Tabla de Contenido

CAP	ÝTULO 1: INTRODUCCIÓN	1
1.1.	PRODUCCIÓN CIENTÍFICA DEL PROYECTO DE INVESTIGACIÓ	N5
	1.1.1. Artículos publicados:	5
	1.1.2. Artículos aceptados:	6
	1.1.3. Artículos enviados y en estado de revisión:	6
1.2.	ESTRUCTURA DE LA MEMORIA	6
1.3.	BIBLIOGRAFÍA	. 8
САР	ÝTULO 2: ESTADO DEL ARTE	.11
2.1.	HUMO DE SÍLICE	13
	2.1.1. Obtención del humo de sílice	14
	2.1.2. Normativas	17
	2.1.3. Efecto del Humo de sílice en sistemas basados en cement	to
	Pórtland	19
	2.1.4. Humo de sílice densificado (DSF)	21
2.2.	NANO-SÍLICE Y MICRO-SÍLICE COMO ADICIONES ACTIVAS E	Ν
	SISTEMAS CONGLOMERANTES DE CEMENTO PÓRTLAND	25
2.3.	SISTEMAS CONGLOMERANTES BASADOS EN LA ACTIVACIÓN	1
	ALCALINA DE MINERALES NATURALES, DESECHOS O SUB-	
	PRODUCTOS INDUSTRIALES.	26
	2.3.1. Activador Alcalino	30
	2.3.2. Precursores de aluminosilicatos	32
	2.3.3. Factores que afectan el desempeño de sistemas	
	geopoliméricos	36
2.4.	CONCLUSIONES	38
2.5.	BIBLIOGRAFÍA	39
CAP	ÍTULO 3: OBJETIVOS	.53
3.1.	OBJETIVO GENERAL	53
3.2.	OBJETIVOS ESPECÍFICOS	53

CAP	ÍTULO 4: METODOLOGÍA EXPERIMENTAL	55
4.1.	TÉCNICAS EXPERIMENTALES DE CARACTERIZACIÓN EN	
	MORTEROS Y HORMIGÓN	55
	4.1.1. Determinación de la Resistencia a Compresión	55
	4.1.2. Porosimetría por Intrusión de Mercurio (MIP)	56
4.2.	TÉCNICAS EXPERIMENTALES DE CARACTERIZACIÓN	
	EMPLEADAS EN LAS MATERIAS PRIMAS	57
	4.2.1. Granulometría Láser	57
	4.2.2. Determinación del Potencial Z en suspensiones	58
4.3.	TÉCNICAS EXPERIMENTALES DE CARACTERIZACIÓN EN	
	PASTAS	59
	4.3.1. Análisis Termogravimétrico (TGA/DTG)	59
	4.3.2. Difracción de Rayos X (XRD)	60
	4.3.3. Microscopia Electrónica de Barrido y Análisis de Electron	es
	Secundarios (SEM/EDS)	61
	4.3.4. Microscopia Electrónica de Transmisión (TEM)	62
	4.3.5. Infrarrojo por transformada de Fourier (FTIR)	63
	4.3.6. Florescencia de Rayos X (XRF)	63
	4.3.7. Resonancia Magnética Nuclear (NMR)	64
4.4.	PROGRAMA EXPERIMENTAL	65
4.5.	PROGRAMA EXPERIMENTAL EN EL ESTUDIO DE SISTEMAS	
	TRADICIONALES DE CEMENTO PORTLAND	77
	4.5.1. Activación del Humo de Sílice mediante tratamientos de	
	Sonicación	78
	4.5.2. Evaluación del humo de sílice sonicado como adición acti	va
	en conglomerantes tradicionales basados en cemento	
	Pórtland	82
	4.5.3. Comparación de la eficacia del Humo de Sílice Densificad	0
	y Humo de Sílice Sonicado con micro- y nanoadiciones	
	basadas en SiO ₂ .	83
4.6.	PROGRAMA EXPERIMENTAL EN EL ESTUDIO DE SISTEMAS I	ЭE
	CENIZA VOLANTE ACTIVADA ALCALINAMENTE	84
4.7.E	BIBLIOGRAFIA	86
CAP	ITULO 5: INCREMENTO DEL GRADO DE REACTIVIDAD DEL	

