2 UNIVERSITAT ﬁ
EEEEN

)F) POLITECNICA
DE VALENCIA Escuela Técnica Superior de Ingenieria del Disefio

UNIVERSITAT POLITECNICA DE VALENCIA

Escuela Técnica Superior de Ingenieria del Diseio

WEARABLE SYSTEM BASED ON INERTIAL MEASUREMENT
UNIT AND COMMUNICATION WITH MOBILE DEVICE TO
QUANTIFY THE SHOOTING PERFORMANCE DURING
BASKETBALL PRACTICE

TRABAJO FINAL DEL
Grado en Ingenieria Electronica Industrial y Automatica

REALIZADO POR
Carlos Blasco Andreu

TUTORIZADO POR
Salvador Coll Arnau

CURSO ACADEMICO: 2020/2021

Acknowledgements

I would like to thank everyone who has made these four years at the UPV a period of continuous
learning, self-improvement and the desire to continue learning.

First of all, I would like to thank the teachers I have had during this period because without
them it would not have been possible to get this far. I would like to make a special mention to
my tutor, Salvador, for guiding me and helping me during the course of the project. Thanks also
to my colleagues in the ARA group, for all the little moments lived together inside and outside
the classroom that I will always remember.

Secondly, I would like to thank Pranav Manoj for helping me to learn and comprehend the Flutter
programming language when I felt stuck with the mobile app coding. His help was life-saving.

Thirdly, I would like to stress that I would not be here without the support and effort of my
family. Thanks to my brother Javier who was the tester of the app and performed the shots to
acquire the data. I also feel very grateful for all the encouragement from my parents during the
process of making the project.

Finally, I would also like to mention my friends who supported me at all times, tried to keep me
positive and trusted in me when I didn’t even trust myself in finishing the project on time.

Carlos Blasco Andreu

Abstract

The goal of the project is to develop a wearable system devoted to measure the free throw shooting
performance while practicing basketball. The device will obtain the required information using
acceleration and orientation sensors. The data will be stored in a smartphone using Bluetooth
Low Energy (BLE) and could be downloaded to a personal computer. The project is based on
the MikroE Hexiwear development kit, which will be paired to the phone by means of an ad hoc
application.

Keywords: Basketball, Inertial Measurement Unit, IMU, BLE, Wearable, Hexiwear, MikroE,
Flutter.

iii

Resumen

El objetivo del trabajo consiste en el desarrollo de un sistema wearable para la medida del
rendimiento en el tiro libre durante la préctica de baloncesto. El dispositivo obtendra la infor-
macién necesaria gracias a sensores de aceleraciéon y orientacién. Los datos se almacenaran en
un dispositivo movil mediante comunicacion Bluetooth Low Energy (BLE) y podran descargarse
a un ordenador personal. El proyecto se basa en el kit de desarrollo MikroE Hexiwear, el cual se
emparejaré al teléfono empleando una aplicacién disenada ex profeso.

Palabras Clave: Baloncesto, Unidad de medida inercial, IMU, BLE, Wearable, Electrénica
Vestible, Hexiwear, MikroE, Flutter.

Resum

L'objectiu del treball consisteix en el desenvolupament d'un sistema wearable per la mesura del
rendiment en el llancament de tirs lliurats en la practica de basket. El dispositiu obtindra la
informaci6 necessaria gracies a sensors d'acceleracio i orientacio. Les dades s'emmagatzemaran en
un dispositiu mobil mitjan¢ant comunicacié Bluetooth Low Energy (BLE) i podran descarregar-
se a un ordinador personal. El projecte es basa en el kit de desenvolupament MikroE Hexiwear,

el qual s'emparellara amb el teléfon emprant una aplicacié disenyada especificament.

Paraules clau: Basket, Unitat de mesura inercial, IMU, BLE, Wearable, Hexiwear, MikroE,
Flutter.

vii

Contents

Abstract i
Contents ix
I Report 1
1 Introduction 3
1.1 Scope of the project 3
1.2 ODbjJectives. . . . o o oo 3
1.3 Structure of the document 4
2 Basketball)
2.1 Basketball as a sport e 5
2.2 Classification of basketball shots. 6
2.3 Opportunities for technology implementation inside basketball practice. 7
3 Available technologies 9
3.1 Wearable technology. 9
3.2 Operating systems o o v vt e e 13
4 Description of the chosen solution 17
4.1 General block diagram 17
4.2 Hardwareo e e 17
4.3 Software e 19
5 Theoretical background 23
5.1 Bluetooth Low Energy (BLE) 23
5.2 Representation of the orientation L 24

X

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

5.3 Orientation Measurementt e e 26
6 Implementation details 29
6.1 Hardware e 29
6.2 SOMEWATE o o e 29
6.3 Experimental procedure e 45
7 Obtained results A7
7.1 Free Throw Trainer app o oo i it e e e e e e e e e e e e e 47
7.2 Analysis 57
8 Final conclusions 67
8.1 Summary of the work done 67
8.2 Proposal for future work 68
9 Annex: Mobile app code 69
9.1 main.dart e 69
9.2 SCTEEIIS « .« v v v et e e et e e e e e e e 70
9.3 models 96
9.4 Widgets. o 101
IT Solicitation document 111
10 Solicitation document 113
10.1 Object . . o o oo 113
10.2 Material requirements L 113
10.3 Execution requirements 114
10.4 Testing and service adjustments L 114
[IT Budget 115
11 Budget 117
11.1 Budget Items o o oo 117
11.2 Bill of materials (BOM).o 118
11.3 Unitary prices o e 118
11.4 Budget sSummaryo e 119

2.1
2.2
2.3

3.1
3.2
3.3
3.4

3.5

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2

5.3

5.4

List of Figures

Federated basketbal players in Spain by Autonomous Community, year 2019. . . 5
Player shooting a free thow [32] L oL 6
Player showing the mechanical sequence in a free throw [34]. 7
Wearable users by country, year 2019. Source: Wavemaker [10] 9
MikroE Hexiwear with its watch strap. Source: MikroElectronika|16] 10
STEVAL-WESUL1 inside its package. Source:ST Electronics[30] 11
SensorTag CC2650 next to some objects to see its size. Source: Texas Instru-

ments[33] ... 12
Mobile OS market share evolution from January 2012 to June 2021. Source:

Statista [23]. 14
General block diagram of the project. oL 17
Hardware’s block diagram. Source: MikroElectronika/NXP[16] 18

Left: Front view of Hexiwear’s PCB. Right: Back view. Source: MikroElectronika|16] 19

Flutter logo. Source: Google Inc.[13] 19
Softwate block diagram. General app diagram. 20
Software block diagram. MATLAB script. 20
GATT profile structure. Source: Own preparation based on [9] 24

Euler angles.
Source: Wikimedia Commons 7] 25

Tait-Brian ZYX convention.
Source: Wikimedia Commons [12] o 25

Gimbal lock representation. Source: ResearchGate[1l] 25

X1

Wearable system based on inertial measurement unit and communication with mobile device to

quantify the shooting performance during basketball practice.

xii

9.5
5.6

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10

6.11
6.12

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13

7.14
7.15
7.16

Kalman Filter block diagram structure. Source: ResearchGate|l| 27
Madgwick’s algorithm block diagram structure. Source: qMadgwick [20] 28
Software block diagram. Bluetooth devices search. 30
Hexiwear’s motion service 0x2000. Source: MikroElectronika [16] 31
Benchmark results for reading 1000 iterations. Source: Simon Eiler [17] 34
Benchmark results for writing 1000 iterations. Source: Simon Eiler [17] 34
Relation between the created boxes for the database. 34
Software block diagram. Data treatment. 37
Example of CSV file once it has been exported to MATLAB. 37
Software block diagram. Final analysis. 41
Full court view of the player shooting. 45
Closer look of the player in loading position. Hexiwear’s wrist sensor can be seen

inblue. 46
Net sensor placed behind thenet. 0 oL 46
Net sensor being hit by the ball. 0oL 46
Software block diagram. User management screens. 48
Screenshot of the User selection screen. 48
Screenshot of the New user screen before filling the form. 49
Screenshot of the Fxisting user list screen with two created users. 50
Screenshot of the Fxisting user list screen trying to delete a user. 50
Screenshot of the User settingst screen trying to delete a user. 51
Software block diagram. User home page. 51
Screenshot of the Home page with no activities. 52
Screenshot of the Home page with a downloadable activity. 52
Software block diagram. Find devices page. 53
Screenshot of the Find devices screen after scanning. 53
Screenshot of the Find devices screen after connecting the wrist sensor. 54

Screenshot of the Find devices screen after connecting the net sensor. The word

START is shown in the app bar. 55
Software block diagram. Live activity page. 55
Screenshot of the Live activity page. 56
Dialog shown when X icon is pressed., 56

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

7.17 Plots of the different data provided by the sensors. The first three correspond to
the wrist sensor and the last one to the net one. 57

7.18 Graphical representation of the Euler angles of the free throw used as a model. . 58

7.19 Graphical representation of the roll (¢) angle of the current shot (top) and the

free throw used as a model (bottom). Correlation: ¢ = 0.9854. 99
7.20 Graphical representation of the pitch () angle of the current shot (top) and the

free throw used as a model (bottom). Correlation: ¢ = 0.8657.. 99
7.21 Graphical representation of the yaw (¢)) angle of the current shot (top) and the

free throw used as a model (bottom). Correlation: ¢ = 0.8979.. 99
7.22 Plots of the different data provided by the sensors for the perfect free throw. Notice

the spike in the last plot which shows when the ball hits the net sensor. 60
7.23 Roll (¢) angle from the perfect free throw (top) and the model (bottom). 61
7.24 MATLAB command window showing the output messages. 61
7.25 Plots of the different data provided by the sensors for a good free throw. Notice

the spike in the last plot which shows when the ball hits the net sensor. 62
7.26 Roll (¢) angle from a good free throw (top) and the model (bottom). 62
7.27 MATLAB command window showing the output messages. 63

7.28 Plots of the different data provided by the sensors for the not so good free throw.
Notice the absence of the spike in the last plot which shows when the ball hits the

Nneb SeNSOT. L e e e e e e e 63
7.29 Roll (¢) angle from a not so good free throw (top) and the model (bottom). . . . 64
7.30 MATLAB command window showing the output messages. 64

7.31 Plots of the different data provided by the sensors for the bad free throw. Notice
the absence of the spike in the last plot which shows when the ball hits the net
SENSOT. . . v v v v e e e e e e e e e e e e e e e 65

7.32 Roll (¢) angle from a bad free throw (top) and the model (bottom). 65

7.33 MATLAB command window showing the output messages. 66

xiii

Part 1

Report

Chapter 1

Introduction

1.1 Scope of the project

The scope of the project is to develop and to validate a wearable system to analyze the shooting
efficiency of free throws during basketball training practice.

1.2 Objectives

The overall objectives to be pursued during the project are the development of a prototype that
allows the collection of movement data of interest in basketball free throws and the validation of
an analysis methodology to be able to measure these shots with objective parameters.

The specific objectives are presented below. Firstly, the choice of a wearable device on the market
that meets the specifications of the project. Specifically, the aim is to choose a technology that
allows obtaining the physical magnitudes of interest that will be used to measure the performance
of the shots made by the player. Also, familiarisation with the development environment and
with the functionalities of the inertial measurement unit to be contained in the device.

The second objective is to understand the communication protocol that will allow the wearable’s
software to communicate with the mobile device, to obtain the necessary information from it. In
addition, it is also intended to configure the sensors of the device without altering its internal
code, through the communication protocols.

The third objective is the development of the mobile application including the different necessary
functionalities: registering, representing and storing in a database the activities carried out, as
well as being able to download this data for export to other devices.

Finally, the fourth objective is to develop and validate a methodology for analysing performance
and assessing the quality of the recorded shots as a potential tool to support the players during
training sessions.

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

1.3 Structure of the document

The structure followed for the development of the work has the following layout. In chapter 2,
a brief introduction about basketball and an explanation of the importance of free shots in the
games is presented. Then, in chapter 3, the main wearable developing kit devices on the market
are analysed, as well as the available mobile operating systems, to subsequently choose and
develop the technologies selected in chapter 4. Chapter 5 briefly introduces some of the concepts
necessary to carry out the project. It will mainly deal with the representation and measurement
of orientation and how to obtain it from the information provided by the sensors and its fusion
employing Kalman filters. In chapter 6, the development and implementation of the prototype
will be explained in more detail, followed by an explanation of the different results obtained in
chapter 7. Finally, chapter 8 presents the conclusions of the work and, as an appendix, chapter
9 includes the code written for the mobile app.

Chapter 2

Basketball

2.1 Basketball as a sport

Basketball is one of the most popular team sports in the world. It was created by Canadian-
American teacher James Naismith in 1891. In the Berlin games of 1936, it officially became
Olympic.

In Spain, basketball is the second most practised sport, especially by children at schools. In 2019
there were 200.000 federated players in the country [18], which suggests that the total number
is even higher. The United States is the country of basketball par excellence. There were about
25 million players in 2019 according to Sports & Fitness Industry Association (SFIA) [5].

81.945

0 10.000 20.000 30.000 40.000 50.000 60.000 70.000 80.000 90.000
Numero de licencias

Figure 2.1: Federated basketbal players in Spain by Autonomous Community, year 2019.

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

Basketball is a precision sport that heavily depends on the ability and marksmanship of the
players to introduce the ball inside the hoop to score points. This skill is so important that
shooting becomes a preponderant priority when tailoring training sessions. Besides developing
the proper technique, the mastering of shooting comes from repetition. In this scenario, statistics
and historic values come in handy, allowing players and coaches to monitor their improvements.
On the other side, if the results are not proper, they can be used to warn the team about what
kind of shots basketballers shall focus on in the next training.

2.2 Classification of basketball shots

Shots can be divided into two categories: jump shot and free throw. The former is a shot
performed by the player after he or she jumps and releases the ball at the peak of the elevation
(ideally) to take advantage of the extra power given by the legs' flexion and extension. Free
throws, on the other hand, consist of steady shots where the feet are not allowed to leave the
ground [21]. They are vital in games since they can determine the outcome when the point
difference between both teams is tight.

Figure 2.2: Player shooting a free thow [32]

2.2.1 Free throws

The complexity of free throws comes from the very situation in which they take place. They are
performed by the player that has suffered a foul from the other team or when some opponent
does a technical foul. As its name suggests, the basketballer can shoot freely, with no blockade
from other players. Moreover, this freedom on the shot sometimes distracts even more due to
the pressure he or she is under. In some cases, there will be supporters of the other team trying
to divert the attention of the shooter. For the reasons mentioned previously it can be said that
a good free thrower needs two components to succeed: a calm mind and exhaustive training in
the mechanics of such shot through repetition.

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

Figure 2.3: Player showing the mechanical sequence in a free throw [34].

2.3 Opportunities for technology implementation inside
basketball practice

Basketball is a dynamic sport with various motions of the ball influencing the gameplay dynamics,
therefore incorporating a complete inertial sensing system would be ideal to capture basketball
dynamics [31]. With the development of technology, MEMS-based IMUs are present more and
more inside sports. In past years, several academic articles [31] [3] [19] [8] [28] [27] proved that
shooting can be easily monitored and characterized. When talking about shooting performance
systems, ShotTracker [2| was a pioneering device, partnering with NBA star Klay Thompson,
one of the best shooters in the league. Nowadays, ShotTracker system is an evolved statistics
giant that works with several teams in the American college league, the NCAA.

Chapter 3

Available technologies

In the following chapter, several alternatives to develop the project will be discussed. Charac-
teristics and specifications are presented to select the most appropriate solutions.

3.1 Wearable technology

The so-called wearable technology includes all the electronic devices that are attached to some
part of the user’s body to interact with and to measure the desired magnitudes. Wearable devices
are often paired with a smartphone app to display and process information.

From the early years of the 2010’s decade, the users of such devices have grown significantly,
partly due to technological development, lower consumer prices and integration as common use
gadgets. Wearables are especially useful in sports and healthcare since the data that they collect
can be interesting to keep track of the performance in a given activity or time. In sports, the
athletes can easily monitor their training, as well as physical parameters as heart rate, burnt
calories, blood oxygen level, among others.

Propietarios de Wearables en 2019

WAVEMAKER

Figure 3.1: Wearable users by country, year 2019. Source: Wavemaker [10]

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

As it can be seen in figure 3.1 the penetration rate of wearables in world markets is around 30%
by the year 2019 and it is expected to keep growing. This data points out how these devices
have become part of the everyday life of a lot of people, but also suggests that there is a huge
percentage of potential users that are not aware of this technology.

Due to the health situation derived from the SARS-CoV-2 virus (COVID-19), there has been a
significant upswing in the value society places on health. On the one hand, organisations and
companies have started to use wearables to fight the pandemic. On the other hand, the enacted
lockdowns, as well as closures of gyms and other sports venues, have led people to use fitness
apps or other online resources to keep fit. The popularisation of these services is driving the sale
of smartwatches and smartbands focused on health and sport, as they allow users themselves to
monitor workouts, anytime, anywhere. Moreover, in the vast majority of cases, it is the wearable
company that offers a complementary application, so that the part corresponding to the services
of the corporation is also boosted. Hence, it can be said then that wearables are a promising
technology that is making its mark in the present but will undoubtedly be very important in the
short and medium term.

To develop this project a development kit is used. It consists of a functional prototype of a
wearable with includes several sensors to test and create applications or other devices. In the
following sections, some alternatives are discussed.

3.1.1 M:ikroE Hexiwear

MikroElectronika’s MIKROE-2026 or Hexiwear [16] is a smartwatch in the form of a development
kit. It offers the possibility to create one’s wearable device compatible with mobile applications.
It consists of a 1.1 inch OLED display with 6 capacitive buttons. Micro USB-B connection for
charging the battery and for developing the device’s software. It weighs 40 grams. It contains
sensors for heart rate, temperature, humidity, pressure, ambient light and orientation measure-
ment.

Figure 3.2: MikroE Hexiwear with its watch strap. Source: MikroElectronika[16]

The embedded processor is an NXP-Kinetis K64 MCU, based on an ARM Cortex-M4. It features:

e Clock speed up to 120 MHz.

10

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

e 256 KB SRAM memory.
e 1 MB flash memory.

For communication, it incorporates an NXP-Kinetis KW4x processor, based on an ARM Cortex-
MO+ and providing BLE (Bluetooth Low Energy) connectivity.

As for the sensors, it incorporates, on the one hand, the FXOS8700CQ, which integrates an
accelerometer and magnetometer, and on the other, the FXAS21002, which provides gyroscope
measurements. Both are provided by NXP.

o Accelerometer (FXOS8700CQ)
— Sample frequency: up to 800 Hz
— Range: +2¢g,4+4¢g, +8¢g

e Gyroscope (FXAS21002C)

— Sample frequency: up to 800 Hz
— Range: +250°/s, £500° /s, £21000° /s, £2000° /s

e Magnetometer (FXOS8700CQ)

— Sample frequency: up to 800 Hz

— Range: +12gauss

3.1.2 STEVAL-WESU1

Manufactured by STMicroelectronics[30] this device mounts three low power sensors that can
measure pressure, acceleration, magnetic field and rotation. It is small and lightweight since its
size is 30x35mm and weighs around 15g.

STEVAL-WESU1 allows connection with other devices through Bluetooth Low Energy (BLE).
The development kit integrates a BLE processor, the BlueNRG-MS, which is also manufactured
by STMicroelectronics [30].

STEVAL-WESU1

WEARABLE SENSOR UNIT
« Compact solution

* Dedicated firmware for wearables
* i0S and Android apps available

Figure 3.3: STEVAL-WESUL1 inside its package. Source:ST Electronics[30]

As the main processor, the development kit includes the STM32L151VEY6, a 32-bit ARM
Cortex-M3-based CPU provided by the company. Its main characteristics are:

11

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

e Clock speed up to 32MHz
e 512 KB Flash memory
e 48 KB RAM

The three sensors are distributed between two modules (LSM6D3 and LIS3MDL) which are also
developed of ST. The specifications are presented as

o Accelerometer (LSM6DS3)

— Sample frequency: up to 1.6kHz
— Range: +2¢g, +4¢g, +8¢g, +16¢g

e Gyroscope (LSM6DS3)

— Sample frequency: up to 1.6kHz
— Range: +£125°/s, £245° /s, £500°/s,+1000°/s

e Magnetometer (LISSMDL)

— Sample frequency: up to 1kHz
— Range: +4,+8,+£12, +16gauss

3.1.3 SensorTag CC2650

The SimpleLinkTM SensorTag CC2650 from Texas Instruments [33] contains ten low-power
sensors that can measure various quantities such as acceleration, magnetism, rotation, pressure,
temperature, humidity, etc. Its dimensions are 5x6.7x1.4cm.

Communication with other external devices can be carried out via Bluetooth Low Energy tech-
nology or via its derivative iBeacon. However, the device also allows communication via new tech-
nologies such as ZigBee or 6LoWPAN. This device allows its firmware to be modified employing
a DevPack offered by the same manufacturer, as well as offering the possibility of incorporating
other development kits to be able to introduce new sensors and actuators.

Figure 3.4: SensorTag CC2650 next to some objects to see its size. Source: Tezas Instruments|33|

12

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

Similarly to the STEVAL-WESUT it incorporates a 32-bit ARM Cortex-M3 processor. CC2650’s

specifications are:

e Clock speed up to 48MHz
e 128 KB Flash memory

The device contains a motion processing unit, namely the MPU-9250 module manufactured by
InvenSense [24]. This unit can measure in 9 axes and contains an accelerometer, a gyroscope
and a magnetometer with the following characteristics.

o Accelerometer (MPU-9250)

— Sample frequency: up to 4 kHz

— Range: +2g,+4g, 8¢, +16¢g
e Gyroscope (MPU-9250)

— Sample frequency: up to 1.6kHz

— Range: +250°/s, £500°/, £1000°/s
e Magnetometer (MPU-9250)

— Sample frequency: up to 8 Hz

— Range: +4.8gauss

3.2 Operating systems

As pointed out in 3.1, wearables often need a companion smartphone app to interact with the
device. When comes to mobile development, choosing the operating system conditions all the
process, since different environments need unique tools, languages and programming skills.

3.2.1 Android

Android is a mobile operating system with a kernel based on Linux designed for touchscreen
devices such as smartphones, tablets, smartwatches, cars and TVs. It is currently the most
popular on the market and is used by the vast majority of users (around to 73 % [23]). It was
developed by Android Inc. which was later acquired by Google in 2005.

13

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

100%

||||||||||||IIIIIII!I|||!IIII||I|' II||III||||||||lIIIIIIIIIlIIlIlll""""' """""""""

1] 1] "'ll i i

|y l' II‘"!" | ||"|||||||||||||||"||

25% |‘||||

0%

7

Market share
a
xR

(=]
xR

A?QQ’ RV D D P AP \D‘ N \f"x“’ SR \ﬁ\(\(\ o~ N DN \9\\’19"190}
PSR E P FE P TP W FE P F S
® Android @ ios KaioS
@ Windows Phone © Series 40 (Nokia)* Symbian OS*
@ Samsung ® BlackBerry OS @ Unknown / Other

Figure 3.5: Mobile OS market share evolution from January 2012 to June 2021. Source: Statista [23].

