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Abstract 
 

 

 

 

 

The introduction of technological solutions in agriculture allows reducing the use of 

resources and increasing the production of the crops. Furthermore, the quality of the 

water for irrigation can be monitored to ensure the safety of the produce for human 

consumption. However, the remote location of most fields presents a problem for 

providing wireless coverage to the sensing nodes and actuators deployed on the fields 

and the irrigation water canals. The work presented in this thesis addresses the problem 

of enabling wireless communication among the electronic devices deployed for water 

quality and field monitoring through a heterogeneous communication protocol and 

architecture. The first part of the dissertation introduces Precision Agriculture (PA) 

systems and the importance of water quality and field monitoring. In addition, the 

technologies that enable wireless communication in PA systems and the use of 

alternative solutions such as Internet of Underground Things (IoUT) and Unmanned 

Aerial Vehicles (UAV) are introduced as well. Then, an in-depth analysis on the state of 

the art regarding the sensors for water, field and meteorology monitoring and the most 

utilized wireless technologies in PA is performed.  Furthermore, the current trends and 

challenges for Internet of Things (IoT) irrigation systems, including the alternate 

solutions previously introduced, have been discussed in detail. Then, the architecture for 

the proposed system is presented, which includes the areas of interest for the monitoring 

activities comprised of the canal and field areas. Moreover, the description and 

operation algorithms of the sensor nodes contemplated for each area is provided. The 

next chapter details the proposed heterogeneous communication protocol including the 

messages and alerts of the system. Additionally, a new tree topology for hybrid 

LoRa/WiFi multi-hop networks is presented. The specific additional functionalities 

intended for the proposed architecture are described in the following chapter. It includes 

data aggregation algorithms for the proposed topology, an overview on the security 

threats of PA systems, energy-saving and fault-tolerance algorithms, underground 
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communication for IoUT, and the use of drones for data acquisition. Then, the 

simulation results for the solutions previously proposed are presented. Finally, the tests 

performed in real environments for the presented heterogeneous protocol, the different 

deployment strategies for the utilized nodes, the energy consumption, and a 

functionality for fruit quantification are discussed. These tests demonstrate the validity 

of the proposed heterogeneous architecture and communication protocol.  
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La introducción de soluciones tecnológicas en la agricultura permite reducir el uso de 

recursos y aumentar la producción de los cultivos. Además, la calidad del agua de 

regadío se puede monitorizar para asegurar la seguridad de los productos para el 

consumo humano. Sin embargo, la localización remota de la mayoría de los campos 

presenta un problema para proveer de cobertura inalámbrica a los nodos sensores y 

actuadores desplegados en los campos y los canales de agua para regadío. El trabajo 

presentado en esta tesis aborda el problema de habilitar la comunicación inalámbrica 

entre los dispositivos electrónicos desplegados para la monitorización de la calidad del 

agua y el campo a través de un protocolo de comunicación y arquitectura heterogéneos.  

La primera parte de esta tesis introduce los sistemas de agricultura de precisión (PA) y 

la importancia de la monitorización de la calidad del agua y el campo. Asimismo, las 

tecnologías que permiten la comunicación inalámbrica en sistemas PA y el uso de 

soluciones alternativas como el internet de las cosas bajo tierra (IoUT) y los vehículos 

aéreos no tripulados (UAV) se introducen también. Después, se realiza un análisis en 

profundidad del estado del arte respecto a los sensores para la monitorización del agua, 

el campo y las condiciones meteorológicas, así como sobre las tecnologías inalámbricas 

más empleadas en PA. Además, las tendencias actuales y los desafíos de los sistemas de 

internet de las cosas (IoT) para regadío, incluyendo las soluciones alternativas 

introducidas anteriormente, han sido abordados en detalle. A continuación, se presenta 

la arquitectura propuesta para el sistema, la cual incluye las áreas de interés para las 

actividades monitorización que incluye las áreas de los canales y el campo. A su vez, la 

descripción y los algoritmos de operación de los nodos sensores contemplados para 

cada área son proporcionados. El siguiente capítulo detalla el protocolo de 

comunicación heterogéneo propuesto, incluyendo los mensajes y alertas del sistema. 
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Adicionalmente, se presenta una nueva topología de árbol para redes híbridas 

LoRa/WiFi multisalto. Las funcionalidades específicas adicionales concebidas para la 

arquitectura propuesta están descritas en el siguiente capítulo. Éstas incluyen algoritmos 

de agregación de datos para la topología propuesta, un esquema de las amenazas de 

seguridad para los sistemas PA, algoritmos de ahorro de energía y tolerancia a fallos, 

comunicación bajo tierra para IoUT y el uso de drones para adquisición de datos. 

Después, los resultados de las simulaciones para las soluciones propuestas 

anteriormente son presentados. Finalmente, se tratan las pruebas realizadas en entornos 

reales para el protocolo heterogéneo presentado, las diferentes estrategias de despliegue 

de los nodos empleados, el consumo energético y la función de cuantificación de fruta. 

Estas pruebas demuestran la validez de la arquitectura y protocolo de comunicación 

heterogéneos que se han propuesto. 
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Resum 
 

 

 

 

 

La introducció de solucions tecnològiques en l'agricultura permet reduir l'ús de 

recursos i augmentar la producció dels cultius. A més, la qualitat de l'aigua de regadiu 

es pot monitoritzar per assegurar la qualitat dels productes per al consum humà. No 

obstant això, la localització remota de la majoria dels camps presenta un problema per a 

proveir de cobertura sense fils als nodes sensors i actuadors desplegats als camps i els 

canals d'aigua per a regadiu. El treball presentat en aquesta tesi tracta el problema 

d'habilitar la comunicació sense fils entre els dispositius electrònics desplegats per a la 

monitorització de la qualitat de l'aigua i el camp a través d'un protocol de comunicació i 

arquitectura heterogenis. La primera part d'aquesta tesi introdueix els sistemes 

d'agricultura de precisió (PA) i la importància de la monitorització de la qualitat de 

l'aigua i el camp. Així mateix, també s'introdueixen les tecnologies que permeten la 

comunicació sense fils en sistemes PA i l'ús de solucions alternatives com l'Internet de 

les coses sota terra (IoUT) i els vehicles aeris no tripulats (UAV). Després, es realitza 

una anàlisi en profunditat de l'estat de l'art respecte als sensors per a la monitorització de 

l'aigua, el camp i les condicions meteorològiques, així com sobre les tecnologies sense 

fils més emprades en PA. S’aborden les tendències actuals i els reptes dels sistemes 

d'internet de les coses (IoT) per a regadiu, incloent les solucions alternatives introduïdes 

anteriorment. A continuació, es presenta l'arquitectura proposada per al sistema, on 

s’inclouen les àrees d'interès per a les activitats monitorització en els canals i el camp. 

Finalment, es proporciona la descripció i els algoritmes d'operació dels nodes sensors 

contemplats per a cada àrea. El següent capítol detalla el protocol de comunicació 

heterogeni proposat, així como el disseny del missatges i alertes que el sistema proposa. 

A més, es presenta una nova topologia d'arbre per a xarxes híbrides Lora/WiFi multi-

salt. Les funcionalitats específiques addicionals concebudes per l'arquitectura proposada 

estan descrites en el següent capítol. Aquestes inclouen algoritmes d'agregació de dades 
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per a la topologia proposta, un esquema de les alertes de seguretat per als sistemes PA, 

algoritmes d'estalvi d'energia i tolerància a fallades, comunicació per a IoUT i l'ús de 

drons per a adquisició de dades. Després, es presenten els resultats de les simulacions 

per a les solucions proposades. Finalment, es duen a terme les proves en entorns reals 

per al protocol heterogeni dissenyat. A més s’expliquen les diferents estratègies de 

desplegament dels nodes empleats, el consum energètic, així com, la funció de 

quantificació de fruita. Els resultats d’aquetes proves demostren la validesa de 

l'arquitectura i protocol de comunicació heterogenis propost en aquesta tesi. 
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Résumé 
 

 

 

 

 

L'introduction de solutions technologiques en agriculture permet de réduire 

l'utilisation des ressources et d'augmenter la production végétale. De plus, la qualité de 

l'eau d'irrigation peut être surveillée pour assurer la sécurité des produits destinés à la 

consommation humaine. Cependant, l'emplacement éloigné de la plupart des champs 

présente un problème pour fournir une couverture sans fil aux nœuds de capteurs et 

d'actionneurs déployés dans les champs et les canaux d'eau d'irrigation. Le travail 

présenté dans cette thèse aborde le problème de permettre la communication sans fil 

entre les dispositifs électroniques déployés pour la surveillance de la qualité de l'eau et 

le terrain à travers un protocole et une architecture de communication hétérogènes. La 

première partie de cette thèse présente les systèmes d'agriculture de précision (AP) et 

l'importance du suivi des champs et de la qualité de l'eau. De même, les technologies 

qui permettent la communication sans fil dans les systèmes de sonorisation et 

l'utilisation de solutions alternatives telles que l'Internet des objets souterrains (IoUT) et 

les véhicules aériens sans pilote (UAV) sont également introduites. Ensuite, une analyse 

approfondie de l'état de l'art est effectuée en ce qui concerne les capteurs pour la 

surveillance des conditions d'eau, de terrain et météorologiques, ainsi que les 

technologies sans fil les plus utilisées en AP. En outre, les tendances et les défis actuels 

des systèmes Internet des objets (IoT) pour l'irrigation, y compris les solutions 