CAPITULO 5: INCREMENTO DEL GRADO DE REACTIVIDAD DEL	
HUMO DE SÍLICE MEDIANTE TRATAMIENTOS DE SONICACIÓN.	
ESTUDIOS MICROESTRUCTURALES	89
5.1. COMPARACIÓN DEL EFECTO DEL TRATAMIENTO DE	
SONICACIÓN EN DIFERENTES TIPO DE HUMO DE SÍLICE	90
5.1.1. Metodología Experimental	90

5.1.2. Resultados y Discusión	91
5.2. ESTUDIO DE PASTAS DE CEMENTO CON HUMO DE SÍI	LICE
SONICADO	107
5.2.1. Metodología Experimental	108
5.2.2. Resultados y Discusión	110
5.3. ESTUDIO DEL EFECTO DEL CONTENIDO DE PARTICUI	LAS SUB-
MICROMETRICAS EN EL DESEMPEÑO DEL HUMO DE S	SILICE
SONICADO	124
5.3.1. Metodología Experimental	125
5.3.2. Resultados y Discusión: Resistencias Mecánicas	128
5.4. CONCLUSIONES	129
5.5. BIBLIOGRAFIA	130

CAP	ÍTULO 6: EFECTO DE LA INCORPORACIÓN DE HUMO DE
SÍLI	CE SONICADO COMO ADICIÓN PUZOLÁNICA EN MORTEROS DE
CEM	IENTO PÓRTLAND137
6.1.	EFECTO DE LA RELACIÓN ÁRIDO/BINDER EN MORTEROS
	ADICIONADOS CON HUMO DE SÍLICE DENSIFICADO Y HUMO
	DE SÍLICE SONICADO 139
	6.1.1. Metodología Experimental 139
	6.1.2. Resultados y Discusión 142
6.2.	COMPARACIÓN DE LA EFICACIA ENTRE EL HUMO DE SÍLICE
	DE DIFERENTE DISTRIBUCIÓN GRANULOMÉTRICA CON NANO
	Y MICROSILICE COMO ADICIONES PUZOLÁNICAS EN
	SISTEMAS DE CEMENTO PÓRTLAND 145
	6.2.1. Metodología Experimental 145
	6.2.2. Resultados y Discusión 149
6.3.	COMPORTAMIENTO DE MORTEROS ADICIONADOS CON
	MATERIALES BASADOS EN SÍLICE CUANDO SON EXPUESTOS
	A MEDIOS AGRESIVOS 155
	6.3.1. Materiales y preparación de los morteros 156
	6.3.2. Programa Experimental 157
	6.3.3. Resistencia a compresión 157
	6.3.4. Ciclos de hielo-deshielo 158
	6.3.5. Inmersión en una solución de cloruro amónico 166
6.4.	CONCLUSIONES 181
6.5.	BIBLIOGRAFÍA 182

