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Abstract

In this paper the properties of space of the G-permutation degree, like:
weight, uniform connectedness and index boundedness are studied. It
is proved that:
(1) If (X, U) is a uniform space, then the mapping πs

n,G : (Xn, Un) →
(SPn

GX, SPn
GU) is uniformly continuous and uniformly open, moreover

w (U) = w (SPn
GU);

(2) If the mapping f : (X, U) → (Y, V) is a uniformly continuous
(open), then the mapping SPn

Gf : (SPn
GX, SPn

GU) → (SPn
GY, SPn

GV)
is also uniformly continuous (open);
(3) If the uniform space (X, U) is uniformly connected, then the uni-
form space (SPn

GX, SPn
GU) is also uniformly connected.
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1. Introduction

In [19], a functor O : Comp → Comp of weakly additive functionals acting
in the category of compact and its continuous mappings is defined. It was
proved that the functor O : Comp → Comp satisfies the normality conditions,
except the preimage preservation condition. In [6], categorical and cardinal
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properties of hyperspaces with finite number of components are investigated.
It was proved that the functor Cn : Comp → Comp is not normal, i.e., it
does not preserve epimorphisms of continuous mappings. The authors of this
paper also discussed the properties of density, caliber and Shanin number for
the space Cn(X). This space Cn(X) is of great interest for researchers, since
it contains the hyperspaces expn X of closed sets with cardinalities not greater
than n elements. It was proved in [4] that the Radon functor satisfies all the
normality conditions.

In [7], the topological properties of topological groups were studied. In
[5], categorical and topological properties of the functor OSτ of semiadditive
τ -smooth functionals in the category Tych of Tychonoff spaces and their con-
tinuous mappings, which extends the functors OS of semiadditive functionals
in the category Comp of compact and their continuous mappings, were inves-
tigated.

In [3], some properties of the functor Oβ : Tych → Tych were considered,

where β is the Čech-Stone compact extension in the category of Tychonoff
spaces and their continuous mappings. This functor is regarded as an extension
of the functor O : Comp → Comp. The author in [3] proved that the space
Oβ(X) is a convex subset of the space Cp(Cb(X)), where

Cb(X) = {f ∈ C(X)| f : X → R is a bounded function}
and Cp(X) is the space of pointwise convergence. It was proved in [2] that if
a covariant functor F : Comp → Comp is weakly normal, then Fβ : Tych →
Tych does not increase the density and weak density for any infinite Tychonoff
space.

In [11], it was proved that the functor SPn
G preserves the property of the

fibers of the map to be a compact Q-manifold. In [9] some classes of uniform
spaces are considered. In particular, the uniformly continuous mappings and
absolutes, generalizations of metrics, normed, uniform unitary spaces, topo-
logical and uniform groups, its completions and spectral characterizations are
studied. In addition, the properties of uniformly continuous and uniformly
open mappings between uniform spaces are studied, too. But, it should be
noted here that the class of uniformly continuous and uniformly open maps
itself was introduced by Michael in [18].

In what follows, we present the basic notions that will be used in the rest of
this article.

It is known that a permutation group is the group of all permutations, that
is one-to-one mappings X → X . A permutation group of a set X is usually
denoted by S(X). Especially, if X = {1, 2, . . . , n}, then S(X) is denoted by
Sn.

Let Xn be the n-th power of a compact space X . The permutation group
Sn of all permutations acts on the n-th power Xn as permutation of coordi-
nates. The set of all orbits of this action with quotient topology is denoted
by SPnX . Thus, points of the space SPnX are finite subsets (equivalence
classes) of the product Xn. Two points (x1, x2, . . . , xn), (y1, y2, . . . , yn) ∈ Xn
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are considered to be equivalent if there exists a permutation σ ∈ Sn such that
yi = xσ(i). The space SPnX is called the n-permutation degree of the space
X . Equivalent relation by which we obtain space SPnX is called the sym-
metric equivalence relation. The n-th permutation degree is a quotient of Xn.
Therefore, the quotient map is denoted by πs

n : Xn → SPnX , where for every
x = (x1, x2, . . . , xn) ∈ Xn,

πs
n((x1, x2, . . . , xn)) = [(x1, x2, . . . , xn)]

is an orbit of the point x = (x1, x2, . . . , xn) ∈ Xn [20].
Let G be a subgroup of the permutation group Sn and let X be a compact

space. The group G acts also on the n-th power of the space X as permutation
of coordinates. The set of all orbits of this action with quotient topology is
denoted by SPn

GX . The space SPn
GX is called G-permutation degree of the

space X [13]. Actually, it is the quotient space of the product of Xn under the
G-symmetric equivalence relation.