alternatives introduites précédemment, ont été traités en détail. Ensuite, l'architecture 

proposée pour le système est présentée, qui comprend les zones d'intérêt pour les 

activités de surveillance, y compris le canal et les zones de terrain. A leur tour, la 

description et les algorithmes de fonctionnement des nœuds capteurs envisagés pour 

chaque zone sont fournis. Le chapitre suivant détaille le protocole de communication 

hétérogène proposé, y compris les messages système et les alertes. De plus, une 

nouvelle topologie arborescente pour les réseaux hybrides LoRa / WiFi multi-sauts est 
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présentée. Des fonctionnalités spécifiques supplémentaires conçues pour l'architecture 

proposée sont décrites dans le chapitre suivant. Ceux-ci incluent des algorithmes 

d'agrégation de données pour la topologie proposée, un aperçu des menaces de sécurité 

pour les systèmes de sonorisation, des algorithmes d'économie d'énergie et de tolérance 

aux pannes, une communication souterraine pour l'IoUT et l'utilisation de drones pour 

l'acquisition de données. Ensuite, les résultats des simulations pour les solutions 

proposées ci-dessus sont présentés. Enfin, les tests réalisés en environnement réel pour 

le protocole hétérogène présenté, les différentes stratégies de déploiement des nœuds 

utilisés, la consommation d'énergie et la fonction de quantification des fruits sont 

discutés. Ces tests démontrent la validité de l'architecture et du protocole de 

communication hétérogènes qui ont été proposés. 

 

 



XI 
 

 

 

 

 

 

Acknowledgements 
 

 

 

 

 

El proceso de realizar esta tesis ha comprendido estos últimos años, en los que he 

crecido tanto personal como profesionalmente. Primeramente, la realización de este 

trabajo habría sido imposible sin el apoyo de mi familia, quienes me han ayudado a 

avanzar en los momentos más difíciles. Todo lo que he conseguido ha sido gracias a 

ellos y a su certeza de que era capaz de lograr todos los retos que se me presentasen. 

También les quiero agradecer a mis amigos su compañía y apoyo a lo largo de este 

periodo. No puedo más que agradecer inconmensurablemente la ayuda de mi director de 

tesis PH. D. Jaime Lloret Mauri, quien me ha guiado en mi trayecto por el mundo 

académico y me ha aconsejado en los momentos más difíciles. A su vez, le doy todo mi 

agradecimiento a mi director de tesis Pascal Lorenz por todo su apoyo.  

Asimismo, no puedo olvidarme de mis compañeros, con los cuales he compartido 

muchas horas de trabajo y muchas alegrías. Con los que he publicado artículos y he 

disfrutado de buenos momentos. Ellos han hecho que esta experiencia sea mucho más 

llevadera. Gracias a José Miguel Jiménez, Lorena Parra Boronat, Sandra Sendra Compte, 

Albert Rego Mañez y Miran Taha. 

A su vez, me gustaría agradecer su ayuda al profesor Minho Jo, de Korea University, 

por su acogida durante mi estancia de investigación en su laboratorio. 

Muchas gracias a todos.  



 

XII 
 

 

 

 

 

 

Abbreviations 
 

 

 

 

 

3G Third Generation Mobile Networks 

5G Fifth Generation Mobile Networks 

6LoWPAN IPv6 over Low -Power Wireless Personal Area Networks 

ACK Acknowledgement 

ADC Analog-to-Digital Converter 

AES Advanced Encryption Standard 

AFH Adaptive Frequency Hopping 

AI Artificial Intelligence 

ALOHA Additive Links On-line Hawaii Area 

AMQP Advanced Message Queuing Protocol 

ANFIS Adaptive Neuro Fuzzy Interference System 

AOP Advanced Oxidation Processes 

AP Access Point 

APP Application 

APTEEN Periodic Threshold-sensitive Energy-Efficient sensor Network 

ARE Accumulate Relative Error 

AWMA Alternating Wireless Medium Access 

BER Bit Error Ratio 

BLE Bluetooth Low Energy 

CAGR Compound Annual Growth Rate 

CAP Common Agricultural Policy 

CCTV Closed-Circuit Television 

CH Cluster Head 

CMAC Cipher-based Message Authentication Code 

CoAP Constrained Application Protocol 

CPP Coverage Path Planning 

CPS Cyber-Physical Systems 



 

XIII 
 

CRBL Cramer Rao Lower Bound 

CRS Cognitive Radio Systems 

CSCC Common Spectrum Coordination Channel 

CSMA Carrier Sense Multiple Access 

CTR Counter 

D2D Device-to-Device 

D2M Device-to-Machine 

DAC Digital-to-Analog Converter 

DB DataBase 

DBPSK Differential Binary Phase Shift Keying 

DC Direct Current 

DDRMPC Data-driven Robust Model Predictive Control 

DD-WRT DresDren-Wireless RouTer 

DEBR Distributed Energy Balanced Routing 

DFCR Distributed Fault-tolerant Clustering and Routing 

DHCP Dynamic Host Configuration Protocol 

DMZ Demilitarized Zone 

DoS Denial-of-Service 

DPSK Differential Phase-Shift Keying 

DSC Digital selective calling 

DSL Digital Subscriber Line 

DPV Disjoint Path Vector 

DTIM Delivery Traffic Indication Message 

EESNR Energy-Efficient Sensor Network Routing 

EEZRP Energy-Efficient Zone-based Routing Protocol 

EU European Union 

EM Electromagnetic 

ET Evapotranspiration 

ETc Evapotranspiration of the crop 

ETo Reference Evapotranspiration 

FAO Food and Agriculture Organization 

FCAPS Fault, Configuration, Accounting, Performance, Security 

FN Field Node 

FTP File Transfer Protocol 

GPIO General-Purpose Input/Output 

GPRS General Packet Radio Service 

GPS Global Positioning System 

GSM Global System for Mobile communications 

HCP Heterogeneous Communication Protocol 

HMI Human Machine Interface 

HTML Hypertext Markup Language 

HTTP HyperText Transfer Protocol 

I2C Inter-Integrated Circuit 

I2S Inter-Integrated Circuit Sound 

ICSP In-Circuit Serial Programming 

ICT Information and Communication Technology 

IDE Integrated Development Environment 

IDFCA Distributed Fault-Tolerant Clustering Algorithm 

IETF Internet Engineering Task Force 

ILC Iterative Learning Control 



 

XIV 
 

IoT Internet of Things 

IoUT Internet of Underground Things 

IR InfraRed 

ISM Industrial, Scientific, and Medical 

ISO International Organization for Standardization 

ISP Internet Service Provider 

ITU-R International Telecommunication Union – Radiocommunication 

Section 

KPBS Konza Prairie Biological Station 

LAA Licensed-Assisted Access 

LAN Local Area Network 

LBT Listen-Before-Talk 

LEACH Low-Energy Adaptive Clustering Hierarchy 

LED Light Emitting Diodes 

LLN Low-Power and Lossy Networks 

LDR Light-Dependent Resistor 

LoRa Long Range 

LoRaWAN Long Range Wide Area Network 

LPWAN Low-Power Wide-Area Network 

LQI Link Quality Indicator 

LRD Lightning and Radio Emission Detector 

LTE-U Long-Term Evolution - Unlicensed 

LTE-UL Long-Term Evolution - UpLink 

M2M Machine to Machine 

MA Maximum Attenuation 

MAC Medium Access Control 

MED Modified Exponential Decay 

MHRM Minimum Hop Routing Model 

MI Magnetic Induction 

MIC Message Integrity Code 

MITM Man in the Middle 

MODIS Moderate Resolution Imaging Spectroradiometer 

MQTT Message Queuing Telemetry Transport 

NDVI Normalized Difference Vegetation Index 

NZG Nonzero Gradient 

OLA OverLap Avoidace 

OLED Organic Light-Emitting Diode 

OTA Over The Air 

PA Precision Agriculture 

PA-RPL Partition Aware- Routing Protocol for Low-Power and Lossy Networks 

PCB Printed Circuit Board 

PIR Passive Infrared Sensor 

POP3 Post Office Protocol 

PTA Packet Traffic Arbitration 

PSoC Programmable System-on-Chip 

PWM Pulse-Width Modulation 

RDI Regulated Deficit Irrigation 

RFC Request for Comments 

RFID Radio Frequency Identification 

RGB Red Green Blue 



 

XV 
 

ROS Robot Operating System 

RPA Remotely Piloted Aircraft 

RR Radio Regulations 

RSSI Received Signal Strength Indicator 

SD Secure Digital 

SFN Sink Field Nodes 

SMTP Simple Mail Transfer Protocol 

SNMP Simple Network Management Protocol 

SPI Serial Peripheral Interface 

TCP Transmission Control Protocol 

TDD Time Division Duplexing 

TDMA Time Division Multiple Access 

UART Universal Asynchronous Receiver-Transmitter 

UAV Unmanned Aerial Vehicle 

UDP User Datagram Protocol 

UNESCO United Nations Educational, Scientific and Cultural Organization 

USB Universal Serial Bus 

USD Unated States Dolars 

UWB Ultra-WideBand 

VLC Visible Light Communication 

VoIP Voice over IP 

VPN Virtual Private Network 

VRT Variable rate technology 

WAN Wide Area Network 

WDS Wireless Distribution System 

WLAN Wireless Local Area Network 

WMN Wireless Mesh Network 

WNA Water Node After 

WNB Water Node Before 

WPT Wireless Power Transfer 

WSN Wireless Sensor Network 

Wi-Fi Wireless Fidelity 

WHO World Health Organization 
 

 

