6. Propiedades del forjado colaborante de 19 mm. Fuente: creación propia mediante SAP2000 Figura 4.2-7. Propiedades del forjado colaborante de 13 mm. Fuente: creación propia mediante SAP2000 Figura 4.3-1. Planta. Desplazamiento en x. Fuente: Schittich, 2015 Figura 4.3-2. Sección. Desplazamiento en y. Fuente: Schittich, 2015 Figura 4.3-3. Planta del primer forjado. Fuente: creación propia Figura 4.3-4. Restricciones de movimiento en nudos B y C. Fuente: creación propia mediante SAP2000 Figura 4.3-6. Restricciones de movimiento en nudos F y G. Fuente: creación propia mediante SAP2000 Figura 4.3-7. Restricciones de movimiento en nudos F y H. Fuente: creación propia mediante SAP2000 Figura 4.3-8. Tirantes tipo B y C. Fuente: (SOM Broadgate-Exchange House, n.d.) Figura 4.3-9. Tirante tipo A. Fuente: (SOM Broadgate-Exchange House, n.d.) Figura 4.3-1. Condición de biarticulación en los tirantes tipo C. Fuente: creación propia mediante SAP2000 Figura 4.3-1. Condición de biarticulación en los tirantes tipo C. Fuente: creación propia mediante SAP2000 Figura 4.3-1. Tabla C.5 del Anejo C del DB-SE-AE del	
Figura 4.1-7. Geometría del modelo de cálculo de los elementos del forjado sin atrios (forjado 2). Fuente: creación propia 25 Figura 4.1-8. Geometría del modelo de cálculo de los elementos del primer forjado. Fuente: creación propia 25 Figura 4.2-1. Sección y propiedades de los tirantes horizontales de los arcos. Fuente: creación propia mediante SAP2000 26 Figura 4.2-3. Sección y propiedades de las vigas laterales de gran canto en primer forjado. Fuente: creación propia 27 Figura 4.2-3. Sección y propiedades de las diagonales de los arcos. Fuente: creación propia mediante SAP2000 27 Figura 4.2-4. Sección y propiedades de los segmentos de los arcos. Fuente: creación propia mediante SAP2000 27 Figura 4.2-5. Forjado colaborante cofraplus 60. Fuente: Catálogo comercial de Arval, ArcelorMittal forjados 28 Figura 4.2-6. Propiedades del forjado colaborante de 13 mm. Fuente: creación propia mediante SAP2000 28 Figura 4.2-7. Propiedades del forjado colaborante de 13 mm. Fuente: creación propia mediante SAP2000 29 Figura 4.3-1. Planta. Desplazamiento en x. Fuente: Schittich, 2015 30 Figura 4.3-3. Planta del primer forjado. Fuente: creación propia mediante SAP2000 31 Figura 4.3-5. Restricciones de movimiento en nudos B y C. Fuente: creación propia mediante SAP2000 31 Figura 4.3-6. Restricciones de movimiento en nudos F y G. Fuente: creación propia mediante SAP2000 31 Figura 4.3-7. Restricciones de movimiento en nudos F y G. Fuente: creación propia mediante SAP2000 31 Figura 4.3-8. Tirantes tipo B y C. Fuente: (SOM Broadgate-Exchange House, n.d.) 31 Figura 4.3-9. Tirante tipo A. Fuente: (SOM Broadgate-Exchange House, n.d.) 31 Figura 4.3-1. Condición de biarticulación en los tirantes tipo A y B. Fuente: creación propia mediante SAP2000 32 Figura 4.3-1. Condición de biarticulación en los tirantes tipo C. Fuente: creación propia mediante SAP2000 32 Figura 4.3-1. Condición de biarticulación en los tirantes tipo C. Fuente: creación propia mediante SAP2000 32 Figura 4.4-1. Tabla C.2 del Anejo C del DB-SE-AE del Código Técnic	1 1
Figura 4.1-8. Geometría del modelo de cálculo de los elementos del primer forjado. Fuente: creación propia 25 Figura 4.2-1. Sección y propiedades de los tirantes horizontales de los arcos. Fuente: creación propia mediante SAP2000 26 Figura 4.2-2. Sección y propiedades de las vigas laterales de gran canto en primer forjado. Fuente: creación propia mediante SAP2000 27 Figura 4.2-3. Sección y propiedades de las diagonales de los arcos. Fuente: creación propia mediante SAP2000 27 Figura 4.2-5. Forjado colaborante cofraplus 60. Fuente: Catálogo comercial de Arval, ArcelorMittal forjados 27 Figura 4.2-6. Propiedades del forjado colaborante de 19 mm. Fuente: creación propia mediante SAP2000 28 Figura 4.2-7. Propiedades del forjado colaborante de 13 mm. Fuente: creación propia mediante SAP2000 29 Figura 4.3-1. Planta. Desplazamiento en x. Fuente: Schittich, 2015 30 Figura 4.3-3. Planta del primer forjado. Fuente: creación propia 30 Figura 4.3-3. Restricciones de movimiento en nudos B y C. Fuente: creación propia mediante SAP2000 31 Figura 4.3-5. Restricciones de movimiento en nudos F y G. Fuente: creación propia mediante SAP2000 31 Figura 4.3-6. Restricciones de movimiento en nudos F y G. Fuente: creación propia mediante SAP2000 31 Figura 4.3-7. Restricciones de movimiento en nudos F y G. Fuente: creación propia mediante SAP2000 31 Figura 4.3-8. Tirantes tipo B y C. Fuente: (SOM Broadgate-Exchange House, n.d.) 31 Figura 4.3-9. Tirante tipo A. Fuente: (SOM Broadgate-Exchange House, n.d.) 31 Figura 4.3-1. Condición de biarticulación en los tirantes tipo A y B. Fuente: creación propia mediante SAP2000 32 Figura 4.3-1. Condición de biarticulación en los tirantes tipo C. Fuente: creación propia mediante SAP2000 32 Figura 4.3-1. Tabla C.5 del Anejo C del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 34 Figura 4.4-1. Tabla C.5 del Anejo C del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 34 Figura 4.4-3. Tabla 3.1 del DB-SE-AE del Código Técnico de	
Figura 4.1-8. Geometría del modelo de cálculo de los elementos del primer forjado. Fuente: creación propia 56 Figura 4.2-1. Sección y propiedades de los tirantes horizontales de los arcos. Fuente: creación propia mediante 56 SAP2000 26 Figura 4.2-2. Sección y propiedades de las vigas laterales de gran canto en primer forjado. Fuente: creación propia mediante 56 SAP2000 27 Figura 4.2-3. Sección y propiedades de las diagonales de los arcos. Fuente: creación propia mediante 56 SAP2000 27 Figura 4.2-4. Sección y propiedades de los segmentos de los arcos. Fuente: creación propia mediante 56 SAP2000 27 Figura 4.2-5. Forjado colaborante cofraplus 60. Fuente: Catálogo comercial de Arval, ArcelorMittal forjados 28 Figura 4.2-6. Propiedades del forjado colaborante de 19 mm. Fuente: creación propia mediante 56 SAP2000 27 Figura 4.3-1. Planta. Desplazamiento en x. Fuente: Schittich, 2015 30 Figura 4.3-3. Planta del primer forjado. Fuente: creación propia 30 Figura 4.3-4. Restricciones de movimiento en nudos 8 y C. Fuente: creación propia mediante 56 SAP2000 31 Figura 4.3-6. Restricciones de movimiento en nudos F y G. Fuente: creación propia mediante 56 SAP2000 31 Figura 4.3-6. Restricciones de movimiento en nudos F y G. Fuente: creación propia mediante 56 SAP2000 31 Figura 4.3-9. Tirante tipo A. Fuente: (SOM Broadgate-Exchange House, n.d.) 31 Figura 4.3-9. Tirante tipo A. Fuente: (SOM Broadgate-Exchange House, n.d.) 31 Figura 4.3-1. Condición de biarticulación en los tirantes tipo A y B. Fuente: creación propia mediante 56 SAP2000 32 Figura 4.4-1. Tabla C.5 del Anejo C del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 34 Figura 4.4-1. Tabla C.5 del Anejo C del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 35 Figura 4.4-4. Mapa con los valores básicos de la velocidad del viento en Reino unido. Fuente: UK National Annex to Eurocode 1. Wind actions 36	
Figura 4.2-1. Sección y propiedades de los tirantes horizontales de los arcos. Fuente: creación propia mediante SAP2000 Figura 4.2-2. Sección y propiedades de las vigas laterales de gran canto en primer forjado. Fuente: creación propia mediante SAP2000 Figura 4.2-3. Sección y propiedades de las diagonales de los arcos. Fuente: creación propia mediante SAP2000 Figura 4.2-4. Sección y propiedades de los segmentos de los arcos. Fuente: creación propia mediante SAP2000 Figura 4.2-5. Forjado colaborante cofraplus 60. Fuente: Catálogo comercial de Arval, ArcelorMittal forjados Figura 4.2-6. Propiedades del forjado colaborante de 19 mm. Fuente: creación propia mediante SAP2000 28 Figura 4.2-7. Propiedades del forjado colaborante de 13 mm. Fuente: creación propia mediante SAP2000 29 Figura 4.3-1. Planta. Desplazamiento en x. Fuente: Schittich, 2015 30 Figura 4.3-3. Planta del primer forjado. Fuente: creación propia 30 Figura 4.3-3. Planta del primer forjado. Fuente: creación propia 31 Figura 4.3-4. Restricciones de movimiento en nudos A y D. Fuente: creación propia mediante SAP2000 32 Figura 4.3-6. Restricciones de movimiento en nudos F y G. Fuente: creación propia mediante SAP2000 31 Figura 4.3-7. Restricciones de movimiento en nudos F y G. Fuente: creación propia mediante SAP2000 31 Figura 4.3-9. Tirante tipo A. Fuente: (SOM Broadgate-Exchange House, n.d.) Figura 4.3-9. Tirante tipo A. Fuente: (SOM Broadgate-Exchange House, n.d.) Figura 4.3-11. Condición de biarticulación en los tirantes tipo A y B. Fuente: creación propia mediante SAP2000 32 Figura 4.3-11. Condición de biarticulación en los tirantes tipo C. Fuente: creación propia mediante SAP2000 33 Figura 4.4-1. Tabla C.5 del Anejo C del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-1. Tabla C.5 del Anejo C del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-4. Mapa con los valores básicos de la velocidad del viento en Reino unido. Fuente: UK Nation	
SAP2000 Figura 4.2-2. Sección y propiedades de las vigas laterales de gran canto en primer forjado. Fuente: creación propia mediante SAP2000 Figura 4.2-3. Sección y propiedades de las diagonales de los arcos. Fuente: creación propia mediante SAP2000 Figura 4.2-4. Sección y propiedades de los segmentos de los arcos. Fuente: creación propia mediante SAP2000 Figura 4.2-5. Forjado colaborante cofraplus 60. Fuente: Catálogo comercial de Arval, ArcelorMittal forjados Figura 4.2-6. Propiedades del forjado colaborante de 19 mm. Fuente: creación propia mediante SAP2000 Efigura 4.2-7. Propiedades del forjado colaborante de 13 mm. Fuente: creación propia mediante SAP2000 Efigura 4.3-1. Planta. Desplazamiento en x. Fuente: Schittich, 2015 Sigura 4.3-2. Sección. Desplazamiento en y. Fuente: Schittich, 2015 Figura 4.3-3. Planta del primer forjado. Fuente: creación propia Figura 4.3-4. Restricciones de movimiento en nudos B y C. Fuente: creación propia mediante SAP2000 31 Figura 4.3-5. Restricciones de movimiento en nudos F y G. Fuente: creación propia mediante SAP2000 31 Figura 4.3-6. Restricciones de movimiento en nudos F y G. Fuente: creación propia mediante SAP2000 31 Figura 4.3-7. Restricciones de movimiento en nudos E y H. Fuente: creación propia mediante SAP2000 31 Figura 4.3-8. Tirantes tipo B y C. Fuente: (SOM Broadgate-Exchange House, n.d.) Figura 4.3-9. Tirante tipo A. Fuente: (SOM Broadgate-Exchange House, n.d.) Figura 4.3-10. Condición de biarticulación en los tirantes tipo A y B. Fuente: creación propia mediante SAP2000 32 Figura 4.4-1. Tabla C.2 del Anejo C del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-3. Tabla 3.1 del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-4. Mapa con los valores básicos de la velocidad del viento en Reino unido. Fuente: UK National Annex to Eurocode 1. Wind actions	
Figura 4.2-2. Sección y propiedades de las vigas laterales de gran canto en primer forjado. Fuente: creación propia mediante SAP2000 Figura 4.2-3. Sección y propiedades de las diagonales de los arcos. Fuente: creación propia mediante SAP2000 27 Figura 4.2-4. Sección y propiedades de los segmentos de los arcos. Fuente: creación propia mediante SAP2000 28 Figura 4.2-5. Forjado colaborante cofraplus 60. Fuente: Catálogo comercial de Arval, ArcelorMittal forjados 29 Figura 4.2-6. Propiedades del forjado colaborante de 19 mm. Fuente: creación propia mediante SAP2000 29 Figura 4.2-7. Propiedades del forjado colaborante de 13 mm. Fuente: creación propia mediante SAP2000 29 Figura 4.3-1. Planta. Desplazamiento en x. Fuente: Schittich, 2015 30 Figura 4.3-2. Sección. Desplazamiento en y. Fuente: Schittich, 2015 31 Figura 4.3-3. Planta del primer forjado. Fuente: creación propia 32 Figura 4.3-3. Restricciones de movimiento en nudos B y C. Fuente: creación propia mediante SAP2000 31 Figura 4.3-6. Restricciones de movimiento en nudos F y G. Fuente: creación propia mediante SAP2000 31 Figura 4.3-7. Restricciones de movimiento en nudos E y H. Fuente: creación propia mediante SAP2000 31 Figura 4.3-8. Tirantes tipo B y C. Fuente: (SOM Broadgate-Exchange House, n.d.) 32 Figura 4.3-9. Tirante tipo A. Fuente: (SOM Broadgate-Exchange House, n.d.) 33 Figura 4.3-1. Condición de biarticulación en los tirantes tipo A y B. Fuente: creación propia mediante SAP2000 34 Figura 4.4-3. Tabla C.2 del Anejo C del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 34 Figura 4.4-1. Tabla C.5 del Anejo C del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 35 Figura 4.4-3. Tabla 3.1 del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 36 Figura 4.4-4. Mapa con los valores básicos de la velocidad del viento en Reino unido. Fuente: UK National Annex to Eurocode 1. Wind actions	
