

Appl. Gen. Topol. 22, no. 2 (2021), 303-309 doi:10.4995/agt.2021.13874 © AGT, UPV, 2021

Orbitally discrete coarse spaces

Igor Protasov

Taras Shevchenko National University of Kyiv, Department of Computer Science and Cybernetics, Academic Glushkov pr. 4d, 03680 Kyiv, Ukraine (i.v.protasov@gmail.com)

Communicated by F. Mynard

Abstract

Given a coarse space (X, \mathcal{E}) , we endow X with the discrete topology and denote $X^{\sharp} = \{p \in \beta G : \text{each member } P \in p \text{ is unbounded } \}$. For $p, q \in X^{\sharp}, p || q$ means that there exists an entourage $E \in \mathcal{E}$ such that $E[P] \in q$ for each $P \in p$. We say that (X, \mathcal{E}) is orbitally discrete if, for every $p \in X^{\sharp}$, the orbit $\overline{p} = \{q \in X^{\sharp} : p || q\}$ is discrete in βG . We prove that every orbitally discrete space is almost finitary and scattered.

2010 MSC: 54D80; 20B35; 20F69.

KEYWORDS: coarse space; ultrafilter; orbitally discrete space; almost finitary space; scattered space.

1. INTRODUCTION AND PREIMINARIES

Given a set X, a family ${\mathcal E}$ of subsets of $X\times X$ is called a *coarse structure* on X if

- each $E \in \mathcal{E}$ contains the diagonal $\triangle_X = \{(x, x) \in X : x \in X\};$
- if $E, E' \in \mathcal{E}$ then $E \circ E' \in \mathcal{E}$ and $E^{-1} \in \mathcal{E}$, where $E \circ E' = \{(x, y) : \exists z((x, z) \in E, (z, y) \in E')\}, E^{-1} = \{(y, x) : (x, y) \in E\};$
- if $E \in \mathcal{E}$ and $\triangle_X \subseteq E' \subseteq E$ then $E' \in \mathcal{E}$;
- $\bigcup \mathcal{E} = X \times X.$

Received 16 June 2020 – Accepted 15 April 2021

I. Protasov

A subfamily $\mathcal{E}' \subseteq \mathcal{E}$ is called a *base* for \mathcal{E} if, for every $E \in \mathcal{E}$, there exists $E' \in \mathcal{E}'$ such that $E \subseteq E'$. For $x \in X$, $A \subseteq X$ and $E \in \mathcal{E}$, we denote

$$E[x] = \{y \in X : (x, y) \in E\}, \ E[A] = \bigcup_{a \in A} E[a], \ E_A[x] = E[x] \cap A$$

and say that E[x] and E[A] are balls of radius E around x and A.

The pair (X, \mathcal{E}) is called a *coarse space* [19] or a ballean [12], [18].

For a coarse space (X, \mathcal{E}) , a subset $B \subseteq X$ is called *bounded* if $B \subseteq E[x]$ for some $E \in \mathcal{E}$ and $x \in X$. The family $\mathcal{B}_{(X,\mathcal{E})}$ of all bounded subsets of (X,\mathcal{E}) is called the bornology of (X,\mathcal{E}) . We recall that a family \mathcal{B} of subsets of a set X is a *bornology* if \mathcal{B} is closed under taking subsets and finite unions, and \mathcal{B} contains all finite subsets of X.

A coarse space (X, \mathcal{E}) is called *finitary*, if for each $E \in \mathcal{E}$ there exists a natural number n such that |E[x]| < n for each $x \in X$.

Let G be a transitive group of permutations of a set X. We denote by X_G the set X endowed with the coarse structure with the base

$$\{\{(x, gx) : g \in F\}\} : F \in [G]^{<\omega}, \ id \in F\}.$$

By [8, Theorem 1], for every finitary coarse structure (X, \mathcal{E}) , there exists a transitive group G of permutations of X such that $(X, \mathcal{E}) = X_G$. For more general results, see [10].

Let X be a discrete space and let βX denote the *Stone-Čech compactification* of X. We take the points of βX to be the ultrafilters on X, with the points of X identified with the principal ultrafilters, so $X^* = \beta X \setminus X$ is the set of all free ultrafilters. The topology of βX is generated by the base consisting of the sets $\overline{A} = \{p \in \beta X : A \in p\}$, where $A \subseteq X$. The universal property of βX states that every mapping $f : X \longrightarrow Y$ to a compact Hausdorff space Y can be extended to a continuous mapping $f^{\beta} : \beta X \longrightarrow X$.