 

 

 

 

  



 

XVI 
 

 

 

 

 

 

Contents 
 

 

 

 

 

1.1 Introduction ........................................................................................................... 29 

1.1.1 Water quality and water treatment for irrigation ............................................ 31 

1.1.2 Water quality and field monitoring ................................................................ 32 

1.1.3 Wireless technologies in precision agriculture systems ................................. 34 

1.1.4 IoT in precision agriculture ............................................................................ 36 

1.1.5 The use of drones in precision agriculture ..................................................... 38 

1.1.6 Security concerns for precision agriculture systems ...................................... 39 

1.2 Objectives and motivation .................................................................................... 40 

1.3 Precedents ............................................................................................................. 41 

1.4 Thesis structure ..................................................................................................... 42 

2.1 Introduction ........................................................................................................... 44 

2.2 Water Management ............................................................................................... 46 

2.3 Soil Monitoring ..................................................................................................... 54 

2.4 Weather Monitoring .............................................................................................. 57 

2.5 Sensor Networks for Irrigation Systems ............................................................... 65 



 

XVII 
 

2.5.1. IoT Nodes for Irrigation Systems .................................................................. 66 

2.5.2. Communication Technologies ...................................................................... 69 

2.5.3. Cloud Platforms............................................................................................. 72 

2.6. Discussion ............................................................................................................ 75 

2.6.1. Big Data Management and Analytics for Irrigation Optimization ................ 75 

2.6.2. Low-Cost Autonomous Sensors .................................................................... 77 

2.6.3. Sustainable Irrigation Systems ...................................................................... 77 

2.6.4. Frequency of the Data Acquisition................................................................ 79 

2.6.5. New Forms of Data Acquisition.................................................................... 79 

2.6.6 Underground communications ....................................................................... 81 

2.6.7. Security in IoT Systems for Irrigation........................................................... 85 

2.6.8 Common Architecture Designs for IoT Irrigation Systems for Agriculture .. 88 

2.6.8.1 Field monitoring WSN ............................................................................ 90 

2.6.8.2 Water monitoring WSN ........................................................................... 92 

2.6.8.3 Meteorology monitoring WSN ................................................................ 93 

2.6.9 Effects of vegetation on coverage and signal quality ..................................... 93 

2.6.10 Communication protocols intended for irrigation and agriculture monitoring 

systems .................................................................................................................... 97 

2.6.11 Unlicensed bands occupation and coexistence............................................. 99 

2.6.12. Future Challenges of IoT Irrigation Systems ............................................ 103 

2.7 Conclusion .......................................................................................................... 104 

3.1 Introduction ......................................................................................................... 105 

3.2 Architecture description ...................................................................................... 105 

3.2.1 Areas and elements of the architecture ........................................................ 106 

3.2.2 Topology ...................................................................................................... 110 

3.2.3 Alternative architectures for specific needs ................................................. 112 

3.2.3.1 WSN for monitoring numerous trees .................................................... 113 

3.2.3.2 Architecture for remote fields with cellular connection ........................ 117 

3.2.3.3 Architecture for IoUT functionalities .................................................... 118 

3.2.3.4 Architecture for the use of drones for data acquisition ......................... 119 

3.2.3.5 Architecture for IoT irrigation system with security and management 

functionalities .................................................................................................... 120 

3.3 Sensor nodes ....................................................................................................... 122 

3.3.1 Soil monitoring node .................................................................................... 122 

3.3.2 Water monitoring node................................................................................. 124 



 

XVIII 
 

3.3.4 Meteorology monitoring node ...................................................................... 126 

3.3.4.1 Determination of data acquisition frequency......................................... 128 

3.3.5 Actuator node ............................................................................................... 132 

3.4 System operation algorithms .............................................................................. 133 

3.5 Proposed algorithm for irrigation........................................................................ 136 

3.6 Conclusion .......................................................................................................... 140 

4.1 Introduction ......................................................................................................... 141 

4.2. Protocol description ........................................................................................... 141 

4.3 States of the nodes .............................................................................................. 155 

4.4 Conclusions ......................................................................................................... 159 

5.1 Introduction ......................................................................................................... 160 

5.2 Multi-layer fog computing framework for constrained LoRa networks ............. 160 

5.3 Protocol design for LoRa nodes .......................................................................... 166 

5.4 Comprehensive security framework for a LoRa network for wastewater treatment

 .................................................................................................................................. 168 

5.4.1 Overview of the system ................................................................................ 168 

5.4.2 Securing the system ...................................................................................... 169 

5.4.2.1 Physical attacks ..................................................................................... 170 

5.4.2.2 Attacks on the data in transit ................................................................. 171 

5.4.2.3 Attacks on the management system....................................................... 172 

5.4.2.4 Attacks on the data ................................................................................ 173 

5.5 WSN for smart irrigation in citrus plots with fault-tolerance and energy-saving  

algorithms ................................................................................................................. 175 

5.5.1 Fault tolerance algorithm ............................................................................. 178 

5.5.2 Energy saving algorithm .............................................................................. 181 

5.5.3 Protocol description...................................................................................... 182 

5.6 Utilizing CoAP in IEEE 802.11 networks for PA .............................................. 183 

5.6.1 COAP ........................................................................................................... 185 

5.7 Decision-making algorithm for underground communication ........................... 187 

5.8 The use of remote sensing drones as mobile gateway for WSN in precision        

agriculture ................................................................................................................. 189 

5.8.1. Drone parameters ........................................................................................ 189 

5.8.2 Low-cost nodes for precision agriculture deployments ............................... 190 

5.8.3 Antenna radiation model .............................................................................. 192 



 

XIX 
 

5.8.4 System description ....................................................................................... 195 

5.9 Conclusion .......................................................................................................... 200 

6.1 Introduction ......................................................................................................... 202 

6.2 Results for a multi-layer fog computing framework .......................................... 202 

6.3 Simulations of a LoRa protocol for wastewater treatment ................................. 208 

6.3.1 Simulation Description ................................................................................. 208 

6.3.1.1 Water Details ......................................................................................... 209 

6.3.1.2 Network Details ..................................................................................... 209 

6.3.2 Results .......................................................................................................... 211 

6.3.2.1 Status of the SDs ................................................................................... 211 

6.3.2.2 Consumed Energy ................................................................................. 215 

6.3.2.3 Consumed Bandwidth ........................................................................... 218 

6.4 Simulations of WSN with fault-tolerance and energy-saving functionalities .... 221 

6.4.1 Simulation description ................................................................................. 221 

6.4.2 Results .......................................................................................................... 222 

6.5 Simulations of collisions in IEEE 802.11 WSN for PA ..................................... 225 

6.6 Drone coverage analysis ..................................................................................... 227 

6.6.1. Coverage analysis ........................................................................................ 227 

6.6.2 Energy consumption ..................................................................................... 233 

6.7 Conclusion .......................................................................................................... 236 

7.1 Introduction ......................................................................................................... 237 

7.2 Results from tests on real devices of the proposed protocol ............................... 237 

7.2.1 Testbed description ...................................................................................... 238 

7.2.2 Test results.................................................................................................... 240 

7.2.2.1 Consumed bandwidth ............................................................................ 240 

7.2.2.2 Packet loss ............................................................................................. 246 

7.3 Coverage studies for different deployment strategies in varied environments ... 247 

7.3.1 Coverage results for deployments with vegetation obstructions .................. 247 

7.3.1.1 Results ................................................................................................... 249 

7.3.1.2 Discussion and challenges ..................................................................... 262 

7.3.1.3 Limitations of this study ........................................................................ 265 

7.3.2 Coverage results for underground deployments .......................................... 265 

7.3.2.1 Mathematical model for deployments with a height of 50 cm .............. 267 



 

XX 
 

7.3.2.2 Mathematical model for deployments at a height of 50 cm .................. 271 

7.3.2.3 Coverage results for all heights ............................................................. 274 

7.3.3 Coverage results for LoRa low-cost nodes .................................................. 277 

7.4 Energy consumption comparison between WiFi and LoRa ............................... 280 

7.5 Quantification of fruit production through image processing............................. 284 

7.5.1 Evaluation of best band combination ........................................................... 286 

7.5.2 Correction of the distance effect .................................................................. 287 

7.5.3 Analysis of histogram data ........................................................................... 288 

7.6 Conclusion .......................................................................................................... 290 

8.1 Introduction ......................................................................................................... 291 

8.2 Conclusion .......................................................................................................... 291 

8.3 Faced problems ................................................................................................... 294 

8.4 Personal contributions ......................................................................................... 295 

8.5 Future research lines ........................................................................................... 295 

8.6 Publications derived from the PhD Thesis ......................................................... 296 

8.7 Other publications ............................................................................................... 297 

  

 

 

 

 

 

 

  



 

XXI 
 

 

 

 

 

 

List of Figures 
 

 

 

 

 

 

2.1 Number of published papers presenting IoT systems for irrigation per country. 45 

2.2 Number of published papers presenting IoT systems for irrigation per year. 46 

2.3 Number of papers that propose different irrigation systems. 47 

2.4 Number of papers that proposed irrigation systems for different sorts of 

agriculture. 

48 

2.5 Monitored environments in papers that propose an irrigation system. 49 

2.6 Number of monitored parameters in papers that propose an irrigation system. 49 

2.7 Monitored parameters from the soil, water, and plants in papers that propose an 

irrigation system. 

