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ABSTRACT / RESUM / RESUMEN

Abstract

Cross-lingual alignment methods for monolingual language representations have re-
ceived notable research attention in the past few years due to their capacity to induce
bilingual alignments with little or no supervision signals. However, their use in ma-
chine translation pre-training, a function that monolingual models excel at, and which
should benefit from cross-lingual information, remains limited. This work tries to shed
light on the effects of some of the factors that play a role in cross-lingual representa-
tions and pre-training strategies, with the hope that it can help guide future endeavors
in the field. To this end, the survey studies the two main components that constitute
cross-lingual pre-training: cross-lingual mappings and their pre-training integration.
The former are explored through some widely known fully unsupervised cross-lingual
methods, which rely on distributional similarities between languages. Consequently,
they are a great basis upon which to consider the effects of language similarity on
both cross-mapping techniques and the representation spaces over which they operate.
In pre-training integration, cross-lingual representation spaces are used to pre-train
a neural machine translation models, which are compared against techniques that
employ independent monolingual spaces. The results show that weakly-supervised
cross-lingual methods are remarkably effective at inducing alignment even for distant
languages and they benefit noticeably from subword information. However, the effect
of cross-linguality in pre-training is diminished due to difficulties in maintaining the
structure of the projection during training, and the limited influence that pre-training
itself has in the supervised model.

Keywords

cross-lingual embeddings, bilingual lexicon induction, machine translation pre-training,
cross-lingual pre-training, neural machine translation
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Resum

Els métodes d’alineament croslingiie per a representacions monolingiies del llenguatge
han sigut objecte d’un interés notable en el camp de processament del llenguatge nat-
ural durant els tultims anys, en gran manera a causa de la capacitat que aquests tenen
per a general alineaments entre llengiies utilitzant poca o nul-la informacié paral-lela.
No obstant aixo, el seu s en técniques de preentrenament de models de traduccio
automatica, un paper en el qual els models monolingiies son particularment reeixits, i
que hauria de beneficiar-se de la informacié croslingiie obtinguda, continua sent lim-
itat. Aquesta proposta intenta aportar una mica de llum sobre els efectes d’alguns
dels factors que afecten les representacions croslingiies i les estratégies de preentre-
nament, amb l’esperanca que puga ajudar a futures investigacions en aquest camp.
Per a aix0, aquest treball estudia els dos components principals que constitueixen el
preentrenament croslingiie: els alineaments croslingiies i la integracié dels mateixos
com a models de preentrenament. Els primers sén explorats a través de diversos
métodes croslingiies no supervisats ampliament coneguts, que empren principalment
similituds distribucionals per a trobar un alineament satisfactori entre llenguatges. A
causa d’aix0, resulten un interessant terreny de proves en el qual analitzar els efectes de
la similitud entre llenguatges sobre tant les técniques d’alineament croslingiie com els
espais de representacio sobre els quals operen. En en apartat d’integracié en preentre-
nament, els espais de representacié croslingiies sén utilitzats per a preentrenar models
de traduccié automatica, els quals sébn comparats contra esquemes que empren espais
de representacio independents. Els resultats mostren que els métodes croslingiies amb
supervisi6 feble sén remarcablement efectius a I’hora de generar alineaments fins i tot
per a parelles de llenguatges molt diferents, i es beneficien notablement de la infor-
macié a nivell de subparaula. No obstant aixo, 'efecte de I'alineament croslingiie
en el preentrenament és reduit a causa de les dificulteu de mantindre ’estructura de
la projecci6 durant l’entrenament, aixi com per la limitada influéncia que el propi
preentrenament té sobre el model supervisat.

Paraules clau

embeddings croslingiies, induccié de léxic bilingiie, preentrenament en traduccié au-
tomatica, preentrenament croslingiie, traduccié automatica neuronal
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Resumen

Los métodos de alineamiento croslingiie para representaciones monolingiies del lenguaje
han sido objeto de un interés notable en el campo de procesamiento del lenguaje nat-
ural durante los tltimos anos, en gran medida debido a la capacidad que estos tienen
para general alineamientos entre lenguas utilizando poca o nula informacién paralela.
Sin embargo, su uso en técnicas de preentrenamiento de modelos de traduccion au-
tomatica, un papel en el que los modelos monolingiies son particularmente exitosos,
y que deberia beneficiarse de la informacién croslingiie obtenida, sigue siendo limi-
tado. Esta propuesta intenta aportar algo de luz sobre los efectos de algunos de los
factores que afectan a las representaciones croslingiies y las estrategias de preentre-
namiento, con la esperanza de que pueda ayudar a futuras investigaciones en este
campo. Para ello, este trabajo estudia los dos componentes principales que consti-
tuyen el preentrenamiento croslingiie: los alineamientos croslingiies y la integracion de
los mismos como modelos de preentrenamiento. Los primeros son explorados a través
de varios métodos croslingiies no supervisados ampliamente conocidos, que emplean
principalmente similaridades distribucionales para encontrar un alineamiento satis-
factorio entre lenguajes. Debido a esto, resultan un interesante terreno de pruebas en
el que analizar los efectos de la similaridad entre lenguajes sobre tanto las técnicas
de alineamiento croslingiie como los espacios de representacion sobre los que operan.
En en apartado de integraciéon en preentrenamiento, los espacios de representacion
croslingiies son utilizados para preentrenar modelos de traduccién automética, los
cuales son comparados contra esquemas que emplean espacios de representacion inde-
pendientes. Los resultados muestran que los métodos croslingiies con supervision débil
son remarcablemente efectivos a la hora de generar alineamientos incluso para parejas
de lenguajes muy diferentes, y se benefician notablemente de la informacion a nivel de
subpalabra. Sin embargo, el efecto del alineamiento croslingiie en el preentrenamiento
es reducido debido a las dificultad de mantener la estructura de la proyecciéon durante
el entrenamiento, asi como por la limitada influencia que el propio preentrenamiento
tiene sobre el modelo supervisado.

Palabras clave

embeddings croslingiies, induccién de léxico bilingiie, preentrenamiento en traduccion
automatica, preentrenamiento croslingiie, traducciéon automaéatica neuronal
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CHAPTER 1

INTRODUCTION

Machine translation has experienced unprecedented growth in the last decade, a time
during which the improvements in translation quality have propelled it to become
incredibly wide-spread in short-form internet content, which constitutes most of mul-
timedia and written content worldwide if we account for social media. Still, pro-
fessional translation services remain very much essential when it comes to commer-
cial and otherwise long-form content, a frontier that machine translation is still far
from crossing, and that it might not be able to traverse with our current approach.
This period has also signified a transition away from the so called statistical machine
translation models (SMT), which presents separated translation, reordering and lan-
guage model components, and into neural machine translation (NMT) architectures,
particularly the attention-based encoder-decoder architectures (Bahdanau, Cho, and
Bengio, [2014), which constitute end-to-end solutions. Although modern deep neural
translation models heavily rely on the bases established by SMT and prior machine
translation technology, they present a much larger number of parameters to tune and
are overall more complex systems that have the capacity to surpass previous ma-
chine translation benchmarks when provided with large training corpora (Koehn and
Knowles, [2017)).

However, the cost of training these multi-layered neural networks increases multi-
ple orders of magnitude when compared to SMT models. As a result, great computing
power and vast amounts of bilingual training corpora are needed in order for deep
neural networks to be effective (Koehn and Knowles, |2017)). Such collections of data
are usually presented as parallel texts aligned at the sentence or word level, which
are costly to produce, since they require manual labour at scale from trained profes-
sionals. Therefore, the number of suitable corpora available is reduced, even more
so for rare languages and specific fields of interest. This means that, for any use
case other than creating a general purpose translator for a widely used language,
finding adequate datasets tends to be an issue, while building one’s own continues
to be extremely expensive and time-consuming due to the volume of data required.
Additionally, training times are considerable and often prohibitive for modern deep
models (Sharir, Peleg, and Shoham, 2020).



Chapter 1. Introduction

Monolingual pre-training methods aim to tackle both the corpus and training time
limitations by providing an initial continuous representation or encoding for the in-
coming and generated words that is trained over monolingual corpora. This facilitates
building models that target obscure languages or specific fields — i.e. medicine, legal,
finance — , since the pre-training step can be done over monolingual data, of which
there is plenty of no matter the language or subject matter. Although in recent times
pre-training models have come to represent increasingly bigger sections of the neural
network (Devlin et al.,|2019), they were initially conceived as a way to independently
train a few of the initial and final layers of the model — relative to the source and
target language respectively — , known as the embedding layers (Bengio et al., [2003)).

This concept of "embedding" words and sentences into a continuous vector space
has been inherited from the greater natural language processing (NLP) field, where
numeric representations of words that encode meaning based on context similarity
have long been used (Naseem et al., 2020)). Originally the most common models
were sparse matrices based on term co-occurrence or term frequency—inverse doc-
ument frequency, among others. These high-dimension representations have their
counterparts in dense embeddings, which have been become especially popular with
the advent of neural embeddings. Neural embeddings use a shallow neural network to
generate a dense vector space based on the context in which a word appears. This is
very much part of what a neural network model that receives text as input is doing,
which is the reason why neural embeddings also started to be used as monolingual
pre-training for larger translation or classification models.

Another interesting property of dense embeddings is the distributional similarities
that exist between embeddings, even when they are trained using different languages.
The authors of one of the earliest neural word embeddings to enjoy widespread use,
Word2Vec (Mikolov, Chen, et al., 2013)), already noted this characteristic and pub-
lished on it in Mikolov, Le, and Sutskever (2013)), just a few months after unveiling
the new embedding model. This initial cross-lingual method was used to automate
the process of generating and extending dictionaries and phrase tables, which are vital
in SMT models. Since then, many other approaches to cross-lingual alignment for
monolingual word embeddings have appeared, with a similar focus on automatizing
the creation of bilingual dictionaries.

Most of these methods are semi-supervised, meaning that, although they work
over monolingual embeddings, they use small collections of parallel texts or dictio-
naries as seeds for the cross-lingual alignment. However, later research has also given
birth to fully unsupervised cross-lingual embeddings (CLE), which do not need any
bilingual signal. Unsupervised methods can generate their own bilingual dictionary
or parallel corpus by relying on generative adversarial networks (Goodfellow et al.,
2014)), as in MUSE (Lample, Denoyer, and Ranzato, |2017)), or calculating monolingual
similarity distribution vectors and directly extracting nearest neightbours for the seed
dictionary, like in VecMap (Artetxe, Labaka, and Agirre, 2018), among other possi-
ble strategies. Fully unsupervised cross-lingual mappings are very interesting due
to them being solely reliant on the distributional similarities of language continuous
vector representations. This apparent promise of a future where no hand-crafted bilin-
gual supervision is needed has granted these approaches a decent amount of research
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attention.

However, semi-supervised cross-lingual pre-training methods, which require very
small amounts of parallel corpora — and in some cases only a simple bilingual dictio-
nary for initialization — tend to outperform their unsupervised counterparts (Vulic,
Glavas, et al.,|2019; Doval et al.,|2019; Patra et al.,|2019)). It is only in situations where
no bilingual data exists that unsupervised techniques are preferable. However, since
the monolingual embeddings and models required to produce a cross-lingual mapping
need to be trained over a considerable volume of monolingual text, a scenario where
unsupervised cross-lingual alignments are truly necessary seems unlikely. In the case
of languages with extensive written records where resources are plentiful, there is little
reason to use a fully unsupervised method rather than one that takes advantage of a
small bilingual dataset (Artetxe, Ruder, et al.,[2020)). Even for low-resource languages
for which a reduced number of corpora exist, it is exceedingly probable that some sort
of translation dictionary that associates them with a more widely studied language is
available. For extinct languages, the remaining texts are usually too brief, meaning
that the task is best suited for human experts, who can take advantage of contextual
information like archaeological evidence or metalinguistic features. This leads us to
the question: are unsupervised cross-lingual models useful at all?

