

Departament de Sistemes Informàtics i Computació

Universitat Politècnica de València

Narrowing and Unification in the Maude

Programming Language

Master Thesis

Master's Degree in Software Engineering, Formal

Methods and Information Systems

Author: Raúl López Rueda

Cotutors: Santiago Escobar Román

Julia Sapiña Sanchis

2020-2021

Narrowing and Unification in the Maude Programming Language

2

3

Abstract
Communications security protocols evolve every day seeking improvements and bug

fixes, many of which can lead to vulnerabilities with fatal consequences. For this reason,

it becomes vitally important to find algorithms and tools capable of finding these vulner-

abilities in order to fix them as soon as possible. One of these algorithms is narrowing,

implemented in Maude, a language used by various protocol analysis tools, which, despite

being powerful and efficient in many cases, has some limitations, which can be resolved

by using variants of the algorithm. A possible variant is canonical narrowing, which relies

on irreducibility constraints to discard those sequences of the standard narrowing that can

be ignored because they do not represent actual rewrite sequences.

Keywords: Maude, narrowing, unification, canonical narrowing, protocol.

Resumen

Los protocolos de seguridad en las comunicaciones evolucionan cada día buscando

mejoras y corrección de errores, muchos de los cuales pueden llevar a vulnerabilidades

con consecuencias fatales. Por ello, se vuelve de vital importancia el encontrar algoritmos

y herramientas capaces de encontrar esas vulnerabilidades para poder solucionarlas

cuanto antes. Uno de estos algoritmos es el narrowing, implementado en Maude, un len-

guaje utilizado por varias herramientas de análisis de protocolos, que, a pesar de ser po-

tente y eficiente en muchos casos, tiene algunas limitaciones, que pueden ser resueltas

mediante la utilización de variantes del algoritmo. Una posible variante es el canonical

narrowing, que se basa en restricciones de irreductibilidad para descartar aquellas secuen-

cias del narrowing estándar que pueden obviarse porque no representan secuencias de

reescritura reales.

Palabras clave: Maude, narrowing, unificación, canonical narrowing, protocolo.

Resum
Els protocols de seguretat en les comunicacions evolucionen cada dia buscant millores

i correcció d'errors, molts dels quals poden portar a vulnerabilitats amb conseqüències

fatals. Per això, es torna de vital importància el trobar algorismes i eines capaces de trobar

aqueixes vulnerabilitats per a poder solucionar-les com més prompte millor. Un d'aquests

algorismes és el narrowing, implementat en Maude, un llenguatge utilitzat per diverses

eines d'anàlisis de protocols, que, malgrat ser potent i eficient en molts casos, té algunes

limitacions, que poden ser resoltes mitjançant la utilització de variants de l'algorisme.

Una possible variant és el canonical narrowing, que es basa en restriccions d'irreductibi-

litat per a descartar aquelles seqüències del narrowing estàndard que poden obviar-se

perquè no representen seqüències de reescriptura reals.

Paraules clau: Maude, narrowing, unificació, canonical narrowing, protocol.

Narrowing and Unification in the Maude Programming Language

4

5

Contents
1. Introduction ... 9

1.1. Objectives .. 9
1.2. Motivation .. 10
1.3. Document structure .. 10

2. Preliminaries .. 13
2.1. Introduction to Maude .. 13
2.2. Rewrite theories ... 13
2.3. Sorts and subsorts .. 14
2.4. Variables and operators .. 14
2.5. Functional modules .. 15
2.6. System modules ... 16
2.7. Unification ... 17
2.8. Order-sorted unification modulo axioms B .. 17
2.9. Variant unification ... 19
2.10. Narrowing .. 21
2.11. Maude reflection .. 23

3. Generation of the reachability tree .. 27
3.1. Implementation methodology .. 27
3.2. Types, subtypes, and data structures .. 27
3.3. Tree unfolding .. 30
3.4. Variable renaming .. 36
3.5. Testing the tree generation ... 39

4. Narrowing using the reachability tree ... 45
4.1. Specification of the narrowing steps to implement .. 45
4.2. Types, subtypes, data structures and variables ... 45
4.3. The getNarrowingSolutions command and node generation ... 47
4.4. Unification with the target term ... 48
4.5. Calculation of solutions with the unifiers .. 50
4.6. Iteration and termination of the algorithm ... 53
4.7. Testing the narrowing algorithm implementation .. 54

5. Canonical narrowing ... 59
5.1. Limitations of standard narrowing ... 59
5.2. Introduction to canonical narrowing .. 60
5.3. Implementation in Maude .. 61
5.4. Comparison with the standard narrowing commands .. 63

6. Conclusions and future work ... 71
6.1. Conclusions .. 71
6.2. Future work .. 72

References .. 73

Narrowing and Unification in the Maude Programming Language

6

7

Table of figures
Figure 1: Example of types and subtypes definitions in Maude. .. 14

Figure 2: Example of type definition and the use of constructor symbols in Maude. ... 14

Figure 3: Example of variables definition in Maude. .. 15

Figure 4: Maude module that calculates the factorial of a number. .. 16

Figure 5: State diagram that models a simple rewrite system. .. 16

Figure 6: Basic example of a system module in Maude.. 17

Figure 7: Maude Module that defines the concatenation of lists with associativity. ... 18

Figure 8: Unifiers returned by Maude as a solution to the unification problem seen above. 18

Figure 9: Output returned by Maude in response to an impossible unification problem. 19

Figure 10: EXCLUSIVE-OR module in Maude. .. 20

Figure 11: Variants of the exclusive-or symbol in Maude. ... 20

Figure 12: Example of a search graph in a vending machine module [4]. .. 21

Figure 13: NARROWING-VENDING-MACHINE module, from the Maude's official examples. 22

Figure 14: Example of using the vu-narrow command. .. 23

Figure 15: Definition of the metaNarrowingApply command and its related types in Maude's META-LEVEL

module. ... 24

Figure 16: Definition of the metaVariantUnify command and its related types in Maude's META-LEVEL

module. ... 25

Figure 17: Sorts, subsorts and operators in the GET-REACHABILITY-TREE module. 28

Figure 18: Variables declared in the GET-REACHABILITY-TREE module. ... 30

Figure 19: Equations that define the initial behavior of the getReachabilityTree command in the GET-

REACHABILITY-TREE module. .. 30

Figure 20: Equation that defines the generation of the first level of the reachability tree in the GET-

REACHABILITY-TREE module. .. 31

Figure 21: An example tree with 19 nodes labeled with letters. ... 32

Figure 22: Equation that defines the generation of levels higher than one of the reachability tree when the depth

parameter takes unbounded as a value in the GET-REACHABILITY-TREE module. 33

Figure 23: Figure 20: Equation that defines the generation of levels higher than one of the reachability tree when

the depth parameter takes a non-zero natural as a value in the GET-REACHABILITY-TREE module. 35

Figure 24: Equations to manage an empty list of nodes to process and nodes not found in the GET-

REACHABILITY-TREE module. .. 35

Figure 25: Imports and variable declarations in the CONVERT-VARIABLES module. 36

Figure 26: The rename operator and its associated equations in the CONVERT-VARIABLES module. 36

Figure 27: The getVars operators and their associated equations in the CONVERT-VARIABLES module. 37

Figure 28: The getRangeVars operator and its associated equations in the CONVERT-VARIABLES module. 37

Figure 29: The getVarsNumber operator and its associated equations in the CONVERT-VARIABLES module.

 .. 38

Figure 30: The applySub operators and their associated equations in the CONVERT-VARIABLES module... 38

Figure 31: Example 1 of the generation of the reachability tree in the NARROWING-VENDING-MACHINE

module. ... 40

Figure 32: Generation of the reachability tree using Narval and the NARROWING-VENDING-MACHINE

module. ... 40

Figure 33: Example 2 of the generation of the reachability tree in the NARROWING-VENDING-MACHINE

module. ... 41

Figure 34: The SUCC-PRED module in Maude. .. 42

Figure 35: Example 1 of the generation of the reachability tree in the SUCC-PRED module. 42

Figure 36: Generation of the reachability tree using Narval and the SUCC-PRED module. 43

Figure 37: Example 2 of the generation of the reachability tree in the SUCC-PRED module. 43

Figure 38: Sorts, subsorts and related operators in the GET-NARROWING-SOLUTIONS module. 46

Figure 39: Variables declared in the GET-NARROWING-SOLUTIONS module. ... 47

Figure 40: Equations that define the initial behavior of the getNarrowingSolutions command in the GET-

NARROWING-SOLUTIONS module. .. 48

Narrowing and Unification in the Maude Programming Language

8

Figure 41: Start of the unification step when the search arrow is =>+ in the GET-NARROWING-SOLUTIONS

module. ... 49

Figure 42: Start of the unification step when the search arrow is =>* or =>1 in the GET-NARROWING-

SOLUTIONS module. .. 49

Figure 43: Definition of the iterativeMetaVariantUnify function in the GET-NARROWING-SOLUTIONS

module. ... 50

Figure 44: Equation that ends the unification step in the GET-NARROWING-SOLUTIONS module. 50

Figure 45: Equations that begin the computation of the solutions associated with each unifier found in the GET-

NARROWING-SOLUTIONS module. .. 51

Figure 46: Equation of the GET-NARROWING-SOLUTIONS module that computes the narrowing solutions

when we are at the first level of the reachability tree. ... 52

Figure 47: Equations of the GET-NARROWING-SOLUTIONS module that compute the narrowing solutions

for levels below the first level of the reachability tree. ... 52

Figure 48: Equation that removes unifiers from the queue if the maximum number of solutions has already been

reached in the GET-NARROWING-SOLUTIONS module. .. 53

Figure 49: Specification of the reduceSub function in the GET-NARROWING-SOLUTIONS module. 53

Figure 50: Function that ends the unify step when the solutions for a node have been computed in the GET-

NARROWING-SOLUTIONS module. .. 53

Figure 51: Equations that define the termination of the narrowing algorithm in the GET-NARROWING-

SOLUTIONS module. .. 54

Figure 52: Example 1 comparing narrowing commands using the NARROWING-VENDING-MACHINE

module. ... 55

Figure 53: Example 2 comparing narrowing commands using the NARROWING-VENDING-MACHINE

module. ... 55

Figure 54: Example 3 comparing narrowing commands using the NARROWING-VENDING-MACHINE

module. ... 56

Figure 55: Example of a comparison between narrowing commands using the SUCC-PRED module.............. 56

Figure 56: Example of using the maximum depth parameter in the getNarrowingSolutions command, using the

SUCC-PRED module. .. 57

Figure 57: Variables, operators and equations defined in the GET-CANONICAL-NARROWING-SOLUTIONS

module to obtain the irreducibility terms. ... 61

Figure 58: Example of using the getIrreducibilityTerm function in an equation from the GET-CANONICAL-

NARROWING-SOLUTIONS module. .. 62

Figure 59: Comparison between the received parameters and the structure obtained from the new defined

commands and the metaNarrowingSearch command. .. 63

Figure 60: Comparison of commands looking for a solution for the mentioned narrowing problem by using the

SUCC-PRED module. .. 64

Figure 61: Comparison of commands looking for three solutions for the mentioned narrowing problem by using

the SUCC-PRED module. ... 64

Figure 62: Module in Maude to make recursive calls to the metaNarrowingSearch command, allowing to specify

the maximum number of required solutions. .. 65

Figure 63: Comparison of algorithms for the mentioned narrowing problem by using the SUCC-PRED module.

 .. 66

Figure 64: Comparison of algorithms for the mentioned narrowing problem by using the XOR-PROTOCOL

module. ... 67

Figure 65: Module that specifies the properties of abelian groups in Maude. .. 68

Figure 66: Comparison of algorithms for the mentioned narrowing problem by using the XOR-PROTOCOL

module. ... 68

9

1. Introduction
In this chapter we make an introduction to this master thesis, with the intention of giving

the reader a more general vision of what to expect from it.

1.1. Objectives

In this master thesis, the aim is to reimplement the narrowing of the Maude programming

language, using reflection and the unification mechanisms included in it. Although nar-

rowing is already implemented at the native level in the language, a new implementation

using the part of the meta-level that it includes will allow to have a base on which to make

modifications, managing to implement other types of narrowing that are not yet included.

One of them is canonical narrowing [7], which will also be implemented in this work,

using the standard narrowing implementation as a basis.

To achieve all these, it is first necessary to understand how rewriting, unification, and

standard narrowing work at a theoretical level, being aware of some of their limitations

and the importance of canonical narrowing to solve them. After this, it is also necessary

to understand the basic and some more advanced concepts of Maude, as well as the oper-

ation of the unification and narrowing commands already defined in the language itself,

especially those belonging to its meta-level.

Once everything is clear at a theoretical level, it is necessary to first implement an

algorithm that is capable of generating the reachability tree starting from a term and using

a specific rewrite system (a module in Maude), also using various parameters that allow

the user to modify the operation of the command that invokes the algorithm, customizing

the expected output. Using the same algorithm as a base, a new one can be built that can

use the reachability tree that is generated to solve narrowing problems, by adding a target

term and a maximum of expected solutions as parameters. Finally, the implemented

standard narrowing algorithm can be used as a basis for making modifications and, in this

case, implementing canonical narrowing.

When the necessary algorithms have been implemented to allow the resolution of nar-

rowing problems, comparisons will be made using different rewrite systems (some of

them specifying security protocols). On the one hand, we compare the implemented new

commands, and on the other hand, the Maude native command, with the aim of demon-

strating that the canonical narrowing implemented using the language itself is capable of

solving problems in a more efficient way than the standard narrowing used by the Maude

native command, whose base is encoded in C++, considering their execution times and

the size of the narrowing trees generated when using different rewrite systems, initial

terms, target terms and variations of the rest of the command parameters.

In addition, it is intended to establish a knowledge and code base to be able to make

subsequent modifications, improving the algorithms and allowing the implementation of

other types of narrowing.

Narrowing and Unification in the Maude Programming Language

10

1.2. Motivation

Cybersecurity plays an increasingly important role in the field of computing due to the

constant appearance of new technologies and improvements to the existing ones, which

lead to the creation of cryptographic protocols and algorithms with their potential vulner-

abilities. In addition, the existing protocols that we continue to use today may also contain

vulnerabilities that have not yet been detected. Therefore, it becomes vitally important to

find and use tools and algorithms capable of detecting these vulnerabilities, giving the

opportunity to fix them as soon as possible, or if necessary, even rule out the use of pro-

tocols that have them.

Narrowing makes it possible to generate reachability trees from an initial term, and to

find those nodes (states) in which a target term is reached. If we can specify the properties

of a protocol in a rewrite system, as well as the initial and target states as terms, we can

use narrowing to detect vulnerable states, checking if any of them can be reached from

the initial state of the protocol. That is why narrowing is presented as a very powerful

tool in the field of cybersecurity, and there are tools such as Maude-NPA [14] that use it

exactly for the intended purpose [9]. Other tools do not directly use Maude for the nar-

rowing, but they do use it for unification with variants, taking advantage of its efficiency

in equational theories with axioms. Some examples are Tamarin [2] and AKISS [12], that

require the prior installation of Maude to function properly.

The search for improvements in the standard narrowing algorithm and the implemen-

tation of these improvements in programming languages such as Maude, on which

Maude-NPA is based, can offer a wide range of possibilities when analysing protocols

through reachability, seeking an improvement in performance and the time needed to

achieve it. This work aims to lay the foundations for an implementation of canonical nar-

rowing, an alternative version to standard narrowing that solves some of its limitations,

using the latest stable version available from Maude. With later improvements, it would

be possible to introduce what has been implemented into Full Maude, an extension of

Maude written in Maude itself, allowing users to use the defined commands.

1.3. Document structure

At the beginning of this document, we can find the table of contents and the table of

figures, and at the end of this we can find a list of the references used. It contains six main

chapters, the first of which corresponds precisely to this chapter, the introduction. The

second chapter presents the necessary preliminaries to be able to understand the rest of

the chapters correctly and completely, as well as containing several references to learn

more about the topics covered. If the reader is familiar with unification, narrowing, and

the Maude programming language, this chapter will be especially straightforward.

The third chapter details the procedure followed to implement the algorithm that gen-

erates the reachability tree from a term and a rewrite system, including parts of the code

and comments on it to facilitate understanding. The fourth chapter contains the explana-

tion about the development of the algorithm that, based on the one already defined in

chapter three, uses the achievable tree that is being generated to solve narrowing prob-

lems, for which an objective term is needed. The fifth chapter presents canonical

11

narrowing and its advantages over standard narrowing, as well as its encoding in an algo-

rithm based on that seen in chapter four. Finally, in the sixth chapter, a series of conclu-

sions that we reached because of this work are told, as well as future works that are pre-

sented from this.

Each of the main chapters also includes several sections to make it easier to find con-

tent and read. At the beginning of each chapter a short introduction is included in which

the chapter itself is presented in a summarized form, including the structure of its sections.

Narrowing and Unification in the Maude Programming Language

12

13

2. Preliminaries
In this chapter we introduce the basic knowledge necessary to understand this master

thesis. To put it as clearly and correctly as possible, and to obtain some interesting exam-

ples, the official Maude manual [4] has been used as documentation, as well as several

articles in which people belonging to the development team of this system participate as

authors or co-authors [5][6]. It is recommended to read these documents if you want to

extend your knowledge of what is exposed below. In Section 2.1, we present Maude 3.1.