Given a coarse space (X, \mathcal{E}) , we endow X with the discrete topology and denote by X^{\sharp} the set of all ultrafilters p on X such that each member $P \in p$ is unbounded. Clearly, X^{\sharp} is a closed subset of X^* and $X^{\sharp} = X^*$ if (X, \mathcal{E}) is finitary.

Following [7], we say that two ultrafilters $p, q \in X^{\sharp}$ are *parallel* (and write p||q) if there exists $E \in \mathcal{E}$ such that $E[P] \in q$ for each $P \in p$. Then || is an equivalence on X^{\sharp} . We denote

$$\overline{\overline{p}} = \{q \in X^{\sharp} : q || p\}$$

and say that $\overline{\overline{p}}$ is the *orbit* of p. If (X, \mathcal{E}) is finitary and $(X, \mathcal{E}) = X_G$ then $\overline{\overline{p}} = Gp$.

A coarse space (X, \mathcal{E}) is called *orbitally discrete* if, for every $p \in X^{\sharp}$, the orbit $\overline{\overline{p}}$ is discrete. Every discrete coarse space is orbitally discrete. We recall that (X, \mathcal{E}) is *discrete* if, for each $E \in \mathcal{E}$, there exists a bounded subset B such that $E[x] = \{x\}$ for each $x \in X \setminus B$. In this case, $\overline{\overline{p}} = \{p\}$ for each $p \in X^{\sharp}$.

© AGT, UPV, 2021

Every bornology \mathcal{B} on a set X defines the discrete coarse structure on X with the base $\{E_B : B \in \mathcal{B}\}, E_B[x] = B$ if $x \in B$, and $E_B[x] = \{x\}$ if $x \in X \setminus B$.

By [15, Theorem 5.4], for a finitary coarse space (X, \mathcal{E}) , the following conditions are equivalent: X_G is orbitally discrete, X_G is scattered, X_G has no piecewise shifted FP-sets.

A coarse space (X, \mathcal{E}) is called *scattered* if, for every unbounded subset A of X, there exists $E \in \mathcal{E}$ such that A has asymptotically E-isolated balls: for each $E' \in \mathcal{E}$, there is $a \in A$ such that $E'_A[a] \setminus E_A[a] = \emptyset$.

This notion arouse in the characterization of the Cantor macrocube [3] and, in the case of finitary coarse groups, was explored in [2].

Let G be a group of permutations of a set X. Let $(g_n)_{n \in \omega}$ be a sequence in G and let $(x_n)_{n \in \omega}$ be a sequence in X such that

- $\begin{array}{ll} (1) & \{g_0^{\epsilon_0} \dots g_n^{\epsilon_n} \ x_n \ : \ (\epsilon_i)_{i=0}^n \ \in \ \{0,1\}^{n+1}\} \cap \{g_0^{\epsilon_0} \dots g_m^{\epsilon_m} \ x_m \ : \ (\epsilon_i)_{i=0}^n \ \in \ \{0,1\}^{n+1}\} = \varnothing \text{ for all distinct } n, m \in \omega; \\ (2) & \{g_0^{\epsilon_0} \dots g_n^{\epsilon_n} \ x_n \ : \ (\epsilon_i)_{i=0}^n \in \{0,1\}^{n+1}\}| = 2^{n+1} \text{ for every } n \in \omega. \end{array}$

Following [15], we say that a subset Y of X is a *piecewise shifted FP-set* if there exist $(g_n)_{n \in \omega}$, $(x_n)_{n \in \omega}$ satisfying (1), (2) and such that

$$Y = \{g_0^{\epsilon_0} \dots g_n^{\epsilon_n} x_n : \epsilon_i \in \{0, 1\}\}, \ n \in \omega\}.$$

After exposition of results in Section 2, we survey some known classes of orbitally discrete spaces in Section 3.

2. Resuts

A coarse space (X, \mathcal{E}) is called *almost finitary* if, for every $E \in \mathcal{E}$, there exists a bounded subset B and a natural number n such that |E[x]| < n for each $x \in X \setminus B$. Every discrete space and every finitary space are almost finitary.

Theorem 2.1. Every orbitally discrete coarse space is almost finitary.

Proof. We suppose the contrary and choose $E \in \mathcal{E}$, $E = E^{-1}$ such that, for any bounded subset B and a natural number n, there exists $x \in X \setminus B$ such that |E[x]| > n.