While they might not be the best performing tools in a realistic use case, drawing
this sort of hard line between unsupervised and semi-supervised cross-lingual map-
pings does not make much sense, because they are extremely similar processes. Semi-
supervised cross-lingual methods are just forfeiting the generation of a seed bilingual
dictionary in favour of one provided by the user. But their remaining steps are analo-
gous to that of unsupervised cross-lingual projection methods: they both use the seed
translation dictionary to align the monolingual subspaces in a hypothetical cross-
lingual space, and then project said embeddings into the aforementioned cross-lingual
shared space. In the case of many unsupervised models, seed generation is actually
an adaptation of these previous steps, where some assumption on the structures of
the matrices (i.e. isometry) is made in order to obtain an initial set of translation
pairs. Given that unsupervised and semi-supervised cross-lingual strategies share so
many traits, most improvements over unsupervised methods can be transferred to
semi-supervised ones. And unsupervised strategies lend themselves very well to ex-
perimentation, since there is no variance derived from the specific characteristics of
the provided hand-crafted parallel corpus — because there is no parallel corpus to
speak of — . As a result, it is more convenient to design and test a formal solution us-
ing unsupervised cross-mapping for experimentation, and move into semi-supervision
when the interactions between languages and parameters have been examined.

This independence from corpora also makes unsupervised cross-lingual mappings a
great vehicle to explore how different continuous representations may capture distinct
features depending on the language that they are trained on. For instance, at first
glance different languages seem to produce similar embeddings with comparable dis-
tributions of data points. However, unsupervised cross-lingual embeddings often are
unable to generate an initial alignment when operating with distant language pairs
(Vulic, Glavas, et al.,[2019; Doval et al.,2019)), which leads to near-zero bilingual lex-
icon induction (BLI) performance. This can be due to the fact that the isomorphism
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Chapter 1. Introduction

assumption that most approaches take tends to weaken when using increasingly et-
ymologically distant languages, (Patra et al., 2019). In turn, this property can be
explained by the findings in Nakashole and Flauger (2018), who propose that em-
bedding spaces in different languages are linearly equivalent only at local regions,
but their global structure is different. Both of the previous publications that help
explain the nature of embeddings across languages use cross-lingual embeddings as
the basis for their experiments, often focusing on the differences between the un-
supervised and semi-supervised methods. Unsupervised cross-lingual mappings are
therefore very helpful in bringing to light the degree of similarity between continuous
representations of different languages, which can point the way to on how to improve
said representation spaces.

1.1 Objectives and work structure

In this work, I intend to provide an overview of some representative unsupervised
cross-lingual methods and analyze their interactions with some of the factors that
influence these kind of models, such as vector space dimension, language effect or the
alignment policy itself. The objective is to showcase the limitations of some of the
current cross-lingual pre-training approaches, and what this means for the future of
the field in regards to its practicality and value as an area of research.

This work is structured according to the two main components that make cross-
lingual pre-training possible: cross-lingual mapping techniques and pre-training inte-
gration of said methods. Initially, the motivation and historical context behind these
ideas is introduced in chapters 1 and 2. Chapter 1 provides an initial breakdown of the
motivation behind this work and the areas that it intends to explore. In chapter 2, a
brief description of the history, motivation and current state of cross-lingual research
is given so that the reader is familiar with the context in which this work is situated,
as well as some prior breakthroughs and relevant techniques that can aid in under-
standing the experiments performed in this work. After this, a technical description
of the cross-mapping and pre-training strategies chosen for experimentation is pro-
vided in chapters 3 and 4 respectively, as well as some clues on known limitations and
the expected effect of certain factors. Chapter 5 takes on implementation specifics of
the proposed experiments, such as the adopted evaluation criteria and the rationale
behind parameter tuning for the models used, plus some development results. Next
in chapter 6, the results of said experiments are shown and discussed. Finally, some
conclusions to the work are offered in chapter 7.
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CHAPTER 2

RELATED WORK

Natural language processing has been one of the main areas of interest of computing
since the inception of the field. Although initially it was treated as a mere component
of early artificial intelligence problems, such as the very well known Turing test (Tur-
ing, [1950), NLP began to differentiate itself as more language-specific tasks began
to be tackled through computational meanings. From these, it is perhaps machine
translation — arguably still the flagship task of natural language processing — which
raised the most interest in its practical possibilities. The Georgetown experiment
(Hutchins, Dostert, and Garvin, 1955) showcased machine translation of more than
sixty Russian sentences into English, and its authors projected exponential progress
in the field — a prediction which never came true in the short term, but that sparked
great interest in this area of research —. This attempt at machine translation, as most
of the natural language processing systems designed until at the time, followed suit
with the general artificial intelligence field by relying on symbolic methods, which fea-
tured extensive, manually designed rule-based models. Symbolic methods remained
the dominant paradigm until the 1980s, when the popularization of machine learning
algorithms, in combination with increased available computational power and subse-
quent decrease in dominance of Chomskyan rule-based systems, laid the ground for
statistical NLP methods to become widespread. Statistical NLP relies on models that
use statistical inference to perform their tasks, learning their parameters over a given
training corpus. Therefore, the approach is based on corpus linguistics rather than on
known language rules and feature. The relevance of sentence-based statistical NLP
systems has lessened in the last decade in favour of neural networks models. These
are in many ways an extension of the classic statistical paradigm, as they are similarly
reliant on annotated corpus to train an inference model. However, instead of needing
of composite systems interconnected to perform different aspects of an overarching
high-level task, they integrate complex end-to-end models with high computational
costs but increased performance (Koehn and Knowles, 2017)). Statistical methods are
still used in some areas due to them needing lower volumes of annotated corpora and
presenting some statistical interpretability — which is one of the main limitations of
neural networks —, particularly in cascaded approaches for voice recognition (Sten-
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Chapter 2. Related work

tiford and Steer, [1988; Waibel et al., [1991; Povey et al., 2011)), although this field
is also currently moving towards end-to-end integration using neural networks (Di
Gangi, Negri, and Turchi, |2019; Inaguma et al., [2019; Sperber et al., |2019).

Statistical and neural NLP require numeric representations of the text that is given
as input to the model, since the models are, in essence, statistical inference machines
that are working over an unknown distribution. It is therefore unsurprising that word
embeddings (numeric representations of words) appeared and continued to evolve
alongside statistical NLP methods. Word representation models can be classified into
two main archetypes: non-distributional models and distributional methods. In the
former, the representations are usually atomic and there is no notion of similarity be-
tween the words, which are just indices in a vocabulary. The latter projects words to
a continuous vector space words based on their surrounding information, where words
from similar contexts are taken to be semantically related and therefore are situated
closer to each other in the representation space. Continuous word vectors appeared
as a mean to combine existing knowledge on distributed representations (Hinton,
McClelland, and Rumelhart, [1986) with the principles behind distributional seman-
tics, providing much needed semantic context to the required numeric representations
of text in NLP tasks. A common approach for distributional methods in relatively
simple tasks such as indexing are sparse vectors, like term frequency—inverse docu-
ment frequency (TF-IDF), term-document and term-term matrices — also known as
co-occurrence matrices — . Sparse representations have the drawback of producing
spaces of extremely high dimension when working over large vocabularies, so they
are not well fit for machine learning tasks, where a large amounts of text are used
for training. A possible solution that reduces the dimension of the vector spaces is
to apply singular value decomposition (SVD) to any of the sparse matrices in order
to reduce the number of rows — the size of the vectors that represent each word in
the vocabulary — while preserving the mutual information between columns, that is,
the word vectors themselves —. Other approaches to distributional embeddings with
reduced dimension also include generative models such as Latent Dirichlet Allocation
(LDA). These sort of models are referred to as dense embeddings, as they compress
mutual information to fit vector spaces of low dimension. Dense distributional mod-
els perform much better over large corpora than their sparse counterparts, although
they generally require long training times. This led to the popularization of some
non-distributional models, namely simple n-gram models, which are cheap to train
and benefit from large volumes of monolingual corpora. The next development in dis-
tributional methods would come from their combination with neural networks, which
produced the first neural word embeddings.

Although nowadays it is common to refer to all distributional word vector methods
as word embeddings, this concept was conceived in association with the models that
now are mostly regarded as neural word embeddings. The term word embedding was
originally coined in Bengio et al. (2003)), where the authors trained the embedding
within a neural language model using shared parameters. A major breakthrough in
performance would come again five years later in Collobert and Weston (2008)), a
publication that presented semi-supervised learning applied effectively to a multitask
network. But it is arguably the work of Mikolov, Chen, et al. (2013) that launched
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neural word embeddings to the forefront of the field with Word2Vec, a toolkit which
employs a shallow neural network architecture that is able to implicitly capture mu-
tual contextual information within a word vector space. Another architecture that
is now widespread in the NLP field is GloVe (Pennington, Socher, and C. Manning,
2014)), a model that seeks to capture the ratio of co-occurrence probability of words
in a condensed vector from a given term co-occurrence matrix. That is, it tries to
capture mutual information explicitly rather than implicitly. Modern neural word
embeddings, especially the previously mentioned models, have become popular be-
cause they are generally robust, easy to apply and their performance is akin to that
of the slower classic distributional methods , which has helped them take the place
n-gram models in providing a fast solution for models trained over extensive datasets.

Word2Vec in particular became the catalyst for the group of techniques that con-
cerns this work: cross-lingual embeddings, which aim to learn joint cross-lingual word
embedding spaces between different languages. On of the most important findings
that launched further research on the topic was Mikolov, Le, and Sutskever (2013),
which proposed that it is possible to find structural similarities between any two con-
tinuous word embeddings, and demonstrated this phenomenon using the then recent
Word2Vec model. The approach described in this publication was a simple linear
mapping between the matrices represented by monolingual embeddings, with the ob-
jective of creating a shared bilingual vector space. This would be the first of a class of
cross-lingual methods known as mapping-based cross-lingual embeddings, which try
to learn a linear mapping between monolingual embeddings. Other early methods
included this paradigm are that of Faruqui and Dyer (2014])), Xing et al. (2015, Vuli¢
and Korhonen (2016|), Artetxe, Labaka, and Agirre (2016)), and Barone (2016). There
are also other categories of cross-lingual embeddings that are not projection-related,
such as pseudo-cross-embeddings, which train a word embedding over pseudo-cross-
lingual corpora — that is, corpora that include texts of similar context in two different
languages, but are not directly parallel to each other — (Xiao and Guo, 2014; Gouws
and Sggaard, [2015; Duong et al.,|2016). Or cross-lingual training, a family of methods
that trains embeddings on a parallel corpus and optimize a cross-lingual constraint,
seeking to learn to project monolingual word embeddings into a shared vector space
while taking into consideration their shared structural similarities, so that words from
different that are semantically equivalent are situated closely together in the projected
representation space (Hermann and Blunsom, 2014; Lauly, Boulanger, and Larochelle,
2014; Kocisky, Hermann, and Blunsom, [2014). Another group of approaches is joint
optimization, which proposes to train models on parallel corpora and jointly opti-
mises a combination of monolingual and cross-lingual losses (Klementiev, Titov, and
Bhattarai, 2012 Zou et al., 2013} Luong, Pham, and C. D. Manning, 2015, Gouws,
Bengio, and Corrado, |2015)). Although some of these methods predate or are contem-
poraries of the linear mapping proposed in Mikolov, Le, and Sutskever (2013)), the
general interest sparked by mapping cross-lingual embeddings has brought increased
attention into this field of research and accelerated the growth of many of them.
One of the reasons for this interest is that more modern mapping-based cross-lingual
embeddings, which are sometimes also called projection-based embeddings, have be-
come very popular by outperforming earlier mapping methods and many supervised
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cross-lingual methods that are dependent on segment-level alignment. As many early
mapping-based approaches (Mikolov, Le, and Sutskever, 2013; Faruqui and Dyer,
2014)), they require monolingual embeddings, but often also a small parallel corpus
or a bilingual seed translation dictionary to perform the initial alignment, sometimes
optionally (Lample, Denoyer, and Ranzato, 2017)). However, as it is also the case
for certain mapping-based embeddings, some do not need any parallel signal at all,
as they can also perform the original alignment relying only in estimations based
on structural similarities between the monolingual vector spaces (Artetxe, Labaka,
and Agirre, 2018; Lample, Denoyer, and Ranzato, 2017). This makes them effective
for prototyping in extremely low-resource languages models when no parallel data
is available. Moreover, it also makes them uniquely suited to research the effect of
the different factors that affect cross-lingual methods of any kind, since they are not
affected by the particularities of a parallel corpus and will model consistently similar
matrices for the same language given sufficient training data.