51 

2.8 Monitored atmospheric parameters in papers that propose an irrigation system. 52 

2.9 Number of included actuators in papers that propose an irrigation system. 52 

2.10 Used actuators in papers that propose an irrigation system. 53 

2.11 Monitored soil parameters in all the evaluated papers. 54 

2.12 Information about the used moisture sensors in all the evaluated papers. 55 

2.13 Number of papers that used different models of soil moisture sensors. 57 

2.14 Most monitored weather parameters. 58 

2.15 Most utilized temperature sensors. 59 

2.16 Most utilized temperature sensors by type. 61 

2.17 Most utilized humidity sensors. 61 

2.18 Most utilized humidity sensors by type. 62 

2.19 Most utilized luminosity sensors. 63 

2.20 Most utilized actuators. 65 

2.21 Most utilized nodes to implement IoT irrigation systems. 66 

2.22 Arduino nodes utilized to implement IoT irrigation systems. 67 

2.23 Raspberry Pi nodes utilized to implement IoT irrigation systems. 68 

2.24 Most utilized processors to implement IoT nodes for irrigation systems. 69 

2.25 Communication technologies employed to implement IoT irrigation systems. 71 

2.26 Number of papers per storage system. 73 



 

XXII 
 

2.27 Number of papers that employ each clouds service or platform. 74 

2.28 Number of employed Databases to store data of IoT nodes for irrigation systems. 75 

2.29 Example of IoUT using EM. 83 

2.30 Evolution of the layered model in IoT architecture. 89 

2.31 Wireless technologies in the frequency spectrum. 100 

2.32 Maximum distance for short and medium ranged technologies. 101 

2.33 Maximum distance for long-ranged technologies. 102 

   

3.1 Deployment of node areas. 106 

3.2 Example of canal zone in detail. 107 

3.3 Example of Field zone in detail. 108 

3.4 Proposed architecture. 109 

3.5 Topology of the system. 110 

3.6 Protocol Stack. 112 

3.7 Proposed Architecture. 114 

3.8 Phases of our system. 115 

3.9 Data Flow. 116 

3.10 AP coverage in field of oranges of 200 x 200 meters. 116 

3.11 Architecture. 118 

3.12 Architecture for IoUT. 119 

3.13 Architecture layers. 120 

3.14 Architecture proposal for an IoT irrigation system for agriculture. 121 

3.15 Proposed soil monitoring node for scenarios 1 and 2. 124 

3.16 Example of the Arduino Mega 2560 and the ESP8266 and F8L10D-N modules. 126 

3.17 Connection of the elements of the system. 127 

3.18 Prototype of the meteorology monitoring node. 127 

3.19 Algorithm of the system. 129 

3.20 Value of Temperature in the DB with different dt in the algorithm. 130 

3.21 ARE of Temperature in the DB with different dt in the algorithm. 130 

3.22 Value of Humidity in the DB with different dt in the algorithm. 131 

3.23 ARE of Humidity in the DB with different dt in the algorithm. 131 

3.24 Value of Illumination in the DB with different dt in the algorithm. 132 

3.25 ARE of Illumination in the DB with different dt in the algorithm. 132 

3.26 Algorithm for node groups. 134 

3.27 Algorithm for storage data, obtain patrons’ big data and take decision to actuator 

nodes. 

135 

3.28 Flow chart of the Data Center. 137 

3.29 Simulation of an irrigation schedule for an orange field in Murcia. 139 

3.30 Simulation of an irrigation schedule for an orange field in Gandía. 140 

   

4.1 Message format of the protocol. 142 

4.2 System diagram flow chart. 144 

4.3 Message exchange in the Activation phase. 145 

4.4 Example REGISTER message for a Water Monitoring Node. 145 

4.5 Message exchange in the Verification phase. 146 

4.6 Message exchange in the User registration phase. 147 

4.7 Message exchange for the Data Acquisition phase. 148 

4.8 Payload format of the Data messages at the Data transmission phase. 148 

4.9 Message exchange for the Data Transmission phase. 149 

4.10 Message exchange for the Action phase. 150 

4.11 Message exchange for the Pollution and the Salinity alerts. 151 

4.12 Message exchange for the CH is not operative and the Sensing node is down 

alerts. 

152 

4.13 Message exchange for the Actuator node is down alert. 152 

4.14 Message exchange for the Aggregator node is down and the Gateway is down 153 



 

XXIII 
 

alerts. 

4.15 Message exchange for the Node with Low Battery and the Malfunction alerts. 154 

4.16 States of the Gateway and Aggregator nodes. 155 

4.17 States of the Actuator nodes. 156 

4.18 States of the Sensor nodes. 157 

4.19 States of the CH nodes and the Meteorology Monitoring Aggregator node. 158 

   

5.1 Water quality monitoring and precision agriculture system. 161 

5.2 Multi-layered fog topology of the precision agriculture and irrigation quality 

monitoring system. 

162 

5.3 Proposed protocol. 167 

5.4 Protocol stack. 167 

5.5 Location of devices and equipment. 168 

5.6 Basic scheme of security and data flow. 170 

5.7 Frame counters. 172 

5.8 Phases of the security system. 175 

5.9 Example of location of nodes in the field. 176 

5.10 Data forwarding from the WNB to the DB. 176 

5.11 Operation algorithm of WNA and WNB. 177 

5.12 Operation algorithm of FNs. 178 

5.13 Fault tolerance algorithm. 179 

5.14 Message exchange among the elements of the system. 180 

5.15 Energy saving algorithm. 182 

5.16 Message structure. 183 

5.17 Network architecture of our nodes-balanced system. 184 

5.18 CoAP frame. 185 

5.19 Code for observing several resources. 186 

5.20 Code for canceling the observation with a GET message. 187 

5.21 Underground transmission decision-making algorithm. 188 

5.22 Humidity threshold example from soil moisture values. 188 

5.23 (a) Flight plan with straight lines, (b) Flight plan circling the nodes. 190 

5.24 Area covered by the sensor antenna located on the drone (a) Omnidirectional 

Antenna case, (b) Directional Antenna case. 

192 

5.25 Sagitta of the circular arch described by the coverage of the drone. 193 

5.26 Design example of the soil monitoring node. 195 

5.27 Algorithm of the drone. 198 

5.28 Algorithm of the node. 199 

5.29 Message exchange between the elements of the architecture. 200 

   

6.1 Data forwarded by each layer at the Researcher Mode. 203 

6.2 Data forwarded by each layer at the Researcher Mode without data aggregation. 203 

6.3 Data forwarded by each layer at the Advanced Farmer Mode. 204 

6.4 Data forwarded by each layer at the Advanced Farmer Mode without data 

aggregation. 

204 

6.5 Data forwarded by each layer at the Regular Farmer Mode. 205 

6.6 Data forwarded by each layer at the Regular Farmer Mode without data 

aggregation. 

205 

6.7 Number of messages forwarded by each layer at the Researcher Mode. 206 

6.8 Number of messages forwarded by each layer at the Researcher Mode without 

data aggregation. 

206 

6.9 Number of messages forwarded by each layer at the Advanced Farmer Mode. 207 

6.10 Number of messages forwarded by each layer at the Advanced Farmer Mode 

without data aggregation. 

207 

6.11 Number of messages forwarded by each layer at the Regular Farmer Mode. 208 

6.12 Number of messages forwarded by each layer at the Regular Farmer Mode 208 



 

XXIV 
 

without data aggregation. 

6.13 Maximum theoretical distance at 868 MHz for free space. 210 

6.14 Maximum theoretical distance at 868 MHz for few obstacles. 211 

6.15 Stored information in the SDs cards of nodes. Details of the first 60 min of 

operation. Different letters (a) to (f) denote the different locations of the cluster: 

(a) UA1, (b) UA2, (c) IC1, (d) PO1, (e) PO2, and (f) PO 3. 

213 

6.16 Stored information in the SDs cards of nodes. Summary of the whole simulated 

period. Different letters (a) to (f) denote different locations of the cluster: (a) 

UA1, (b) UA2, (c) IC1, (d) PO1, (e) PO2, and (f) PO 3. 

214 

6.17 Energy consumed by the nodes. Summary of the whole simulated period. 

Different letters (a) to (f) denote different locations of the cluster: (a) UA1, (b) 

UA2, (c) IC1, (d) PO1, (e) PO2, and (f) PO 3. 

216 

6.18 Energy consumed by the nodes. Summary of the whole simulated period. 

Different letters (a–c) denote different ambient conditions: (a) winter period with 

reduced energy harvesting for three days, (b) winter period with full energy 

harvesting, (c) summer period. 

217 

6.19 Details of consumed bandwidth in our simulation. Different letters denote 

different details: (a) initial period, (b) whole period, (c) summary of the 

maximum bandwidth of 40 simulations. 

219 

6.20 Details of consumed bandwidth in second simulation. Different letters denote 

different details: (a) initial period, (b) whole period, (c) summary of the 

maximum bandwidth of 40 simulations. 

220 

6.21 Topology for the simulation. 221 

6.22 Consumed bandwidth. 222 

6.23 Remaining energy in nodes after 5000 iterations. 223 

6.24 Remaining energy in nodes after 5000 iterations. 224 

6.25 Number of nodes unable to send data when it is expected. 225 

6.26 Number of nodes unable to send data after the CSMA/CA. 226 

6.27 Number of failed attempts of sending data to avoid collisions. 227 

6.28 Time in coverage when a drone flies at 20 m/s and different dc. 230 

6.29 Time in coverage when a drone flies at 15 m/s and different dc. 230 

6.30 Time in coverage when a drone flies at 10 m/s and different dc. 231 

6.31 Time in coverage when a drone flies at 5 m/s and different dc. 232 

6.32 Summary of communication in different scenarios, grey is N.C., red is not 

enough time in coverage. 