Android is an open-source operating system, which is why there are many mobile devices of
different sizes and resolutions providing this software. Fragmentation is one of its strengths and
weaknesses at the same time since it helps to the popularity of the SO as well as makes it difficult
for programmers to optimize the apps for every device. In addition, it offers different forms of
messaging and supports many multimedia formats. Android also allows different connectivity
technologies such as GSM/EDGE, NFC, Bluetooth, Wi-Fi, etc.

Another important feature is the catalogue of applications. Android uses Google Play which
allows users to browse and download them. To upload applications, you have to register as a
developer and pay a registration fee. Although it has many more features, finally it should be
noted that the web browser included in Android is based on the open-source WebKit rendering
engine that makes it possible to interact with a web server to retrieve and render web pages,
download files, and manage plugins.

The main features of this operating system are the following:

Free and open source development

Kernel based on the Linux Kernel

Large number of APIs available

Use of SQLite for databases

Allows Java, C or C++ programming

e Allows multitasking of applications

e It has a very extensive catalogue of applications (free and paid) through Google Play
e Support for a multitude of multimedia formats

e Support for HTML, HTML5 and Adobe Flash Player

e Google Assistant virtual assistant

14

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

e Includes a web browser (Google Chrome) based on Blink
o Offers different forms of messaging

e Has an official development environment: Android Studio

3.2.2 108

iOS is Apple Inc.’s proprietary mobile operating system for its mobile devices: iPhone, iPad
and iPod touch. After Android, iOS is the second most popular mobile operating system in the
world, with a market share of around 26.34% [23].

The characteristics of i0S are similar to those of Android, with the main difference being the
adaptability of the system and the freedom of the code. In this case, the system does not adapt
to different devices because it is not free; it is only used by Apple for its handsets. In the rest, it
works similarly, with applications implemented by developers using Swift, the language created
by the same company for this purpose, and put on the market through the App Store. It also
has multimedia and streaming support, web browsing via HTML and a virtual assistant, Siri.

The main specifications of iOS are:

e Exclusive code for Apple devices.

e XNU-based core.

e Allows multitasking of applications.

e Extensive catalogue of applications (free and paid) through the App Store.
e Support for a multitude of media formats.

e HTML and HTML5 support.

e Siri virtual assistant.

e Includes a web browser (Safari) based on WebKit Offers different forms of messaging.

3.2.3 KaiOS

It is a Linux-based operating system that aims to bring the best of smartphones to affordable
devices and the so-called feature phones. That is, it is a system designed for technologically
accessible terminals, such as those used by the elderly. It is an open-source platform born out of
the Firefox community.

Its main features are similar to those of the dominant systems on the market but aimed at non-
touch phones, with a fully optimised interface and low power and memory requirements. It is
capable of running on devices with only 256 MB of memory and a battery life of weeks. It brings
applications and the use of cellular networks for Internet connectivity closer to the devices used
in the past decade. Its market share is estimated at 0.35% [23].

15

Chapter 4

Description of the chosen solution

This chapter will present the chosen solution for the development of the project. Initially, a
general block diagram will be shown, and then details of the hardware and software chosen are
going to be discussed.

4.1 General block diagram

Mobile app
Data collection
Wrist sensor

Acc, Gyr, Mag MATLAB script

Data analysis

FREE THROW TRAINER

Net sensor
Acc

Figure 4.1: General block diagram of the project.

4.2 Hardware

4.2.1 Reasons for the choice

For the hardware part, MikroElectronika’s Hexiwear was selected among the other development
kits. Firstly, its design is perfect for the application, since the manufacturer has in its catalogue
a strap that helps to wear it as a watch. Although it is kind of bulky, it does not interfere with

the player’s motion.

17

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

Secondly, the processing power of the CPU is way higher than the other competitors, as well as
bigger storage and memory. This will help when acquiring data from the sensors because the
quantity of information stored every second is going to be noticeable.

Thirdly, Hexiwear includes health sensors such as heart rate and calorie counter. In a sports
context, these magnitudes are always interesting to measure. Biometrics can be included in more
advanced stages of the project. But for the moment, only inertial magnitudes will be employed

Fourthly, this hardware option incorporates Bluetooth Low Energy (BLE) communication, which
is considered the most optimal for the required application, as it does not require long-range

communication but the lowest possible power consumption in data transmission.

Finally, the availability of the device in the UPV Electronics department has also been another
fundamental aspect of the choice. Because of this, it has been possible to work with the device
from the first moment, becoming familiar with its operation in a faster way.

4.2.2 Block diagram

USER RGB LED
HAPTIC FEEDBACK 6x TOUCH BUTTON
VIBRATION MOTOR

8MB SERIAL FLASH 1.1” COLOR OLED
MEMORY DISPLAY

Micro-B USB

NG
MC34671

Micro-B USB

BATTERY Kinetis K64F pommumg Kinetis KW40Z

K64F/KW40 Switch
CHARGER

190mAh Li-Po Battery

K64F/KW40 Reset

EXPANSION PORT

3x Click Sockets (SPI, 12C, UART, AN, PWM, 10) €=

Micro-SDHC and 128 -

! l l

ﬁ‘fn’?w "IF'E\ }_F?‘w MEAS-SPEC TAOS MAXIM
el st el HTU21D TSL2561 MAX30101
FX0s8700cQ FXAS21002 MPL3115A2 Humidity & Temp Ambient Light Optical Heart Rate
Combo Acc. / Mag. Gyroscope Barometer & Temp SENSOR SENSOR SENSOR

NON-NXP
PART

SENSOR SENSOR SENSOR

INTERFACE

Figure 4.2: Hardware’s block diagram. Source: MikroElectronika/NXP[16]

4.2.3 Technical specifications
e MCU: NXP Kinetis K64 MCU (ARM Cortex-M4, 120 MHz, 1M Flash, 256K SRAM)

e BLE: NXP Kinetis KW4x (ARM Cortex-MO0-, Bluetooth Low Energy & 802.15.4 Wireless
MCU)

3D Accelerometer and 3D Magnetometer: NXP FXOS8700CQ

3-Axis Digital Gyroscope: NXP FXAS21002

Absolute Digital Pressure sensor: NXP MPL3115A2R1

600 mA Single-cell Li-Ion/Li-Polymer Battery Charger: NXP MC34671

18

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

Figure 4.3: Left: Front view of Hexiwear’s PCB. Right: Back view. Source: MikroElectronika[16]

e Light-to-digital converter: TAOS TSL2561

e Digital humidity and temperature sensor: MEAS HTU21D
e Heart-rate sensor: Maxim’s MAX3010x

e 1.1" full color OLED display

e Haptic feedback engine

e 190 mAh 2C Li-Po battery

e Capacitive touch interface

¢ RGB LED

¢ 8 MB of additional Flash memory

4.3 Software

4.3.1 Reasons for the choice

As pointed out in chapter 3, the mobile market is coped by Android and iOS, which own almost
99% of the share. Instead of choosing one of them, a multiplatform SDK such as Flutter was
chosen. Flutter is Google’s Ul toolkit for making beautiful, natively compiled applications for
mobile, web and desktop from a single code base [13]. That means that it is possible to code
an app for iOS that will also run flawlessly into Android. Since mobile app coding was an
unknown topic and it had to be learnt from the very beginning, Flutter was chosen to get the
most versatility from this learning experience. It is also a popular developing environment, so
there is plenty of packages that make coding easier. Furthermore, the available device for the
testing was an iPhone 11, so creating the app exclusively for Android was discarded.

g Flutter

Figure 4.4: Flutter logo. Source: Google Inc.[13]

19

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

Concerning the development environment chosen, this has been Android Studio, the official one
from Google. It is an IDE based on the IntelliJ IDEA software from JetBrains and is available
free of charge. It should also be noted that this development environment is available for the
main platforms (Microsoft Windows, macOS and GNU/Linux).

4.3.2 Block diagram

Figures 4.5 and 4.6 show the block diagrams of the software. The first one corresponds to the
block diagram of the developed application that will run on the smartphone with the chosen

operating system, while the second refers to the code implemented for the data analysis in
MATLAB.

‘ START ‘

‘ User selection ‘

4{ Existent user list

User settings

Create new user

User home page }4

\ J \ J

I

Start a new activity Download activity file
J—— —

Bluetooth devices
search

\ J

PR 2N

Live activity page

Figure 4.5: Softwate block diagram. General app diagram.

Madgwick Euler angles Gravity] .
ST H [HpeiEEs H algorithm H calculation H compensation A EELER

Figure 4.6: Software block diagram. MATLAB script.

20

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

4.3.83 Other software tools used

Other tools used during the process of developing this project, as well as the reason for their use,
are described below.

e Dart: Dart is an open-source language developed at Google to allow developers to use an
object-oriented language with static type analysis. It was created to compile Javascript
more efficiently. Some reasons to choose Dart were:

— Syntax is similar to C, Javascript and Java.
— Flutter is based on it.

— It allows Just-in-Time compilation, which allows applying the changes in the code
immediately.

e MATLAB: This numeric computing environment program has been used for the pro-
cessing, adjustment and analysis of the data collected by the sensors. It works with its
multi-paradigm programming language and offers an integrated development environment.
The reason for the choice is due to:

— Fast execution and calculation accuracy.

— It offers wide support of predefined functions.

— It is compatible with a large number of file formats, such as .csv.
— Previous knowledge of the software and its programming language.

e Visual Studio Code: It is a code editor developed by Microsoft that also allows code
compilation and app debugging. Although Android Studio was the main IDE to develop
the project, VS Code was also used due to:

— Faster and smoother coding experience.
— Lightweight and less resource-demanding environment.
— Flutter and Dart support.
e Xcode: It is Apple’s official IDE to develop applications and programs for its devices. It
is required to make the build for iOS apps to test and debug them. It was used because:
— It is mandatory for developing iOS apps
— Allows deploying iOS apps in the iPhone without publishing them in the App Store.

e Draw.io: It has been used as a graphic design tool to make block diagrams and flowcharts.
It was chosen for the following features:

— It is an online, efficient and lightweight tool.
— It includes a handful of graphic design resources.

o KTEX text editor: This report has been written in IATEX by means of TeXstudio editor
for macOS. It was chosen based on:

— It creates professional-looking documents which are the standard among the scientific
community.

21

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

— It allows to focus on the content rather than the formatting.
— It provides consistency throughout the document.
— Top-notch citation and bibliography management.

e macOS Big Sur The computer used for coding the app, analyze the sensors’ information,
make research and write the report used macOS Big Sur version 11.4. The reasons for the
choice were:

— It was the available device at the workplace.

— 108 development requires Xcode, which is exclusive of Apples’ Mac computers.

22

Chapter 5

Theoretical background

This chapter highlights the theoretical concepts necessary for the development and understanding
of the project. Firstly, the communication protocol used is explained, and then key concepts
about the orientation of objects in space are developed.

5.1 Bluetooth Low Energy (BLE)

The communication protocol used to connect the wearables to the smartphone is Bluetooth
Low Energy. Its main advantage is the very low power consumption since it was developed to
send small amounts of data to short distances. Depending on the use case it can consume a
hundred times less than regular Bluetooth [9]. That unique feature makes the protocol perfect
for wearable technology because these devices do not provide big batteries and thus any way of
increasing its duration is highly appreciated.

BLE communication is based on a specification called GATT (General AT Tribute profile), which
defines how information known as attributes is transferred and received between two devices,
where one acts as a server and the other as a client.

The GATT is built on top of the ATT attribute protocol (AT Tribute protocol). ATT is optimised
for execution on BLE devices. For this purpose, it uses as few bytes as possible. Each attribute
is uniquely identified by a universally unique identifier (UUID), which is a standardised 128-bit
format for uniquely identifying information. Attributes transferred by ATT are in the format of
characteristics, services and descriptors.

23

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

PROFILE

SERVICE

CHARACTERISTIC CHARACTERISTIC
PROPERTIES PROPERTIES
VALUE ‘ VALUE ‘
DESCRIPTOR ‘ DESCRIPTOR ‘

Figure 5.1: GATT profile structure. Source: Own preparation based on [9]

Figure 5.1 shows the structure of the GATT profile. Each profile can contain several services,
which in turn group several characteristics. In addition, these features can contain a descriptor,
values and properties. Each one of these elements is identified with its UUID.

5.2 Representation of the orientation

There are different systems for the representation of orientation such as rotation matrixes, Euler
angles, quaternions... For the application in question, a three-dimensional representation is of
interest to be able to know the exact position of a body in space. Of the different alternatives
of representing orientation, quaternions and Euler angles have been chosen for the project and
are explained below.

5.2.1 Fuler angles

Euler angles are a set of three angular coordinates that specify the orientation of a moving
orthogonal axis reference system relative to another fixed orthogonal axis reference system.

Given two coordinate systems xyz and XYZ with a common origin, the position of one system
relative to the other can be determined using three angles («, 8 and «y). The mathematical
definition is based on choosing two planes, one in the reference frame and one in the rotated
trihedron. In figure 5.2 they would correspond to the xy and XY planes, but choosing other
planes would give different alternative conventions.

For the project, we will use the Euler angle representation with the ZYX convention, called
navigation angles or Tait-Bryan angles, as they can be seen in figure 5.3. These are called ¢ (roll
or bank), € (pitch or attitude) and 1 (yaw or heading).

The intersection of the chosen xy and YZ coordinate planes is called the line of nodes (N), and
is used to denote the three angles:

e ¢ corresponds to the angle between the line of nodes and the y-axis.
e 0 is the angle between the xy-plane and the x-axis.

e 1) corresponds to the angle between the y-axis and the line of nodes.

24

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

A

y
Figure 5.2: Euler angles. Figure 5.3: Tait-Brian ZYX convention.
Source: Wikimedia Commons (7] Source: Wikimedia Commons [12]

However, it should be noted that the use of this representation system brings with it the problem
of gimbal lock.

5.2.2 Gimbal lock

The gimbal lock is a phenomenon derived from the use of Euler angles. It consists of the loss
of one degree of freedom when two of the three rotation axes are aligned. Hence, it exists a
direction in which is not possible to instantly rotate.

b)

Figure 5.4: Gimbal lock representation. Source: ResearchGate[11]

There are different solutions to this problem, one possible solution is to rotate one or more axes
to an arbitrary position at the moment the gimbal is locked, thus resetting the device. The most
commonly used solution is to avoid the three-dimensional representation with Euler angles and
use the quaternion representation.

25

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

5.2.3 Quaternions

Quaternions are an extension of real numbers with four dimensions. Their usefulness in this field
is to provide a mathematical notation for representing the orientations and rotations of objects in
three-dimensional space. They are simpler to compose than Euler Angles and avoid the Gimbal
Lock problem, as they have four axes. Quaternions are represented as follows:

q=qo+ qi+ q2j + qsk (5.1)

Where qq is the scalar part and ¢14, g2j and g3k the vectorial complex part. i,j and k follow
these properties:

i2 =2 =k = ijk=—1 (5.2)

Quaternions have the characteristic of not allowing the commutative property in multiplication.
They are very useful in computer graphics and robotics applications, as well as in navigation.
Nevertheless, its main drawback is the difficulty for representation, since quaternions have four
dimensions. Madgwick [20] presents the necessary operations to obtain Euler angles from quater-

nions:

¢ = arctan 2(2(q2q3 — q0q1), 2% — 1+ 243) (5.3)

2(q193 + qog2) (5.4)
V1= (2q143 + 2q092)?

0 = — arctan(

Y = arctan 2(2(q1q2 — q0g3), 248 — 1 + 2¢%) (5.5)

5.3 Orientation measurement

To determine the orientation of a body, it is necessary to use certain sensors that, in combination,
provide its orientation in space. Two mechanisms for obtaining orientation are highlighted below:
Inertial Measurement Units (IMU) and Attitude and Heading Reference Systems (AHRS).

5.3.1 Inertial Measurement Units (IMU)

An inertial measurement unit or IMU is an electronic device that allows measurements of velocity,
rotation and gravitational forces to be obtained using a combination of accelerometers, gyroscopes

and magnetometers.

They are used as a fundamental component in the navigation systems of any mobile phone
wherever these measurements are required, without the possibility of using external references

or direct measurements.

One of the major disadvantages of using IMUs is that they are usually affected by a cumula-
tive error. This is due to the operation of the system, which adds the detected changes to the

26

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

previously calculated positions. Therefore, any error in the measurement, however small, ac-
cumulates, leading to an increasing difference between the actual position and the position the
system thinks it is in.

5.8.2 Attitude and heading reference system (AHRS)

An attitude and heading reference system (AHRS) is an electronic device that allows orientation
to be obtained by providing information such as roll, pitch and yaw. They are also called MARG
sensors and consist of three types of sensors: gyroscopes, accelerometers and magnetometers.
The key difference between an IMU and an AHRS is that the latter also incorporates an onboard
processing system, which provides attitude and heading information. An IMU only delivers sensor
data to an additional device that calculates attitude and heading. Therefore, and thanks to the
integration of a magnetometer, these systems can avoid the cumulative error of IMUs mentioned
above. AHRS typically uses Kalman filters as a non-linear estimation method, intending to
calculate a single solution from the different sources available to them.

5.3.3 Kalman filter

The Kalman filter is an algorithm developed by Rudolph E. Kalman in 1960 to track and predict
linear systems. The algorithm uses least-squares estimation to process all available measure-
ments, regardless of their precision, to estimate the current value of the variables of interest.
This is possible due to:

e The knowledge of the system and the measurement devices.

e The statistical data of the measurement devices.

e The available information on the variables of interest.
The Kalman filter works on discrete measurements instead of working in continuous time. It
is also a recursive algorithm, i.e. it does not require the storage of all previous data to be

reprocessed when new samples are added. Figure 5.5 shows the general structure of a Kalman
filter in a block diagram.

Initial Previous Current
state state state
Xo . Xi—y Predict ka = Xk-1
—————— —l
Py Py—y Py, =Py +Q
Current Calculate Kalman gain
becomes and current estimate
Output of Previous Calculate
updated state estimate - Measured
error Py, input
R P, = (1-KG)Py, KG

~ P +R
T Ry e e O S

X = Xi, + KG(Yic — Xi,)

Figure 5.5: Kalman Filter block diagram structure. Source: ResearchGate[l]

It should be noted that the Kalman filter has been a tool that has revolutionised current tech-
nology, since it has solved numerous problems related to control and estimation, providing great

27

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

precision and efficiency. Its main applications include its use in modern control systems, as well
as in the tracking and navigation of any type of vehicle.

5.3.4 Madgwick algorithm

The Madgwick algorithm is a filter implemented by Sebastian O.H. Madgwick based on the
Kalman filter, applicable to both IMUs and MARGsS, as detailed in his report [20]. This filter
uses the quaternion as a method for orientation representation since, as we have seen, it avoids
the singularities associated with Euler angle representation.

This algorithm in its MARG version (since it has a gyroscope, an accelerometer and a magne-
tometer, with information on each of its three axes) is the one we have decided to use for the
development of this project since it has numerous advantages over other Kalman-derived filters.
Some of the most important improvements are mentioned below:

e The low computational cost it requires concerning other filters of this calibre. It requires
only 109 arithmetic operations per filter update in the case of IMUs and 277 in the case of
MARGsS.

e The adjustment of one (in IMUs) or two (in MARGs) parameters such as the filter gain 3
that allow obtaining more optimal results depending on the characteristics of the system.

e The implementation of algorithms to compensate for magnetic distortion and gyroscope
drift.

e Good effectiveness at relatively low sampling times.

With Madgwick’s algorithm, the aim is to obtain information about how the position of the
Hexiwear device evolves during the free throw. With this, it will be possible to extract infor-
mation and, after analysing it, detect the shot performed and other characteristics related to
performance.

Magnetometer Sri,

Accelerometer Sa; —

1
S A s
5 Eest,t-1 ® " we,t

S S A
Gyroscope “w; Ebest,t

llqll

Figure 5.6: Madgwick’s algorithm block diagram structure. Source: qMadgwick [20]

28

Chapter 6

Implementation details

In this chapter, the development of the prototype implementation will be explained in detail.
First of all, the hardware highlights will be outlined, followed by an explanation of the various
software parts.

6.1 Hardware

Regarding hardware, one of the main goals was not to alter Hexiwear’s firmware. To do so, the
sensors have been configured via the developed app.

The project requires two sensors, one on the shooting wrist and the other placed on the net. To
make the process easier, it was decided to use another Hexiwear. It is known that this solution
is overdimensioned since it includes way more functionalities and sensors that will not be used
in the project. Only the accelerometer data is going to be recorded from this secondary device.

6.2 Software

This section shows the different parts of the developed software. The block diagrams seen in
section 4.3.2 will be used to better understand the location of each part within the mobile
application and the MATLARB script, respectively.

29

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

6.2.1 Searching, selecting and connecting BLE devices

To be able to communicate with the wearables, an app snippet written by Lee Lup Yuen [36]
and based on the flutter blue package [14] from Paul de Marco was used as a blueprint to
create the module of the application that allows the user to access the data and pair the devices.
This section corresponds to the part of the block diagram shown in figure 6.1. In section 7.1.3
the screenshots of the app are shown. In the annex, the full code is displayed (9.2.6).

User selection

Create new user

Existent user list

User settings User home page

C

v v

Download activity file

Start a new activity

v

Bluetooth devices
search

Live activity page

Figure 6.1: Software block diagram. Bluetooth devices search.

Before implementing the code, Bluetooth and location permissions are required. To obtain
them, instructions must be written in the AndroidManifest.xml file (Android) or Info.plist
file (i0S). Since the app works for both platforms, both codes are inserted.

<!--AndroidManifest.xml-->

<uses-permission android:name="android.permission.BLUETOOTH" />
<uses-permission android:name="android.permission.BLUETOOTH_ADMIN" />
<uses -permission android:name="android.permission.ACCESS_COARSE_LOCATION"/>

<application

<!--Info.plist-->
<dict>

<key>NSBluetoothAlwaysUsageDescription</key>
<string>Need BLE permission</string>
<key>NSBluetoothPeripheralUsageDescription</key>
<string>Need BLE permission</string>
<key>NSLocationAlwaysAndWhenInUseUsageDescription</key>
<string>Need Location permission</string>
<key>NSLocationAlwaysUsageDescription</key>
<string>Need Location permission</string>
<key>NSLocationWhenInUseUsageDescription</key>
<string>Need Location permission</string>

30

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

6.2.2 Data collection and adjustments

Data collection

Looking at Hexiwear’s user manual, the manufacturer indicates that the motion service where the
accelerometer, gyroscope and magnetometer data can be consulted corresponds to the 0x2000.
Figure 6.2 gives also information about the data format and the units.

Characteristic Format Security Mode R/W Details
permissions

0x2001 Accelerometer int16_t[3] Encryption with Read Accel
authentication measurement for
X, Y, z coordinate.

Range: +/- 4g
0x2002 Gyro int16_t[3] Encryption with Read Gyro
authentication measurement for

X, Y, z coordinate.