An operation SPn is the covariant functor in the category of compacts and
it is said to be a functor of G-permutation degree. If G = Sn, then SPn

G = SPn

and if the group G consists of the unique element only, then SPn = Xn.

Let T be a set and let A and B be subsets of T × T , i.e., relations on the
set T . The inverse relation of A will be denoted by A−1, that is,

A−1 = {(x, y) : (y, x) ∈ A}.
The composition of A and B will be denoted by AB; thus we have

AB = {(x, z) : there exists a y ∈ T such that (x, y) ∈ A and (y, z) ∈ B}.
For an arbitrary relation A ⊂ T × T and for a positive integer n the relation
An ⊂ T × T is defined inductively by the formulas:

A1 = A and An = An−1A.

Every set V ⊂ T × T that contains the diagonal ∆T = {(x, x) : x ∈ T } of T is
called an entourage of the diagonal.

Definition 1.1. Let T be a non-empty set. A family U of subsets of T × T is
called a uniformity on T , if this family satisfies the following conditions:

(U1) Each U ∈ U contains the diagonal ∆T = {(x, x) : x ∈ T } of T ;
(U2) If V1, V2 ∈ U , then V1 ∩ V2 ∈ U ;
(U3) If U ∈ U and U ⊂ V , then V ∈ U ;
(U4) For each U ∈ U there is a V ∈ U such that V 2 ⊂ U ;
(U5) For each U ∈ U we have U−1 ∈ U .
The pair (T,U) is called uniform space [17]. Also, the elements of the uni-

formity U are called entourages. For an entourage U ∈ U and a point x ∈ T
the set

U(x) = {y ∈ T : (x, y) ∈ U}
is called the U -ball centered at x. For a subset A ⊂ T the set U(A) =

⋃

a∈A

U(a)

is called the U -neighborhood of A [1].
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A family B is called a base for the uniformity U , if for any V ∈ U there
exists a W ∈ B with W ⊂ U . The smallest cardinal number of the form |B|,
where B is a base for U , is called the weight of the uniformity U and is denoted
by ω(U).

Every base B for a uniformity on T has the following properties:
(BU1) For every V1, V2 ∈ B there exists a V ∈ B such that V ⊂ V1 ∩ V2;
(BU2) For every V ∈ B there exists a W ∈ B such that W 2 ⊂ V .

Proposition 1.2 ([15]). Suppose that a non-empty set X is given. Consider a
family B of entourages of the diagonal, which has the properties (BU1)–(BU2)
and B−1 = B. A family U is a uniformity on X, if it consists of all entourages
which contain a member of B. The family B is a base for U . The uniformity
U is called the uniformity generated by the base B.

Let {(Xs, Us) : s ∈ S} be a family of uniform spaces. A family B of all
entourages of the diagonal, which has the form

{({xs} , {ys}) : (xsi , ysi) ∈ Vsi for s1, s2, . . . , sk ∈ S, Vsi ∈ Usi , i = 1, 2, . . . , k} ,
generates a uniformity on the set

∏

s∈S

Xs. This uniformity is called a Cartesian

product of the uniformities {Us : s ∈ S} and is denoted by
∏

s∈S

Us. If all the

uniformities Us are equal to each other, i.e., if Xs = X and Us = U for s ∈ S,
then the Cartesian product

∏

s∈S

Us is also denoted by Uτ , where τ = |S| [10].

Definition 1.3. A function f : (X, U) → (Y, V) is called uniformly continuous,
if for each V ∈ V there exists a U ∈ U such that

(f × f)(U) = {(f(x1), f(x2)) : (x1, x2) ∈ U} ⊂ V.

Note that the condition (f × f)(U) ⊂ V is equivalent to the condition

f(U(x)) ⊂ V (f(x)) or (f × f)−1(V ) ∈ U [14].

A uniformly continuous function f : (X, U) → (Y, V) is uniformly open, if
for any U ∈ U there exists a V ∈ V such that

V (f(x)) ⊂ f(U(x))

for all x ∈ X [12].

