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Abstract

In this paper, we obtain some results on the relationships between

different ideal convergence modes namely, IK, IK
∗

, I, K, I ∪ K and

(I ∪K)∗. We introduce a topological space namely I
K-sequential space

and show that the class of IK-sequential spaces contain the sequential

spaces. Further IK-notions of cluster points and limit points of a func-

tion are also introduced here. For a given sequence in a topological

space X, we characterize the set of IK-cluster points of the sequence

as closed subsets of X.
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1. Introduction

For basic general topological terminologies and results we refer to [5]. The
ideal convergence of a sequence of real numbers was introduced by Kostyrko
et al. [11], as a natural generalization of existing convergence notions such as
usual convergence [5], statistical convergence [4]. It was further introduced in
arbitrary topological spaces accordingly for sequences [3] and nets [2] by Das
et al. The main goal of this article is to study IK-convergence which arose as
a generalization of a type of ideal convergence. In this continuation we begin
with a prior mentioning of ideals and ideal convergence in topological spaces.
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An ideal I on a arbitrary set S is a family I ⊂ 2S (the power set of S)
that is closed under finite unions and taking subsets. Fin and I0 are two basic
ideals on ω, the set of all natural numbers, defined as Fin:= collection of all
finite subsets of ω and I0:= subsets of ω with density 0, we say A(⊂ ω) ∈ I0
if and only if lim supn→∞

|A∩{1,2,...,n}|
n

= 0. For an ideal I in P (ω), we have
two additional subsets of P (ω) namely I⋆ and I+, where I⋆ := {A ⊂ ω : Ac ∈
I}, the filter dual of I and I+:= collection of all subsets not in I. Clearly,
I⋆ ⊆ I+. A sequence x = {xn}n∈ω is said to be I-convergent [3] to ξ, denoted
by xn →I ξ, if {n : xn /∈ U} ∈ I, for all neighborhood U of ξ. A sequence
x = {xn}n∈ω of elements of X is said to be I⋆-convergent to ξ if there exists a
set M := {m1 < m2 < ... < mk < ...} ∈ I⋆ such that limk→∞ xmk

= ξ. Lahiri
and Das [3] found an equivalence between I and I⋆-convergences under certain
assumptions.

In 2011, Macaj and Sleziak [6] introduced the IK-convergence of function
in a topological space, which was derived from I∗-convergence [3] by simply
replacing Fin by an arbitrary ideal K. Interestingly, IK-convergence arose as
an independent mode of convergence. Comparisons of IK-convergence with
I-convergence [11] can be found in [1, 6, 8]. A few articles for example [9, 7]
contributed to the study of IK-convergence of sequence of functions. Some of
the definitions and results of [3, 6] that are used in subsequent sections are
listed below. Here X is a topological space and S is a set where ideals are
defined.

We say that a function f : S → X is IM-convergent to a point x ∈ X if
∃M ∈ I∗ such that the function g : S → X given by

g(s) =

{

f(s), s ∈M

x, s /∈M

isM-convergent to x, whereM is a convergence mode via ideal.

If M = K∗, then f : S → X is said to be IK
∗

-convergent [6] to a point
x ∈ X . Also, ifM = K, then f : S → X is said to be IK-convergent [6] to a
point x ∈ X . In particular, if X is a discrete space, our immediate observation
is that only the I-constant functions are I-convergent, for a given ideal I,
f : S → X is an I-constant function if it attains a constant value except for a
set in I. It follows that I and I∗ convergence coincide for X . Thus, IK and
IK

∗

-convergence modes also coincide on discrete spaces.

Lemma 1.1 ([6, Lemma 2.1]). If I and K are two ideals on a set S and f :
S → X is a function such that K − lim f = x, then IK − lim f = x.

Remark 1.2. We say two ideals I and K satisfy ideality condition if I ∪ K is
an proper ideal [10]. Again, I and K satisfy ideality condition if and only if
S 6= I ∪K, for all I ∈ I, K ∈ K.