In Section 2.2, we briefly describe rewrite theories. In Section 2.3, we explain the use of

types and subtypes in Maude. In Section 2.4, we introduce the use of variables and oper-

ators in this same language. After that, we talk about the modules in Maude, specifically,

the functional modules in Section 2.5, and the system modules in Section 2.6. In Section

2.7, we present the concept of unification, to later talk about order-sorted unification

modulo axioms in Section 2.8 and about variant unification in Section 2.9. In Section 2.10

we introduce the concept of narrowing and its use in Maude. Finally, in Section 2.11, we

present reflection in Maude, that is, the meta-programming capabilities.

2.1. Introduction to Maude

Maude is a system and a programming language based on rewriting logic, which allows

defining a wide range of complex computational models, such as concurrent program-

ming or object-oriented programming. It is a declarative language, in contrast to impera-

tive languages like C or Java.

Maude programs are rewrite theories, defined by what we call modules, and the cal-

culation with those modules are efficient deductions performed by rewriting. Therefore,

considering their logical and formal basis, it can be said that modules in Maude can spec-

ify mathematical models with a very high precision.

Being extremely efficient and presenting great potential to be used in diverse areas,

Maude is currently used in organizations around the world for teaching, research, formal

modelling, and analysis of concurrent and distributed systems [10][11].

2.2. Rewrite theories

Considering an equational theory (∑, E), where ∑ is a set of function symbols and E is a

set of equations, and a set of rewrite rules R specifying the local concurrent transitions

that a system can perform, a rewrite theory is defined as the triple R = (∑, E, R). As

previously stated, programs in Maude are rewriting theories, and each of them is a system

module, which is defined with the following syntax: mod (∑, E, R) endm. Further-

more, if no rewrite rule is defined, that is, R = Ø, then the module will become a functional

module, giving rise to the Maude's functional sublanguage. A functional module can be

defined in Maude by using the following syntax: fmod (∑, E, R) endfm.

Narrowing and Unification in the Maude Programming Language

14

2.3. Sorts and subsorts

Data types in Maude are called sorts. The Maude system itself contains predefined sorts,

which can be found in the prelude file, located inside the Maude installation folder. Some

examples are Bool, Nat or Int, which are sorts that define booleans, naturals, and integers,

respectively. Predefined sorts can be imported using three different reserved words: in-

cluding, protecting, or extending. Each one has its specific function, but the safest and

simplest to use is protecting. The Bool module is always imported automatically into any

other new module, unless otherwise specified. Type declarations in Maude have the form

“sort T .”, or “sorts T1 ... Tn .” in case we want to define several types at the same time.

Maude also allows to define subtypes of data, called subsorts, used to create data types

ordered or divided into hierarchies. As with sorts, there are subsorts already defined in

the prelude file, for example, between natural numbers and integers. Subtype declarations

in Maude have the form “subsort T1 < T2 .”, where T2 is the type of higher order in the

hierarchy, that is, T1 is included in T2. Several related subsorts can also be defined at the

same time: “subsort T1 < ... < Tn .”.

sorts Nat Int Float Char String .

subsort Nat < Int < Float .

subsort Char < String .

Figure 1: Example of types and subtypes definitions in Maude.

Figure 1 shows an example in which the types natural, integer and real (related to

numbers) are defined, in addition to the types character and string of characters. Likewise,

the existing hierarchy between them is defined with subsorts.

2.4. Variables and operators

Once the types and subtypes have been defined, the constructor symbols that will create

the data associated with these types must also be defined, using operators. The definition

of operators in Maude has the form “op C : T1 ... Tn -> T .”, although the creation of

several symbols of the same type at the same time is also supported: op C1 ... Cn : T1

... Tn -> T . For example, to define the type “Bool” and two constants “true” and

“false” of that type, in addition to the type that represents lists of natural numbers and an

operator that allows a natural number to be concatenated with an existing list, we can use

the code in Figure 2.

sort Bool .

ops true false : -> Bool .

sort NatList .

op nil : -> NatList .

op _:_ : Nat NatList -> NatList .

Figure 2: Example of type definition and the use of constructor symbols in Maude.

Furthermore, in Maude it is mandatory to define the variables to be used later, using

the reserved words “var” (to declare a single variable) or “vars” (to declare two or more

15

variables of the same type at the same time). Figure 3 shows how two variables of type

natural number could be declared, in addition to a list of naturals variable, and a set of

naturals variable. Obviously, the types must be previously defined.

vars N M : Nat .

var NL : NatList .

var NS : NatSet .

Figure 3: Example of variables definition in Maude.

It is also allowed, instead of declaring variables before using them, to specify their

type directly when using them, such as “X:Nat + Y:Nat”, to perform the addition of two

variables whose type is natural number. In any case, the type of the variables must be

specified, either before use or on the fly.

2.5. Functional modules

As can be seen in the very definition of what a rewrite theory is, membership equational

logic is a functional sublogic of rewriting logic. The difference between both logics is

that rewriting logic is characterized by its non-determinism, while functional logic is de-

terministic. For this reason, an equational program is a functional program in which a

functional expression, which we can refer to as a term, will be evaluated, using the equa-

tions defined in the program as rewriting rules, which must be confluent. This evaluation

could be infinite, but if it terminates, it ensures that it will return a unique value modulo

some structural axioms, which is commonly called the normal form of the initial term,

simplifying it by means of the defined equations.

In Maude, functional modules, which specify functional programs, are conditional

membership equational theories. These theories have the form (∑, M ∪ E ∪ B), where:

• ∑ is a signature composed by sorts and subsorts.

• M is a set of memberships, which provide greater precision when evaluating

the type of a term, since it allows lowering it if the membership condition is

met.

• E is a set of equations, which will be used, as mentioned, as left-to-right rules

to evaluate the terms. These equations may be conditional.

• B is a set of equational axioms (e.g., commutativity, associativity, identity).

Since rewriting with the equations E is performed modulo B, these axioms are

considered structural axioms.

Let FOO be an arbitrary name for a module, then to define a functional module with

that name in Maude, defined by a theory (∑, M ∪ E ∪ B), previously seen keywords are

used: fmod (∑, M ∪ E ∪ B) endfm. In Figure 4, we can see a concrete example

of a functional module in Maude, which, in this case, defines the function that allows us

to calculate the factorial of a number. Notice that the equations specifying how to reduce

a term to normal form are defined using the reserved word “eq”.

Narrowing and Unification in the Maude Programming Language

16

fmod FACT is

 protecting NAT .

 op _! : Nat -> Nat .

 var N : Nat .

 eq 0 ! = 1 .

 eq N ! = (sd(N,1))! * N [owise] .

endfm

Figure 4: Maude module that calculates the factorial of a number.

Maude also allows the use of conditional equations, so that the equations can be ap-

plied to reduce the terms only if the corresponding condition specified in each of them is

met. For example, the equation “eq 0 ! = 1 .” seen in Figure 4 could be written as a con-

ditional equation of the form “ceq N! = 1 if N == 0 .”, so the equation will only be used

to reduce the “N!” term to 1 if “N” has the value 0. As mentioned above, the “Bool”

module is automatically imported if not specified otherwise, so it will be used to solve

the conditions in the conditional equations. Thanks to the importation of this module, the

use of the “if_then_else_fi” operator is also allowed. Therefore, conditions could also be

defined in the equations as follows: eq N! = if N == 0 then 1 else (sd (N,

1))! * N fi .

2.6. System modules

When we add rewriting rules to a module in Maude, it is no longer a functional module,

and it becomes what is called a system module, which allows us to model concurrent

systems as conditional rewrite theories, which have the following form: (∑, M ∪ E ∪ B,

R, Φ), where (∑, M ∪ E ∪ B) is the same as seen before in functional modules, R is a set

of rewrite rules specifying the system transitions behaviour, thus making it a concurrent

system, and Φ is a frozenness map, that may or may not add rewriting restrictions when

applying the rules. Note that the functional part of Maude specifies a static system, while

rewriting rules add dynamism to the system.

Figure 5: State diagram that models a simple rewrite system.

Let FOO be an arbitrary name for a module, then to define a system module with that

name in Maude, defined by a theory (∑, M ∪ E ∪ B, R, Φ), previously seen keywords are

used: mod (∑, M ∪ E ∪ B) endm. In Figure 6, we can see an example of a basic

concurrent system defined using rules in Maude. Specifically, the behaviour defined in

the state diagram of the Figure 5 is encoded.

17

mod SIMPLE-REWRITE-SYSTEM is

 sort Node .

 ops a b c d e f : -> Node .

 op <_> : Node -> Node .

 rl < a > => e .

 rl < a > => < c > .

 rl < b > => < d > .

 rl < b > => < c > .

 rl < c > => f .

 rl < d > => < a > .

endm

Figure 6: Basic example of a system module in Maude.

As with equations, the use of conditional rules is also allowed in system modules, that

is, the definition of conditional transitions in the system is allowed. For example, let N1

and N2 be two natural numbers, then the conditional rule that rewrites the term add (N1,

N2) to the result of the addition of the two variables only if N1 is greater than N2, is the

following: crl add(N1, N2) => N1 + N2 if N1 > N2 .

2.7. Unification

Unification is an algorithmic process of solving equations. It can take place in free alge-

bras, taking the name of syntactic unification, or in relatively free algebras modulo a set

of equations E, taking the name of E-unification (or semantic unification if E is not ex-

plicitly mentioned).

Each solution to a syntactic unification problem is a substitution, which when used to

instantiate the variables that appear in the terms of the unification problem, will cause the

terms to become equal. For example, a solution to f(a, X) = f(Y, b) would be the substitu-

tion σ = {X ↦ b, Y ↦ a}, since when applied to the two terms, the equation will become

of the form f(a, b) = f(a, b), that is, both terms are equal now, which is exactly what is

intended.

It is also interesting to clarify the concept of E-unifier for an equation t = t', which is

a substitution σ such that tσ =𝐸 t'σ, that is, a substitution that equates the terms modulo

E.

Maude supports unification algorithms that, as we will see in the next section, are ca-

pable of taking into account the axioms of associativity, commutativity, identity and their

combinations, that we will refer to as B.

2.8. Order-sorted unification modulo axioms B

For any order-sorted theory (∑, B), where B is any of the axioms (or their combinations)

mentioned above, Maude provides an order-sorted B-unification algorithm, which can be

invoked using the command that has the following form:

unify [n] in <ModId> :

<Term-1> =? <Term'-1> /\ ... /\ <Term-k> =? <Term'-k> .

Narrowing and Unification in the Maude Programming Language

18

where n is a non-mandatory argument indicating the maximum number of requested uni-

fiers, k is a natural number greater or equal to 1, and ModId is the name of the module

where the command will be applied.

fmod UNIFICATION-A is

 protecting NAT .

 sort NList .

 subsort Nat < NList .

 op _._ : NList NList -> NList [assoc] .

 vars X Y Z P Q : NList .

endfm

Figure 7: Maude Module that defines the concatenation of lists with associativity.

To see a practical example, consider the module defined in Figure 7. Associative uni-

fication is infinitary, that is, usually there is no finite set of unifiers for a unification prob-

lem with associativity, but there are some concrete realistic problems that are finitary.

Maude manages to return five unifiers by asking it to solve the following unification

problem: X.Y.Z =? P.Q, that is, by asking if there is a substitution for the variables used

such that by concatenating the lists X, Y and Z, and the lists P and Q, an equal list is

obtained in both cases. In Figure 8, we can see the command used for this, and the output

(solution) returned by Maude, that is, the unifiers.

Figure 8: Unifiers returned by Maude as a solution to the unification problem seen above.

In this output we can see the way in which Maude generates and identifies fresh vari-

ables (by using the notation “#N:Sort”), since the solutions it returns in this case are made

up of variables of the natural list type, which will be assigned to the input variables. In

most bindings only one fresh variable is assigned to each input variable, being a simple

19

renaming, but in others we can see how Maude assigns to one of the input variables the

concatenation of two fresh variables (concatenation of two lists). By returning solutions

composed only of variables, Maude is including many other implicit solutions, which will

be obtained by instantiating those new variables.

Figure 9: Output returned by Maude in response to an impossible unification problem.

In some specific cases, Maude will not be able to find unifiers in a finite time, nor will

it be able to determine that there are no unifiers for the problem, but in many others, it is

able to quickly detect that there is no unifier. We can see an example of this using the

same module defined for the previous example, but this time we will ask Maude to find

unifiers for X.X =? Y.1.Y. In the left part, we are concatenating a list with itself, and in

the right part, we are concatenating a list with itself but adding a number between them

(In this case, the number one). It is impossible to unify in this case, and Maude is able to

quickly detect it, as can be seen in Figure 9.

There is also a variant of the command which after generating all the unifiers, is able

to filter them to return only the MGU (Most general unifiers modulo axioms) set: the

irredundant unify command.

2.9. Variant unification

Let t, u be terms and σ be a substitution. If t is in a convergent order-sorted equational

theory (∑, E ∪ B), where E are unconditional equations, then when applying σ to the term

t, usually noted as tσ, we get u, a variant of t, which is a normal form of t computed by

simplification with E modulo B. It may be useful to represent the variants as pairs of the

form (u, σ) [3]. As in many cases a term can be reduced to several normal forms, it can

have several variants, and some may be more general than others, because they will in-

clude some or all the others. Specifically, a variant (u, σ1) is considered more general than

another (v, σ2) if and only if there is a substitution γ such that uγ =𝐵 v, and for each vari-

able z in t, z σ1 γ =𝐵 z σ2.

To better understand the above, let us see an example: consider the unsorted signature

∑ = {0, s, ·, +} of multiplication in the Peano natural numbers, with B = ∅ and E = {X ·

0 = 0, X · s(Y) = X + (X · Y)}. If we consider the substitution σ1 = {Y ↦ 0}, the normal

form of the term X · Y will be 0, but if we consider the substitution σ2 = {Y ↦ s(Y')}, the

normal form for the same term will be X + (X · Y), so that the pairs (X + (X · Y), σ1) and

(0, σ2) are variants of the term X · Y.

Narrowing and Unification in the Maude Programming Language

20

fmod EXCLUSIVE-OR is

 sorts Nat NatSet . subsort Nat < NatSet .

 op 0 : -> Nat [ctor] .

 op s : Nat -> Nat [ctor] .

 op mt : -> NatSet [ctor] .

 op _*_ : NatSet NatSet -> NatSet [assoc comm] .

 vars X Y Z U V : [NatSet] .

 eq [idem] : X * X = mt [variant] .

 eq [idem-Coh] : X * X * Z = Z [variant] .

 eq [id] : X * mt = X [variant] .

endfm

Figure 10: EXCLUSIVE-OR module in Maude.

The finite variant property (FVP) occurs in a theory (∑, E ∪ B), which is order-sorted,

if and only if each term t ∈ ∑ has a finite set of most general variants. The EXCLUSIVE-

OR module defined in Figure 10 fulfills this property, and to check it, Maude is useful,

since it allows us to invoke a variant generator command that has the form:

get variants [n] in <ModId> : <Term> .

where n is a non-mandatory argument indicating the maximum number of requested var-

iants (only used if the total of computed variants is greater than that number), and ModId

is the name of the module where the command will be applied. When generating the

variants with Maude for the exclusive-or symbol (represented by *), we can verify that,

indeed, they meet the necessary conditions mentioned. We can see the command output

in Figure 11, where we can also appreciate another identifier that Maude uses for fresh

variables, some of them now being of the form “#N:Sort”, and others of the form

“%N:Sort”. The first form is used for those fresh variables generated when performing

the unification modulo axioms, and the second for the fresh variables generated in the

substitutions returned by variant generation. Of course, each of the forms has its own

counter.

Figure 11: Variants of the exclusive-or symbol in Maude.

Once we check that the variants generated for the exclusive-or symbol meet the nec-

essary conditions, we can also see that, since the rest of the symbols f (excluding the

exclusive-or symbol) have the unique trivial variant (f (x1, ... xn), id), where id is the

21

identity substitution, it can be easily proved that the module is FVP. This property is ex-

tremely useful for performing derived proofs on modules that meet it.

2.10. Narrowing

When we work with a rewrite theory (∑, E ∪ B, R, Φ), on many occasions, such as

when we specify a security protocol, we will be interested in the problem of symbolic

reachability, that is, given two terms t and t', we want to know if ∃X t ↝* t', where X is

the set of variables appearing in both terms, which, in this case, is the result from a disjoint

union of the variables that appear in t and of those that appear in t'.

We are therefore asking if there is any state (t and t' represent sets of state instances)

from which we can reach t' in a finite number of rewriting steps, and to answer this ques-

tion, it is necessary to search for a symbolic solution, trying to do it in a complete way,

so that if such a solution exists, we are able to find it. To do this, we can perform narrow-

ing in t, using the rewrite rules R that have been defined in a system module (as seen

above), module equations E ∪ B. If using these rules modulo equations we obtain a finite

sequence of narrowing of the form t ↝𝑅,𝐸∪𝐵
∗ u, by using the composition of unifiers that

are computed to instantiate t in each step of the sequence, in addition to unifiers for the

equations, which will be used to get u = t '.

Figure 12: Example of a search graph in a vending machine module [4].

The usefulness of this is very wide. For example, if we take t as a set of initial terms

describing states of a concurrent system, and t' as a possible set of terms that represent a

state that violates certain invariants, using reachability in narrowing we would be doing

logical model checking. It can also be used to, once certain security protocols have been

specified as terms, to find out if they have any state of vulnerability at a theoretical level,

and then to ask if these vulnerabilities could be exploited in practice.

The search command in Maude is slightly related to narrowing, since it tells us if in

the space of possible program executions there is an execution that satisfies certain con-

ditions, that is, it explores the reachable state space in different ways. This command has

the form:

search [n, m] in <ModId> : <Term-1> <SearchArrow> <Term-2>

such that <Condition> .