Let expc X and expc Y be the hyperspaces of X and Y , consisting of all
nonempty compact subsets equipped with the Hausdorff uniformity. In [12], it
was proved that if a (continuous) surjection f : X → Y between uniform spaces
X and Y is perfect, then f is uniformly open if and only if expc f : expcX →
expc Y is uniformly open.

Remark 1.4. The uniform continuity of the mapping f does not always imply
uniform openness, i.e., there is a mapping f that can be uniformly continuous,
but cannot be uniformly open.

As an example, consider the mapping f : (R,U) → (R,V), where f(x) = x,
x ∈ X , V = {∆, R × R}, U = {U ⊂ R× R : ∆ = {(x, x) : x ∈ R} ⊂ U} and
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R is the set of all real numbers. This mapping f is uniformly continuous, but
not uniformly open.

Recall that a bijective mapping f : (X, U) → (Y, V), acting from the uniform
space (X, U) to the uniform space (Y, V), is called a uniform isomorphism if
the mappings f : (X, U) → (Y, V) and f−1 : (Y, V) → (X, U) are uniformly
continuous [8].

Let (X, U) be a uniform space and D ∈ U . A pair of points x, y of the
uniform space (X,U) is said to be related by a D-chain, if there exists an
integer k such that (x, y) ∈ Dk. The uniform space X is called uniformly
connected, if every entourage D of X and every pair of points of X are related
by a D-chain [16].

In our paper we use the following theorem, which have been proved in [15].

Theorem 1.5. The uniformly continuous image of a uniformly connected space
is uniformly connected.

The smallest cardinal number τ is called an index boundedness of a uniform
space (X, U), if the uniformity U has a base B consisting of entourages of
cardinality ≤ τ . The index boundedness is denoted by l(U). The uniform
space (X, U) is called τ -bounded, if l(U) ≤ τ [8].

2. Uniformly open and uniformly continuous mappings

Theorem 2.1. Let (X, U) be a uniform space. A family B of all subsets of
SPn

GX × SPn
GX of the form

O
[

U1, U2, . . . , Un

]

= {([x], [y]) : there exist permutations

σ, δ ∈ G such that
(

xi, yσ(i)
)

∈ Uδ(i), i = 1, 2, . . . , n},
where

{

U1, U2, . . . , Un

}

⊂ U , has the properties (BU1)–(BU2) and generates
some uniformity on SPn

GX.

Proof. First, we show that every set of the form O
[

U1, U2, . . . , Un

]

is an en-

tourage of the diagonal, where
{

U1, U2, . . . , Un

}

⊂ U . Take an arbitrary point

[x] = [(x1, x2, . . . , xn)] ∈ SPn
GX . Then

(

xi, xi

)

∈ Ui for all i = 1, 2, . . . , n. In
this case, we have that σ = δ = e is the unit element of the group G. Therefore,

([x], [x]) ∈ O
[

U1, U2, . . . , Un

]

and
∆ = {([x], [x]) : [x] ∈ SPn

GX} ⊂ O
[

U1, U2, . . . , Un

]

.

Choose any two entourages O
[

U1, U2, . . . , Un

]

and O
[

V1, V2, . . . , Vn

]

of the
family B. It is clear, that Ui ∩ Vi ∈ U for each i = 1, 2, . . . , n. So, it is enough
to show the following relation:

O
[

U1 ∩ V1, U2 ∩ V2, . . . , Un ∩ Vn

]

⊂ O
[

U1, U2, . . . , Un

]

∩O
[

V1, V2, . . . , Vn

]

.

Let
([x], [y]) ∈ O

[

U1 ∩ V1, U2 ∩ V2, . . . , Un ∩ Vn

]

.
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Then there exist permutations θ, φ ∈ G such that
(

xi, yθ(i)
)

∈
(

Uφ(i) ∩ Vφ(i)

)

for all i = 1, 2, . . . , n. Put
(

xi, yθ(i)
)

∈ Uφ(i) and
(

xi, yθ(i)
)

∈ Vφ(i) for all
i = 1, 2, . . . , n. It means that

([x], [y]) ∈ O
[

U1, U2, . . . , Un

]

∩O
[

V1, V2, . . . , Vn

]

.