Cross-lingual methods have also been successfully applied to neural language mod-
els used in deep neural network pre-training. Although cross-lingual embeddings
have not been particularly effective and often do not seem to represent a signifi-
cant improvement over using off-the-shelf monolingual embeddings (Qi et al., 2018)),
cross-lingual language models have fared better. Neural language models have gained
notoriety recently due to how effective they are at pre-training deep neural network
models using exclusively monolingual training corpora. Unlike neural network-based
word embeddings such as Word2Vec, which is based on a shallow network, neural
language models are much deeper and costly to train — they often are deep neural
networks themselves — but have the advantage of pre-training the final model to a
much higher degree. Therefore, the amount of parallel data needed to train the model
to completion is lower, since only a reduced number of layers need to be added to
the output of the neural language model and refined. In the field of machine trans-
lation, perhaps the most important neural language model to become widespread is
BERT (Devlin et al., [2019), based on the Transformer (Vaswani et al., |2017) neural
network architecture and originally designed for multiple natural language process-
ing tasks in mind. The effectiveness of BERT in machine translation (Yang et al.,
2020) has motivated multiple derivations of the model with this area in mind, some
focused on machine translation, such as BART (M. Lewis et al., [2020) or mBART
(Liu et al., [2020). Different cross-lingual methods for these methods have been pro-
posed, some try to create a universal neural language model for all the languages
included in a final multilingual system, inducing cross-lingual information through
zero-shot transfer (Ji et al.,[2020) or cross-mapping all languages together using ran-
dom aligned substitution (Lin et al.,2021)). In contrast, Lample and Conneau (2019)
create a cross-lingual neural language model by training a masked language model
(Devlin et al., [2019) using a shared vocabulary between languages and subsampling
frequent outputs as per Mikolov, Sutskever, et al. (2013)). Ren et al. (2019)) refine this
masked language model (MLM) by using an initial n-gram translation table inferred
unadvisedly, and introducing an explicit cross-language training objective, creating a
cross-lingual masked language model (CMLM). Recent research in Wang and Zhao
(2021)) has obtained top-of-the-line results by using a large-scale CMLM and training
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the final supervised model using a joint optimization objective (Sun et al.,|[2019)) that
is intended to maintain the original distribution of the CMLM as much as possible
while maximizing the translation performance of the global model.
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CHAPTER 3

UNSUPERVISED CROSS-LINGUAL
MODELS

3.1 Projection-based cross-lingual embeddings

Both of the cross-lingual embedding methods considered in this work are projection-
based cross-lingual embeddings. Projection-based CLE try to produce an alignment
between monolingual word embeddings, subsequently projecting them into a common
representation space that facilitates a direct mapping between the distribution of both
embeddings, using as a guide for the alignment a number of translation pairs that
serve as a seed dictionary. However, in some cases these translation pairs are estimated
by the cross-lingual method itself. This capacity to generate a common vector space
of aligned embeddings with no bilingual signal to speak of defines fully unsupervised
cross-lingual embeddings, which is the subset of methods in which all the methods
considered in this work are included. However, most of the used toolkits also allow
for optional use of a seed translation dictionary, which tends to increase performance
across the board.

The specifics behind alignment and projection are also dependent on the general
topology of the embeddings that are to be mapped. In this work, all experiments are
performed over Word2Vec embeddings, which offers two possible topologies: contin-
uous bag-of-words (CBOW) and skip-gram. The former trains a shallow network to
predict a word given an input context, while the latter learns to predict a context
window from an input word. In this work, only skip-gram is used for all experiments,
particularly skip-gram with negative sampling (SGNS) (Mikolov, Sutskever, et al.,
2013). Therefore, from this point all references to the word embeddings used by the
cross-lingual embeddings described can be assumed to be referring to this model. The
training objective of the skip-gram model is to predict a context given a word, that
is taken to be the center word the predicted context, as shown in figure Because
the softmax layer of the network corresponds with the generated context, its size its
proportional to said context, which makes skip-gram more expensive to train when
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Chapter 3. Unsupervised cross-lingual models

compared to CBOW for most non-trivial window sizes. However, skip-gram has been
shown to outperform CBOW in capturing infrequent words effectively, therefore far-
ing better in semantic tasks and comparably in syntactic ones (Mikolov, Chen, et al.,
2013)).

Input projection  output

w(t-2)

w(t-1)

DN

wt) | >

\ w(t+1)

w(t+2)

Figure 3.1: Neural network architecture for the skip-gram model (Mikolov,
Sutskever, et al., |2013). Given a word w at training time, the network tries
to predict its surrounding context, taking the input word as the center
element of the predicted window context.

Projection-based CLE methods generally have a very similar operative, but differ
from each other in how they accomplish each of the requirements for a common cross-
lingual mapping. The general common steps can be described as follows, taking Er1
and Ero to be monolingual word embeddings in two different languages:

1. Build a seed translation dictionary. Some models skip this step and instead re-
quire that a bilingual dictionary for the considered languages is given directly, in
what is known as semi-supervision. Fully-unsupervised approaches induce this
dictionary from the source monolingual vector spaces, assuming approximate
isomorphism between Er; and FEps.

2. Use the seed translation dictionary to align monolingual subspaces Er1 and Ep».
This alignment is done over a hypothetical common cross-lingual space where
certain dimensions with that are contain more significant information can be
boosted. The system then iterates through each translation pair, and performs
transformations over their corresponding vectors to situate them close to each
other in a shared vector space.
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3.1. Projection-based cross-lingual embeddings

3. Learn to project Er; and Fro to a shared cross-lingual space based on the
previously aligned embeddings, maximizing mutual information.

3.1.1 Adversarial alignment: MUSE

MUSE (Lample, Denoyer, and Ranzato, uses adversarial training to create a
generator network able to project word vectors from each of the given monolingual
embeddings in a way such that it is very hard to distinguish the space to which they
originally belonged — thus achieving a common mapping between both embeddings.
This projection is then fine-tuned and the best model is chosen in the end, all without
the need of any bilingual supervision. In greater detail, considering E;; and Ej2 to
be monolingual word embeddings in two different languages and Wy the projection
matrix, the method is structured as follows:

(C)

Figure 3.2: Diagram illustrating the operative of the MUSE model
(Lample, Denoyer, and Ranzato, . In it, the word vector space X is
aligned with vector space Y using a proxy of the projection matrix W
learned through adversarial training (step A). The matrix is then fine-tuned,
using as guidance a set of induced translation pairs (step C). Finally, the
best projection is chosen (step D).

1. Adversarial training. An initial proxy of the projection matrix Wy is
learned. In this step, Wy corresponds to the generator component of the
adversarial network, and it is defined as a linear map. The other element of
the network, the discriminator, is a feed-forward network that tries to distin-
guish between true L2 vectors from Eo and L1 vectors from the projection,
Er1Wp1. The joint objective function of this adversarial setup is then defined
as a combination of the discriminator objective — which indicates how effective
the discriminator is — and the mapping objective — that is, the objective of the
generator —. The mapping objective improves as the generator is able to project
word embeddings from both monolingual embeddings into an increasingly in-
distinguishable representation space. The joint learning algorithm follows the
standard training procedure detailed in Goodfellow et al. .

2. Synthetic dictionary extraction. A synthetic parallel vocabulary is built by
considering the most frequent words and keeping only mutually-closest vectors,
which increases the quality of the selected pairs. However, k-nearest neighbors
(K-NN) present some problems when working with high-dimensional spaces, like
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those defined by neural word embeddings. K-NN is an asymmetric criterion: if
point y is a K-NN of z, it does not necessarily follow that = is a K-NN of . In a
high-dimensional representation space, this asymmetry leads to a phenomenon
in which some vectors are likely to be the nearest neighbors of many other points,
while others, are far removed from all data points (Radovanovi¢, Nanopoulos,
and Ivanovié, [2010; Lazaridou, Dinu, and Baroni, 2015)). To alleviate this issue,
the authors propose cross-domain similarity local scaling (CSLS) as a distance
metric. CSLS is defined as two times the cosine distance between a projected
word vector Ep;, from Ep; to another vector Ers, in Erg, minus the mean
cosine similarity of said projected vector to its target neighborhood in Er5 and
minus the mean cosine similarity of the target vector from Es to the source
embedding neighborhood in Ey;. It can be expressed as:

CSLS(Eth,ELQS) = ZCOS(Eth,ELQS) — TT(ELIS) — Ts(ELgt) (31)

Where function cos() corresponds to the cosine similarity calculation, rr() to
the mean cosine similarity of the parameter vector and its target embedding
neighborhood in E5 and rg() is the mean cosine similarity of the parameter
vector and source embedding neighborhood in Ep;.

3. Mapping fine-tuning. Improve the GAN-induced mapping Wp; through a
refinement step based on a bootstrapping extension of the Procrustes problem
as proposed in Schénemann (1966). Only a very small number of iterations —
usually up to 5 — are needed.

4. Unsupervised selection of the best model. Use CSLS to generate a trans-
lation for each of the 10k most frequent words, then compute the average cosine
similarity between the translations. This average is taken as an estimation of
the performance of the model, meaning that the model with the highest average
is considered the best one, and therefore it is selected. As a result, the metric
can also be used as a stopping criterion.

3.1.2 Monolingual similarity distribution assumption: VecMap

Artetxe, Labaka, and Agirre (2018]) assume that word translations have approxi-
mately identical vectors of monolingual similarity distribution. The proposed method
operates on top of this assumption, adding empirically motivated enhancements that
makes the procedure more robust. The overall process can be broken down into four
steps:

1. Embedding normalization. VecMap uses multi-step pre-processing: first, it
normalizes the embeddings with unit length normalization, then it applies mean
centering, and finally unit length normalization again. The last normalization
ensures that the resulting embeddings present unit length. Consequentially, the
dot product of any pair of pre-processed embeddings is equivalent to their cosine
similarity, which is a common similarity measure for word vectors. Additionally,
it is directly related to their Euclidean distance. As an extra pre-processing,
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3.2. Concatenation of monolingual corpora

zero-phase whitening filters (ZCA), also known as ZCA whitening (Bell and
Sejnowski, 1997)), is applied to both embeddings. The whitening encourages
the exploration of dimensions that may not fit the current solution during the
self-learning procedure, as a measure to escape poor local optima.