Narrowing and Unification in the Maude Programming Language

22

where n and m are optional arguments indicating the maximum solutions or depth desired,

ModId is the module where the command is applied, Term-1 and Term-2 are the starting

and target (to be reached) terms, Condition is an optional argument to specify a property

that must be satisfied by the reached state, and SearchArrow is an arrow argument indi-

cating the form of the rewriting proof, which can take the values:

• =>1, indicating exactly one step.

• =>+, indicating one or more steps.

• =>*, indicating any number of steps.

• =>!, indicating that only final steps will be considered solutions.

In Figure 12, we can see an example of the graphical representation (as a graph) of a

possible output when executing the search command on a module that specifies a vending

machine, similar to the one we can see in Figure 13.

mod NARROWING-VENDING-MACHINE is

 sorts Coin Item Marking Money State .

 subsort Coin < Money .

 op empty : -> Money .

 op __ : Money Money -> Money [assoc comm id: empty] .

 subsort Money Item < Marking .

 op __ : Marking Marking -> Marking [assoc comm id: empty] .

 op <_> : Marking -> State .

 ops $ q : -> Coin .

 ops a c : -> Item .

 var M : Marking .

 rl [buy-c] : < M $ > => < M c > [narrowing] .

 rl [buy-a] : < M $ > => < M a q > [narrowing] .

 eq [change] : q q q q M = $ M [variant] .

endm

Figure 13: NARROWING-VENDING-MACHINE module, from the Maude's official examples.

The vu-narrow command has a form very similar to the search command, but in this

case, we will be directly invoking the command that allows us to solve narrowing prob-

lems in Maude. It uses the variant-based unification at each step, and that is why the prefix

of the command is vu (variant-based unification). The command is invoked as follows:

vu-narrow [n, m] in <ModId> :

<Term-1> <SearchArrow> <Term-2> .

where all the arguments have a meaning similar to that of the search command. Note that

the term to be reached Term-2 may share variables with the initial term Term-1 (terms in

the narrowing sequence will be unified with this target pattern, in contrast to the search

command).

23

Figure 14: Example of using the vu-narrow command.

In Figure 14 we can see one of its possible invocations on the module defined in Figure

13, and the result obtained. Specifically, we have asked Maude for 3 solutions in which

it is possible to arrive from a Money variable M to a state in which we have 3 dollars ($ $

$), an apple (a) and a cake (t).

It is important, due to the nature of this work, to point out that there are other types of

narrowing as alternatives to the one we have seen in this section, which we can refer to

as the standard narrowing module an equational theory (∑, E ∪ B), such as canonical

narrowing module an equational theory (∑, E ∪ B), which is based on the calculation of

irreducibility constraints that must be met in each step of the narrowing sequence. By

using it, we will be able to discard some sequences that are not necessary, as we will see

in more detail in Chapter 5.

2.11. Maude reflection

Maude makes the meta-theory of rewriting logic accessible to the user (rewrite logic is

reflective), since it is something that is used a lot in the design and implementation of this

language.

The reflection of the rewrite logic allows to have a finite rewrite theory U which we

can use to represent any other finite rewrite theory R (including U itself) as a term R', as

well as any terms t1, t2 in R as new terms t'1, t'2 and any pair (R, t) as a term <R, t'>, and

the following equivalency appears: R ⊢ t1 ⟶∗ t2 ⇔ U ⊢ <R', t'1> ⟶∗ <R', t'2>, that is t1

rewrites into t2 using the rewrite theory R if and only if the pair <R', t'1> rewrites into <R',

t'2> using the rewrite theory U. Since U can also represent itself, there can be as many

levels of reflection as we want, generating a reflective tower.

 Maude contains an implemented META-LEVEL module that gives access to the U

theory mentioned above, as well as META-INTERPRETER module which can even han-

dle computational interactions with the external world. This allows the use of metapro-

gramming, and there is a part of Maude full of extensions that have been defined in Maude

himself, using reflection, called Full Maude. Furthermore, the existing metaprogramming

Narrowing and Unification in the Maude Programming Language

24

commands in Maude can be used to do, for example, modifications to algorithms already

implemented in the language, achieving improvements, or even adding new functionali-

ties of interest.

Reflection on Maude plays a very important role in this Master Thesis, since it has

been used to implement all the modules discussed later. When we get to them, we will

see reflective commands in a more detailed way, as we use various commands defined in

Maude's META-LEVEL module to implement the new commands that we will discuss

later, as well as types and subtypes also defined in that module. For example, some com-

mands have been used such as getType, which has several versions, but in our version the

one that receives a variable as an argument and returns its type in Maude has been used.

Commands such as string and qid have also been used to construct variables, using num-

bers and identifiers.

op metaNarrowingApply :

 Module Term TermList Qid Nat -> NarrowingApplyResult?

 [special ...] .

sorts NarrowingApplyResult NarrowingApplyResult? .

subsort NarrowingApplyResult < NarrowingApplyResult? .

op {_,_,_,_,_,_,_} : Term Type Context Qid Substitution Substitution Qid

 -> NarrowingApplyResult

 [ctor format (d n++i d d d ni d ni d d d d d ni n--i d)] .

op failure : -> NarrowingApplyResult? [ctor] .

op failureIncomplete : -> NarrowingApplyResult? [ctor] .

Figure 15: Definition of the metaNarrowingApply command and its related types in Maude's META-LEVEL module.

There are some commands of Maude's meta-level that we consider necessary to high-

light, since they have been of vital importance to achieve the objectives proposed in this

master thesis. All of them have their base defined in the C++ language, so when defining

them in the META-LEVEL module, special operators are used that refer to that code. One

of them is the metaNarrowingApply command, whose definition is shown in Figure 15,

and which is used to invoke a narrowing step. To do this, it needs to receive as arguments

the module that defines equations and rules with which to rewrite, a term from which to

rewrite, a list of irreducibility terms (which we will detail later), a Qid to indicate which

identifier should not be used when generating fresh variables, and a natural number that

indicates the narrowing step to take, since there can be more than one from the same term.

In the same figure, the data type returned by the command is also defined, Narrow-

ingApplyResult?, and its subtype NarrowingApplyResult. It is a data structure that returns

the information of the result when performing the narrowing step, such as the new term

obtained or the substitutions that have been used to reach it. The constants failure and

failureIncomplete are returned if the narrowing step was not possible.

Likewise, there is a metaNarrowingSearch command, which receives similar argu-

ments, but includes a target term, since it is used to perform the entire narrowing algo-

rithm, instead of just one step. We will use it to perform the comparisons with our nar-

rowing commands.

25

op metaVariantUnify :

 Module UnificationProblem TermList Nat Nat ~> UnificationPair?

 [special (...)] .

sorts UnificandPair UnificationProblem .

subsort UnificandPair < UnificationProblem .

op _=?_ : Term Term -> UnificandPair [ctor prec 71] .

op _/_ : UnificationProblem UnificationProblem -> UnificationProblem

 [ctor assoc comm prec 73] .

subsort UnificationPair < UnificationPair? .

op {_,_} : Substitution Nat -> UnificationPair [ctor] .

Figure 16: Definition of the metaVariantUnify command and its related types in Maude's META-LEVEL module.

Another relevant command is metaVariantUnify, whose definition in Maude is shown

in Figure 16. It is used to solve variant unification problems, and receives as arguments a

module to work on, the unification problem, a list of irreducibility terms, a Natural num-

ber from which to number the identifiers of the generated fresh variables, and another

natural number used to ask for the unifiers found (if any), since there may be more than

one. This command is used when implementing narrowing, since it is necessary to try to

unify the terms that are generated with the target term to find the solutions. Later we will

see that the list of irreducible terms is very important to implement canonical narrowing

modulo an equational theory (∑, E ∪ B), explained in Chapter 5.

Narrowing and Unification in the Maude Programming Language

26

27

3. Generation of the reachability tree

In this chapter we describe a possible implementation to generate the reachability tree

using the Maude language, taking advantage of its reflective properties, that is, using

some of the commands defined at the meta-level. In Section 3.1, we present the imple-

mentation process approach used to get through to final implementation. In Section 3.2,

we present the types, subtypes, and operators that are initially used to generate the reach-

ability tree. In Section 3.3, we analyse the equations necessary to generate the reachability

tree. In Section 3.4, we detail the module used to rename the fresh variables generated by

Maude. Finally, in Section 3.5, we show some examples of executing the command im-

plemented to generate the reachability tree from a term.

3.1. Implementation methodology

Generating a reachability tree at the theoretical level is relatively simple, but when it

comes to implementing it, several complications arise. We will deal with many of them

in the subsequent sections.

The first thing we need to implement the generation of reachability trees in any lan-

guage (Maude in this case) is to be clear about the necessary steps to achieve the complete

algorithm, since several incremental iterations are necessary. The main phases of the im-

plementation that we must go through are:

1. Define the types, subtypes and data structures that will be necessary throughout

the process of generating the reachability tree.

2. Generate the reachability tree from an initial term, using a received module to

generate the variants, and considering a parameter that indicates the maximum

desired depth.

3. Rename the fresh variables generated by Maude, because if we use the original

ones, then clashes between them will arise.

In the following sections, we detail each of the steps, as well as the code that has been

generated in each of them, seeing how it has been transformed and grown, along with the

necessary justifications. We also show some examples of executing the command using

several different parameters to generate the reachability tree from an initial term.

3.2. Types, subtypes, and data structures

In this section we show the types, subtypes and data structures initially used to generate

the reachability tree in the GET-REACHABILITY-TREE module. The code snipped that

we detail in this section can be seen in Figure 17.

We want to generate a reachability tree from an initial term, which we can consider as

node 0 of the tree. We need to create a data structure that is able to represent that tree in

Maude. The strategy chosen for this consists of using a list to which the nodes of the tree

that are being generated are added. As later we will need to be clear about the position of

each node in the tree to compute the final solution (which includes the substitutions made

in each branch of the tree), each of the nodes must contain a reference to its parent node,

Narrowing and Unification in the Maude Programming Language

28

so it is necessary to identify each of them in a unique way (for example, with a natural

number that is self-increasing). This reference of each node to its parent node will not be

useful only when computing the composition of the substitutions at the end, but it is also

useful to always have control of the parameters passing from parents to children when

performing the recursive calls used by the reachability tree generation.

sorts NarrowingApplyResultList NarrowingApplyResultStructure State .

subsort NarrowingApplyResultStructure < NarrowingApplyResultList < State .

op getReachabilityTree : Module Term TermList Qid Bound -> State .

op nil : -> NarrowingApplyResultList [ctor] .

op _;_ : NarrowingApplyResultList NarrowingApplyResultList

 -> NarrowingApplyResultList [assoc id: nil] .

op {_,_,_,_,_,_} : Nat NarrowingApplyResult Nat Nat Qid Nat

 -> NarrowingApplyResultStructure .

op (_,_,_,_,_,_,_) : Module Term Nat NarrowingApplyResultList

 NarrowingApplyResultList Bound Nat -> State .

Figure 17: Sorts, subsorts and operators in the GET-REACHABILITY-TREE module.

To generate each node in the tree, we call the metaNarrowingApply function from the

META-LEVEL module. The nodes of our generated tree must therefore contain the out-

puts returned by that function (detailed in the Maude manual [4]). To do this, a type called

NarrowingApplyResultStructure is defined, which represents each node and contains:

• A natural number that identifies the node. It is different from the identifiers of the

other nodes.

• A NarrowingApplyResult, which corresponds to the output returned by the

metaNarrowingApply command and contains the information of the term of that

node and the substitutions made to obtain it.

• A natural number that identifies the sub-branch in which the node is located. To

determine this, starting from a parent node, the child nodes are numbered from

left to right, with the first child node generated on the left and the last one on the

right.

• A natural number that refers to the identifier of the parent node. This number will

be 0 if the node is obtained from the initial term.

• A Qid that indicates the identifier that has been used to name the generated fresh

variables.

• A natural number that indicates the depth of the node within the tree.

This structure is created by using the defined operator “{_,_,_,_,_,_}”, so that it takes a

form similar to an object defined in JSON format.

A nil operator that symbolizes the empty node list and an operator “_;_” used to con-

catenate lists of nodes, so that they can grow, have been defined. Nodes are defined as

29

subtypes of NarrowingApplyResultList, that is, of the lists that contain them. Thereby,

nodes can be used as if they were lists of nodes, allowing the same operator to concatenate

them and generate a larger list. Note that the concatenation of lists has been defined as

associative, to facilitate subsequent operations.

A State type has been defined to save all the necessary data to generate the tree. Once

the tree is generated, the irrelevant data is eliminated and only the list of tree nodes is

kept. To make this easier, NarrowingApplyResultList is defined as a subtype of State.

There are two operators whose result is of type State. One of them is getReachabil-

ityTree, which corresponds to the definition of the command that will be used to execute

the generation of the tree, that is, the command that should normally be used as a user.

This operator receives as parameters:

• The module where the command will take place.

• The term from which the tree is generated.

• A list of terms, which is not relevant now, and will be explained later.

• A Qid that indicates the symbol used in the initial term to identify the variables,

so that Maude avoids using it to identify the fresh variables.

• A Bound, which is a predefined type that can be a natural number or unbounded.

It is used to define the desired depth limit to generate the tree.

The second operator whose result is of type State is “(_,_,_,_,_,_,_)”. It receives sev-

eral parameters, since it is the main structure that the defined module will use throughout

the tree generation process. These parameters are:

• The module that contains the rules, variants and axioms that will be used to gen-

erate the reachability tree.

• The initial term from which the tree will be generated.

• A natural number that works as a node counter. That is, it increases each time a

node is generated, and it will be used to create the identifier of the next node.

• A NarrowingApplyResultList that will contain the nodes already processed, that

is, the nodes whose children or next nodes have been generated.

• A NarrowingApplyResultList that will contain the nodes that must be processed,

that is, the nodes from which the following children and nodes must still be gen-

erated.

• A Bound, which is a predefined type that can be a natural number or unbounded.

It is used to define the desired depth limit to generate the tree.

• A natural number that works as a variable counter. That is, it increases each time

a fresh variable is renamed. We detail this parameter later when we describe var-

iable renaming in this module.

It is important to note that both the operators “{_,_,_,_,_,_}” and “(_,_,_,_,_,_,_)”

work as auxiliary operators for internal computing, behaving in a different way than what

we are used to with operators that are more similar to functions.

Narrowing and Unification in the Maude Programming Language

30

3.3. Tree unfolding

Once we have defined the types, subtypes, and data structures, together with the opera-

tors, we can proceed to specify the behavior using equations, in order to unfold the reach-

ability tree. For this, it is necessary to use variables, which must be previously declared.

In Figure 18 we show the variable declarations used later in equations.

var M : Module . vars T1 T2 T3 T4 : Term . var TList : TermList .

vars Q1 Q2 Q3 Q4 Q5 Q6 : Qid . vars N1 N2 N3 N4 N5 N6 N7 N8 N9 : Nat .

vars Ty1 Ty2 : Type . vars C1 C2 : Context . vars S1 S2 S3 S4 : Substitution .

vars MaxDepth : Bound . vars NARS1 NARS2 NARS3 : NarrowingApplyResultList .

Figure 18: Variables declared in the GET-REACHABILITY-TREE module.

As discussed above, the user is expected to use the getReachabilityTree command to

call the algorithm that generates the reachability tree. Initially, two options should be

considered, which in this case are that the parameter that specifies the maximum depth to

be generated from the tree is 0, or that it is another of the allowed values. In the first case,

the reachability tree cannot be generated, so the empty list must be returned. In the second

case, it can be generated, so the initial data structures necessary for this must be prepared.

Specifically, a State type structure will be created using the operator seen above. The

module, the initial term, the Qid and the maximum depth will be obtained from the pa-

rameters specified by the user. The list of nodes processed will be initially empty, and the

list of nodes to process will contain a call to the metaNarrowingApply command that

generates the first node in the tree. The parameters for this call will also be obtained from

those indicated by the user, except for the solution number, which will be 0 (since we

want the first solution, which is indexed by that number in this command) and the list of

terms, which will be empty. The identifier of the node that is generated will be 1, its parent

node 0, its sub-branch 0, and its depth 1. We also set the variable counter to 1, the number

from which the renaming will begin later. Figure 19 shows the two equations used for all

this.

eq getReachabilityTree(M, T1, TList, Q1, 0) = nil .

eq getReachabilityTree (M, T1, TList, Q1, MaxDepth) =

 (M, T1, 2, nil, {1, metaNarrowingApply(M, T1, empty, Q1, 0),

 0, 0, Q1, 1}, MaxDepth, 1) [owise] .

Figure 19: Equations that define the initial behavior of the getReachabilityTree command in the GET-

REACHABILITY-TREE module.

Assuming that we have generated the first child node of the initial node 0 (later we

will detail what happens when a node is not generated), two other possibilities are now

proposed, which depend on the value of the depth limit, which can be:

• A natural number, specifying the maximum level of the tree whose nodes will

be generated. For example, if the user has indicated the value 4 for the param-

eter, 4 levels of nodes will be generated, ignoring the node corresponding to

the initial term, which we consider level 0.