234 

6.33 Energy consumption of a quadcopter drone at 10 m/s for different fh. 235 

   

7.1 Nodes utilized to implement the protocol. 238 

7.2 Topology of the testbed. 239 

7.3 Nodes utilized to implement the protocol. 239 

7.4 Consumed bandwidth of input packets for the 433 MHz LoRa notes and 

transmission delay at the bridge of 0 ms for a) LoRa 1 node, b) LoRa 2 node, c) 

CH LoRa/WiFi node, d) WiFi 1 node, e) WiFi 2 node, and f) for the complete 

network. 

241 

7.5 Consumed bandwidth of input packets for the 433 MHz LoRa notes and 

transmission delay at the bridge of 250 ms for a) LoRa 1 node, b) LoRa 2 node, 

c) CH LoRa/WiFi node, d) WiFi 1 node, e) WiFi 2 node, and f) for the complete 

network. 

242 

7.6 Consumed bandwidth of input packets for the 433 MHz LoRa notes and 

transmission delay at the bridge of 500 ms for a) LoRa 1 node, b) LoRa 2 node, 

c) CH LoRa/WiFi node, d) WiFi 1 node, e) WiFi 2 node, and f) for the complete 

network. 

243 

7.7 Consumed bandwidth of input packets for the 868 MHz LoRa notes and 

transmission delay at the bridge of 0 ms for a) LoRa 1 node, b) LoRa 2 node, c) 

CH LoRa/WiFi node, d) WiFi 1 node, e) WiFi 2 node, and f) for the complete 

244 



 

XXV 
 

network. 

7.8 Consumed bandwidth of input packets for the 868 MHz LoRa notes and 

transmission delay at the bridge of 250 ms for a) LoRa 1 node, b) LoRa 2 node, 

c) CH LoRa/WiFi node, d) WiFi 1 node, e) WiFi 2 node, and f) for the complete 

network. 

245 

7.9 Consumed bandwidth of input packets for the 868 MHz LoRa notes and 

transmission delay at the bridge of 500 ms for a) LoRa 1 node, b) LoRa 2 node, 

c) CH LoRa/WiFi node, d) WiFi 1 node, e) WiFi 2 node, and f) for the complete 

network. 

246 

7.10 Successful delivery rate of the performed tests. 247 

7.11 a) Grass field. b) Thicker field. c) Orange field. 248 

7.12 Placement of the node inside the box. 248 

7.13 a) Layout of the measures. b) Satellite image of the fields. 249 

7.14 RSSI in grasslands. 250 

7.15 RSSI in scrubs. 251 

7.16 RSSI in Orange fields. 252 

7.17 RSSI in all fields. 253 

7.18 Model of RSSI in a) grasslands b) scrubs c) orange fields at 0º d) orange fields at 

15º. 

255 

7.19 Maximum distance for desired Prx. 257 

7.20 RSSI for on-ground receiver and different configurations for the emitter. 258 

7.21 RSSI for near-ground receiver and different configurations for the emitter. 259 

7.22 RSSI for above-ground receiver and different configurations for the emitter. 260 

7.23 Model of RSSI in the orange field with emitter a) on the ground b) at 50 cm of 

height c) at 1 m of height. 

261 

7.24 Maximum distance for desired Prx at on-ground, near-ground and above-ground 

deployments. 

262 

7.25 Diagram of the testbed. 266 

7.26 Deployment of the nodes. 266 

7.27 Field where the experiments were performed. 267 

7.28 RSSI with node buried at a depth of 10 cm. 268 

7.29 RSSI with node buried at a depth of 20 cm. 269 

7.30 RSSI with node buried at a depth of 30 cm. 269 

7.31 RSSI with node buried at a depth of 40 cm. 270 

7.32 Visual model of the RSSI at different depths. 271 

7.33 Results for the model at a depth of 10 cm. 273 

7.34 Results for the model at a depth of 20 cm. 273 

7.35 Results for the model at a depth of 30 cm. 273 

7.36 Results for the model at a depth of 40 cm. 274 

7.37 RSSI at 10 cm of depth. 275 

7.38 RSSI at 20 cm of depth. 275 

7.39 RSSI at 30 cm of depth. 276 

7.40 RSSI at 40 cm of depth. 276 

7.41 Utilized antennas for a) 433 MHz and 3 dBi gain, b) 433 MHz with 5 dBi gain 

and c) 868 MHz with 3 dBi gain. 

277 

7.42 Location of the tests. 278 

7.43 RSSI values for 433 MHz nodes with antenna of 3 dBi for a) SF 7, b) SF 8, c) 

SF 9, d) SF 10, e) SF 11 and f) SF 12. 

278 

7.44 RSSI values for 433 MHz nodes with antenna of 5 dBi for a) SF 7, b) SF 8, c) 

SF 9, d) SF 10, e) SF 11 and f) SF 12. 

279 

7.45 RSSI values for 868 MHz nodes with antenna of 3 dBi for a) SF 7, b) SF 8, c) 

SF 9, d) SF 10, e) SF 11 and f) SF 12. 

280 

7.46 Utilized Heltec WiFi LoRa 32 node. 281 

7.47 Battery life with WiFi communication. 282 

7.48 Battery life with LoRa communication. 283 



 

XXVI 
 

7.49 Battery life with LoRa communication and 10 dBm of tx power. 284 

7.50 Scenario description. 285 

7.51 System description. 286 

7.52 Combination for R band with G or B band to maximize the fruit detection. 287 

7.53 Histogram of studied images. 288 

7.54 Corrected histogram of studied images considering the effect of distance. 288 

7.55 Detail of the corrected histograms. 289 

  



 

XXVII 
 

 

 

 

 

 

List of Tables 
 

 

 

 

 

2.1 Papers that measure the most monitored weather parameters. 58 

2.2 Temperature monitoring sensors. 60 

2.3 Relative humidity monitoring sensors. 62 

2.4 Most popular nodes for IoT irrigation systems. 66 

2.5 Most utilized communication technologies in IoT crop irrigation systems. 71 

2.6 Most utilized communication modules. 72 

2.7 Cloud platforms. 74 

2.8 Comparative of testbeds of studies on the effects of vegetation on the wireless 

signal. 

95 

   

3.1 Variables required by the system. 137 

   

4.1 Values of the NODE_TYPE field. 142 

4.2 Values of the MESSAGE_TYPE field. 143 

4.3 Payload of the MALFUNCTION message according to Node Type. 146 

4.4 Nodes that can be accessed by each User Type. 147 

   

5.1 CH nodes and Actuator nodes at each Zone. 162 

5.2 Data forwarding and aggregation settings. 163 

5.3 Proposals to Rejects Attacks. 173 

5.4 Characteristics of commercial drones for PA systems. 189 

5.5 Characteristics of popular nodes for PA systems. 191 

   

6.1 Number of iterations before first node dies with different energetic 

configurations. 

224 

6.2 Parameters included in our model. 229 

6.3 Nodes covered in a 20-minute flight for different fv and node densities. 235 

   

7.1 Characteristics of the antennas. 277 

7.1 Energy consumption of the node. 281 



 

XXVIII 
 

7.2 Default settings of LoRa. 282 

7.3 Reference object in the used pictures. 287 

 

 



 

29 
 

 

 

 

 

 

Chapter 1                                   

Introduction 

 

 

1.1 Introduction 

 

The predictions related to the world population, presented by different international 

organizations, suggest that there will be a large and constant increase in population in 

the coming years. Organizations such as the United Nations [1] predict that the world 

population will reach 8.5 billion people by 2030, and 9.7 billion by 2050. This increase 

in population brings with it the need for a very important increase in food production. In 

these forecasts, it is estimated that 70% more food than the food produced nowadays 

will have to be produced by 2050. Agriculture is the main way of obtaining food 

nowadays. More or less, 95% of the consumed food is produced directly or indirectly in 

the soil. In recent years, the growth rate of agriculture production and crop yield has 

declined. The decline in production can be explained by a lot of causes like intensive 

agriculture, which causes degradation in the soil, losing most of the nutrients in this 

process [2]. This has raised fears that the world will not be able to sufficiently increase 

the production of food and other products to ensure adequate food for the future 

population [3]. It is necessary to achieve greater efficiency, in order to be able to supply 

the entire population and optimize the consumption of resources such as irrigation water, 

fertilizers, or pesticides. But there are great difficulties to increase current production, 

among other reasons due to the important changes that are taking place over the last few 

years in meteorology, water resources are becoming increasingly scarce every day. To 

achieve such a significant percentage increase, it is necessary to apply the new 

agricultural techniques provided by Smart Agriculture. Farmers and agricultural 
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workers must implement measures to improve and control the state of crops and to 

optimize the utilized resources. In many countries, farmers are opting to implement 

solutions that apply technological means. For example, the European Union (EU) 

establishes in its 2020 strategy policies such as the Common Agricultural Policy (CAP) 

[4], which responds to the new economic, social, environmental, and technological 

challenges facing our society and, as a result, contributing to its development. 