2. Fully unsupervised initialization. The seed bilingual dictionary is equal
to the set of nearest neighbors according to the similarity between monolingual
similarity distribution vectors. It is assumed that the embedding spaces are per-
fectly isometric, and therefore both axes of their respective similarity matrices
correspond to words, which can be exploited to reduce the mismatch to a single
axis. That is, the similarity matrices would be equivalent up to a permutation
of their rows and columns, where the permutation in question defines the dic-
tionary across both languages. In practice, embeddings may not always present
isometry, but the property is treated as though it always holds approximately.

3. Robust self-learning. The method reaches the desired cross-lingual map-
ping through a self-learning bootstrapping procedure based on the Procrustes
problem, similar to that of MUSE. Each iteration contains two steps: orthogo-
nal mapping optimization over the seed bilingual dictionary and computing the
optimal dictionary over the similarity matrix of the mapped embeddings. How-
ever, the procedure tends to get stuck in poor local optima when the quality
seed translation dictionary is not good enough. As a result, some modifications
should be applied over the seed dictionary. 1) Stochastic dictionary induction
is performed: elements of the similarity matrix are randomly set to zero, with
varying probability across iterations. 2) Before the self-learning step is started,
the dictionary induction process is restricted to the & most frequent words in
each language, where k is commonly equal to 20,000. 3) CSLS-based language
pair retrieval is used instead of nearest neighbors in the second step of each
iteration. 4) The dictionary is induced in both directions in order to avoid that
repeated target language words trap the local optima.

4. Symmetric re-weighting. Once self-learning has converged to an acceptable
solution, cross-correlational re-weighting is applied by de-whitening the embed-
dings that were initially whitened with ZCA filters. This boosts the weight of
dimensions that best match the obtained solution.

3.2 Concatenation of monolingual corpora

Another approach to cross-lingual embeddings explored in this work are embeddings
trained over multilingual corpora. Pseudo-cross-lingual embeddings use explicit or
implicit cross-linguality and integrate it in the training corpora. For instance, in
Gouws and Sggaard (2015) the authors concatenate the source and target corpus
and replace each word that is part of a translation pair — obtained using a machine
translation system — with its translation equivalent with a probability of 50%. Duong
et al. (2016) expand on this by replacing each word center of the context with its
translation at the same time that the system is being trained training. Semantic
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clusters have also been used to induce a weak bilingual signal (Ammar, Mulcaire,
Ballesteros, et al., 2016)), as well as shuffling document-level aligned data (Vulic and
Moens, 2015]).

However, the model proposed in this section is trained over corpora with no align-
ment or contextual proximity. The procedure is remarkably simple: two monolingual
corpora in different languages are concatenated, and a word embedding is trained
over the resulting multilingual text. This approach is actually used by some neural
language models such as Lample and Conneau (2019)) who, instead of inferring words
in the source and target language sentences via skip-gram, predict randomly masked
words in both sentences with a neural language model, in what is known as a masked
language model (Devlin et al., 2019). Their model can be trained with or without
parallel data, the latter working over concatenated monolingual datasets.

In the case of this work, this approach serves as a baseline to ascertain how much
of the alignment achieved from cross-lingual embeddings is innate to the distribution
of both languages and can be extracted with no mapping procedures.The word em-
bedding architecture used to this end is skip-gram with negative sampling, described
in section 311

3.3 Evaluation strategies

Cross-lingual mappings are commonly evaluated according to their bilingual lexicon
induction (BLI) performance (Artetxe, Labaka, and Agirre, |2018; Lample, Denoyer,
and Ranzato, [2017)), which is the task of inducing word translations from monolingual
corpora, using a bilingual dictionary as ground-truth. However, BLI is an intrinsic
task and in many cases might not be indicative of the performance of the system in
its actual downstream task, such as document classification, information retrieval or
NMT pre-training, among others (Ammar, Mulcaire, Tsvetkov, et al., 2016; Bakarov,
Suvorov, and Sochenkov, [2018; Glavas$ et al.,|2019). Moreover, BLI is rarely the final
objective when using cross-lingual mappings. Instead, the generated cross-lingual
representation space is used for language transfer in cross-lingual tasks (Ruder, 2017)),
where integrating an machine translation setup might be too costly and not yield a
significant improvement. Therefore, it is desirable to provide a downstream evaluation
in addition to a BLI assessment when publishing on a benchmark for a cross-lingual
method.

Although this would be ideal, standards for which tasks and models should be
tested for in downstream experiments are not widespread, although efforts have been
made in this regard (Glavas et al.,|2019). This is likely due to the added complexity
and processing power that comes with integrating diverse NLP tasks with a cross-
mapping method. Some authors acknowledge the advantages of experimenting over
downstream tasks, but may not actually be able to use this sort evaluation due to
time constraints and the aforementioned lack of consensus (Vulic, Glavas, et al.,|2019).
This work has opted out of providing diverse downstream tasks evaluation as a result
of constraints on time and resources, relying instead purely on BLI for cross-mapping
evaluation. However, since the generated will also be evaluated pre-training for an
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NMT model — a process that will be described in chapter [4 —, it is arguable that
the downstream task for which the embeddings are built in this work will be taken
into consideration. Even then, it is important to ask the reader that BLI evaluation
should not be taken at face value as a complete measure of the effectiveness of a
cross-mapping method.

Bilingual lexicon induction is usually evaluated as mean accuracy over a set of
translation pairs. There exist several options when it comes to measuring the distance
between the words in the source and target language in a common word vector space.
Some of the more widely used ones are:

e Euclidean nearest neighbors. In Euclidean K-NN, the k closest points in
space to a given word vector are retrieved and sorted according to their Eu-
clidean distance to said word vector. Euclidean distance is calculated as the
absolute value of the numerical difference of their coordinates. In a hyperdi-
mensional space, the Euclidean distance might become very large for vectors
that are anything less than very close together, making it very hard to distin-
guish non-extreme ranges, and contributing to creating areas with many close
points and others with isolated vectors, a phenomenon known as "hubness"
(Radovanovi¢, Nanopoulos, and Ivanovi¢, |2010; Lazaridou, Dinu, and Baroni,
2015)).

e Nearest neighbors based on cosine similarity. Calculates the & closest
points in space to a given word vector using cosine similarity. Cosine similar-
ity represents the similarity between two non-zero vectors in an inner product
space. It is equal to the cosine of the angle between these two vectors, and
therefore it is also equivalent to their inner product when the vectors are nor-
malized. This calculation based on the angle of the vectors is more robust in
hyperdimensional spaces than the Euclidean distance, which makes this metric
preferable when working with embeddings. However, K-NN is by definition
an asymmetric measure, and the main culprit behind hubness (Radovanovié,
Nanopoulos, and Ivanovié, 2010). For this reason, cosine similarity has also
been used in combination with other methods in the field of cross-lingual word
representations.

e Softmax over cosine similarity. Artetxe, Labaka, and Agirre (2019) use
a softmax function over cosine similarity to match language pairs. The trans-
lation candidate for a given source language word is obtained by taking the
n = 100 Euclidean nearest-neighbors in the target language and scoring them
with a softmax function, whose temperature is calculated using maximum like-
lihood estimation (MLE) over a dictionary induced in the reverse direction —
that is, target to source — This transforms cosine similarity scores into action
probabilities, which are interpreted as translation probabilities in this context.
Considering the source language word vector Er,1, and the target language word
vector Ers,, the metric can be defined as it follows:

exp(cos(Er1,, Er2,)/T)

¢(ELa2, -
S exp(cos(Bra,, Era,)/7)

Eth) =

(3.2)
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Where ¢(Er2,|Er1,) is the probability of finding Fro_ as the translation of Er4,,
w(EL2) is the number of word vectors that can be found in the target language
embedding and cos() is the cosine similarity function. The temperature 7 is
estimated using MLE based on an induced target-source language translation
dictionary.

e Cross-domain similarity local scaling (CSLS). Although the previously
described method of using softmax in combination with cosine similarity suc-
ceeds at abandoning K-NN to alleviate dimensionality artifacts, it also requires
a more costly calculation, especially when dealing with a large vocabulary. Lam-
ple, Denoyer, and Ranzato (2017) propose CSLS, which obtains the difference
between two times the cosine distance from the source to the target vector and
the mean cosine similarities of the source and target word vectors to the neigh-
borhood of the opposite representation space, as detailed in equation [3.1] within
section This smooths the distance calculation for isolate data points or
those that belong to a dense cluster, as it takes the surrounding neighborhood
in the opposite representation space in consideration.

For this work, CSLS has been chosen due to its low calculation costs, which is
relevant when a large number of evaluations are needed, and its integration with the
cross-lingual mapping toolkits that implement the VecMapEI and MUSEEI methods.

3.4 Influence of language similarity

Fully unsupervised cross-lingual mappings generally assume approximate isomorphism
between between vector spaces when it comes to inducing the initial seed dictionary
(Barone, 2016; Sggaard, Ruder, and Vuli¢, [2018). That is, it is presumed that the
shapes of the geometries defined by the vectors in both representation spaces are
approximately similar. However, this property is exclusively satisfied in monolingual
word vectors trained for similar languages and domains due to the Zipfian phenomena
in language (Zipf, 1950). As a result, when using fully unsupervised cross-mapping
methods with very distant languages the projection learned tends to be deficient or
completely unsuccessful (Glavas et al., 2019).

This effect is very much present in the cross-mapping approaches used in this
work. Fully unsupervised MUSE learns an initial proxy of the projection matrix
through adversarial training, and uses said projection to generate a bilingual dictio-
nary by retrieving closest vectors based on their CSLS distance. However, for the
closest translation pairs to be correct, the isomorphism assumption needs to be satis-
fied, which leads to noticeably worse results for distantly related languages (Segaard,
Ruder, and Vuli¢, 2018). VecMap has shown to be more robust when working with
languages that are not similar (Glavas et al.,|2019)), which can be attributed to some of
its empirically motivated processing steps that allow the method to focus on the most
promising dimensions, such as unit length normalization, mean centering, and ZCA

Lhttps://github.com/artetxem/vecmap
2https://github.com/facebookresearch/MUSE

].8 DSIC, UPV



3.4. Influence of language similarity

whitening, as well as cross-correlational re-weighting. VecMap also relies on stochas-
tic dictionary induction, which sets elements of the similarity matrix to 0 randomly,
helping the learned projection to escape local optima. Still, there is a clear correlation
between language similarity and performance because, even with optimizations that
improve the robustness of the method, the procedure is based on the assumption that
inherent similarities between the word vector spaces exist.

Although the effect of language similarity in cross-lingual mappings has been stud-
ied by many authors, there exists a pervasive issue in this area of study — and it extends
to the natural language processing field as a whole — where language similarity tends
to be taken to be the same as phylogenetic relatedness. Take as examples Schone-
mann (1966) and Vulic, Glavas, et al. (2019), which are otherwise great publications
that have helped this work greatly. The assumption that languages that belong to
the same family are similar does not always hold. Consider the monstrously large
Indo-European family of languages, which contains anything from Hindi to Swedish,
two languages that have very little in common. On the other hand, the Uralic family,
separate from Indo-European, features Finnish, a language to which Swedish is un-
doubtedly more similar than Hindi due geographic proximity, even if both languages
are still remarkably different and do not share a common root. If genetic ancestry
is the sole determiner for similarity, this would also mean that we should give up
on finding acceptable cross-lingual alignments with isolate languages such as Basque,
even though this particular language has been used in neural machine translation
models to a moderate degree of success given the scarcity of corpora (Jauregi Unanue
et al., 2018).