The main results of this article are divided into 3 sections. Section 2 is
devoted to a comparative study of different convergence modes for example
IK, IK

∗

, I, K, I ∪ K, (I ∪ K)∗ etc. We justify the existence of an ideal J ,
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such that the behavior of IK and J -convergence coincides in Hausdorff spaces.
Then in section 3, we introduce IK-sequential space and study its properties. In
Section 4 we basically define IK-cluster point and IK-limit point of a function
in a topological space. Here we observe that the ideality condition of I and
K in IK-convergence allows to get some effective conclusions. Moreover, we
characterize the set of IK-cluster points of a function as closed sets.

Throughout this paper we focus on the proper ideals [10] containing Fin
(S /∈ I).

2. IK-convergence and several comparisons

In this section, we study some more relations among different convergence
modes IK, IK

∗

, I ∪K, (I ∪K)∗ etc. We mainly focus on IK-convergence where
I ∪ K forms an ideal.

Proposition 2.1. Let X be a topological space and f : S → X be a function.
Let I,K be two ideals on S such that I ∪ K is an ideal. Then

(i) IK
∗

− lim f = x if and only if (I ∪ K)∗ − lim f = x.
(ii) IK − lim f = x implies I ∪ K − lim f = x.

Proof. (i) Let f : S → X be IK
∗

-convergent to x. So, there exists a set
M ∈ I∗ for which the function g : S → X such that

g(s) =

{

f(s), s ∈M

x, s /∈M

is K∗-convergent to x. So, there further exists a set N ∈ K∗ for which
we can consider the function h : S → X such that

h(s) =

{

f(s), s ∈M, s ∈ N

x, s /∈M or s /∈ N

is Fin-convergent to x. Now, Let K = N∁ ∈ K, I = M∁ ∈ I (say).
Then

h(s) =

{

f(s), s ∈ (I ∪K)∁

x, s /∈ (I ∪K)∁.

In essence, we can conclude f is (I ∪ K)∗-convergent to x.
Conversely, the function f : S → X is (I ∪ K)∗-convergent to x. So,

there exists a set P = (I ∪ K)∁ ∈ (I ∪ K)∗ for which the function
h : S → X such that

h(s) =

{

f(s), s ∈ P

x, s /∈ P

h(s) =

{

f(s), s ∈ (I ∪K)∁

x, s /∈ (I ∪K)∁
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is Fin-convergent to x. Lets consider the function g : S → X defined
as

g(s) =

{

f(s), s ∈ I∁

x, s /∈ I∁

for which the function h : S → X such that

h(s) =

{

f(s), s ∈ I∁, s ∈ K∁

x, s /∈ (I ∪K)∁

is Fin-convergent to x.
Consequently, f is IK

∗

-convergent to x.

(ii) Let f : S → X be IK-convergent to x. So, there exists a set M ∈ I∗

for which the function g : S → X such that

g(s) =

{

f(s), s ∈M

x, s /∈M

is K-convergent to x. Then for each Ux, neighborhood of x, we have
{s : g(s) /∈ Ux} ∈ K. Accordingly, the set given by {s : f(s) /∈ Ux, s ∈
M} ∈ K. Further {s : f(s) /∈ Ux} ⊆ {s : f(s) /∈ Ux, s ∈ M} ∪ {s : s /∈
M}. Hence, {s : f(s) /∈ Ux} ∈ I ∪ K.

�

Following are immediate corollaries of the above proposition provided I ∪K
is an ideal.

Corollary 2.2. IK
∗

-convergence implies I − convergence.

Corollary 2.3. IK
∗

-convergence implies K − convergence.

Following results in [1] are corollaries of the above proposition.

Corollary 2.4. IK-convergence implies I − convergence provided K ⊆ I.

Corollary 2.5. IK-convergence implies K − convergence provided I ⊆ K.

Following diagram shows the connections between different convergence modes.