Range: +/- 256

deg/sed.
0x2003 Magnetometer int16_t[3] Encryption with Read Magnet
authentication measurement for

X, Y, Z coordinate.

Figure 6.2: Hexiwear’s motion service 0x2000. Source: MikroElectronika [16]

Data collection methods belong to live-activity.dart and the code is fully displayed on the
annex, in 9.2.7. To obtain the data from the different channels of the sensors, the app asks the
wearable for the values of the characteristics in the service 0x2000.

//display sensor info
StreamBuilder <List<BluetoothService >>(
stream: devicelist.first.services,
initialData: [],
builder: (c, snapshot) {
if (snapshot.data != null &&
snapshot.data!.isNotEmpty &&
snapshot.data![3].characteristics.isNotEmpty) {
// set characteristics
accelerometerCharacteristicl =
snapshot.data![3].characteristics [0];

gyroscopeCharacteristicl =
snapshot.data![3].characteristics[1];

magnetometerCharacteristicl =
snapshot.data![3].characteristics[2];

Once the app access the characteristic, it is time to store the values inside the database. Snap-
shots of each channel are taken each 1/60 s, 17 ms approximately.

//loop that will fetch the sensor info every 60Hz
_timer = Timer.periodic(
const Duration(milliseconds: 17),
(timer) {
if (

// check device 1
accelerometerCharacteristicl != null &&

31

Wearable system based on inertial measurement unit and communication with mobile device to

quantify the shooting performance during basketball practice.

gyroscopeCharacteristicl != null &&

magnetometerCharacteristicl != null

// check device 2

&&

accelerometerCharacteristic2 != null &&
gyroscopeCharacteristic2 != null &&
magnetometerCharacteristic2 != null) {

// read characteristics from device 1

accelerometerCharacteristicl!.read();

gyroscopeCharacteristicl!.read();

magnetometerCharacteristicl!.read();

// read characteristics from device 2

accelerometerCharacteristic2!.read();

gyroscopeCharacteristic2!.read();

magnetometerCharacteristic2!.read () ;

_hiveDB.updateActivityWithMovement (
name: widget.nameOfUser,
movement: Movement ()

.timestamp = DateTime.now ()

.accX = accelerometerValues1 [0]
.accY = accelerometerValues1[1]
.accZ = accelerometerValuesl [2]

.gyrX = gyroscopeValuesi [0]
.gyrY = gyroscopeValuesi[1]
.gyrZ = gyroscopeValuesl [2]

.magX = magnetometerValues1 [0]
.magY = magnetometerValues1 [1]
.magZ = magnetometerValuesl [2]
.accX2 = accelerometerValues2[0]
.accY2 = accelerometerValues2[1]
.accZ2 = accelerometerValues2[2]

.gyrX2 = gyroscopeValues2[0]
.gyrY2 = gyroscopeValues2[1]
.gyrZ2 = gyroscopeValues2[2]
.magX2 = magnetometerValues2[0]
.magY¥2 = magnetometerValues2[1]
.magZ2 = magnetometerValues2[2],

Sample frecuency justification

Sample frequency is an important parameter that will affect the process since it will determine
the number of samples taken per second as well as the bandwidth. 100 Hz was the first option
to be chosen because the papers taken as reference [28] [8] [19] used that frequency, but they do
not provide a proper justification. Hence, the CSV file created with 100 Hz showed that there
was a significant amount of data that was repeated and did not offer higher insight. Thus, there
was room to try lower sampling frequencies without losing accuracy.

In his report [4] Barranco found that the energy of the signal provided by the wrist motion is
focused in the frequency spectrum between 0 and 7 Hz. Applying the Nyquist theorem it can be
determined that the minimum sampling frequency must be 14 Hz. Despite that, 14 Hz seemed

32

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

not enough since basketball is a fast sport in which small motions can make the difference and the
point of the project is to be able to capture these nuances. Hence, it was decided to double the
minimum value to obtain a 30 Hz maximum bandwidth. That value implies a sampling frequency
of 60 Hz, which is a good compromise between the minimum value (14 Hz) and the one used by
other researchers (100 Hz) obtaining enough data to characterize fast motions without wasting

computing power.

Adjustments

The output data of the sensor is displayed as a 6 number array like this: [61, 0, 215, 255,
190, 255]. Each pair of data corresponds to one axis. The information is coded in binary using
2’s complement, so to access the decimal values an adjustment through code is required.

//function to convert the sensor readings to decimal values

3 List convertFromBinary(List<int> hexList) {

print (*here is the original list’ + hexList.toString());

//inverts the order of each pair of data to display values properly
int firstValue = (hexList[0] + (hexList[1] * 256));

int secondValue = (hexList[2] + (hexList[3] * 256));

int thirdValue = (hexList[4] + (hexList[5] * 256));

firstValue = readSignedInt (firstValue);
secondValue = readSignedInt (secondValue) ;
thirdValue = readSignedInt (thirdValue);

return [
(firstValue),
(secondValue),
(thirdValue),
13

//function to read the signed ints coded in 2’s complement
int readSignedInt (m) {
int value = m;

//checks if this is a negative number
if ((value & 0x8000) > 0) {

value = value | OxFFFFFFFFFFFF0000;

return value;

33

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

Database: Hive

Although SQLite is the most common database when developing mobile apps, the Hive package
was used in this project. Hive is a simple, fast and lightweight database written natively in
Dart [17], in which "boxes" are created to store the information. The syntax is way easier than
using SQL and it has a better performance. On the page of the package, the author performed
a benchmark against several database alternatives and Hive was by far the fastest as it can be
seen in figures 6.3 and 6.4. As pointed out before, data from the sensors need to be captured
each 10ms, so quickness and efficiency are required.

Integers Strings
Integers [l Strings e u s

2636ms 14760ms

1977ms 11070ms

1318ms 7380ms

659ms 3690ms
° ° ° Oms ®

Oms
Hive LazyHive SQLite S.Prefs Hive SQLite S.Prefs
Figure 6.3: Benchmark results for reading Figure 6.4: Benchmark results for writing
1000 iterations. Source: Simon Eiler [17] 1000 iterations. Source: Simon Eiler [17]

For the development of the application, three boxes have been created within the database,
as shown in figure 6.5. The first, under the name "user", contains the different users and their
corresponding information. The second, "activities", contains the characteristics of the activities,
and the third, "movement", contains the adjusted data from the sensors.

34

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

R’

Movement

DateTime timestamp
int accX

int accY

l int accZ
User Activity .
int gyrX
String name List mov .
int gyrY
int age DateTime date)
int gyrZ
int age String duration)
int magX
double weight .
int magY
List activities .
int magZ
E— int accX2

int accY2
int accZ2
int gyrx2
int gyrY2
int gyrZ2
int magX2

int magY2

int magZ2

Figure 6.5: Relation between the created boxes for the database.

The "movement" box correspond to each data collected by the 3-D wearable sensors in an
instant of time while the "activity" contains the general information of the shot session. Since
the sampling frequency has been adjusted to 60Hz, it will get sixty snapshots from the sensors
per second. In other words, a shot performed in 6 seconds would correspond to 1 activity and
approximately 360 movements. To be able to relate the different movements to the activities,
an identifier has been created, which corresponds to the parameter "mov". Continuing with
the example, the 360 movements would have the same identifier as the activity to which they
correspond.

It is important to mention that a different class has been created for each table, in addition to
the fact that the names of the columns of each table have been defined through variables in the
files user.dart, activity.dart and movement.dart to facilitate communication in the devel-
opment of the application. Automatically, auxiliar files called user.g.dart, activity.g.dart
and movement.g.dart are generated by the database.

Data export

To export the data, the app opens the user box and converts the date from that box to a CSV
file. As it is stored in the local memory, the code asks for the permissions to do so. If they are
granted, the CSV will appear in the app’s folder inside the smartphone local directory. Full code
is available in 9.2.5.

ValueListenableBuilder <Box<User >>(
valuelistenable: Hive.box<User>(widget.name).listenable(),
builder: (_, box, __) => box.getAt(0)!.activities.isNotEmpty
? ListView.builder (

physics: const BouncingScrollPhysics (),

35

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

6 shrinkWrap: true,

7 itemCount: box.getAt (0)!.activities.length,

8 itemBuilder: (ctx, index) {

9 return TextButton (

10 onPressed: () async {

11 //when we press the button it creates the csv

12 List<List<dynamic>> data = [
13 [

14 "Time_Stamp",
15 "Acc_X",

16 "Acc_Y",

17 "Acc_Z",
18 "Gyr_X",

19 "Gyr_Y",
20 "Gyr_z",
21 "Mag_X",
22 "Mag_Y",
23 "Mag_z",

2 "Acc_2_X",
25 "Acc_2_Y",
26 "Acc_2_72",
27 "Gyr_2_X",
28 "Gyr_2_Y",
29 "Gyr_2_z2",
30 "Mag_2_X",
31 "Mag_2_Y",
32 "Mag_2_Z",
33] H

34 i

36 for (var movement
37 in box.getAt (0)!.activities[index].mov) {

38 // print(’got a movement object ${movement}’);
39 data.add (

10 [

41 movement .timestamp.millisecond,

42 movement .accX,

13 movement .accY,
14 movement .accZ,
45 movement .gyrX,
16 movement .gyrY,
47 movement .gyrZ,
18 movement .magX,
19 movement .magy,
50 movement .magZ,
51 movement .accX2,
52 movement .accY2,
53 movement .accZ2,
54 movement .gyrX2,
55 movement .gyrY2,
56 movement .gyrZ2,
57 movement .magX2,
58 movement .mag¥2,
59 movement .magz2,
60] B

61)8

64 //this part works
65 String csvData =
66 const ListToCsvConverter ().convert (data);

36

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

//this line prints all the data from the csv to the
terminal, it works
// debugPrint (csvData.toString(), wrapWidth: 1024);

var _isGranted =
await Permission.storage.request().isGranted;
print (_isGranted) ;

if (await Permission.storage
.request ()
.isGranted) {
final String directory = Platform.isIOS
? (await getApplicationDocumentsDirectory())
.path
(await getExternalStorageDirectory())!

.path;

final path =
"$directory/csv-${DateTime.now () }.csv";
final File file = File(path);

awvait file.writeAsString(csvData, flush: true);

print (
’completed save successfully and saved file to
"$directory/csv-${DateTime .now () }.csv");
} else {
await Permission.storage.request();

6.2.3 Data treatment

This section is comprised of the part of the block diagram shown in figure 6.6. It corresponds
to the code implemented in MATLAB for data processing. It first includes an import of the
data from the CSV file. Then the Madgwick algorithm is applied, obtaining the orientation in
the form of quaternions. In addition, the Tait-Bryan angle orientation has also been obtained
in the data processing. Finally, gravity compensation has been implemented in the acceleration
measurement to compensate for its effect in the measures. All these implementations are detailed

below.
- Va e \
Madgwick Euler angles Gravity . .
S importdata S —» algorithm —> calculation compensation AR
- J A J

Figure 6.6: Software block diagram. Data treatment.

37

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

Data tmport

For the import of data, the layout of the data in the CSV file has to be taken into account.
Figure 6.7 shows an extract of one of the exported data files inside MATLAB. The columns
corresponding to the wrist sensor are highlighted in yellow to differentiate them easily.

A B C D E F G H | J K L M N [0} P Q R S|
prueball
Time_.. Acc_X Acc_Y Acc_Z Gyr_X Gyr_Y Gyr_Z Mag_X Mag_Y Mag_Z Acc_2_X Acc_2_Y Acc_2_Z Gyr_2_X Gyr_2_Y Gyr_2_Z Mag_2_X Mag_2_Y Mag_2_Z
Num... ¥Nu... ¥Nu... ¥Num...¥Nu... *Nu... ~Nu... ¥Num...*Num... ¥Nu... ~Number ¥Number ¥Number ¥Number ¥Number *Number ¥Number ¥Number ¥Number ¥

1 [Time... Acc_X Acc_Y Acc_.Z Gyr X Gyr.Y Gyr.Z Mag X Mag_Y Mag_Z Acc_2 X Acc_2 Y Acc 2 Z Gyr2 X Gyr 2 Y Gyr 2 Z Mag_2 X Mag_2 Y Mag_2 Z
2 266 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 |274 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 288 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

5 |295 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

6 |306 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

7 314 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 324 0 0 0 0 0 0 0 0 0 0 0 0 0 () 0 0 0 0

9 334 5 80 58 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 |345 5 80 58 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 [354 5 80 58 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 [366 5 80 58 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 |375 5 80 58 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
14 |384 5 80 58 0 0 0 0 0 0 =75 -18 -56 0 0 0 0 0 0
15 |395 5 80 58 0 0 0 0 0 0 =75 -18 -56 0 0 0 0 0 0
16 404 5 80 58 0 0 0 0 0 0 -75 -18 -56 0 0 0 0 0 0
17 [414 5 80 58 0 0 0 0 0 0 -75 -18 -56 0 0 0 0 0 0
18 [423 5 80 58 0 0 0 0 0 0 -75 -18 -56 0 0 0 0 0 0
19 |434 5 80 58 0 0 0 0 0 0 =75 -18 -56 4 -1 0 0 0 0
20 |446 5 80 58 0 0 0 0 0 0 =75 -18 -56 4 =1 0 0 0 0
21 |454 5 80 58 0 0 0 0 0 0 =75 -18 -56 4 -1 0 0 0 0
22 |464 5 80 58 0 0 0 0 0 0 =75 -18 -56 4 -1 0 0 0 0
23 |474 5 80 58 0 0 0 0 0 0 -75 -18 -56 4 -1 0 0 0 0
24 484 5 80 58 0 0 0 0 0 0 -75 -18 -56 4 =1l 0 0 0 0
25 [504 5 80 58 0 0 0 0 0 0 =75 -18 -56 4 -1 0 -40 60176 7760
26 |504 5 80 58 0 0 0 0 0 0 =75 -18 -56 4 =1 0 -40 60176 7760
27 |513 5 80 58 0 0 0 0 0 0 =75 -18 -56 4 -1 0 -40 60176 7760
28 |524 5 80 58 0 0 0 0 0 0 =75 -18 -56 4 -1 0 -40 60176 7760
29 |534 5 80 58 0 0 0 0 0 0 -75 -18 -56 4 -1 0 -40 60176 7760

Figure 6.7: Example of CSV file once it has been exported to MATLAB.

Once in MATLAB, the script must be able to scan the columns storing in the different variables
the corresponding data to perform the later analysis. The code is the following:

%% DATA TREATMENT

%imports and represents the sensor data

addpath(’quaternion_library?’); %includes library
filenamel = ’tirodentro2.csv’;
M = csvread(filenamel ,2,0);%reads data from the .csv

time = M(:,1);

for i=1:size(M,1)
time(i)= t;
t=t+(1/60) ;
end

%assigns the values from the csv to variables to work with
Accelerometer = M(:, [2:4]);

Gyroscope = M(:, [5:7]1);

Magnetometer = M(:, [8:10]);

Accelerometer2= M(:, [11:13]);

38

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

Madgwick algorithm

Once the data are available, the two adjustable parameters of the filter (the gain 5 and the sam-
pling period or frequency) must be defined for the implementation of the Madgwick algorithm.
The sampling period sets the algorithm’s update period, which must coincide with that indicated
on the sensors, i.e. 1/60 s (60Hz).

Concerning the gain, this refers to the measurement errors of the gyro in units of the derivative
of the quaternion. This parameter includes all possible errors such as noise, calibration errors
and quantization errors, among many others. From this value, the convergence ratio for the
elimination of these errors is established, so the higher the 3, the shorter the convergence time
but also the greater the error. The author of this algorithm recommends in his report [20] a value
of 8 = 0.033 for the IMU version, and 8 = 0.041 for the MARG implementation, as optimal
values to achieve good performance. Therefore, as the MARG version has been used in the
project, the corresponding recommended value has been taken.

For the implementation, the last parameter has also been defined which corresponds to the
orientation quaternion. This variable has been initialised to (1,0,0,0,0) as indicated by the author
in his report. Firstly, the code implemented in the script created to call the class that implements
the algorithm can be seen below. Secondly, you can see the code extract containing the definition
of this class created MadgwickAHRS .m. It should be noted that from these parameters the complete
algorithm is implemented, which has been extracted from the repository [25].

%processes sensor data through the algorithm
AHRS = MadgwickAHRS(’SamplePeriod’, 1/60, ’Beta’, 0.041);

%initializes quaternion matrix to value 0

quaternion = zeros(length(time), 4);

%obtains the quaternions using Madgwick’s algorithm

%/100 because the sensor gives values times 100

% gyroscope units must be radians

for t = 1:length(time)
AHRS .Update ((Gyroscope(t,:)*(pi/180) /100), Accelerometer(t,:)/100, Magnetometer(t,:)
/100) ;
quaternion(t, :) = AHRS.Quaternion;

end

classdef MadgwickAHRS < handle
%MADGWICKAHRS Implementation of Madgwick’s IMU and AHRS algorithms

%% Public properties

properties (Access = public)
SamplePeriod = 1/60; %11/100
Quaternion = [1 0 0 0]; Joutput quat describing Earth relative to the sensor
Beta = 0.041; halgorithm gain

end

%% Public methods
methods (Access = public)
function obj = MadgwickAHRS (varargin)

for i = 1:2:nargin
if strcmp(varargin{i}, ’SamplePeriod’),obj.SamplePeriod = varargin{i+1};
elseif strcmp(varargin{il},’Quaternion’),obj.Quaternion = varargin{i+1};
elseif strcmp(varargin{i},’Beta’),obj.Beta = varargin{i+1};

else error(’Invalid argument’);
end

39

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

end ;
end

FEuler angles

For the subsequent analysis, due to the great complexity of the quaternions in their 4-D represen-
tation, it has been decided to also obtain the Euler angles. For this purpose, the Euler angles (in
degrees) have been obtained with the ZYX convention (Tait-Bryan angles) from the quaternions.
This method has been extracted from the report [25] and the implementation proposed on it.
The script has also been modified to include the gimbal lock solution mentioned in section 5.2.2.

function euler = quatern2euler(q)
%QUATERN2EULER Converts a quaternion orientation to ZYX Euler angles

Y q = quatern2euler (q)

7 Converts a quaternion orientation to ZYX Euler angles where
VA phi is a rotation around X,
pA theta around Y and
7 psi around Z.
R(1,1,:) = 2.*%q(:,1).72-1+2.%q(:,2).72;
R(2,1,:) = 2.%x(q(:,2).%q(:,3)-q(:,1).%q(:,4));
R(3,1,:) = 2.%(q(:,2).%q(:,4)+q(:,1).%q(:,3));
R(3,2,:) = 2.%x(q(:,3).xq(:,4)-q(:,1).xq(:,2));
R(3,3,:) = 2.xq(:,1).72-1+2.%q(:,4) ."2;

phi = atan2(R(3,2,:), R(3,3,:))* (180/pi);
theta = -atan(R(3,1,:) ./ sqrt(1-R(3,1,:).72))* (180/pi);
psi = atan2(R(2,1,:), R(1,1,:))* (180/pi);

euler = [phi(1,:)’ theta(l,:)’ psi(l,:)’];
if ((theta > 86) & (theta < 94))
theta = pi/2* (180/pi);
phi = 0% (180/pi);
psi = 2 x atan2(q(:,2),q(:,1))* (180/pi);

end

if ((theta > -94) & (theta < -86))

theta = -pi/2x (180/pi);

phi = 0% (180/pi);

psi = -2 * atan2(q(:,2),q(:,1))* (180/pi);
end

euler = [phi(1,:)’ theta(l,:)’ psi(1l,:)°’];

end

Below is the code included in the script for the use of this function, as well as its graphical
representation.

% use conjugate for sensor frame relative to Earth and convert to degrees.

euler = quatern2euler (quaternConj(quaternion));

figure (’Name’, ’Euler Angles 1°);
hold on;
plot(time, euler(:,1), ’r’);

40

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

plot (time, euler(:,2), ’g’);

plot (time, euler(:,3), ’b?);

title (’Euler Angles’);

xlabel (’Time (s)’);

ylabel (’Angle (degrees)’);

legend (’Roll (\phi)’, ’Pitch (\theta)’, ’Yaw (\psi)’);
hold off;

Gravity compensation

The last adjustment of the data is the gravity compensation. This adjustment is necessary to
obtain the coordinates of the real acceleration, since otherwise, it is under the effect of gravity, as
explained by Verasano [35] in his article. For this purpose, the method proposed by the author
has been implemented in MATLAB language.

function [ACC] = compensateAcc(q,acc)
%function to adjust the accelerometer values taking into account the gravity

g = [0,0,0];
%#Get expected direction of gravity
g(1) = 2 * (q(2) * q(4) - q(1) * q(3));
g(2) = 2 % (q(1) * q(2) + q(3) *x q(4));
g(3) = q(1) * q(1) - q(2) * g(2) - q(3) * q(3) + q(4) * q(4);

%compensates accelerometer readings with the expected direction of gravity
ACC = [acc(1l) - g(1), acc(2) - g(2), acc(3) - g(3)]
end

The following is the code implemented in the script for the use of this function.

acc = [];

3 for j=1:1:(size (Accelerometer ,1))

acc = compensateAcc(quaternion, Accelerometer(j,:));
ACC(j,1) = acc(1);
ACC(j,2) = acc(2);
ACC(j,3) = acc(3);
end

6.2.4 Data analysis

This section comprises the part of the block diagram shown in figure 6.8. It corresponds to the
code implemented in MATLAB for the validation of the data analysis methodology. After having
obtained data from different shots, the validation of a methodology to analyse them is going to
be carried out, to identify if they are free throws, their outcome and the score they deserve taking
into account their technique.

Firstly, to identify the parameters that can be used to classify the movements, the different
magnitudes of each of the recorded activities have been represented. For this purpose, the
following lines of code have been implemented in the script, together with the representation of
the orientation in Euler angles explained in section 6.2.3.

Madgwick Euler angles Gravity " '
S H Import data H algorithm H calculation H compensation Final analysis

41

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

Figure 6.8: Software block diagram. Final analysis.