It is therefore important to separate the concept of phylogenetic relatedness and
typological similarity. The former is the subject of study of historical linguistics,
which is mostly interested in tracking diachronic language change to ascertain the
origin and evolution of languages. The latter is focused on a synchronic survey of the
features that appear in languages, and it can be directly equated with the concept
of language similarity. Although languages that are close to each other in phyloge-
netic terms tend to also be typologically similar, this does not always happens, as the
languages may diverge if they stay isolated from each other. In contrast, often times
very genetically distant language may actually be quite similar due to contact thanks
to geographic proximity. Part of the confusion comes from trying to interpret the
classification of languages in the same way as that of living beings, a categorization
system known as cladistics, which determines the similarity of two organisms using
their last common ancostmﬂ After all we speak of phylogenetic relatedness between
languages, a concept directly imported from biology. But this idea of similarity can-
not be applied to languages, which can change considerably by interacting with each
other as populations of speakers interact with other communities. Instead, it is im-
perative to base any similarity groupings on the typological characteristics found in
languages, as clustering based on feature similarity has shown comparable or greater
levels typological similarity than genetic grouping (Georgi, Xia, and W. Lewis, |2010)).

3For example, zebra fishes are more closely related to an actual zebra than to sharks, since both
of the striped animals share a lobbed-finned fish as a common ancestor, but the closest common
ancestor of sharks and zebra fish is the first bony vertebrate.
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In the case of this work, four language pairs are considered, which are in decreasing
order of genetic relatedness: German-English, French-English, Russian-English and
Hindi-English. All of them are included in the Indo-European family of languages
and it is hypothesized that they share a common root. However, this grouping is
extensive enough to include very different languages, as those from the Indo-Iranian
subfamily such as Hindi differ significantly from languages belonging to the European
subfamily — which includes English, German, French and Russian — allowing for
comparison between distant languages. This selection has also been motivated by
the interesting properties of the relationship triangle formed English, German and
French. English and German are the closest genetic relatives, and both are included
in the West Germanic family. Within this group, modern German belongs to the High
German branch, while English derives from the Anglo-Frisian subfamily. On the other
hand, French belongs to the Romance family, which shares the grouping of European
language along with all Germanic languages. This means that German and English
are similarly distant to French according to their phylogenetic classification. German
and French are indeed quite different. However, French and English share many more
typological features, notably an estimated 25% of English loanwords come from French
(Cannon, [1989)), along with other characteristics heavily influenced by the French
language (Pyles and Algeo, |1993). This three-way relationship is interesting because
it juxtaposes genetic and typological features, both of which can have different effects
over cross-lingual mappings. Aditionally, Russian and Hindi provide increasingly more
distant languages that help study projection methods for cases with low cross-lingual
similarity and different alphabets.
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CHAPTER 4

CROSS-LINGUAL PRE-TRAINING
IN NEURAL MACHINE
TRANSLATION

4.1 Cross-lingual word embedding pre-training

Word embeddings have been widely employed in multitude of NLP tasks, as they
provide a robust semantic encoding that can be useful in any number of problems
that operate with text, from document classification to information retrieval or text
understanding (Naseem et al., 2020). This strategy to encode a lexical unit as a
vector before it is used by a model has also proved to be valuable when applied to
neural machine translation. The neural network learns its own contextual encoding
for each word in the vocabulary during training, which is no surprise, since they follow
a very similar operative to that of neural embeddings such as Word2Vec (Mikolov,
Chen, et al., |2013)). However, NMT systems tend to suffer in low-resource scenarios
where sufficiently large parallel corpora is unavailable, which is especially problematic
if the encoding and decoding pieces of the network are randomly initialized and need
to be fully learned during training. Pre-trained word embeddings take advantage of
monolingual corpora, which is otherwise not very useful when it comes to training a
supervised neural model, and provide a strong initialization that generally improves
the performance of the model, especially in scenarios that present paucity of data (Qi
et al., [2018]). However, word embeddings are relatively small models that only encode
information at the semantic level (Mikolov, Chen, et al., 2013; Pennington, Socher,
and C. Manning, 2014). This means that they need to be applied over an acceptable
amount of training corpora. That is, even excellent pre-training is limited by its role
on the overall model, which needs to learn other core features of the language such
as word ordering and multitude of grammatical dependencies.

The utility of word embeddings in machine translation pre-training is a seem-
ingly promising precedent to apply cross-lingual embeddings in this area. It follows
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that these methods are well fit for the task, since they create a common represen-
tation space that is then shared between encoder and decoder, aiding the neural
model in creating a hidden transformation from source to target language. However,
prior results show very little correlation between embedding cross-mapping — be it
supervised or unsupervised — and improvements in the performance of the transla-
tion neural network (Qi et al.,[2018). Consequently, the use of cross-lingual methods
is virtually non-existent for pre-training, while monolingual word embeddings keep
being relatively common.

4.2 Cross-lingual language model pre-training

Neural language models are, as of the time of this work, the most ubiquitous pre-
training strategy for deep neural networks in machine translation and many other
NLP tasks. Often derived from some of the most successful early architectures such
as GPT (Radford and Narasimhan, 2018) or BERT (Devlin et al., [2019) — the latter
being perhaps the most widespread approach of all —, neural language models are large
neural networks — as opposed to the traditionally shallow models of word embeddings
— that are trained over monolingual data and learn an internal representation of the
elements of the language at hand. Their objective is predicting the words for the same
language that they are trained over, for which they take into consideration a larger
amount of contextual information than the embeddings, which rely only on semantic
characteristics (Liu et al.,|2020)). The learned representation is hidden, meaning that
it cannot be used as a general encoding, but instead the resulting language models
should be integrated with another neural network that is designed with the final
downstream task in mind. In the case of state-of-the-art machine translation, this
secondary network tends to rely on some derivation of the Transformer architecture
(Vaswani et al.,2017). As with word embeddings pre-training, neural language model
pre-training consistently shows improvement over a randomly initialized baseline, with
more prominent gains for low-resource language pairs where parallel data is scarce.
The effect is more pronounced in the direction of the language for which there is more
data (Liu et al., 2020), also a common phenomenon in word embedding pre-training.

Neural language models are large and have considerable number of parameters
to estimate, which makes them more costly to train compared to word embeddings
models. While being a much heavier model has obvious disadvantages, particularly in
regards to the computing power needed to successfully train a neural language model,
it also provides a stronger initialization. Once the task-specific network is integrated,
it only needs to be fine-tuned over supervised data, since the neural language model
already has learned a very complete representation of the input language (M. Lewis
et al., [2020).

The concept of semi-supervised and fully-unsupervised cross-linguality has also
been explored in neural language models. Lample and Conneau (2019) propose dif-
ferent approaches that rely on causal language modeling (CLM), masked language
modeling (MLM) — derived from the MLM objective in Devlin et al. (2019)), also
known as the Cloze task (Taylor, [1953) — and translation language modeling (TLM)
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combined with MLM. The CLM and MLM objectives can be trained over monolin-
gual data, while TLM requires parallel corpora. The cross-lingual language model is
trained over monolingual corpora in both the source and target language, sampled
in single-language batches. The authors apply byte-pair encoding (BPE) (Sennrich,
Haddow, and Birch, 2015)) to the training data and use a joint vocabulary for both
languages, which encourages learning a shared mapping.

Also iterating on the aforementioned CLM objective, Ren et al. (2019) propose a
cross-lingual masked language model (CMLM), that randomly chooses n-grams from
the input text stream and predicts their translation candidates for each time step.
Rather than relying mostly on BPE to learn subword information as in the case of
Lample and Conneau (2019), the authors work over n-gram word embeddings (Bo-
janowski et al.,|2016|) learned on the monolingual corpus. Moreover, they incorporate
an explicit cross-lingual signal, as the objective in training is to predict the translation
of the input n-grams, similarly to the CLM + TLM setup in Lample and Conneau
(2019). However, n-gram translation table is not hand-crafted, but instead unsuper-
visedly induced by applying the VecMap cross-mapping procedure (Artetxe, Labaka,
and Agirre, |2018]), and taking the translation probabilities as the similarity scores ob-
tained using the marginal-based scoring method (Conneau, Lample, Ranzato, et al.,
2017; Artetxe and Schwenk, 2019). As with the proposal of Lample and Conneau
(2019)), the effects on the translation of language pairs are statistically significant and
overall more successful than previous attempts at NMT pre-training with cross-lingual
word embeddings.

Given that language models have proved to be more effective with unsupervised
cross-lingual approaches than word embeddings when it comes to pre-training neural
models, they were initially considered for the experiments that appear in this work.
However, they present some problems that have ultimately made their inclusion im-
possible. First and foremost, they are much more costly to train than neural word
embeddings. This an especially harsh obstacle for this work, which intends to word
with four language pairs whilst evaluating the impact of a variety of factors — namely
the cross-mapping method used and whether BPE tokenization is applied — As a re-
sult, the total number of models needed is considerable, making the whole setup very
sensible to the individual training times of whichever methods are studied. Addition-
ally, neural language models learn a hidden representation, which makes evaluating
their performance as standalone models harder, requiring more complex tasks over
natural language inference corpora such as Conneau, Lample, Rinott, et al. (2018),
which are less suited for word embeddings. This difficulty in comparing both pre-
training models is to be expected, since they are not really designed to do the same
things — word embeddings learn purely semantic information while neural word em-
beddings are able to learn more diverse contextual information —. Since the priority
in this work is to ascertain the effect of certain variables when working with cross-
lingual word representation and their effect on pre-training rather than producing a
top-of-the-line system, and computational resources are limited, it has been decided
to drop the experimentation from neural language models. They, however, remain
an extremely interesting field of study that has been rapidly growing and showcasing
consistent improvement.
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4.3 Pre-training limitations