For any entourage O
[

U1, U2, . . . , Un

]

∈ B there is a Wi ∈ U such that

W 2
i ⊂ Ui for each i = 1, 2, . . . , n. Put W =

n
⋂

i=1

Wi. We prove that

O
[

W ′
1, W

′
2, . . . , W

′
n

]2 ⊂ O
[

U1, U2, . . . , Un

]

,

where W ′
i = W for every i = 1, 2, . . . , n.

Let

([x], [y]) ∈ O
[

W ′
1, W

′
2, . . . , W

′
n

]2
.

Then there exists an orbit [z] ∈ SPn
GX such that ([x], [z]) ∈ O

[

W ′
1, W

′
2, . . . , W

′
n

]

and ([z], [y]) ∈ O
[

W ′
1, W

′
2, . . . , W

′
n

]

. Since ([x], [z]) ∈ O
[

W ′
1, W

′
2, . . . , W

′
n

]

there are permutations σ1, δ1 ∈ G such that
(

xi, zσ1(i)

)

∈ W ′

δ1(i)
= W for

all i = 1, 2, . . . , n. If ([z], [y]) ∈ O
[

W ′
1, W

′
2, . . . , W

′
n

]

, then there exist permu-

tations ϕ, γ ∈ G such that
(

zj , yϕ(j)

)

∈ W ′

γ(j) = W for all j = 1, 2, . . . , n.

Put j = σ1(i) and we obtain
(

xi, zσ1(i)

)

∈ W and
(

zσ1(i), yϕσ1(i)

)

∈ W .

Thus,
(

xi, yϕσ1(i)

)

∈ W 2 ⊂ W 2
i ⊂ Ui for each i = 1, 2, . . . , n. Consequently

([x], [y]) ∈ O[U1, U2, . . . , Un], i.e. O[W ′
1, W

′
2, . . . , W

′
n]

2 ⊂ O
[

U1, U2, . . . , Un

]

.
Now we prove that

O
[

U1, U2, . . . , Un

]−1
= O

[

U−1
1 , U−1

2 , . . . , U−1
n

]

.

Indeed, let ([x], [y]) ∈ O
[

U1, U2, . . . , Un

]−1
. Then ([y], [x]) ∈ O

[

U1, U2, . . . , Un

]

and there are permutations σ2, δ2 ∈ G such that
(

yi, xσ2(i)

)

∈ Uδ2(i) for ev-

ery i = 1, 2, . . . , n. Put j = σ2(i). This implies that i = σ−1
2 (j). The

relation
(

yσ−1

2
(j), xj

)

∈ Uδ2σ
−1

2
(j) implies that

(

xj , yσ−1

2
(j)

)

∈ U−1

δ2σ
−1

2
(j)

for

all j = 1, 2, . . . , n. Therefore, ([x], [y]) ∈ O
[

U−1
1 , U−1

2 , . . . , U−1
n

]

. We have

O
[

U1, U2, . . . , Un

]−1 ⊂ O
[

U−1
1 , U−1

2 , . . . , U−1
n

]

. The reverse inclusion is simi-
larly.

By Proposition 1.2, the family B generates some uniformity SPn
GU on the

set SPn
GX . Theorem 2.1 is proved. �

Consider a mapping πs
n,G : (Xn, Un) →

(

SPn
GX, SPn

GU
)

defining as follows:

πs
n,G

(

x1, x2, . . . , xn

)

=
[

(x1, x2, . . . , xn)
]

G

for each
(

x1, x2, . . . , xn

)

∈ Xn.

Theorem 2.2. Let (X, U) be a uniform space. Then the mapping

πs
n,G :

(

Xn, Un) → (SPn
GX, SPn

GU
)

is uniformly continuous.
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Proof. Let O
[

U1, U2, . . . , Un

]

be any entourage in
(

SPn
GX, SPn

GU
)

. Consider
an entourage

U =
{

(a, b) :
(

ai, bi
)

∈ Ui, i = 1, 2, . . . , n
}

in
(

Xn, Un
)

, where a =
(

a1, a2, . . . , an
)

and b =
(

b1, b2, . . . , bn
)

are points of

Xn. We prove that for all x =
(

x1, x2, . . . , xn

)

∈ Xn,

πs
n, G(U(x)) ⊂ O

[

U1, U2, . . . , Un

]

([x]).