We claim that there exists $p \in X^{\sharp}$ such that, for every $P \in p$, $\{x \in P :$ $|E^2[x] \cap P| > 1\} \in p$. Otherwise, for every $p \in X^{\sharp}$, there exists $Q_p \in p$ such that $\{x \in Q_p : E^2[x] \cap Q_p| = 1\} \in p$. We consider the open covering $\{Q_p^{\sharp} : p \in X^{\sharp}\}$ of X^{\sharp} and choose its finite subcovering $Q_{p_1}^{\sharp}, \ldots, Q_{p_m}^{\sharp}$. Then the set $B = X \setminus (Q_{p_1} \cup, \ldots, \cup Q_{p_m})$ is bounded and $|E[x]| \leq m$ for each $x \in X \setminus E[B]$, but this contradicts the choice of E.

We show that the orbit \overline{p} is not discrete. Given any $P \in p$, we choose $Q \in p$, $Q \subseteq P$ such that $|E^2[x] \cap P| > 1$ for each $x \in Q$. For every $x \in Q$, we take $f(x) \in E^2[x] \cap P$ such that $x \neq f(x)$. Then we extend the mapping $x \mapsto f(x)$

I. Protasov

from Q to X by f(x) = x for each $x \in X \setminus Q$. Clearly, $f^{\beta}(p) \neq p$, $P \in f^{\beta}(p)$ and $f^{\beta}(p) || p$ because $(x, f(x)) \in E^2$ for each $x \in X$.

To clarify the structure of an almost finitary coarse space, we use the following construction from [6]. A bornology \mathcal{B} on a coarse space (X, \mathcal{E}) is called \mathcal{E} -compatible if $E[B] \in \mathcal{B}$ for all $B \in \mathcal{B}, E \in \mathcal{E}$. Every \mathcal{E} -compatible bornology \mathcal{B} defines the \mathcal{B} -strengthening (X, \mathcal{H}) of (X, \mathcal{E}) , where \mathcal{H} has the base

$$\{H_{B,E} : B \in \mathcal{B}, \ E \in \mathcal{E}\},\$$
$$H_{B,E}[x] = \begin{cases} E[B], & \text{if } x \in B,\\ E[x], & \text{if } x \in X \setminus B. \end{cases}$$

For description of the upper bound $\mathcal{E} \vee \mathcal{E}'$ of coarse structures, see [13].

Theorem 2.2. For a coarse space (X, \mathcal{E}) , the following statements are equivalent

- (i) (X, \mathcal{E}) is almost finitary;
- (ii) (X, \mathcal{E}) is the \mathcal{B} -strengthening of some finitary coarse space (X, \mathcal{E}') by the bornology \mathcal{B} of bounded subspaces of (X, \mathcal{E}) ;
- (iii) \mathcal{E} is the upper bound of a discrete and a finitary coarse structures on X.

Proof. (i) \implies (ii). For $B \in \mathcal{B}$ and $E \in \mathcal{E}$, we pick $B'_{B,E} \in \mathcal{B}$ and a natural number n such that $B \subseteq B'_{B,E}$ and |E[x]| < n for each $x \in X \setminus B'_{B,E}$. We note that $\{B'_{B,E} : B \in \mathcal{B}, E \in \mathcal{E}\}$ is a base for \mathcal{B} . For $B \in \mathcal{B}, E \in \mathcal{E}$ we put

$$E'_{B,E} = \begin{cases} x & \text{if } x \in B'_{B,E}, \\ E[x] & \text{if } x \in X \setminus B'_{B,E}, \end{cases}$$

denote by \mathcal{E}' the smallest coarse structure on X containing all entourages $\{H_{B,E} : B \in \mathcal{B}, E \in \mathcal{E}\}$, observe that \mathcal{E}' is finitary and (X, \mathcal{E}) is the \mathcal{B} -strengthening of (X, \mathcal{E}') .

 $(ii) \Longrightarrow (iii)$. If (X, \mathcal{E}) is the \mathcal{B} -strengthening of (X, \mathcal{E}') then \mathcal{E} is the upper bounded of \mathcal{E}' and the discrete coarse structure on X defined by the bornology \mathcal{B} .