As mentioned previously, the effect of cross-linguality in pre-training word embed-
dings has been disappointing in many cases (Qi et al., [2018). When it comes to the
use of non-aligned monolingual vectors, the improvements in performance from mod-
els without and with pre-training seem to be larger the more similar that the source
and target languages. This, along with the low impact that cross-lingual methods
have been shown to have on pre-training, seems to indicate that the neural network is
learning its own projection from source to target language along with whichever other
transformation fits its training objective — i.e. translation or a discriminant function
—. This behavior has been understood for some time now, especially in the case of
Transformer-derived architectures (Vaswani et al.,|2017)), which have specific sections
of the network dedicated to projecting to and from incoming text into a specific repre-
sentation, known the encoder and the decoder modules. However, the neural network
itself is also limited when it comes to generating a good projection if not enough
parallel data is given, and said projection may also be harder to learn depending on
the degree of similarity of the language pair at hand (Lample and Conneau, [2019).
Therefore, cross-lingual pre-training is still desirable in order to take full advantage
of monolingual corpora to initialize the network. Cross-lingual neural language mod-
els have been more successful at improving prior benchmarks (Lample and Conneau,
2019; Ren et al., [2019)), but the correlation between their performance in evaluations
of their cross-lingual representation (Conneau, Lample, Rinott, et al.,[2018) and that
of the final fine-tuned network is still relatively weak. Sun et al. (2019) investigate the
interaction between unsupervised cross-lingual embeddings and unsupervised NMT,
and point to a phenomenon that may explain this seemingly common problem to
pre-training methods in charge of learning a representation of the language. The
authors argue that, during the fine-tuning phase, the neural network may refine the
projection provided by the pre-trained layers, taking advantage of the fact that it has
already been initialized. But since the model is training towards an independent ob-
jective, it may heavily modify the initial representation in order to fit its optimization
criteria, leading to degeneration of the pre-trained embeddings or neural language
model. To alleviate this issue, Sun et al. (2019) propose to train the NMT mode
objective — in this case translation, expressed as agreement regularization — jointly
another one that aims to maximize the correspondence of the encoder representation
space — corresponding to the source language embedding — and that of the decoder,
represented by the target language embedding. This latter objective is implemented
through adversarial training, where a discriminator is trained to maximize the prob-
ability of choosing the accurate language to which the word vector belongs, that is,
if it belongs to the transformation applied by the projection matrix in conjunction
with the encoder or if it comes from the decoder space. A generator that takes the
cross-lingual projection matrix as a trainable parameter tries to confuse the aforemen-
tioned discriminator in what is a two-player minimax game (Goodfellow et al., 2014)).
Results seem to indicate that the degeneration of the pre-trained spaces is at least
partially responsible for previous experiments where cross-linguality seemed to have
no effect, and training with a joint objective is desirable. Most recently, Wang and
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Zhao (2021)) build on the premise of Sun et al. (2019)) and apply joint optimization to
cross-lingual neural language models integrated in both supervised and unsupervised
NMT models, as well as adding denoising to the model, with promising results.
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CHAPTER 5

EXPERIMENTAL SETUP

5.1 Corpora

The corpora used in this work were originally selected from the data collection pro-
vided in the WMT14 Machine Translation shared taskE| (Machac¢ek and Bojar, |2014).
This choice was made to facilitate comparisons with other translation systems, since
most of the datasets are well known and their use is widespread in the field of natural
language processing. As a result, both the models submitted to the shared task and
the many that use a similar combination of corpora sources can be used as reference
for performance. The corpora also contain a considerable volume of monolingual data,
which is vital for the unsupervised pre-training techniques explored in this work.

This collection of corpora also allows to study language similarity as a variable,
since all of the language pairs available feature English data aligned with languages
with which it presents varying degrees of phylogenetic relatedness and typological
similarity. As detailed in section [3.4] the language pairs chosen to evaluate this effect
have been French-English, German-English, Russian-English and Hindi-English.

The monolingual training set is a combination of some of the corpora provided in
the WMT14 Machine Translation shared task, particularly the News Crawl (provided
by the task) and HindMonoCorp (Bojar et al.,|2014)) collections. The latter has been
added due to the very small size of the Hindi section of the News Crawl, especially in
comparison with the other languages. Keeping a roughly similar volume of training
data between for monolingual embeddings that are to be cross-mapped into a bilingual
space is usually desirable, since most cross-mapping methods rely, partially or totally,
on some sort of inherent shared similarity between languages. For this reason, the
full News Crawl corpus is not used for the English and German monolingual corpora,
reducing their size to approximate that of the other languages.

Similarly, the parallel corpora used to train the NMT Transformer model has been
built by combining different corpora in such a way that the volume of data is compa-
rable across all languages.

Thttps://www.statmt.org/wmt14/translation-task.html
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Language Corpora Sentences Tokens
English News Crawl 2011-2013 51M 1,167M
French News Crawl 2007-2013 30M 696 M
German News Crawl 2012-2013 55M 970M
Russian News Crawl 2007-2013 32M 576M
Hindi News Crawl 2007-2013 + HindMonoCorp 0.5 43M 932M

Table 5.1: Breakdown of training monolingual corpora sources, number of
sentences and total number of tokens by source.

Language pair Corpora Sentences Tokens

Source  English

French-English Europarlv7? + Common Crawl corpus 5M 117M 129M
German-English Europarlv7 4+ Common Crawl corpus 4.1M 99M 94M
Russian-English Common Crawl corpus + Yandex 1M corpus v1.3 1.8M 41M 39.56M
Hindi-English HindiEnCorp 0.5 0.26M 2.6M 4.1IM

Table 5.2: Breakdown of training parallel corpora sources, number of
sentences and total number of tokens by source.

The corpora sets used have the following common pre-processing steps:
1. Normalization of unicode punctuation encoding.
2. Tokenization.

3. Clean and eliminate empty sentences, those containing more than 60 words and
sentences with a source-target ratio greater than 1-9.

These operations have been performed using software available in the Moses toolkit
(Koehn, Hoang, et al., 2007). All the described datasets can be compiled using the
guide and code used in this word, which is publicly availabldﬂ

In some experiments, Byte Pair Encoding, also known as BPE (Sennrich, Had-
dow, and Birch, [2015)), is applied to the corpora in order to study its effect in the
performance of cross-lingual embedding mappings. BPE was originally conceived as
a basic data compression technique which operated by finding the most frequently
occurring pairs of adjacent bytes in the data and replacing all instances of the pair
with a byte that was not in the original data, repeating the process until no further
compression is possible. Applied to text compression, this algorithm functions at the
character level. However, an adaptation of this method to subword-level compression
(Sennrich, Haddow, and Birch, |2015]) has risen to prominence in the natural language
processing field since its conception. This version of Byte Pair Encoding, which is the

%https://github.com/MarTnquesada/tfm
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one used in this work and that will be referred to as simply "BPE" from this point
onwards, provides features that are far more beneficial for natural language process-
ing tasks — and especially for machine translation — than simple file size compression.
BPE encodes the vocabulary of a given corpus into its most common co-occurrent
subword units, which can be combined to produce any of the words seen in training.
This process reduces the total size of size of the vocabulary, which speeds up machine
translation models and reduces their memory requirements. Most importantly, the
subword units can be combined to represent not only the words in the training vocab-
ulary, but also those out of it, that is, words that do not appear in the training corpus.
Therefore, it allows translation models to operate with a de facto open vocabulary.
This work studies the influence of joint BPE encodings, which build a shared vocabu-
lary for the source and target language corpora. As a result, some lexical information
is transferred more effectively between languages, particularly in the case of certain
word classes such as instance names, compounds, cognates and loanwords (Sennrich,
Haddow, and Birch, [2015]).

The BPE implementation used in this work is fastBPEEL which ports the software
provided in Sennrich, Haddow, and Birch (2015) to the programming language C++
with the aim to improve its performance.

5.2 Tools

To generate the embeddings used in this work, version 0.9.2 of the FastTextﬂ (Bo-
janowski et al., |2016) toolkit has been used. FastText is an implementation of the
Word2Vec architecture that extends the CBOW and skip-gram models by learning
subword information, although this feature has not been used to allow for a fair
comparison between cross-mapping methods, since some of them are unable to take
advantage of character-level data. In particular, the model used is skip-gram with neg-
ative sampling, which follows the Word2Vec specifications that have been described
in section [3.1] In the case of the cross-mapping techniques applied in the experiments,
both MUS (Lample, Denoyer, and Ranzato, |2017)) and VecMaIﬂ (Artetxe, Labaka,
and Agirre, [2018) have open source implementation that have been kept functional
since their respective original publications, and which have been used in this work.
Concerning MUSE, a few slight alterations have been made in order to eliminate the
partial supervision present by default during the self-evaluation phase of the cross-
mapping procedure, leaving it as a fully unsupervised method. This modification has
been created for the purposes of this work and is available as fork of the original
MUSE projectﬂ Finally, concatenation of monolingual corpora does not need of any
additional tools — since there is no explicit projection, merely a FastText embedding
trained on multilingual data —.

Shttps://github.com/glample/fastBPE
4https://fasttext.cc/
Shttps://github.com/facebookresearch/MUSE
Shttps://github.com/artetxem/vecmap
"https://github.com/MarTnquesada/MUSE
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For the neural machine translation model used in combination with embedding
pre-training, the NMT toolkit OpenNM’Iﬁ (Klein et al., |2017) has been chosen.
Specifically, version 2.1.2 of the OpenNMT PyTorch-based (Paszke et al., |2019)) im-
plementation dubbed OpenNMT —pyﬂ has been used. All launch configurations of the
different models used in the experiments presented here can be found in the public
repository of this WOI‘@

5.3 Evaluation metrics

5.3.1 Bilingual lexicon induction evaluation

The quality of the different cross-lingual representations generated is calculated as the
average accuracy of said vector space when finding translation pairs. The evaluation
considers the source language words from a bilingual ground-truth dictionary that
are also included in the vocabulary of the source language embedding. For each
of these source language words, the closest word vector in the target embedding
is found and taken as the most likely translation. The procedure then compares the
translations obtained with this method and those provided by the bilingual dictionary,
taking as correct a the translation induced from the cross-lingual space if the target
language closest vector is included in the list of possible translations that appears
in the bilingual dictionary. The distance between word vectors is calculated using
cross-domain similarity local scaling (CSLS), which has been been described in detail
in section This metric is designed alleviate some of the hubness (Radovanovié,
Nanopoulos, and Ivanovi¢, 2010) phenomena in high-dimensional spaces. Finally, it
obtains the average accuracy of the system. The implementation for this evaluation is
a modification of the version proposed in VecMap designed for this work and available
in the repository of this projecﬂ where BPE tokenization of the bilingual dictionary
has been made available. The ground-truth bilingual dictionaries used are provided
by the MUSE toolki@ specifically those belonging to the "full" set.

5.3.2 Machine translation evaluation

The neural OpenNMT machine translation models that use pre-trained embeddings
are evaluated based on their translation accuracy using BLEU. Both the multi-BLEU
criterion implemented by the Moses toolkit (Koehn, Hoang, et al., 2007) and the
SacreBLEU library (Post, [2018) have been used, and their results are equivalent in
all cases or differ in the order of single tenths of a point. Multi-BLEU has the disadvan-
tage of requiring user-supplied pre-processing. However, since this work provides the
instructions required to compile the corpora used in this work, it has been considered
that the information provided is sufficient to reproduce the results of the experiments

Shttps://opennmt.net/

9https://github.com/OpenNMT/OpenNMT-py
Ohttps://github.com/MarTnquesada/tfm
Hhttps://github.com/MarTnquesada/tfm
12https://github.com/facebookresearch/MUSE
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5.4. Model configuration

presented here using multi-BLEU if the reader so desires. SacreBLEU, on the other
hand, expects detokenized outputs and applies pre-processing transformation on its
own, providing a breakdown of the tokenization and pre-processing parameters used
upon completion. Its integration with the WMT datasets makes SacreBLEU espe-
cially adequate for this task, although it should be highlighted that the test set used
in the experiments of this work corresponds with that of the original WMT14 calﬂ
rather than the WMT14 corpus included in the SacreBLEU toolkit.

5.4 Model configuration

5.4.1 Cross-lingual models
5.4.1.1 Embedding configuration

All skip-gram word embeddings use in the experiments proposed in this work are
trained during 5 epochs with a learning rate of 0.05. Changes in epoch size have not
had any significant effect, as the corpora used to train the embeddings is sufficiently
large and does not require of more training cycles. The main parameter to study
when training the embeddings has been their dimension. Embeddings that use the
Word2Vec architecture generally use a dimension parameter that tends to be between
50 and 300 (Mikolov, Chen, et al., |2013)), although higher values are also sometimes
considered. In work, a range of values between 100 and 1000, with steps of size
100, is used to examine the effect of embedding dimension in unsupervised cross-
lingual methods. The results are displayed in figure as an evolution of the BLI
performance of the model relative to the dimensionality of the embeddings.

