

Further aspects of $\mathcal{I}^{\mathcal{K}}$ -convergence in topological spaces

ANKUR SHARMAH AND DEBAJIT HAZARIKA

Department of Mathematical Sciences, Tezpur University, Napam 784028, Assam, India (ankurs@tezu.ernet.in, debajit@tezu.ernet.in)

Communicated by D. Georgiou

Abstract

In this paper, we obtain some results on the relationships between different ideal convergence modes namely, $\mathcal{I}^{\mathcal{K}}$, $\mathcal{I}^{\mathcal{K}^*}$, \mathcal{I} , \mathcal{K} , $\mathcal{I} \cup \mathcal{K}$ and $(\mathcal{I} \cup \mathcal{K})^*$. We introduce a topological space namely $\mathcal{I}^{\mathcal{K}}$ -sequential space and show that the class of $\mathcal{I}^{\mathcal{K}}$ -sequential spaces contain the sequential spaces. Further $\mathcal{I}^{\mathcal{K}}$ -notions of cluster points and limit points of a function are also introduced here. For a given sequence in a topological space X, we characterize the set of $\mathcal{I}^{\mathcal{K}}$ -cluster points of the sequence as closed subsets of X.

2010 MSC: 54A20; 40A05; 40A35.

1. INTRODUCTION

For basic general topological terminologies and results we refer to [5]. The ideal convergence of a sequence of real numbers was introduced by Kostyrko et al. [11], as a natural generalization of existing convergence notions such as usual convergence [5], statistical convergence [4]. It was further introduced in arbitrary topological spaces accordingly for sequences [3] and nets [2] by Das et al. The main goal of this article is to study $\mathcal{I}^{\mathcal{K}}$ -convergence which arose as a generalization of a type of ideal convergence. In this continuation we begin with a prior mentioning of ideals and ideal convergence in topological spaces.

Received 01 January 2020 - Accepted 26 March 2021

An ideal \mathcal{I} on a arbitrary set \mathcal{S} is a family $\mathcal{I} \subset 2^{\mathcal{S}}$ (the power set of S) that is closed under finite unions and taking subsets. Fin and \mathcal{I}_0 are two basic ideals on ω , the set of all natural numbers, defined as Fin:= collection of all finite subsets of ω and $\mathcal{I}_0:=$ subsets of ω with density 0, we say $A(\subset \omega) \in \mathcal{I}_0$ if and only if $\limsup_{n\to\infty} \frac{|A\cap\{1,2,\ldots,n\}|}{n} = 0$. For an ideal \mathcal{I} in $P(\omega)$, we have two additional subsets of $P(\omega)$ namely \mathcal{I}^* and \mathcal{I}^+ , where $\mathcal{I}^*:=\{A\subset\omega: A^c\in\mathcal{I}\}$, the filter dual of \mathcal{I} and $\mathcal{I}^+:=$ collection of all subsets not in \mathcal{I} . Clearly, $\mathcal{I}^*\subseteq\mathcal{I}^+$. A sequence $x=\{x_n\}_{n\in\omega}$ is said to be \mathcal{I} -convergent [3] to ξ , denoted by $x_n\to_{\mathcal{I}}\xi$, if $\{n:x_n\notin U\}\in\mathcal{I}$, for all neighborhood U of ξ . A sequence $x=\{x_n\}_{n\in\omega}$ of elements of X is said to be \mathcal{I}^* -convergent to ξ if there exists a set $M:=\{m_1< m_2<\ldots< m_k<\ldots\}\in\mathcal{I}^*$ such that $\lim_{k\to\infty} x_{m_k}=\xi$. Lahiri and Das [3] found an equivalence between \mathcal{I} and \mathcal{I}^* -convergences under certain assumptions.

In 2011, Macaj and Sleziak [6] introduced the $\mathcal{I}^{\mathcal{K}}$ -convergence of function in a topological space, which was derived from \mathcal{I}^* -convergence [3] by simply replacing Fin by an arbitrary ideal \mathcal{K} . Interestingly, $\mathcal{I}^{\mathcal{K}}$ -convergence arose as an independent mode of convergence. Comparisons of $\mathcal{I}^{\mathcal{K}}$ -convergence with \mathcal{I} -convergence [11] can be found in [1, 6, 8]. A few articles for example [9, 7] contributed to the study of $\mathcal{I}^{\mathcal{K}}$ -convergence of sequence of functions. Some of the definitions and results of [3, 6] that are used in subsequent sections are listed below. Here X is a topological space and S is a set where ideals are defined.

We say that a function $f: S \to X$ is $\mathcal{I}^{\mathcal{M}}$ -convergent to a point $x \in X$ if $\exists M \in \mathcal{I}^*$ such that the function $g: S \to X$ given by

$$g(s) = \begin{cases} f(s), & s \in M \\ x, & s \notin M \end{cases}$$

is \mathcal{M} -convergent to x, where \mathcal{M} is a convergence mode via ideal.

If $\mathcal{M} = \mathcal{K}^*$, then $f : S \to X$ is said to be $\mathcal{I}^{\mathcal{K}^*}$ -convergent [6] to a point $x \in X$. Also, if $\mathcal{M} = \mathcal{K}$, then $f : S \to X$ is said to be $\mathcal{I}^{\mathcal{K}}$ -convergent [6] to a point $x \in X$. In particular, if X is a discrete space, our immediate observation is that only the \mathcal{I} -constant functions are \mathcal{I} -convergent, for a given ideal \mathcal{I} , $f : S \to X$ is an \mathcal{I} -constant function if it attains a constant value except for a set in \mathcal{I} . It follows that \mathcal{I} and \mathcal{I}^* convergence coincide for X. Thus, $\mathcal{I}^{\mathcal{K}}$ and $\mathcal{I}^{\mathcal{K}^*}$ -convergence modes also coincide on discrete spaces.