I ∪ K ← IK ← I∗ → (I ∪ K)∗ ≡ IK
∗

→ IK
J

In this segment we are interested to find whether there exists an ideal J
such that the behavior of IK and J -convergence coincides. Recalling that a
filter-base is a non empty collection closed under finite intersection, we have
the following result for a given function f in X by taking an ideal-base to be
complement of a filter-base.

Lemma 2.6. Let I and K be two ideals on S satisfying ideality condition.
f : S → X be a function on a topological space X. If J = ideal generated by
(K ∪ J), for any J ∈ I. Then f is J -convergent to x =⇒ f is IK-convergent
to x.
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Proof. Let f be J -convergent to x, where J= ideal generated by the ideal base
(K ∪ J), for any J ∈ I. Now for J = M c, consider the function g : S → X
defined as

g(s) =

{

f(s), s ∈M

x, s /∈M.

Then, for any open set V containing x, we have

{s ∈ S : g(s) /∈ V } = {s ∈ S : f(s) /∈ V, s ∈M}

⊆ {s ∈ S : f(s) /∈ V } \ {s ∈ S : s /∈M}.

Since, f be J -convergent to x, that implies {s ∈ S : f(s) /∈ V } ∈ J . Therefore,
there exists K ∈ K such that {s ∈ S : f(s) /∈ V } \ J ⊆ (K ∪ J) \ J ∈ K.
Subsequently, g is K − convergent to x. Hence, f is IK-convergent to x. �

Theorem 2.7 ([1, Theorem 3.1]). In a Hausdorff space X, each function f :
S → X possess a unique IK-limit provided I ∪ K is an ideal.

Theorem 2.8. Let X be a Hausdorff Space. Let f : S → X be IK-convergent
to x. Then ∃ an ideal J such that x ∈ X is an IK-limit of the function f if
and only if x is also a J -limit of f provided I ∪ K is an ideal.

Proof. Let f : S → X is IK-convergent to x. So, there exists a set M ∈ I∗

such that g : S → X with

g(s) =

{

f(s), s ∈M

x, s /∈M

is K-convergent to x. Consequently, for each neigfhborhood Ux of x. We have

{s ∈ S : g(s) /∈ Ux} ∈ K.

=⇒ {s ∈ S : f(s) /∈ Ux, s ∈M} ∈ K.

Now, let J = M c and (K ∪ J) is an ideal base provided (I ∪ K) is an ideal.
Now we consider J , the ideal generated by (K ∪ J). Then

{s ∈ S : f(s) /∈ Ux} ⊆ {s ∈ S : f(s) /∈ Ux, s ∈M} ∪ {s ∈ S : s /∈M}.

Therefore, {s ∈ S : f(s) /∈ Ux} ∈ (K ∪ J).
Converse part of the proof is immediate by lemma 2.6. �

The following arrow diagram exhibit the equivalence shown in theorem 2.8.

K
for any J∈I
−−−−−−−−→ J → IK

fixed J∈I
−−−−−−→ J → I ∪ K

Comprehensively, we may ask the following question.

Problem. Whether there exists an ideal J for IK-convergence in a given
non-Hausdorff topological space X such that IK ≡ J -convergence?
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3. IK-sequential space

Recently, I-sequential space were defined by S.K. Pal [12] for an ideal I
on ω. An equivalent definition was suggested by Zhou et al. [13] and further
obtain that class of I-sequential spaces includes sequential spaces [5].

First, recall the notion of I-sequential spaces. Let X be a topological space
and O ⊆ X is I-open if no sequence in X \O has an I-limit in O. Equivalently,
for each sequence {xn : n ∈ ω} ⊆ X\O with I−limxn = x ∈ X , then x ∈ X\O.
Now X is said to be an I-sequential space if and only if each I-open subset of
X is open.

Here we introduce a topological space namely IK-sequential space for given
ideals I and K on ω.