CAPÍTULO 7: INCORPORACIÓN DE HUMO DE SÍLICE SONICADO	EN
HORMIGONES CONVENCIONALES Y DE ALTAS PRESTACIONES	189
7.1. OPTIMIZACIÓN DEL PROCESO DE SONICACIÓN DE HUMO D	Е
SÍLICE CON LA UTILIZACIÓN DE UNA SONDA INDUSTRIAL D	E
ULTRASONIDOS	190
7.1.1. Prueba 1: Efecto de la Presión en la Cámara de	
Sonicación	194
7.1.2. Prueba 2: Efecto de la Relación Humo de Sílice / Agua . 1	196
7.1.3. Prueba 3: Efecto del Volumen de Suspensión a Sonicar 2	200
7.1.4. Prueba 4: Efecto de la Potencia durante el Tratamiento d	.e
Sonicación	202
7.2. APLICACIÓN DE TRATAMIENTOS DE SONICACIÓN A LAS	
ADICIONES PUZOLÁNICAS PARA INCREMENTAR SU GRADO	DE
DISPERSIÓN	205
7.2.1. Metodología Experimental	206
7.2.2. Resultados y Discusión	206
7.3. EFECTO DEL TIPO DE HUMO DE SÍLICE SOBRE LA	
RESISTENCIA MECÁNICA DE HORMIGONES	207
7.3.1. Metodología Experimental2	207
7.3.2. Resultados y Discusión2	212
7.4. EFECTO DEL CONTENIDO DE PARTÍCULAS	
SUBMICROMÉTRICAS DEL HUMO DE SÍLICE SONICADO EN	LA
RESISTENCIA DE HORMIGONES DE ALTO DESEMPEÑO2	216
7.4.1. Metodología Experimental	216
7.4.2. Resultados y Discusión	218
7.5. EFECTO DEL INCREMENTO EN EL GRADO DE SUSTITUCIÓN	
DE CEMENTO POR HUMO DE SÍLICE	219
7.5.1. Metodología Experimental	220
7.5.2. Resultados y Discusión2	222
7.6. ESTUDIO DE LA ZONA DE TRANSICIÓN MATRIZ	
CEMENTICIA/ÁRIDO EN SISTEMAS CONSTITUIDOS CON HUI	MO
DE SÍLICE2	224
7.6.1. Metodología Experimental	224
7.6.2. Resultados y Discusión2	226
7.7. CONCLUSIONES	236
7.8. BIBLIOGRAFIA.	238

CEN	ÍTULC) 8: OPTIMIZACIÓN DE SISTEMAS GEOPOLIMÉRICOS I	ЭE
DIGI	IZA VU TÑO	OLANTE A PARTIR DE ALGUNOS CRITERIOS DE	043
8 1 F		O DEL CONTENIDO DE SIO, EN SISTEMAS	243
0.11	TECI TEODO	UIMERICOS BASADOS EN CENIZA VOI ANTE	245
Ċ		Síntesis y prenoroción de especímenes	245
	8 1 0	Pesultados y Discusión	240
80	CON(240
0.4. 8 3	DIDI		200
0.5.	DIDL		201
САР	ÍTULC	9: EFICACIA DE ACTIVADORES ALCALINOS BASADOS	3
EN I	DIFER	ENTES FUENTES DE SÍLICE	267
9.1	EFEC	TO DE LA NATURALEZA DE LA FUENTE DE SÍLICE EN	
	SISTE	EMAS GEOPOLIMÉRICOS BASADOS EN CENIZA	
	VOLA	NTE	269
	9.1.1	Geosíntesis y preparación de los especímenes	269
	9.1.2	Resultados: Resistencia a Compresión	271
9.2	EFEC	TO DEL CONTENIDO DE AGUA DE AMASADO EN LA	
	RESIS	STENCIA A COMPRESIÓN DE SISTEMAS	
	GEOF	POLIMÉRICOS	273
	9.2.1	Geosíntesis y preparación de los especímenes	275
	9.2.2	Análisis de resultados	277
9.3N	IATUR	ALEZA DEL ION ALCALINO	280
	9.3.1	Geosíntesis y preparación de los especímenes	281
	9.3.2	Resultados y Discusión.	283
9.4E	VALU	ACIÓN MICROESTRUCTURAL	291
	9.4.1	Difracción de Rayos X (XRD)	292
	9.4.2	Análisis Termogravimétrico (TGA/DTG)	299
	9.4.3	Microscopia electrónica de barrido con análisis de energ	jia
		dispersivas (SEM/EDS)	303
9.5	EVAI	LUACIÓN DE ALGUNAS PROPIEDADES DE	
	DURA	ABILIDAD	311
	9.5.1	Metodología Experimental y Preparación de	
		especímenes	312
	9.5.2	Ciclos de Hielo/deshielo	313
	9.5.3	Resistencia a la Inmersión en Cloruro amónico	319
9.6.	CON	CLUSIONES	335
9.7.	BIBL	IOGRAFÍA	336

- **ANEJO 1:** Propiedades Mecánicas de Morteros de Ceniza Volante Activada Alcalinamente
- **ANEJO 2:** Increase of the Reactivity of Densified Silica Fume by Sonication Treatment
- **ANEJO 3:** Structure of Portland Cement Pastes Blended with Sonicated Silica Fume
- **ANEJO 4:** Effect of nanosilica-based activators on the performance of an alkali-activated fly ash