Due to the causes previously exposed, it is necessary that agriculture advances in the 

future and becomes intelligent agriculture. Smart agriculture is achieved by applying 

Information and Communication Technologies to traditional agriculture [5]. Thanks to 

their employment, farmers, and engineers can use smart tools [6], through which they 

can be more efficient and consume smaller amounts of natural resources. Countries with 

large tradition in agriculture are implementing smart agriculture systems. Implementing 

these types of solutions can optimize the moments to temporize vital actions in the 

harvests, like irrigation, sowing, or the moment to add fertilizers to the terrain. Precision 

Agriculture (PA) focuses on utilizing different sensors and actuators that are part of a 

system that monitors crops and takes decisions according to the readings. 

Fundamentally, it is about applying Information and Communication Technology (ICT) 

techniques to agriculture. It consists of observing, measuring, and acting on crops, 

regardless of the conditions of the site, and utilizing certain technologies [7, 8]. These 

decisions are reflected in the actions performed by the actuators.  

PA systems aid in reducing water consumption and improving the quality and 

quantity of the produce. Most fields are located in rural areas with no access to internet 

connection resulting in difficulties in deploying PA solutions. Ad-hoc networks allow 

forwarding the information to a sink node by transmitting the data from node to node. 

However, deploying numerous sensing nodes is expensive and may not serve the needs 

of the farmer. The use of drones to gather the data from sensors deployed on the fields 

can be another solution for these remote fields [9]. However, this solution only allows 

to access the data at the time the drone flies over the field. Another option is to use 

robots that move through the fields to collect the data from the sensor nodes [10]. 

However, with the use of vehicles as gateways, the PA solutions cannot perform any 

actions in real-time or quasi-real-time. Therefore, there is the need to provide 

connection to remote areas in order to deploy PA systems with all their functionalities. 

Automating the irrigation schedule is one of the main tasks of the PA systems. This 

is often performed with the use of agrometeorological data from meteorological stations 

that can be placed far from the fields. The introduction of soil monitoring nodes has led 

to the use of soil variables to make scheduling more precise. The water balance formula 

has been adjusted with data from soil moisture sensors to implement regulated deficit 

irrigation (RDI) strategies [11]. A homogenization of the production was achieved after 

applying the RDI strategies with the automatic irrigation system. The Van Genutchen 

model has also been utilized by some irrigation scheduling systems to determine 

moisture usage and obtain water savings between 56.4% and 90% [12]. Predictive 

irrigation scheduling systems have been developed as well utilizing AI and machine 

learning techniques. A data-driven robust model predictive control (DDRMPC) for 

irrigation needs prediction utilized learning-based techniques to create an uncertainty set 
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obtained from existing data logs [13]. The results of applying DDRMPC showed a 

reduction of 40% in water consumption. Machine learning has also been employed to 

calculate the reference Evapotranspiration (ETo) of the crop based on the data from soil 

moisture sensors, obtaining the best results with the randomizable filtered classifier 

technique followed by artificial neural networks [14]. Lastly, performing climate 

modeling [15] could also be utilized to predict the resource requirements of a crop. 

 

1.1.1 Water quality and water treatment for irrigation 

 

Water scarcity is a very important problem in the world. 4 billion people live under 

the condition of water scarcity at least one month per year [16]. Moreover, farming is 

the activity with the highest water consumption in the world with 70% of water usage 

[17, 18]. The lack of fresh water is a rising concern, particularly in the Mediterranean 

countries or southern Asian countries such as India. Among the countries in Europe, the 

Mediterranean countries are the most vulnerable to drought [19]. A connection has been 

established between climate policies and water management. Water management can be 

affected by different variables such as the water demand from the different sectors or 

the consequences of some degrees of warming on hydrological resources. Climate 

change and its effects are a recurrent topic in research papers regarding water resources 

and agriculture. The possible consequences of global warming have led to the 

consideration of creating water adaptation measures to ensure the availability of water 

for food production and people and to maintain ecosystems [20]. In the future, the 

increase of the population and global warming could be the cause of wars over water. 

To reduce the problems with water, there are three options I) decrease the use of water 

II) Increase the available water by reusing wastewater. III) Desalination of seawater. 

The high costs of water desalination make it impossible to use it for agriculture if it is 

not with public incentives. China has a long history of wastewater reuse [21]. In Spain 

and Greece, it is foreseeable that, in the future, the regeneration of water will become a 

routine practice [18]. However, as we have previously seen, the quality of these waters 

can cause problems. The irrigation with raw o diluted wastewater can cause problems in 

the environment and human health. Consequently, the governments have to take 

measures to manage the risks [22]. A study of reuse of wastewater concluded that with a 

good control of the pollutants and the use of this water for irrigating the appropriate 

species, the regenerated wastewater can be used without any problems [18]. Therefore, 

wastewater can be used for irrigation employing the correct methodologies.  

Water quality is an aspect of great importance concerning crops. Generally, in 

Europe, the quality of the irrigation water is acceptable but in other regions, the quality 

of the water is not good for irrigation. The countries of North Africa and the Middle 

East are an example of this situation [23]. The safety of the water to be consumed by 

humans and to be returned to the environment must be ensured. Water quality may be 

affected by many aspects such as pollution from industries, agricultural fertilizers and 

pesticides, and waste produced by humans. United Nations Educational, Scientific and 

Cultural Organization (UNESCO) estimates the amount of contaminated water on the 
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planet as 12,000 km3 [24]. Poorer regions of the planet are the most affected by 

contaminated water. Contaminated water is able to cause numerous health problems in 

the population. The World Health Organization (WHO) estimates the number of deaths 

caused by contaminated water consumption to be 842,000 [25]. Furthermore, it is 

estimated that there are 200,000 deaths per year due to pesticide consumption, with 

nearly 3 million people poisoned per year [26]. In India, 29% of the pesticide 

consumption is used on rice and 9% is used on vegetables. Thus, it is imperative to 

assure irrigation water is treated correctly so as to reduce water pollution as much as 

possible. The possible risks of climate change are an increase in water shortage, the 

reduction of water quality, the increase in water and soil salinity, the biodiversity loss, 

the increase in irrigation requirements, or the possible cost of emergency and 

remediation actions.  

Considering the repercussions of water contamination on people, it is necessary to 

add a treatment process in irrigation systems. Even though irrigation water may have 

been treated prior to distribution, the characteristics of the distribution canals may not 

avoid the incursion of water pollutants during water transport. There is a variety of 

water treatment processes, including advanced oxidation processes (AOPs) [27], and 

adsorption, both organic and inorganic, among other water treatment processes [28]. 

Biosorption is a physicochemical process based on adsorption, surface complexation, 

adsorption, and precipitation, that employs biomass to adsorb chemicals, metals, and 

other pollutants [29]. This process may employ different types of biomass such as 

marine algae, bacteria, fungi, peat moss, bark, and yeast and each type may present 

better results with different types of pollutants [30]. This is highly important in 

biotreatment processes and can remove or recover organic and inorganic substances 

from a solution. The biological material can be living beings or parts of living beings 

that have suffered some treatment [31]. Bioabsorption is a very popular technique for 

eliminating the presence of heavy metals in the water. It is eco-friendly in nature and is 

considered a low-cost technique [32, 33]. The biosorption of cyanobacteria has been 

observed in Lake Dianchi (China) [34]. Other studies showed that the use of Acacia 

leucocephala (Lam) bark can be used for removing Cu(II), Cd(II), and Pb(II) ions of the 

water [35]. 

Agricultural waste materials are also being considered as an economic and ecologic 

biomass source. Agricultural waste biomass is abundant, reduces the waste generated 

from agriculture, and it has a low cost and high efficiency as an absorbent. Some of the 

already tested agricultural waste biomass absorbents are sawdust, coconut shells, rice 

bran, wheat bran, sugarcane bagasse, sugar beet pulp, maize corn cob, orange peels, 

waste tea leaves, and hazelnut shells, among other agricultural waste from different 

produce types [36]. The remnant of the wastewater biosorption process is treated with 

anaerobic digestion, dewatering, incineration, thermal drying, or pyrolysis [37]. 

 

 

1.1.2 Water quality and field monitoring 
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Monitoring the quality of the water that is going to be employed for irrigation has 

started to be considered for new smart agriculture proposals [28]. Treated wastewater is 

apt for crops irrigation and allows reducing water consumption [18]. However, in order 

to be able to use wastewater for irrigation, some water cleanliness requirements must be 

met. Therefore, monitoring water quality before performing irrigations tasks allows 

verifying the correct quality of the water.  

In order to perform the aforementioned activities, different sensors must be utilized. 

These sensors are designed for the field or the water according to their purpose. For 

field monitoring, there are varied low-cost commercial sensors that allow monitoring 

soil moisture and humidity, as well as rain and other environmental conditions. A 

greater efficiency can be achieved by applying new technologies to crops. Using sensors, 

farmers obtain information on different parameters related to their crops and help them 

in making decisions [38]. The application of these new technologies in crops brings 

with it a significant reduction in production costs and an increase in the quality of the 

products. In addition, farmers may need to spend less time physically present in the crop 

fields, being able to obtain the crucial information that will allow them to perform data 

analysis in real-time. This will ultimately improve the quality of life of people and the 

productivity of their businesses. Initially, the tendency is that, due to the need for a 

return on investment, the products that reach a higher price in the market will be the 

ones that will be subject to greater investment in technology. In smart agriculture, it's 

vital to have information about multiple parameters that allow us to establish precision 

agriculture [39]. Among others, we can highlight as fundamental the obtention of 

information in real-time about temperature, humidity, precipitation or light as well as 

some aspects of the plants such as the amount of foliage, foliage color, plant height or 

stem width, the amount of available water and water flow through the pipes. According 

to the type of crop to be monitored, the design of the IoT system may differ. For citrus 

plots in the Mediterranean coast of Spain, nodes may need to monitor soil, the quality, 

and the amount of water in the irrigation canals and the environment [28]. Monitoring 

nodes may also be mounted on vehicles such as drones or robots [40]. This monitoring 

process can be performed not only on the field, but it may also follow the produce to 

monitor its manufacturing process [41]. 