 $(iii) \Longrightarrow (i)$. We assume that \mathcal{E} is the upper bound of finitary coarse structure \mathcal{E}' and discrete coarse structure on X defined by some bornology \mathcal{B} . We choose the smallest bornology \mathcal{B}' on X such that $\mathcal{B} \subseteq \mathcal{B}'$ and $\mathcal{E}'(\mathcal{B}') \in \mathcal{B}'$ for all $\mathcal{E}' \in \mathcal{E}'$. Then \mathcal{B}' is the bornology of bounded subsets of (X, \mathcal{E}) and (X, \mathcal{E}) is the \mathcal{B}' -strengthening of (X, \mathcal{E}') , so (X, \mathcal{E}) is almost finitary. \Box

Remark. Let (X, \mathcal{E}) be the \mathcal{B} -strengthening of a finitary coarse space (X, \mathcal{E}') . If (X, \mathcal{E}') is orbitally discrete then (X, \mathcal{E}) is orbitally discrete, but the converse statement needs not to be true. Let X be the disjoint union of

two infinite subsets Y, Z. We endow Y with the finitary coarse structure \mathcal{E}_Y such that (Y, \mathcal{E}_Y) is not orbitally discrete, and denote by \mathcal{E}_Z the discrete coarse structure on Z defined by the bornology of finite subset. We take the smallest coarse structure \mathcal{E}' on X such that $\mathcal{E}'|_Y = \mathcal{E}_Y, \mathcal{E}'|_Z = \mathcal{E}_Z$. Clearly, \mathcal{E}' is finitary but not orbitally discrete. We denote by \mathcal{B} the smallest bornology on X such that $Y \in \mathcal{B}$. Then the \mathcal{B} -strengthening of (X, \mathcal{E}') is discrete.

Theorem 2.3. For almost finitary coarse space (X, \mathcal{E}) and $p, q \in X^{\sharp}$, we have p||q if and only if there exist $E \in \mathcal{E}$ and a permutation g of X such that gp = q, $gp = \{gP : P \in p\}$ and $(x, gx) \in E$ for each $x \in X$.

Proof. Let p||q. We take $E \in \mathcal{E}$ such that $E = E^{-1}$ and $E[P] \in q$ for each $P \in p$. Since (X, \mathcal{E}) is almost finitary, there exist a bounded subset B of X and a natural number n such that |E[x]| < n for each $x \in X \setminus B$. We put $Y = X \setminus E[B]$, note that $Y \in p$ and define a set-valued mapping $\mathcal{F} : X \longrightarrow [x]^{<\omega}$. $\mathcal{F}(x) = E[x]$ if $x \in Y$ and $\mathcal{F}(x) = \{x\}$ if $x = X \setminus Y$. By Theorem 1 from [10], there exists bijection f_1, \ldots, f_m of X such that $f_i(x) \in \mathcal{F}(x)$ and $f_1(x) \cup \cdots \cup f_n(x) = \mathcal{F}(x)$. We take $i \in \{1, \ldots, m\}$ such that $f_i(P) \in q$ for each $P \in p$ and put $g = f_i$.

The converse statement follows directly from the definition of the parallelity relation ||.

Corollary 2.4. If (X, \mathcal{E}) is almost finitary, $p \in X^{\sharp}$ and p is an isolated point of \overline{p} then \overline{p} is discrete.

Proof. We assume that some point $q \in \overline{p}$ is not isolated in \overline{p} , use Theorem 2.3 to choose a permutation g of X such that gq = p and note that p is not isolated in \overline{p} .

For a subset A of (X, \mathcal{E}) and $p \in X^{\sharp}$, we denote $\Delta_p(A) = \overline{p} \cap A^{\sharp}$.

Theorem 2.5. An almost finitary coarse space (X, \mathcal{E}) is scattered if and only if, for every unbounded subset A of X, there exists $p \in A$ such that $\Delta_p(A)$ is finite.

Proof. We suppose that X is scattered and choose $E \in \mathcal{E}$ such that A has an asymptotically isolated E-balls. For each $H \in \mathcal{E}$, we denote $P_H = \{x \in A : H_A[x] \setminus E_A[x] = \emptyset\}$ and take $p \in A^{\sharp}$ such that $P_H \in p$ for each $H \in \mathcal{E}$. If $q \in A^{\sharp}$ and q || p then $E[P] \in q$ for each $P \in p$. We take the bijections f_1, \ldots, f_m from the proof of Theorem 2.3. Since q = gp for some $g \in \{f_1, \ldots, f_m\}$, we have $\Delta_p(A) \leq m$.

Let $\Delta_p(A) = \{p_1, \ldots, p_m\}$. For each $i \in \{1, \ldots, m\}$, we pick $E_i \in \mathcal{E}$ such that $E_i[P] \in p_i$ for each $P \in p$. Then we take $E \in \mathcal{E}$ such that $E_i \subseteq E$ for each $i \in \{1, \ldots, m\}$, and observe that A has an asymptotically isolated E-balls. \Box

Theorem 2.6. Every orbitally discrete space is scattered.