Definition 3.1. Let X be a topological space and O,A ⊆ X . Then

(1) O is said to be IK-open if no sequence in X \O has an IK-limit in O.
Otherwise, for each sequence {xn : n ∈ ω} ⊆ X \O with IK− limxn =
x ∈ X , then x ∈ X \O.

(2) A subset F ⊆ X is said to be IK-closed if X \A is IK-open in X .

Remark 3.2. The following are obvious for a topological space X and ideals I
and K on ω.

1. Each open(closed) set of X is IK-open(closed).
2. If A and B are IK-open (closed), then A ∪B is IK-open (closed).
3. A topological space X is said to be an IK-sequential space if and only

if each IK-open set of X is open.

for I = K, each IK-sequential space coincides with a I-sequential space.

Lemma 3.3. LetM1,M2 be two convergence modes in a topological space X
such thatM1-convergence implies M2-convergence. Then O ⊆ X isM2-open
implies that O is M1-open.

Proof. Let O be not M1-open in X , then ∃{xn} in (X \ O) which is M1-
convergent in X . So, {xn} is (X \ O) is M2-convergent in X and hence O is
notM2-open. �

Corollary 3.4. Let M1,M2 be two convergence modes in X such that M1-
convergence implies M2-convergence in X. Then X is a M1-sequential space
implies that X is M2-sequential space.

The following is an example of a topological space which is not IK-sequential
space.

Example 3.5. Let S = [a, b] be a closed interval with the countable comple-
ment topology τcc, where a, b ∈ R. Let A be any subset of S and xn be a
sequence in A, IK-convergent to x, provided I,K and I ∪ K is an ideal i.e,
I ∪ K − limxn = x. Consider the neighborhood U of x, be the complement
of the set {xn : xn 6= x} in S. Then xn = x for all n except for a set in the
ideal I ∪ K. Therefore, a sequence in any set A can only I ∪ K-convergent to
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an element of A i.e C is I ∪K-open. Thus every subset of C is IK-sequentially
open. But not every subset of S is open. Hence ([a, b], τcc) is not I

K-sequential.

Proposition 3.6. Let X be a topological space and I1, I2,K1,K2 be ideals on
S. Then the following implications hold:

(1) For K1 ⊆ K2 whenever U ⊆ X is IK2-open, then it is IK1-open.
(2) For I1 ⊆ I2 whenever U ⊆ X is IK2 -open, then it is IK1 -open.

Proof. Let f : S → X be a function. Then by Proposition 3.6 in [6],

IK1 − lim f = x =⇒ IK2 − lim f = x.
IK1 − lim f = x =⇒ IK2 − lim f = x.

By lemma 3.3 we have the required results correspondingly. �

Corollary 3.7. For X be topological space and I1, I2,K1,K2 be ideals on ω
where I1 ⊆ I2, K1 ⊆ K2. Then the following observations are valid:

(1) If X is IK1 -sequential, then it is IK2 -sequential.
(2) If X is IK1-sequential, then it is IK2-sequential.

Theorem 3.8. In a topological space X, if O is open then O is IK-open.

Proof. Let O be open and {xn} be a sequence in X \O. Let y ∈ O. Then there
is a neighborhood U of y which contained in O. Hence U can not contain any
term of {xn}. So y is not an IK-limit of the sequence and O is IK-open. �

Theorem 3.9. In a metric space X, the notions of open and IK-open coincide.

Proof. Forward implication is obvious from Theorem 3.8.
Conversely, Let O be not open i.e., ∃y ∈ O such that for all neighborhood of y
intersect (X \ O). Let xn ∈ (X \ O) ∩ B(y, 1

n+1
). Then xn → y. Hence xn is

IK-convergent to y. Thus O is not IK-open. �

Theorem 3.10. Every first countable space is IK-sequential space.