Índice de Tablas

Tabla 2.1 Exigencias fisicoquímicas para la utilización de humo desílice como adición puzolánica18
Tabla 2.2. Factores que determinan la geopolimerización
Tabla 2.3 Especificaciones químicas y físicas recomendadas por la UNE-EN 450-1:2006 para cenizas volantes
Tabla 4.1 Condiciones experimentales empleadas en el análisis termogravimétrico en la Universitat Politècnica de València60
Tabla 4.2 Especificaciones físico-químicas de los humos de Sílice67
Tabla 4.3 Especificaciones técnicas de las nano-adiciones (CDS) y la microsilica (MS)
Tabla 4.4 Cementos Pórtland empleados en la preparación de lossistemas conglomerantes tradicionales
Tabla 4.5 Composición química de la ceniza volante73
Tabla 4.6 Distribución granulométrica y características físicas de losáridos empleados en la fabricación de hormigones.77
Tabla 4.7 Especificaciones técnicas del sistema 2 de sonicación81
Tabla 4.8 Composición química del hidróxido de sodio (NaOH) y el hidróxido de potasio (KOH)84
Tabla 5.1 Percentiles d(0.10); d(0.50) y d(0.90) de las distribución de tamaño de partícula para el SSF y SNSF94
Tabla 5.2 Potencia zeta y conductividad de las suspensiones sonicadasdurante dos y ocho minutos96

sílice sin tratar (DSF y NDSF), el humo de sílice sometido al

tratamiento de sonicación (SSF y SNSF) y la pasta referencia sin adición mineral (OPC)......102

Tabla	5.4	Resultados	del	análisis	termogravimétrico	en	las	pastas
h	idrat	tadas con 28	y 60) días de	curado			113

Tabla 7.1 Condiciones experimentales para la optimización del
tratamientos de sonicación en la sonda de ultrasonidos industrial
Heilscher Ultrasonic193

- Tabla 7.2 Diámetro medio de partícula (D[4,3]), volumen de partículas sub-micrométricas y percentiles (d(0.10), d(0.50) y d(0.90)) de tratamientos de sonicación con diferentes valores de presión. 196

- Tabla 7.6 Condiciones experimentales de la sonicación de lasadiciones puzolánicas.208
- Tabla 7.7 Condiciones experimentales empleadas en el tratamiento de
sonicación de suspensiones de humo de sílice para la producción
de hormigones normales.210
- Tabla 7.8 Contenido de partícula sub-micrométricas y percentiles d(0.10), d(0.50) y d(0.90) de los diferentes tipos de humo de sílice después de un tratamiento de sonicado durante 30 minutos. 210

 Tabla 7.9. Especificaciones de los hormigones producidos con los diferentes humos de sílice
 211

- Tabla 7.10 Volumen de poros permeables en hormigones con 28 díasde curado y % de absorción215
- Tabla 7.12 Resultados de ADL del humo de sílice de Elkem sometido aun tratamiento de sonicación217

- Tabla 8.1 Condiciones de activación para la preparación de losmorteros de ceniza volante con diferente contenido de sílice.Dosificación de los morteros247
- Tabla 8.2 Bandas características de minerales silicoaluminosos y
materiales activados alcalinamente detectadas a través de
FTIR......254
- Tabla 9.1 Composición química y características físicas de las fuentes de sílice para la producción de los activadores alternativos..... 269
- Tabla 9.3 Criterios de dosificación de las mezclas de ceniza volanteactivada con los diferentes fuentes de sílice y contenido de aguade amasado.276
- Tabla 9.5 Descripción de las mezclas de ceniza volante activadas condiferentes fuentes de SiO2 y ion alcalino.282
- Tabla 9.6 Resistencia a Compresión de los morteros de ceniza volanteactivados con activadores de diferente tipo y naturaleza.283

- Tabla 9.12 Resistencia a compresión de los morteros de ceniza volante activada alcalinamente expuestos a ciclos de hielo/deshielo... 318