Lemma 1.1 ([6, Lemma 2.1]). If \mathcal{I} and \mathcal{K} are two ideals on a set S and $f : S \to X$ is a function such that $\mathcal{K} - \lim f = x$, then $\mathcal{I}^{\mathcal{K}} - \lim f = x$.

Remark 1.2. We say two ideals \mathcal{I} and \mathcal{K} satisfy ideality condition if $\mathcal{I} \cup \mathcal{K}$ is an proper ideal [10]. Again, \mathcal{I} and \mathcal{K} satisfy ideality condition if and only if $S \neq I \cup K$, for all $I \in \mathcal{I}, K \in \mathcal{K}$.

The main results of this article are divided into 3 sections. Section 2 is devoted to a comparative study of different convergence modes for example $\mathcal{I}^{\mathcal{K}}, \mathcal{I}^{\mathcal{K}^*}, \mathcal{I}, \mathcal{K}, \mathcal{I} \cup \mathcal{K}, (\mathcal{I} \cup \mathcal{K})^*$ etc. We justify the existence of an ideal \mathcal{J} ,

such that the behavior of $\mathcal{I}^{\mathcal{K}}$ and \mathcal{J} -convergence coincides in Hausdorff spaces. Then in section 3, we introduce $\mathcal{I}^{\mathcal{K}}$ -sequential space and study its properties. In Section 4 we basically define $\mathcal{I}^{\mathcal{K}}$ -cluster point and $\mathcal{I}^{\mathcal{K}}$ -limit point of a function in a topological space. Here we observe that the ideality condition of \mathcal{I} and \mathcal{K} in $\mathcal{I}^{\mathcal{K}}$ -convergence allows to get some effective conclusions. Moreover, we characterize the set of $\mathcal{I}^{\mathcal{K}}$ -cluster points of a function as closed sets.

Throughout this paper we focus on the proper ideals [10] containing Fin $(S \notin \mathcal{I})$.

2. $\mathcal{I}^{\mathcal{K}}$ -convergence and several comparisons

In this section, we study some more relations among different convergence modes $\mathcal{I}^{\mathcal{K}}, \mathcal{I}^{\mathcal{K}^*}, \mathcal{I} \cup \mathcal{K}, (\mathcal{I} \cup \mathcal{K})^*$ etc. We mainly focus on $\mathcal{I}^{\mathcal{K}}$ -convergence where $\mathcal{I} \cup \mathcal{K}$ forms an ideal.

Proposition 2.1. Let X be a topological space and $f : S \to X$ be a function. Let \mathcal{I}, \mathcal{K} be two ideals on S such that $\mathcal{I} \cup \mathcal{K}$ is an ideal. Then

- (i) $\mathcal{I}^{\mathcal{K}^*} \lim f = x$ if and only if $(\mathcal{I} \cup \mathcal{K})^* \lim f = x$.
- (ii) $\mathcal{I}^{\mathcal{K}} \lim f = x$ implies $\mathcal{I} \cup \mathcal{K} \lim f = x$.

Proof. (i) Let $f: S \to X$ be $\mathcal{I}^{\mathcal{K}^*}$ -convergent to x. So, there exists a set $M \in \mathcal{I}^*$ for which the function $g: S \to X$ such that

$$g(s) = \begin{cases} f(s), & s \in M \\ x, & s \notin M \end{cases}$$

is \mathcal{K}^* -convergent to x. So, there further exists a set $N \in \mathcal{K}^*$ for which we can consider the function $h: S \to X$ such that

$$h(s) = \begin{cases} f(s), & s \in M, \ s \in N \\ x, & s \notin M \ or \ s \notin N \end{cases}$$

is *Fin*-convergent to x. Now, Let $K = N^{\complement} \in \mathcal{K}$, $I = M^{\complement} \in \mathcal{I}$ (say). Then

$$h(s) = \begin{cases} f(s), & s \in (I \cup K)^{\complement} \\ x, & s \notin (I \cup K)^{\complement}. \end{cases}$$

In essence, we can conclude f is $(\mathcal{I} \cup \mathcal{K})^*$ -convergent to x.

Conversely, the function $f: S \to X$ is $(\mathcal{I} \cup \mathcal{K})^*$ -convergent to x. So, there exists a set $P = (I \cup K)^{\complement} \in (\mathcal{I} \cup \mathcal{K})^*$ for which the function $h: S \to X$ such that

$$h(s) = \begin{cases} f(s), & s \in P \\ x, & s \notin P \end{cases}$$
$$h(s) = \begin{cases} f(s), & s \in (I \cup K)^{\complement} \\ x, & s \notin (I \cup K)^{\complement} \end{cases}$$

Appl. Gen. Topol. 22, no. 2 357

© AGT, UPV, 2021

is Fin-convergent to x. Lets consider the function $g: S \to X$ defined as

$$g(s) = \begin{cases} f(s), & s \in I^{\complement} \\ x, & s \notin I^{\complement} \end{cases}$$

for which the function $h: S \to X$ such that

$$h(s) = \begin{cases} f(s), & s \in I^{\complement}, \ s \in K^{\complement} \\ x, & s \notin (I \cup K)^{\complement} \end{cases}$$

is Fin-convergent to x.

Consequently, f is $\mathcal{I}^{\mathcal{K}^*}$ -convergent to x.

(ii) Let $f: S \to X$ be $\mathcal{I}^{\mathcal{K}}$ -convergent to x. So, there exists a set $M \in \mathcal{I}^*$ for which the function $g: S \to X$ such that

$$g(s) = \begin{cases} f(s), & s \in M \\ x, & s \notin M \end{cases}$$

is \mathcal{K} -convergent to x. Then for each \mathcal{U}_x , neighborhood of x, we have $\{s: g(s) \notin \mathcal{U}_x\} \in \mathcal{K}$. Accordingly, the set given by $\{s: f(s) \notin \mathcal{U}_x, s \in M\} \in \mathcal{K}$. Further $\{s: f(s) \notin \mathcal{U}_x\} \subseteq \{s: f(s) \notin \mathcal{U}_x, s \in M\} \cup \{s: s \notin M\}$. Hence, $\{s: f(s) \notin \mathcal{U}_x\} \in \mathcal{I} \cup \mathcal{K}$.