mediante SAP2000 Figura 4.2-3. Sección y propiedades de las diagonales de los arcos. Fuente: creación propia mediante SAP2000 27 Figura 4.2-4. Sección y propiedades de los segmentos de los arcos. Fuente: creación propia mediante SAP2000 27 Figura 4.2-5. Forjado colaborante cofraplus 60. Fuente: Catálogo comercial de Arval, ArcelorMittal forjados Figura 4.2-6. Propiedades del forjado colaborante de 19 mm. Fuente: creación propia mediante SAP2000 28 Figura 4.2-7. Propiedades del forjado colaborante de 13 mm. Fuente: creación propia mediante SAP2000 29 Figura 4.3-1. Planta. Desplazamiento en x. Fuente: Schittich, 2015 Figura 4.3-2. Sección. Desplazamiento en y. Fuente: Schittich, 2015 Figura 4.3-3. Planta del primer forjado. Fuente: creación propia Figura 4.3-4. Restricciones de movimiento en nudos B y C. Fuente: creación propia mediante SAP2000 31 Figura 4.3-5. Restricciones de movimiento en nudos F y G. Fuente: creación propia mediante SAP2000 31 Figura 4.3-6. Restricciones de movimiento en nudos F y G. Fuente: creación propia mediante SAP2000 31 Figura 4.3-7. Restricciones de movimiento en nudos F y H. Fuente: creación propia mediante SAP2000 31 Figura 4.3-8. Tirantes tipo B y C. Fuente: (SOM Broadgate-Exchange House, n.d.) 31 Figura 4.3-9. Tirante tipo A. Fuente: (SOM Broadgate-Exchange House, n.d.) 31 Figura 4.3-10. Condición de biarticulación en los tirantes tipo A y B. Fuente: creación propia mediante SAP2000 32 Figura 4.3-11. Condición de biarticulación en los tirantes tipo A y B. Fuente: creación propia mediante SAP2000 32 Figura 4.4-2. Tabla C.2 del Anejo C del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-3. Tabla C.5 del Anejo C del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-3. Tabla C.5 del Anejo C del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-4. Mapa con los valores básicos de la velocidad del viento en Reino unido.	
Figura 4.2-3. Sección y propiedades de las diagonales de los arcos. Fuente: creación propia mediante SAP2000 Figura 4.2-4. Sección y propiedades de los segmentos de los arcos. Fuente: creación propia mediante SAP2000 Figura 4.2-5. Forjado colaborante cofraplus 60. Fuente: Catálogo comercial de Arval, ArcelorMittal forjados Figura 4.2-6. Propiedades del forjado colaborante de 19 mm. Fuente: creación propia mediante SAP2000 Figura 4.2-7. Propiedades del forjado colaborante de 13 mm. Fuente: creación propia mediante SAP2000 Figura 4.3-1. Planta. Desplazamiento en x. Fuente: Schittich, 2015 Figura 4.3-2. Sección. Desplazamiento en y. Fuente: Schittich, 2015 Figura 4.3-3. Planta del primer forjado. Fuente: creación propia Figura 4.3-4. Restricciones de movimiento en nudos B y C. Fuente: creación propia mediante SAP2000 Figura 4.3-5. Restricciones de movimiento en nudos B y C. Fuente: creación propia mediante SAP2000 Figura 4.3-6. Restricciones de movimiento en nudos F y G. Fuente: creación propia mediante SAP2000 Figura 4.3-7. Restricciones de movimiento en nudos E y H. Fuente: creación propia mediante SAP2000 Figura 4.3-8. Tirantes tipo B y C. Fuente: (SOM Broadgate-Exchange House, n.d.) Figura 4.3-9. Tirante tipo A. Fuente: (SOM Broadgate-Exchange House, n.d.) Figura 4.3-10. Condición de biarticulación en los tirantes tipo A y B. Fuente: creación propia mediante SAP2000 Figura 4.3-11. Condición de biarticulación en los tirantes tipo C. Fuente: creación propia mediante SAP2000 Figura 4.4-2. Tabla C.2 del Anejo C del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-1. Tabla C.5 del Anejo C del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-3. Tabla 3.1 del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-4. Mapa con los valores básicos de la velocidad del viento en Reino unido. Fuente: UK National Annex to Eurocode 1. Wind actions	
Figura 4.2-4. Sección y propiedades de los segmentos de los arcos. Fuente: creación propia mediante SAP2000 27 Figura 4.2-5. Forjado colaborante cofraplus 60. Fuente: Catálogo comercial de Arval, ArcelorMittal forjados 28 Figura 4.2-6. Propiedades del forjado colaborante de 19 mm. Fuente: creación propia mediante SAP2000 28 Figura 4.2-7. Propiedades del forjado colaborante de 13 mm. Fuente: creación propia mediante SAP2000 29 Figura 4.3-1. Planta. Desplazamiento en x. Fuente: Schittich, 2015 30 Figura 4.3-2. Sección. Desplazamiento en y. Fuente: Schittich, 2015 31 Figura 4.3-3. Planta del primer forjado. Fuente: creación propia 30 Figura 4.3-4. Restricciones de movimiento en nudos B y C. Fuente: creación propia mediante SAP2000 31 Figura 4.3-5. Restricciones de movimiento en nudos F y G. Fuente: creación propia mediante SAP2000 31 Figura 4.3-6. Restricciones de movimiento en nudos F y G. Fuente: creación propia mediante SAP2000 31 Figura 4.3-7. Restricciones de movimiento en nudos E y H. Fuente: creación propia mediante SAP2000 31 Figura 4.3-8. Tirantes tipo B y C. Fuente: (SOM Broadgate-Exchange House, n.d.) 31 Figura 4.3-9. Tirante tipo A. Fuente: (SOM Broadgate-Exchange House, n.d.) 31 Figura 4.3-10. Condición de biarticulación en los tirantes tipo A y B. Fuente: creación propia mediante SAP2000 32 Figura 4.3-11. Condición de biarticulación en los tirantes tipo C. Fuente: creación propia mediante SAP2000 32 Figura 4.4-2. Tabla C.2 del Anejo C del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-1. Tabla C.5 del Anejo C del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-3. Tabla 3.1 del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-4. Mapa con los valores básicos de la velocidad del viento en Reino unido. Fuente: UK National Annex to Eurocode 1. Wind actions	
Figura 4.2-5. Forjado colaborante cofraplus 60. Fuente: Catálogo comercial de Arval, ArcelorMittal forjados Figura 4.2-6. Propiedades del forjado colaborante de 19 mm. Fuente: creación propia mediante SAP2000 Figura 4.2-7. Propiedades del forjado colaborante de 13 mm. Fuente: creación propia mediante SAP2000 Figura 4.3-1. Planta. Desplazamiento en x. Fuente: Schittich, 2015 Figura 4.3-2. Sección. Desplazamiento en y. Fuente: Schittich, 2015 Figura 4.3-3. Planta del primer forjado. Fuente: creación propia Figura 4.3-4. Restricciones de movimiento en nudos B y C. Fuente: creación propia mediante SAP2000 Figura 4.3-5. Restricciones de movimiento en nudos A y D. Fuente: creación propia mediante SAP2000 Figura 4.3-6. Restricciones de movimiento en nudos F y G. Fuente: creación propia mediante SAP2000 Figura 4.3-7. Restricciones de movimiento en nudos E y H. Fuente: creación propia mediante SAP2000 Figura 4.3-8. Tirantes tipo B y C. Fuente: (SOM Broadgate-Exchange House, n.d.) Figura 4.3-9. Tirante tipo A. Fuente: (SOM Broadgate-Exchange House, n.d.) Figura 4.3-10. Condición de biarticulación en los tirantes tipo A y B. Fuente: creación propia mediante SAP2000 Figura 4.3-11. Condición de biarticulación en los tirantes tipo C. Fuente: creación propia mediante SAP2000 Figura 4.4-2. Tabla C.2 del Anejo C del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-1. Tabla C.5 del Anejo C del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-3. Tabla 3.1 del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-4. Mapa con los valores básicos de la velocidad del viento en Reino unido. Fuente: UK National Annex to Eurocode 1. Wind actions	
Figura 4.2-6. Propiedades del forjado colaborante de 19 mm. Fuente: creación propia mediante SAP2000 Figura 4.2-7. Propiedades del forjado colaborante de 13 mm. Fuente: creación propia mediante SAP2000 Figura 4.3-1. Planta. Desplazamiento en x. Fuente: Schittich, 2015 Figura 4.3-2. Sección. Desplazamiento en y. Fuente: Schittich, 2015 Figura 4.3-3. Planta del primer forjado. Fuente: creación propia Figura 4.3-4. Restricciones de movimiento en nudos B y C. Fuente: creación propia mediante SAP2000 Figura 4.3-5. Restricciones de movimiento en nudos A y D. Fuente: creación propia mediante SAP2000 Figura 4.3-6. Restricciones de movimiento en nudos F y G. Fuente: creación propia mediante SAP2000 Figura 4.3-7. Restricciones de movimiento en nudos E y H. Fuente: creación propia mediante SAP2000 Figura 4.3-8. Tirantes tipo B y C. Fuente: (SOM Broadgate-Exchange House, n.d.) Figura 4.3-9. Tirante tipo A. Fuente: (SOM Broadgate-Exchange House, n.d.) Figura 4.3-10. Condición de biarticulación en los tirantes tipo A y B. Fuente: creación propia mediante SAP2000 Figura 4.3-11. Condición de biarticulación en los tirantes tipo A y B. Fuente: creación propia mediante SAP2000 Figura 4.4-2. Tabla C.2 del Anejo C del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-1. Tabla C.5 del Anejo C del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-3. Tabla 3.1 del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-4. Mapa con los valores básicos de la velocidad del viento en Reino unido. Fuente: UK National Annex to Eurocode 1. Wind actions	
Figura 4.2-7. Propiedades del forjado colaborante de 13 mm. Fuente: creación propia mediante SAP2000 Figura 4.3-1. Planta. Desplazamiento en x. Fuente: Schittich, 2015 Figura 4.3-2. Sección. Desplazamiento en y. Fuente: Schittich, 2015 Figura 4.3-3. Planta del primer forjado. Fuente: creación propia Figura 4.3-4. Restricciones de movimiento en nudos B y C. Fuente: creación propia mediante SAP2000 Figura 4.3-5. Restricciones de movimiento en nudos F y G. Fuente: creación propia mediante SAP2000 Figura 4.3-7. Restricciones de movimiento en nudos F y G. Fuente: creación propia mediante SAP2000 Figura 4.3-8. Tirantes tipo B y C. Fuente: (SOM Broadgate-Exchange House, n.d.) Figura 4.3-9. Tirante tipo A. Fuente: (SOM Broadgate-Exchange House, n.d.) Figura 4.3-10. Condición de biarticulación en los tirantes tipo A y B. Fuente: creación propia mediante SAP2000 Figura 4.3-11. Condición de biarticulación en los tirantes tipo C. Fuente: creación propia mediante SAP2000 Figura 4.4-2. Tabla C.2 del Anejo C del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-1. Tabla C.5 del Anejo C del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-3. Tabla 3.1 del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-4. Mapa con los valores básicos de la velocidad del viento en Reino unido. Fuente: UK National Annex to Eurocode 1. Wind actions	
Figura 4.3-1. Planta. Desplazamiento en x. Fuente: Schittich, 2015 Figura 4.3-2. Sección. Desplazamiento en y. Fuente: Schittich, 2015 Figura 4.3-3. Planta del primer forjado. Fuente: creación propia Figura 4.3-4. Restricciones de movimiento en nudos B y C. Fuente: creación propia mediante SAP2000 Figura 4.3-5. Restricciones de movimiento en nudos A y D. Fuente: creación propia mediante SAP2000 Figura 4.3-6. Restricciones de movimiento en nudos F y G. Fuente: creación propia mediante SAP2000 Figura 4.3-7. Restricciones de movimiento en nudos E y H. Fuente: creación propia mediante SAP2000 Figura 4.3-8. Tirantes tipo B y C. Fuente: (SOM Broadgate-Exchange House, n.d.) Figura 4.3-9. Tirante tipo A. Fuente: (SOM Broadgate-Exchange House, n.d.) Figura 4.3-10. Condición de biarticulación en los tirantes tipo A y B. Fuente: creación propia mediante SAP2000 Figura 4.3-11. Condición de biarticulación en los tirantes tipo C. Fuente: creación propia mediante SAP2000 Figura 4.4-2. Tabla C.2 del Anejo C del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-1. Tabla C.5 del Anejo C del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-3. Tabla 3.1 del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-4. Mapa con los valores básicos de la velocidad del viento en Reino unido. Fuente: UK National Annex to Eurocode 1. Wind actions	
Figura 4.3-2. Sección. Desplazamiento en y. Fuente: Schittich, 2015 Figura 4.3-3. Planta del primer forjado. Fuente: creación propia Figura 4.3-4. Restricciones de movimiento en nudos B y C. Fuente: creación propia mediante SAP2000 Figura 4.3-5. Restricciones de movimiento en nudos A y D. Fuente: creación propia mediante SAP2000 Figura 4.3-6. Restricciones de movimiento en nudos F y G. Fuente: creación propia mediante SAP2000 Figura 4.3-7. Restricciones de movimiento en nudos E y H. Fuente: creación propia mediante SAP2000 Figura 4.3-8. Tirantes tipo B y C. Fuente: (SOM Broadgate-Exchange House, n.d.) Figura 4.3-9. Tirante tipo A. Fuente: (SOM Broadgate-Exchange House, n.d.) Figura 4.3-10. Condición de biarticulación en los tirantes tipo A y B. Fuente: creación propia mediante SAP2000 Figura 4.3-11. Condición de biarticulación en los tirantes tipo C. Fuente: creación propia mediante SAP2000 Figura 4.4-2. Tabla C.2 del Anejo C del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-3. Tabla 3.1 del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-4. Mapa con los valores básicos de la velocidad del viento en Reino unido. Fuente: UK National Annex to Eurocode 1. Wind actions	
Figura 4.3-3. Planta del primer forjado. Fuente: creación propia Figura 4.3-4. Restricciones de movimiento en nudos B y C. Fuente: creación propia mediante SAP2000 Figura 4.3-5. Restricciones de movimiento en nudos A y D. Fuente: creación propia mediante SAP2000 Figura 4.3-6. Restricciones de movimiento en nudos F y G. Fuente: creación propia mediante SAP2000 Figura 4.3-7. Restricciones de movimiento en nudos E y H. Fuente: creación propia mediante SAP2000 Figura 4.3-8. Tirantes tipo B y C. Fuente: (SOM Broadgate-Exchange House, n.d.) Figura 4.3-9. Tirante tipo A. Fuente: (SOM Broadgate-Exchange House, n.d.) Figura 4.3-10. Condición de biarticulación en los tirantes tipo A y B. Fuente: creación propia mediante SAP2000 Figura 4.3-11. Condición de biarticulación en los tirantes tipo C. Fuente: creación propia mediante SAP2000 Figura 4.4-2. Tabla C.2 del Anejo C del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-1. Tabla C.5 del Anejo C del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-3. Tabla 3.1 del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-4. Mapa con los valores básicos de la velocidad del viento en Reino unido. Fuente: UK National Annex to Eurocode 1. Wind actions	