Indeed, if y =
(

y1, y2, . . . , yn
)

∈ U(x), then
(

xi, yi
)

∈ Ui for each i =

1, 2, . . . , n. From
(

xi, yi
)

∈ Ui we have
(

xi, yσ(i)
)

∈ Uδ(i), where σ = δ =

e ∈ G. In this case, we have that [y] ∈ O
[

U1, U2, . . . , Un

]

([x]). Thus,

πs
n,G(U(x)) ⊂ O

[

U1, U2, . . . , Un

]

([x]). Theorem 2.2 is proved. �

Theorem 2.3. For a uniform space (X, U) the mapping

πs
n, G :

(

Xn, Un
)

→
(

SPn
GX, SPn

GU
)

is uniformly open.

Proof. By Theorem 2.2 the mapping πs
n, G is uniformly continuous. Let U be

an arbitrary entourage in Un. Then there is a trace {U1, U2, . . . , Un} ⊂ U such
that

{

(a, b) :
(

ai, bi
)

∈ Ui, i = 1, 2, . . . , n
}

⊂ U,

where a =
(

a1, a2, . . . , an
)

and b =
(

b1, b2, . . . , bn
)

are points of Xn. We show

that for any point x =
(

x1, x2, . . . , xn

)

∈ Xn we have

O
[

U ′
1, U

′
2, . . . , U

′
n

]

([x]) ⊂ πs
n,G(U(x)),

where U ′
k =

n
⋂

i=1

Ui for k = 1, 2, . . . , n.

Indeed, if [y] ∈ O
[

U ′
1, U

′
2, . . . , U

′
n

]

([x]), then there exist permutations σ, δ ∈
G such that

(

xi, yσ(i)
)

∈ U ′

δ(i) for all i = 1, 2, . . . , n. In particular,
(

xi, yσ(i)
)

∈
Ui for all i = 1, 2, . . . , n, i.e.,

(2.1) (x, yσ) ∈
{

(a, b) :
(

ai, bi
)

∈ Ui, i = 1, 2, . . . , n
}

where yσ =
(

yσ(1), yσ(2), ..., yσ(n)
)

. From (2.1) it follows that yσ ∈ U(x) and

[y] ∈ πs
n,G(U(x)). Therefore, O

[

U ′
1, U

′
2, . . . , U

′
n

]

([x]) ⊂ πs
n, G(U(x)) for a point

x ∈ Xn. Theorem 2.3 is proved. �

Proposition 2.4. Let f : (X, U) → (Y, V) be a uniformly open mapping and
f(X) = Y . Then w(V) ≤ w(U).
Proof. Let w(U) = τ ≥ ℵ0. Then there is a base B = {Uα : α ∈ M} of
uniformity U such that |M | = τ . We shall prove that the family

(f × f)(B) = {(f × f)(Uα) : α ∈ M}
is a base of uniformity V . Since the map f is uniformly open, we have that
(f × f)(Uα) ∈ V for each α ∈ M . For any entourage V ∈ V the relation
(f × f)−1(V ) ∈ U is true. In this case, there exists an index α0 ∈ M such
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that Uα0
⊂ (f × f)−1(V ), i.e. (f × f)(Uα0

) ⊂ V . It means that the family
(f × f)(B) is a base of uniformity V . Proposition 2.4 is proved. �

For a uniform space (X, U) we define a mapping λ : X → SPn
GX , where

λ(x) = [(x, x, . . . , x)], x ∈ X .

Proposition 2.5. For a uniform space (X, U) the mapping

λ : (X, U) →
(

SPn
GX, SPn

GU
)

is a uniform embedding.

Proof. Let λ|∆ : X → ∆ be the restriction of the map λ : X → SPn
GX , where

∆ = {[(x, x, . . . , x)] : x ∈ X}. It is known that it is bijective. Let us show
that the map λ|∆ is uniformly continuous. Choose an arbitrary entourage

O
[

U1, U2, . . . , Un

]

∈ SPn
GU . Put U =

n
⋂

i=1

Ui. By the definition of uniformity

we have U ∈ U . It suffices to show that

λ|∆(U(x)) ⊂
(

O
[

U1, U2, . . . , Un

]

∩ (∆×∆)
)(

λ|∆(x)
)

for all x ∈ X . Clearly, λ|∆(x) = λ(x) and
(

O
[

U1, U2, . . . , Un

]

∩ (∆×∆)
)

(λ|∆(x)) = O
[

U1, U2, . . . , Un

]

(λ(x)) ∩∆

for x ∈ X . Let y ∈ U(x). Then (x, y) ∈ U ⊂ Ui for every i = 1, 2, . . . , n. In
this case, we have (λ(x), λ(y)) ∈ O

[

U1, U2, . . . , Un

]

, i.e.,

λ(y) ∈ O
[

U1, U2, . . . , Un

]

(λ(x)) ∩∆.