Following are immediate corollaries of the above proposition provided $\mathcal{I} \cup \mathcal{K}$ is an ideal.

Corollary 2.2. $\mathcal{I}^{\mathcal{K}^*}$ -convergence implies \mathcal{I} - convergence.

Corollary 2.3. $\mathcal{I}^{\mathcal{K}^*}$ -convergence implies \mathcal{K} – convergence.

Following results in [1] are corollaries of the above proposition.

Corollary 2.4. $\mathcal{I}^{\mathcal{K}}$ -convergence implies \mathcal{I} - convergence provided $\mathcal{K} \subseteq \mathcal{I}$.

Corollary 2.5. $\mathcal{I}^{\mathcal{K}}$ -convergence implies \mathcal{K} -convergence provided $\mathcal{I} \subseteq \mathcal{K}$.

Following diagram shows the connections between different convergence modes.

$$\mathcal{I} \cup \mathcal{K} \leftarrow \mathcal{I}^{\mathcal{K}} \leftarrow \mathcal{I}^* \to (\mathcal{I} \cup \mathcal{K})^* \equiv \mathcal{I}^{\mathcal{K}^3} \to \mathcal{I}^{\mathcal{K}^3}$$

In this segment we are interested to find whether there exists an ideal \mathcal{J} such that the behavior of $\mathcal{I}^{\mathcal{K}}$ and \mathcal{J} -convergence coincides. Recalling that a filter-base is a non empty collection closed under finite intersection, we have the following result for a given function f in X by taking an ideal-base to be complement of a filter-base.

Lemma 2.6. Let \mathcal{I} and \mathcal{K} be two ideals on S satisfying ideality condition. $f: S \to X$ be a function on a topological space X. If $\mathcal{J} =$ ideal generated by $(\mathcal{K} \cup J)$, for any $J \in \mathcal{I}$. Then f is \mathcal{J} -convergent to $x \implies f$ is $\mathcal{I}^{\mathcal{K}}$ -convergent to x. *Proof.* Let f be \mathcal{J} -convergent to x, where \mathcal{J} = ideal generated by the ideal base $(\mathcal{K} \cup J)$, for any $J \in \mathcal{I}$. Now for $J = M^c$, consider the function $g : S \to X$ defined as

$$g(s) = \begin{cases} f(s), & s \in M \\ x, & s \notin M. \end{cases}$$

Then, for any open set V containing x, we have

$$\{s \in S : g(s) \notin V\} = \{s \in S : f(s) \notin V, s \in M\}$$
$$\subseteq \{s \in S : f(s) \notin V\} \setminus \{s \in S : s \notin M\}.$$

Since, f be \mathcal{J} -convergent to x, that implies $\{s \in S : f(s) \notin V\} \in \mathcal{J}$. Therefore, there exists $K \in \mathcal{K}$ such that $\{s \in S : f(s) \notin V\} \setminus J \subseteq (K \cup J) \setminus J \in \mathcal{K}$. Subsequently, g is \mathcal{K} -convergent to x. Hence, f is $\mathcal{I}^{\mathcal{K}}$ -convergent to x. \Box

Theorem 2.7 ([1, Theorem 3.1]). In a Hausdorff space X, each function $f : S \to X$ possess a unique $\mathcal{I}^{\mathcal{K}}$ -limit provided $\mathcal{I} \cup \mathcal{K}$ is an ideal.

Theorem 2.8. Let X be a Hausdorff Space. Let $f : S \to X$ be $\mathcal{I}^{\mathcal{K}}$ -convergent to x. Then \exists an ideal \mathcal{J} such that $x \in X$ is an $\mathcal{I}^{\mathcal{K}}$ -limit of the function f if and only if x is also a \mathcal{J} -limit of f provided $\mathcal{I} \cup \mathcal{K}$ is an ideal.

Proof. Let $f: S \to X$ is $\mathcal{I}^{\mathcal{K}}$ -convergent to x. So, there exists a set $M \in \mathcal{I}^*$ such that $g: S \to X$ with

$$g(s) = \begin{cases} f(s), & s \in M \\ x, & s \notin M \end{cases}$$

is \mathcal{K} -convergent to x. Consequently, for each neighborhood \mathcal{U}_x of x. We have

$$\{s \in S : g(s) \notin \mathcal{U}_x\} \in \mathcal{K}$$

$$\implies \{s \in S : f(s) \notin \mathcal{U}_x, s \in M\} \in \mathcal{K}.$$

Now, let $J = M^c$ and $(\mathcal{K} \cup J)$ is an ideal base provided $(\mathcal{I} \cup \mathcal{K})$ is an ideal. Now we consider \mathcal{J} , the ideal generated by $(\mathcal{K} \cup J)$. Then

$$\{s \in S : f(s) \notin \mathcal{U}_x\} \subseteq \{s \in S : f(s) \notin \mathcal{U}_x, s \in M\} \cup \{s \in S : s \notin M\}.$$

Therefore, $\{s \in S : f(s) \notin \mathcal{U}_x\} \in (\mathcal{K} \cup J)$. Converse part of the proof is immediate by lemma 2.6.

The following arrow diagram exhibit the equivalence shown in theorem 2.8.

$$\mathcal{K} \xrightarrow{\textit{for any } J \in \mathcal{I}} \mathcal{J} \to \mathcal{I}^{\mathcal{K}} \xrightarrow{\textit{fixed } J \in \mathcal{I}} \mathcal{J} \to \mathcal{I} \cup \mathcal{K}$$

Comprehensively, we may ask the following question.