Figura 4.3-4. Restricciones de movimiento en nudos B y C. Fuente: creación propia mediante SAP2000 Figura 4.3-5. Restricciones de movimiento en nudos A y D. Fuente: creación propia mediante SAP2000 Figura 4.3-6. Restricciones de movimiento en nudos F y G. Fuente: creación propia mediante SAP2000 Figura 4.3-7. Restricciones de movimiento en nudos E y H. Fuente: creación propia mediante SAP2000 Figura 4.3-8. Tirantes tipo B y C. Fuente: (SOM Broadgate-Exchange House, n.d.) Figura 4.3-9. Tirante tipo A. Fuente: (SOM Broadgate-Exchange House, n.d.) Figura 4.3-10. Condición de biarticulación en los tirantes tipo A y B. Fuente: creación propia mediante SAP2000 Figura 4.3-11. Condición de biarticulación en los tirantes tipo C. Fuente: creación propia mediante SAP2000 Figura 4.4-2. Tabla C.2 del Anejo C del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-1. Tabla C.5 del Anejo C del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-3. Tabla 3.1 del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-4. Mapa con los valores básicos de la velocidad del viento en Reino unido. Fuente: UK National Annex to Eurocode 1. Wind actions	· · · · · · · · · · · · · · · · · · ·
Figura 4.3-5. Restricciones de movimiento en nudos A y D. Fuente: creación propia mediante SAP2000 Figura 4.3-6. Restricciones de movimiento en nudos F y G. Fuente: creación propia mediante SAP2000 Figura 4.3-7. Restricciones de movimiento en nudos E y H. Fuente: creación propia mediante SAP2000 Figura 4.3-8. Tirantes tipo B y C. Fuente: (SOM Broadgate-Exchange House, n.d.) Figura 4.3-9. Tirante tipo A. Fuente: (SOM Broadgate-Exchange House, n.d.) Figura 4.3-10. Condición de biarticulación en los tirantes tipo A y B. Fuente: creación propia mediante SAP2000 Figura 4.3-11. Condición de biarticulación en los tirantes tipo C. Fuente: creación propia mediante SAP2000 Figura 4.4-2. Tabla C.2 del Anejo C del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-1. Tabla C.5 del Anejo C del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-3. Tabla 3.1 del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-4. Mapa con los valores básicos de la velocidad del viento en Reino unido. Fuente: UK National Annex to Eurocode 1. Wind actions	
Figura 4.3-6. Restricciones de movimiento en nudos F y G. Fuente: creación propia mediante SAP2000 Figura 4.3-7. Restricciones de movimiento en nudos E y H. Fuente: creación propia mediante SAP2000 31 Figura 4.3-8. Tirantes tipo B y C. Fuente: (SOM Broadgate-Exchange House, n.d.) Figura 4.3-9. Tirante tipo A. Fuente: (SOM Broadgate-Exchange House, n.d.) Figura 4.3-10. Condición de biarticulación en los tirantes tipo A y B. Fuente: creación propia mediante SAP2000 Figura 4.3-11. Condición de biarticulación en los tirantes tipo C. Fuente: creación propia mediante SAP2000 32 Figura 4.4-2. Tabla C.2 del Anejo C del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-1. Tabla C.5 del Anejo C del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-3. Tabla 3.1 del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-4. Mapa con los valores básicos de la velocidad del viento en Reino unido. Fuente: UK National Annex to Eurocode 1. Wind actions	, , , , , , , , , , , , , , , , , , , ,
Figura 4.3-7. Restricciones de movimiento en nudos E y H. Fuente: creación propia mediante SAP2000 Figura 4.3-8. Tirantes tipo B y C. Fuente: (SOM Broadgate-Exchange House, n.d.) Figura 4.3-9. Tirante tipo A. Fuente: (SOM Broadgate-Exchange House, n.d.) Figura 4.3-10. Condición de biarticulación en los tirantes tipo A y B. Fuente: creación propia mediante SAP2000 Figura 4.3-11. Condición de biarticulación en los tirantes tipo C. Fuente: creación propia mediante SAP2000 Figura 4.3-12. Tabla C.2 del Anejo C del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-1. Tabla C.5 del Anejo C del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-3. Tabla 3.1 del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-4. Mapa con los valores básicos de la velocidad del viento en Reino unido. Fuente: UK National Annex to Eurocode 1. Wind actions	
Figura 4.3-8. Tirantes tipo B y C. Fuente: (SOM Broadgate-Exchange House, n.d.) Figura 4.3-9. Tirante tipo A. Fuente: (SOM Broadgate-Exchange House, n.d.) Figura 4.3-10. Condición de biarticulación en los tirantes tipo A y B. Fuente: creación propia mediante SAP2000 Figura 4.3-11. Condición de biarticulación en los tirantes tipo C. Fuente: creación propia mediante SAP2000 Figura 4.4-2. Tabla C.2 del Anejo C del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-1. Tabla C.5 del Anejo C del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-3. Tabla 3.1 del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-4. Mapa con los valores básicos de la velocidad del viento en Reino unido. Fuente: UK National Annex to Eurocode 1. Wind actions	Figura 4.3-6. Restricciones de movimiento en nudos F y G. Fuente: creación propia mediante SAP2000
Figura 4.3-9. Tirante tipo A. Fuente: (SOM Broadgate-Exchange House, n.d.) Figura 4.3-10. Condición de biarticulación en los tirantes tipo A y B. Fuente: creación propia mediante SAP2000 Figura 4.3-11. Condición de biarticulación en los tirantes tipo C. Fuente: creación propia mediante SAP2000 Figura 4.4-2. Tabla C.2 del Anejo C del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-1. Tabla C.5 del Anejo C del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-3. Tabla 3.1 del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 34 Figura 4.4-4. Mapa con los valores básicos de la velocidad del viento en Reino unido. Fuente: UK National Annex to Eurocode 1. Wind actions	Figura 4.3-7. Restricciones de movimiento en nudos E y H. Fuente: creación propia mediante SAP2000
Figura 4.3-10. Condición de biarticulación en los tirantes tipo A y B. Fuente: creación propia mediante SAP2000 Figura 4.3-11. Condición de biarticulación en los tirantes tipo C. Fuente: creación propia mediante SAP2000 32 Figura 4.4-2. Tabla C.2 del Anejo C del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-1. Tabla C.5 del Anejo C del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-3. Tabla 3.1 del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-4. Mapa con los valores básicos de la velocidad del viento en Reino unido. Fuente: UK National Annex to Eurocode 1. Wind actions	Figura 4.3-8. Tirantes tipo B y C. Fuente: (SOM Broadgate-Exchange House, n.d.)
Figura 4.3-11. Condición de biarticulación en los tirantes tipo C. Fuente: creación propia mediante SAP2000 32 Figura 4.4-2. Tabla C.2 del Anejo C del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 34 Figura 4.4-1. Tabla C.5 del Anejo C del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 34 Figura 4.4-3. Tabla 3.1 del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 35 Figura 4.4-4. Mapa con los valores básicos de la velocidad del viento en Reino unido. Fuente: UK National Annex to Eurocode 1. Wind actions	Figura 4.3-9. Tirante tipo A. Fuente: (SOM Broadgate-Exchange House, n.d.)
Figura 4.4-2. Tabla C.2 del Anejo C del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 34 Figura 4.4-1. Tabla C.5 del Anejo C del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 34 Figura 4.4-3. Tabla 3.1 del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 35 Figura 4.4-4. Mapa con los valores básicos de la velocidad del viento en Reino unido. Fuente: UK National Annex to Eurocode 1. Wind actions 36	Figura 4.3-10. Condición de biarticulación en los tirantes tipo A y B. Fuente: creación propia mediante SAP2000
Figura 4.4-2. Tabla C.2 del Anejo C del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 34 Figura 4.4-1. Tabla C.5 del Anejo C del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 34 Figura 4.4-3. Tabla 3.1 del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 35 Figura 4.4-4. Mapa con los valores básicos de la velocidad del viento en Reino unido. Fuente: UK National Annex to Eurocode 1. Wind actions 36	Figura 4.3-11. Condición de biarticulación en los tirantes tipo C. Fuente: creación propia mediante SAP2000
Figura 4.4-1. Tabla C.5 del Anejo C del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-3. Tabla 3.1 del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-4. Mapa con los valores básicos de la velocidad del viento en Reino unido. Fuente: UK National Annex to Eurocode 1. Wind actions	Figura 4.4-2. Tabla C.2 del Anejo C del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento,
2009 Figura 4.4-3. Tabla 3.1 del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-4. Mapa con los valores básicos de la velocidad del viento en Reino unido. Fuente: UK National Annex to Eurocode 1. Wind actions 34 35 36	2009
Figura 4.4-3. Tabla 3.1 del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-4. Mapa con los valores básicos de la velocidad del viento en Reino unido. Fuente: UK National Annex to Eurocode 1. Wind actions 35	Figura 4.4-1. Tabla C.5 del Anejo C del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento,
Figura 4.4-4. Mapa con los valores básicos de la velocidad del viento en Reino unido. Fuente: UK National Annex to Eurocode 1. Wind actions	· · · · · · · · · · · · · · · · · · ·
Figura 4.4-4. Mapa con los valores básicos de la velocidad del viento en Reino unido. Fuente: UK National Annex to Eurocode 1. Wind actions	
Eurocode 1. Wind actions 36	Figura 4.4-3. Tabla 3.1 del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 35
	, , , , , , , , , , , , , , , , , , ,
	Figura 4.4-4. Mapa con los valores básicos de la velocidad del viento en Reino unido. Fuente: UK National Annex to
·	Figura 4.4-4. Mapa con los valores básicos de la velocidad del viento en Reino unido. Fuente: UK National Annex to Eurocode 1. Wind actions
	Figura 4.4-4. Mapa con los valores básicos de la velocidad del viento en Reino unido. Fuente: UK National Annex to Eurocode 1. Wind actions Figura 4.4-5. Tabla D.2 del Anejo D del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento,
	Figura 4.4-4. Mapa con los valores básicos de la velocidad del viento en Reino unido. Fuente: UK National Annex to Eurocode 1. Wind actions Figura 4.4-5. Tabla D.2 del Anejo D del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009
	Figura 4.4-4. Mapa con los valores básicos de la velocidad del viento en Reino unido. Fuente: UK National Annex to Eurocode 1. Wind actions 36 Figura 4.4-5. Tabla D.2 del Anejo D del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-6. Tabla 3.5 del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009
	Figura 4.4-4. Mapa con los valores básicos de la velocidad del viento en Reino unido. Fuente: UK National Annex to Eurocode 1. Wind actions Figura 4.4-5. Tabla D.2 del Anejo D del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-6. Tabla 3.5 del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-7. Mapa con las temperaturas extremas del aire en Reino unido. Fuente: UK National Annex to Eurocode 1.
· · · · · · · · · · · · · · · · · · ·	Figura 4.4-4. Mapa con los valores básicos de la velocidad del viento en Reino unido. Fuente: UK National Annex to Eurocode 1. Wind actions Figura 4.4-5. Tabla D.2 del Anejo D del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-6. Tabla 3.5 del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-7. Mapa con las temperaturas extremas del aire en Reino unido. Fuente: UK National Annex to Eurocode 1. Thermal
	Figura 4.4-4. Mapa con los valores básicos de la velocidad del viento en Reino unido. Fuente: UK National Annex to Eurocode 1. Wind actions Figura 4.4-5. Tabla D.2 del Anejo D del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-6. Tabla 3.5 del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-7. Mapa con las temperaturas extremas del aire en Reino unido. Fuente: UK National Annex to Eurocode 1. Thermal Figura 4.4-8. Tabla 3.7 del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009
EUROCOUE I. OHOW LORUS	Figura 4.4-4. Mapa con los valores básicos de la velocidad del viento en Reino unido. Fuente: UK National Annex to Eurocode 1. Wind actions Figura 4.4-5. Tabla D.2 del Anejo D del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-6. Tabla 3.5 del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-7. Mapa con las temperaturas extremas del aire en Reino unido. Fuente: UK National Annex to Eurocode 1. Thermal
EUROCOR L 300W LOROS 59	Figura 4.4-4. Mapa con los valores básicos de la velocidad del viento en Reino unido. Fuente: UK National Annex to Eurocode 1. Wind actions Figura 4.4-5. Tabla D.2 del Anejo D del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-6. Tabla 3.5 del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-7. Mapa con las temperaturas extremas del aire en Reino unido. Fuente: UK National Annex to Eurocode 1. Thermal Figura 4.4-8. Tabla 3.7 del DB-SE-AE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009 Figura 4.4-9. Mapa con los valores característicos de la carga de nieve en Reino Unido. Fuente: UK National Annex to