In the case of the cross-mapping strategies of VecMap and MUSE, the graphs seem
to indicate that BLI increases rapidly with dimension up to close to 300 dimensions.
From here to 500 dimensions, performance still seems to be correlated to dimension,
but growth is very low. Up to 1000 dimensions, performance increases extremely
slowly. This behaviour is in line with the directives originally given for Word2Vec
embeddings, where very high dimensionality does not seem to provide a particular
improvement in representation quality over the commonly used 300 dimension value
(Mikolov, Chen, et al., |2013). Since any embedding with dimension equal or larger
than 300 or 400 has peaked in terms of cross-lingual performance, choosing the value
of this parameter will also have to do with the final system and task in which the
vector space is used, and often extreme values such as those close to a 1000 will
be avoided to avoid scarcity and hyperdimensionality-related problems. However, as
seen in the section (d) of figure relative to the hi-en language pair, it seems
that increasing the dimension of the embeddings past a certain point may affect the
viability of learning an effective cross-lingual projection for the adversarial approach
in MUSE. In the absence of additional experiments with a larger number of distant
languages, it is hypothesized that using too many dimensions while dealing with a
complicated projection between very different languages that do not even share a
common alphabet can lead to a failure in learning a reasonable projection matrix.

3https://wuw.statmt.org/wmt14/translation-task.html
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VecMap is not affected by this phenomena for the showcased experiments, which may
be due to the use of ZCA whitening (Bell and Sejnowski, [1997), which encourages
exploring dimensions that may not fit the current solution to help escape poor local
optima, a problem that is exacerbated when operating in a high-dimensional space.
Additionally, VecMap also uses stochastic dictionary induction, where elements of the
similarity matrix are set to zero at random, a technique that is also directed towards
exploring a solution outside of the current optima.

For embeddings trained over concatenation of monolingual corpora, dimension
does not affect their BLI score as a cross-lingual model. This is a testament of the
effectiveness of CSLS as a measure of distance in high-dimensional spaces, since the
overall representation is not changing as dimensions increase, but zones zones with ex-
tremely high or low density of data points can be generated for large dimension values.
Concatenated corpora embeddings seem to fail to produce a meaningful alignment for
language pairs with more complex projections such as ru-en or hi-en, and increasing
the dimension does not seem to affect this phenomenon. Thus, embeddings learned
over multilingual corpora do not appear to have their cross-lingual information af-
fected if a dimension-invariant distance metric is used.

For this work, since the system in which the embeddings needs to be integrated
is a Transformer neural network in charge of machine translation, a dimension value
of 512 has been chosen as a fine compromise, since it is in the range where cross-
lingual performance is stabilized, and corresponds for a common encoder-decoder
dimension value for Transformer-derived machine translation models (Vaswani et al.,
2017; Lample and Conneau, 2019)).

5.4.1.2 Cross-mapping configuration

Both the MUSE and Vecmap cross-mapping techniques have a number of parameters
that dictate some of the characteristics of the alignment procedure.

e VecMap uses the standard unsupervised configuration, which is equivalent to
that of the models presented in Artetxe, Labaka, and Agirre (2018]). The max-
imum vocabulary is set to 20,000 words, the vocabulary used to generate the
initial unsupervised translation table is limited to 4,000 words, the CSLS neigh-
borhood used for vector distance calculations is of size 10 and the embeddings
are normalized before the cross-mapping is initiated.

e For MUSE, all alignments are performed using the default unsupervised param-
eters. The only explicit adjustments made are the maximum size of vocabulary
considered, which is set to 20,000, and the number of word vectors used for dis-
crimination, which is set to the 7,500 more frequent words. Distance between
vectors is calculated using a CSLS neighborhood of size 10, and the embeddings
are normalized before the cross-mapping process begins. The default unsuper-
vised values caused memory problems in the setups available for this work, which
meant that reproducing published VecMap configurations was far easier than
that of MUSE. Therefore, the changes in this case are made to keep VecMap
and MUSE running over with as similar of a set of parameters as possible.
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Figure 5.1: BLI performance evolution for each language pair and
cross-mapping method according to the dimension of the monolingual
embeddings. Each plot corresponds to a language pair, and the different
series to one of the cross-mapping approaches considered.

5.4.2 Neural machine translation pre-training

The generated word embeddings are also assessed on their value as pre-training for
a neural machine translation model. The architecture chosen is an OpenNMT-py
Transformer model that mimics the original Transformer architecture proposed in
(Vaswani et al., . The model is an attention-based encoder-decoder network
with 6-layered encoder and decoder, positional encoding, 8 attention heads and a
dense feed-forward network between the two. The network uses a dropout probably
of 0.1 both for the feed-forward layers and the attention heads, and relies on the Adam
optimization criterion (Kingma and Ba, . However, some aspects of the model
have been adapted for this work:

o The feed-forward network that connects encoder and decoder has been changed
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to have a dimension of 1,024 units from the original 2,048 present in Vaswani
et al. (2017). This accelerates model training and does not impact performance
massively for models that are not trained extensively (Lample and Conneau,
2019).

e The number of training steps is reduced from 200,000 to 20,000, maintaining
a batch size of 4,096 tokens from the original proposal. OpenNMT does not
use epochs to determine training length, but instead steps, where each step is
equivalent to training over a number of samples equivalent to the batch size,
and samples are chosen at random. The decrease in training time is made due
to time and resource constraints that would require the removal of some of the
variables examined, since the priority of this work is to study the interactions
of the different cross-mapping procedures when applied to a set of languages of
varying typological features, rather than building a state-of-the-art model. Since
pre-training can be very ineffective when the supervised translation model has
not learned a minimum acceptable performance towards the objective that it
is training towards (Qi et al., 2018)), the final value of 20,000 steps has been
chosen a compromise between training cost and minimum performance of the
model to allow for pre-training integration.
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CHAPTER 6

RESULTS AND DISCUSSION

6.1 Cross-lingual models

6.1.1 BPE

The cross-mapping method MUSE (Lample, Denoyer, and Ranzato, 2017 is able
to take advantage of embeddings that include subword information such as Fast-
Text (Bojanowski et al., [2016), which has shown to have a positive effect on cross-
linguality (Lample, Denoyer, and Ranzato, 2017). However, this feature has not been
used in this work, since VecMap (Artetxe, Labaka, and Agirre, 2018)) cannot capture
character-level information, and therefore the inclusion of n-gram vectors would not
allow for a comparable evaluation of the cross-mapping methods. To provide another
type of subword information that can be used across the approaches considered, it
has been decided to use BPE (Sennrich, Haddow, and Birch, 2015]), which poses an
opportunity to explore the effect of this widespread pre-processing technique in cross-
lingual maps. In the past, Lample, Denoyer, and Ranzato (2017) have shown that
BPE improves considerably the alignment of monolingual language spaces, particu-
larly for cases where the languages share the same alphabet or anchor tokens (Smith
et al., |2017)). Anchor tokens are words with equivalent meaning that are written
identically across languages, such as proper nouns of places, organizations or people —
i.e. Berlin, Madrid, Google, Alan Turing —, acronyms — i.e. UE, UN, UPV, although
some are variable depending on the language —, loanwords — i.e. siesta, croissant — and
digits, which can perform the role of anchor tokens even between extremely different
languages —.

Figure [6.1] illustrates the effect of BPE on the BLI performance of the generated
cross-lingual embeddings. BPE usage seems to generally improve the score of the
projection-based mappings, while having a slightly negative or non-existent influence
on embeddings trained over concatenation of monolingual corpora. While the former
result is expected (Lample, Denoyer, and Ranzato, 2017)), the latter phenomenon is
more interesting, and can be explained by the fact that these embeddings are jointly
learning both languages, but no cross-mapping is performed, so the relative position of
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Figure 6.1: BLI performance comparison for each language pair and
cross-mapping method between basic tokenization ("Baseline" in the figure)
and additionally applying BPE tokenization ("BPE" in the figure). Refer to

table for detailed values.

words in the representation space should remain similar whether subword information
is captured or not. Furthermore, in many cases there may be a certain loss of semantic
information when creating a shared byte-paired encoding between languages (Ren et
al., , which often will be compensated by the subword features that are retrieved,
but since this particular joint embedding approach does not take advantage of them,
the overall effect of BPE tends to be negative.

The impact of BPE is especially significant for the MUSE mapping in language
pairs ru-en and hi-en. In the case of ru-en, the use of this tokenization approach
apparently does not allow for any sensible alignment, unlike the projection that uses
non-BPE embeddings, which performs fine. A likely explanation for this is that
Russian and English do not use the same alphabet, and therefore no joint subword
information is learnt, while some semantic features may be diluted (Ren et al., .
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Additionally, the number of anchor tokens is very reduced, which further decreases
the utility of BPE. However, the hi-en pair in figure Figure shows the opposite
phenomenon, where the application of BPE has made possible a previously unavailable
alignment. This case is especially puzzling, since Hindi also uses a completely different
alphabet from that of English, so even if is noticeably influenced by it, there should
be very little transfer of information between the subword vocabularies. Upon closer
inspection, both BPE vocabularies for ru-en and hi-en have an extremely similar size,
which indicates that this behavior is not a function of semantic diversity. Instead, a
possible explanation could be found that the generated vector spaces simply have a
slightly different distribution when using BPE, which can affect the chances of finding
a good alignment between embeddings, though more research is necessary to arrive at
any definitive conclusion. The VecMap projection does not seem to be affected in the
same way, which could be due to it having a more robust initialization and being able
to escape local optima better than MUSE, as shown in previous publications (Vulic,
Glavas, et al., [2019; Glava$ et al., [2019)).

Although the effect of BPE has been generally benefitial in these experiments,
Bostrom and Durrett (2020) show that unigram language model tokenization (Kudo,
2018) tends to outperform BPE in neural language model pre-training. In contrast
to BPE, unigram language model tokenization initializes its base vocabulary to a
large number of subwords and progressively trims them down to obtain a smaller
vocabulary. The authors argue that unigram language model tokenization retrieves
subword units that align more closely with morphology and avoids issues derived
from the greedy construction procedure that BPE employs. Unigram language model
tokenization could therefore also prove to be useful in cross-lingual embeddings, and
may be interesting to explore in future work.

6.1.2 Language similarity

Table [6.1] showcases the performance of the considered cross-lingual models for all
language pairs. Language similarity does seem to be somewhat indicative of BLI
performance, although a weak signal at that. The fr-en language pair is the best
performing one across the board, especially for the projection-based alignments. This
is expected, since these methods are reliant on semantic similarities, and they make
great use of anchor tokens in their initial unsupervised dictionary induction (Lample,
Denoyer, and Ranzato, 2017), which should be plenty for this language pair given
that English and French share a large number of words.