31

• The constant value unbounded, predefined in the META-LEVEL module,

which indicates that the user does not want to specify a maximum depth for the

reachability tree, but rather wants to generate it completely. This value for the

parameter has the risk that it could generate an infinite computation in case the

reachability tree for the given term is also infinite.

eq (M, T1, N1, NARS1, {N2, {T2, Ty1, C1, Q1, S1, S2, Q2}, N3, 0, Q3, 1} ; NARS2,

 MaxDepth, N9) =

 (M, T1, N1 + 2, NARS1 ;

 {

 N2,

 {

 applySub(T2, rename((getVars(T2), getRangeVars(S1),

 getRangeVars(S2)), N9)),

 Ty1, C1, Q1,

 applySub(S1, rename((getVars(T2), getRangeVars(S1),

 getRangeVars(S2)), N9)),

 applySub(S2, rename((getVars(T2), getRangeVars(S1),

 getRangeVars(S2)), N9)),

 '$

 },

 N3, 0, Q3, 1

 },

 {

 N1,

 metaNarrowingApply(M, T1, empty, Q3,N3 + 1),

 N3 + 1, 0, Q3, 1

 } ; NARS2 ;

 {

 N1 + 1,

 metaNarrowingApply(M, applySub(T2, rename((getVars(T2),

 getRangeVars(S1), getRangeVars(S2)), N9)),

 empty, Q2, 0),

 0, N2, Q2, 2

 },

 MaxDepth,

 N9 + getVarsNumber((getVars(T2), getRangeVars(S1), getRangeVars(S2))) .

Figure 20: Equation that defines the generation of the first level of the reachability tree in the GET-REACHABILITY-

TREE module.

In both cases, the behavior to generate the nodes of the first level of the reachability

tree is defined by the same equation, since if the maximum depth parameter does not take

the value 0, the first level will always be generated. Figure 20 shows the equation we use

for this. Note that there are some calls to variable renaming functions, but we will explain

that later.

We want the tree to be generated by levels, so for each node at this level, the next node

in the same level must be generated. Furthermore, the generation of the first child node

Narrowing and Unification in the Maude Programming Language

32

of the next level will be triggered but delayed for later, so that the nodes of that level will

not be generated until all the nodes in the current level are generated. If we take a look at

Figure 21, where an example tree is represented with the nodes labeled with letters from

A to S, the order to generate the nodes that adapts to what we want is to follow the alpha-

betical order. To achieve this, we must pay special attention to the exact place where to

put each of the calls to metaNarrowingApply in the list of nodes to be processed.

Figure 21: An example tree with 19 nodes labeled with letters.

At the code level, when in the main structure, of type State, a node in which it is indi-

cated that the depth level is 1 and its parent node is 0 is at the beginning of the list of

nodes to be processed, we move the node at the end of the list of nodes processed. At the

same time, two calls to metaNarrowingApply are made:

• The first call occurs at the beginning of the list of nodes to be processed and is

made to generate the next node that is at the same level that currently processed

node, that is, in the next sub-branch of the current level. The arguments for the

call will be the same as those used for the current node, only that we will set the

list of terms to empty and add 1 to the requested solution (and therefore, to the

parameter that indicates the sub-branch). The node depth will also be 1, and the

parent node will be 0.

• The second call occurs at the end of the list of nodes to be processed and is made

to generate the first child node of the node that is currently processed, and which

will act as a trigger to generate the rest of the node's child nodes. In this case, the

arguments for the call are the same module, the variables of the current node re-

named (discussed later), an empty list of terms, the identifier used in the current

node to generate the fresh variables, and the number of solutions 0, since it is the

first node that we generate from the current one. The sub-branch will therefore be

0, the parent node will be the current node (its identifier), and the depth will be 2.

As the nodes of the same level are at the beginning of the list and all the child nodes

behind them (at the end the list will contain all the nodes of the tree, ordered as they have

been generated, by levels), we make sure that those of the current level are processed first,

since the algorithm processes the nodes from beginning to end of the list.

33

eq (M, T1, N1, NARS1 ;

 {N2:NzNat, {T2, Ty1, C1, Q1, S1, S2, Q2}, N3, N4, Q3, N5} ;

 NARS2,

 {N6, {T3, Ty2, C2, Q4, S3, S4, Q5}, N7, N2:NzNat, Q6, N8} ;

 NARS3, unbounded, N9) =

 (M, T1, N1 + 2, NARS1 ;

 {

 N2:NzNat,

 {T2, Ty1, C1, Q1, S1, S2, Q2},

 N3, N4, Q3, N5

 } ; NARS2 ;

 {

 N6,

 {

 applySub(T3,rename((getVars(T3), getRangeVars(S3),

 getRangeVars(S4)), N9)),

 Ty2, C2, Q4,

 applySub(S3,rename((getVars(T3), getRangeVars(S3),

 getRangeVars(S4)), N9)),

 applySub(S4,rename((getVars(T3), getRangeVars(S3),

 getRangeVars(S4)), N9)),

 '$

 },

 N7, N2:NzNat, '$, N8

 },

 {

 N1,

 metaNarrowingApply(M, T2, empty, Q6, N7 + 1),

 N7 + 1, N2:NzNat, Q6, N8

 } ; NARS3 ;

 {

 N1 + 1,

 metaNarrowingApply(M, applySub(T3, rename((getVars(T3),

 getRangeVars(S3),getRangeVars(S4)),N9)),

 empty, Q5, 0),

 0, N6, Q5, N8 + 1

 },

 unbounded,

 N9 + getVarsNumber((getVars(T3),getRangeVars(S3),getRangeVars(S4)))) .

Figure 22: Equation that defines the generation of levels higher than one of the reachability tree when the depth

parameter takes unbounded as a value in the GET-REACHABILITY-TREE module.

Figure 22 shows the code that defines the equation used when the depth parameter

takes the value unbounded to generate levels higher than one. We look for a node that is

at the beginning of the list of nodes to be processed, which we will refer to as the current

node, and we also look for its parent node in the list of nodes already processed. Once we

find both, the process is similar to the previous one, since we also want to generate the

nodes following the current one at the same level, and the first child node of the current

Narrowing and Unification in the Maude Programming Language

34

node. The biggest difference is that now, instead of taking the arguments of node 0 to

generate the nodes of the same level, we will take the arguments of the parent node that

we have looked for in the list of nodes already processed. At the code level, when we find

the current node and its parent node in the lists, we move the current node to the end of

the list of processed nodes, and in turn make two calls to metaNarrowingApply:

• The first call occurs at the beginning of the list of nodes to be processed and is

used to generate the next node that is at the same level as the current one. The

parameter passing is very similar to what we have seen in the previous equation,

only instead of considering the arguments of node 0, the arguments of the parent

node found are used.

• The second call occurs at the end of the list of nodes to be processed and is made

to generate the first child node of the node that is currently processed just as it

happened in the previous equation. In this case, the passing of parameters occurs

in a similar way.

In Figure 23 we show the code to define the equation used to generate the rest of the

levels when the maximum depth parameter takes a non-zero natural as value. It works in

a very similar way to the equation seen for when the maximum depth parameter takes the

value unbounded, only in this case, the if_then_else_fi operator is used. The condition for

the conditional operator is that the current node must have a depth less than or equal to

that indicated by the user as maximum depth, since if it is greater, we are not interested

in the current node. Neither will the following nodes of the same level or their children

be of interest, so it is not necessary to generate them.

eq (M, T1, N1, NARS1 ;

 {N2:NzNat, {T2, Ty1, C1, Q1, S1, S2, Q2}, N3, N4, Q3, N5} ;

 NARS2,

 {N6, {T3, Ty2, C2, Q4, S3, S4, Q5}, N7, N2:NzNat, Q6, N8} ;

 NARS3, MaxDepth:NzNat, N9) =

 if N8 <= MaxDepth:NzNat then

 (M, T1, N1 + 2, NARS1 ;

 {

 N2:NzNat,

 {T2, Ty1, C1, Q1, S1, S2, Q2},

 N3, N4, Q3, N5

 } ; NARS2 ;

 {

 N6,

 {

 applySub(T3,rename((getVars(T3), getRangeVars(S3),

 getRangeVars(S4)), N9)),

 Ty2, C2, Q4,

 applySub(S3,rename((getVars(T3), getRangeVars(S3),

 getRangeVars(S4)), N9)),

 applySub(S4,rename((getVars(T3), getRangeVars(S3),

 getRangeVars(S4)), N9)),

35

 '$

 },

 N7, N2:NzNat, '$, N8

 },

 {

 N1,

 metaNarrowingApply(M, T2, empty, Q6, N7 + 1),

 N7 + 1, N2:NzNat, Q6, N8

 } ; NARS3 ;

 {

 N1 + 1,

 metaNarrowingApply(M, applySub(T3, rename((getVars(T3),

 getRangeVars(S3),getRangeVars(S4)),N9)),

 empty, Q5, 0),

 0, N6, Q5, N8 + 1

 },

 MaxDepth:NzNat,

 N9 + getVarsNumber((getVars(T3),getRangeVars(S3),getRangeVars(S4))))

 else

 NARS1 ;

 {N2:NzNat, {T2, Ty1, C1, Q1, S1, S2, Q2}, N3, N4, Q3, N5} ;

 NARS2

 fi .

Figure 23: Figure 20: Equation that defines the generation of levels higher than one of the reachability tree when the

depth parameter takes a non-zero natural as a value in the GET-REACHABILITY-TREE module.

As before, we look for the first node in the list of nodes to be processed, and its parent

node in the list of nodes to be processed. If the condition is met, the behavior is very

similar to what we have already seen when the maximum depth parameter is unbounded,

but if the condition is not met, what we do this time is to eliminate the current node and

return the list of processed nodes, which will be the solution, since we will have reached

the maximum depth desired by the user.

eq (M, T1, N1, NARS1, nil, MaxDepth, N9) = NARS1 .

eq (M, T1, N1, NARS1, {N2, failure, N3, N4, Q1, N5} ; NARS2, MaxDepth, N9)

 = (M, T1, N1, NARS1, NARS2, MaxDepth, N9) .

Figure 24: Equations to manage an empty list of nodes to process and nodes not found in the GET-REACHABILITY-

TREE module.

At this point, two more equations are necessary, which are shown in Figure 24. In the

first equation, we consider the possibility that the list of nodes to be processed remains

empty (nil), for example, if all possible reachable nodes have already been found. In that

case, we will not be able to generate more nodes of the tree, so the complete tree is defined

with the list of nodes already processed, which will be returned to the user. The second

equation considers those cases in which the call to the metaNarrowingApply command to

generate a new node returns the constant failure. This constant indicates that a reachabil-

ity solution could not be found for the given term and solution number, so from there it

Narrowing and Unification in the Maude Programming Language

36

does not make sense to continue generating nodes that derive from the same parent node

(same term), and the node containing that constant can be removed, leaving the rest of

the node lists as they were.

3.4. Variable renaming

In some of the equations seen in the previous section, there are calls to functions such as

rename, applySub, getVars, getRangeVars, etc. All of them are functions defined by

equations in a module that we have called CONVERT-VARIABLES, and they are used to

rename the fresh variables that Maude generates.

The main reason why it is necessary to rename the fresh variables generated by Maude

is because when making the calls to metaNarrowingApply, it is only allowed to indicate

an identifier that Maude will not use to name the fresh variables that will be generated in

the solution, that is, a new node in the tree. This prevents a child node from repeating

variable names that are already in the parent node but cannot prevent a grandchild node

from doing so. When generating the reachability tree from a term, it is not a problem, but

later, when we want to extend the algorithm to narrowing, that is, when we want to check

in each node if the term unifies with an objective term and to compute the solution, it will

be necessary to collect the variables and substitutions along the way from the solution

node to the initial node, and there will be clashes between variables.

protecting META-LEVEL .

protecting CONVERSION .

var F : Qid . var V : Variable . var GT : GroundTerm .

var GNTL : NeGroundTermList . var NTL : NeTermList . var T : Term .

var N : Nat . vars TL TL' TL'' : TermList . vars SB SB' : Substitution .

Figure 25: Imports and variable declarations in the CONVERT-VARIABLES module.

First, it is necessary to declare the imports and declare the variables that will be used

later, although as previously mentioned, variable declarations are something that is usu-

ally done on the fly. In Figure 25, we can see that the CONVERT-VARIABLES module

imports two modules: the META-LEVEL module and the CONVERSION module. The

CONVERT-VARIABLES module itself, although not explicitly stated, is imported by the

GET-REACHABILITY-TREE module, and it is for this reason that it can also use functions

defined in the META-LEVEL module. In that same figure, we show the declared variables.

The name of its types is self-explanatory enough, although we will explain each variable

as we go in the defined equations.

op rename : TermList Nat -> Substitution .

eq rename(empty,N) = none .

eq rename((TL,V,TL',V,TL''),N) = rename((TL,V,TL',TL''),N) .

eq rename((V,TL),N) = V <- qid("$" + string(N,10) + ":" +

string(getType(V))) ; rename(TL,N + 1) [owise] .

Figure 26: The rename operator and its associated equations in the CONVERT-VARIABLES module.

37

In Figure 26, we show the declaration of the rename operator, which receives a list of

terms and a natural number and returns a substitution. The equations used to define its

behavior are also shown. If the list of terms is empty, the substitution returns will be the

empty substitution, represented by none. Otherwise, the list of terms received will be

scanned looking for variables. When the first variable is found, it is renamed, replacing

its original Qid with the symbol $ followed by the natural number also received, and

keeping its type, which is specified after the Qid, preceded by the : symbol . The natural

number received is increased by one, and a recursive call is made that continues through

the list of terms, following the same process until there is nothing left in the list of terms.

Throughout this, a data structure is saved that follows the form of the substitutions in

Maude, so that the substitution resulting from performing all the renaming of the variables

in the list of terms can finally be returned. Of course, terms that are not variables are

ignored, and if the list of terms does not contain variables, none is returned as well, as

before. Note that in case there is a repeated variable in the list of terms received, before

carrying out the whole process explained, the repetition of said variable is eliminated,

leaving it only once in the list of terms.

op getVars : Term -> TermList .

eq getVars(GT) = empty .

eq getVars(V) = V .

eq getVars(F[NTL]) = getVars(NTL) [owise] .

op getVars : TermList -> TermList .

eq getVars(empty) = empty .

eq getVars((T,GNTL)) = getVars(T) .

eq getVars((T,NTL)) = (getVars(T),getVars(NTL)) [owise] .

Figure 27: The getVars operators and their associated equations in the CONVERT-VARIABLES module.

In Figure 27, we can find the code snippet used to define the getVars operators and

their associated equations to define their behavior. These operators are responsible for

returning a list of terms that contains all the variables found in the term or the list of terms

received, respectively. In case of receiving a ground term (a constant) or an empty list of

terms, the empty list is returned, but if the term received is a variable, the variable itself

is returned. If the term received contains arguments, it will be necessary to search for

variables within the arguments, discarding the root of the term. If a term accompanied by

a non-empty list of ground terms is received, the list is ignored, and variables are searched

recursively in the term. Finally, if a term accompanied by a non-empty list of terms is

received, the variables must be searched recursively both in the term and in the list of

terms.

op getRangeVars : Substitution -> TermList .

eq getRangeVars((none).Substitution) = empty .

eq getRangeVars(((V <- T) ; SB)) = (getVars(T),getRangeVars(SB)) .

Figure 28: The getRangeVars operator and its associated equations in the CONVERT-VARIABLES module.

Narrowing and Unification in the Maude Programming Language

38

We have also defined a getRangeVars operator, with its corresponding equations, as

can be seen in Figure 28, and it is used to obtain the variables of a substitution, instead of

a list of terms or a term, although it ends up calling the function that we had defined to

find variables in a term, once it has separated the binding of the substitutions in variables

and terms.

op getVarsNumber : Term -> Nat .

eq getVarsNumber(GT) = 0 .

eq getVarsNumber(V) = 1 .

eq getVarsNumber(F[NTL]) = get-

VarsNumber(NTL) [owise] .

op getVarsNumber : TermList -> Nat .

eq getVarsNumber((T,GNTL)) = getVarsNumber(T) .

eq getVarsNumber((T,NTL)) = get-

VarsNumber(T) + getVarsNumber(NTL) [owise] .

Figure 29: The getVarsNumber operator and its associated equations in the CONVERT-VARIABLES module.

In addition, a function getVarsNumber (operator plus equations) has been defined that

is responsible for counting the number of variables in a list of terms. It is very similar to

the getVars function, but instead of getting the variables, it just counts them. The code

snippet used for this can be found in Figure 29.

op applySub : TermList Substitution -> TermList .

eq applySub(V,(V <- T) ; SB) = T .

eq applySub(F[TL], SB) = F[applySub(TL, SB)] .

eq applySub((T,NTL),SB) = (applySub(T,SB), applySub(NTL,SB)) .

eq applySub(T,SB) = T [owise] .

op applySub : Substitution Substitution -> Substitution .

eq applySub((none).Substitution,SB) = none .

eq applySub(V <- T ; SB,SB') = V <- applySub(T,SB') ; applySub(SB,SB') .

Figure 30: The applySub operators and their associated equations in the CONVERT-VARIABLES module.

Finally, as can be seen in Figure 30, two applySub operators have been defined, along

with their equations, to be able to apply a substitution to a list of terms, resulting in a new

list of terms, or to apply a substitution to another substitution, also obtaining a new one

as a result.

All the functions defined in this module are used in equations of the GET-REACHA-

BILITY-TREE module, since the variables of each node will be renamed just before gen-

erating the nodes derived from it.

39

3.5. Testing the tree generation

Once the module to generate the reachability tree from a term has been implemented,

we proceed to carry out some tests using different modules and terms, as well as variations

of the rest of the parameters that the defined getReachabilityTree command admits. To

check the goodness of the results obtained, we compare the nodes returned when execut-

ing the command with the nodes returned when using the Narval online tool [1], which

allows a graphical view of the reachability tree generated from a term using a module to

rewrite and normalize.

The first module to consider is the one that has been used to carry out small tests

throughout the implementation: the NARROWING-VENDING-MACHINE module, taken

directly from the official Maude examples [13]. Its definition is shown in Figure 13. This

module defines a vending machine that handles dollars ($) and quarters of a dollar (q).