%plots the output of the different sensors individually

figure(’Name’, ’Sensor data (compensated)’);

%subplotl Acceleration (wrist)

axis (1) = subplot(5,1,1);

hold on;

plot (time, Accelerometer (:,1), ’r’);
plot (time, Accelerometer(:,2), ’g’);
plot (time, Accelerometer (:,3), ’b’);
legend (°X°, ’Y?, °Z°);

xlabel (’Time (s)’);

ylabel (’Acceleration (g)’);
title(’Accelerometer’);

hold off;

%subplot2 Acceleration (wrist) compensated

axis (2) = subplot(5,1,2);

hold on;

plot (time, ACC(:,1), ’r’);

plot(time, ACC(:,2), ’g’);

plot (time, ACC(:,3), ’b’);

legend (°X’, ’Y?, ’Z7);

xlabel (’Time (s)?’);

ylabel (’Acceleration (g)’);
title(’Accelerometer (Compensated)’);
hold off;

%subplot 3 Gyroscope (wrist)
axis (3) = subplot(5,1,3);

hold on;

plot (time, Gyroscope(:,1), ’r’);
plot (time, Gyroscope(:,2), ’g’);
plot(time, Gyroscope(:,3), ’b’);
legend (°X’, ’Y’, 2Z7);

xlabel (’Time (s)’);

ylabel (’Angular velocity (rad/s)’);
title (’Gyroscope’);

hold off;

%subplot4 Magnetometer (wrist)

axis (4) = subplot(5,1,4);

hold on;

plot (time, Magnetometer(:,1), ’r’);
plot (time, Magnetometer (:,2), ’g’);
plot (time, Magnetometer (:,3), ’b’);
legend (°X?, ’Y’, °Z7%);

xlabel (’Time (s)’);

ylabel (’Magnetic Field (G)?);
title(’Magnetometer?’) ;

hold off;

%subplot5 Accelerometer (Net Sensor)
axis (5) = subplot(5,1,5);

hold on;

plot (time, Accelerometer2(:,1), ’r’);
plot (time, Accelerometer2(:,2), ’g’);
plot (time, Accelerometer2(:,3), ’b’);
legend (’X’, °Y’, 2Z7);

xlabel (’Tiempo (s)’);

42

3

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

) ylabel (’Acceleration (g)’);

title(’Net Sensor Accelerometer?’);
hold off;

linkaxes (axis, ’x7’);

After the representation of all variables, one variable has been chosen to analyse its variation
with all activities. This elected variable is the roll or ¢, which represents the X-axis of the object
orientation. This election will be further discussed in section 7.2.1

Next, a model of one of the performed activities and another activity has been chosen to compare
their similarity. Their corresponding ¢ values have been plotted in degrees versus time and
cross-correlation between the two vectors has been applied using the MATLAB function xcorr.
This function returns two parameters. The first one corresponds to the result vector of the
cross-correlation between two sequences, while the second one, after applying a small operation,
indicates the number of samples that the first vector has to be shifted to achieve maximum
correlation. Knowing this, both vectors can be aligned in time to apply a second corr2 function
that returns the correlation coefficient between the two. However, to be able to apply this
function, both vectors must have the same length, so we proceed first to perform this step as
shown below.

%obtains the cross correlation between both vectors
[acor,lag] = xcorr(sl,s2);

[,I] = max(abs(acor));

%obtains the number of samples to move for aligning the graphs
lagDiff = lag(I)

%obtains the time in seconds to move for aligning the graphs
timeDiff = lagDiff /60

%obtains the absolute value of samples to move for aligning
if (lagDiff >0)
lagDiff=-lagDiff
end

if (timeDiff >0) %if the model has to be moved
sla = s1(-lagDiff+1:end);
tla = (0:1length(sla)-1)/60;

%represents the aligned activity and model
figure

subplot (2,1,1)

plot(tla,sla)

title(’Activity (aligned)’)

ylabel (’Euler Angles (degrees)’)

subplot (2,1,2)

plot (t2?,s2)

title(’Free throw model’)

xlabel (>Time (s)’)

ylabel (’Euler Angles (degrees)’)
linkaxes

sl=sla

else

43

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

%if the activity has been moved
s2a= s2(-lagDiff+1:end);
t2a = (0:length(s2a)-1)/60;

%represents the aligned activity and model
figure

subplot (2,1,1)

plot (t1’,s1)

title(’Free throw model’)

ylabel (’Euler Angles (degrees)?’)

subplot (2,1,2)

plot(t2a,s2a)

title(’Activity (aligned)’)
ylabel (’Euler Angles (degrees)?’)
xlabel (’Time (s)?)

linkaxes

s2=s2a

%makes both vectors the same length
s=[]
if (length(s1)>length(s2))
for i=1:length(s2)
s(i)=s1(i)
end
sl=s’
else
for i=1:length(sl)
s(i)=s2(1)
end
s2=s’

end

%obtains the correlation between both vectors

c = corr2(sl,s2)

Thus, the correlation coefficient between both signals takes values from -1 to 1, with being 1 the
maximum value of similarity between both. Therefore, the following code has been implemented
to display if the movement of the free throw is detected, its outcome (shot in or out) and its
corresponding score on the MATLAB screen. Hence, the closer the correlation coefficient is to 1,
the more the activity performed resembles the model, thus obtaining a higher score. However,
for values lower than 0.85, the shot will be considered unidentified, as it does not sufficiently
resemble the adopted model. In section 7.2, the results and the graphs obtained in this section
can be observed.

%0.85 is the threshold stablished to detect a free throw
if (¢>0.85)
fprintf (’Free throw detected\n’)

%’okey’ shot
if (c<0.89)
fprintf (’Technique score: 7\n’)
end

44

Wearable system based on inertial measurement unit and communication with mobile device to

quantify the shooting performance during basketball practice.

%’good’ shot
if (c>0.9 & ¢<0.95)
fprintf (’Technique

end
%’great’ shot
if(c>0.95 & c<0.97)
fprintf (’Technique

end
%’perfect’ shot
if (¢>0.97 & c<=1)
fprintf (’Technique
end
else

fprintf (’Free throw not
end

score: 8\n?’)

score: 9\n’)

score: 10\n?)

identified’)

%checks if the net sensor has been hit

k=0; YJinitialises the flag to zero

for j=1:size(M,1)

%if accel value surpasses the threshold
if Accelerometer2(j,1)>20

k=1; Yrises flag
end

end

if k==

fprintf ("Outcome: Player made the basket!!\n")

else

fprintf ("Outcome: Player missed the basket...\n")

end

6.3 Experimental procedure

One player was invited to participate in the experiment. He was a 16-year-old left-handed male

that plays basketball in federated competitions and has nine years of experience in the sport.

His job was to shot some free throws while wearing the wrist sensor to collect the information

required for the analysis. To ensure the best performance, the player warmed up for 20 minutes

before start recording the shots.

45

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

Figure 6.9: Full court view of the player shooting.

Although the court has not official dimensions, the distance of the free-throw line (4.5 m) and the
height of the basket (3.05 m) are the proper ones. As only free throws are going to be assessed,
this fact is not an issue.

In figures 6.10 and 6.11 there are closer looks to the player wearing the Hexiwear and the net
sensor placed strategically behind the net to avoid as much as possible the accidental movements
that could happen if the ball does not enter inside the hoop but hits the net. Figure 6.12 shows
the collision between ball and sensor when a basket is made.

Figure 6.10: Closer look of the player in loading position. Hexiwear’s wrist sensor can be seen in blue.

46

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

Figure 6.12: Net sensor being hit by the ball.

47

Chapter 7

Obtained results

This chapter will show the results obtained in the development of the project. Firstly, screenshots
of the different screens of the designed mobile application will be shown. Finally, the different
graphs obtained during the processing and analysis of the data will be displayed, as well as the
final result.

7.1 Free Throw Trainer app

The following images from figure 7.2 to figure 7.16 show the different screenshots of the screens
implemented in the Free Throw Trainer application. Moreover, a quick walkthrough and tutorial
will be presented.

7.1.1 User management

User management pages are all the screens in which the user creates, edits and selects the different
profiles to start recording his or her training session. They correspond to the highlighted blocks
in figure 7.1.

49

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

START

|

User selection

— > Existentuserlist €«——— Create new user
User settings User home page
Start a new activity Download activity file}
Bluetooth devices
search
Live activity page

Figure 7.1: Software block diagram. User management screens.

User selection

To begin, the first page, also known as splash screen, allows one to either select one of the existent
users or to create a new one from scratch.

FREE THROW TRAINER

t user

Figure 7.2: Screenshot of the User selection screen.

50

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

Create new user
This screen is designed to create a new profile. The first field is to input the name (text) and
the other three remaining fields are to introduce the data with the numeric keyboard. Once all

the form is filled, the Save button leads to the Existing user list.

New User

Add your information

O Name

T Height

B Weight

Figure 7.3: Screenshot of the New user screen before filling the form.

Existing user list

Here the user can select one of the created profiles. To enter inside one particular user, the name
shall be pressed. If he or she wants to edit one particular user, the pencil icon next to the name
will lead to User settings. To delete one profile, just swipe from left to right and it will be erased.

51

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

User List
Cl

Figure 7.4: Screenshot of the Ezisting user list screen with two created users.

User List

Ct ur user

Carlos 7
[] Javier

Figure 7.5: Screenshot of the Existing user list screen trying to delete a user.

52

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

User settings

As explained in 7.1.1 the function of this screen is to modify the personal information of the
user. Pressing the Save button leads to the Ezxisting user list again.

Edit User

Edit your

-
6 Javier

& 17
B 680

e
T 180

Figure 7.6: Screenshot of the User settingst screen trying to delete a user.

7.1.2 User home page

User selection

Existent user list

Create new user

v

H—¢

Start a new activity Download activity file

Bluetooth devices
search

Live activity page

Figure 7.7: Software block diagram. User home page.

53

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

Once the user is selected, User home page is displayed. In this screen, the button Start activity
accesses to the Search and connection of BLE devices screen. Below this button, the record of
previous activities will be shown, indicating the date and time. To download the CSV file of any
activity, just press the download icon or the text.

18:01 ol = %)

< Javier c

No activities :(

Figure 7.8: Screenshot of the Home page with no activities.

18:03 ol T %)

< Javier c

02-09-2021, 18:03:05

Figure 7.9: Screenshot of the Home page with a downloadable activity.

o4

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

7.1.3 Search and connection of BLE devices

—){ Existent user list }(— Create new user

(J;\
e }
Start a new activity } Download activity file

Bluetooth devices
search

Live activity page

Figure 7.10: Software block diagram. Find devices page.

Before starting the new activity the user has to ensure that both sensors are connected to the
smartphone. To scan the devices, press the orange floating button (search). Therefore, all the
visible Bluetooth devices will appear as well as their UUID. In the app bar, there is a counter
initialised to zero that shows how many devices are currently paired. Next to the number, there
is a red bin icon (delete) that can be used to unpair every BLE gadget and restart the counter.

18:02 all = [#%)

< Find Devices 0
CONNECT

CONNECT

CONNECT

CONNECT

CONNECT

CONNECT

CONNECT

CONNECT

CONN

Figure 7.11: Screenshot of the Find devices screen after scanning.

95

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

If the user clicks on the name, the tile expands and some characteristics can be shown if the
manufacturer allows so. In figure 7.12 the locked characteristics of the Hexiwear are shown as
"N/A". To pair the device to the app the button CONNECT shall be pressed. Once this happens,
the counter updates. Due to the inability to rename both Hexiwears, for this experience UUIDs
are being used as identifiers. The first device to connect is the one whose UUID starts with
CABF and corresponds to the wrist sensor.

18:02 all = %)

-

< Find Devices 1

CONNECT

: HEXIWEAR
-46 CONNECT

CONNECT

CONNECT

CONNECT

CONNECT

CONNECT

CONNECT

Figure 7.12: Screenshot of the Find devices screen after connecting the wrist sensor.

Once it is connected, now it is time to pair the net sensor. In this case, it is the other Hexiwear
remaining, but it can also be identified by its UUID, the one starting with 7651. When the
second device is connected the counter changes to the word START. Pressing this word will lead
to the Live activity page.

56

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

18:02 all = %)
< Find Devices START W

CONNECT

HEXIWEAR

CONNECT

CONNECT

HEXIWEAR
CONNECT

CONNECT

CONNECT

Figure 7.13: Screenshot of the Find devices screen after connecting the net sensor. The word START is shown

in the app bar.

7.1.4 Live activity page

User selection

Existent user list Create new user

User settings User home page
Start a new activity} Download activity fiIeJ
Bluetooth devices
search
Live activity page

l

Figure 7.14: Software block diagram. Live activity page

This page is the one that can be seen while the user is performing the shot. It includes a timer

and two sections where show the values that both sensors are obtaining in real-time.

o7

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

18:19 all = [#%)

Activity X

00:14:09.90

Device 1

Mag: [-128, -42, 39716)

Device 2

Gyro: [0, T
Mag: [-44, 58656,

Figure 7.15: Screenshot of the Live activity page.

When the activity is over, the X button opens a dialog (figure 7.16). Pressing OK ends the activity
and goes back to the Find devices page, disconnecting the wearables to avoid any errors.

Are you sure you want
to exit the activity ?

OK Cancel

Figure 7.16: Dialog shown when X icon is pressed.

58

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

7.2 Analysis

The analysis in this project has two different parts. On the one hand, the script must detect if
the player is shooting a free throw reading the data from the wrist sensor. On the other hand,
the outcome of the shot is determined using the values given by the accelerometer on the net.

Both experiences are analysed separately and combined afterwards.

The results obtained in the processing and validation of the data analysis, which corresponds to

the software block diagram shown in figure 4.6, are shown in section 7.2.2.

7.2.1 Model determination

For the motion analysis, one free throw shot with proper technique that went inside the hoop
has been chosen as a model, to compare the rest of the attempts with it. In figure 7.17 the values

obtained by all the sensors are displayed.

Accelerometer

Acceleration (g)

Accelerometer (Compe

Acceleration (g)
o

5 Time (s)
@
9 Gyrosco
ERLTS Gy pe
2 —
£ -
o >
3 0 <\ R
2 L/ \ 7/\/
8 ‘ 1%
S .10 1 | 1 | 1 | 1 J
2 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
< Time (s)
o~ Magnetometer
Q 200 9
3 - I X
L 00— N~ v
Q . z
EREh ——
§.100 L 1 | 1 | 4 | L]
0.5 1 1.5 2 2.5 3 3.5 4 4.5
Time (s)

Net Sensor Accelerometer

[$)]
o
1

Acceleration (g)
o

[$)]
o
T

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Tiempo (s)

Figure 7.17: Plots of the different data provided by the sensors. The first three correspond to the wrist sensor

and the last one to the net one.

99

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

Once the data of the sensors is collected properly, the Euler angles of the shot movement can be
obtained as explained in section 6.2.3. They can be seen in figure 7.18.

Euler Angles
200 -

Roll (¢)
Pitch (¢)
Yaw ()

150 [~

Angle (degrees)
8

o
o

Figure 7.18: Graphical representation of the Euler angles of the free throw used as a model.

In their report, Shankar and Shuresh [28] determined that the roll angle (¢) is the best to
characterize the free throw shooting action because it reflects better flick velocity and loading
angle. Moreover, to verify their assumption it was decided to test the performance of the three
angles using the correlation technique explained in section 6.2.4.

Choosing the right angle to characterize the shot

To select the most representative angle, it has decided to compare the free-throw model with other
shot performed after the first one with very similar characteristics in technique and outcome.
The results gave the highest correlation value to the roll angle (¢ = 0.9854). Pitch obtained
0.8657 and yaw 0.8979. Therefore, the Shankar and Shuresh hypothesis is validated and roll
angle is taken as reference. Figures 7.19, 7.20 and 7.21 shows the corresponding graphs. To
make the correlation process easier, aligned plots of the current shots were used, as pointed out
in section 6.2.4.

60

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

Activi i
200 T T ity T
@
8 150 / E
g N
T 100 - / \ R
o /
2 / \
g’ 50 / \ g
/ N
5 — / ~_- -
] 0 — 4
-50 I L L L L
0 1 2 3 4 5 6
Free throw model
200 T
@
8 150 [\
= N
o V
T 100 b
@ / \
2 / \
2 s0 / \]
< / —
5 — / -
ER ~___ |
50 L
0 1 2 3 4 5 6
Time (s)

Figure 7.19: Graphical representation of the roll (¢) angle of the current shot (top) and the free throw used as
a model (bottom). Correlation: ¢ = 0.9854.

Activi
60 ty T
g 40 a\ 1
g [\ 4
T 20F / N .
@ / - - .
o o~ / . - -
2 / ~ /
g o/ / -
\/ \
o] W
S 20 4 1
i
_40 . . L L L
0 1 2 3 4 5 6

@
3

= A
? N\ /
§ aof / \ N 4
5 \ o
S a0 S J /
2 / |
g o/ \]
5 n
320 Va J
40
1 2 3 4 5 6

Time (s)

Figure 7.20: Graphical representation of the pitch (0) angle of the current shot (top) and the free throw used
as a model (bottom). Correlation: ¢ = 0.8657.

60

40 -

20 -

20F N

Euler Angles (degrees)

-40 -

@
3

IS
5}

N
3

Euler Angles (degrees)
)

8
{

A
S

Time (s)

Figure 7.21: Graphical representation of the yaw (1)) angle of the current shot (top) and the free throw used as
a model (bottom). Correlation: ¢ = 0.8979.

61

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

Determining when the ball enters the hoop

The approach used to determine the outcome was explained in section 6.2.4. For the sake of
simplicity and after the proper test, it was determined that only the X-axis channel of the
accelerometer is required to characterize if the ball hits the net sensor. When that happens, a

spike appears, as it can be seen in the last graph of figure 7.17. In the MATLAB script, the flag
rises when the spike crosses the value of 20 g.

7.2.2 Results

In this section, the results given by the performance of different shots with diverse outcomes will
be discussed. Sensor readings, Euler angles representation and correlation values are presented
for each case.

Perfect free throw

The shot shown in 7.2.1 is going to be considered as the perfect free throw because it is quite
close to the one chosen as a model and the player performed a great technique when shooting.
Moreover, he made the basket. The data readings from the sensors are the following;:

Accelerometer

o
3
1

z

Acceleration (g)
o

A ﬁ“}k\ -
e /\\’J‘»“WN\\)‘»«%&;’*#;;

I ! I I

0 0.5 1 15 2 25 3 3.5
Time (s)

Accelerometer (Compensated)

45

Acceleration (g)
o

=X ;/“/ \\jj\} V\m\/vﬂ\/v,h;w“;:; =

-50 L L L

NS IS
N < %

0 0.5 1 15 2 25 3 35
Time (s)
Gyroscope

45

Angular velocity (rad/s)

\ X
A z
W
1 I)
4.

I

0 0.5 1 15 2 2.5 3 35 4
Time (s)

Magnetometer

.5

=]
8
T
|
s
\

Magnetic Field(G)
o
T

S

- = . ,

| I | y

0 0.5 1 1.5 2 25 3 3.5 4 45
Time (s)

Net Sensor Accelerometer

1 A X
. - 1T NDY NS Y
O M

g 3 4

T
|
:
\

o
3
1

Acceleration (g)
o
I

I
3.5 4

&
3
T

I I
2 25
Tiempo (s)

)
o4
o
o

.5

Figure 7.22: Plots of the different data provided by the sensors for the perfect free throw. Notice the spike in
the last plot which shows when the ball hits the net sensor.

The representation of the roll angle of the activity (aligned) and the model shows the similarity
between both graphs (figure 7.23).

62

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

Activity (aligned)

200 T T T
g 150 / 0\ 1
o / VN
2100 - / 1
%] / \
2 /
g 50 |- 1
5 — : o N~ —
S 0F — ,/ 7
w

-50 L L L L L

0 1 2 3 4 5 6
Free throw model

200 T T
o / 7'\\\
g 150 /o g
o / \ A
() VA Y,
S 100 - \ 8
2 \
2 \
2 50]
< y \ ~
> - / o
u—:.f ok - i

-50 1 | 1 1 1

0 1 2 3 4 5 6
Time (s)

Figure 7.23: Roll (¢) angle from the perfect free throw (top) and the model (bottom).

Finally, figure 7.24 shows the MATLAB command window in which the verdict of the shot
performed is displayed numerically. In this case, the correlation coefficient obtained between
both vectors is 0.9854, very close to 1. This means that the activity performed is almost equal
to the model and shows its corresponding score, a 10. Since the net sensor also detected the ball
going inside the hoop, it prints the message Outcome:Player made the basket!.
Command Window
Cc =
0.9854
Free throw detected
Technique score: 10

Outcome: Player made the basket!!
fx >>

Figure 7.24: MATLAB command window showing the output messages.

Free throw with good technique that scores

This shot was performed with a good technique, but it was not perfect. Nevertheless, the player
made the basket. To know how well was the attempt sensor data can be used. In figure 7.25
sensor readings are displayed.

63

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

B g Accelerometer

5 "~ %

T Ee————— —— - N YL

50 H—':ﬁ*‘«x'\;;;/\;/x,‘ SRS S5 ot z

]

8 50)

< 05 1 15 2 25 3 35 4
Time (s)

c) 50 Accelerometer (Compensated)

| I e

5 fm———= »*;j/\/\’ e O

]

8 50)

< 0 05 1 1.5 2 25 3 35 4

v Time (s)

5

g Gyroscope

= 10

2z -

S . n

S 0 RW\‘JM)’L’:\\;{/ P

2 \FY N

g 10 I I I I I I I)

=4 0 0.5 1 1.5 2 25 3 35 4

< Time (s)

[C} Magnetometer

5 200

° - — o o

100 - o

8

g or S ——————

<3 L | | |)

= 0 0.5 1 1.5 2 25 3 35 4
Time (s)

R Net Sensor Accelerometer

<

S

S opF———

2

8

3 50 I I I I I I

< 05 1 15 2 25 3

Tiempo (s)

Figure 7.25: Plots of the different data provided by the sensors for a good free throw. Notice the spike in the
last plot which shows when the ball hits the net sensor.

In this case, the graph of the roll angle is not as close as before but the overall shape remains
the same. That suggests that even though it was not perfect, the shot was not bad at all.

Activity (aligned)

200 : :
B 150 -
o // \
(2] /
D \ ~
B100 / S~ 7\ B
8 / \
5 /
g 50 - / \ s
5 | / \
S 0 ~__ - -
w o NG
_50 1 1 Il Il 1 1 _/ 1 1
0 0.5 1 1.5 2 25 3 3.5 4 4.5
Free throw model
200 : : . T
8 150 /N 1
I / \
o /" \ ™\ -
() / W/ -
T 100 | / ~\ 1
0 / \
K / \
o
50 | \ -
2 \ N
5 | / -
S 0 — - =
z .
-50 L L L L L L | |
0 0.5 1 1.5 2 25 3 35 4 45

Time (s)
Figure 7.26: Roll (¢) angle from a good free throw (top) and the model (bottom).

Lastly, the command window shows the final correlation (¢ = 0.9071) and the corresponding
score, an 8. Since the player made the basket, a message in the terminal is written.

64

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

Command Window

(e}
"

0.9071

Free throw detected

Technique score: 8

Outcome: Player made the basket!!
fx >>

Figure 7.27: MATLAB command window showing the output messages.

Free throw with good technique that does not score

The third case is when the player shoots with a good technique but does not make the basket

because the ball hits the rim. Let’s see if the analysis can clarify what happened. As always, the
first figure shows the sensor readings:

Accelerometer

i h x
’TjMMT;:Y/;fJ\WW&;A:;:;
s 2 25 : s

L
0 0.5 1 1.5 3 35

[YFS

N
SoS3d

Acceleration (g)

|
X 4.5

Time (s)
Accelerometer (Compensated)

o
3

|
[
|
0
|
\
-
;
|
!
\
1
|

&
3

Time (s)
Gyroscope

- X
- . . M
7——%3,1—:,%;,, > / ,X?y,\;sm%/ﬁ;_—»_‘.
L\ . . .)
. 5 4 5

homo
]

I
2 25 3 3.
Time (s)
Magnetometer

)
o4
o

o

L
4.5

o
38
88

|

|

|

|

— — 3

)
N

T ——
L |

4 —)

0 0.5 1 15 2 25 3 3.5 4 4.5 5
Time (s)

Net Sensor Accelerometer

e R A
Y
z

. . . \ . |)

3.5 4 4.5 5

I
0 0.5 1 15 2 25 3
Tiempo (s)

o
|
[
1l

o
T

N
S

Acceleration (g) Magnetic Fie\d(G)Angu‘a, velocity (rad/s) Acceleration (g)

Figure 7.28: Plots of the different data provided by the sensors for the not so good free throw. Notice the
absence of the spike in the last plot which shows when the ball hits the net sensor.