Proof. We need to prove the reverse implication.
If A ⊂ X be not open. Then ∃y ∈ A such that every neighborhood of y
intersects X \ A. Let {Un : n ∈ ω} be a decreasing countable basis at y (say).
Consider xn ∈ (X \A) ∩Un. Then for each neighborhood V of y, ∃n ∈ ω with
Un ⊂ V . So, xm ∈ V, ∀m ≥ n i.e xn → y. Hence K − limxn = y. Therefore, A
is not IK-open. �

The following theorem about continuous mapping was also proved by Baner-
jee et al. [1]. However, we have given here an alternative approach to prove.

Theorem 3.11. Every continuous function preserves IK-convergence.

Proof. Let X and Y be two topological spaces and c : X → Y be a continuous
function. Let f : S → X be IK-convergent. So ∃M ∈ I∗ such that g : S → X
given by
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g(s)=

{

f(s), s ∈M

x, s /∈M

is K-convergent to x. Now the function c ◦ f : S → Y , the image function on
Y is K-convergent to x by Theorem 3 in [3]. Hence c ◦ f is IK-convergent. �

We now recall the definition of a quotient space. Let (X,∼) be a topological
space with an equivalence relation ∼ on X . Consider the projection mapping
∏

: X → X/ ∼ (the set of equivalence classes) and taking A ⊂ X/ ∼ to be

open if and only if
∏−1

(A) is open in X , we have the quotient space X/ ∼
induced by ∼ on X .

Theorem 3.12. Every quotient space of an IK-sequential space X is IK-
sequential.

Proof. Let A ⊂ X/ ∼ be not open. Let X/ ∼ is a quotient space with an

equivalence relation ∼,
∏−1

(A) is not open in X i.e., ∃ a sequence {xn} in

X \
∏−1

(A) which is IK-convergent to y ∈
∏−1

(A). Also
∏

is continuous,
hence preserves IK-convergence by Theorem 3.11. Therefore,

∏

(xn) ∈ (X/
∼) \ A with IK-limit

∏

(y) ∈ A. So, A is not IK-open i.e., X/ ∼ is IK-
sequential. �

Following result is immediate via Proposition 3.4.

Theorem 3.13. Every sequential space is an IK-sequential space.

Recall that a topological space X is said to be of countable tightness, if for
A ⊆ X and x ∈ Ā, then x ∈ C̄ for some countable subset C ⊆ A. Every
sequential and I-sequential space is of countable tightness [13].

Proposition 3.14. Every IK-sequential space X is of countable tightness.

Proof. Let X be an IK-sequential space and A ⊆ X . Consider [A]ω =
⋃

{B : B
is a countable subset of A}. Clearly, A ⊆ [A]ω ⊆ A. We claim that, [A]ω is
IK-closed in X . Consider {xn} be a sequence in [A]ω, I

K-convergent to x ∈ X .
Since xn ∈ [A]ω, then we can find a countable subset B of A such that xn ∈ B
for all n ∈ ω. Since X be an IK-sequential space, so B is IK-closed, thus
x ∈ B ⊆ [A]ω , and further [A]ω is IK-closed in X .

Now, let X be an IK-sequential space and A be a subset of X . Since the

set [A]ω is closed in X , and [A]ω ⊆ A ⊆ [A]ω, thus A = [A]ω . If x ∈ A, then
x ∈ [A]ω, and further, there exists a countable subset C of A such that x ∈ C,
i.e., X is of countable tightness. �

Now we show that every IK-sequential space is hereditary with respect to
IK-open (IK-closed) subspaces. First we have the following lemma.

Lemma 3.15 ([13, Lemma 2.4]). Let I be an ideal on ω and xn, yn be two
sequences in a topological space X such that {n ∈ ω : xn 6= yn} ∈ I. Then
I − lim xn = x if and only if I − lim yn = x.
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Theorem 3.16. If X is an IK-sequential space then every IK-open (IK-closed)
subspaces of X is IK-sequential.