Now we show that the mapping (λ|∆)−1 : ∆ → X is uniformly continuous.
Take an arbitrary entourage V ∈ U . The following relation holds:

(λ|∆)−1
(

O
[

V ′
1 , V

′
2 , . . . , V

′
n

]

(λ(x)) ∩∆
)

⊂ V (x), x ∈ X,

where V ′
k =

n
⋂

i=1

Vi for each k = 1, 2, . . . , n. It means that the mapping (λ|∆)−1

is uniformly continuous. Proposition 2.5 is proved. �

Lemma 2.6 ([8]). Let (X, U) be a uniform space and (Y,U|Y ) be its subspace,
where U|Y = {U ∩ (Y × Y ) : U ∈ U}. Then w(U|Y ) ≤ w(U).
Theorem 2.7. Let (X, U) be a uniform space. Then the equality w(U) =
w(SPn

GU) holds.
Proof. Let (X, U) be a uniform space. By Proposition 2.5 and Lemma 2.6 it
follows that w(U) ≤ w(SPn

GU). By the definition of uniformity SPn
GU on the set

SPn
GX we have w(SPn

GU) ≤ w(U). Thus, we directly obtain w(U) = w(SPn
GU).

Theorem 2.7 is proved. �

Consider an arbitrary mapping f : (X, U) → (Y, V), where (X, U) and
(Y, V) are uniform spaces. For an equivalence class [(x1, x2, . . . , xn)] ∈ SPn

GX ,
put

SPn
Gf

[(

x1, x2, . . . , xn

)]

G
=

[(

f
(

x1

)

, f
(

x2

)

, . . . , f
(

xn

))]

G
.
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The following mapping is defined

SPn
Gf :

(

SPn
GX, SPn

GU
)

→
(

SPn
GY, SP

n
GV

)

.

We obtained the following result.

Theorem 2.8. Let f : (X, U) → (Y, V) be a uniformly continuous mapping.
Then the mapping SPn

Gf :
(

SPn
GX, SPn

GU
)

→
(

SPn
GY, SP

n
GV

)

is also uni-
formly continuous.

Proof. Let f : (X, U) → (Y, V) be a uniformly continuous mapping. Take an
arbitrary entourage O

[

V1, V2, . . . , Vn

]

∈ SPn
GV . Then there is an entourage

Ui ∈ U such that f
(

Ui(a)
)

⊂ Vi

(

f(a)
)

for all a ∈ X and i = 1, 2, . . . , n. We
show that

SPn
Gf

(

O
[

U1, U2, . . . , Un

]

([x])
)

⊂ O
[

V1, V2, . . . , Vn

](

SPn
Gf([x])

)

for a point [x] ∈ SPn
GX . Choose an orbit [y] ∈ O

[

U1, U2, . . . , Un

]

([x]). Then

there exist permutations σ, δ ∈ G such that
(

xi, yσ(i)
)

∈ Uδ(i) for all i =

1, 2, . . . , n. We have yσ(i) ∈ Uδ(i)

(

xi

)

for any i = 1, 2, . . . , n. Therefore,

f
(

yσ(i)
)

∈ f(Uδ(i)

(

xi)
)

⊂ Vδ(i)

(

f
(

xi

))

.

It means that

(2.2)
(

f
(

xi

)

, f
(

yσ(i)
))

∈ Vδ(i)

for all i = 1, 2, . . . , n. Put

SPn
Gf([x]) =

[(

f
(

x1

)

, f
(

x2

)

, . . . , f
(

xn

))]

G

and

SPn
Gf([y]) =

[(

f(y1
)

, f
(

y2
)

, . . . , f
(

yn
))]

G
.

From (2.2) we obtain
(

SPn
Gf([x]), SP

n
Gf([y])

)

∈ O
[

V1, V2, . . . , Vn

]

.