Problem. Whether there exists an ideal \mathcal{J} for $\mathcal{I}^{\mathcal{K}}$ -convergence in a given non-Hausdorff topological space X such that $\mathcal{I}^{\mathcal{K}} \equiv \mathcal{J}$ -convergence?

© AGT, UPV, 2021

Appl. Gen. Topol. 22, no. 2 359

3. $\mathcal{I}^{\mathcal{K}}$ -sequential space

Recently, \mathcal{I} -sequential space were defined by S.K. Pal [12] for an ideal \mathcal{I} on ω . An equivalent definition was suggested by Zhou et al. [13] and further obtain that class of \mathcal{I} -sequential spaces includes sequential spaces [5].

First, recall the notion of \mathcal{I} -sequential spaces. Let X be a topological space and $O \subseteq X$ is \mathcal{I} -open if no sequence in $X \setminus O$ has an \mathcal{I} -limit in O. Equivalently, for each sequence $\{x_n : n \in \omega\} \subseteq X \setminus O$ with \mathcal{I} -lim $x_n = x \in X$, then $x \in X \setminus O$. Now X is said to be an \mathcal{I} -sequential space if and only if each \mathcal{I} -open subset of X is open.

Here we introduce a topological space namely $\mathcal{I}^{\mathcal{K}}$ -sequential space for given ideals \mathcal{I} and \mathcal{K} on ω .

Definition 3.1. Let X be a topological space and $O, A \subseteq X$. Then

- (1) *O* is said to be $\mathcal{I}^{\mathcal{K}}$ -open if no sequence in $X \setminus O$ has an $\mathcal{I}^{\mathcal{K}}$ -limit in *O*. Otherwise, for each sequence $\{x_n : n \in \omega\} \subseteq X \setminus O$ with $\mathcal{I}^{\mathcal{K}} - \lim x_n = x \in X$, then $x \in X \setminus O$.
- (2) A subset $F \subseteq X$ is said to be $\mathcal{I}^{\mathcal{K}}$ -closed if $X \setminus A$ is $\mathcal{I}^{\mathcal{K}}$ -open in X.

Remark 3.2. The following are obvious for a topological space X and ideals \mathcal{I} and \mathcal{K} on ω .

- 1. Each open(closed) set of X is $\mathcal{I}^{\mathcal{K}}$ -open(closed).
- 2. If A and B are $\mathcal{I}^{\mathcal{K}}$ -open (closed), then $A \cup B$ is $\mathcal{I}^{\mathcal{K}}$ -open (closed).
- 3. A topological space X is said to be an $\mathcal{I}^{\mathcal{K}}$ -sequential space if and only if each $\mathcal{I}^{\mathcal{K}}$ -open set of X is open.

for $\mathcal{I} = \mathcal{K}$, each $\mathcal{I}^{\mathcal{K}}$ -sequential space coincides with a \mathcal{I} -sequential space.

Lemma 3.3. Let $\mathcal{M}_1, \mathcal{M}_2$ be two convergence modes in a topological space X such that \mathcal{M}_1 -convergence implies \mathcal{M}_2 -convergence. Then $O \subseteq X$ is \mathcal{M}_2 -open implies that O is \mathcal{M}_1 -open.

Proof. Let O be not \mathcal{M}_1 -open in X, then $\exists \{x_n\}$ in $(X \setminus O)$ which is \mathcal{M}_1 convergent in X. So, $\{x_n\}$ is $(X \setminus O)$ is \mathcal{M}_2 -convergent in X and hence O is
not \mathcal{M}_2 -open.

Corollary 3.4. Let $\mathcal{M}_1, \mathcal{M}_2$ be two convergence modes in X such that \mathcal{M}_1 convergence implies \mathcal{M}_2 -convergence in X. Then X is a \mathcal{M}_1 -sequential space
implies that X is \mathcal{M}_2 -sequential space.

The following is an example of a topological space which is not $\mathcal{I}^{\mathcal{K}}\text{-sequential}$ space.

Example 3.5. Let S = [a, b] be a closed interval with the countable complement topology τ_{cc} , where $a, b \in \mathbb{R}$. Let A be any subset of S and x_n be a sequence in A, $\mathcal{I}^{\mathcal{K}}$ -convergent to x, provided \mathcal{I}, \mathcal{K} and $\mathcal{I} \cup \mathcal{K}$ is an ideal i.e, $\mathcal{I} \cup \mathcal{K} - \lim x_n = x$. Consider the neighborhood U of x, be the complement of the set $\{x_n : x_n \neq x\}$ in S. Then $x_n = x$ for all n except for a set in the ideal $\mathcal{I} \cup \mathcal{K}$. Therefore, a sequence in any set A can only $\mathcal{I} \cup \mathcal{K}$ -convergent to an element of A i.e C is $\mathcal{I} \cup \mathcal{K}$ -open. Thus every subset of C is $\mathcal{I}^{\mathcal{K}}$ -sequentially open. But not every subset of S is open. Hence $([a, b], \tau_{cc})$ is not $\mathcal{I}^{\mathcal{K}}$ -sequential.

Proposition 3.6. Let X be a topological space and $\mathcal{I}_1, \mathcal{I}_2, \mathcal{K}_1, \mathcal{K}_2$ be ideals on S. Then the following implications hold:

- (1) For $\mathcal{K}_1 \subseteq \mathcal{K}_2$ whenever $U \subseteq X$ is $\mathcal{I}^{\mathcal{K}_2}$ -open, then it is $\mathcal{I}^{\mathcal{K}_1}$ -open. (2) For $\mathcal{I}_1 \subseteq \mathcal{I}_2$ whenever $U \subseteq X$ is $\mathcal{I}_2^{\mathcal{K}}$ -open, then it is $\mathcal{I}_1^{\mathcal{K}}$ -open.