Proof. To apply Theorem 2.5, we take an arbitrary unbounded subset A of X and find $p \in A^{\sharp}$ such that $\Delta_p(A)$ is finite.

We use the Zorn lemma to choose a minimal (by inclusion) closed subset S of A^{\sharp} such that $\Delta_q(A) \subseteq S$ for each $q \in S$. Let $p \in S$ but $\Delta_p(A)$ is infinite. We take the limit point q of $\Delta_p(A)$. By the minimality of S, we have $p \in cl\Delta_q(A)$. Applying Theorem 2.3, we conclude that p is not isolated in \overline{p} .

Question. Let X be an almost finitary scattered space. Is X orbitally discrete?

3. Comments

1. For a natural number n, a coarse space (X, \mathcal{E}) is called *n*-thin if, for every $E \in \mathcal{E}$, there exists a bounded subset B of X such that $|E[x]| \leq n$, for every $x \in X \setminus B$. A space (X, \mathcal{E}) is *n*-thin if and only if $|\overline{p}| \leq n$ for each $p \in X^{\sharp}$.

For finite partitions of an *n*-thin space into discrete subspaces, see [5], [14], [17], [1, Section 6].

- 2. A coarse space (X, \mathcal{E}) is called *sparse* if each orbit \overline{p} , $p \in X^{\sharp}$ is finite. Sparse subsets of groups are studied in [4], [16]. For sparse metric spaces, see [9].
- 3. A coarse space (X, \mathcal{E}) is called *indiscrete* if each discrete subspace of X is bounded. By Theorem 3.15 from [11], a finitary indiscrete space has no unbounded orbitally discrete subspaces. We do not know whether this statement holds for any almost finitary indiscrete spaces.

References

- T. Banakh and I. Protasov, Set-theoretical problems in Asymptology, arXiv: 2004.01979.
- [2] T. Banakh, I. Protasov and S. Slobodianiuk, Scattered subsets of groups, Ukr. Math. J. 67 (2015), 347–356.
- [3] T. Banakh and I. Zarichnyi, Characterizing the Cantor bi-cube in asymptotic categories, Groups Geom. Dyn. 5, no. 4 (2011), 691–728.
- [4] Ie. Lutsenko and I. Protasov, Space, thin and other subsets of groups, Intern. J. Algebra Comput. 19 (2009), 491–510.
- [5] Ie. Lutsenko and I. V. Protasov, Thin subset of balleans, Appl. Gen. Topology 11 (2010), 89–93.
- [6] O. Petrenko and I. V. Protasov, Balleans and filters, Mat. Stud. 38 (2012), 3–11.
- [7] I. V. Protasov, Normal ball structures, Mat. Stud. 20 (2003), 3–16.
- [8] I. V. Protasov, Balleans of bounded geometry and G-spaces, Algebra Dicrete Math. 7, no. 2 (2008), 101–108.
- [9] I. V. Protasov, Sparse and thin metric spaces, Mat. Stud. 41 (2014), 92–100.
- [10] I. Protasov, Decompositions of set-valued mappings, Algebra Discrete Math. 30, no. 2 (2020), 235–238.
- [11] I. Protasov, Coarse spaces, ultrafilters and dynamical systems, Topol. Proc. 57 (2021), 137–148.
- [12] I. Protasov and T. Banakh, Ball Structures and Colorings of Groups and Graphs, Mat. Stud. Monogr. Ser. Vol. 11, VNTL, Lviv, 2003.
- [13] I. Protasov and K. Protasova, Lattices of coarse structures, Math. Stud. 48 (2017), 115–123.

Orbitally discrete coarse spaces

- [14] I. V. Protasov and S. Slobodianiuk, Thin subsets of groups, Ukrain. Math. J. 65 (2013), 1245–1253.
- [15] I. Protasov and S. Slobodianiuk, On the subset combinatorics of G-spaces, Algebra Dicrete Math. 17, no. 1 (2014), 98–109.
- [16] I. Protasov and S. Slobodianiuk, Ultracompanions of subsets of a group, Comment. Math. Univ. Carolin. 55, no. 1 (2014), 257–265.
- [17] I. Protasov and S. Slobodianiuk, The dynamical look at the subsets of groups, Appl. Gen. Topology 16 (2015), 217–224.
- [18] I. Protasov and M. Zarichnyi, General Asymptology, Math. Stud. Monogr. Ser., Vol. 12, VNTL, Lviv, 2007.
- [19] J. Roe, Lectures on Coarse Geometry, Univ. Lecture Ser., vol. 31, American Mathematical Society, Providence RI, 2003.