Water quality monitoring can be performed with chemical or physical sensors. 

Physical sensors allow monitoring water quality in real-time and do not require 

continuous supervision and manipulation. Thus, physical water quality monitoring 

sensors are suitable for remote water quality monitoring in smart irrigation systems. 

Physical sensors use the electromagnetic field, optical properties, and resistance 

variations in order to assess changes in the characteristics of the monitored environment 

[42]. Therefore, optical sensors can be utilized to monitor turbidity or the presence of an 

oil layer. Coils can be employed to determine the conductivity of the water. Moreover, 

image processing performed on the images obtained from cameras can be utilized to 

detect the presence of objects or animals. However, the available commercial sensors 

for water quality monitoring present a very high cost which turns out in the resulting 

increase of the price of deploying a smart agriculture system. Nevertheless, recent 

research on water quality monitoring has provided inspiring results on low-cost sensors 

for turbidity [43] and conductivity [42] monitoring. The conductivity sensor proposed in 
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[42] can be used for determining the salinity of the water, which is a very important 

parameter for agriculture because irrigation with salt water can cause the loss of fertility 

of the soil. Another important parameter for detecting the quality of water is the 

presence of solids. This parameter is calculated indirectly with the turbidity of the water. 

However, not only is it important to know the value of solids but also their nature. In 

[43], a sensor with infrared and color Light Emitting Diodes (LEDs) to detect the value 

of the solids expressed in mg / l, differentiating between two species of algae and 

inorganic solids was proposed. Moisture sensors can prevent moisture stress conditions 

in the plants and reduce the excess of irrigation [44]. Furthermore, currently available 

low-cost sensors can be used to monitor water quality, with results comparable to those 

obtained from more expensive commercialized probes for water quality assessment. The 

use of low-cost sensors for smart and precision agriculture allows reducing the price of 

said systems and opens the door to the implementation of these systems in developing 

countries. Therefore, both the quantity of the production and the quality of the resulting 

produce would increase which, at the same time, could lead to better nutrition of the 

people of the area and a reduction in the prices of the produce. 

Sensor node systems have the advantage of being able to capture information to 

observe a large number of environmental parameters 24 hours a day, 365 days a year, 

and their values can be monitored in real-time if necessary. The information can be 

stored and transmitted at any time, based on the developed system and the needs of crop 

control as long as there is an internet connection in the deployed area. 

 

1.1.3 Wireless technologies in precision agriculture systems 

 

The information from the sensors deployed on the field or in the water is gathered 

utilizing embedded boards such as those provided by Arduino. Due to the characteristics 

of agricultural environments, wired communication among the nodes is practically 

impossible. In addition, when using agricultural machinery, which is often heavy 

vehicles, it is very difficult not to deteriorate or break the copper or fiber-optic wires 

deployed in the fields. It is very easy for situations to appear where the tools attached to 

the vehicles can drag the cables, and animals and weather conditions would lead to the 

necessity of installing protections for all the wires of the system. For this reason, PA is 

one of the ideal areas where wireless technology should be used.  

There are several low range and medium range wireless technologies such as WiFi, 

ZigBee, or Bluetooth Low Energy (BLE). WiFi is the most accessible technology due to 

the wide variety of devices and prices which makes it a good option for affordable 

solutions. Furthermore, its extensive documentation allows farmers and non-technicians 

to easily operate the devices. Wi-Fi has been thoroughly studied for agricultural 

applications considering different types of vegetation and different positions of emitter 

and receiver and, it is the most utilized wireless technology in PA IoT systems [45]. 

ZigBee would also be a good solution but its usage in PA is yet to grow. Long-rage 

technologies, such as LoRa, allows providing connectivity to remote areas. The Things 

Network was able to perform a Long Range Wide Area Network (LoRaWAN) 
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transmission that reached 766 km utilizing a transmission power of 25mW on two 

occasions [46]. Although the maximum theoretical distance would not exceed 6 km for 

the configurations required to achieve higher data rates in the 868 MHz frequency band 

[45]. Furthermore, the LoRaWAN protocol only considers a star topology, which 

presents a limit to the distance between node and gateway. Therefore, it may be 

necessary to add more hops to the LoRa network. In this regard, studies on multi-hop 

and mesh LoRa networks and protocols have been performed by some researchers [47]. 

The scenario of LoRa nodes for a water quality monitoring system intended for 

irrigation that presents an architecture with several hops has been studied in previous 

works [48]. Where clusters of nodes are deployed on the water canals to monitor the 

state of the water and avoid false positives and false negatives by comparing the data 

from all the nodes in the cluster. However, there can be a scalability problem due to 

possible collisions among the messages forwarded by each node in a shared coverage 

area. As it may be necessary to deploy several sensors on the fields, combining LoRa 

with a smaller range wireless technology may be a good solution. 

Inexpensive nodes that include wireless technologies are available on the market. 

Among the most currently employed, we can find nodes that include IEEE 802.11n 

interfaces, BLE, and LoRaWAN. Furthermore, instead of just using one communication 

technology, two different wireless technologies may be used depending on the required 

communication distance, such as utilizing a gateway that receives the data from the 

sensors using WiFi and forwards it to the database using 3G. Nodes with both ZigBee 

and LoRa transceivers are currently being developed but they are not accessible [49]. 

On the other hand, nodes such as the Heltec LoRa WiFi v2 [50], allow the utilization of 

both wireless technologies at the same time at an affordable price. The use of nodes 

with transceivers of multiple technologies allows to provide more functionalities to the 

system and to address the peculiarities of each scenario.  

Wireless networks for monitoring have specific characteristics and requirements. 

Therefore, specific protocols have been designed to assess these requirements.  

Constrained Application Protocol (CoAP) and Message Queuing Telemetry Transport 

(MQTT) are an example of recently developed protocols for IoT that are increasing in 

popularity. Both are application layer protocols but differ on the transport protocol they 

utilize. While MQTT utilizes Transmission Control Protocol (TCP), CoAP works on top 

of User Datagram Protocol (UDP). CoAP has been utilized in some implementations of 

smart environmental monitoring systems [51]. It is a simplified version of HyperText 

Transfer Protocol (HTTP) and thus it is possible to bridge both protocols. However, as 

it is intended for low-sized packets, the use of SigFox or LoRaWAN is more considered 

for CoAP. This fact has led to few implementation resources for CoAP with WiFi 

antennas. Furthermore, the observe option, which was further explained on a posterior 

Request for Comments (RFC) [52], is not fully implemented on the available libraries 

for CoAP over WiFi chips such as the ESP8266.  

Aspects such as foliage density, which can change according to the seasons or 

depending on the growth state of the plant, should be considered as they can affect the 

wireless transmission. The coverage of the IoT devices deployed on the field may vary 

greatly based on the selected wireless technology, the height at where the devices are 
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located, and other factors regarding signal quality such as possible interferences, 

distance attenuation, absorptions, reflections, dispersion, or the multipath effect. 

Therefore, the effective range achieved by IoT devices deployed at crops can be 

considerably reduced. It is, therefore, necessary to know the limitations regarding the 

range of the devices when implementing a solution for agriculture so as to design the 

network according to the characteristics of the environment. The Received Signal 

Strength Indicator (RSSI) allows obtaining a measure of the quality of the wireless 

signal and can be utilized for the localization of the devices [53, 54]. Although there are 

varied metrics utilized for estimating link quality, RSSI is a good measure when the 

focus is on the coverage of a wireless connection and assessing the quality of the link 

that can be obtained establishing ranges that indicate if the connection is good or bad. 

For grass fields, the threshold that was established to indicate poor quality links was -90 

dBm [55]. Authors in [55] also determined that no conclusion has been reached on 

whether RSSI or Link Quality Indicator (LQI) is better than the other as there are 

contradictory results and remarks in the literature. They state that each metric is able to 

provide information on some aspects regarding the quality of the link. However, there is 

no commonly used metric that is able to provide information on all available aspects 

regarding link quality unless it is a newly proposed metric that has, in turn, a big 

overhead. Therefore, RSSI can be considered a good enough metric for the purpose of 

performing coverage studies. 

 

1.1.4 IoT in precision agriculture 

 

The Internet of Things (IoT) technology represents a fundamental role. The main 

objective of the IoT is to establish the connection between devices to automate and 

control processes that are carried out on a daily basis. The scope of IoT has varied and, 

as the years go by, its applicability increases. Cisco [56], predicts that M2M (Machine 

to Machine) connections will grow 2.4-fold, from 6.1 billion in 2018 to 14.7 billion by 

2023. There will be 1.8 M2M connections for each member of the global population by 

2023. The increase, in their use, is due to the decrease in the costs of the devices and the 

means of transmission of the observed information. Its application in multiple areas 

makes it possible to adopt the most appropriate solutions to different problems. One of 

the areas in which this technology is increasingly implemented is in agriculture. For 

example, if environmental and crop health parameters are controlled, the use of both 

water resources and pesticides can be avoided, which will reduce the impact on the 

environment.  