Proof. Let $f: S \to X$ be a function. Then by Proposition 3.6 in [6],

$$\mathcal{I}_1^{\mathcal{K}} - \lim f = x \implies \mathcal{I}_2^{\mathcal{K}} - \lim f = x.$$
$$\mathcal{I}^{\mathcal{K}_1} - \lim f = x \implies \mathcal{I}^{\mathcal{K}_2} - \lim f = x.$$

By lemma 3.3 we have the required results correspondingly.

Corollary 3.7. For X be topological space and $\mathcal{I}_1, \mathcal{I}_2, \mathcal{K}_1, \mathcal{K}_2$ be ideals on ω where $\mathcal{I}_1 \subseteq \mathcal{I}_2$, $\mathcal{K}_1 \subseteq \mathcal{K}_2$. Then the following observations are valid:

- If X is \$\mathcal{I}_1^K\$-sequential, then it is \$\mathcal{I}_2^K\$-sequential.
 If X is \$\mathcal{I}^{K_1}\$-sequential, then it is \$\mathcal{I}^{K_2}\$-sequential.

Theorem 3.8. In a topological space X, if O is open then O is $\mathcal{I}^{\mathcal{K}}$ -open.

Proof. Let O be open and $\{x_n\}$ be a sequence in $X \setminus O$. Let $y \in O$. Then there is a neighborhood U of y which contained in O. Hence U can not contain any term of $\{x_n\}$. So y is not an $\mathcal{I}^{\mathcal{K}}$ -limit of the sequence and O is $\mathcal{I}^{\mathcal{K}}$ -open.

Theorem 3.9. In a metric space X, the notions of open and $\mathcal{I}^{\mathcal{K}}$ -open coincide.

Proof. Forward implication is obvious from Theorem 3.8.

Conversely, Let O be not open i.e., $\exists y \in O$ such that for all neighborhood of y intersect $(X \setminus O)$. Let $x_n \in (X \setminus O) \cap B(y, \frac{1}{n+1})$. Then $x_n \to y$. Hence x_n is $\mathcal{I}^{\mathcal{K}}$ -convergent to u. Thus O is not $\mathcal{I}^{\mathcal{K}}$ -open. \square

Theorem 3.10. Every first countable space is $\mathcal{I}^{\mathcal{K}}$ -sequential space.

Proof. We need to prove the reverse implication.

If $A \subset X$ be not open. Then $\exists y \in A$ such that every neighborhood of y intersects $X \setminus A$. Let $\{U_n : n \in \omega\}$ be a decreasing countable basis at y (say). Consider $x_n \in (X \setminus A) \cap U_n$. Then for each neighborhood V of $y, \exists n \in \omega$ with $U_n \subset V$. So, $x_m \in V, \forall m \ge n$ i.e $x_n \to y$. Hence $\mathcal{K} - \lim x_n = y$. Therefore, A is not $\mathcal{I}^{\mathcal{K}}$ -open.

The following theorem about continuous mapping was also proved by Banerjee et al. [1]. However, we have given here an alternative approach to prove.

Theorem 3.11. Every continuous function preserves $\mathcal{I}^{\mathcal{K}}$ -convergence.

Proof. Let X and Y be two topological spaces and $c: X \to Y$ be a continuous function. Let $f: S \to X$ be $\mathcal{I}^{\mathcal{K}}$ -convergent. So $\exists M \in \mathcal{I}^*$ such that $q: S \to X$ given by

$$g(s) = \begin{cases} f(s), & s \in M \\ x, & s \notin M \end{cases}$$

is \mathcal{K} -convergent to x. Now the function $c \circ f : S \to Y$, the image function on Y is \mathcal{K} -convergent to x by Theorem 3 in [3]. Hence $c \circ f$ is $\mathcal{I}^{\mathcal{K}}$ -convergent. \Box

We now recall the definition of a quotient space. Let (X, \sim) be a topological space with an equivalence relation \sim on X. Consider the projection mapping $\prod : X \to X/ \sim$ (the set of equivalence classes) and taking $A \subset X/ \sim$ to be open if and only if $\prod^{-1}(A)$ is open in X, we have the quotient space X/ \sim induced by \sim on X.

Theorem 3.12. Every quotient space of an $\mathcal{I}^{\mathcal{K}}$ -sequential space X is $\mathcal{I}^{\mathcal{K}}$ -sequential.

Proof. Let $A \subset X/ \sim$ be not open. Let X/ \sim is a quotient space with an equivalence relation \sim , $\prod^{-1}(A)$ is not open in X i.e., \exists a sequence $\{x_n\}$ in $X \setminus \prod^{-1}(A)$ which is $\mathcal{I}^{\mathcal{K}}$ -convergent to $y \in \prod^{-1}(A)$. Also \prod is continuous, hence preserves $\mathcal{I}^{\mathcal{K}}$ -convergence by Theorem 3.11. Therefore, $\prod(x_n) \in (X/\sim) \setminus A$ with $\mathcal{I}^{\mathcal{K}}$ -limit $\prod(y) \in A$. So, A is not $\mathcal{I}^{\mathcal{K}}$ -open i.e., X/\sim is $\mathcal{I}^{\mathcal{K}}$ -sequential.

Following result is immediate via Proposition 3.4.

Theorem 3.13. Every sequential space is an $\mathcal{I}^{\mathcal{K}}$ -sequential space.

Recall that a topological space X is said to be of countable tightness, if for $A \subseteq X$ and $x \in \overline{A}$, then $x \in \overline{C}$ for some countable subset $C \subseteq A$. Every sequential and \mathcal{I} -sequential space is of countable tightness [13].

Proposition 3.14. Every $\mathcal{I}^{\mathcal{K}}$ -sequential space X is of countable tightness.