One rule defines the sale of cakes (c) for one dollar, and another the sale of apples (a) for

three-quarters of a dollar. An equation defines the equivalence between 4 quarters of a

dollar and one dollar. First, we try to generate the reachability tree with depth two from

the initial state < M:Money >, using the command defined as follows:

reduce in GET-REACHABILITY-TREE :

 getReachabilityTree(upModule('NARROWING-VENDING-MACHINE,

 false), '<_>['M:Money], empty, '@, 2) .

The result obtained is as expected. The nodes of the first three levels of the reachability

tree are generated correctly, as partially shown in Figure 31. Note that a list of nodes is

returned, in which the previously explained can be seen more clearly. Each node contains

an identifier (natural number), the term reached together with its type, a context, the name

of the rule used to perform the rewrite step, the necessary substitutions to perform the

unification, the Qid used to name the fresh variables in the current node and its parent

node (both will be $ because the variables have been renamed, except for the parent of

the first level nodes, which will have the Qid used by the user in the command). Several

natural numbers are also returned indicating the sub-branch and level at which this node

is in the tree, as well as the identifier of its parent node.

Narrowing and Unification in the Maude Programming Language

40

Figure 31: Example 1 of the generation of the reachability tree in the NARROWING-VENDING-MACHINE module.

The execution is too long, so it cannot be seen completely in an image, so we show the

tree that is generated in Narval using the same module and term, and limiting ourselves

to the three levels indicated as maximum depth, in Figure 32. The nodes coincide with

those generated in our execution, except for the name of the fresh variables, which in

Narval have not been renamed. Furthermore, the order in which the nodes are shown in

our execution coincides with the generation by levels of the same tree shown in Narval,

as explained previously.

Figure 32: Generation of the reachability tree using Narval and the NARROWING-VENDING-MACHINE module.

If instead of generating only 2 levels we want to generate some more (for example, 5),

we only have to change the parameter that indicates the maximum depth:

reduce in GET-REACHABILITY-TREE :

 getReachabilityTree(upModule('NARROWING-VENDING-MACHINE,

 false), '<_>['M:Money], empty, '@, 5) .

As we might expect, the result takes a little longer to return, although the execution

time is still practically imperceptible (70ms). In Figure 33 we show a piece of the result

41

obtained when executing the command. Specifically, some nodes at levels 4 and 5 of the

generated tree can be observed.

Figure 33: Example 2 of the generation of the reachability tree in the NARROWING-VENDING-MACHINE module.

The other module that we use for the examples in this section can be seen in Figure

34. In this case, a behavior is defined with successors and predecessors of numbers. The

first equation [E1] defines the additive identity, the second [E2] the sum of a number with

the successor of another, the third [E3] the sum of a number with the predecessor of an-

other, and the fourth [E4] and fifth [E5] the simplification of the application of the pre-

decessor function to a successor and vice versa. A rule that defines state transitions is also

defined, in which if a state is found with the successor of a number X and another number

Y, a transition is made to a new state with the predecessor of the successor of X and the

successor from Y, that is, in a state with two natural numbers, one would be subtracted

from the first number and one would be added to the second, using the operations succes-

sor and predecessor.

Narrowing and Unification in the Maude Programming Language

42

mod SUCC-PRED is

 sorts Int State .

 op 0 : -> Int [ctor] .

 ops s p : Int -> Int .

 op _+_ : Int Int -> Int [assoc comm prec 30] .

 op <_,_> : Int Int -> State [ctor] .

 vars X Y : Int .

 eq [E1] : X + 0 = X [variant] .

 eq [E2] : X + s(Y) = s(X + Y) [variant] .

 eq [E3] : X + p(Y) = p(X + Y) [variant] .

 eq [E4] : p(s(X))= X [variant] .

 eq [E5] : s(p(X)) = X [variant] .

 rl [r1] : < s(X),Y > => < p(s(X)),s(Y) > [narrowing] .

endm

Figure 34: The SUCC-PRED module in Maude.

On this occasion, we can start by generating only the first level of the reachability tree,

starting from the term <0, 0 + s (Z: Int)>, which will be directly converted to its normal

form using the defined equations, that is, <0 , s (Z: Int)>. We can use the following com-

mand for this (Note that the term is expressed in prefix form, since we are using the meta-

level):

reduce in GET-REACHABILITY-TREE :

 getReachabilityTree(upModule('SUCC-PRED, false),

 '<_`,_>['0.Int,'s['Z:Int]], empty, '@, 1) .

Two nodes are successfully generated, as shown in Figure 35. In Figure 36, the gener-

ation of the first two levels of the reachability tree is shown, using the same module and

term seen, as well as some nodes of level three. We can see that the nodes of the first level

of the tree are the same that we have obtained in the execution with our implementation.

The only exception, once again, is the names of the fresh variables.

Figure 35: Example 1 of the generation of the reachability tree in the SUCC-PRED module.

43

Figure 36: Generation of the reachability tree using Narval and the SUCC-PRED module.

Now we can increase the number of levels to generate, for example, to three, and the

solution obtained should be like the one obtained with Narval, although we have not ex-

panded some nodes of level 3. To do this, we simply changed the number that indicated

the number of levels generated from 1 to 3, as we did previously with the commands used

for the vending machine. In Figure 37 we show the result obtained when executing that.

Comparing the complete execution with the result obtained in Narval, a coincidence is

found again.

Figure 37: Example 2 of the generation of the reachability tree in the SUCC-PRED module.

Narrowing and Unification in the Maude Programming Language

44

45

4. Narrowing using the reachability tree

In this chapter we describe a possible implementation to perform standard narrowing

modulo an equational theory (∑, E ∪ B), using the previous code as a base to generate

the reachability tree. In Section 4.1 we present the steps considered to implement narrow-

ing in Maude. In Section 4.2, we detail the types, subtypes, data structures and variables

needed to implement the algorithm. In Section 4.3, we present the getNarrowingSolutions

command, and its initial behavior, including node generation. In Section 4.4, we analyze

how the unification step is performed in the search for narrowing solutions at each node.

In Section 4.5, we detail how the solutions are created from the unifiers that have been

obtained. In Section 4.6, we describe the iterative process of the algorithm, as well as

when it comes to an end. Finally, in Section 4.7, we show some examples of using the

algorithm, using different modules and terms.

4.1. Specification of the narrowing steps to implement

In Section 2.10 we have explained the theoretical definition of narrowing, and now, in

order to implement it, it is necessary to draw up a plan of steps to follow, based precisely

on the theoretical algorithm, and adapting it to Maude programming, creating a new mod-

ule named GET-NARROWING-SOLUTIONS. These steps are:

1. Define the required types, subtypes, data structures, and variables.

2. Define the command that the user will use and start the node generation.

3. Try to generate a new node, reusing the code detailed in the previous chapter.

4. Try to unify the target term indicated by the user with the term obtained in the

generated node.

5. If it is possible to unify, go backwards through the branch of the tree in which the

node is located to compose the substitutions, computing a new solution.

6. Reduce the computed substitutions to their normal form, using the equations de-

fined in the module received as an argument.

7. Perform steps 3 - 6 iteratively, until a termination condition is met.

4.2. Types, subtypes, data structures and variables

To implement the algorithm, in addition to the types, subtypes, and data structures previ-

ously declared in the GET-REACHABILITY-TREE module, some new ones will be

needed. Its declaration is shown in Figure 38.

First of all, we need a data structure that stores the global state of the algorithm. We

have given this structure the name of NarrowingState, and it contains the following ele-

ments enclosed between the symbols “(” and “)”, and separated by commas:

• The initial term indicated by the user, that is, the term from which everything will

be generated.

• A Qid that represents the search arrow, which we will explain later.

• The target term indicated by the user, which will be used to determine whether

each generated node is a solution.

Narrowing and Unification in the Maude Programming Language

46

• A Bound element that will mark the maximum number of desired solutions, also

indicated by the user.

• A natural number used as a counter for the number of solutions, to number each

new solution.

• A Qid that indicates the variable identifier used in the initial and target terms, to

avoid clashes later.

• A list of the solutions that have been obtained.

• A “substate” generated by the code defined in the previous module, that is, the

state of the reachability tree that is being generated.

sorts NarrowingResultStructure NarrowingResultList NarrowingState Step .

subsort UnificationPair < NarrowingResultStructure

 < NarrowingResultList < NarrowingState .

ops genNode unify genSolutions : -> Step .

op (_,_,_,_,_,_) : Term Qid Term Bound Nat Qid NarrowingResultList State ->

 NarrowingState .

op getNarrowingSolutions : Module Term Qid Term TermList Qid Bound Bound ->

 NarrowingResultList .

op {_,_,_,_} : Nat Term Substitution Substitution -> NarrowingResultStructure .

op calculateCumulativeSub : Nat Term Substitution Substitution ->

 NarrowingResultStructure .

op noSolution : -> NarrowingResultList [ctor] .

op _;_ : NarrowingResultList NarrowingResultList ->

 NarrowingResultList [assoc id: noSolution] .

op reduceSub : Module Substitution -> Substitution .

op iterativeMetaVariantUnify : Module UnificationProblem TermList Qid Nat ->
 NarrowingResultList .

Figure 38: Sorts, subsorts and related operators in the GET-NARROWING-SOLUTIONS module.

The list of solutions computed by the narrowing algorithm is called NarrowingResult-

List, and it is a subtype of NarrowingState, since it is the only thing that we will be inter-

ested in returning to the user once the algorithm finishes. It is an ordered list, so it is

associative and has an identity element (noSolution), but it is not commutative. The sym-

bol “;” is the one chosen to concatenate elements of this list. Each of the computed solu-

tions is also a data structure of the form “{_,_,_,_}”, called NarrowingResultStructure,

and in which each of the underscores is:

• A natural number, identifying the solution number.

• The term associated with that solution, that is, the term found that unifies with the

target term, which coincides with the term of the node in which the solution is

found.

• The substitution that allows us to get from the initial term to the solution term.

• The substitution used to unify the solution term with the target term.

The type NarrowingResultStructure is a subtype of NarrowingResultList, since the list

may contain only one solution, that is, a single structure of that type. Furthermore, the

47

structure for each solution uses the UnificationPair type as a subtype. That type is the one

returned by Maude when performing the unification, and it is already predefined in the

META-LEVEL module. There are some other operators defined, but they will be discussed

later, as they are used only in some specific steps of the algorithm.

var M : Module . vars T1 T2 T3 T4 T5 T6 : Term . var TList : TermList .

vars Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 SearchQid : Qid . var UP : UnificationPair .

vars N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 : Nat . vars Ty1 Ty2 : Type .

vars C1 C2 : Context . vars S1 S2 S3 S4 S5 S6 : Substitution .

vars MaxDepth MaxSol : Bound . vars NRS1 NRS2 : NarrowingResultList .

vars NARS1 NARS2 NARS3 NARS4 : NarrowingApplyResultList .
vars V1 V2 : Variable .

Figure 39: Variables declared in the GET-NARROWING-SOLUTIONS module.

In order to define the equations that will determine the behavior of each of the opera-

tors, it is necessary to previously define the variables to be used. Figure 39 shows the

necessary variables, which are of types that we have already seen before and of the new

types presented in this section.

4.3. The getNarrowingSolutions command and node generation

The command that the user is expected to use to invoke the algorithm that we define to

perform narrowing is the getNarrowingSolutions command, and its needed input param-

eters are:

• The module that contains the rules, variants and axioms that will be used to gen-

erate the reachability tree, as well as to normalize the terms and to perform unifi-

cation when necessary.

• The initial term, from which the reachability tree will be generated to search for

possible solutions.

• A Qid that can take three different values. Using the value '1 we ask the command

to return only the solutions found in the first level of the tree (that is, those that

only imply a rewrite step). If we use the value '+, we ask the command to return

only the solutions that imply more than one rewrite step, and if we use the value

'*, we ask the command to return solutions that involve any number of rewrite

steps. These three values emulate the narrowing search arrows ↝1, ↝+ and ↝∗

respectively.

• The target term, that is, the term we want to achieve by rewriting from the initial

term using the indicated module. Each term reached by rewriting that unifies with

the target term, will lead to one or more solutions, depending on whether there is

one or more unifiers.

• A list of terms, which at the moment has no use, and whose value will be subse-

quently set to empty. It will be used later to extend the algorithm.

• A Qid that will be used to indicate the variable identifiers in the initial and target

terms.

Narrowing and Unification in the Maude Programming Language

48

• The maximum depth of the reachability tree to generate, and the maximum of

required narrowing solutions. Note that these parameters, together with the third

parameter, allow the user to request different sets of solutions as desired.

eq getNarrowingSolutions(M, T1, SearchQid, T2, TList, Q1, 0, MaxSol) = noSolution .

eq getNarrowingSolutions(M, T1, SearchQid, T2, TList, Q1, MaxDepth, 0)

 = noSolution .

eq getNarrowingSolutions(M, T1, SearchQid, T2, TList, Q1, MaxDepth, MaxSol) =

 if SearchQid == '1 then

 (T1, '1, T2, MaxSol, 1, noSolution,

 getReachabilityTree(M, T1, empty, Q1, 1))

 else

 (T1, SearchQid, T2, MaxSol, 1, noSolution,

 getReachabilityTree(M, T1, empty, Q1, MaxDepth))
 fi [owise] .

Figure 40: Equations that define the initial behavior of the getNarrowingSolutions command in the GET-

NARROWING-SOLUTIONS module.

The declaration of the operator that defines the getNarrowingSolutions command is

shown in Figure 38, while the equations used to define its initial behavior are shown in

Figure 40. Two equations are needed to inform the user that no solutions are found in

case the value 0 has been specified for the maximum depth of the reachability tree or for

the maximum number of solutions required. If both parameters take a value different from

0, another equation is used that considers two cases: if the SearchQid variable, which

represents the search arrow, takes the value '1, the command will create a new Narrow-

ingState in which we it only needs to generate the first level of the tree, and in any other

case, that is, if SearchQid takes the values '+ or '*, it will also create a new Narrow-

ingState, but this time it needs to generate the tree depending on the maximum depth and

maximum solutions indicated, which will be managed later. In both cases, the counter

used to identify solutions is initialized to 1.

In the third case, the getNarrowingSolutions command calls the getReachabilityTree

command, which we discussed in detail in the previous section. This command works

exactly the same way as before, and the only difference is that the State data structure that

it uses internally will contain a new Step parameter that can take three different constant

values: genNode, unify or genSolutions (Its definition is shown in Figure 38). The value

that this parameter takes will determine the narrowing step to be carried out, that is, this

parameter is in charge of directing the execution, since now, every time we generate a

new node, we have to try to unify with the target term, and if it is possible, we need to

calculate the solutions before generating more nodes, to stop generating them when the

maximum number of solutions indicated by the user is reached.

4.4. Unification with the target term

Each time we generate a new node, that is, a new term by rewriting, in the reachability

tree, it is necessary to try to unify that new term obtained with the specified target term.

In case the unification is possible, for each of the unifiers found we will have a solution

49

to the problem. In our case, we must always consider that if the user has indicated a max-

imum number of solutions, it cannot be exceeded, so it will not make sense to try the

unification once we reach that state, the resolution of which we will see later. It will also

be necessary to distinguish the case in which the search arrow is =>+ and the case in

which it is another of the two possible ones.

In the first case, we need an equation that evaluates whether we are in the first level of

the reachability tree or at a deeper level, since when the search arrow is =>+, the first

level does not interest us, and it will not be necessary to try to unify with the nodes be-

longing to that level. If the level we are at is deeper, we must try to unify the target term

with the current node term. To do this, a call to the iterativeMetaVariantUnify function is

used, which is detailed later in this section. This is specified by the equation defined in

Figure 41.

eq (T1, '+, T2, MaxSol, N11, Q7, NRS1, (M, T3, N1, NARS1 ;

 {N2, {T4, Ty1, C1, Q1, S1, S2, Q2}, N3, N4, Q3, N5},

 NARS2, MaxDepth, N9, genSolutions))

 = if N5 > 1 then

 (T1, '+, T2, MaxSol, N11, Q7, NRS1 ;

 iterativeMetaVariantUnify(M, T2 =? T4, empty, Q7, 0),

 (M, T3, N1, NARS1 ; {N2, {T4, Ty1, C1, Q1, S1, S2, Q2},

 N3, N4, Q3, N5}, NARS2, MaxDepth, N9, genSolutions))

 else

 (T1, '+, T2, MaxSol, N11, Q7, NRS1, (M, T3, N1, NARS1 ;

 {N2, {T4, Ty1, C1, Q1, S1, S2, Q2}, N3, N4, Q3, N5},

 NARS2, MaxDepth, N9, genNode))

 fi [owise] .

Figure 41: Start of the unification step when the search arrow is =>+ in the GET-NARROWING-SOLUTIONS module.

In case the search arrow takes the value =>* or =>1, the behaviour will be the same.

If it is =>1, it is not necessary to check that the level we are in is deeper than the first,

since the maximum depth limit will have been automatically set to one, and the lower

levels cannot be generated. In these two cases, therefore, we simply must try to do the

unification directly, also calling the iterativeMetaVariantUnify function, and without hav-

ing to check the value of the depth level, as shown in Figure 42.

eq (T1, SearchQid, T2, MaxSol, N11, Q7, NRS1, (M, T3, N1, NARS1 ;

 {N2, {T4, Ty1, C1, Q1, S1, S2, Q2}, N3, N4, Q3, N5},

 NARS2, MaxDepth, N9, unify))

 = (T1, SearchQid, T2, MaxSol, N11, Q7, NRS1 ;

 iterativeMetaVariantUnify(M, T2 =? T4, empty, Q7, 0),

 (M, T3, N1, NARS1 ; {N2, {T4, Ty1, C1, Q1, S1, S2, Q2},

 N3, N4, Q3, N5}, NARS2, MaxDepth, N9, genSolutions)) [owise] .