Proof. Let X be an IK-sequential space. Suppose that Y is an IK-open subset
of X . Then Y is also open in X . We anticipate Y to be IK-sequential space.
Consider U to be IK-open in Y . Here Y is open, so we claim that U is open in
X . Since X is IK-sequential space, we need to show that U is IK-open in X .
Contra-positively, take U be not IK-open in X . Then, ∃{xn} in X \ U such
that IK − limxn = x (∈ U.) i.e. ∃M ∈ I∗ such that xnk

→K x, where nk ∈M
and xnk

∈ X \ U . Now {nk : xnk
/∈ Y } ∈ K. For a point y ∈ Y \ U (assume),

Now Consider a sequence {yn} such that yn = xn for n ∈ M and yn = ynk

for n /∈ M where {ynk
} is defined as ynk

= xnk
for xnk

∈ Y and ynk
= y for

xnk
/∈ Y . Then by Lemma 3.15, {ynk

} is K-convergent to x. Hence {yn} is
IK-convergent to x. So U is not IK-open in Y . That is a contradiction to our
assumption.

Let Y be an IK-closed subset of X . Then Y is closed in X . For any IK-
closed subset F of Y , it is sufficient to show that F is closed in X . Since X is an
IK-sequential space, it is enough to show that F is IK-closed in X . Therefore,
let {xn : n ∈ ω} be an arbitrary sequence in F with IK − limxn = x in X . We
claim that x ∈ F . Indeed, since Y is closed, we have x ∈ Y , and then it is also
clear that x ∈ F since F is an IK-closed subset of Y . �

Proposition 3.17. The disjoint topological sum of any family of IK-sequential
spaces is IK-sequential.

Proof. Let (Xα)α∈∆ be a family of IK-sequential space and X = ⊕α∈∆Xα.
We claim that X is IK-sequential space. Let F be IK-closed in X . For each
α ∈ ∆, Xα is closed in X i.e., Xα is IK-closed in X . Hence, F ∩Xα is IK-closed
in X by Remark 3.2. As (F ∩Xα) ⊆ Xα i.e. F ∩Xα is closed in Xα. Now F
is closed in X ≡ X \ F is open in X ≡ ∪α(Xα \ F ) is open in X if and only if
Xα \ F is open in Xα ≡ F ∩Xα is closed in Xα. Hence F is closed in X . �

4. IK-cluster point and IK-limit point

The notions I-cluster point and I-limit point in a topological space X were
defined by Das et al. [3] and also characterized Cx(I), the collection of all
I-cluster points of a given sequence x = {xn} in X , as closed subsets of X
(Theorem 10, [3]). Here we define IK-notions of cluster point and limit points
for a function in X .

For I∗-convergence, I∪Fin is an ideal, thereupon I and Fin satisfy ideality
condition. Moreover we assume ideality condition of I andK in IK-convergence
to investigate some results.

Definition 4.1. Let f : S → X be a function and I, K be two ideals on S.
Then x ∈ X is called an IK-cluster point of f if there exists M ∈ I∗ such that
the function g : S → X defined by

g(s)=

{

f(s), s ∈M

x, s /∈M
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has a K-cluster point x, i.e., {s ∈ S : g(s) ∈ Ux} /∈ K.

Definition 4.2. Let f : S → X be a function and I, K be two ideals on S.
Then x ∈ X is called an IK-limit point of f if there exists M ∈ I∗ such that
for the function g : S → X defined by

g(s)=

{

f(s), s ∈M

x, s /∈M

has a K-limit point x.

For I = K, we know the convergence modes IK ≡ I ≡ K. Hence definitions
4.1 and 4.2 generalizes the definitions of I or K-(limit point and cluster point)
correspondingly. Again, for nets in a topological space I-limit points and I-
cluster points coincide [2]. Therefore, IK-cluster points and IK-limit points of
nets also coincide.

Following the notation in [11], we denote the collection of all IK-limit points
and IK-cluster points of a function f in a topological space X by Lf(I

K) and
Cf (I

K) respectively. We observe that Cf (I
K) ⊆ Cf (K) and Lf(I

K) ⊆ Lf(K).
We also observe that Lf (I

∗) = L(I∗), where L(I∗) denote the collection of
I∗-limits of f .