Proof. Let X be an $\mathcal{I}^{\mathcal{K}}$ -sequential space and $A \subseteq X$. Consider $[A]_{\omega} = \bigcup \{\overline{B} : B$ is a countable subset of $A\}$. Clearly, $A \subseteq [A]_{\omega} \subseteq \overline{A}$. We claim that, $[A]_{\omega}$ is $\mathcal{I}^{\mathcal{K}}$ -closed in X. Consider $\{x_n\}$ be a sequence in $[A]_{\omega}, \mathcal{I}^{\mathcal{K}}$ -convergent to $x \in X$. Since $x_n \in [A]_{\omega}$, then we can find a countable subset B of A such that $x_n \in \overline{B}$ for all $n \in \omega$. Since X be an $\mathcal{I}^{\mathcal{K}}$ -sequential space, so \overline{B} is $\mathcal{I}^{\mathcal{K}}$ -closed, thus $x \in \overline{B} \subseteq [A]_{\omega}$, and further $[A]_{\omega}$ is $\mathcal{I}^{\mathcal{K}}$ -closed in X.

Now, let X be an $\mathcal{I}^{\mathcal{K}}$ -sequential space and A be a subset of X. Since the set $[A]_{\omega}$ is closed in X, and $[A]_{\omega} \subseteq \overline{A} \subseteq \overline{[A]_{\omega}}$, thus $\overline{A} = [A]_{\omega}$. If $x \in \overline{A}$, then $x \in [A]_{\omega}$, and further, there exists a countable subset C of A such that $x \in \overline{C}$, i.e., X is of countable tightness.

Now we show that every $\mathcal{I}^{\mathcal{K}}$ -sequential space is hereditary with respect to $\mathcal{I}^{\mathcal{K}}$ -open ($\mathcal{I}^{\mathcal{K}}$ -closed) subspaces. First we have the following lemma.

Lemma 3.15 ([13, Lemma 2.4]). Let \mathcal{I} be an ideal on ω and x_n , y_n be two sequences in a topological space X such that $\{n \in \omega : x_n \neq y_n\} \in \mathcal{I}$. Then $\mathcal{I} - \lim x_n = x$ if and only if $\mathcal{I} - \lim y_n = x$.

Theorem 3.16. If X is an $\mathcal{I}^{\mathcal{K}}$ -sequential space then every $\mathcal{I}^{\mathcal{K}}$ -open ($\mathcal{I}^{\mathcal{K}}$ -closed) subspaces of X is $\mathcal{I}^{\mathcal{K}}$ -sequential.

Proof. Let X be an $\mathcal{I}^{\mathcal{K}}$ -sequential space. Suppose that Y is an $\mathcal{I}^{\mathcal{K}}$ -open subset of X. Then Y is also open in X. We anticipate Y to be $\mathcal{I}^{\mathcal{K}}$ -sequential space. Consider U to be $\mathcal{I}^{\mathcal{K}}$ -open in Y. Here Y is open, so we claim that U is open in X. Since X is $\mathcal{I}^{\mathcal{K}}$ -sequential space, we need to show that U is $\mathcal{I}^{\mathcal{K}}$ -open in X. Contra-positively, take U be not $\mathcal{I}^{\mathcal{K}}$ -open in X. Then, $\exists \{x_n\}$ in $X \setminus U$ such that $\mathcal{I}^{\mathcal{K}} - \lim x_n = x \ (\in U.)$ i.e. $\exists M \in \mathcal{I}^*$ such that $x_{n_k} \to_{\mathcal{K}} x$, where $n_k \in M$ and $x_{n_k} \in X \setminus U$. Now $\{n_k : x_{n_k} \notin Y\} \in \mathcal{K}$. For a point $y \in Y \setminus U$ (assume), Now Consider a sequence $\{y_n\}$ such that $y_n = x_n$ for $n \in M$ and $y_n = y_{n_k}$ for $n \notin M$ where $\{y_{n_k}\}$ is defined as $y_{n_k} = x_{n_k}$ for $x_{n_k} \in Y$ and $y_{n_k} = y$ for $x_{n_k} \notin Y$. Then by Lemma 3.15, $\{y_{n_k}\}$ is \mathcal{K} -convergent to x. Hence $\{y_n\}$ is $\mathcal{I}^{\mathcal{K}}$ -convergent to x. So U is not $\mathcal{I}^{\mathcal{K}}$ -open in Y. That is a contradiction to our assumption.

Let Y be an $\mathcal{I}^{\mathcal{K}}$ -closed subset of X. Then Y is closed in X. For any $\mathcal{I}^{\mathcal{K}}$ closed subset F of Y, it is sufficient to show that F is closed in X. Since X is an $\mathcal{I}^{\mathcal{K}}$ -sequential space, it is enough to show that F is $\mathcal{I}^{\mathcal{K}}$ -closed in X. Therefore, let $\{x_n : n \in \omega\}$ be an arbitrary sequence in F with $\mathcal{I}^{\mathcal{K}} - \lim x_n = x$ in X. We claim that $x \in F$. Indeed, since Y is closed, we have $x \in Y$, and then it is also clear that $x \in F$ since F is an $\mathcal{I}^{\mathcal{K}}$ -closed subset of Y.

Proposition 3.17. The disjoint topological sum of any family of $\mathcal{I}^{\mathcal{K}}$ -sequential spaces is $\mathcal{I}^{\mathcal{K}}$ -sequential.

Proof. Let $(X_{\alpha})_{\alpha \in \Delta}$ be a family of $\mathcal{I}^{\mathcal{K}}$ -sequential space and $X = \bigoplus_{\alpha \in \Delta} X_{\alpha}$. We claim that X is $\mathcal{I}^{\mathcal{K}}$ -sequential space. Let F be $\mathcal{I}^{\mathcal{K}}$ -closed in X. For each $\alpha \in \Delta$, X_{α} is closed in X i.e., X_{α} is $\mathcal{I}^{\mathcal{K}}$ -closed in X. Hence, $F \cap X_{\alpha}$ is $\mathcal{I}^{\mathcal{K}}$ -closed in X by Remark 3.2. As $(F \cap X_{\alpha}) \subseteq X_{\alpha}$ i.e. $F \cap X_{\alpha}$ is closed in X_{α} . Now F is closed in $X \equiv X \setminus F$ is open in $X \equiv \cup_{\alpha} (X_{\alpha} \setminus F)$ is open in X if and only if $X_{\alpha} \setminus F$ is open in $X_{\alpha} \equiv F \cap X_{\alpha}$ is closed in X_{α} . Hence F is closed in X.