Figura 4.4-11. Mapa sísmico de la norma sismorresistente NCSE-02. Fuente: Ministerio de Fomento, 2009	40 41
Figura 4.4-12. European Seismic Hazard Map. Fuente: Woessner et al., 2015	
Figura 4.4-13. Cargas permanentes en el primer forjado. Fuente: creación propia mediante SAP2000	42
Figura 4.4-14. Cargas permanentes en el segundo forjado. Fuente: creación propia mediante SAP2000	42
Figura 4.4-15. Peso propio de las fachadas en el segundo forjado. Fuente: creación propia mediante SAP2000	43
Figura 4.4-16. Cargas permanentes en el forjado tipo con atrios. Fuente: creación propia mediante SAP2000	43
Figura 4.4-17. Peso propio de las fachadas y los cerramientos de los atrios el forjado tipo. Fuente: creación propia	4.4
mediante SAP2000	44
Figura 4.4-18. Cargas permanentes en la cubierta principal. Fuente: creación propia mediante SAP2000	. 44
Figura 4.4-19. Peso propio de las fachadas y los cerramientos de los atrios la cubierta principal. Fuente: creación prop mediante SAP2000	ыа 45
Figura 4.4-20. Cargas permanentes en el casetón. Fuente: creación propia mediante SAP2000	45
Figura 4.4-21. Sobrecarga de uso en el primer forjado. Fuente: creación propia mediante SAP2000	46
Figura 4.4-22. Sobrecarga de uso en el segundo forjado. Fuente: creación propia mediante SAP2000	46
Figura 4.4-23. Sobrecarga de uso en el forjado tipo con atrios. Fuente: creación propia mediante SAP2000	47
Figura 4.4-24. Sobrecarga de uso en la cubierta principal. Fuente: creación propia mediante SAP2000	47
Figura 4.4-25. Sobrecarga de uso en el casetón. Fuente: creación propia mediante SAP2000	48
Figura 4.4-26. Sobrecarga de viento en las fachadas laterales. Presión del viento. Fuente: creación propia mediante SAP2000	48
Figura 4.4-27. Sobrecarga de viento en las fachadas laterales. Succión del viento. Fuente: creación propia mediante	
SAP2000	49
Figura 4.4-28. Sobrecarga de viento en las fachadas principales. Presión del viento. Fuente: creación propia mediante SAP2000	49
Figura 4.4-29. Sobrecarga de viento en las fachadas principales. Succión del viento. Fuente: creación propia mediante SAP2000	e 50
Figura 4.4-30. Cargas térmicas en barras. Fuente: creación propia mediante SAP2000	50
Figura 4.4-31. Cargas térmicas en elementos finitos. Fuente: creación propia mediante SAP2000	51
Figura 4.4-32. Sobrecarga de viento en las cubiertas. Fuente: creación propia mediante SAP2000	51
Figura 4.5-1. Tabla 4.2 del DB-SE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009	52
Figura 4.5-2. Tabla 4.1 del DB-SE del Código Técnico de la Edificación. Fuente: Ministerio de Fomento, 2009	53
Figura 4.5-3. Hipótesis de carga definidas para el modelo de cálculo. Fuente: creación propia mediante SAP2000	54
Figura 4.5-4. Combinaciones de acciones. Fuente: creación propia mediante SAP2000	55
Figura 4.5-5. Combinaciones de acciones. Fuente: creación propia mediante SAP2000	55
Figura 4.5-6. Combinaciones de acciones. Fuente: creación propia mediante SAP2000	55
Figura 4.5-7. Combinación ELSu. Fuente: creación propia mediante SAP2000.	56
Figura 4.5-8. Combinación ELUuvx+tn. Fuente: creación propia mediante SAP2000	56
Figura 5.1-1. Combinación de acciones considerando la integridad de los elementos constructivos. Fuente: creación propia mediante SAP2000	57
Figura 5.1-2. Deformaciones en el primer forjado bajo la combinación ELSintcon. Fuente: creación propia mediante	
SAP2000	58
Figura 5.1-3. Deformaciones en el forjado tipo con atrio bajo la combinación ELSintcon. Fuente: creación propia media SAP2000	ante 59
Figura 5.1-4. Deformaciones en la cubierta del casetón bajo la combinación ELSintcon. Fuente: creación propia media SAP2000	ante 59
Figura 5.1-5. Deformaciones en la cubierta principal bajo la combinación ELSintcon. Fuente: creación propia mediante SAP2000)
	.59
Figura 5.1-6. Deformaciones en el primer forjado bajo la combinación SCU. Fuente: creación propia mediante SAP200	06 60
Figura 5.1-7. Deformaciones en el forjado tipo con atrios bajo la combinación SCU. Fuente: creación propia mediante	
SAP2000	61
Figura 5.1-8. Deformaciones en la cubierta principal bajo la combinación SCU. Fuente: creación propia mediante SAP2000	61
Figura 5.1-9. Deformaciones en el primer forjado bajo la combinación ELSqpu. Fuente: creación propia mediante	υı
SAP2000	62