Although English and German are phylogenetically closer to each other, the per-
formance for this pair is inferior to that of English and French for MUSE and VecMap.
In contrast, embeddings trained over a concatenation of monolingual corpora surpass
projection-based cross-maping methods, and their own BLI score for the fr-en pair.
French and English share many anchor tokens, whereas German and English have
a noticeably smaller common vocabulary, but show a greater degree of similarity in
other typological features common in languages from the same family tree, such as
word ordering or verbal categorization. As mentioned previously, projection-based
cross-mapping approaches are highly dependent on cross-lingual similarities, so this
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behavior is easily explained. Since for the concatenation strategy the pair de-en is
actually performing better than fr-en, it can be hypothesized that the natural align-
ment resulting of training embedding over multilingual text is more sensible to other
typological categories. This is especially likely for word ordering, since the skip-gram
architecture is learning to predict contexts in a reduced local window (Mikolov, Chen,
et al., |2013; Mikolov, Sutskever, et al., |2013)), which is sensible to large discrepancies
in sentence structure.

Conversely, training embeddings over a multilingual corpus seems to produce no
alignment whatsoever when the selected languages do not share a common alphabet,
such is the case for the ru-en and hi-en pairs. That said, it is not possible to assert this
without more conclusive evidence, since languages with different alphabet that that
present similar features in word ordering might fare better. For MUSE and VecMap,
BLI performance seems to generally decrease with phylogenetic distance, as seen in
prior work (Qi et al.,2018), though the effect is lesser than expected. In the particu-
lar case of MUSE, BPE presence has been shown to facilitate or invalidate the initial
unsupervised mapping, which as discussed before is likely to be a function of distribu-
tional variation. For both of the projection-based cross-lingual techniques, ru-en and
hi-en are shown to be surprisingly competitive with de-en. This casts some doubts
on which are actually the typological features that govern explicit cross-linguality,
since by all accounts German should be more semantically and grammatically similar
to English than Russian or Hindi (Georgi, Xia, and W. Lewis, [2010). For example,
German does not allow for noun clusters and instead builds agglutinates nouns into
compounds, which might alter the horizon of the context window used when train-
ing the skip-gram embeddings. Compounding is also a common way to construct
words for Russian and Hindi, though agglutinations tend to contain a smaller num-
ber of nouns and be significantly shorter. It might also be that Russian and Hindi
contain a larger number of loanwords, which act as anchor tokens. Further research
that isolates typological features for cross-lingual evaluation is needed in order to
produce meaningful guidelines on the adaptation of cross-lingual models according to
language similarity, though the experiments show that semantic relatedness is not the
only factor at play.

Overall, VecMap is shown to be the best performing cross-lingual method and
also the most robust one when dealing with distant languages, which lines up with
previous research (Vulic, Glavas, et al., [2019; Glavas et al., 2019). MUSE shows
to be generally weaker for cases where inducing an initial translation table is more
difficult due to low language similarity, though seems to perform fine when this phase
is completed successfully, which is a common trend in projection-based cross-lingual
methods. Surprisingly, training word embeddings over a concatenation of monolingual
corpora outperforms projection-based methods for the de-en pair, although is not
effective for distantly related languages. From this it can be inferred that some
features learned by skip-gram word embeddings during training are valuable when
it comes to producing an alignment, and, like many other typological characteristics,
are not being considered by current explicit cross-mapping methods but could prove
to be valuable.
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Model Dimension BPE Accuracy (cosine similarity)

frren de-en ru-en hi-en

MUSE 512 No 56.2  38.1 44.3 0.1

MUSE 512 Yes 62.2 414 0.1 42.3

VecMap 512 No 58.2  38.8 46.2 29.2

VecMap 512 Yes 65.0 46.2 60.0 44.8
Concatenation 512 No 477 53.8 0
Concatenation 512 Yes 46.6 45.3

Table 6.1: Results obtained for the best cross-lingual embeddings selected
for neural model pre-training. Accuracy is measured comparing pairs from
ground-truth bilingual dictionaries and employing CSLS as distance metric,

as described in section

6.2 Neural machine translation pre-training

6.2.1 Freezing embeddings

As indicated in Sun et al. (2019) and Wang and Zhao (2021)), embeddings used as the
encoder-decoder pieces of an attention-based neural network tend to degenerate as
the global model is fine-tuned for a particular task, which for this work corresponds to
machine translation. For this reason, it has been decided to assess the impact of freez-
ing the encoder and decoder embeddings during training. The results are shown in
table[6.2] Freezing the pre-trained embeddings does not improve BLEU performance
in comparison with models that do modify the weights of their encoder and decoder
during supervised training, which score slightly better. This effect is in line with
prior work (Sun et al., 2019; Wang and Zhao, [2021]), which shows that the integrated
model needs to modify the pre-trained components during fine tuning to maximize
its performance, but this behavior tends to break the cross-lingual alignment created
previously. As a result, they propose to optimize supervised training based on two dif-
ferent objectives: maintaining the structural correspondence of the initial pre-trained
components and maximizing the translation objective. Though implementations of
this strategy are not widespread and therefore not readily available for general use —
which is the reason why they have not been considered for these experiments —, they
have been shown to be the best current approach to transfer cross-lingual knowledge
in pre-training.
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Pre-trained emb. Frozen emb. BLEU
Cross-mapping Dimension BPE frren de-en ru-en hi-en
(None) 512 Yes No 34.1 254 28.7 6.1
(None) 512 Yes Yes 321 236 268 58
MUSE 512 Yes No 33.9  26.0 29.4 6.7
MUSE 512 Yes Yes 32,2  24.3 27.9 6.1
VecMap 512 Yes No 334 26.3 30.0 9.2
VecMap 512 Yes Yes 324 24.1 28.9 8.4
Concatenation 512 Yes No 33.5 25.5 30.2 6.6
Concatenation 512 Yes Yes 33.1 24.9 29.6 6.2

Table 6.2: Results obtained for the best Transformer translation models
that use pre-trained vectors. Cross-mapping is indicated as (None) when no
explicit cross-lingual technique is applied, that is, only monolingual word
embeddings are used as encoder-decoder in the neural network.

6.2.2 Cross-linguality

The effect of cross-linguality is relatively low across the board, with the baseline setup
that uses monolingual embeddings with no alignment for the encoder and decoder —
indicated as (None) — outperforming the methods with explicit cross-lingual informa-
tion in many language pairs. This behavior has been noted by previous authors (Qi
et al., [2018)), and can be partially attributed to the degeneration phenomenon (Sun et
al., [2019) discussed in the previous section. However, it is also important to consider
that the alignment generated by projection-based cross-mapping methods and multi-
lingual embeddings may not alter significantly the global structure of the embeddings,
primarily based on semantic similarity. As a result, the transfer of cross-lingual infor-
mation might be relatively low even when the degeneration issue is bypassed. Still,
projection-based cross-lingual methods showcase a slight but constant improvement
for distant language pairs, which coincidentally should be the cases where the align-
ment has a larger impact on the global structure on the embeddings. As theorized
in section (1.3} it might also be possible that the implicit projection learned by the
neural network is limited for language pairs of low similarity if no strong initialization
is given. This is in line with previous claims on the importance of initialization in
attention-based encoder-decoder translation models (Devlin et al., 2019; M. Lewis
et al.,|2020; Liu et al., 2020)), where neural language models are especially effective.
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regierung
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(a) Independent monolingual embeddings.
zeitgeist
polizei
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poliae

(b) Embeddings cross-mapped using MUSE.

Figure 6.2: Exemplification of the behavior of projection-based
cross-mapping using a set of translation pairs for the de-en language pairs,
shown as orange and blue dots respectively. The top figure depicts the base

embeddings, where no explicit alignment exists, while the bottom one
corresponds with a projection of the German embedding into the English
monolingual space using the MUSE method. It can be seen that for the
anchor word "aspirin" the alignment is very strong, as well as for a standard
pair such as "government"-"regierung", while others words the projection is
not very effective. "Aspirin", "baby" and "zeitgeist" are anchor words that
are written identically in both languages. On the other hand,
"polizei"-"police", "newspaper"-"zeitung", "government"-"regierung" and
"science"-"wissenschaft" are translation pairs that are written differently.
The embeddings have been reduced to 2 dimensions using principal
component analysis (PCA), with 2 components, perplexity equal to 30 and
3,500 iterations.
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CHAPTER 7

CONCLUSIONS

Weakly-supervised cross-lingual mapping methods have develop rapidly in the recent
past, showcasing an impressive performance even in low-resource scenarios and for
distant language pair alignment. However, the typological and phylogenetic features
that play a role in cross-mapping are yet to be fully understood. Moreover, trans-
ferring of cross-lingual information to NMT pre-training has not yielded satisfactory
results so far. This work makes use of fully unsupervised cross-lingual models, which
are generally outperformed by semi-supervised approaches but provide a particularly
clear view of the inner workings of cross-lingual methods, to explore some of the
factors that affect their effectiveness.

First, unsupervised cross-lingual models are studied on the basis of their perfor-
mance in bilingual lexicon induction. The experimental results showcase agreement
with prior publications regarding the usefulness of subword information in cross-
linguality, and suggest that character-level encoding might be especially relevant for
language pairs of low similarity. Moreover, they not only reveal that phylogenetic
relatedness should not be directly taken to dictate cross-lingual performance, but
also that purely semantic similarity is not the only typological feature captured by
projection-based mappings. Additionally, there exist typological features that multi-
lingual embeddings take advantage of, but that explicit cross-lingual methods have
been unable to use so far.

Cross-lingual pre-training is then fully realized by integrating the cross-lingual
models as pre-training in an attention-based encoder-decoder architecture. Cross-
lingual transfer remains ineffective even if the structure of the pre-trained encoder
and decoder is fixed during fine-tuning, which is indicative of the degeneration of
cross-lingual projections in supervised training, and the limited scope of pre-trained
embeddings. Modern cross-lingual approaches use joint optimization considering both
an objective that ensures the structure integrity of the shared representation space
and another one that maximizes the fine-tuning task.

This work hopes to provide some resources that can help our currently limited
understanding of the impact that linguistic characteristics, as well model features
such as subword encoding and vector space structure, have on cross-linguality and
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language representation as a whole. Future research may take on this body of in-
formation to design strategies to adapt cross-mapping methods to different language
pairs according to their features, as well as to improve said cross-lingual techniques
so that they are able to capture typological information that is currently lost. By
integrating it with current pre-training approaches that rely on joint optimization,
weakly-supervised cross-linguality could become the definitive pre-training strategy,
and bridge some of the notable gaps that current machine translation models present
when dealing with low-resource language pairs.
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Figure 7.1: Evolution of BLI performance for each language pair and
cross-mapping method according to the dimension of the monolingual
embeddings for the language pair fr-en.
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Figure 7.2: Evolution of BLI performance for each language pair and

cross-mapping method according to the dimension of the monolingual
embeddings for the language pair de-en.
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Figure 7.3: Evolution of BLI performance for each language pair and

cross-mapping method according to the dimension of the monolingual
embeddings for the language pair ru-en.
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Figure 7.4: Evolution of BLI performance for each language pair and
cross-mapping method according to the dimension of the monolingual
embeddings for the language pair hi-en.
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Figure 7.5: BLI performance comparison for between basic tokenization
("Baseline" in the figure) and additionally applying BPE tokenization
("BPE" in the figure) for the language pair fr-en.
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Figure 7.6: BLI performance comparison for between basic tokenization
("Baseline" in the figure) and additionally applying BPE tokenization
("BPE" in the figure) for the language pair de-en.
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Figure 7.7: BLI performance comparison for between basic tokenization
("Baseline" in the figure) and additionally applying BPE tokenization
("BPE" in the figure) for the language pair ru-en.
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Figure 7.8: BLI performance comparison for between basic tokenization
("Baseline" in the figure) and additionally applying BPE tokenization
("BPE" in the figure) for the language pair hi-en.
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