4. $\mathcal{I}^{\mathcal{K}}$ -cluster point and $\mathcal{I}^{\mathcal{K}}$ -limit point

The notions \mathcal{I} -cluster point and \mathcal{I} -limit point in a topological space X were defined by Das et al. [3] and also characterized $C_x(\mathcal{I})$, the collection of all \mathcal{I} -cluster points of a given sequence $x = \{x_n\}$ in X, as closed subsets of X (Theorem 10, [3]). Here we define $\mathcal{I}^{\mathcal{K}}$ -notions of cluster point and limit points for a function in X.

For \mathcal{I}^* -convergence, $\mathcal{I} \cup Fin$ is an ideal, thereupon \mathcal{I} and Fin satisfy ideality condition. Moreover we assume ideality condition of \mathcal{I} and \mathcal{K} in $\mathcal{I}^{\mathcal{K}}$ -convergence to investigate some results.

Definition 4.1. Let $f: S \to X$ be a function and \mathcal{I}, \mathcal{K} be two ideals on S. Then $x \in X$ is called an $\mathcal{I}^{\mathcal{K}}$ -cluster point of f if there exists $M \in \mathcal{I}^*$ such that the function $g: S \to X$ defined by

$$g(s) = \begin{cases} f(s), & s \in M \\ x, & s \notin M \end{cases}$$

© AGT, UPV, 2021

Appl. Gen. Topol. 22, no. 2 363

has a \mathcal{K} -cluster point x, i.e., $\{s \in S : g(s) \in U_x\} \notin \mathcal{K}$.

Definition 4.2. Let $f : S \to X$ be a function and \mathcal{I}, \mathcal{K} be two ideals on S. Then $x \in X$ is called an $\mathcal{I}^{\mathcal{K}}$ -limit point of f if there exists $M \in \mathcal{I}^*$ such that for the function $g : S \to X$ defined by

$$g(s) = \begin{cases} f(s), & s \in M \\ x, & s \notin M \end{cases}$$

has a \mathcal{K} -limit point x.

For $\mathcal{I} = \mathcal{K}$, we know the convergence modes $\mathcal{I}^{\mathcal{K}} \equiv \mathcal{I} \equiv \mathcal{K}$. Hence definitions 4.1 and 4.2 generalizes the definitions of \mathcal{I} or \mathcal{K} -(limit point and cluster point) correspondingly. Again, for nets in a topological space \mathcal{I} -limit points and \mathcal{I} -cluster points coincide [2]. Therefore, $\mathcal{I}^{\mathcal{K}}$ -cluster points and $\mathcal{I}^{\mathcal{K}}$ -limit points of nets also coincide.

Following the notation in [11], we denote the collection of all $\mathcal{I}^{\mathcal{K}}$ -limit points and $\mathcal{I}^{\mathcal{K}}$ -cluster points of a function f in a topological space X by $L_f(\mathcal{I}^{\mathcal{K}})$ and $C_f(\mathcal{I}^{\mathcal{K}})$ respectively. We observe that $C_f(\mathcal{I}^{\mathcal{K}}) \subseteq C_f(\mathcal{K})$ and $L_f(\mathcal{I}^{\mathcal{K}}) \subseteq L_f(\mathcal{K})$. We also observe that $L_f(\mathcal{I}^*) = L(\mathcal{I}^*)$, where $L(\mathcal{I}^*)$ denote the collection of \mathcal{I}^* -limits of f.

Lemma 4.3. If \mathcal{I} and \mathcal{K} be two ideal then $L_f(\mathcal{I}^{\mathcal{K}}) \subseteq C_f(\mathcal{I}^{\mathcal{K}})$.

Proof. Since $L_f(\mathcal{K}) \subseteq C_f(\mathcal{K})$ for an ideal \mathcal{K} , hence the result is immediate. \Box

We have the following lemma provided the ideals ${\mathcal I}$ and ${\mathcal K}$ satisfy ideality condition.

Lemma 4.4. $C_f(\mathcal{I} \cup \mathcal{K}) \subseteq C_f(\mathcal{I}^{\mathcal{K}}).$

Proof. Let y be not a $\mathcal{I}^{\mathcal{K}}$ -cluster point of $x = \{x_n\}_{n \in \omega}$. Then for all $M \in \mathcal{I}^*$ such that for the function $g: S \to X$ defined by

$$g(s) = \begin{cases} f(s), & s \in M \\ x, & s \notin M \end{cases}$$

the set $\{s \in S : g(s) \in U_x\} \in \mathcal{K}$. Since $\{s : f(s) \in U_x\} \subseteq \{s : g(s) \in U_x\} \in \mathcal{K}$. i.e. $\{s : f(s) \in U_x\} \in \mathcal{I} \cup \mathcal{K}$. Hence y is not a $(\mathcal{I} \cup \mathcal{K})$ -cluster point of x. \Box

Since above set inequalities signify the implication $\mathcal{K} \to \mathcal{I}^{\mathcal{K}} \to \mathcal{I} \cup \mathcal{K}$, We expect the following conclusion.

Conjecture 4.5. $L_f(\mathcal{I} \cup \mathcal{K}) \subseteq L_f(\mathcal{I}^{\mathcal{K}})$.

For sequential criteria in [11], we observe the following result.

such that $F = C_x(\mathcal{I}^{\mathcal{K}})$ provided $\mathcal{I} \cup \mathcal{K}$ is an ideal.