In figure 7.28 it can be seen that the net sensor does not receive a direct impact but it reflects
the oscillations caused by the ball hitting the hoop. When analysing the next graph, figure 7.29,
there is one spike missing in the aligned activity at the end of the movement if compared with
the model. That fact could be the factor that made the player miss the shot.

65

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

Activity (aligned)

200 T T T T T
g 150 N\ 1
o //
[/ \~—
100 / ~__ 4
= /
o) | - o i
é 50 /
5 /
S 0F T—0 / b
o —~_

-50 L L L L L L L L

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Free throw model

200 T T T T
w ™
9 150 - /N .
S 100 F / —\ 1
7] / \
@ / \
2 50 / 1
<< // \ _ —
5 o Y, -
S5 0 — 1
w

»50 1 1 Il Il Il Il 1 1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Time (s)

Figure 7.29: Roll (¢) angle from a not so good free throw (top) and the model (bottom).

To conclude, the MATLAB command window displays the verdict. In this case, the correlation
coefficient obtained between both vectors is 0.9059, marked with an 8. Since the net sensor did
not detect the ball going inside the hoop, it prints the message Outcome:Player missed the
basket. . ..

Command Window

0.9059

Free throw detected

Technique score: 8

Outcome: Player missed the basket..
fx >>

Figure 7.30: MATLAB command window showing the output messages.

Free throw with bad technique that does not score

The last case scenario to consider is when the players shoot with a bad technique and, as expected,

misses the basket. Looking at the sensor readings:

66

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

Accelerometer

o
3
1

Acceleration (g)
o
T
I
‘ |
|
Il
I
J i
[
S\
>
|
N
)
\

&
3

Time (s)
Accelerometer (Compensated)

. 8 I \\ ~ — i ~

)
I
W1
L L
1 15 2 25 3 35

o
3
1

Acceleration (g)
o

&
3

0 0.5
& Time (s)
3 rosco
E; 10r Gy pe
> — X
g o S>oMAA f———— Y
% o ﬂ:;/'*\ﬁ/&ﬁ\/\{ /\’>—v——f "
2 \WY N,
S-0f "
El 1)
2 o 05 1 15 2 25 3 35
Time (s)
o Magnetometer
% 200 - 9
k] [J— X
[SRRL] — — ~— Y
L -~ z
gl .
‘Eﬂ 100 = L~ S——)
0 0.5 1 15 2 25 3 3.5
Time (s)
_ Net Sensor Accelerometer
5 M\
T 0p—————
S
£ 10 - -
K
8
£ 20 . I I . I I)
0 0.5 1 15 2 25 3 3.5
Tiempo (s)

Figure 7.31: Plots of the different data provided by the sensors for the bad free throw. Notice the absence of
the spike in the last plot which shows when the ball hits the net sensor.

The obtained information is similar to the previous case, the ball does not enter. To interpret
the wrist sensor data, Euler angle representation is used as before.

Activity (aligned)

200 T T T
2 -
g 150 - N\ s
o / \
@ A
T 100 / N .
» \
2 / \
2 50 / \ S |
E // \\ //
ko) - \ S
ujJ o \\ - T
»50 1 Il Il Il Il 1 1
0 0.5 1 1.5 2 2.5 3 3.5 4
Free throw model
200 T T T T T T
? /O
8 150 -) \ q
g / \\f N— a\
T 100 / —\ .
7] / \
[}
=) /
é 50 [/ \ -
Bl —]
_50 1 Il Il 1 1 1 1
0 0.5 1 1.5 2 2.5 3 3.5 4

Time (s)

Figure 7.32: Roll (¢) angle from a bad free throw (top) and the model (bottom).

The bad free throw has a roll angle graph that remembers vaguely the model. The overall shape
looks akin, but it can be appreciated that crucial parts are not how they should be. Notice the

67

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

first and second spikes. In the first one it is pointier and the second one lacks the valley with the
other small mountain at the end. It should not give a good value in the correlation, revealing a
faulty performance.

Command Window
c =
0.8395
Free throw not identified

Outcome: Player missed the basket...
fx >>

Figure 7.33: MATLAB command window showing the output messages.
As predicted before, the command window shows a ¢ = 0.8395. This value has not enough

resemblance to characterize that it belongs to a free throw. Furthermore, the shot was missed,
as it remembers the message in the terminal.

68

Chapter 8

Final conclusions

8.1 Summary of the work done

After having analysed the basketball training routines it has been concluded that it could be
an improvement to the sessions to implement some kind of technology in the shooting practice.
This has led to the choice of a wearable device for basketball.

Firstly, a study was made of the main wearables on the market with which it is possible to obtain
the necessary information from the outside for the classification of the different movements, i.e.
a device containing an inertial measurement unit. Following this search, two Hexiwear devices
from Mikroelektronika were chosen as the hardware for obtaining the data.

Secondly, a mobile application has been developed for devices with the Android and iOS operating
systems, using the Android Studio development environment and Flutter SDK. This application
has been configured to connect via Bluetooth Low Energy to the chosen hardware devices. It
also allows the activities carried out to be recorded in a local database, as well as downloading
in CSV files.

Finally, in an environment with greater computing power such as a computer and with a numer-
ical computation programme such as MATLAB, an analysis methodology for the data collected
by the hardware device has been processed and validated, extracting them from the files gener-
ated by the application. For data processing, a fusion of the information collected by the inertial
measurement unit has been carried out to obtain the orientation of the device and to identify the
shots and their outcome. In addition, the acceleration effect of gravity has been compensated
and problems derived from the orientation, such as the gimbal lock, have been solved. In the
analysis part, the first identification of different types of free throws has been validated, proving
the usefulness and success of the prototype.

Therefore, the objectives set out in the project have been successfully achieved, obtaining a
prototype capable of recording, identifying and qualify free throws. The project developed shows
the wide field of application of wearable devices in basketball as well as in any type of sport,

69

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

being able to help in the training of mechanical skills. Moreover, it can be said that it is a
multidisciplinary project as it has been necessary to apply knowledge from different fields such
as signal processing, programming, graphic design or statistics.

8.2 Proposal for future work

As future work, some improvements could be included in the project. On the analysis side,
much more could be done based on the validation carried out. With a larger number of different
shots recorded and more samples of each one, much more reliable models could be obtained for
each type of shot, providing more accurate statistics. The presence of different players of diverse
sex, dominant hand, skill and size will also enrich the data and make the models more useful
for more users. Also, with a larger volume of data, other more sophisticated types of analysis
such as machine learning and neural networks can be applied and then expand the usefulness to
another kind of shots like 3-pointers or lay-ups.

Another possible improvement would be to link the mobile application with the analysis carried
out on the computer with a cloud-based database like Firebase, skipping the step of downloading
the CSV file in the smartphone and then send it to the computer.

A possible extension of the above improvement would be to merge the app and the analysis into
a web application. Here the user could log activities on their mobile app with their device, and
at the same time, these would be stored in the web application while being analysed and their
statistics could be visualised. Likewise, the ultimate option can be to include the analysis inside
the mobile app and thus get rid of the use of an external computer to access the web app or
MATLAB, allowing the user to monitor everything with the smartphone.

70

N

Chapter 9

Annex: Mobile app code

Although some code has been displayed during the report, it has been preferred to include an
annex at the end of the report that contains all the source code of the Free Throw Trainer
mobile application. The app directory is organized in three foldes: screens, models and widgets.
The first one includes the source code for each page seen by the user; the second, the database
files to create the different boxes; and the last one are auxiliar files to perform several functions.
main.dart file is alone and it is used to initialize the process as the root file.

9.1 main.dart

import ’dart:io’;

import ’package:flutter/cupertino.dart’;

import ’package:flutter/material.dart’;

import ’package:get/get.dart’;

import ’package:hive/hive.dart?’;

import ’package:hive_intro/constants.dart’;
import ’package:hive_intro/models/activity.dart’;
import ’package:hive_intro/models/movement.dart’;
import ’package:hive_intro/screens/splash.dart’;

import ’package:path_provider/path_provider.dart’ as pathProvider;
import ’models/user.dart’;

void main() async {
WidgetsFlutterBinding.ensurelnitialized();

Directory directory = await pathProvider.getApplicationDocumentsDirectory();
Hive.init (directory.path);

Hive.registerAdapter (UserAdapter ());
Hive.registerAdapter (ActivityAdapter ());

Hive.registerAdapter (MovementAdapter ());

Hive.openBox<String>(’users’);

71

Wearable system based on inertial measurement unit and communication with mobile device to

quantify the shooting performance during basketball practice.

27 // v

ar usersBox = await Hive.openBox (’users’);

28 runApp (const MyApp());

31 class

MyApp extends StatelessWidget {

32 const MyApp ({Key? keyl}) : super(key: key);

34 // This widget is the root of the application.

35 Qove
36 Widg

37 re

9.2

9.2.1

1 import
2 import
3 import
4 import
5 import
6 import
7 import

8

rride
et build(BuildContext context) {
turn GetMaterialApp(
debugShowCheckedModeBanner: false,
title: ’Hive Intro?,
theme: ThemeData(
primaryColor: kYellow,
accentColor: kOrange,
scaffoldBackgroundColor: kBlue,
textTheme: const TextTheme (
bodyTextl: TextStyle(
color: Colors.white,
fontFamily: ’Roboto’,
fontWeight: FontWeight.w400,
) g
bodyText2: TextStyle(
color: Colors.white,
fontFamily: ’Roboto’,
fontWeight: FontWeight.w400,
) g
// button: TextStyle(color: Colors.white),
) o
) o

home: const SplashScreen(),

screens

splash.dart

’package:flutter/cupertino.dart’;
’package:flutter/material.dart’;
’package:get/get.dart’;
’package:hive_intro/constants.dart’;
’package:hive_intro/screens/ble_search.dart’;
’package:hive_intro/screens/new_user.dart’;

’package:hive_intro/screens/user_list.dart’;

o class SplashScreen extends StatelessWidget {

10 const SplashScreen({Key? key}) : super(key: key);
11

12 Qoverride

13 Widget build(BuildContext context) {
14 return Scaffold(

72

body: Center(
child: SingleChildScrollView(
child: Column(
mainAxisAlignment: MainAxisAlignment.center,
children: [

Wearable system based on inertial measurement unit and communication with mobile device to

quantify the shooting performance during basketball practice.

//Splash image

const Image(image: AssetlImage(’images/splash_image.png’)),

//space

const SizedBox (
height: 50,

Do

//Welcome text
const Text (
>FREE THROW TRAINER?’,
style: TextStyle(
fontWeight: FontWeight.w600,
fontSize: 30,
)
) o
//space
const SizedBox (
height: 15,
),

//Select user
const Text (
>Select user’,
style: TextStyle(
// fontWeight: FontWeight.w100,
fontSize: 25,
fontWeight: FontWeight.w100,
)
Do
const SizedBox (
height: 20,
) o
TextButton (
style: flatButtonStyle,
child: Text(
’Existing User’,
style: titleStyle,
) g
onPressed: () => Get.to(() => UserList()),
Do
const SizedBox (
height: 20,
Do
TextButton (
style: flatButtonStyle,
onPressed: () => Get.to(() => const NewUser()),
child: Text(
’New User?’,
style: titleStyle,

73

Wearable system based on inertial measurement unit and communication with mobile device to

quantify the shooting performance during basketball practice.

9.2.2

import
import
import
import
import
import
import
import

import

class

new-user.dart

’package:flutter/cupertino.dart’;
’package:flutter/material.dart’;
’package:flutter/services.dart’;
’package:get/get.dart’;
’package:hive_intro/constants.dart’;
’package:hive_intro/hive_db.dart’;
’package:hive_intro/models/user.dart’;
’package:hive_intro/screens/user_list.dart’;

’package:hive_intro/widgets/custom_form_widget.dart’;

NewUser extends StatelessWidget {

const NewUser ({Key? keyl}) : super(key: key);

Q@override
Widget build(BuildContext context) {

Ire

turn Scaffold(
backgroundColor: kBlue,
resizeToAvoidBottomInset: false,
appBar: AppBar (
iconTheme: IconThemeData (
color: Colors.white, //change your color here
) o
backgroundColor: kBlue,
title: const Text(
New User?,
style: TextStyle(
fontSize: 30,
fontWeight: FontWeight.w600,
color: Colors.white,
),
) g
centerTitle: true,
elevation: O,
) o
body: Center (
child: Column(
children: [
const Text (

’Add your information?,
style: TextStyle(
fontSize: 20,

fontWeight: FontWeight.w100,
) g
) o
const SizedBox(height: 20),
Expanded (
child: Card(
color: kBlue,
child: const MyCustomForm(),

// Create a corresponding State class.
// This class holds data related to the form.

74

quantify the shooting performance during basketball practice.

Wearable system based on inertial measurement unit and communication with mobile device to

class MyCustomForm extends StatefulWidget {

const MyCustomForm({Key? keyl}) : super(key: key);

Qoverride
_MyCustomFormState createState() => _MyCustomFormState();

class _MyCustomFormState extends State<MyCustomForm> {

final _formKey = GlobalKey<FormState>();

//controllers to retrieve the data from the form
var nameController = TextEditingController ();
var ageController = TextEditingController ();

var heightController = TextEditingController ();
var weightController = TextEditingController ();

//variables for the datepicker
DateTime date = DateTime.now(); //initialize to today

//function to display and get the selected date
Future<void> selectTimePicker (BuildContext context) async {
DateTime? picked = await showDatePicker (
context: context,
initialDate: date,
firstDate: DateTime (1930),
lastDate: DateTime (2021),

)3
if (picked !'= null && picked != date) {
setState (() {
date = picked;
print (date.toString ());
// selectTimePicker = new DateFormat.yMMMMd ("en_US").format (picked);
B
¥
}
Qoverride
Widget build(BuildContext context) {
nameController = TextEditingController ();

ageController = TextEditingController () ;
heightController = TextEditingController ();
weightController = TextEditingController ();

// Build a Form widget using the _formKey created above.
return Form(
key: _formKey,
child: Column(
crossAxisAlignment: CrossAxisAlignment.start,
children: <Widget>[
//NAME -> write
CustomFormWidget (
controller: nameController,
content: ’Name’,
icon: Icons.account_circle_sharp,
willAcceptNumbersOnly: false,
) s

// age
CustomFormWidget (
controller: ageController,

75

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

122 icon: Icons.cake,
123 content: ’Age’,

124),

126 //height

127 CustomFormWidget (

128 controller: heightController,
129 icon: Icons.accessibility_new,

130 content: ’Height’,

131),

132

133 //weight

134 CustomFormWidget (

135 controller: weightController,
136 icon: Icons.monitor_weight,
137 content: ’Weight’,

138),

140 // const Spacer (),

141 const SizedBox(

142 height: 20,

143),

144 //SAVE BUTTON

145 Padding(

146 padding: const Edgelnsets.symmetric(

147 vertical: 20,

148 horizontal: 20,
149),

150 child: SizedBox(
151 height: 72,

152 width: double.infinity,
153 child: ElevatedButton(

154 child: const Text(’Save’,

155 style:

156 TextStyle (fontSize: 16, fontWeight: FontWeight.w600)),
157 style: ElevatedButton.styleFrom(

158 primary: kOrange, //background color of button

159 elevation: 3, //elevation of button

160 shape: RoundedRectangleBorder (

161 //to set border radius to button

162 borderRadius: BorderRadius.circular (10)),

163 padding:

164 const Edgelnsets.all(20) //content padding inside button
165)]

166 onPressed: () async {

167 // Validate returns true if the form is valid, or false otherwise.
168 if (_formKey.currentState!.validate()) {

169 //check if we are editing

170 HiveDB _hive_db = HiveDB();

171 _hive_db.addNewUser (

172 User (activities: [])

173 ..name = nameController.text

174 ..age = int.parse(ageController.text)

175 ..height = int.parse(heightController.text)

176 ..weight = double.parse(

177 weightController. text,
178),

179)

180

181 nameController.clear () ;

182 ageController.clear () ;

76

Wearable system based on inertial measurement unit and communication with mobile device to

quantify the shooting performance during basketball practice.

heightController.clear();
weightController.clear ();

Get.to(() => const UserList());

9.2.3 user-list.dart

import ’dart:core’;

import ’package:
import ’package:
import ’package:
import ’package:
import ’package
import ’package:
import ’package:
import ’package:

import ’package:

flutter/cupertino.dart’;
flutter/material.dart’;
get/get .dart’;
hive/hive.dart’;

:hive_intro/hive_db.dart?’;

hive_flutter/hive_flutter.dart’;
hive_intro/models/user.dart’;
hive_intro/screens/home.dart’;

hive_intro/screens/user_edit.dart’;

import ’../constants.dart’;

class UserList extends StatelessWidget {
const UserList ({Key? key}) : super(key: key);

Qoverride

Widget build(BuildContext context) {
return Scaffold(
backgroundColor: kBlue,

resizeToAvoidBottomInset: false,

appBar: AppBar (

iconTheme: IconThemeData (

color:

) s

Colors.white, //change your color here

backgroundColor: kBlue,

title:
’User
style:

const Text (

List’,
TextStyle(

color: Colors.white,
fontSize: 30,
fontWeight: FontWeight.w600,

),
) s

centerTitle: true,

elevation: O,

) s

body: Center(
child: Column(

// crossAxisAlignment:

children: comnst [
Text (
’Choose your user’,
style: TextStyle(

CrossAxisAlignment.start,

7

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

15 fontSize: 20,

16 fontWeight: FontWeight.w100,
7),

18) o

19 SizedBox (height: 20),

50 Padding (

51 padding: Edgelnsets.symmetric(
52 vertical: 20,

53 horizontal: 20,

54),

55 child: UserListItem(),

56) o

64 class UserListItem extends StatefulWidget {
65 const UserListItem({Key? key}) : super(key: key);

67 Qoverride

68 _UserListItem createState() => _UserListItem();

71 class _UserListItem extends State<UserListItem> {
72 final HiveDB _hiveDB = HiveDB();

-

74 Qoverride

75 void initState () {
76 super.initState () ;
77 // getUsers();

78 }

7¢

80 Q@override

81 Widget build(BuildContext context) {

82 return ValuelistenableBuilder <Box<String>>(

83 valuelistenable: Hive.box<String>(’users’).listenable(),
84 builder: (ctx, box, _) => ListView.builder (

85 shrinkWrap: true,

86 itemCount: box.length,

87 itemBuilder: (context, index) => box.isEmpty
88 ? const Center(

89 child: Text(’No users found’),

90)

91 : Dismissible(

92 key: UniqueKey (),

93 direction: DismissDirection.startToEnd,
94 background: Container (

95 color: Colors.red,

96 padding: const Edgelnsets.only(left: 5),
97 child: const Align(

98 alignment: Alignment.centerLeft,

99 child: Icon(

100 Icons.delete,

101 color: Colors.white,

102),

103) o

104) 1)

105 onDismissed: (_) async {

78

Wearable system based on inertial measurement unit and communication with mobile device to

quantify the shooting performance during basketball practice.

//open the box
var users = Hive.box<String>(’users’);

// remove the i-th person

_hiveDB.removeUserBox (users.getAt (index)!);

// remove entry from general user list
users.deleteAt (index) ;
},
child: Padding(
padding: const Edgelnsets.symmetric(vertical: 10.0),
child: ListTile(
tileColor: kYellow,
shape: RoundedRectangleBorder (
borderRadius: BorderRadius.circular (10),
),
title: Align(
alignment: Alignment.centerlLeft,
child: TextButton (
child: Text (
box.getAt (index)!,
style: TextStyle(
color: kBlue,
fontSize: 20,
fontWeight: FontWeight.bold,

),
textAlign: TextAlign.start,
) g
onPressed: () async {
Get .to(
() => Home(
name: box.getAt (index)!,
),
)8
b,

),
trailing: IconButton(
onPressed: () async {
print (box.getAt (index)!);

User _user = await _hiveDB

.returnUserFromAName (box.getAt (index)!);

Get.to(
() => EditUser(
user: _user,

index0fName: index,
) g
)3
¥o
icon: Icon(
Icons.edit,
color: kBlue,

79

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

167 }

9.2.4 wuser-edit.dart

1 import ’package:flutter/cupertino.dart?’;

N

import ’package:flutter/material.dart’;

import ’package:get/get.dart’;

+ import ’package:hive/hive.dart’;

5 import ’package:hive_intro/hive_db.dart’;

¢ import ’package:hive_intro/models/user.dart’;

7 import ’package:hive_intro/widgets/custom_form_widget.dart’;
o import ’../constants.dart’;

11 class EditUser extends StatefulWidget {

12 const EditUser ({

13 Key? key,

14 required this.user,

15 required this.index0OfName,

16 }) : super(key: key);

18 final User user;

19 final int index0fName;

21 Qoverride

22 State<EditUser> createState() => _EditUserState();
25 class _EditUserState extends State<EditUser> {

26 final _formKey = GlobalKey<FormState>();

28 var nameController = TextEditingController ();

30 var ageController = TextEditingController ();

32 var heightController = TextEditingController () ;

34 var weightController = TextEditingController ();

36 Qoverride

37 void initState () {

38 super.initState () ;

39 nameController.text = widget.user.name!;

10 ageController.text = widget.user.age!.toString();

41 heightController.text = widget.user.height!.toString();
42 weightController.text = widget.user.weight!.toString();
13 ¥

14

45 Q@override

16 Widget build(BuildContext context) {

A7 return Scaffold(

48 resizeToAvoidBottomInset: false,

19 appBar: AppBar (

50 backgroundColor: kBlue,

51 iconTheme: IconThemeData (

52 color: Colors.white, //change your color here

53),

54 title: const Text(

55 ’Edit User’,

56 style: TextStyle(

57 fontSize: 30, fontWeight: FontWeight.w600, color: Colors.white),

80

Wearable system based on inertial measurement unit and communication with mobile device to

quantify the shooting performance during basketball practice.