Figure 42: Start of the unification step when the search arrow is =>* or =>1 in the GET-NARROWING-

SOLUTIONS module.

Narrowing and Unification in the Maude Programming Language

50

The definition of the iterativeMetaVariantUnify function is shown in Figure 43, where

four equations are specified. Calls are made to a predefined function in the META-LEVEL

module called metaVariantUnify to find unifiers. Every time a new unifier is found, a

recursive call to the iterativeMetaVariantUnify function itself is made, in order to con-

tinue finding even more unifiers. When no more unifiers are found, the metaVariantUnify

function will return the constant value noUnifier. In that case, we will stop looking for

unifiers for the current node, and we can proceed to the step that we will see in the next

section.

eq iterativeMetaVariantUnify(M, T1 =? T2, TList, Q7, 0)

 = metaVariantUnify(M, T1 =? T2, TList, Q7, 0) ;

 iterativeMetaVariantUnify(M, T1 =? T2, TList, Q7, 1) .

eq {S1, Q8} ; iterativeMetaVariantUnify(M, T1 =? T2, TList, Q7, N2:NzNat)

 = {S1, Q8} ; metaVariantUnify(M, T1 =? T2, TList, Q7, N2:NzNat) ;

 iterativeMetaVariantUnify(M, T1 =? T2, TList, Q7, N2:NzNat + 1) .

eq NRS1 ; noUnifier ; iterativeMetaVariantUnify(M, T1 =? T2, TList, Q7, 1)

 = NRS1 ; noUnifier .

eq NRS1 ; noUnifier ; iterativeMetaVariantUnify(M, T1 =? T2, TList, Q7, N2:NzNat)

 = NRS1 [owise] .

Figure 43: Definition of the iterativeMetaVariantUnify function in the GET-NARROWING-SOLUTIONS module.

The arguments expected by the iterativeMetaVariantUnify function are the same as

those taken by the metaVariantUnify function:

• The module in which the equations and rules to perform the unification are

defined.

• An expression of the form “T1 =? T2” in which “T1” and “T2” are the two

terms that we are trying to unify.

• A list of terms that is not used now, but that will be very important later.

• A Qid that indicates the identifier of variables to avoid when naming new fresh

variables. Otherwise, there could be clashes with the variables of the initial and

target terms.

• A natural number that allows iterating over the possible unifiers, so that if it

takes the value “0” we will be asking for the first unifier, if it takes the value

“1” for the second, etc.

4.5. Calculation of solutions with the unifiers

The metaVariantUnify returns either the constant noUnifier or a result of type Unifica-

tionPair following the form {S, Q}, where “S” is the computed substitution to solve the

problem and “Q” is the Qid used to name the generated fresh variables.

eq (T1, SearchQid, T2, MaxSol, N11, Q7, NRS1 ; noUnifier,

 (M, T3, N1, NARS1, NARS2, MaxDepth, N9, genSolutions))

 = (T1, SearchQid, T2, MaxSol, N11, Q7, NRS1,

 (M, T3, N1, NARS1, NARS2, MaxDepth, N9, genNode)) .

Figure 44: Equation that ends the unification step in the GET-NARROWING-SOLUTIONS module.

51

If we find the constant noUnifier, it means that no unifiers could be found, so we can

directly end the unification step in this node, going back to the initial step (node genera-

tion). This process is carried out by the equation shown in Figure 44. If unifiers have been

found, it means that the term of the current node represents one or more solutions of the

proposed narrowing problem (depending on whether one or more unifiers have been

found).

eq (T1, SearchQid, T2, unbounded, N11, Q7, NRS1 ; {S5, Q8} ; NRS2,

 (M, T3, N1, NARS1 ;

 {N2, {T4, Ty1, C1, Q1, S1, S2, Q2}, N3, N4, Q3, N5},

 NARS2, MaxDepth, N9, genSolutions))

 = (T1, SearchQid, T2, unbounded, N11, Q7, NRS1 ;

 calculateCumulativeSub(N2, T4, S1, S5) ; NRS2,

 (M, T3, N1, NARS1 ;

 {N2, {T4, Ty1, C1, Q1, S1, S2, Q2}, N3, N4, Q3, N5},

 NARS2, MaxDepth, N9, genSolutions)) .

eq (T1, SearchQid, T2, MaxSol, N11, Q7, NRS1 ; {S5, Q8} ; NRS2,

 (M, T3, N1, NARS1 ;

 {N2, {T4, Ty1, C1, Q1, S1, S2, Q2}, N3, N4, Q3, N5},

 NARS2, MaxDepth, N9, genSolutions))

 = (T1, SearchQid, T2, sd(MaxSol, 1), N11, Q7, NRS1 ;

 calculateCumulativeSub(N2, T4, S1, S5) ; NRS2,

 (M, T3, N1, NARS1 ;

 {N2, {T4, Ty1, C1, Q1, S1, S2, Q2}, N3, N4, Q3, N5},
 NARS2, MaxDepth, N9, genSolutions)) [owise] .

Figure 45: Equations that begin the computation of the solutions associated with each unifier found in the GET-

NARROWING-SOLUTIONS module.

The equations shown in Figure 45 begin the generation of solutions, making a call to

a defined function called calculateCumulativeSub with each of the unifiers found. One of

those equations considers the case in which a maximum number of solutions has been

defined, so each time the call to the function is made to calculate a new solution, it will

subtract one from that parameter. The function receives the identifier of the node in which

the unifier has been found, the term that characterizes that node, a substitution that will

be processed to obtain the solution computed along the branch of the node (used to arrive

at the term of the node), and another substitution that is the one used in the objective term

to achieve unifying. The solution term will always be that of the current node, and the

substitution used in the target term to unify will always be the one indicated by the Uni-

ficationPair obtained. The substitution used in the solution term must be calculated dif-

ferently depending on the level of the reachability tree in which we are.

The simplest case occurs when the unifier has been found in a node of the first level,

in which case it is not necessary to compute the first substitution along the tree branch.

The computed substitution will be directly the substitution that we had saved in the node,

which indicates precisely the substitution that has been used in the initial term to reach

the term of the current node. Simply create the data structure that represents the Narrow-

ingResultStructure solution with the data we already have, assigning a new identifier to

Narrowing and Unification in the Maude Programming Language

52

said solution. For this, the solution counter that we keep in the state is used. All this is

defined with the equation shown in Figure 46.

eq (T1, SearchQid, T2, MaxSol, N11, Q7, NRS1 ;

 calculateCumulativeSub(N2, T6, S1, S6) ;

 NRS2, (M, T3, N1, NARS1 ;

 {N2, {T4, Ty1, C1, Q1, S1, S2, Q2}, N3, 0, Q3, N5} ;

 NARS2, NARS3, MaxDepth, N9, genSolutions))

 = (T1, SearchQid, T2, MaxSol, N11 + 1, Q7, NRS1 ;

 {N11, T6, reduceSub(M, S1), reduceSub(M, S6)} ;

 NRS2, (M, T3, N1, NARS1 ;

 {N2, {T4, Ty1, C1, Q1, S1, S2, Q2}, N3, 0, Q3, N5} ;

 NARS2, NARS3, MaxDepth, N9, genSolutions)) .

Figure 46: Equation of the GET-NARROWING-SOLUTIONS module that computes the narrowing solutions when we

are at the first level of the reachability tree.

If we are in a deeper node in the tree, it is necessary to go backwards through the

branch in which we are to combine the substitutions used in each step to generate the

nodes, thus achieving a final substitution computed when reaching the initial node. For

this, the equations defined in Figure 47 are used.

eq (T1, SearchQid, T2, MaxSol, N11, Q7, NRS1 ;

 calculateCumulativeSub(N6, T6, S5, S6) ;

 NRS2, (M, T3, N1, NARS1 ;

 {N2, {T4, Ty1, C1, Q1, S1, S2, Q2}, N3, 0, Q3, N5} ; NARS2 ;

 {N6, {T5, Ty2, C2, Q4, S3, S4, Q5}, N7, N2, Q6, N4} ;

 NARS3, NARS4, MaxDepth, N9, genSolutions))

 = (T1, SearchQid, T2, MaxSol, N11 + 1, Q7, NRS1 ;

 {N11, T6, reduceSub(M, applySub(S1, S5)), reduceSub(M, S6)} ;

 NRS2, (M, T3, N1, NARS1 ;

 {N2, {T4, Ty1, C1, Q1, S1, S2, Q2}, N3, 0, Q3, N5} ; NARS2 ;

 {N6, {T5, Ty2, C2, Q4, S3, S4, Q5}, N7, N2, Q6, N4} ;

 NARS3, NARS4, MaxDepth, N9, genSolutions)) .

eq (T1, SearchQid, T2, MaxSol, N11, Q7, NRS1 ;

 calculateCumulativeSub(N6, T6, S5, S6) ;

 NRS2, (M, T3, N1, NARS1 ;

 {N2, {T4, Ty1, C1, Q1, S1, S2, Q2}, N3, N4:NzNat, Q3, N5} ; NARS2 ;

 {N6, {T5, Ty2, C2, Q4, S3, S4, Q5}, N7, N2, Q6, N8} ;

 NARS3, NARS4, MaxDepth, N9, genSolutions))

 = (T1, SearchQid, T2, MaxSol, N11, Q7, NRS1 ;

 calculateCumulativeSub(N2, T6, applySub(S1, S5), S6) ;

 NRS2, (M, T3, N1, NARS1 ;

 {N2, {T4, Ty1, C1, Q1, S1, S2, Q2}, N3, N4:NzNat, Q3, N5} ;

 NARS2 ; {N6, {T5, Ty2, C2, Q4, S3, S4, Q5}, N7, N2, Q6, N8} ;

 NARS3, NARS4, MaxDepth, N9, genSolutions)) .

Figure 47: Equations of the GET-NARROWING-SOLUTIONS module that compute the narrowing solutions for

levels below the first level of the reachability tree.

53

The second equation makes recursive calls to the function calculateCumulativeSub

going backwards through the predecessors of the node in the branch, while the substitu-

tions are being combined, until reaching the node where the predecessor is at level 1, that

is, until we are at level 2 of the tree of reachability. At that moment, the last combination

of substitutions is made, coming to compute the final substitution, which will be the one

returned in the solution created.

We must bear in mind that, when considering each of the unifiers as a solution, the

maximum number of solutions could be reached during this step, so it is necessary to

define an equation capable of detecting this situation to eliminate the unifiers that remain

queued by process. This equation is defined with the specification shown in Figure 48.

eq (T1, SearchQid, T2, 0, N11, Q7, NRS1 ; {S5, Q8} ; NRS2,

 (M, T3, N1, NARS1, NARS2, MaxDepth, N9, genSolutions))

 = (T1, SearchQid, T2, 0, N11, Q7, NRS1 ; NRS2,

 (M, T3, N1, NARS1, NARS2, MaxDepth, N9, genSolutions)) .

Figure 48: Equation that removes unifiers from the queue if the maximum number of solutions has already been

reached in the GET-NARROWING-SOLUTIONS module.

In some of the previous equations, specifically those that complete the substitution

computation step, a call is made to the reduceSub function. This function normalizes the

computed substitutions, using the equations defined in the module indicated by the user.

Its specification can be found in Figure 49.

eq reduceSub(M, (none).Substitution) = (none).Substitution .

eq reduceSub(M, V1 <- T1 ; S1)

 = V1 <- getTerm(metaReduce(M, T1)) ; reduceSub(M, S1) .

Figure 49: Specification of the reduceSub function in the GET-NARROWING-SOLUTIONS module.

When all the solutions for the current node have been calculated, that is, when all the

unifiers of the current term with the target term have been computed, the unification step

is completed, using the equation shown in Figure 50.

eq (T1, SearchQid, T2, MaxSol, N11, Q7, NRS1,

 (M, T3, N1, NARS1, NARS2, MaxDepth, N9, genSolutions))

 = (T1, SearchQid, T2, MaxSol, N11, Q7, NRS1,

 (M, T3, N1, NARS1, NARS2, MaxDepth, N9, genNode)) [owise] .

Figure 50: Function that ends the unify step when the solutions for a node have been computed in the GET-

NARROWING-SOLUTIONS module.

4.6. Iteration and termination of the algorithm

It should be noted that the algorithm implemented to perform the narrowing behaves it-

eratively. As we can see in the equations that we have defined, in all those in which the

NarrowingState structure is used in a complete way, a parameter of type Step appears at

the end of said structure, which marks the step of the algorithm in which we are, starting

at genNode (generation of a new node), to later go to unify (search for unifiers of the term

Narrowing and Unification in the Maude Programming Language

54

generated with the target term) and finally reaching genSolutions (creation of solutions

from the unifiers found). Then, the parameter will return to the value genNode, starting

this process again, until one of the following situations is reached:

a) The maximum depth specified by the user is reached. In that case, the reachability

tree state data structure will be converted to just an ordered list of nodes.

b) The maximum solutions indicated by the user are reached. In that case, we will

directly return the solutions computed so far, without continuing to generate nodes

or compute solutions if we were in the unification step.

c) The entire tree is generated. This case can only occur if the reachability tree is

finite. In that case, the NarrowingState structure will remain the same as in the

first case.

eq (T1, SearchQid, T2, 0, N11, Q7, NRS1,

 (M, T3, N1, NARS1, NARS2, MaxDepth, N9, unify))

 = (T1, SearchQid, T2, 0, N11, Q7, NRS1, NARS1) .

eq (T1, SearchQid, T2, MaxSol, N11, Q7, NRS1, NARS1)

 = NRS1 .

eq (T1, SearchQid, T2, MaxSol, N11, Q7, noSolution, NARS1)

 = noSolution .

Figure 51: Equations that define the termination of the narrowing algorithm in the GET-NARROWING-SOLUTIONS

module.

Figure 51 shows the equations that have been defined to manage the three cases raised,

in addition to an equation that returns the constant noSolution if no solution has been

found to the narrowing problem posed at the end of the algorithm in any of these ways.

4.7. Testing the narrowing algorithm implementation

Once we have defined the narrowing algorithm in Maude, we can test it using different

modules, terms and bounds as arguments when calling the command that invokes it. To

begin with, we can use the modules previously discussed in Section 3.5. Their code level

specification can be found in Figure 13 and Figure 34.

If we take the narrowing problem < M:Money > =>* < a c >, we can compare the

result obtained when executing it using two different commands. On the one hand, the

narrowing command already defined in the META-LEVEL module, and on the other hand,

the new command we have defined. To do this, we use them as follows:

reduce in META-LEVEL :

metaNarrowingSearch(

 upModule('NARROWING-VENDING-MACHINE, false),

 '<_>['M:Money],

 '<_>['__['a.Item,'c.Item]],

 '*,

 unbounded, 'match, 0) .

55

reduce in GET-NARROWING-SOLUTIONS :

getNarrowingSolutions(

 upModule('NARROWING-VENDING-MACHINE, false),

 '<_>['M:Money],

 '*,

 '<_>['__['a.Item,'c.Item]],

 empty, '@, unbounded, 1) .

In Figure 52 we show the result obtained, which is very similar in both cases. The

solution obtained is the same, although the data structure returned is slightly different, as

well as the way of naming the variables. It can be seen how the command already defined

in META-LEVEL is faster, since its implementation is written directly on C++, the lan-

guage underlying Maude. This is something that we already expected, but the objective

of this work is not to define a narrowing command faster than the existing one, but to

define a command that allows a variation of parameters (maximum solutions instead of

solution number), and that can be modified to implement other types of narrowing, as we

will see later. In this specific example, the difference is minimal, since it is a relatively

simple problem, but we will see that by complicating the problem, the difference in exe-

cution time will become more noticeable.

Figure 52: Example 1 comparing narrowing commands using the NARROWING-VENDING-MACHINE module.

Using the commands in a similar way to what we have explained, we can define other

narrowing problems to solve on the same module, and we will obtain similar results, en-

suring that our narrowing algorithm fulfills its function correctly. We show some more

examples in Figure 53 and Figure 54.

Figure 53: Example 2 comparing narrowing commands using the NARROWING-VENDING-MACHINE module.

Narrowing and Unification in the Maude Programming Language

56

In the second one, we can appreciate a very important difference between the com-

mand already defined in Maude and the new command that we have defined. While the

first one returns the solutions without reducing the substitutions to their normal form, we

have taken this into account in our algorithm, always returning them in their normal form,

which makes it easier for the user to read and understand.

Figure 54: Example 3 comparing narrowing commands using the NARROWING-VENDING-MACHINE module.

Let's now consider another module that we already know, the SUCC-PRED module

(see Figure 34). In it we can see one of the great differences between the existing com-

mand and the new defined command: while in the one already defined it is necessary to

carry out executions one by one to obtain the different solutions, the new command allows

specifying a maximum number of solutions, obtaining as many as we want (if they exist)

at once.

Figure 55: Example of a comparison between narrowing commands using the SUCC-PRED module.

57

In Figure 55 we show the invocation of the commands considering the narrowing prob-

lem < 0, X:Int > =>+ < p(p(p(0))), s(Y:Int) > , but using the argument of the new com-

mand defined to return several solutions at the same time, instead of just one.

We could also use the other argument of the new defined command (maximum depth).

Now, instead of asking for a specific number of solutions, we can ask, for example, for

the solutions that can be found by expanding to level 3 of the tree. In this case, using the

same narrowing problem and the same module, 28 solutions are obtained. Some of them

can be seen in Figure 56.

Figure 56: Example of using the maximum depth parameter in the getNarrowingSolutions command, using the

SUCC-PRED module.