Figura 5.1-10. Deformaciones en el forjado del casetón bajo la combinación ELSqpu. Fuente: creación propia median	ite
SAP2000	63
Figura 5.1-11. Deformaciones en el forjado tipo con atrio bajo la combinación ELSqpu. Fuente: creación propia media	ınte
SAP2000	63
Figura 5.1-12. Deformaciones en la cubierta principal bajo la combinación ELSqpu. Fuente: creación propia mediante	;
SAP2000	63
Figura 5.1-13. Desplomes bajo la combinación ELSv succión. Fuente: creación propia mediante SAP2000	64
Figura 5.1-14. Desplomes bajo la combinación ELSv presión. Fuente: creación propia mediante SAP2000	64
Figura 5.1-15. Desplomes bajo la combinación ELSqpu. Fuente: creación propia mediante SAP2000	65
Figura 5.1-16. Desplazamiento de los nudos debido a cargas térmicas. Fuente: creación propia mediante SAP2000	66
Figura 5.2-1. Resultado de resistencia de la estructura metálica. Fuente: creación propia mediante SAP2000	67

10 **ANEXO**

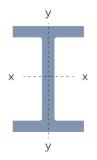
10.1 Prontuario perfiles metálicos británicos



Sections

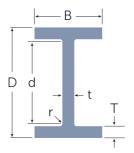
Universal Beams (UB)

Dimensions and properties


British Steel, the only UK manufacturer of structural sections, is BES 6001 certified, guaranteeing commitment to responsibly sourced materials. Our structural sections are CE marked and tested to the highest standards, providing quality and assurance for the UK construction market.

Universal Beams (UB) sizes

Designation	Mass per	Depth	Width	Thic	kness	Root	Depth	Ratios f	or local	Second	noment	Radi	ius of
	metre	of	of			radius	between	bucl	dina	of a	rea	gyr	ation
		section	section	of	of		fillets	2.5.	9				i
		section	section	web	flange		mees	Flange	Web	Axis	Axis	Axis	Axis
								riange	web	AXIS	AXIS	AXIS	AXIS
		D	В	t	Т	r	d	B/2T	d/t	x-x	у-у	х-х	у-у
Serial size	kg/m	mm	mm	mm	mm	mm	mm			cm⁴	cm ⁴	cm	cm
127 x 76 x 13	13.0	127.0	76.0	4.0	7.6	7.6	96.6	5.00	24.2	473	56	5.35	1.84
152 x 89 x 16	16.0	152.4	88.7	4.5	7.7	7.6	121.8	5.76	27.1	834	90	6.41	2.10
178 x 102 x 19	19.0	177.8	101.2	4.8	7.9	7.6	146.8	6.41	30.6	1356	137	7.48	2.37
203 x 102 x 23	23.1	203.2	101.8	5.4	9.3	7.6	169.4	5.47	31.4	2105	164	8.46	2.36
203 x 133 x 25	25.1	203.2	133.2	5.7	7.8	7.6	172.4	8.54	30.2	2340	308	8.56	3.10
203 x 133 x 30	30.0	206.8	133.9	6.4	9.6	7.6	172.4	6.97	26.9	2896	385	8.71	3.17
254 x 102 x 22	22.0	254.0	101.6	5.7	6.8	7.6	225.2	7.47	39.5	2841	119	10.10	2.06
254 x 102 x 25	25.2	257.2	101.9	6.0	8.4	7.6	225.2	6.07	37.5	3415	149	10.30	2.15
254 x 102 x 28	28.3	260.4	102.2	6.3	10.0	7.6	225.2	5.11	35.7	4005	179	10.50	2.22
254 x 146 x 31	31.1	251.4	146.1	6.0	8.6	7.6	219.0	8.49	36.5	4413	448	10.50	3.36
254 x 146 x 37	37.0	256.0	146.4	6.3	10.9	7.6	219.0	6.72	34.8	5537	571	10.80	3.48
254 x 146 x 43	43.0	259.6	147.3	7.2	12.7	7.6	219.0	5.80	30.4	6544	677	10.90	3.52
305 x 102 x 25	24.8	305.1	101.6	5.8	7.0	7.6	275.9	7.26	47.6	4455	123	11.90	1.97
305 x 102 x 28	28.2	308.7	101.8	6.0	8.8	7.6	275.9	5.78	46.0	5366	155	12.20	2.08
305 x 102 x 33	32.8	312.7	102.4	6.6	10.8	7.6	275.9	4.74	41.8	6501	194	12.50	2.15
305 x 127 x 37	37.0	304.4	123.4	7.1	10.7	8.9	265.2	5.77	37.4	7171	336	12.30	2.67
305 x 127 x 42	41.9	307.2	124.3	8.0	12.1	8.9	265.2	5.14	33.2	8196	389	12.40	2.70
305 x 127 x 48	48.1	311.0	125.3	9.0	14.0	8.9	265.2	4.48	29.5	9575	461	12.50	2.74
305 x 165 x 40	40.3	303.4	165.0	6.0	10.2	8.9	265.2	8.09	44.2	8503	764	12.90	3.86
305 x 165 x 46	46.1	306.6	165.7	6.7	11.8	8.9	265.2	7.02	39.6	9899	896	13.00	3.90
305 x 165 x 54	54.0	310.4	166.9	7.9	13.7	8.9	265.2	6.09	33.6	11696	1063	13.00	3.93
356 x 171 x 45	45.0	351.4	171.1	7.0	9.7	12.7	306.6	8.82	43.8	12195	811	14.50	3.75
356 x 171 x 51	51.0	355.0	171.5	7.4	11.5	12.7	306.6	7.46	41.4	14265	969	14.80	3.85
356 x 171 x 57	57.0	358.0	172.2	8.1	13.0	12.7	306.6	6.62	37.9	16168	1109	14.90	3.90
356 x 171 x 67	67.1	363.4	173.2	9.1	15.7	12.7	306.6	5.52	33.7	19592	1362	15.10	3.98
406 x 140 x 39	39.0	398.0	141.8	6.4	8.6	12.7	355.4	8.24	55.5	12679	410	15.90	2.86
406 x 140 x 46	46.0	403.2	142.2	6.8	11.2	12.7	355.4	6.35	52.3	15856	538	16.40	3.02
406 x 140 x 53	53.3	406.6	143.3	7.9	12.9	12.7	355.4	5.55	45.0	18454	635	16.40	3.05
406 x 178 x 54	54.1	402.6	177.7	7.7	10.9	12.7	355.4	8.15	46.2	18893	1022	16.50	3.84
406 x 178 x 60	60.1	406.4	177.9	7.9	12.8	12.7	355.4	6.95	45.0	21767	1203	16.80	3.95
406 x 178 x 67	67.1	409.4	177.9	8.8	14.3	12.7	355.4	6.25	40.4	24502	1365	16.90	3.98
406 x 178 x 74	74.2	412.8	179.5	9.5	16.0	12.7	355.4	5.61	37.4	27481	1546	17.00	4.03
406 x 178 x 85	85.3	417.2	181.9	10.9	18.2	12.7	355.4	5.00	32.6	31874	1831	17.10	4.10
457 x 152 x 52	52.3	449.8	152.4	7.6	10.2	12.7	402.6	6.99	53.0	21586	645	17.10	3.10
457 x 152 x 60	59.8	454.6	152.4	8.1	13.3	12.7	402.6	5.75	49.7	25717	795	18.30	3.22
457 x 152 x 67	67.2	458.0	153.8	9.0	15.0	12.7	402.6	5.13	44.7	29144	913	18.40	3.26
457 x 152 x 67	74.2	462.0	154.4	9.6	17.0	12.7	402.6	4.54	41.9	32891	1047	18.60	3.32
457 x 152 x 74	82.1	465.8	155.3	10.5	18.9	12.7	402.6	4.11	38.3	36806	1185	18.70	3.36
457 x 152 x 62 457 x 191 x 67	67.1	453.4	189.9	8.5	12.7	12.7	402.6	7.48	36.3 47.4	29597	1452	18.60	4.11
457 x 191 x 67 457 x 191 x 74	74.3	453.4	190.4	9.0	14.5	12.7	402.6	6.57	44.7	33536	1672		4.11
				9.0								18.80	
457 x 191 x 82	82.0	460.0 463.4	191.3 191.9	10.5	16.0 17.7	12.7 12.7	402.6	5.98 5.42	40.7	37268	1871 2090	18.80 19.00	4.22
457 x 191 x 89	89.3	403.4	191.9	10.5	1/./	12./	402.6	5.42	38.3	41232	2090	19.00	4.28