Lemma 4.3. If I and K be two ideal then Lf (I
K) ⊆ Cf (I

K).

Proof. Since Lf (K) ⊆ Cf (K) for an ideal K, hence the result is immediate. �

We have the following lemma provided the ideals I and K satisfy ideality
condition.

Lemma 4.4. Cf (I ∪ K) ⊆ Cf (I
K).

Proof. Let y be not a IK-cluster point of x = {xn}n∈ω. Then for all M ∈ I∗

such that for the function g : S → X defined by

g(s)=

{

f(s), s ∈M

x, s /∈M,

the set {s ∈ S : g(s) ∈ Ux} ∈ K. Since {s : f(s) ∈ Ux} ⊆ {s : g(s) ∈ Ux} ∈ K.
i.e. {s : f(s) ∈ Ux} ∈ I ∪ K. Hence y is not a (I ∪ K)-cluster point of x. �

Since above set inequalities signify the implication K → IK → I ∪ K, We
expect the following conclusion.

Conjecture 4.5. Lf(I ∪ K) ⊆ Lf(I
K).

For sequential criteria in [11], we observe the following result.

Theorem 4.6. Let I, K be two ideals on ω and X be a topological space. Then

(i) For x = {xn}n∈ω, a sequence in X; Cx(I
K) is a closed set.

(ii) If (X, τ) is closed hereditary separable and there exists a disjoint se-
quence of sets {Pn} such that Pn ⊂ ω, Pn /∈ I,K for all n, then for
every non empty closed subset F of X, there exists a sequence x in X
such that F = Cx(I

K) provided I ∪ K is an ideal.
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Proof. Consider the sequence x = {xn} in X and I, K be the two ideals on ω.

(i) Let y ∈ Cx(IK); the derived set of Cx(I
K). Let U be an open set

containing y. It is clear that U ∩ Cx(I
K) 6= φ. Let p ∈ (U ∩ Cx(I

K))
i.e., p ∈ U and p ∈ Cx(I

K). Now there exist a set M ∈ I∗, such
that {yn}n∈ω given by yn = xn if n ∈ M and p, otherwise; we have
{n ∈ ω : yn ∈ U} /∈ K. Consider the sequence {zn}n∈ω given by
zn = xn if n ∈ M and y, otherwise; then {n ∈ ω : zn ∈ U} = {n ∈ ω :
yn ∈ U} /∈ K. Hence y ∈ Cx(I

K).

(ii) Being a closed subset of X , F is separable. Let S = {s1, s2, ...} ⊂ F be
a countable set such that S = F . Consider xn = si for n ∈ Pi. Thus
we have the subsequence {kn} of {n} for which assume the sequence
x = {xnk

}. Let y ∈ Cx(K) (taking y 6= si otherwise if y = si for some
i, then y is eventually in F ). We claim Cx(K) ⊂ F . Let U be any open
set containing y. Then {n : xnk

∈ U} /∈ K and hence non empty i.e.,
si ∈ U for some i. Therefore F ∩ U is non empty, So y is a limit point
of F and closedness of F gives y ∈ F . Hence Cx(K) ⊂ F . Further
Cx(I

K) ⊆ Cx(K) ⊂ F .
Conversely, for a ∈ F and U be an open set containing a, then there
exists si ∈ S such that si ∈ U . Then {n : xnk

∈ U} ⊃ Pi (/∈ K, I).
Thus {n : xnk

∈ U} /∈ (I ∪ K) i.e., a ∈ Cx(I ∪ K). On the otherhand,
by lemma 4.4, Cf (I ∪K) ⊆ Cf (I

K). So we get the reverse implication.

�

Remark 4.7. Theorem 4.6 generalizes Theorem 10 in [3], it follows by letting
I = K in the above theorem.
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