- Tabla 9.15 Resistencia a compresión de los morteros geopoliméricosinmersos en una solución de cloruro amónico.324
- Tabla 9.16 Cambio de resistencia de los morteros de ceniza volanteactivada alcalinamente e inmersos en una solución de cloruroamónico en porcentaje.326
- Tabla 9.17 Valores de resistencia a compresión de los morteros de cemento Pórtland sumergidos en una solución de NH₄Cl...... 327

Índice de Figuras

Figura 2.1 Emisión de humo de sílice de una industria de ferrosilicio en Estados Unidos antes de las regulaciones medi-ambientales durante los años setenta14
Figura 2.2 Esquema del horno de arco eléctrico para la producción de silicio metálico
Figura 2.3 Evidencia de la presencia de aglomerados de SF presente en las pastas de cemento hidratado22
Figura 2.4 Modelo descriptivo de la activación alcalina de cenizas volantes
Figura 4.1 Prensas universales para la realización de ensayos mecánicos
Figura 4.2 Porosímetro de Mercurio. Autopore IV 950057
Figura 4.3 Granulometría por difracción láser (ADL)58
Figura 4.4 Determinación del Potencial Z58
Figura 4.5 Análisis termogravimétrico59
Figura 4.6 Difractómetro de Rayos X
Figura 4.7 Microscopio electrónico de barrido
Figura 4.8 Espectrómetro de Infrarrojo Mattson Genesis II63
Figura 4.9 Espectrómetro de rayos X Philips MAGIX PRO, modelo PW240064
Figura 4.10 Resonancia Magnética Nuclear65
Figura 4.11 Esquema general del programa experimental66
Figura 4.12 Aglomerados de partículas de los humos de sílice68
Figura 4.13 Difracción de rayos X de los humos de sílice69
Figura 4.14 Microfotografías de las nanoadiciones A. Microsilica y B. CDS-10071

Figura	4.15	Efecto	del	tratar	niento	de	molien	da	sobre	la	distr	ibuci	ión
d	e tama	año de	part	ícula	en la	ceni	za vola	nte	CVO:	Ce	niza	volaı	nte
01	riginal	sin tra	tam	iento.	CVM:	Cen	iza Vol	ant	e Moli	da.			74

- Figura 4.17 Difracción de rayos X de la ceniza volante 75

- Figura 4.20 Tratamiento de Sonicación Sistema MISONIX...... 80
- Figura 4.21 Sistema de Sonicación 2. GMBH UIP 4000 80
- Figura 4.22 Diagrama del sistema 2 de sonicación 82

- Figura 5.5 Eficacia del tratamiento de sonicación para el humo de sílice densificado......104

- Figura 5.7 Microscopia electrónica de barrido (SEM/EDS) en pastas con HSS-ELK después del tratamiento de sonicación. A. Imagen de electrones secundarios de micro-partículas de humo de sílice dispersas homogéneamente. B. Imagen de electrones retrodispersados y análisis EDS de la pasta SSF.......107
- Figura 5.9 Difracción de rayos X de la pasta referencia (OPC) y pastas con humo de sílice densificado (DSF-ELK) y humo de sílice sonicado (SSF-ELK) con (A) 28 y (B) 60 días de curado......111
- Figura 5.11 Representación esquemática de cadenas de silicato basadas en el modelo dreierkette para la estructura del C-S-H [27]......115

- Figura 5.14 Imágenes de microscopia electrónica de barrido de pastas con 28 días de curado. (A) SSF-ELK; (B) DSF-ELK y mapeo de Ca y Si a través de análisis de EDX......123
- Figura 5.15 Cambio en la distribución de tamaño de partícula en suspensiones de humo de sílice densificado de ELKEM (DSF-ELK) con una relación s/l de 0,40 por efecto de un tratamiento de