BUILDING STRONGER FUTURES

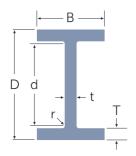
Elastic i	modulus	Plastic r	modulus	Buckling parameter	Torsional index	Warping constant	Torsional constant	Area of section	Designation
Axis	Axis	Axis	Axis	parameter	index	Constant	Constant	Section	
x-x	у-у	х-х	у-у	u	х	Н	J		
cm ³	cm ³	cm ³	cm ³			dm ⁶	cm⁴	cm²	Serial size
75	15	84	23	0.895	16.3	0.0020	2.85	16.5	127 x 76 x 13
109	20	123	31	0.890	19.6	0.0047	3.56	20.3	152 x 89 x 16
153	27	171	42	0.888	22.6	0.0099	4.41	24.3	178 x 102 x 19
207	32	234	50	0.888	22.5	0.0154	7.02	29.4	203 x 102 x 23
230	46	258	71	0.877	25.6	0.0294	5.96	32.0	203 x 133 x 25
280	57	314	88	0.881	21.5	0.0374	10.30	38.2	203 x 133 x 30
224	23	259	37	0.856	36.4	0.0182	4.15	28.0	254 x 102 x 22
266	29	306	46	0.866	31.5	0.0230	6.42	32.0	254 x 102 x 25
308	35	353	55	0.874	27.5	0.0280	9.57	36.1	254 x 102 x 28
351	61	393	94	0.880	29.6	0.0660	8.55	39.7	254 x 146 x 31
433	78	483	119	0.890	24.3	0.0857	15.30	47.2	254 x 146 x 37
504	92	566	141	0.891	21.2	0.1030	23.90	54.8	254 x 146 x 43
292	24	342	39	0.846	43.4	0.0273	4.77	31.6	305 x 102 x 25
348	31	403	48	0.859	37.4	0.0349	7.40	35.9	305 x 102 x 28
416	38	481	60	0.866	31.6	0.0442	12.20	41.8	305 x 102 x 33
471	54	539	85	0.872	29.7	0.0725	14.80	47.2	305 x 127 x 37
534	63	614	98	0.872	26.5	0.0846	21.10	53.4	305 x 127 x 42
616	74	711	116	0.873	23.3	0.1020	31.80	61.2	305 x 127 x 48
560	93	623	142	0.889	31.0	0.1640	14.70	51.3	305 x 165 x 40
646	108	720	166	0.891	27.1	0.1950	22.20	58.7	305 x 165 x 46
754	127	846	196	0.889	23.6	0.2340	34.80	68.8	305 x 165 x 54
694	95	783	147	0.875	35.8	0.2370	16.90	57.8	356 x 171 x 45
804	113	904	174	0.882	31.4	0.2860	25.10	65.4	356 x 171 x 51
903	129	1018	199	0.883	28.3	0.3300	34.90	73.0	356 x 171 x 57
1078	157	1219	243	0.887	24.0	0.4120	57.70	86.0	356 x 171 x 67
637	58	733	91	0.859	45.9	0.1550	11.60	50.1	406 x 140 x 39
787	76	897	118	0.872	38.0	0.2070	20.20	59.1	406 x 140 x 46
908	89	1040	139	0.871	33.4	0.2460	30.40	68.4	406 x 140 x 53
939	115	1064	179	0.872	37.4	0.3920	24.30	69.4	406 x 178 x 54
1071	135	1209	209	0.880	33.1	0.4660	34.80	77.0	406 x 178 x 60
1197 1331	153 172	1355 1510	237 267	0.880 0.882	30.0 27.2	0.5330	47.90 64.90	86.0 95.0	406 x 178 x 67 406 x 178 x 74
1528	201	1742	313	0.882	24.1	0.7290	95.70	109.0	406 x 178 x 85
960	85	1106	134	0.860	42.8	0.7290	22.60	67.1	457 x 152 x 52
1131	104	1298	163	0.869	36.8	0.3110	35.40	76.7	457 x 152 x 52
1273	119	1463	187	0.869	33.0	0.4480	49.60	86.0	457 x 152 x 67
1424	136	1637	213	0.873	29.7	0.5180	68.20	95.0	457 x 152 x 74
1580	153	1822	241	0.874	27.0	0.5920	92.00	105.0	457 x 152 x 82
1306	153	1481	238	0.873	37.2	0.7050	38.70	86.0	457 x 191 x 67
1468	176	1663	272	0.878	33.4	0.8180	53.60	95.1	457 x 191 x 74
1620	196	1842	304	0.878	30.5	0.9220	71.40	105.0	457 x 191 x 82
1780	218	2024	339	0.880	27.9	1.0400	93.30	114.0	457 x 191 x 89
1,00				0.000		2.0.00	50.00	11 1.0	.013103


Dimensions and properties to BS EN 10365:2017

8

Designation	Mass per	Depth	Width	Thic	kness	Root	Depth	Ratios f	orlocal	Second	moment	Pad	ius of
Designation		l '		''"	KIICSS								
	metre	of	of			radius	between	buck	lling	of a	irea	gyr	ation
		section	section	of	of		fillets						
				web	flange			Flange	Web	Axis	Axis	Axis	Axis
		D	В	t	Т	r	d	B/2T	d/t	x-x	у-у	х-х	у-у
Serial size	kg/m	mm	mm	mm	mm	mm	mm			cm⁴	cm⁴	cm	cm
457 x 191 x 98	98.3	467.2	192.8	11.4	19.6	12.7	402.6	4.92	35.3	45944	2348	19.1	4.32
457 x 191 x 106	105.8	469.2	194.0	12.6	20.6	12.7	402.6	4.71	32.0	49090	2515	19.1	4.31
457 x 191 x 133	133.3	480.6	196.7	15.3	26.3	12.7	402.6	3.74	26.3	64058	3350	19.4	4.43
457 x 191 x 161	161.4	492.0	199.4	18.0	32.0	12.7	402.6	3.12	22.4	79996	4251	19.7	4.54
533 x 165 x 66	65.7	524.7	165.1	8.9	11.4	12.7	476.5	7.24	53.5	35028	859	20.5	3.20
533 x 165 x 74	74.7	529.1	165.9	9.7	13.6	12.7	476.5	6.10	49.1	41058	1040	20.8	3.30
533 x 165 x 85	84.8	534.9	166.5	10.3	16.5	12.7	476.5	5.05	46.3	48631	1275	21.2	3.44
533 x 210 x 82	82.2	528.3	208.8	9.6	13.2	12.7	476.5	7.91	49.6	47539	2007	21.3	4.38
533 x 210 x 92	92.1	533.1	209.3	10.1	15.6	12.7	476.5	6.71	47.2	55227	2389	21.7	4.51
533 x 210 x 101	101.0	536.7	210.0	10.8	17.4	12.7	476.5	6.03	44.1	61519	2692	21.9	4.57
533 x 210 x 109	109.0	539.5	210.8	11.6	18.8	12.7	476.5	5.61	41.1	66822	2943	21.9	4.60
533 x 210 x 122	122.0	544.5	211.9	12.7	21.3	12.7	476.5	4.97	37.5	76043	3388	22.1	4.67
533 x 210 x 138	138.3	549.1	213.9	14.7	23.6	12.7	476.5	4.53	32.4	86088	3864	22.1	4.68
533 x 312 x 150	150.6	542.5	312.0	12.7	20.3	12.7	476.5	7.68	37.5	100633	10285	22.9	7.32
533 x 312 x 182	181.5	550.7	314.5	15.2	24.4	12.7	476.5	6.44	31.3	123222	12667	23.1	7.40
533 x 312 x 219	218.7	560.3	317.4	18.3	29.2	12.7	476.5	5.43	26.0	150976	15589	23.3	7.48
533 x 312 x 272	273.2	577.1	320.2	21.1	37.6	12.7	476.5	4.26	22.6	198578	20615	23.9	7.70
610 x 178 x 82	81.8	598.6	177.9	10.0	12.8	20.0	533.0	6.95	53.3	57487	1209	23.3	3.37
610 x 178 x 92	92.2	603.0	178.8	10.9	15.0	20.0	533.0	5.96	48.9	66195	1439	23.5	3.47
610 x 178 x 100	100.3	607.4	179.2	11.3	17.2	20.0	533.0	5.21	47.2	74145	1661	23.9	3.58
610 x 229 x 101	101.2	602.6	227.6	10.5	14.8	20.0	533.0	7.69	50.8	77398	2917	24.3	4.72
610 x 229 x 113	113.0	607.6	228.2	11.1	17.3	20.0	533.0	6.60	48.0	88936	3437	24.7	4.85
610 x 229 x 125	125.1	612.2	229.0	11.9	19.6	20.0	533.0	5.84	44.8	100228	3935	24.9	4.94
610 x 229 x 140	139.9	617.2	230.2	13.1	22.1	20.0	533.0	5.21	40.7	113395	4509	25.1	5.00
610 x 305 x 149	149.2	612.4	304.8	11.8	19.7	20.0	533.0	7.74	45.2	126738	9309	25.8	6.98
610 x 305 x 179	179.0	620.2	307.1	14.1	23.6	20.0	533.0	6.51	37.8	153886	11410	25.9	7.06
610 x 305 x 238	238.1	635.8	311.4	18.4	31.4	20.0	533.0	4.96	29.0	210333	15839	26.3	7.21
686 x 254 x 125	125.2	677.9	253.0	11.7	16.2	20.0	605.5	7.81	51.8	119448	4385	27.2	5.22
686 x 254 x 140	140.1	683.5	253.7	12.4	19.0	20.0	605.5	6.68	48.8	137723	5186	27.7	5.37
686 x 254 x 152	152.4	687.5	254.5	13.2	21.0	20.0	605.5	6.06	45.9	151811	5786	27.9	5.44
686 x 254 x 170	170.2	692.9	255.8	14.5	23.7	20.0	605.5	5.40	41.8	171782	6633	28.1	5.51
762 x 267 x 134	133.9	750.0	264.4	12.0	15.5	20.0	679.0	8.53	56.6	152061	4790	29.8	5.28
762 x 267 x 134	146.9	754.0	265.2	12.8	17.5	20.0	679.0	7.58	53.0	169871	5457	30.0	5.38
762 x 267 x 147	173.0	762.2	266.7	14.3	21.6	20.0	679.0	6.17	47.5	206651	6852	30.5	5.56
762 x 267 x 197	196.8 175.9	769.8 834.9	268.0 291.7	15.6 14.0	25.4 18.8	20.0	679.0 757.3	5.28 7.76	43.5 54.1	241326	8177 7800	31.0 33.2	5.70 5.89
838 x 292 x 176		840.7		14.0	21.7	20.0		6.74	51.5	247120	9068	33.6	6.05
838 x 292 x 194	193.8		292.4			20.0	757.3			280274			
838 x 292 x 226	226.5	850.9	293.8	16.1	26.8	20.0	757.3	5.48	47.0	340802	11361	34.3	6.27
914 x 305 x 201	200.9	903.0	303.3	15.1	20.2	19.1	824.4	7.51	54.6	325254	9423	35.7	6.07
914 x 305 x 224	224.2	910.4	304.1	15.9	23.9	19.1	824.4	6.36	51.8	376414	11236	36.3	6.27
914 x 305 x 253	253.4	918.4	305.5	17.3	27.9	19.1	824.4	5.47	47.7	436305	13301	36.8	6.42
914 x 305 x 289	289.1	926.6	307.7	19.5	32.0	19.1	824.4	4.81	42.3	504187	15597	37.0	6.51