Hence, SPn
Gf([y]) ∈ O

[

V1, V2, . . . , Vn

](

SPn
Gf([x])

)

. Theorem 2.8 is proved.
�

Theorem 2.9. Let f : (X, U) → (Y, V) be a uniformly open mapping. Then
the mapping SPn

Gf :
(

SPn
GX, SPn

GU
)

→
(

SPn
GY, SP

n
GV

)

is also uniformly
open.

Proof. Let f : (X, U) → (Y, V) be a uniformly open mapping. Take an arbi-
trary entourageO

[

U1, U2, . . . , Un

]

∈ SPn
GU . In this case there exists entourage

Vi ∈ V such that Vi(f(a)) ⊂ f(Ui(a)) for each a ∈ X and i = 1, 2, . . . , n. It
suffices to show that

O
[

V1, V2, . . . , Vn

](

SPn
Gf([x])

)

⊂ SPn
Gf

(

O
[

U1, U2, . . . , Un

]

([x])
)

.

Choose an arbitrary point [y] ∈ O
[

V1, V2, . . . , Vn

](

SPn
Gf([x])

)

. Then there are

permutations σ, δ ∈ G such that
(

f
(

xi

)

, yσ(i)
)

∈ Vδ(i) for all i = 1, 2, . . . , n.
Moreover, yσ(i) ∈ Vδ(i)(f(xi)) ⊂ f(Uδ(i)(xi)) for each i = 1, 2, . . . , n. Since
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yσ(i) ∈ f
(

Uδ(i)

(

xi

))

, there exists a point zi ∈ Uδ(i)

(

xi

)

such that yσ(i) = f
(

zi
)

for all i = 1, 2, . . . , n. Put z =
(

z1, z2, . . . , zn
)

∈ Xn and we have

(2.3) [y] = SPn
Gf([z]).

The relation zi ∈ Uδ(i)

(

xi

)

implies

(2.4) [z] ∈ O
[

U1, U2, . . . , Un

]

([x])

for i = 1, 2, . . . , n. By relations (2.3) and (2.4) it follows that

[y] ∈ SPn
Gf

(

O
[

U1, U2, . . . , Un

]

([x])
)

.

Hence

O
[

V1, V2, . . . , Vn

](

SPn
Gf([x])

)

⊂ SPn
Gf

(

O
[

U1, U2, . . . , Un

]

([x])
)

.

Theorem 2.9 is proved. �

3. Uniformly connected spaces and index boundedness

Theorem 3.1. If a uniform space (X,U) is uniformly connected, then the
uniform space

(

SPn
GX, SPn

GU
)

is also uniformly connected.

Proof. Let x, y ∈ Xn, where x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn).
Take an arbitrary entourage

U = {(a, b) : (ai, bi) ∈ Ui, i = 1, 2, . . . , n} ∈ Un

onXn, where a = (a1, a2, . . . , an) and b = (b1, b2, ..., bn). Since X is uniformly

connected, there is a ki ∈ Z such that (xi, yi) ∈ Uki

i for every i = 1, 2, . . . , n.
Put k = max{ki : i = 1, 2, . . . , n}. Therefore, (xi, yi) ∈ Uk

i for each i =

1, 2, . . . , n. In this case there are points z1i , z
2
i , . . . , z

k−1
i such that















(

xi, z
1
i

)

∈ Ui,
(

z1i , z
2
i

)

∈ Ui,
. . . .

(

zk−1
i , yi

)

∈ Ui.

for every i = 1, 2, ..., n. Consider k − 1 points of Xn;

z1 =
(

z11 , z
1
2 , . . . , z

1
n

)

, z2 =
(

z21 , z
2
2 , . . . , z

2
n

)

, . . . , zk−1 =
(

zk−1
1 , zk−1

2 , . . . , zk−1
n

)

.

By definition of entourage U , we have
(

x, z1
)

∈ U,
(

z1, z2
)

∈ U, . . . ,
(

zk−1, y
)

∈ U.

It means that (x, y) ∈ Uk. Hence,
(

Xn, Un
)

is uniformly connected space.

By Theorem 1.1 [15] and Theorem 2.2 the space
(

SPn
GX, SPn

GU
)

is uniformly
connected. Theorem 3.1 is proved. �

We say that a uniform space (X, U) is discrete, if ∆X ∈ U [15].