- Figura 6.1 Evolución del cambio de distribución del tamaño de partícula por efecto del tratamiento de sonicación a humos de sílice con diferente grado de aglomeración......140
- Figura 6.2 Resistencia a compresión de morteros adicionados con humo de sílice en su estado densificado y humo de sílice sonicado con diferentes relaciones árido/conglomerante......142
- Figura 6.3 Índice de actividad resistente de morteros de cemento Portland adicionados con humo de sílice. Morteros con una relación árido conglomerante de A. 1:2; y B. 1:4144
- Figura 6.4 Índice de actividad resistente para la valoración del tratamiento de sonicación.....145
- Figura 6.6 Resistencia a compresión de morteros con una sustitución de cemento Portland por diferentes adiciones activas basadas en SiO₂ del A. 5%; B. 10% y C. 20%......149

- Figura 6.11 Deterioro de los morteros A. referencia de OPC; morteros adicionados con B. micro-sílice (MS); C. con humo de sílice densificado, (DSF) y D. humo de sílice sonicado (SSF) después de haber sido sometidos a 0 y 100 ciclos de hielo/deshielo..........163
- Figura 6.12 Cambio en la resistencia a compresión de morteros adicionados con micro-sílice (MS), humo de sílice densificado (DSF), humo de sílice sonicado (SSF) y morteros referencia (OPC) expuestos a 100 ciclos de hielo/deshielo......165
- Figura 6.13 Pérdida de peso de morteros adicionados con humo de sílice densificado (DSF), sonicado (SSF) y micro-sílice (MS), así como morteros referencia OPC cuando son inmersos en una solución de NH₄Cl con una concentración 1M por 60 días170
- Figura 6.14 Pérdida de resistencia de morteros adicionados con humo de sílice densificado (DSF), sonicado (SSF) y micro-sílice (MS), así como morteros referencia OPC cuando son inmersos en una solución de NH₄Cl con una concentración 1M por 60 días171
- Figura 6.16 Reducción en la alcalinidad del poro en los morteros como consecuencia del ataque químico con NH₄Cl.173
- Figura 6.17 Imágenes de microscopia electrónica de barrido en pastas inmersas en una solución de NH₄Cl 1M durante 30 días.175
- Figura 6.18 Análisis EDX de la pasta DSF inmersa en NH₄Cl durante 30 días......177
- Figura 6.20 Análisis EDX de las pasta SSF inmersa durante 30 días en una solución 1M de NH₄Cl......179

Figura 7.1 Sonicador industrial de Heilscher Ultrasonics Tech...... 191

- Figura 7.4 Efecto de la relación humo de sílice / agua en la eficacia del proceso de sonicación: Distribución del tamaño de partícula .. 198

- Figura 7.9 Resistencia a Compresión de hormigones adicionados con (A) humo de sílice densificado y (B) humo de sílice sonicado...213

- Figura 8.1 Efecto del contenido de Sílice en la solución activante sobre la resistencia a compresión de morteros de ceniza volante origíginal (CVO) y ceniza volante molida (CVM) con 48h de curado a 65 °C.....249

- Figura 8.5 Microscopia Electrónica de Barrido de sistemas geopoliméricos de CV activada con NaOH (12N0S)259

Figura 9.10 Análisis termogravimétrico (DTG) de pastas activadas de ceniza volante y diferentes tipo de activadores alcalinos. 302

- Figura 9.15 Microfotografías de microscopia electrónica de barrido y análisis de energías dispersivas (SEM/EDS) de pastas activadas con A. Humo de sílice (DSF-K) y B. Nano-sílice (CDS300-K).... 311

Figura 9.21 Resistencia a compresión de morteros geopoliméricos
producidos con diferentes tipos de activador alcalino e inmersos
en cloruro amónico 325
Figura 9.22 Difracción de rayos X en pastas geopolimericas producidas con S-K y DSFK
Figura 9.23 Difracción de rayos X en pastas geopolimericas producidas con MS-K y CSD300-K
Figura 9.24 Termogravimetría de pastas geopoliméricas producidas con diferentes tipos de activador alcalino e inmersas en cloruro amónico
Figura 9.25 Micrografías de electrones retrodispersados en pastas de ceniza volante después de ser inmersas en una solución de NH ₄ Cl por 60 días
Figura 9.26 SEM/EDS en la pastas CDS300-K después de haber sido inmersas en una solución de NH ₄ Cl por 60 días