The new narrowing command defined is, therefore, slower than the one already de-

fined in Maude's META-LEVEL, but it brings other types of possibilities to the user, com-

bining the search arrow parameter with the maximum solutions and the maximum depth

parameters. For example, with this new command, we could ask for the first 20 solutions

to a narrowing problem that are found in levels 2, 3 and 4 of the reachability tree, ignoring

the possible solutions in level 1 and levels deeper than 4. To do this, simply use =>+ as

the search arrow, indicating a maximum of 20 solutions and the maximum depth of 4.

Furthermore, as we have previously commented, the definition using the Maude language

itself of a narrowing algorithm like this one, will allow us to make modifications to im-

plement other types of narrowing not included in Maude native commands. One of those

types of narrowing that can be implemented is canonical narrowing modulo an equa-

tional theory (∑, E ∪ B), which we will see next.

Narrowing and Unification in the Maude Programming Language

58

59

5. Canonical narrowing

In this chapter we introduce and implement canonical narrowing modulo an equational

theory (∑, E ∪ B), which solves some of the limitations of standard narrowing, seen ear-

lier. In Section 5.1, we explain some of the limitations that we can find in the standard

narrowing, presenting a motivation to look for an alternative. In Section 5.2, we introduce

canonical narrowing modulo an equational theory, which is the one chosen as an alterna-

tive to standard narrowing to solve the limitations seen. In Section 5.3, we show the im-

plementation process followed to code the canonical narrowing modulo an equational

theory algorithm in Maude, taking as a starting point the code seen above. Finally, in

Section 5.4, we present a comparison between the new canonical narrowing modulo an

equational theory command with the standard narrowing command included in Maude

and the standard narrowing command that we have defined ourselves.

To carry out this part of the work, the article Canonical Narrowing with Irreducibility

Constraints as a Symbolic Protocol Analysis Method [7], by Santiago Escobar (Cotutor

of this master thesis) and José Meseguer has been used as a reference.

5.1. Limitations of standard narrowing

Standard narrowing modulo an equational theory (∑, E ∪ B) is a powerful and efficient

tool for solving many problems and identifying, for example, vulnerabilities in protocols,

but in some cases its efficiency is not the best.

Let us consider that the standard narrowing computes a two-step sequence with its two

corresponding substitutions, as follows:

(𝑡1 ↓𝐸,𝐵) ↝𝑙1→𝑟1

𝜎1 (𝑡2 ↓𝐸,𝐵) ↝𝑙2→𝑟2

𝜎2 𝑡3

where there is first a narrowing step in which the normalized initial term 𝑡1 is rewritten

to the 𝑡2 term using the rule 𝑙1 → 𝑟1 and the substitution 𝜎1, to later normalized the term

𝑡2 and rewrite it to 𝑡3 using the rule 𝑙2 → 𝑟2 and the substitution 𝜎2.

We can see that although the terms are normalized before performing each narrowing

step, the substitutions 𝜎1 and 𝜎2 are computed and used without reducing them to their

normal form, being the final computed substitution the composition of both of them: 𝜎1𝜎2.

Under normal conditions, this is not a problem, but if we have the case where the com-

position is reducible, that is, 𝜎1𝜎2 ≠𝐵 (𝜎1𝜎2 ↓𝐸,𝐵), then the computed narrowing trace

will not have actual representation with a rewrite trace on the system used, since in the

rewriting traces the substitutions are normalized in each of the steps.

Therefore, on some occasions, several traces computed by the standard narrowing al-

gorithm could be ignored, and by not doing so there is a consumption of time and re-

sources greater than it could be, and depending on the problem, the growth of this con-

sumption is exponential, since from traces that could be ignored, more and more traces

will be generated, creating a narrowing tree in which most of the branches are useless for

a realistic analysis. In addition to this temporary and resource inefficiency, once the so-

lutions to the problem that we specify have been obtained, we need to filter by hand the

Narrowing and Unification in the Maude Programming Language

60

solutions that are really of interest to us, since, as we have already commented, many of

them will not have a real correspondence with rewrite sequences. This situation motivates

us to look for a narrowing that can find those narrowing steps that do not have the real

correspondence with rewriting steps in the rewrite system specified each time, ignoring,

on the one hand, the corresponding step, and on the other, all the narrowing steps that

could be taken later from that one. Consequently, a much smaller narrowing tree is gen-

erated, saving a large part of the time and resources we were talking about. The narrowing

capable of doing all of this is canonical narrowing.

5.2. Introduction to canonical narrowing

As we have seen in the previous section, canonical narrowing relation is a narrowing

capable of detecting those narrowing steps that do not have a real correspondence with

rewriting steps in the rewrite system used. To do this, it relies on conditions that we refer

to as irreducibility constraints: when a new term is reached through the generation in the

narrowing tree, an irreducibility constraint associated with it is calculated and saved to be

used later along the entire narrowing sequence from that new term.

If we position ourselves on a generated term, the irreducibility constraint associated

with it is calculated with the normalized left-hand side of the rule used in the transition

that allows reaching that term from the previous one. If we do this for each of the gener-

ated terms, we will build a list of irreducibility restrictions that must be fulfilled all the

time in the sequence in which we find ourselves. This allows us to discard sequences that

do not meet them, giving rise to a narrowing tree which, on multiple occasions, will be

much smaller than the one that could be generated without those restrictions, which trans-

lates into greater computational efficiency when carrying it out in practice.

For example, we can consider a new narrowing sequence starting from the one speci-

fied as an example in the previous section, as follows:

(𝑡1 ↓𝐸,𝐵) ↝
𝑙′

1→𝑟′
1

𝜎′
1 (𝑡′

2 ↓𝐸,𝐵) ↝𝑙′2→𝑟′2

𝜎′2 𝑡′3

that uses irreducibility constraints, so that if any of the two narrowing steps do not meet

any of the restrictions generated, the sequence would stop being generated, thus avoiding

the previous situation, always obtaining that 𝜎′1𝜎′2 =𝐵 (𝜎′1𝜎′2 ↓𝐸,𝐵). Specifically, when

performing the first step in the narrowing sequence, the irreducibility constraint

irr(𝑙′1𝜎′1 ↓𝐸,𝐵) would be generated, creating a list of irreducibility conditions to which

the constraint irr(𝑙′2𝜎′2 ↓𝐸,𝐵), which is calculated using the first irreducibility constraint,

would be added when performing the second step. Thanks to the completeness of the

narrowing, and considering the substitutions that were computed in the previous section,

we know that 𝜎′1𝜎′2 < (𝜎1𝜎2 ↓𝐸,𝐵), that is, the composition of the new computed sub-

stitutions is more general than the composition of the computed substitutions without ir-

reducibility restrictions, so using this method we can obtain an equivalent but more effi-

cient narrowing tree starting from the same initial term and taking into account the same

term objective.

We will be able to appreciate the differences between standard narrowing and canon-

ical narrowing in Section 5.4, where some practical examples are shown.

61

5.3. Implementation in Maude

To implement the canonical narrowing in Maude, we can use as a starting point the code

of the standard narrowing explained and shown throughout Chapter 4, and only some

modifications will be necessary, since in the design of the previous code we had in mind

that it would be necessary to implement this new algorithm. This is where the TermList

parameter that we have been ignoring until now (always using the constant empty, re-

gardless of the value the user indicated) comes into play.

To implement canonical narrowing in Maude, we need to have a list of irreducible

terms at each node in the reachability tree, containing the irreducibility constraints com-

puted so far on that branch. We have defined some auxiliary functions that will be useful

to carry out this process. Specifically, the variables, operators and equations shown in

Figure 57 have been defined.

var Rls : RuleSet . var Rl : Rule . vars RHS LHS : Term .

var Atts : AttrSet .

op getIrreducibilityTerm : Module Qid Substitution -> Term .

eq getIrreducibilityTerm(M, Q1, S1)

 = getTerm(metaReduce(M,applySub(getLhs(getRls(M), Q1),S1))) .

op getLhs : RuleSet Qid -> Term .

eq getLhs(Rls (rl LHS => RHS [Atts label(Q1)] .), Q1) = LHS .

Figure 57: Variables, operators and equations defined in the GET-CANONICAL-NARROWING-SOLUTIONS

module to obtain the irreducibility terms.

If we look at the variables, one of the RuleSet type, one of the Rule type, two of the

Term type (RHS and LHS, acronyms referring to the right-hand side and the left-hand side

of a rule respectively), and one of the AttrSet type are necessary.

The getLhs operator defined is responsible for obtaining the left-hand side of a rule

found in a received rule set, searching for said rule from an identifier (Qid) also indicated.

The identifier corresponds to the label of the searched rule. To define the behavior of the

operator, an equation has been defined that takes advantage of the commutative property

of the received rule set, and of the rule's attribute set, to quickly find the rule whose label

corresponds to the one indicated as the identifier. Once it finds the rule, it just returns its

left part, ignoring everything else.

eq (M, T1, N1, NARS1,

 {N2, {T2, Ty1, C1, Q1, S1, S2, Q2}, N3, 0, Q3, 1, TList1} ; NARS2,

 MaxDepth, N9, genNode)

 = (M, T1, N1 + 2, NARS1 ;

 {N2,

 {applySub(T2,

 rename((getVars(T2),getRangeVars(S1),getRangeVars(S2)),N9)),

 Ty1, C1, Q1,

 applySub(S1,

Narrowing and Unification in the Maude Programming Language

62

 rename((getVars(T2),getRangeVars(S1),getRangeVars(S2)),N9)),

 applySub(S2,

 rename((getVars(T2),getRangeVars(S1),getRangeVars(S2)),N9)),

 '$},

 N3, 0, Q3, 1, TList1},

 {N1,

 metaNarrowingApply(M, T1, TList1, Q3, N3 + 1),

 N3 + 1, 0, Q3, 1, TList1} ; NARS2 ;

 {N1 + 1,

 metaNarrowingApply(M,

 applySub(T2,

 rename((getVars(T2),getRangeVars(S1),getRangeVars(S2)),N9)),

 (TList1, getIrreducibilityTerm(M, Q1,

 applySub(S2,

 rename((getVars(T2),getRangeVars(S1),getRangeVars(S2)),N9)))),

 Q2, 0), 0, N2, Q2, 2,

 (TList1, getIrreducibilityTerm(M, Q1,

 applySub(S2,

 rename((getVars(T2),getRangeVars(S1),getRangeVars(S2)),N9))))},

 MaxDepth,

 N9 + getVarsNumber((getVars(T2),getRangeVars(S1),getRangeVars(S2))),

 unify) .

Figure 58: Example of using the getIrreducibilityTerm function in an equation from the GET-CANONICAL-

NARROWING-SOLUTIONS module.

Once we have the left-hand side of the rule of interest (which will be a term), we can

normalize it to obtain the irreducibility term. To do this, a getIrreducibilityTerm operator

has been defined with an associated equation that defines its behavior. The operator re-

ceives as parameters the module to be used to normalize, the identifier of the rule to be

searched (which will be used in the call to the getLhs view function), and a substitution,

the origin of which we will see later. A term is returned that corresponds to the desired

irreducibility term. The equation associated with the operator uses several predefined

functions in Maude's META-LEVEL module, such as the getRls function, which gets the

set of rules from a module, the metaReduce function, which reduces a term to its normal

form using the received module, and getTerm, to obtain the term from the structure of

type ResultPair returned by metaReduce. In addition, a call is made to the getLhs function

defined previously, to obtain the left part of the indicated rule and to be able to normalize

it, and a call to the applySub function, also defined previously, applying the substitution

received to the left part of the rule before to reduce it to normal form.

The calls to the getIrreducibilityTerm equation will be made from the equations that

generate the new nodes of the reachability tree, adding the irreducibility terms obtained

to the irreducibility terms lists on the fly. Figure 58 shows one of the modified equations

in which a call to the new function is made. Specifically, it is the equation that generates

the nodes in the first level of the reachability tree, but for the equations that define the

generation of deeper nodes, the modification is similar. We can see how when making a

new call to metaNarrowingApply to try to generate a new node, the list of irreducibility

63

terms is passed as a parameter, to which the irreducibility term calculated with the parent

node of the node to be generated is added on the fly, from the rule that was used to gen-

erate it. Furthermore, the irreducibility term is added to the list of irreducibility terms of

the node, thus ensuring that when generating the possible child nodes, the irreducibility

constraints computed so far in that branch are considered. Note that to do all this, it is

necessary that all the rules of the module must be labeled.

5.4. Comparison with the standard narrowing commands

Once we have implemented both the getNarrowingSolutions command, which encodes

the standard narrowing algorithm in Maude, and the getCanonicalNarrowingSolutions

command, which encodes the canonical narrowing algorithm in Maude, we can proceed

to the comparison of results using different practical examples. In addition, we can com-

pare both commands with the metaNarrowingSearch command, which also performs the

standard narrowing and is natively included in Maude, with its base encoded in C++.

op metaNarrowingSearch : Module Term Term Qid Bound

 Qid Nat -> NarrowingSearchResult? [special ...] .

op getNarrowingSolutions : Module Term Qid Term TermList Qid

 Bound Bound -> NarrowingResultList .

op getCanonicalNarrowingSolutions : Module Term Qid Term TermList Qid

 Bound Bound -> NarrowingResultList .

Figure 59: Comparison between the received parameters and the structure obtained from the new defined commands

and the metaNarrowingSearch command.

The first significant differences that we can find are in the parameters received by the

commands, as shown in Figure 59. While the metaNarrowingSearch command does not

allow the use of a list of terms, the getNarrowingSolutions and getCanonicalNarrowing-

Solutions commands do, although only the second command will use it to save and later

use the irreducibility constraints. Note that by receiving the list as an argument from the

beginning, we can manually indicate irreducibility constraints, which will be used when

generating the narrowing sequences, and to which new ones that are calculated on the fly

will be added. In addition, we can see that the predefined command in Maude receives at

the end a parameter (natural number) that is used to choose a solution number, and that is

the reason why the command returns a structure of type NarrowingSearchResult? which

returns a single solution (if it exists). The commands that we have defined in this work

do not use that parameter, since they have been prepared to return sets of solutions, at-

tending to an extra parameter of type Bound that allow the user to handle the maximum

number of solutions to calculate. The other parameter of type Bound is used to indicate

the maximum depth to generate from the reachability tree, and it also appears in the

metaNarrowingSearch command.

Let's consider the SUCC-PRED module defined in Figure 34, and the narrowing prob-

lem < 0, s(X) > ↝𝑅,𝐸∪𝐵
∗ < p(p(p(0))), s(Y) >. We can search for a solution by invoking

the metaNarrowingSearch command with the solution number 0, and also by invoking

the getNarrowingSolutions and getCanonicalNarrowingSolutions commands indicating

Narrowing and Unification in the Maude Programming Language

64

a maximum of one solution. In Figure 60 we can see the results obtained, noticing that

when searching for a single solution, the Maude native command has better performance,

followed by our canonical narrowing command, which can perform fewer rewrites than

our standard narrowing command because it ignores sequences that are not useful.

Figure 60: Comparison of commands looking for a solution for the mentioned narrowing problem by using the

SUCC-PRED module.

As we have commented, our commands allow to search for more than one solution in

a single execution. For example, if we ask them to return three solutions instead of one to

the previous problem, they will achieve it without practically increasing the necessary

rewrites and execution time, since they use the same reachability tree that was already

being generated, as shown in the Figure 61. Using the metaNarrowingSearch command,

it would be necessary to invoke it several times with different solution numbers.

Figure 61: Comparison of commands looking for three solutions for the mentioned narrowing problem by using the

SUCC-PRED module.

65

To make comparisons of our commands with the metaNarrowingSearch command to

find more than one solution, we can write a module that iteratively calls the command

using different solution numbers according to an added parameter that specifies the de-

sired number of solutions, as shown in Figure 62.

fmod META-NARROWING-SEARCH-SET is

 protecting META-LEVEL .

 sorts NarrowingSearchResultList NarrowingSearchResultListAux .

 subsort NarrowingSearchResult < NarrowingSearchResultList

 < NarrowingSearchResultListAux .

 op empty : -> NarrowingSearchResultList [ctor] .

 op metaNarrowingSearchSet : Module Term Term Qid Bound Qid Bound

 -> NarrowingSearchResultList .

 op metaNarrowingSearchSet : Module Term Term Qid Bound Qid Bound Nat

 -> NarrowingSearchResultListAux .

 op _;_ : NarrowingSearchResultList NarrowingSearchResultList

 -> NarrowingSearchResultList [assoc id: empty] .

 var M : Module . vars T1 T2 : Term . vars Q1 Q2 : Qid . var N : Nat .

 vars MaxDepth MaxSol : Bound . var NSRL : NarrowingSearchResultList .

 var NSR : NarrowingSearchResult .

 eq metaNarrowingSearchSet(M, T1, T2, Q1, MaxDepth, Q2, 0) = failure .

 eq metaNarrowingSearchSet(M, T1, T2, Q1, MaxDepth, Q2, MaxSol)

 = metaNarrowingSearchSet(M, T1, T2, Q1, MaxDepth, Q2, MaxSol, 0) [owise] .

 eq metaNarrowingSearchSet(M, T1, T2, Q1, MaxDepth, Q2, MaxSol, 0)

 = metaNarrowingSearch(M, T1, T2, Q1, MaxDepth, Q2, 0) ;

 metaNarrowingSearchSet(M, T1, T2, Q1, MaxDepth, Q2, MaxSol, 1) .

 eq metaNarrowingSearchSet(M, T1, T2, Q1, MaxDepth, Q2, unbounded, 0)

 = metaNarrowingSearch(M, T1, T2, Q1, MaxDepth, Q2, 0) ;

 metaNarrowingSearchSet(M, T1, T2, Q1, MaxDepth, Q2, unbounded, 1) .

 eq NSRL ; failure ;

 metaNarrowingSearchSet(M, T1, T2, Q1, MaxDepth, Q2, MaxSol, N) = NSRL .

 eq NSR ; metaNarrowingSearchSet(M, T1, T2, Q1, MaxDepth, Q2, 0, N) = NSR .

 eq NSR ; metaNarrowingSearchSet(M, T1, T2, Q1, MaxDepth, Q2, unbounded, N)

 = NSR ; metaNarrowingSearch(M, T1, T2, Q1, MaxDepth, Q2, N) ;

 metaNarrowingSearchSet(M, T1, T2, Q1, MaxDepth, Q2, unbounded, N + 1) .

 eq NSR ; metaNarrowingSearchSet(M, T1, T2, Q1, MaxDepth, Q2, s(MaxSol), N)

 = NSR ; metaNarrowingSearch(M, T1, T2, Q1, MaxDepth, Q2, N) ;

 metaNarrowingSearchSet(M, T1, T2, Q1, MaxDepth, Q2, MaxSol, N + 1) .

endfm

Figure 62: Module in Maude to make recursive calls to the metaNarrowingSearch command, allowing to specify the

maximum number of required solutions.