),
centerTitle: true,
elevation: O,
),
body: Column(
children: [
const Text (
’Edit your information’,
style: TextStyle(
fontSize: 20,
fontWeight: FontWeight.w200,
),
)
const SizedBox (height: 20),
Padding (
padding: const Edgelnsets.symmetric(horizontal: 10),
child: Form(
key: _formKey,
child: Column(
children: <Widget>[
CustomFormWidget (
controller: nameController,
content: ’Name’,
icon: Icomns.account_circle_sharp,
willAcceptNumbersOnly: false,
),
CustomFormWidget (
controller: ageController,
icon: Icons.cake,
content: ’Age’,
),
CustomFormWidget (
controller: weightController,
icon: Icons.monitor_weight,
content: ’Weight’,
),
CustomFormWidget (
controller: heightController,
icon: Icons.accessibility_new,

content: ’Height’,

) o

const SizedBox (
height: 50,

Do

Padding (

padding: const Edgelnsets.symmetric(
vertical: 20,
horizontal: 20,
),
child: SizedBox(
height: 72,
width: double.infinity,
child: ElevatedButton(
child: const Text(’Save’,
style: TextStyle(
fontSize: 16, fontWeight: FontWeight.w600)),
style: ElevatedButton.styleFrom(
primary: kOrange, //background color of button
elevation: 3, //elevation of button
shape: RoundedRectangleBorder (
//to set border radius to button

81

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

119 borderRadius: BorderRadius.circular (10)),

120 padding: const EdgelInsets.all(

121 20) //content padding inside button

122) H

123 onPressed: () async {

124 // Validate returns true if the form is valid, or false
otherwise.

125 if (_formKey.currentState!.validate()) {

126 HiveDB _hive_db = HiveDB();

127 _hive_db.printAll () ;

129 if (_formKey.currentState!.validate()) {

130 User user =

131 User (activities: widget.user.activities)

132 ..name = nameController.text

133 ..age = int.parse(ageController.text)

134 ..height = int.parse(heightController.text)
135 ..weight =

136 double.parse (weightController.text);

138 _hive_db.updateUser (user, widget.index0OfName) ;

141 Get .back(closeOverlays: true);

143 Get .snackbar (

144 ’Yay’,

145 ’Created new user’,
146 colorText: kBlue,
147 titleText: Text(

148 ’Done’,

149 style: TextStyle(

150 fontWeight: FontWeight.bold,
151 color: kBlue,

152))

153))

154 messageText: Text(

155 ’Updated successfully’,
156 style: TextStyle(
157 color: kBlue,

158 Do

159) 3

160 backgroundColor: kYellow,
161 snackPosition: SnackPosition.TOP,
162) 8§

163 }

164 } H

165),

166) £

167) H

168] 3

169) 5

170) tl

171),

172 1,

173),

174)

175 }

176 }

82

Wearable system based on inertial measurement unit and communication with mobile device to

quantify the shooting performance during basketball practice.

9.2.5

import
import
import
import
import
import
import
import
import
import
import
import

import

class

home.dart

’dart:io’;

’package:csv/csv.dart’;
’package:flutter/material.dart’;
’package:get/get.dart’;
’package:hive_f1utter/hive_f1utter.dart’;
’package:hive/hive.dart’;
’package:hive_intro/constants.dart’;
’package:hive_intro/models/user.dart’;
’package:hive_intro/screens/ble_search.dart’;
’package:hive_intro/widgets/latest_activity.dart’;
’package:intl/intl.dart’;
’package:path_provider/path_provider.dart’;
’package:permission_handler/permission_handler.dart’;

Home extends StatefulWidget {

const Home ({

Key? key,

required this.name,

b

super (key: key);

final String name;

Qoverride
_HomeState createState() => _HomeState();

class

_HomeState extends State<Home> {

// Future<void> ensureCorrectBoxIsOpen() async {

//
// %
//

await Hive.openBox<User >(widget.name) ;

// highLevelCalls () async {

//
//
// %

await ensureCorrectBoxIsOpen();

print (’box is now open for sure’);

Qoverride

void

initState () {

super.initState () ;

Qoverride
Widget build(BuildContext context) {
return Scaffold(

appBar: AppBar(
iconTheme: IconThemeData (
color: kBlue, //change your color here
),
backgroundColor: kYellow,
centerTitle: true,
actions: [
IconButton (
icon: const Icon(Icons.refresh),
onPressed: () => setState(() {3}),
) g
1,
title: Text (
widget .name,
style: TextStyle(
fontSize: 30,

83

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

61 color: kBlue,

62 fontWeight: FontWeight.w600,

63),

64),

65),

66 body: SingleChildScrollView(

7 child: Center(

68 child: Column (

69 mainAxisAlignment: MainAxisAlignment.center,
70 children: [

71 const SizedBox(

72 height: 50,

73),

74 TextButton (

75 style: orangeFlatButtonStyle,
6 child: Text(

77 ’Start Activity’,

78 style: titleStyle.copyWith(color: Colors.white),
79),

80 onPressed: () => Get.to(

81 () => BluetoothScreen (

82 name0fUser: widget.name,

83))

84))

85),

86 const SizedBox(

87 height: 50,

88) s

89 ValuelistenableBuilder <Box<User>>(

90 valuelistenable: Hive.box<User>(widget.name).listenable(),
91 builder: (_, box, __) => box.getAt(0)!.activities.isNotEmpty
92 ? ListView.builder(

93 physics: const BouncingScrollPhysics (),

94 shrinkWrap: true,

95 itemCount: box.getAt (0)!.activities.length,
96 itemBuilder: (ctx, index) {

o7 return TextButton (

98 onPressed: () async {

99 //when we press the button it creates the csv
100 List<List<dynamic>> data = [

101 [

102 "Time_Stamp",

103 "Acc_X",

104 "Acc_Y",

105 "Acc_Z",

106 "Gyr_X",

107 "Gyr_Y",

108 "Gyr_zZ",

109 "Mag_X",

110 "Mag_Y",

111 "Mag_z",

112 "Acc_2_X",

113 "Acc_2_Y",

114 "Acc_2_Z",

115 "Gyr_2_X",

116 "Gyr_2_Y",

117 "Gyr_2_72",

. "Mag_2_X",

119 "Mag_2_Y",

120 "Mag_2_72",

84

166

167

168

169

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

terminal ,

it works

g

for (var movement
in box.getAt (0)!.activities[index].mov) {
// print(’got a movement object ${movementl}’);
data.add(
[
movement .timestamp.millisecond,
movement .accX,
movement.accY,
movement .accZ,
movement .gyrX,
movement .gyrY,
movement .gyrZ,
movement .magX,
movement .magy,
movement .magZ,
movement .accX2,
movement .accY2,
movement .accZ2,
movement .gyrX2,
movement .gyrY2,
movement .gyrz2,
movement .magX2,
movement .magY¥2,
movement .magz2,
1,
)

//this part works
String csvData =
const ListToCsvConverter ().convert (data);

//this line prints all the data from the csv to the
// debugPrint (csvData.toString (), wrapWidth: 1024);

var _isGranted =
await Permission.storage.request().isGranted;
print (_isGranted) ;

if (await Permission.storage
.request ()
.isGranted) {
final String directory = Platform.isIOS
? (await getApplicationDocumentsDirectory())
.path
(await getExternalStorageDirectory ())!

.path;

final path =
"$directory/csv-${DateTime.now () }.csv";

final File file = File(path);

awvait file.writeAsString(csvData, flush: true);

print(
’completed save successfully and saved file to
"$directory/csv-${DateTime .now () }.csv");
} else {
await Permission.storage.request();

85

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

}
¥o
child: Row(
children: [
Padding (
padding: const Edgelnsets.all(15.0),
child: Text(
DateFormat (’dd-MM-yyyy, HH:mm:ss?)
.format (box
.getAt (0)!
.activities[index]
.date)
.toString(),
style: TextStyle(color: kOrange),
),
),
const Spacer (),
const Icon(
Icons.download,
color: Color (0xffF29A42),

const Text(’No activities :(?),

9.2.6 ble-search.dart

import ’dart:async’;

import ’package:flutter/material.dart’;

import ’package:flutter_blue/flutter_blue.dart’;
import ’package:get/get.dart’;

import ’package:hive_intro/widgets/ble_widgets.dart’;

import ’../constants.dart’;

import ’live_activity.dart?’;

class BluetoothScreen extends StatelessWidget {
const BluetoothScreen ({
Key? key,
required this.nameOfUser,
}) : super(key: key);

final String nameOfUser;

Qoverride
Widget build(BuildContext context) {
return Scaffold(
body: StreamBuilder <BluetoothState >(
stream: FlutterBlue.instance.state,

initialData: BluetoothState.unknown,

86

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

builder: (c, snapshot) {
final state = snapshot.data;
if (state == BluetoothState.on) {
return FindDevicesScreen (
name0fUser: nameOfUser,
) 8
}
return BluetoothOffScreen(state: state!);
B,

class BluetoothOffScreen extends StatelessWidget {
const BluetoothOffScreen({Key? key, required this.statel}) : super(key: key);

final BluetoothState state;

Qoverride
Widget build(BuildContext context) {
return Scaffold(
backgroundColor: Colors.lightBlue,
body: Center(
child: Column(
mainAxisSize: MainAxisSize.min,
children: <Widget>[
const Icon(
Icons.bluetooth_disabled,
size: 200.0,
color: Colors.whiteb4,
),
Text (
’Bluetooth Adapter is ${state != null ? state.toString().substring(15) : ?
not available’}.’,
style: Theme.of (context)
.primaryTextTheme
.subtitlel!
.copyWith(color: Colors.white),

class FindDevicesScreen extends StatelessWidget {
FindDevicesScreen ({
Key? key,
required this.nameOfUser,
}) : super(key: key);

final String nameOfUser;
List<BluetoothDevice> devicelList = [];

@override
Widget build(BuildContext context) {
return Scaffold(
appBar: AppBar (
iconTheme: IconThemeData (
color: kBlue, //change your color here

87

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

84),

85 title: Text (

86 ’Find Devices?’,
87 style: TextStyle(
88 color: kBlue,
89),

20),

91 actions: [

92 StreamBuilder <List <BluetoothDevice >>(

93 stream: Stream.periodic(const Duration(seconds: 1)).asyncMap(
94 (_) => FlutterBlue.instance.connectedDevices,

95) o

96 initialData: [],

97 builder: (c, snapshot) => TextButton(

98 child: Text(

99 snapshot.data != null

100 ? snapshot.data!.length == 2

101 ? ?START?

102 : snapshot.data!.length.toString()

103 : "o",

104 style: TextStyle(color: kBlue),

105 Do

106 onPressed: () async {

107 devicelList = await FlutterBlue.instance.connectedDevices;
108

109 for (var device in devicelist) {

110 print (’now going to discover services’);

111 await device.discoverServices () ;

112 print(

113 device.services.toList().toString() + ’are the services’);
114 }

115

116 Get.to(

117 () => LiveActivityScreen(

118 name0fUser: nameOfUser,

119 // deviceList: devicelList,
120))

121)

122 }3

123),

124),

125 StreamBuilder <List <BluetoothDevice >>(

126 stream: Stream.periodic(const Duration(seconds: 1)).asyncMap(
127 (_) => FlutterBlue.instance.connectedDevices,

128) 3

129 initialData: [],

130 builder: (c, snapshot) => IconButton(

131 icon: const Icon(Icons.delete),

132 color: Colors.red,

133 onPressed: () {

134 for (BluetoothDevice device in snapshot.data!) {
135 device.disconnect () ;

140 i

141),

142 body: RefreshIndicator (

143 onRefresh: () => FlutterBlue.instance.startScan(
144 timeout: const Duration(seconds: 4),

88

159

160

161

162

163

164

165

166

167

168

169

196

197

198

199

200

201

1

Wearable system based on inertial measurement unit and communication with mobile device to

quantify the shooting performance during basketball practice.

}

9.2.7

import

) g
child: SingleChildScrollView(
child: Column(
children: <Widget>[
StreamBuilder <List <ScanResult >>(
stream: FlutterBlue.instance.scanResults,
initialData: const [],
builder: (c, snapshot) => Column(
children: snapshot.data!
.map (
(r) => ScanResultTile(
result: r,
onTap: () async {

print (’trying to connect’);

// devicelList.add(r.device);

print (’finished functions?’);

await r.device.connect ();

print (’connected’) ;
await r.device.discoverServices () ;

/7)
Fe
),
)
.toList (),

) o
floatingActionButton: StreamBuilder <bool>(
stream: FlutterBlue.instance.isScanning,
initialData: false,
builder: (c, snapshot) {
if (snapshot.data!) {
return FloatingActionButton (
child: const Icon(Icons.stop),
onPressed: () => FlutterBlue.instance.stopScan(),
backgroundColor: Colors.red,
)
} else {
return FloatingActionButton (
child: const Icon(Icons.search),
onPressed: () => FlutterBlue.instance.startScan(
timeout: const Duration(seconds: 4),

live-activity.dart

’dart:async’;

89

Wearable system based on inertial measurement unit and communication with mobile device to

quantify the shooting performance during basketball practice.

import
import
import
import
import
import
import
import
import
import
import

import

import

’dart :math’;

’package:flutter/cupertino.dart’;
’package:flutter/material.dart’;
’package:flutter_blue/flutter_blue.dart’;
’package:hive/hive.dart’;
’package:hive_intro/helper.dart’;
’package:hive_intro/hive_db.dart’;
’package:hive_intro/models/movement.dart’;
’package:hive_intro/models/user.dart’;
’package:hive_intro/widgets/ble_widgets.dart’;
’package:stop_watch_timer/stop_watch_timer.dart’;

’package:get/get.dart’;

’../constants.dart’;

class LiveActivityScreen extends StatefulWidget {

const LiveActivityScreen ({

Key? key,

required this.nameOfUser,

//
b

// £

required this.devicelList,
super (key: key);

inal List<BluetoothDevice> devicelList;

final String nameOfUser;

Qoverride
State<LiveActivityScreen> createState() => _LiveActivityScreenState();

class
var

var

late
late

_LiveActivityScreenState extends State<LiveActivityScreen> {
displayTime = ’’.obs;
initProcessComplete = false.obs;

StopWatchTimer _stopWatchTimer;
Timer _timer;

BluetoothCharacteristic? accelerometerCharacteristicl;

BluetoothCharacteristic? gyroscopeCharacteristicil;

BluetoothCharacteristic? magnetometerCharacteristicil;

BluetoothCharacteristic? accelerometerCharacteristic?2;

BluetoothCharacteristic? gyroscopeCharacteristic2;

BluetoothCharacteristic? magnetometerCharacteristic2;

List
List
List

List
List

List

List

accelerometerValuesl = [0, 0, O0];

gyroscopeValuesl = [0, O, 0];

magnetometerValuesl = [0, 0, 0];
accelerometerValues2 = [0, O, 0];
gyroscopeValues2 = [0, O, 0];
magnetometerValues2 = [0, 0, 0];
deviceList = [];

final HiveDB _hiveDB = HiveDB();

Future<void> getDevices () async {

devicelList = await FlutterBlue.instance.connectedDevices;

print (’got ${devicelist.length} devices’);

for (var device in devicelList) {

90

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

print (’now going to discover services?’);
await device.discoverServices();
// print(device.services.tolList().toString() + ’are the services?’);

}

setState (() {});

highLevelFunctions () async {
await getDevices () ;

Qoverride
void initState () {
super.initState () ;

print (’init state occurred’);
highLevelFunctions () ;
_hiveDB.createActivity (name: widget.nameOfUser);

_stopWatchTimer = StopWatchTimer (
mode: StopWatchMode.countUp,
onChange: (value) {
displayTime.value = StopWatchTimer.getDisplayTime (value) ;
1,
)5

_stopWatchTimer.onExecute.add(StopWatchExecute.start);

//loop that will fetch the sensor info every 60Hz
_timer = Timer.periodic(
const Duration(milliseconds: 17),
(timer) {
if (

// check device 1

accelerometerCharacteristicl != null &&
gyroscopeCharacteristicl != null &&
magnetometerCharacteristicl != null

// check device 2

&&

accelerometerCharacteristic2 != null &&
gyroscopeCharacteristic2 != null &&
magnetometerCharacteristic2 != null) {

// read characteristics from device 1
accelerometerCharacteristicl!.read();
gyroscopeCharacteristicl!.read();
magnetometerCharacteristicl!.read();
// read characteristics from device 2
accelerometerCharacteristic2!.read();
gyroscopeCharacteristic2!.read();

magnetometerCharacteristic2!.read();

_hiveDB.updateActivityWithMovement (
name: widget.nameOfUser,

91

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

124 movement: Movement ()

125 ..timestamp = DateTime.now ()

126 ..accX = accelerometerValuesi[0]
127 ..accY = accelerometerValuesi1[1]
128 ..accZ = accelerometerValues1[2]

129 ..gyrX = gyroscopeValues1 [0]

130 ..gyrY = gyroscopeValuesi[1]

131 ..gyrZ = gyroscopeValuesi [2]

132 ..magX = magnetometerValuesi [0]
133 ..magY = magnetometerValues1 [1]
134 ..magZ = magnetometerValuesi [2]
135 ..accX2 = accelerometerValues2[0]
136 ..accY2 = accelerometerValues2[1]
137 ..accZ2 = accelerometerValues2[2]
138 ..gyrX2 = gyroscopeValues2[0]

139 ..gyrY2 = gyroscopeValues2[1]

140 ..gyrZ2 = gyroscopeValues2[2]

141 ..magX2 = magnetometerValues2 [0]

142 ..mag¥2 = magnetometerValues2[1]

143 ..magZ2 = magnetometerValues2[2],

144)8

145 initProcessComplete.value = true;

146 } else {

147 print (

148 ’something was null: acc--> $accelerometerCharacteristicl mag-->
$magnetometerCharacteristicl gyr--> $gyroscopeCharacteristicl?,

149)3

150 ¥

151 Fo

152)

154 print (’reached end of init state method’);

155 }

156

157 Qoverride

158 Future<void> dispose() async {

159 super.dispose () ;

160 await _stopWatchTimer.dispose();
161 _timer.cancel();

162 }

163

164 List<int> _getRandomBytes () {

165 final math = Random();

166 return [

167 math.nextInt (255),
168 math.nextInt (255),
169 math.nextInt (255),
170 math.nextInt (255)
171];

172 }

174 List<Widget> _buildServiceTiles (List<BluetoothService> services) {
175 return services

176 .map (

177 (s) => ServiceTile(

178 service: s,

179 characteristicTiles: s.characteristics

180 .map (

181 (c) =>

182 [/ if (c ==)

183 CharacteristicTile (

92

193

194

195

196

197

198

199

200

Wearable system based on inertial measurement unit and communication with mobile device to

quantify the shooting performance during basketball practice.

characteristic: c,
onReadPressed: () => c.read(),
onWritePressed: () async {
await c.write(_getRandomBytes (), withoutResponse: true);
await c.read();
¥s
onNotificationPressed: () async {
await c.setNotifyValue(!c.isNotifying);
await c.read();
},
descriptorTiles: c.descriptors
.map (
(d) => DescriptorTile(
descriptor: d,
onReadPressed: () => d.read(),
onWritePressed: () => d.write(_getRandomBytes()),
) o
)
.toList (),
) o
)
.toList (),
),
)
.toList ();

printDataAndUpdate (BluetoothCharacteristic bluetoothCharacteristic) async {
print (’trying to update value’);
await bluetoothCharacteristic
.setNotifyValue (!bluetoothCharacteristic.isNotifying);
await bluetoothCharacteristic.read();
print (’updated value?’);

Qoverride
Widget build(BuildContext context) {
return Scaffold(
appBar: AppBar (
leading: Container (),
centerTitle: true,
backgroundColor: kYellow,
title: Text(
JActivity?’,
style: TextStyle(
fontSize: 30,
color: kBlue,
fontWeight: FontWeight.w600,
),
),
actions: [
IconButton (
color: kBlue,
onPressed: () => Get.dialog(
AlertDialog(
backgroundColor: kYellow,
content: Text(
’Are you sure you want to exit the activity ?°,
style: TextStyle(
color: kBlue,
fontSize: 25,

93

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

245 fontWeight: FontWeight.w400,

246) 3

247))

248 actions: [

249 TextButton (

250 onPressed: () async {

251 _hiveDB.updateActivityWithTimestamp (
252 name: widget.nameOfUser,

253 duration: displayTime.value,

254)

256 _timer.isActive ? _timer.cancel() : null;
258 var flutterBlue = FlutterBlue.instance;
259 await flutterBlue.stopScan();

260 for (var device in await flutterBlue.connectedDevices) {
261 await device.disconnect () ;

262 }

263

264 Get .back (

265 closeOverlays: true,

266)8

267 })

268 child: Text(

269 0K,

270 style: TextStyle(color: kBlue, fontSize: 20),
271),

272) >

273 TextButton (

274 onPressed: () => Get.back(),

275 child: Text(

276 >Cancel’,

277 style: TextStyle(color: kBlue, fontSize: 20),
278) H

279) o

280 1o

281) 3

282) E)

283 icon: const Icon(

284 Icons.close,

285) s

286),

287] >

288),

289 body: SingleChildScrollView(

290 child: Column(
291 children: [
292 const SizedBox(height: 20),

294 // display time

295 Center (

296 child: 0bx(

297 () => Text(

298 displayTime.value,

299 style: const TextStyle(
300 color: Colors.white,
301 fontSize: 60,

302 fontWeight: FontWeight.w600,
303),

304))

305) H

94

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

306),

308 const SizedBox(height: 20),

309 const Text (

310 ’Device 17,

311 style: TextStyle(color: Colors.white, fontSize: 30),
312),

313 const SizedBox(height: 20),

315 //display sensor info

316 StreamBuilder <List <BluetoothService >>(

317 stream: devicelList.first.services,

318 initialData: [],

319 builder: (c, snapshot) {

320 if (snapshot.data != null &&

321 snapshot.data!.isNotEmpty &&

322 snapshot.data![3].characteristics.isNotEmpty) {
323 // set characteristics

324 accelerometerCharacteristicl =

325 snapshot.data![3].characteristics [0];

327 gyroscopeCharacteristicl =

328 snapshot.data![3].characteristics [1];

330 magnetometerCharacteristicl =

331 snapshot.data![3].characteristics [2];

333 return Column (

334 children: [

335 StreamBuilder <List<int>>(

336 stream: snapshot.data![3].characteristics[0].value,
337 builder: (ctx, newerSnapshot) {

338 if (newerSnapshot.data != null) {

339 accelerometerValuesl =

340 convertFromBinary (newerSnapshot.data!);

342 return Text (

343 >Acc: ’ + accelerometerValuesl.toString(),
344 style: const TextStyle(

345 color: Colors.white,

346 fontSize: 30,

347 fontWeight: FontWeight.w200,

348),

349 E

350 }

351 return CircularProgressIndicator () ;

352 })

353) H

354 StreamBuilder <List<int>>(

355 stream: snapshot.data![3].characteristics[1].value,
356 builder: (ctx, newerSnapshot) {

357 if (newerSnapshot.data != null) {

358 gyroscopeValuesl =

359 convertFromBinary (newerSnapshot.data!);
360

361 return Text (

362 ’Gyro: ’ + gyroscopeValuesl.toString(),
363 style: TextStyle(

364 color: Colors.white,

365 fontSize: 30,

366 fontWeight: FontWeight.w200,

95

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

367),

368) 3

369 }

370 return CircularProgressIndicator ();

371 }]

372))