8



Elastic i	modulus	Plastic r	nodulus	Buckling parameter	Torsional index	Warping constant	Torsional constant	Area of section	Designation
Axis	Axis	Axis	Axis	parameter	muex	Constant	Constant	section	
x-x	у-у	х-х	у-у	u	х	н	J		
cm ³	cm ³	cm ³	cm ³			dm ⁶	cm⁴	cm²	Serial size
1967	244	2243	379	0.881	25.5	1.180	124.0	126.0	457 x 191 x 98
2093	259	2399	406	0.878	24.2	1.270	149.0	135.0	457 x 191 x 106
2666	341	3080	535	0.880	19.4	1.730	298.0	170.0	457 x 191 x 133
3252	426	3789	672	0.882	16.3	2.250	524.0	206.0	457 x 191 x 161
1335	104	1561	166	0.847	47.0	0.566	32.0	83.7	533 x 165 x 66
1552	125	1808	200	0.853	41.1	0.691	47.9	95.2	533 x 165 x 74
1818	153	2107	243	0.862	35.5	0.857	73.8	108.0	533 x 165 x 85
1800	192	2059	300	0.864	41.6	1.330	51.5	105.0	533 x 210 x 82
2072	228	2360	355	0.872	36.5	1.600	75.7	117.0	533 x 210 x 92
2292	256	2612	399	0.874	33.2	1.810	101.0	129.0	533 x 210 x 101
2477	279	2829	436	0.875	30.9	1.990	126.0	139.0	533 x 210 x 109
2793	320	3196	500	0.877	27.6	2.320	178.0	155.0	533 x 210 x 122
3136	361	3613	568	0.873	25.0	2.670	250.0	176.0	533 x 210 x 138
3710	659	4142	1009	0.885	27.8	7.010	216.0	192.0	533 x 312 x 150
4475	806	5030	1237	0.885	23.4	8.770	373.0	231.0	533 x 312 x 182
5389	982	6109	1514	0.884	19.8	11.000	642.0	279.0	533 x 312 x 219
6882	1288	7859	1985	0.890	15.9	15.000	1288.0	348.0	533 x 312 x 272
1921	136	2252	220	0.846	45.3	1.040	57.0	106.0	610 x 178 x 82
2196	161	2569	260	0.850	40.4	1.240	81.0	120.0	610 x 178 x 92
2441	185	2844	298	0.857	36.8	1.450	107.0	130.0	610 x 178 x 100
2569	256	2939	402	0.865	40.9	2.520	86.7	131.0	610 x 229 x 101
2927	301	3339	471	0.872	36.4	2.990	123.0	146.0	610 x 229 x 113
3274	344	3734	537	0.875	32.9	3.450	168.0	161.0	610 x 229 x 125
3674	392	4200	614	0.876	29.6	3.990	233.0	180.0	610 x 229 x 140
4139	611	4625	938	0.887	32.2	8.180	208.0	191.0	610 x 305 x 149
4962	743	5578	1145	0.886	27.3	10.200	351.0	229.0	610 x 305 x 179
6616	1017	7517	1575	0.886	21.1	14.500	803.0	304.0	610 x 305 x 238
3524	347	4040	544	0.863	42.6	4.800	124.0	161.0	686 x 254 x 125
4030	409	4604	640	0.869	37.7	5.720	179.0	180.0	686 x 254 x 140
4416	455	5047	712	0.872	34.7	6.430	231.0	196.0	686 x 254 x 152
4958	519	5677	813	0.873	31.2	7.430	322.0	218.0	686 x 254 x 170
4055	362	4683	571	0.855	48.7	6.460	125.0	172.0	762 x 267 x 134
4506	412	5195	648	0.859	44.4	7.400	166.0	188.0	762 x 267 x 147
5422	514	6237	809	0.865	37.5	9.400	277.0	221.0	762 x 267 x 173
6270	610	7206	960	0.869	32.8	11.300 13.000	417.0	252.0 225.0	762 x 267 x 197 838 x 292 x 176
5920	535	6836 7668	843	0.857	46.0		227.0		
6668	620		974 1212	0.863	41.3	15.200	312.0	248.0	838 x 292 x 194
8010 7204	773 621	9183 8352	982	0.870 0.854	34.7 46.8	19.300 18.400	522.0 291.0	289.0 256.0	838 x 292 x 226 914 x 305 x 201
8269	739	9535	1163	0.861	41.3	22.100	422.0	286.0	914 x 305 x 201
9501	871	10942	1370	0.866	36.2	26.400	626.0	323.0	914 x 305 x 253
10883	1014	12570	1601	0.867	31.9	31.200	926.0	368.0	914 x 305 x 289
10003	1014	123/10	1001	0.007	31.5	31.200	520.0	500.0	314 Y 202 Y 503

Dimensions and properties to BS EN 10365:2017

BUILDING STRONGER FUTURES

Designation	Mass per	Depth	Width	Thic	kness	Root	Depth	Ratios fo	or local	Second r	noment	Rad	ius of
	metre	of	of			radius	between	buck	ling	of a	rea	gyr	ation
		section	section	of	of		fillets			1			i
				web	flange			Flange	Web	Axis	Axis	Axis	Axis
		D	В	t	Т	r	d	B/2T	d/t	x-x	у-у	x-x	у-у
Serial size	kg/m	mm	mm	mm	mm	mm	mm			cm ⁴	cm⁴	cm	cm
914 x 419 x 343	343.3	911.8	418.5	19.4	32.0	24.1	799.6	6.54	41.2	625780	39156	37.8	9.46
914 x 419 x 388	388.0	921.0	420.5	21.4	36.6	24.1	799.6	5.74	37.4	719635	45438	38.2	9.59
1016 x 305 x 222	222.0	970.3	300.0	16.0	21.1	30.0	868.1	7.11	54.3	407961	9546	38.0	5.81
1016 x 305 x 249	248.7	980.1	300.0	16.5	26.0	30.0	868.1	5.77	52.6	481192	11754	39.0	6.09
1016 x 305 x 272	272.3	990.1	300.0	16.5	31.0	30.0	868.1	4.84	52.6	553974	14004	40.0	6.35
1016 x 305 x 314	314.3	999.9	300.0	19.1	35.9	30.0	868.1	4.18	45.5	644063	16232	40.1	6.37
1016 x 305 x 349	349.4	1008.1	302.0	21.1	40.0	30.0	868.1	3.78	41.1	723131	18460	40.3	6.44
1016 x 305 x 393	392.7	1015.9	303.0	24.4	43.9	30.0	868.1	3.45	35.6	807503	20496	40.2	6.40
1016 x 305 x 437	437.0	1026.1	305.4	26.9	49.0	30.0	868.1	3.12	32.3	910322	23447	40.4	6.49
1016 x 305 x 487	486.7	1036.3	308.5	30.0	54.1	30.0	868.1	2.85	28.9	1021884	26721	40.6	6.57

Structural Tees Produced From Universal Beams

Dimensions and Properties to BS4-10034

Properties have been calculated assuming that there is no loss of material due to splitting.