Narrowing and Unification in the Maude Programming Language

66

Note that it has been necessary to define a new type to save the list of solutions ob-

tained, as well as an auxiliary type to facilitate recursive calls. Additionally, a new sub-

type hierarchy had to be defined in which the least general type is the data structure re-

turned by the metaNarrowingSearch command as a solution.

Once we have defined the module, we can compare our two commands with Maude's

meta-level command using combinations of two parameters: the maximum depth of the

reachability tree and the maximum number of solutions. For example, if we consider the

same narrowing problem used so far in this section, and the same module (SUCC-PRED),

performing several executions with different values for the mentioned parameters, we

obtain the results shown in Figure 63.

Algorithm Max. depth Max. solutions Time Rewrites Solutions

Standard Narrowing unbounded 8 4 ms 1198 8

Standard Narrowing

(Native command)
unbounded 8 2 ms 158 8

Canonical Narrowing unbounded 8 3 ms 1182 8

Standard Narrowing 6 40 870 ms 208462 28

Standard Narrowing

(Native command)
6 40 94 ms 7758 28

Canonical Narrowing 6 40 18 ms 4499 19

Standard Narrowing 9 unbounded 47630 ms 2511280 28

Standard Narrowing

(Native command)
9 unbounded 4617 ms 304012 28

Canonical Narrowing 9 unbounded 39 ms 7146 19

Figure 63: Comparison of algorithms for the mentioned narrowing problem by using the SUCC-PRED module.

As expected, the command that defines the standard narrowing included natively in

Maude is always faster than our command that encodes the same algorithm, since having

its base encoded in C++, it needs to perform fewer rewriting steps. But our standard nar-

rowing command was intended to be a base that would allow modifications to, for exam-

ple, codify the canonical narrowing command, which does result in a significant improve-

ment in execution time and rewriting steps, especially when we generate very large reach-

ability trees. For example, in the last case presented in the previous figure, we can see

how an execution that takes almost 5 seconds in the standard narrowing command in

Maude becomes an execution of just around 40 milliseconds with the new canonical nar-

rowing command, drastically reducing the number rewrite steps required. In addition, it

manages to return fewer solutions, since as we have explained previously, it is capable of

discarding those narrowing sequences that do not have correspondence with any real re-

writing sequence.

67

Algorithm Max. depth Max. solutions Time Rewrites Solutions

Standard Narrowing unbounded unbounded 11974 ms 239202 84

Standard Narrowing

(Native command)
unbounded unbounded 1272 ms 30562 84

Canonical Narrowing unbounded unbounded 1180 ms 27553 21

Figure 64: Comparison of algorithms for the mentioned narrowing problem by using the XOR-PROTOCOL module.

We can also consider the module that specifies the properties of the XOR encryption

in Maude. Considering what is explained in the article used as a reference, we can use the

following narrowing problem to find out if there is a sequence within the protocol that

can reach the final state from the initial state (note that a reverse search is performed, just

like in Maude-NPA):

< [+(pk(a, n(b, r1))), -(pk(b, Y)), +(Y * n(b, r1)) | nil] [-(pk(a, X)),+(pk(b, n(a, r2))), -(X *

n(a, r2)) | nil] | inI(X * n(a, r2)), inI(pk(a, X)),inI(pk(b, Y)) >

↝𝑅,𝐸∪𝐵
∗

< [nil | +(pk(a, n(b, r1))), -(pk(b, Y)), +(Y * n(b, r1))] [nil | -(pk(a, X)), +(pk(b, n(a, r2))),

-(X * n(a, r2))] | nI(X * n(a, r2)), nI(pk(a, X)), nI(pk(b, Y)) >

The results obtained when executing the problem using the three commands without

any kind of restriction in the boundaries (that is, looking for all possible solutions) are

shown in Figure 64. On this occasion, once again and within expectations, our standard

narrowing command is slower than the Maude's one, but the command with which we

perform the canonical narrowing is still faster, although in this case the difference in ex-

ecution time is not as noticeable as before. However, now we find a very notable differ-

ence: while the standard narrowing finds 84 solutions, the canonical narrowing finds only

21, which means that the standard narrowing considers 63 solutions whose sequence does

not have correspondence with rewriting sequences, that is, 63 unreal sequences.

Finally, we can define a module that specifies the properties of the abelian groups and

using a transition rule similar to the one shown in the SUCC-PRED module in Figure 34.

This rewrite theory is much more complex when it comes to doing narrowing, since by

containing a greater number of variants, the first level of the reachability tree is already

very large in width, exponentially increasing the computation if we try to generate the

second level. The module specification to encode it is shown in figure 12.

mod ABELIAN-GROUP is

 sorts Int State .

 ops 0 1 : -> Int [ctor] .

 op _+_ : Int Int -> Int [assoc comm prec 30] .

 op <_,_> : Int Int -> State [ctor] .

 op -_ : Int -> Int .

 vars X Y Z : Int .

Narrowing and Unification in the Maude Programming Language

68

 eq X + 0 = X [variant] .

 eq X + (- X) = 0 [variant] .

 eq X + (- X) + Y = Y [variant] .

 eq - (- X) = X [variant] .

 eq - 0 = 0 [variant] .

 eq (- X) + (- Y) = -(X + Y) [variant] .

 eq -(X + Y) + Y = - X [variant] .

 eq -(- X + Y) = X + (- Y) [variant] .

 eq (- X) + (- Y) + Z = -(X + Y) + Z [variant] .

 eq - (X + Y) + Y + Z = (- X) + Z [variant] .

 rl [r1] : < (X + 1),Y > => < ((X + 1) + (- 1)),(Y + 1) > [narrowing] .

endm

Figure 65: Module that specifies the properties of abelian groups in Maude.

Therefore, if we use the narrowing problem < 0, (1 + X)> ↝𝑅,𝐸∪𝐵
∗ < (-1), Y > to invoke

the three commands, by generating only one level of the reachability tree, we will find

184 solutions, being the Maude native command slightly faster than our two commands.

But if we take a look at Figure 66, which shows the previous comparison of the commands

together with the comparison when trying to generate the second level of the reachability

tree, we can see how the two standard narrowing commands (even the Maude native one)

fail to terminate, while the canonical narrowing command, considering a smaller number

of branches, it does, and in a relatively short time.

Algorithm Max. depth Max. solutions Time Rewrites Solutions

Standard Narrowing 1 unbounded 349 ms 5359 184

Standard Narrowing

(Native command)
1 unbounded 302 ms 1420 184

Canonical Narrowing 1 unbounded 304 ms 5141 184

Standard Narrowing 2 unbounded ∞ ∞ -

Standard Narrowing

(Native command)
2 unbounded ∞ ∞ -

Canonical Narrowing 2 unbounded 1180 ms 8091 184

Figure 66: Comparison of algorithms for the mentioned narrowing problem by using the XOR-PROTOCOL module.

In this specific example, the number of solutions is the same in the first level of the

tree as in the second, but in others, the possibility of generating one more level of the tree

could show us new solutions, giving us a clear advantage in this type of problem. to the

canonical narrowing command over the other two.

69

Narrowing and Unification in the Maude Programming Language

70

71

6. Conclusions and future work

In this chapter we present the conclusions obtained from the work carried out and the

possible future work that can be based on it. Specifically, in Section 6.1 we will discuss

the conclusions, and in Section 6.2, the potential future work.

6.1. Conclusions

As a result of the completion of this work, we can confirm that Maude is presented as a

system with great potential for the definition of rewrite systems and their associated prob-

lems. For example, a very important characteristic of this system for this work is its rela-

tive ease in working with unification with axioms, something that other systems are not

capable of doing. Thanks to this, we have been able to write the modules in which we

implement standard narrowing and canonical narrowing.

Regarding the algorithms, we can say that the implementation of standard narrowing

using Maude's reflexive level does not make much sense on its own, since Maude already

includes a standard narrowing command that, having the base encoded in C++, is more

efficient and quicker. However, the implementation of this makes sense if the intention is

to create a basis for making modifications, improving the algorithm in different ways or

even defining another type of narrowing. In our case, we have managed to start from that

base to write a module that defines canonical narrowing in Maude, a narrowing that uses

irreducibility constraints with the intention of improving many of the computations of the

standard narrowing, through the early removal of irrelevant branches from the reachabil-

ity tree.

The canonical narrowing implemented turns out to be, in most cases, more efficient

and faster than the standard narrowing, even if we compare it with the standard narrowing

already included in Maude itself. Only if we are going to generate the first level of the

reachability tree is it usually more useful to use the standard narrowing algorithm, since

the same result is obtained by performing fewer rewriting steps. Once we pass that level,

thanks to the irreducibility conditions, the canonical narrowing will normally have to per-

form fewer rewriting steps. Thanks to this, the wider and deeper the reachability tree to

be generated, the greater the benefit of using canonical narrowing compared to standard

narrowing.

In the field of security protocols, the consideration of canonical narrowing can be very

useful, not only to improve performance when solving reachability problems, but also to

solve problems that the standard narrowing is not able to compute in a reasonable time.

This usually occurs when the standard algorithm generates reachability trees with very

large levels in amplitude, as we could see in the last example of the previous chapter.

For all this, we consider that the work carried out for this master thesis entails a notable

improvement over what is already implemented in Maude and may lead to improvements

in the language itself and the tools that use it, many of them, precisely for the analysis of

vulnerabilities in protocols.

Narrowing and Unification in the Maude Programming Language

72

6.2. Future work

The work carried out in this master thesis leaves a foundation that can be extended to

achieve even more sophisticated algorithms. The first task before us is to review and op-

timize some critical points of the implementation, managing to further maximize the per-

formance of the canonical narrowing command in Maude. Once the algorithm has been

reviewed to achieve the maximum possible performance, it must be borne in mind that

the canonical narrowing, despite being better than the standard narrowing and other var-

iants, is not perfect, and leaves room for some improvements that we discuss below.

Currently the algorithm performs a search of all possible unifiers to perform each nar-

rowing step, but there will be many cases in which some of the unifiers are contained in

others that may be more general. This is where the concept of the most general unifiers

or MGUs [8] comes into play. If we make the algorithm calculate the most general unifier

at each step, the unifiers that it subsumes can be ignored, and although computing time is

wasted in that process, it will be profitable later because fewer nodes will be generated at

the next level of the tree. Also, the solutions returned by the algorithm will be much more

accurate. Maude already includes this mechanism for standard narrowing, although not

in the meta-level. There is a variant of the vu-narrow command, called filtered vu-narrow,

which computes only the MGUs instead of all the unifiers, and the comparison between

both commands is a clear proof of the increase in performance that its use implies. If this

functionality were implemented using canonical narrowing, the performance and effi-

ciency improvement of the algorithm would be even better.

Finally, another interesting improvement for the future may be the union of the unifi-

cation with axioms and variants with satisfiability modulo theories (SMT) solving, that is,

in our case, canonical narrowing with SMT solving. Currently there are several defini-

tions of conditional narrowing in which the conditions are precisely SMT solving rules,

but none of them have been put into practice, that is, there is no implementation. Being

able to unify the two areas at a practical level, using canonical narrowing would represent

a notable improvement in this field.

If we put all the above together, we could achieve a canonical narrowing algorithm

(which is an important improvement over standard narrowing) that takes into account

only the MGUs, further improving the performance and precision of the solutions, and

that also allows the use of SMT solving rules as conditions that serve as a guide for exe-

cution.

73

References

[1] Alpuente, M., Ballis, D., Escobar, S., & Sapiña, J. (2019). Retrieved July 24,

2021. Narval. Symbolic Analysis of Maude Theories with Narval. http://safe-

tools.dsic.upv.es/narval/

[2] Basin, D., Cremers, C., Dreier, J., Meier, S., Sasse, R., & Schmidt, B. (n.d.).

Tamarin Prover. Tamarin Prover. Retrieved September 9, 2021, from

http://tamarin-prover.github.io/

[3] Cholewa, A., Meseguer, J., & Escobar, S. (2007, February 7). Variants of variants

and the finite variant property. The Grainger College of Engineering.

https://courses.engr.illinois.edu/cs576/sp2017/readings/07-feb-07/cholewa-

meseguer-escobar-variants.pdf

[4] Clavel, M., Durán, F., Eker, S., Escobar, S., Lincoln, P., Martí-Oliet, N.,

Meseguer, J., Rubio, R., & Talcott, C. (2020, October). Maude Manual (Version

3.1). The Maude System. http://maude.lcc.uma.es/maude31-manual-html/maude-

manual.html

[5] Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., &

Talcott, C. (2007). All About Maude - A High-Performance Logical Framework.

Springer Publishing. Google Scholar

[6] Durán, F., Eker, S., Escobar, S., Martí-Oliet, N., Meseguer, J., Rubio, R., &

Talcott, C. (2020). Programming and symbolic computation in Maude. Journal of

Logical and Algebraic Methods in Programming, 110, 100497.

https://doi.org/10.1016/j.jlamp.2019.100497

[7] Escobar, S., & Meseguer, J. (2019). Canonical Narrowing with Irreducibility

Constraints as a Symbolic Protocol Analysis Method. Foundations of Security,

Protocols, and Equational Reasoning, 15–38. https://doi.org/10.1007/978-3-030-

19052-1_4

[8] Escobar, S., & Sapiña, J. (2019). Most General Variant Unifiers. Electronic

Proceedings in Theoretical Computer Science, 306, 154–167.

https://doi.org/10.4204/eptcs.306.21

[9] Maude-NPA Protocols. (n.d.). Maude-NPA: Repository of Protocol Specifications

in Maude-NPA. Retrieved September 9, 2021, from

http://personales.upv.es/sanesro/Maude-NPA_Protocols/index.html

[10] Meseguer, J. (2012). Twenty years of rewriting logic. The Journal of Logic and

Algebraic Programming, 81(7–8), 721–781.

https://doi.org/10.1016/j.jlap.2012.06.003

[11] Meseguer, J. (2021). Symbolic Computation in Maude: Some Tapas. Logic-Based

Program Synthesis and Transformation, 3–36. https://doi.org/10.1007/978-3-030-

68446-4_1

http://safe-tools.dsic.upv.es/narval/
http://safe-tools.dsic.upv.es/narval/
http://tamarin-prover.github.io/
https://courses.engr.illinois.edu/cs576/sp2017/readings/07-feb-07/cholewa-meseguer-escobar-variants.pdf
https://courses.engr.illinois.edu/cs576/sp2017/readings/07-feb-07/cholewa-meseguer-escobar-variants.pdf
http://maude.lcc.uma.es/maude31-manual-html/maude-manual.html
http://maude.lcc.uma.es/maude31-manual-html/maude-manual.html
https://scholar.google.com/scholar_lookup?title=All%20About%20Maude%20-%20A%20High-Performance%20Logical%20Framework&author=M..%20Clavel&author=F..%20Dur%C3%A1n&author=S..%20Eker&author=P..%20Lincoln&author=N..%20Mart%C3%AD-Oliet&author=J..%20Meseguer&author=C..%20Talcott&publication_year=2007
https://doi.org/10.1016/j.jlamp.2019.100497
https://doi.org/10.1007/978-3-030-19052-1_4
https://doi.org/10.1007/978-3-030-19052-1_4
https://doi.org/10.4204/eptcs.306.21
http://personales.upv.es/sanesro/Maude-NPA_Protocols/index.html
https://doi.org/10.1016/j.jlap.2012.06.003
https://doi.org/10.1007/978-3-030-68446-4_1
https://doi.org/10.1007/978-3-030-68446-4_1

Narrowing and Unification in the Maude Programming Language

74

[12] The AKiSs Team. (n.d.). AKiSs. AKiSs. Retrieved September 9, 2021, from

http://akiss.gforge.inria.fr/

[13] The Maude Team. (n.d.). Maude 3.1 Manual Book Examples. Retrieved July 26,

2021, from http://maude.cs.illinois.edu/w/images/4/4f/Maude-3.1-manual-book-

examples.zip

[14] The Maude Team. (n.d.-b). Maude Tools: Maude-NPA - The Maude System.

Maude. Retrieved September 9, 2021, from

http://maude.cs.illinois.edu/w/index.php/Maude_Tools:_Maude-NPA

http://akiss.gforge.inria.fr/
http://maude.cs.illinois.edu/w/images/4/4f/Maude-3.1-manual-book-examples.zip
http://maude.cs.illinois.edu/w/images/4/4f/Maude-3.1-manual-book-examples.zip
http://maude.cs.illinois.edu/w/index.php/Maude_Tools:_Maude-NPA