373 StreamBuilder <List<int>>(

374 stream: snapshot.data![3].characteristics[2].value,

375 builder: (ctx, newerSnapshot) {

376 if (newerSnapshot.data != null) {

377 magnetometerValuesl =

378 convertFromBinary (newerSnapshot.data!);
379

380 return Text (

381 ’Mag: ’ + magnetometerValuesl.toString(),
382 style: TextStyle(

383 color: Colors.white,

384 fontSize: 30,

385 fontWeight: FontWeight.w200,

386),

387 D

388 }

389 return CircularProgressIndicator ();

390 X o

391),

392 15

393)

394 }

396 return const Text(’Loading’);

397 },

398) E)

399

100 const SizedBox(height: 50),

101 const Text (

102 ’Device 27,

103 style: TextStyle(color: Colors.white, fontSize: 30),
104) 3

105 const SizedBox(height: 20),

106 StreamBuilder <List<BluetoothService >>(

107 stream: devicelist.last.services,

108 initialData: [],

109 builder: (c, snapshot) {

110 if (snapshot.data != null &&

411 snapshot.data!.isNotEmpty &&

112 snapshot.data![3].characteristics.isNotEmpty) {
113 // set characteristics

114 accelerometerCharacteristic2 =

115 snapshot.data![3].characteristics [0];

417 gyroscopeCharacteristic2 =
118 snapshot .data! [3].characteristics [1];

120 magnetometerCharacteristic2 =
121 snapshot.data! [3].characteristics [2];

123 return Column (

24 children: [

125 StreamBuilder <List<int >>(

126 stream: snapshot.data![3].characteristics[0].value,
127 builder: (ctx, newerSnapshot) {

96

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

128 if (newerSnapshot.data != null) {
129 accelerometerValues2 =

130 convertFromBinary (newerSnapshot.data!) ;

132 return Text (

133 >Acc: ’ + accelerometerValues2.toString(),
134 style: const TextStyle(

135 color: Colors.white,

136 fontSize: 30,

437 fontWeight: FontWeight.w200,

438),

139) 8

142 return CircularProgressIndicator () ;

143 },

+Ld)5

145 StreamBuilder <List<int>>(

146 stream: snapshot.data![3].characteristics[1].value,
L47 builder: (ctx, newerSnapshot) {

148 if (newerSnapshot.data != null) {

149 gyroscopeValues2 =

150 convertFromBinary (newerSnapshot.data!) ;

152 return Text (

453 ’Gyro: ’ + gyroscopeValues2.toString(),
454 style: TextStyle(

155 color: Colors.white,

156 fontSize: 30,

457 fontWeight: FontWeight.w200,

458) >

159)

160 }

161 return CircularProgressIndicator ();

162 },

163) H

164 StreamBuilder<List<int>>(

165 stream: snapshot.data![3].characteristics[2].value,
166 builder: (ctx, newerSnapshot) {

167 if (newerSnapshot.data != null) {

168 magnetometerValues2 =

169 convertFromBinary (newerSnapshot.data!) ;

171 return Text (

472 ’Mag: ’ + magnetometerValues2.toString(),
473 style: TextStyle(

474 color: Colors.white,

475 fontSize: 30,

176 fontWeight: FontWeight.w200,
177),

478)8

179 }

180 return CircularProgressIndicator () ;
181 ¥ N

182),

183] H

184)8

187 return const Text(’Loading?’);

188 },

97

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

9.3 models

9.3.1 user.dart

import ’package:hive/hive.dart?’;

import ’package:hive_intro/models/activity

part ’user.g.dart’;

QHiveType (typeld:

class User {
Q@HiveField (0)
String? name;

Q@HiveField (1)
int? age;

QHiveField (2)
int? height;

QHiveField (3)
double? weight;

QHiveField (4)

>

0)

List<Activity> activities;

//class constructor

User ({
this.name,
this.age,
this.height,
this.weight,

required this.activities,

¥ 8

9.3.2 wusers.g.dart

// GENERATED CODE

part of ’user.dart’;

/] %k %k %k ok sk ok ok ok ok ok ok sk ok sk sk %k ok 3k % 5k sk % ok 3k %k ok sk % 5k 3k % 5k 5k %k 3k 5k 3 %k 5k 3k % 5k % % 5k %k % >k 3k % >k 3k % 5k 3k % 5k > % 3k > % % > % % > % K % * % X

DO NOT MODIFY BY HAND

// TypeAdapterGenerator

[/ %k sk ok ok sk ok ok sk ok ok sk sk ok sk sk %k ok %k %k ok sk %k ok sk %k ok sk %k ok sk %k ok 5k %k 3k >k %k %k >k sk %k >k %k %k >k 3k %k >k 3k % >k 3k % >k >k %k 5k >k % 3k > %k 3k > %k % > % % > % %k %

.dart’;

class UserAdapter extends TypeAdapter<User> {

Qoverride
final int typeld

Qoverride

98

0;

Wearable system based on inertial measurement unit and communication with mobile device to

quantify the shooting performance during basketball practice.

User read(BinaryReader reader) {

final numOfFields = reader.readByte();
final fields = <int, dynamic>{

for (int i = 0; i < numOfFields; i++) reader.readByte(): reader.read(),
e

return User (

name: fields[0] as String?,

age: fields[1] as int?,

height: fields[2] as int?,

weight: fields[3] as double?,

activities: (fields[4] as List).cast<Activity>(),

Qoverride

void write(BinaryWriter writer, User obj) {

writer

..writeByte (5)
.writeByte (0)
.write (obj.name)
.writeByte (1)
.write (obj.age)
.writeByte (2)
.write(obj.height)
.writeByte (3)
.write (obj.weight)
.writeByte (4)

.write(obj.activities);

Qoverride

int

get hashCode => typeld.hashCode;

Qoverride

bool

9.3.3

import

import

part °’

operator ==(0bject other) =>

identical (this, other) ||

other is UserAdapter &&
runtimeType == other.runtimeType &&
typeld == other.typeld;

activity.dart

’package:hive/hive.dart’;
’package:hive_intro/models/movement.dart’;

activity.g.dart’;

@HiveType (typelId: 1)

class Activity {
Q@HiveField (0)
List<Movement> mov = [];

@HiveField (1)

late

DateTime date;

@HiveField (2)

late

String duration;

@HiveField (3)

late

int attempt;

99

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

@HiveField (4)
late int scored;

9.3.4 activity.g.dart

// GENERATED CODE - DO NOT MODIFY BY HAND

3 part of ’activity.dart’;

[/ %k sk %k ok sk ok ok sk ok ok sk sk ok sk sk %k ok %k %k ok sk %k ok sk %k ok sk %k ok sk %k ok 5k %k 3k >k %k %k >k sk %k >k %k %k >k %k %k >k 3k % >k 3k %k >k >k %k 5k >k % 3%k > %k %k > %k % > % % > % %k %

// TypeAdapterGenerator
[/ Kk sk ok ok ok ok ok sk ok ok ok koK KKK KKK KK K K K K R ok ok ok ok ok ok ok ok ok ok ok kKK KK KK KK K K K K K R o ok ok ok ok ok ok ok ok ok ok K KK K K K

class ActivityAdapter extends TypeAdapter<Activity> {
Qoverride

final int typeld = 1;

Qoverride
Activity read(BinaryReader reader) {
final numOfFields = reader.readByte();

final fields = <int, dynamic>{
for (int i = 0; i < numOfFields; i++) reader.readByte(): reader.read(),
i
return Activity ()
.mov = (fields[0] as List).cast<Movement >()

.date = fields[1] as DateTime
.duration = fields[2] as String
.attempt = fields[3] as int
.scored = fields[4] as int;

Qoverride
void write(BinaryWriter writer, Activity obj) {
writer

..writeByte (5)
.writeByte (0)
.write (obj.mov)
.writeByte (1)
.write (obj.date)
.writeByte (2)
.write (obj.duration)
.writeByte (3)
.write (obj.attempt)
.writeByte (4)
.write (obj.scored);

Qoverride
int get hashCode => typeId.hashCode;

Qoverride
bool operator ==(0bject other) =>
identical (this, other) ||
other is ActivityAdapter &&
runtimeType == other.runtimeType &&
typeld == other.typeld;

100

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

9.3.5 movement.dart
import ’package:hive/hive.dart’;
3 part ’movement.g.dart’;

@HiveType (typeld: 2)
class Movement {

Q@HiveField (0)
late DateTime

@HiveField (1)
late int accX;

Q@HiveField (2)
late int accV;

@HiveField (3)
late int accZ;

Q@HiveField (4)
late int gyrX;

Q@HiveField (5)
late int gyrVY;

Q@HiveField (6)
late int gyrz;

QHiveField (7)
late int magX;

@HiveField (8)
late int magV;

@HiveField (9)
late int magZ;

@HiveField (10)

timestamp;

late int calories;

@HiveField (11)
late int heart

@HiveField (12)
late int accX2

@HiveField (13)
late int accY2

@HiveField (14)
late int accZ2

@HiveField (15)
late int gyrX2

Q@HiveField (16)
late int gyrY2

Q@HiveField (17)
late int gyrZ2

Rate;

s

s

s

s

s

101

Wearable system based on inertial measurement unit and communication with mobile device to

quantify the shooting performance during basketball practice.

Q@HiveField (18)
late int magX2;

Q@HiveField (19)
late int magY2;

@HiveField (20)
late int magZ2;

9.3.6 movement.g.dart

// GENERATED CODE - DO NOT MODIFY BY HAND

3 part of ’movement.dart’;

// >k >k 3k 3k 3k 3k 3k 3k 3k 3k %k 3k 3k 5k 5%k %k %k %k %k %k %k %k >k >k >k 3k %k % % % 3k 3k 3k 3% > % % %k %k % > >k >k >k >k %k 3k 3k 3k 3% 3% % % % % % % %k %k %k %k %k %k >k >k >k % % % % % % % %k

// TypeAdapterGenerator

/] %k %k %k ok sk %k ok ok %k ok ok sk ok sk %k % ok %k % 5k sk %k ok 3k 3 5k 3k %k 5k 3k 3 5k 5k % 3k 5k 3 %k 5k 3 % 5k % % 5k %k %k >k 3k % 5k 5k % 5k 5k % 5k > % 3k > % % > % % > % K % * % X

class MovementAdapter extends TypeAdapter <Movement> {

Qoverride

final int typeld = 2;

Qoverride

Movement read(BinaryReader reader) {

final numOfFields = reader.readByte();

final fields = <int, dynamic>{

for (int i = 0; i < numOfFields; i++) reader.readByte():

};

return Movement ()

.timestamp = fields[0] as DateTime

.accX fields[1] as int
.accY fields [2] as int
.accZ fields [3] as int
.gyrX fields [4] as int
.gyrY fields [5] as int
.gyrZ fields [6] as int
.magX fields [7] as int
.magy¥ fields[8] as int
.magZ fields [9] as int
.calories = fields[10] as int

.heartRate = fields[11] as int

.accX2
.accY2
.accZ2
.gyrX2
.gyrY2
.gyrZ2
.magX2
.mag¥2
.magzZ2

Qoverride

fields [12]
fields [13]
fields [14]
fields [15]
fields [16]
fields [17]
fields [18]
fields [19]
fields [20]

as
as
as
as
as
as
as
as

as

int
int
int
int
int
int
int
int

int ;

void write(BinaryWriter writer,

writer

..writeByte (21)
..writeByte (0)
..write(obj.timestamp)
..writeByte (1)

102

Movement obj) {

reader.read (),

>

3

Wearable system based on inertial measurement unit and communication with mobile device to

quantify the shooting performance during basketball practice.

.write (obj.accX)
.writeByte (2)
.write (obj.accY)
.writeByte (3)
.write (obj.accZ)
.writeByte (4)
.write (obj.gyrX)
.writeByte (5)
.write (obj.gyrY)
.writeByte (6)
.write (obj.gyrZ)
.writeByte (7)
.write (obj.magX)
.writeByte (8)
.write (obj.magY)
.writeByte (9)
.write (obj.magZ)
.writeByte (10)
.write (obj.calories)
.writeByte (11)
.write (obj.heartRate)
.writeByte (12)
.write (obj.accX2)
.writeByte (13)
.write (obj.accY2)
.writeByte (14)
.write (obj.accZ2)
.writeByte (15)
.write (obj.gyrX2)
.writeByte (16)
.write (obj.gyrY2)
.writeByte (17)
.write (obj.gyrZ2)
.writeByte (18)
.write (obj.magX2)
.writeByte (19)
.write (obj.mag¥2)
.writeByte (20)
.write (obj.magZ2) ;

Qoverride

int get hashCode => typ

Qoverride

eld.hashCode;

bool operator ==(0bject other) =>

identical (this,
other is MovementAdapter &&

runtimeType ==
typeld == other

9.4 widgets

9.4.1

import

import

constants.dart

other) ||

other.runtimeType &&
.typeld;

’package:flutter/cupertino.dart’;
’package:flutter/material.dart’;

103

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

i Color kYellow = const Color (OxffF8DC6A) ;
5 Color kOrange = const Color (0xffF29A42);
6 Color kBlue = const Color (0xff293D4F);

& final ButtonStyle flatButtonStyle = TextButton.styleFrom(
9 primary: Colors.black87,

10 backgroundColor: kYellow,

11 minimumSize: const Size (350, 60),

12 padding: const Edgelnsets.symmetric(horizontal: 16.0),
13 shape: const RoundedRectangleBorder (

14 borderRadius: BorderRadius.all(

15 Radius.circular (10.0),

16),

17 Do

18)

20 final ButtonStyle orangeFlatButtonStyle = TextButton.styleFrom(
21 primary: Colors.black87,

22 backgroundColor: kOrange,

23 minimumSize: const Size (350, 60),

24 padding: const Edgelnsets.symmetric(horizontal: 16.0),
25 shape: const RoundedRectangleBorder (

26 borderRadius: BorderRadius.all(

27 Radius.circular (10.0),

28),

29),

30) H

32 TextStyle titleStyle = TextStyle(
33 fontWeight: FontWeight.bold,

34 fontSize: 16,

35 color: kBlue,

36) H

9.4.2 helper.dart

2 //function to convert the sensor readings to decimal values
3 List convertFromBinary(List<int> hexList) {
A print (*here is the origimnal list’ + hexList.toString());

6 //inverts the order of each pair of data to display values properly
7 int firstValue = (hexList[0] + (hexList[1] * 256));

8 int secondValue = (hexList[2] + (hexList[3] * 256));

9 int thirdValue = (hexList[4] + (hexList[5] * 256));

11 firstValue = readSignedInt(firstValue);
12 secondValue = readSignedInt (secondValue);
13 thirdValue = readSignedInt(thirdValue);

15 return [

16 (firstValue),
17 (secondValue),
18 (thirdValue),
19 13

22 //function to read the signed ints coded in 2’s complement
23 int readSignedInt (m) {
24 int value = m;

104

Wearable system based on inertial measurement unit and communication with mobile device to

quantify the shooting performance during basketball practice.

//checks if this is a negative number
if ((value & 0x8000) > 0) {

value = value | OxFFFFFFFFFFFFO0000;

return value;

9.4.3 hive-db.dart

import ’package:hive/hive.dart’;
import ’package:hive_intro/models/activity.dart’;
import ’package:hive_intro/models/movement.dart’;

import ’package:hive_intro/models/user.dart’;

class HiveDB {

// all boxes: users, individual user box

// user stuff
// low level api’s
addUserInlList (String name) async {
var users = await Hive.openBox<String>(’users?’);

users.add (name) ;

createUserBox (User user) async {
var box = await Hive.openBox<User >(user.name!);

box . add (
User (
name: user.name'!,
age: user.age!,
height: user.height!,
weight: user.weight!,
activities: [],
),
)8

/// Adds a new user and creates a new box
void addNewUser (User user) {
addUserInList (user.name!) ;

createUserBox (user) ;

Future<void> updateUserNameInList ({
required int index,
required String newName,
}) async {
var users = await Hive.openBox<String>(’users?’);

users.putAt (index, newName);

print (’updated in user list’);

}

void updateUser (User _newUser, int index) async {
var userBox = await Hive.openBox<User>(_newUser.name!) ;
userBox.put (0, _newUser);

105

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

52 updateUserNameInList (index: index, newName: _newUser.name!);
54 print (’update user function exited’);
57 void trashABox(String name) async {

58 Hive.box(’name’) .close();

59 await Hive.deleteBoxFromDisk (name) ;

62 /// enter name of user whose activity we want
63 Future<Activity?> getLastActivity(String name) async {

64 var userBox = await Hive.openBox<User>(name) ;
65

66 var user = userBox.getAt (0);

67

68 if (user!.activities.isEmpty) {

69 return null;
70 } else {
71 return user.activities.last;

75 Future<User> returnUserFromAName (String userName) async {

76 var userBox = await Hive.openBox<User>(userName) ;
78 print (’name was $userName and got box $userName’);
7¢

80 return userBox.getAt (0)!;

81 }

83 Future<void> createActivity ({

84 required String name,

85 // required String devicelD,

86 }) async {

87 var userBox = await Hive.openBox<User>(name) ;

88

89 User user = userBox.getAt(0)!;

90

91 user.activities.add(Activity()..date = DateTime.now ()
92 // ..deviceld = devicelD,

93 R,

94 }

96 /// Update activity list with new movement
97 updateActivityWithMovement ({

98 required String name,

99 required Movement movement,

100 }) async {

101 var userBox = await Hive.openBox<User>(name) ;
102

103 User user = userBox.getAt(0)!;

104

105 if (user.activities.isNotEmpty) {

106 Activity activity = user.activities.last;
107

108 activity.mov.add (movement) ;

109 } else {

110 print (’no activity found’);

111 }

106

quantify the shooting performance during basketball practice.

Wearable system based on inertial measurement unit and communication with mobile device to

updateActivityWithTimestamp ({
required String name,

required String duration,

}) async {
var userBox = await Hive.openBox<User>(name) ;
User user = userBox.getAt(0)!;

if (user.activities.isNotEmpty) {
Activity activity = user.activities.last;

activity.duration = duration;
print (’updated duration?’);

} else {
print (’no activity found’);

}

/// [ballWentInHoop]: pass in true if ball goes into hoop, false by default.

/// Ensure String [name] of user is passed in.

void shotMade (String name, {bool ballWentInHoop = falsel}) async {

var userBox = await Hive.openBox<User>(name) ;
var user = userBox.getAt (0);
Activity _activity = user!.activities.last;

_activity.attempt++;

ballWentInHoop ? _activity.scored++ : null;

/// Enter name of box to remove

removeUserBox (String name) async {
await Hive.deleteBoxFromDisk (name) ;
print (’deleted $name’);

}

removeActivity ({
required String name,
required int index,

}) async {
var userBox = await Hive.openBox<User>(name) ;
var user = userBox.getAt (0);

user!.activities.removeAt (index) ;

Future<void> printAll() async {
// to see all boxes
var box = await Hive.openBox<String>(’users’);
print (box.values);

Future<void> printSomeUserStuff (String name) async {
// to print specific boxes

var box = await Hive.openBox<User >(name) ;

var person = box.getAt (0);
print (person!.weight);

107

~

1

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

9.4.4 ble-widgets.dart

import ’package:flutter/material.dart’;
import ’package:flutter_blue/flutter_blue.dart’;

class ScanResultTile extends StatelessWidget {
const ScanResultTile ({Key? key, required this.result, required this.onTapl})
super (key: key);

final ScanResult result;
final VoidCallback onTap;

Widget _buildTitle(BuildContext context) {
if (result.device.name.length > 0) {
return Column (
mainAxisAlignment: MainAxisAlignment.start,
crossAxisAlignment: CrossAxisAlignment.start,
children: <Widget>[
Text (
result.device.name,

overflow: TextOverflow.ellipsis,

),

Text (
result.device.id.toString(),
style: Theme.of (context).textTheme.caption,

)

15
)3
} else {

return Text(result.device.id.toString());

}

Widget _buildAdvRow (BuildContext context, String title, String value) {
return Padding(
padding: EdgeIlnsets.symmetric (horizontal: 16.0, vertical: 4.0),
child: Row(
crossAxisAlignment: CrossAxisAlignment.start,
children: <Widget>[
Text (title, style: Theme.of (context).textTheme.caption),
SizedBox (
width: 12.0,
),
Expanded (
child: Text(
value,
style: Theme.of (context)
.textTheme
.caption!
.apply(color: Colors.black),
softWrap: true,

String getNiceHexArray(List<int> bytes) {

108

90

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

return ’[${bytes.map((i) => i.toRadixString(16) .padLeft(2, °0°)).join(’, 2)}]°

.toUpperCase () ;

String? getNiceManufacturerData(Map<int, List<int>> data) {
if (data.isEmpty) {

return null;

¥
List<String> res = [];
data.forEach((id, bytes) {
res.add(
’>${id.toRadixString (16) . toUpperCase () }: ${getNiceHexArray (bytes)}’);
IO

return res.join(’, ’);

String? getNiceServiceData(Map<String, List<int>> data) {
if (data.isEmpty) {

return null;

}

List<String> res = [];
data.forEach((id, bytes) {
res.add (’${id.toUpperCase () }: ${getNiceHexArray(bytes)}’);

b

>

return res.join(’, ’);

Qoverride

Widget build(BuildContext context) {
return ExpansionTile (

title: _buildTitle(context),

leading: Text(result.rssi.toString()),

) 8

trailing: RaisedButton/(

),

child: const Text(’CONNECT?),
color: Colors.black,
textColor: Colors.white,

onPressed: (result.advertisementData.connectable) ? onTap : null,

children: <Widget>[

1,

_buildAdvRow (

context, ’Complete Local Name’, result.advertisementData.localName),

_buildAdvRow (context, ’Tx Power Level?’,
>${result.advertisementData.txPowerLevel 7?7 ’N/A’}’),
_buildAdvRow (
context,
>’Manufacturer Data’,
getNiceManufacturerData (
result.advertisementData.manufacturerData) 77
N/AY),
_buildAdvRow (
context,
>Service UUIDs’,

(result.advertisementData.serviceUuids.isNotEmpty)

? result.advertisementData.serviceUuids.join(’, ’).toUpperCase ()

’N/A°),
_buildAdvRow (context, ’Service Data’,
getNiceServiceData(result.advertisementData.serviceData) 77

PN/A%),

109

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

120 class ServiceTile extends StatelessWidget {

121 final BluetoothService service;

122 final List<CharacteristicTile> characteristicTiles;

123 const ServiceTile(

124 {Key? key, required this.service, required this.characteristicTiles})
125 : super (key: key);

127 Qoverride

128 Widget build(BuildContext context) {

129 if (characteristicTiles.isNotEmpty) {

130 return ExpansionTile(

131 title: Column (

132 mainAxisAlignment: MainAxisAlignment.center,

133 crossAxisAlignment: CrossAxisAlignment.start,

134 children: <Widget>[

135 const Text(’Service?’),

136 Text (

137 ’0x${service.uuid.toString () .toUpperCase () .substring (4, 8)}’,
138 style: Theme.of (context)

139 .textTheme

140 .bodyText2!