Theorem 4.6. Let \mathcal{I} , \mathcal{K} be two ideals on ω and X be a topological space. Then (i) For $x = \{x_n\}_{n \in \omega}$, a sequence in X; $C_x(\mathcal{I}^{\mathcal{K}})$ is a closed set.

(ii) If (X, τ) is closed hereditary separable and there exists a disjoint sequence of sets $\{P_n\}$ such that $P_n \subset \omega$, $P_n \notin \mathcal{I}, \mathcal{K}$ for all n, then for every non empty closed subset F of X, there exists a sequence x in X

@ AGT, UPV, 2021

Further aspects of $\mathcal{I}^{\mathcal{K}}\text{-convergence in topological spaces}$

Proof. Consider the sequence $x = \{x_n\}$ in X and \mathcal{I}, \mathcal{K} be the two ideals on ω .

- (i) Let $y \in \overline{C_x(\mathcal{I}^{\mathcal{K}})}$; the derived set of $C_x(\mathcal{I}^{\mathcal{K}})$. Let U be an open set containing y. It is clear that $U \cap C_x(\mathcal{I}^{\mathcal{K}}) \neq \phi$. Let $p \in (U \cap C_x(\mathcal{I}^{\mathcal{K}}))$ i.e., $p \in U$ and $p \in C_x(\mathcal{I}^{\mathcal{K}})$. Now there exist a set $M \in \mathcal{I}^*$, such that $\{y_n\}_{n \in \omega}$ given by $y_n = x_n$ if $n \in M$ and p, otherwise; we have $\{n \in \omega : y_n \in U\} \notin \mathcal{K}$. Consider the sequence $\{z_n\}_{n \in \omega}$ given by $z_n = x_n$ if $n \in M$ and y, otherwise; then $\{n \in \omega : z_n \in U\} = \{n \in \omega :$ $y_n \in U\} \notin \mathcal{K}$. Hence $y \in C_x(\mathcal{I}^{\mathcal{K}})$.
- (ii) Being a closed subset of X, F is separable. Let $S = \{s_1, s_2, ...\} \subset F$ be a countable set such that $\overline{S} = F$. Consider $x_n = s_i$ for $n \in P_i$. Thus we have the subsequence $\{k_n\}$ of $\{n\}$ for which assume the sequence $x = \{x_{n_k}\}$. Let $y \in C_x(\mathcal{K})$ (taking $y \neq s_i$ otherwise if $y = s_i$ for some i, then y is eventually in F). We claim $C_x(\mathcal{K}) \subset F$. Let U be any open set containing y. Then $\{n : x_{n_k} \in U\} \notin \mathcal{K}$ and hence non empty i.e., $s_i \in U$ for some i. Therefore $F \cap U$ is non empty, So y is a limit point of F and closedness of F gives $y \in F$. Hence $C_x(\mathcal{K}) \subset F$. Further $C_x(\mathcal{I}^{\mathcal{K}}) \subseteq C_x(\mathcal{K}) \subset F$. Conversely, for $a \in F$ and U be an open set containing a, then there

exists $s_i \in S$ such that $s_i \in U$. Then $\{n : x_{n_k} \in U\} \supset P_i \ (\notin \mathcal{K}, \mathcal{I})$. Thus $\{n : x_{n_k} \in U\} \notin (\mathcal{I} \cup \mathcal{K})$ i.e., $a \in C_x(\mathcal{I} \cup \mathcal{K})$. On the other hand, by lemma 4.4, $C_f(\mathcal{I} \cup \mathcal{K}) \subseteq C_f(\mathcal{I}^{\mathcal{K}})$. So we get the reverse implication.

Remark 4.7. Theorem 4.6 generalizes Theorem 10 in [3], it follows by letting $\mathcal{I} = \mathcal{K}$ in the above theorem.

ACKNOWLEDGEMENTS. The first author would like to thank the University Grants Comission (UGC) for awarding the junior research fellowship vide UGC-Ref. No.: 1115/(CSIR-UGC NET DEC. 2017), India.

References

- A. K. Banerjee and M. Paul, A note on *I^K* and *I^{K*}*-convergence in topological spaces, arXiv:1807.11772v1 [math.GN], 2018.
- [2] B. K. Lahiri and P. Das, *I* and *I*^{*}-convergence of nets, Real Anal. Exchange 33 (2007), 431–442.
- [3] B. K. Lahiri and P. Das, I and I^{*}-convergence in topological spaces, Math. Bohemica 130 (2005), 153–160.
- [4] H. Fast, Sur la convergence statistique, Colloq. Math, 2(1951), 241-244.
- [5] K. P. Hart, J. Nagata and J. E. Vaughan. Encyclopedia of General Topology, Elsevier Science Publications, Amsterdam-Netherlands, 2004.
- [6] M. Macaj and M. Sleziak, *I^K*-convergence, Real Anal. Exchange 36 (2011), 177–194.

- [7] P. Das, M. Sleziak and V. Tomac, *I^K*-Cauchy functions, Topology Appl. 173 (2014), 9–27.
- [8] P. Das, S. Dasgupta, S. Glab and M. Bienias, Certain aspects of ideal convergence in topological spaces, Topology Appl. 275 (2020), 107005.
- [9] P. Das, S. Sengupta, J and Supina, $\mathcal{I}^{\hat{\mathcal{K}}}$ -convergence of sequence of functions, Math. Slovaca 69, no. 5(2019), 1137–1148.
- [10] P. Halmos and S. Givant, Introduction to Boolean Algebras, Undergraduate Texts in Mathematics, Springer, New York, 2009.
- [11] P. Kostyrko, T. Salat and W. Wilczynski, $\mathcal I$ -convergence, Real Anal. Exchange 26 (2001), 669–685.
- [12] S. K. Pal, *I*-sequential topological spaces, Appl. Math. E-Notes 14 (2014), 236-241.
- [13] X. Zhou, L. Liu and L. Shou, On topological space defined by *I*-convergence, Bull. Iranian Math. Soc. 46 (2020), 675–692.