Designation	Mass per metre	Cut from universal beam	Section		Thickness		Radius
	Kg/m		Width b (mm)	Depth a (mm)	Web s (mm)	Flange t (mm)	root r (mm)
419 x 457 x 194	194	914 x 419 x 388	420.5	460.5	21.4	36.6	24.1
419 x 457 x 172	171.5	914 x 419 x 343	418.5	455.9	19.4	32	24.1
305 x 457 x 145	144.5	914 x 305 x 289	307.7	463.3	19.5	32	19.1
305 x 457 x 127	126.5	914 x 305 x 253	305.5	459.2	17.3	27.9	19.1
305 x 457 x 112	112	914 x 305 x 224	304.1	455.2	15.9	23.9	19.1
305 x 457 x 101	100.5	914 x 305 x 201	303.3	451.5	15.1	20.2	19.1
292 x 419 x 113	113	838 x 292 x 226	293.8	425.4	14	26.8	17.8
292 x 419 x 97	97	838 x 292 x 194	292.4	420.3	14.7	21.7	17.8
292 x 419 x 88	88	838 x 292 x 176	291.7	417.4	14	14	17.8
267 x 381 x 99	98.5	762 x 267 x 197	268	384.9	15.6	254.4	16.5
267 x 381 x 87	86.5	762 x 267 x 173	266.7	381.1	14.3	21.6	16.5
267 x 381 x 74	73.5	762 x 267 x 147	265.2	377	12.8	17.5	16.5
267 x 381 x 67	67	762 x 267 x 134	264.4	375	12	12	16.5
254 x 343 x 85	85	686 x 254 x 170	255.8	346.4	14.5	23.7	15.2
254 x 343 x 76	76	686 x 254 x 152	254.5	343.7	13.2	21	15.2
254 x 343 x 70	70	686 x 254 x 140	253.7	341.7	12.4	19	15.2
254 x 343 x 63	62.5	686 x 254 x 125	253	338.9	11.7	16.2	15.2

305 x 305 x 119	119	610 x 305 x 238	311.4	317.9	18.4	31.4	16.5
305 x 305 x 90	89.5	610 x 305 x 179	307.1	310.1	14.1	23.6	16.5
305 x 305 x 75	74.5	610 x 305 x 149	304.8	306.2	11.8	19.7	16.5
229 x 305 x 70	70	610 x 229 x 140	230.2	308.6	13.1	22.1	12.7
229 x 305 x 63	62.5	610 x 229 x 125	229	306.1	11.9	19.6	12.7
229 x 305 x 57	56.5	610 x 229 x 113	228.2	303.8	11.1	17.3	12.7
229 x 305 x 51	50.5	610 x 229 x 101	227.6	301.3	10.5	14.8	12.7
210 x 267 x 61	61	533 x 210 x 122	211.9	272.2	12.7	21.3	12.7
210 x 267 x 55	54.5	533 x 210 x 109	210.8	269.7	11.6	18.8	12.7
210 x 267 x 51	50.5	533 x 210 x 101	210	268.3	10.8	17.4	12.7
210 x 267 x 46	46	533 x 210 x 92	209.3	266.5	10.1	15.6	12.7
210 x 267 x 41	41	533 x 210 x 82	208.8	264.1	9.6	13.2	12.7
191 x 229 x 49	49	457 x 191 x 98	192.8	233.6	11.4	19.6	10.2
191 x 229 x 45	44.5	457 x 191 x 89	191.9	231.7	10.5	17.7	10.2
191 x 229 x 41	41	457 x 191 x 82	191.3	230	9.9	16	10.2
191 x 229 x 37	37	457 x 191 x 74	190.4	228.5	9	14.5	10.2
191 x 229 x 34	33.5	457 x 191 x 67	189.9	226.7	8.5	12.7	10.2
152 x 229 x 41	41	457 x 152 x 82	155.3	232.9	10.5	18.9	10.2
152 x 229 x 37	37	457 x 152 x 74	154.4	231	9.6	17	10.2
152 x 229 x 34	33.5	457 x 152 x 67	153.8	229	9	15	10.2
152 x 229 x 30	30	457 x 152 x 60	152.9	227.3	8.1	13.3	10.2
152 x 229 x 26	26	457 x 152 x 52	152.4	224.9	7.6	10.9	10.2
178 x 203 x 37	37	406 x 178 x 74	179.5	206.4	9.5	16	10.2
178 x 203 x 34	33.5	406 x 178 x 67	178.8	204.7	8.8	14.3	10.2
178 x 203 x 30	30	406 x 178 x 60	177.9	203.2	7.9	12.8	10.2
178 x 203 x 27	27	406 x 178 x 54	177.7	201.3	7.7	10.9	10.2
140 x 203 x 46	23	406 x 140 x 46	142.2	201.6	6.8	11.2	10.2
140 x 203 x 20	19.5	406 x 140 x 39	141.8	199	6.4	8.6	10.2
171 x 178 x 34	33.5	356 x 171 x 67	173.2	181.7	9.1	15.7	10.2
171 x 178 x 29	28.5	356 x 171 x 57	172.2	179	8.1	13	10.2
171 x 178 x 26	25.5	356 x 171 x 51	171.5	177.5	7.4	11.5	10.2

					_		
171 x 178 x 23	22.5	356 x 171 x 45	171.1	175.7	7	9.7	10.2
127 x 178 x 20	19.5	356 x 127 x 39	126	176.7	6.6	10.7	10.2
127 x 178 x 17	16.5	356 x 127 x 33	125.4	174.5	6	8.5	10.2
165 x 152 x 27	27	305 x 165 x 54	166.9	155.2	7.9	13.7	8.9
165 x 152 x 23	23	305 x 165 x 46	165.7	153.3	6.7	11.8	8.9
165 x 152 x 20	20	305 x 165 x 40	165	151.7	6	10.2	8.9
127 x 152 x 24	24	305 x 127 x 48	12.53	155.5	9	14	8.9
127 x 152 x 21	21	305 x 127 x 42	124.3	153.6	8	12.1	8.9
127 x 152 x 19	18.5	305 x 127 x 37	123.3	15.2	7.1	10.7	8.9
102 x 152 x 17	16.5	305 x 102 x 33	102.4	156.3	6.6	10.8	7.6
102 x 152 x 14	14	305 x 102 x 28	101.8	154.3	6	8.8	7.6
102 x 152 x 13	12.5	305 x 102 x 25	101.6	152.5	5.8	7	7.6
146 x 127 x 22	21.5	254 x 146 x 43	147.3	129.8	7.2	12.7	7.6
146 x 127 x 19	18.5	254 x 146 x 37	146.4	128	6.3	10.9	7.6
146 x 127 x 16	15.5	254 x 146 x 31	146.1	125.7	6	8.6	7.6
102 x 127 x 14	14	254 x 102 x 28	102.2	130.2	6.3	10	7.6
102 x 127 x 13	12.5	254 x 102 x 25	101.9	128.6	6	8.4	7.6
102 x 127 x 11	11	254 x 102 x 22	101.6	127	5.7	6.8	7.6
133 x 102 x 15	15	203 x 133 x 30	133.9	103.4	6.4	9.6	7.6
133 x 102 x 13	12.5	203 x 133 x 25	133.2	101.6	5.7	7.8	7.6
102 x 102 x 12	11.5	203 x 102 x 23	101.8	101.6	5.4	9.3	7.6
102 x 89 x 10	9.5	178 x 102 x 19	101.2	88.9	4.8	7.9	7.6
89 x 76 x 8	8	152 x 89 x 16	88.7	76.2	4.5	7.7	7.6
76 x 63.5 x 6.5	6.5	127 x 76 x 13	76	63.5	4	7.6	7.6

10.2 Reflexión sobre los Objetivos de Desarrollo Sostenible

La primera parte de este trabajo académico consiste en indagar y estudiar el edificio *Exchange House* y su contexto. Este estudio previo no solo sirve para analizar su estructura por medio del software de cálculo SAP2000, sino también para reflexionar acerca de los Objetivos de Desarrollo Sostenible (ODS). Esta reflexión se realiza desde una perspectiva general ya que la información bibliográfica no aporta datos concretos que permitan realizar un análisis más tangible sobre el impacto del edificio en el ámbito de la sostenibilidad.

De los 17 objetivos aprobados en 2015 y planteados en la Agenda 2030 sobre el Desarrollo Sostenible, 6 tienen una relación más evidente con el edificio estudiado en este trabajo.

Objetivo 7. Energía asequible y no contaminante.

El edificio y aquellos que lo usan, cuentan con un privilegio que muchos habitantes del planeta no tienen. Se trata de un edificio de oficinas donde las grandes empresas pueden instalarse gracias a su situación económica privilegiada, lo que supone que el acceso a electricidad no sea un problema. El punto en cuestión es si el uso de esta energía es responsable y si se obtiene de recursos renovables. Se debe tener en cuenta que el diseño del edificio es simétrico y que sus fachadas son completamente iguales, tanto en orientación norte como en orientación sur. Además, el edificio cuenta con un sistema de calefacción y refrigeración central. Por lo tanto, posiblemente, la elección de materiales (fundamentalmente vidrio en fachadas) y la falta de elementos que controlen la radiación solar hagan que el consumo energético del edificio no sea lo suficientemente eficiente.

Objetivo 8. Trabajo decente y crecimiento económico.

En los años 80 aparece una nueva manera de trabajar en oficinas que responde a los avances en la tecnología. Los espacios más diáfanos permiten aproximar a los trabajadores e incentivar el trabajo en grupo. Esta tipología de edificio refleja la creación de nuevos campos laborales que tiene como resultado la creación de nuevos puestos de trabajo y, por lo tanto, el crecimiento económico.

Objetivo 9. Industria, innovación e infraestructuras.

Una de las características del edificio *Exchange House* y en general de la firma norteamericana SOM es su capacidad innovadora. La cadena productiva necesaria para ejecutar el edificio permite generar empleo, y en este caso las industrias que colaboraron en su construcción eran fundamentalmente locales. Colaboraron mano a mano con la empresa encargada de fabricar los perfiles y encuentros metálicos, lo que les permite aprender durante el proceso y poner en práctica soluciones más innovadoras y particulares que resuelven detalles complejos del edificio en cuestión.

Objetivo 11. Ciudades y comunidades sostenibles.

Las áreas metropolitanas representan aproximadamente un 70% de las emisiones de CO₂ del planeta y un 60% de los recursos empleados. Conforme han ido evolucionando las ciudades, éstas se han expandido no sólo en el plano horizontal, sino también en altura. Puesto que la demanda es notablemente superior en los centros neurálgicos, la gentrificación y la aparición de zonas marginales es cada día un problema más frecuente en la ciudad contemporánea. Este edificio colabora en la expansión de la ciudad, de modo que la cuestión que queda en el aire es si el complejo financiero aporta espacios y programas necesarios para los habitantes o si es un simple alarde arquitectónico.

Por otro lado, que toda la población, sin importar el estatus social y económico pueda ser partícipe de la ciudad es un factor importante. El diseño de su planta baja libre de las oficinas, que conecta con la plaza *Exchange*, hace que el propio edificio pierda carácter privativo ya que la propia plaza se funde con la obra.

Objetivo 12. Producción y consumo responsable.

De este apartado se podría destacar que "la producción sostenible consiste en hacer más y mejor con menos". En este caso el diseño del edificio busca la simplicidad y se llega a una respuesta que consigue disminuir la cantidad de acero a un 30% respecto a otras soluciones, gracias a su geometría. Además, se decide utilizar la mínima cantidad de recubrimientos posibles, aunque es cierto que se emplean pinturas que protegen sus elementos para que el edificio dure en el tiempo.

Objetivo 13. Acción por el clima.

En el proceso de construcción de una obra la huella de carbono es un indicador muy importante para determinar el impacto medioambiental del edificio. Esta huella tiene su punto de partida desde el momento en que se crea el material. El edificio *Exchange House* adopta una solución condicionada por el entorno, por lo que para conseguir un edificio puente se opta por el uso de estructura metálica y losas de hormigón. A pesar de que el acero no es el material más respetuoso con el medioambiente, responde adecuadamente con la estructura de grandes luces. Por último, se decide recurrir a perfiles británicos y empresas locales para la soldadura de piezas en taller, lo que reduce la huella de carbono que produce el transporte de materiales. La búsqueda de ligereza también reduce la cantidad de material necesitado y por tanto la huella de carbono del edificio.