141 .copyWith(color: Theme.of (context).textTheme.caption!.color),
142)

143 1,

144),

145 children: characteristicTiles,

146) 5

147 } else {

148 return ListTile(

149 title: const Text(’Service’),

150 subtitle:

151 Text (’0x${service.uuid.toString () .toUpperCase () .substring(4, 8)1}’),
152)

153 }

154 }

155 F

157 class CharacteristicTile extends StatelessWidget {
158 final BluetoothCharacteristic characteristic;
159 final List<DescriptorTile> descriptorTiles;
160 final VoidCallback onReadPressed;

161 final VoidCallback onWritePressed;

162 final VoidCallback onNotificationPressed;

163

164 const CharacteristicTile (

165 {Key? key,

166 required this.characteristic,

167 required this.descriptorTiles,

168 required this.onReadPressed,

169 required this.onWritePressed,

170 required this.onNotificationPressed})

171 : super (key: key);

173 Qoverride

174 Widget build(BuildContext context) {

9.4.5 custom-form-widget.dart

1 import ’package:flutter/material.dart’;

2 import ’package:flutter/services.dart’;

110

Wearable system based on inertial measurement unit and communication with mobile device to

quantify the shooting performance during basketball practice.

import

../constants.dart’;

class CustomFormWidget extends StatelessWidget {

const

CustomFormWidget ({

Key? key,

required this.controller,

required this.icon,

this

.willAcceptNumbersOnly = true,

required this.content,

}) : super(key: key);

final
final
final

final

String content;

IconData icon;

bool willAcceptNumbersOnly;
TextEditingController controller;

Qoverride

Widget

build (BuildContext context) {

return Padding(

padding: const Edgelnsets.symmetric(horizontal: 20, vertical: 10),
child: TextFormField(

inputFormatters: willAcceptNumbersOnly
? [FilteringTextInputFormatter.digitsOnly]
null,
keyboardType:
willAcceptNumbersOnly ? TextInputType.number : TextInputType.text,
controller: controller,
decoration: InputDecoration (
filled: true,
fillColor: kYellow,
border: const OutlineInputBorder (
borderRadius: BorderRadius.all(
Radius.circular (10.0),
) o
),
focusedBorder: const OutlineInputBorder (
borderSide: BorderSide(color: Colors.transparent),
borderRadius: BorderRadius.all(
Radius.circular (10.0),
) o
)
focusColor: kBlue,
labelText: content,
prefixIcon: Icon(icomn),
Do
// The validator receives the text that the user has entered.

validator: (value) {

if (value == null || value.isEmpty) {
return "Field cannot be empty";
}
return null;
},

111

Part 11

Solicitation document

Chapter 10

Solicitation document

This chapter will describe the conditions related to the realisation of the wearable prototype for
the identification and evaluation of free throws in basketball.

10.1 Object

The product to be implemented consists of a wearable prototype, formed by one wearable device
capable of obtaining the measurements to obtain the orientation of the arm of the player when
shooting a free throw and one accelerometer sensor that captures the outcome of the shot,
together with a mobile application for storing and processing the information and a MATLAB
tool project for analysing the data.

10.2 Material requirements

For the realisation of the prototype, the wearable devices must be the Hexiwear from the manu-
facturer MikroElektronika. A mobile device with a Bluetooth version higher than 4.1 must also
be available for Bluetooth Low Energy communication and an Android version higher than 7.0
or i0S above 11.0 for the correct functioning of the mobile application. On the other hand, it
will be necessary to have a computer with sufficient specifications to be able to work with the
MATLAB computing tool, to be able to obtain the data from the mobile device and to be able
to work with Android Studio. If the user wishes to debug and test the app on an iPhone device,
the personal computer shall be manufactured by Apple as well. Finally, it will be necessary to
access a basketball court and to have a standardized ball to perform the shots.

115

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

10.3 Execution requirements

Once the materials are available, the wearable prototype can be built. To do this, the first thing
to do is to check the correct functioning of the wearable device, so it is necessary to install the
application provided by MikroElecktronika to visualise the data obtained by the device’s sensors.
Once the correct functioning of the device has been checked, the developed mobile application
must be implemented to obtain the values collected by the wearable device via Bluetooth Low
Energy and these values must be saved in a database so that they can later be sent to a computer
as CSV files. Finally, a MATLAB project must be implemented to obtain the values from the CSV
files and classify them according to the sensor from which the data originates. The MATLAB
project must also be able to apply the Madgwick algorithm to the sensor values and the results
obtained must be passed to navigation angles or also called Tait-Bryan for the representation
of these. This process in MATLAB must be repeated for another movement, which will act as
a reference movement, to obtain the degree of similarity between the movements through the
correlation coefficient in two dimensions and, together with conditionals, identify and evaluate
the movement based on the reference movement, by equalising the length of the samples of the
two movements employing cross-correlation.

Concerning quality control, the ISO/TEC 20000 standard for the management of mobile appli-
cation services and the ISO/IEC 27000 standard for the preservation of user information in the
mobile application must be complied with.

10.4 Testing and service adjustments

Once the prototype has been released to the market, ISO/IEC 15504 should be followed for
the possible improvement of the services offered by the mobile application. In addition, the
identification and assessment of shots should be improved by carrying out more tests to obtain
a higher percentage of success for the prototype.

116

Part III

Budget

Chapter 11

Budget

The purpose of this section is to establish the estimated costs that would be involved in carrying
out this project.

11.1 Budget items

It should be noted that the project would be carried out by one person, with an estimated
completion time of 6 months without necessarily following a continuous working day of 8 hours.
This budget takes into account the costs of materials, software licences and labour to carry out
the project.

Equipment costs refer to all material as well as computer equipment used in the realisation of
the project. Concerning software licences, the budget has been carried out on the assumption
that student licences are available, however, if this were not the case, the price would increase
compared to the current total price, but the rise would not be critical. Regarding amortization,
it has been considered of 20% for the hardware and 33% for the software and taking into account
the hours dedicated to the project (250h) over the total hours of work in a year (estimating
1700h/year). The expression to obtain the cost value is the following

Cost % of amortization x Price x Number of hours
ost =

11.1
Total work hoursin a year ()

Personnel costs are understood as the costs to be paid for employing human resources. In other
words, it includes not only the cost of employees’ salaries but also social security payments,
insurance and other related expenses. For this project, it is necessary to hire a person with
the qualifications of an industrial engineer, taking into account that this is a level 2 worker. In
addition, a proportional percentage of 35% of the salary corresponding to the aforementioned
personnel-related expenses has been added to the calculation.

119

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

Finally, a percentage of indirect costs (5%) has been added, which refers to unforeseen costs such
as tariffs for materials or energy and maintenance and also the profit has been added, which

refers to the percentage to make the project economically viable for implementation.

11.2 Bill of materials (BOM)

Ref Unit Description Price (€)

hO1 u. Hexiwear 48.4

h02 u. Hexiwear Blue Pack 18.15

h03 u. Hexiwear strap (net sensor) 5

h04 u. Apple iMac 2017 Retina 4K 21°5" HDD 1000

h05 u. iPhone 11 128 GB 739

h06 u. Basketball ball 15

s01 u. Android Studio 0

s02 u. Visual Studio Code 0

s03 u. Xcode 0

s04 u. MATLAB (student) 0

s05 u. Microsoft Office (student) 0

s06 u. Draw.io 0

s07 u. Apple Developer membership (yearly) 99

e01 h. Industrial technical engineer 13.16

11.3 Unitary prices
Ref Unit Description Price (€) Cost (€) Quantity Total (€)
h01 u. Hexiwear 48.40 1.42 2 2.85
h02 u. Hexiwear Blue Pack 18.15 0.53 1 0.53
h03 u. Hexiwear strap (net sensor) 5.00 0.15 1 0.15
h04 u. Apple iMac 2017 Retina 4K 21’5" HDD 1000.00 29.41 1 29.41
h05 u. iPhone 11 128 GB 739.00 21.74 1 21.74
h06 u. Basketball ball 15.00 0.44 1 0.44
s01 u. Android Studio - - 1 -
s02 u. Visual Studio Code - - 1 -
s03 u. Xcode - - 1 -
s04 u. MATLAB (student) - - 1 -
s05 u. Microsoft Office (student) - - 1 -
s06 u. Draw.io - - 1 -
s07 u. Apple Developer membership (yearly) 99.00 4.80 1 4.80
e01 h. Industrial technical engineer 13.16 13.16 250 3290.00
% Indirect costs 6250.25 5 312.51
Total resources 3662.43 €

120

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

11.4 Budget summary

Concept Amount €)
Total resources 3662.43
Benefits (20%) 732.49
Execution budget 4394.92
VAT (21%) 922.93
Total 5317.85 €

121

1]

2]

3]

4]

[5]

(6]

7]
8]

9]

Bibliography

| Block diagram of the Kalman filter, which involves four steps: (1)... | Download Sci-
entific Diagram. URL: https://www.researchgate .net/figure/Block-diagram- of -
the -Kalman-filter - which- involves - four - steps- 1-predicting- current _fig2_
335426887 (visited on 08/17/2021) (cit. on p. 27).

Automatic, Real-Time Basketball Stats and Analytics | Shot Tracker. URL: https://shottracker.
com/ (visited on 08/11/2021) (cit. on p. 7).

Scott Baker. “Classification of Common Basketball Actions using Player Tracking Data
from the ShotTracker System”. PhD thesis. University of Colorado at Boulder, 2020 (cit.
on p. 7).

Alejandro Barranco GutiA@rrez. “Ancho de banda experimental del movimiento de la
muA+ecadelamano”. In: Oct. 8, 2008 (cit. on p. 32).

Basketball Participation Report 2020. URL: https://www . sfia . org/reports /807 _
Basketball-Participation-Report-2020 (visited on 08/10/2021) (cit. on p. 5).

Alfred Benavent Pellicer. “Wearable de medida de rendimiento en deportes de raqueta”. Ac-
cepted: 2019-10-17T07:16:20Z. Proyecto/Trabajo fin de carrera/grado. Universitat PolitA “cnica,
de ValA "ncia, Oct. 17, 2019.

Lionel Brits. Euler angles, vector of File:Euler.png. Jan. 9, 2008 (cit. on p. 25).

BjAqrn Eggert, Marion Mundt, and Bernd Markert. “IMU-BASED ACTIVITY RECOG-
NITION OF THE BASKETBALL JUMP SHOT”. In: ISBS Proceedings Archive 38.1
(2020), p. 344 (cit. on pp. 7, 32).

ESP32 Bluetooth Low Energy (BLE) on Arduino IDE | Random Nerd Tutorials. May 16,

2019. URL: https://randomnerdtutorials . com/esp32-bluetooth-low-energy-ble-
arduino-ide/ (visited on 08/16,/2021) (cit. on pp. 23, 24).

123

https://www.researchgate.net/figure/Block-diagram-of-the-Kalman-filter-which-involves-four-steps-1-predicting-current_fig2_335426887
https://www.researchgate.net/figure/Block-diagram-of-the-Kalman-filter-which-involves-four-steps-1-predicting-current_fig2_335426887
https://www.researchgate.net/figure/Block-diagram-of-the-Kalman-filter-which-involves-four-steps-1-predicting-current_fig2_335426887
https://shottracker.com/
https://shottracker.com/
https://www.sfia.org/reports/807_Basketball-Participation-Report-2020
https://www.sfia.org/reports/807_Basketball-Participation-Report-2020
https://randomnerdtutorials.com/esp32-bluetooth-low-energy-ble-arduino-ide/
https://randomnerdtutorials.com/esp32-bluetooth-low-energy-ble-arduino-ide/

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

[10] EspaA=+a, enelTopl0depasesconmayorusodewearables, Formaci®*nyestudios|Interactiva.
InteractivaDigital.com. URL: https://interactivadigital.com/formacion-y-estudios-
marketing - digital / espana - en - el - top - 10 - de - paises - con - mayor - uso - de -
wearables/ (visited on 09/06/2021) (cit. on p. 9).

[11] Figure 9 illustrates the principle of gimbal lock. The outer blue frame... ResearchGate. URL:
https://www.researchgate .net/figure/llustrates - the-principle- of - gimbal -
lock-The-outer-blue-frame-represents-the-x-axis-the_figd 338835648 (visited
on 08/18/2021) (cit. on p. 25).

[12] File: Taitbrianzyz.svg - Wikimedia Commons. URL: https ://commons . wikimedia . org/
wiki/File:Taitbrianzyx.svg (visited on 08/18/2021) (cit. on p. 25).

[13] Flutter - Beautiful native apps in record time. URL: https://flutter.dev/ (visited on
08/15/2021) (cit. on p. 19).

[14] flutter blue | Flutter Package. Dart packages. URL: https://pub.dev/packages/flutter_
blue (visited on 09/04/2021) (cit. on p. 30).

[15] NA@stor GarcAa GarcAa. “DiseA+odeundispositivowearablecon funci*ndepod®metrodeprecisi’nparasi
Accepted: 2020-10-27T11:39:16Z. Proyecto/Trabajo fin de carrera/grado. Universitat PolitA”cnica
de ValA "ncia, Oct. 27, 2020.

[16] Hexiwear. MikroElektronika. URL: http://www.mikroe.com/hexiwear (visited on 08/12/2021)
(cit. on pp. 10, 18, 19, 31).

[17] hive | Dart Package. Dart packages. URL: https://pub.dev/packages/hive (visited on
08/26/2021) (cit. on pp. 33, 34).

[18] Jugadores de baloncesto federados por regiA3nenFEspa + a. Statista. URL: https://es.
statista.com/estadisticas/1051652/baloncesto-numero-de-federados-en-espana-
por-comunidad-autonoma/ (visited on 08/10/2021) (cit. on p. 5).

[19] Ruijie Ma et al. “Basketball movements recognition using a wrist wearable inertial mea-
surement unit”. In: 2018 IEEFE 1st International Conference on Micro/Nano Sensors for
Al Healthcare, and Robotics (NSENS). IEEE, 2018, pp. 73-76 (cit. on pp. 7, 32).

[20] Sebastian O H Madgwick. “An ei—cientorientation—lter forinertialandinertial /magneticsensorarrays”.
In: (), p. 32 (cit. on pp. 26, 28, 38).

[21] Jonathan C. Maglott, Junkai Xu, and Peter B. Shull. “Differences in arm motion timing
characteristics for basketball free throw and jump shooting via a body-worn sensorized
sleeve”. In: 2017 IEEE 14th International Conference on Wearable and Implantable Body
Sensor Networks (BSN). 2017 IEEE 14th International Conference on Wearable and Im-
plantable Body Sensor Networks (BSN). ISSN: 2376-8894. May 2017, pp. 31-34. por:
10.1109/BSN.2017.7936000 (cit. on p. 6).

124

https://interactivadigital.com/formacion-y-estudios-marketing-digital/espana-en-el-top-10-de-paises-con-mayor-uso-de-wearables/
https://interactivadigital.com/formacion-y-estudios-marketing-digital/espana-en-el-top-10-de-paises-con-mayor-uso-de-wearables/
https://interactivadigital.com/formacion-y-estudios-marketing-digital/espana-en-el-top-10-de-paises-con-mayor-uso-de-wearables/
https://www.researchgate.net/figure/llustrates-the-principle-of-gimbal-lock-The-outer-blue-frame-represents-the-x-axis-the_fig4_338835648
https://www.researchgate.net/figure/llustrates-the-principle-of-gimbal-lock-The-outer-blue-frame-represents-the-x-axis-the_fig4_338835648
https://commons.wikimedia.org/wiki/File:Taitbrianzyx.svg
https://commons.wikimedia.org/wiki/File:Taitbrianzyx.svg
https://flutter.dev/
https://pub.dev/packages/flutter_blue
https://pub.dev/packages/flutter_blue
http://www.mikroe.com/hexiwear
https://pub.dev/packages/hive
https://es.statista.com/estadisticas/1051652/baloncesto-numero-de-federados-en-espana-por-comunidad-autonoma/
https://es.statista.com/estadisticas/1051652/baloncesto-numero-de-federados-en-espana-por-comunidad-autonoma/
https://es.statista.com/estadisticas/1051652/baloncesto-numero-de-federados-en-espana-por-comunidad-autonoma/
https://doi.org/10.1109/BSN.2017.7936000

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

[22] Sergi MeliA de la AsunciA®n. “Prototipo de dispositivo de medida de rendimiento en run-
ning basado en acelerA®metrotriazialycomunicaci®nadispositivom3vil”. Accepted: 2016-
12-29T08:47:35Z. Proyecto/Trabajo fin de carrera/grado. Universitat PolitA “cnica de ValA "ncia,
Dec. 29, 2016.

[23] Mobile OS market share 2021. Statista. URL: https://www.statista.com/statistics/
272698/ global - market - share-held - by-mobile - operating- systems - since - 2009/
(visited on 08/08,/2021) (cit. on pp. 13-15).

[24] MPU-9250 | TDK. URL: https://invensense.tdk.com/products/motion-tracking/9-
axis/mpu-9250/ (visited on 08/12/2021) (cit. on p. 13).

[25] Quaternions a z-io Technologies. URL: https://x-1io.co.uk/quaternions/ (visited on
09/04,/2021) (cit. on pp. 38, 39).

[26] J uliAjn RamArez Espinal. “DiseA+odeunwearableparadeportesdecontacto”. Accepted: 2016-
12-21T08:34:08Z. Proyecto/Trabajo fin de carrera/grado. Universitat PolitA " cnica de ValA "ncia,
Dec. 21, 2016.

[27] Manju Rana and Vikas Mittal. “Wearable sensors for real-time kinematics analysis in sports:
a review”. In: IEEE Sensors Journal 21.2 (2020). Publisher: IEEE, pp. 1187-1207 (cit. on

p. 7).

[28] Shreyank Shankar et al. “Performance measurement and analysis of shooting form of bas-
ketball players using a wearable 10T system”. In: 2018 IEEE 8th International Advance
Computing Conference (IACC). IEEE, 2018, pp. 26-32 (cit. on pp. 7, 32, 58).

[29] Esther Soriano Viguer. “Prototipo de dispositivo wearable de medida de rendimiento en de-
portes acrobAjticos basado en unidad de medida inercial y comunicaciA®nadispositivom>vil”.
Accepted: 2019-09-10T09:29:427Z. Proyecto/Trabajo fin de carrera/grado. Universitat PolitA “cnica
de ValA "ncia, Sept. 10, 2019.

[30] STEVAL-WESU!1 - Wearable sensor unit reference design for fast time to market - STMi-
croelectronics. URL: https://www.st.com/en/evaluation-tools/steval-wesul.html
(visited on 06/24,/2021) (cit. on p. 11).

[31] Matthew Straecten, Payman Rajai, and Mohammed Jalal Ahamed. “Method and imple-
mentation of micro Inertial Measurement Unit (IMU) in sensing basketball dynamics”.
In: Sensors and Actuators A: Physical 293 (July 2019), pp. 7-13. 1sSN: 09244247. DOI:
10.1016/j.sna.2019.03.042 (cit. on p. 7).

[32] Strategies to improve your free-throw shooting. Winning Hoops. URL: https://winninghoops.

com/article/strategies-to-improve-free-throw-shooting/ (visited on 08/11/2021)
(cit. on p. 6).

125

https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://invensense.tdk.com/products/motion-tracking/9-axis/mpu-9250/
https://invensense.tdk.com/products/motion-tracking/9-axis/mpu-9250/
https://x-io.co.uk/quaternions/
https://www.st.com/en/evaluation-tools/steval-wesu1.html
https://doi.org/10.1016/j.sna.2019.03.042
https://winninghoops.com/article/strategies-to-improve-free-throw-shooting/
https://winninghoops.com/article/strategies-to-improve-free-throw-shooting/

Wearable system based on inertial measurement unit and communication with mobile device to
quantify the shooting performance during basketball practice.

[33] TIDC-CC2650STK-SENSORTAG SimpleLinkd¢ multi-standard CC2650 SensorTagde kit
reference design | T1.com. URL: https://www.ti.com/tool/TIDC-CC2650STK- SENSORTAG#
1 (visited on 08/12/2021) (cit. on p. 12).

[34] Unknown. AT THE LINE: Shooting The Traditional Free- Throw. AT THE LINE. June 11,
2014. URL: https://fromthecharitystripe.blogspot.com/2014/06/shooting-traditional-
free-throw.html (visited on 08/11/2021) (cit. on p. 7).

[35] Fabio Varesano. Simple gravity compensation for 9 DOM IMUs | Varesano.net. URL: http:
//www .varesano.net/blog/fabio/simple-gravity-compensation-9-dom-imus (visited

on 09/04/2021) (cit. on p. 40).

[36] Your First Bluetooth Low Energy App with Flutter. URL: https://lupyuen.github.io/
pinetime-rust-mynewt/articles/flutter#flutter-for-ios (visited on 08/10,/2021)
(cit. on p. 30).

[37] Javier Zamora GirbA(©)s. “Wearable de medida de rendimiento en deportes de contacto”.

Accepted: 2017-09-05T16:32:56Z. Proyecto/Trabajo fin de carrera/grado. Universitat PolitAcnica
de ValA "ncia, Sept. 5, 2017.

126

https://www.ti.com/tool/TIDC-CC2650STK-SENSORTAG#1
https://www.ti.com/tool/TIDC-CC2650STK-SENSORTAG#1
https://fromthecharitystripe.blogspot.com/2014/06/shooting-traditional-free-throw.html
https://fromthecharitystripe.blogspot.com/2014/06/shooting-traditional-free-throw.html
http://www.varesano.net/blog/fabio/simple-gravity-compensation-9-dom-imus
http://www.varesano.net/blog/fabio/simple-gravity-compensation-9-dom-imus
https://lupyuen.github.io/pinetime-rust-mynewt/articles/flutter#flutter-for-ios
https://lupyuen.github.io/pinetime-rust-mynewt/articles/flutter#flutter-for-ios

	Abstract
	Contents
	I Report
	1 Introduction
	1.1 Scope of the project
	1.2 Objectives
	1.3 Structure of the document

	2 Basketball
	2.1 Basketball as a sport
	2.2 Classification of basketball shots
	2.3 Opportunities for technology implementation inside basketball practice

	3 Available technologies
	3.1 Wearable technology
	3.2 Operating systems

	4 Description of the chosen solution
	4.1 General block diagram
	4.2 Hardware
	4.3 Software

	5 Theoretical background
	5.1 Bluetooth Low Energy (BLE)
	5.2 Representation of the orientation
	5.3 Orientation measurement

	6 Implementation details
	6.1 Hardware
	6.2 Software
	6.3 Experimental procedure

	7 Obtained results
	7.1 Free Throw Trainer app
	7.2 Analysis

	8 Final conclusions
	8.1 Summary of the work done
	8.2 Proposal for future work

	9 Annex: Mobile app code
	9.1 main.dart
	9.2 screens
	9.3 models
	9.4 widgets

	II Solicitation document
	10 Solicitation document
	10.1 Object
	10.2 Material requirements
	10.3 Execution requirements
	10.4 Testing and service adjustments

	III Budget
	11 Budget
	11.1 Budget items
	11.2 Bill of materials (BOM)
	11.3 Unitary prices
	11.4 Budget summary