Example 3.2. Any discrete uniform space is not uniformly connected.
Indeed, take points x, y ∈ X with x 6= y. Then for any integer number k we

have (x, y) /∈ ∆X = ∆k
X .
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Theorem 3.3 ([15]). For every uniformity U on a set X the family

τU = {G ⊂ X : for every x ∈ G there exists a V ∈ U such that V (x) ⊂ G}
is a topology on the set X, which is called the topology induced by the uniformity
U .
Remark 3.4. The uniformly connectedness of the space (X, U) does not imply
connectedness with respect to the topology induced by the uniformity U , in
general.

Consider the family B = {Uε : ε > 0} of subsets of R × R, where Uε =
{(x, y) ∈ R × R : |x − y| < ε} and R is the real line. The family B has
the properties (BU1)–(BU2) and generates some uniformity on the real line R.
This uniformity is called natural uniformity on R.

The family BQ = {Uε ∩ (Q×Q) : ε > 0} is a base of a uniformity on Q (the
set of all rational numbers) and generates some uniformity UQ on Q. For any
ε > 0 and r1, r2 ∈ Q (r1 < r2) we have k = [ r2−r1

ε
]+ 1. Consider a sequence of

points {ai}k−1
i=1 defined by the formula ai = r1 +

r2−r1
k

i with i = 1, 2, . . . , k− 1.
It is clear that ai ∈ Q for all i = 1, 2, . . . , k − 1. In this case we have















(

r1, a1
)

∈ Vε,
(

a1, a2
)

∈ Vε,
. . . .

(

ak−1, r2
)

∈ Vε,

where Vε = Uε ∩ (Q × Q). Thus,
(

r1, r2
)

∈ V k
ε . Therefore, the uniform space

(

Q, UQ

)

is uniformly connected, but not connected, since Q = ((−∞,
√
2) ∩

Q) ∪ ((
√
2, ∞) ∩Q) and ((−∞,

√
2) ∩Q) ∩ ((

√
2, ∞) ∩Q) = ∅.

Theorem 3.5. Let (X, U) be a uniform space. Then the equality l(U) =
l
(

SPn
GU

)

holds.

Proof. First, we show the inequality l
(

SPn
GU

)

≤ l
(

Un
)

. Let l
(

Un
)

= τ ≥ ℵ0.
Then there is a base Bn of uniformity Un such that |V | ≤ τ for any V ∈ Bn. We
consider the family πs

n, G

(

Bn
)

= {πs
n,G(V ) : V ∈ Bn} and prove that the family

πs
n,G

(

Bn
)

is the base of the uniformity SPn
GU . Since πs

n,G is a uniformly open

mapping, πs
n,G(V ) ∈ SPn

GU for any entourage V ∈ Bn. Consider an arbitrary
entourage

O
[

U1, U2, . . . , Un

]

∈ SPn
GU .

For an entourage
(

πs
n, G

)−1(
O
[

U1, U2, . . . , Un

])

∈ Un there exists an entourage
V ∈ Bn such that

V ⊂
(

πs
n, G

)−1(
O
[

U1, U2, . . . , Un

])

.

Hence, we obtain
πs
n,G(V ) ⊂ O

[

U1, U2, . . . , Un

]

,

i.e., we have that l
(

SPn
GU

)

≤ τ .

Now we show the inverse inequality l
(

Un
)

≤ l(U). Let l(U) = κ ≥ ℵ0 and let
B be a base for the uniformity U , consisting of entourages of cardinality ≤ κ.
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We denote by B′ the family of all entourages of the form
n
⋂

i=1

pr−1
i

(

Ui

)

, where

Ui ∈ B and pri is the projection of Xn onto Xi = X for each i = 1, 2, . . . , n.
Then by definition of Cartesian product of the uniform spaces, the family B′ is
a base for the uniformity Un. Since

|
n
⋂

i=1

pr−1
i (Ui)| ≤ max{|Ui| : i = 1, 2, . . . , n} ≤ κ

it follows that l
(

Un
)

≤ l(U).
Consequently, we have l

(

SPn
GU

)

≤ l(U). Note that a uniform subspace of
a τ -bounded space is also τ -bounded. By Proposition 2.5, l(U) ≤ l(SPn

GU).
Hence, we get the equality l(U) = l

(

SPn
GU

)

. �
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