In the space of IoT applied to Agriculture, we can highlight for its novelty the studies 

presented on the Internet of Underground Things (IoUT). According to Vuran [57], 

IoUT consists of sensors and communication devices, partly or completely buried 

underground for real-time soil sensing and monitoring. Underground communications 

can be performed both by wired and wireless technologies. Wireless technologies are 

based on acoustic waves, electromagnetic waves (EM), magnetic induction (MI) and, 

visible light communication (VLC) while the wired technologies use coaxial cable and 
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optical fibers [58]. In its application to agriculture, underground sensors are used, which 

control different systems, both irrigation, and machinery, to help farmers and 

agronomists in making decisions. By using buried sensors, we can control crop 

parameters such as soil temperature and humidity, more efficiently than with the 

parameters that are only estimated on surface. Furthermore, due to the underground 

location of the nodes, there are major problems when working with machinery in their 

environment, because they can be unused or destroyed. When using IoUT, if EM is 

emitted, there are scenarios where the sensors are buried under a cultivated field, and 

the communication is performed between buried nodes, between some of the buried 

nodes and nodes or surface wireless devices that collect the signal emitted by the buried 

node, and the nodes or surface wireless device that send the signal via WiFi to other 

points. Therefore, the requirements of the soil medium and its characteristics should be 

considered for the design of an IoUT network. For that purpose, there are path loss 

prediction models specific to the underground channel [59]. 

Energy consumption is an important problem for IoT. Currently, when applied to 

agriculture, most of the time they are installed in areas where it is not possible to 

connect the device to the electricity grid. Energy is needed for the sensors and 

microcontrollers to work. For this reason, devices and technologies with minimal 

energy consumption are often used. To achieve this, in the field of communications it is 

ideal to use technologies such as Low-Power Wide-Area Network (LPWAN). In general, 

in order to power the IoT, there are two options: batteries or solar panels. Solar panels 

cannot always be used because, in some cases, light does not impact the panel directly. 

There is not an only way for saving energy in IoT. The strategies will depend on the 

needs that have to be monitored [60]. If the nodes remain active in real-time, to gather 

the values of the parameters that are needed, they will consume a large amount of 

energy. Assuming that the nodes are distributed in dispersed locations, where it is not 

possible to bring the energy at reasonable costs, the supply of electrical power can 

become a big problem. Depending on the needs of different crops, the observation time 

may vary. However, the amount of data may not be a problem.  

The amount of information generated from these types of sensors and smart systems 

applied to precision agriculture can be significantly large. Thus, data processing 

algorithms are necessary to analyze the data and determine the actions that the actuators 

must perform. These algorithms may also consider reducing the amount of forwarded 

data in order to reduce energy consumption and the amount of generated traffic. On the 

other hand, the monitored parameters usually change at a slow pace. However, the 

consistent transmission of the data is necessary. Therefore, small-sized IoT devices with 

low energy consumption are usually employed for both data acquisition and actuator 

management. Moreover, low-power protocols can be utilized as well so as to reduce 

energy consumption as much as possible [61, 62]. Each communication protocol has its 

own transmission speed and range which implies greater or lesser energetic 

consumption. There are other energy-saving techniques such as radio optimization, data 

transmission reduction, sleep, and wake-up techniques, and energy conscious routing 

protocols [60, 63]. In this case, a communication protocol that does not consume a large 

amount of energy is needed in order to avoid replacing batteries. Fault tolerance is 

another aspect that is usually considered by the algorithms employed in wireless sensor 
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networks (WSNs) and IoT solutions. Moreover, some solutions consider soil moisture 

and other factors such as weather predictions to determine whether the irrigation system 

must start or stop [64].  

In some situations, it is necessary to use a large number of sensor nodes. Obviously, 

the cost of the nodes, if they are used in large numbers, can be prohibitive. In addition, 

if mobile technologies are used to establish transmissions, such as 4G or any other, the 

cost of the node is significantly increased, and maintenance is also expensive. 

Furthermore, it would be necessary to hire the services of a mobile operator that has 

coverage in the space that will be monitored. Furthermore, the number of IoT devices 

deployed in the field must be minimized with the aim of reducing the cost while 

guarantying the performance of the system. One of the ways of minimizing the number 

of nodes is deploying the nodes at the maximum possible transmission distance for the 

selected wireless technology. Furthermore, the processing and storage capacities of IoT 

devices are generally very limited. When using Fog Computing a decentralized network 

structure is employed in which resources, including data and applications, will be found 

somewhere between the data source and the Cloud. By using Edge Computing, 

intelligence is brought into individual hardware systems such as sensors [65]. Using 

Edge Computing, the source devices are already in charge of filtering data. Redundant 

data and even false positives can be removed depending on the architecture. In the case 

of wanting to correct an error or wanting to optimize the performance of the observed 

elements or environments, after processing the data, the appropriate corrective measures 

are taken to optimize the observed functions. Lastly, the decision-making process that 

uses the monitored information to determine the actions that the actuators must execute 

has become easier. Artificial Intelligence (AI) is employed to process the data to 

provide recommendations and perform predictions [66]. For the case of intelligent 

irrigation systems for smart agriculture, data on temperature and humidity of the air and 

the soil can be analyzed to determine when to start and stop irrigation to optimize water 

usage. 

 

1.1.5 The use of drones in precision agriculture 

 

Gateways in PA systems can be deployed in different manners, i.e. on poles, on trees, 

on moving machinery such as tractors of pivot-center irrigation structures, and drones. 

For the cases where the gateway is located in a static position (poles and trees), the 

network would require a larger number of gateways to cover the expanse of the fields. 

Using moving manned vehicles and irrigation structures would be possible for crops 

that require those vehicles to go through the fields often enough or to be irrigated using 

pivot-center structures regularly. However, drones can be utilized in more 

comprehensive types of crops and are not restricted to specific moments of plant growth 

where the machinery is necessary. It also allows reducing the cost as only one gateway 

is required.  

The use of drones, also known as Unmanned Aerial Vehicle (UAV) in the military 

field or Remotely Piloted Aircraft (RPA), has been increasing in recent years due to the 
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improvement in design and accessibility. Drones are primarily used to perform remote 

sensing and can capture photographs and videos to send them in real-time or to store it 

for its later analysis. These images can be utilized to perform mapping, navigation, and 

georeferencing [67] for applications such as agriculture, forestry, surveillance, location 

and rescue, environmental monitoring, photogrammetry, vegetation analysis, 

atmospheric monitoring, wildlife conservation, cultural heritage conservation, and urban 

environment monitoring [69]. In precision agriculture, remote sensing can be used to 

monitor growth vigor, drought stress, and nutrients, to detect weeds and pathogens, and 

to perform yield prediction using multispectral, hyperspectral, RGB (Red Green Blue), 

and thermal sensors [69]. Their use is being extended to the implementation of smart 

systems such as the system proposed in [70] where a drone took pictures of palm trees 

and communicated with smart insect traps to spray insecticide. They can also be used as 

tools for treatments with fertilizers or phytosanitary products or even to scare away 

birds. The agriculture drones market size is expected to grow from USD 1.2 billion by 

2019 to USD 4.8 billion by 2024 at a CAGR (Compound Annual Growth Rate) of 31.4% 

[71]. 

Contemplating the increase in the use of drones for precision agriculture remote 

sensing activities, adding new functionalities to benefit from the itinerary of the drone is 

an aspect to consider. Precision agriculture includes the use of WSNs as well. The 

design of these WSNs can vary depending on the node density, the topology, or the 

communication technology. However, using the UAVs currently employed for image 

and video capture of the crops as a mobile gateway to gather the data from the sensor 

nodes deployed on the field is a solution to consider. These drones already have a flight 

plan designed to capture the required images to map the fields or detecting diseases, 

pests, or water stress on the plants. Furthermore, significant efforts have been made for 

implementing low-cost PA solutions in developing countries, in which the internet 

connection might not be as extended as in developed countries. In these cases, we can 

use the drone, which has an internet connection, to serve as a mobile gateway for the 

WSN deployed in the soil. Nevertheless, aspects such as the required flight height and 

speed to ensure good image captures, as well as local regulations, and the characteristics 

of the drone have to be considered. It is important to note that the flying parameters of 

the drone have been set to optimize the process of gathering pictures or video, and those 

parameters cannot be modified. 

 

1.1.6 Security concerns for precision agriculture systems 

 

Wastewater treatment systems for irrigation benefit from using different IoT 

technologies for monitoring and managing information of the irrigation process. A 

smart irrigation system relies on sensors and online services for improved efficiency.  

Users can control the system from a remote device and can configure it using a cloud 

service. However, there can be a variety of new security threats. Therefore, security 

solutions can be introduced to avoid the access of malicious third parties to the gathered 

data [72]. 
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These systems face different types of attacks which can be physical attacks, network 

attacks, and system attacks.  For physical attacks, the problem includes destroying or 

stealing the components of the IoT devices. For communication attacks, the lack of 

security and vulnerability of the channel for data communication allows the attacker to 

sniff information from the network. In the system, unsecured data storage allows the 

attacker to obtain information from the cloud environment. Therefore, unauthorized 

people may modify and steal information from the system. 

Failures among the nodes affect the communication process and are another one of 

the problems that WSNs face. Sensor nodes can be broken or stolen, there can be 

communication link errors, malicious attacks or they may simply run out of power. In 

order to avoid fault problems, there are routing algorithms that act in case of failure 

(fault-tolerant algorithms). In a WSN, the fault-tolerance functionalities can be 

implemented in the software, hardware, network communication, and application layers 

[73]. According to the routing protocol, different techniques are used to reduce the 

consequences of the failures. In addition to the efficiency of the system, fault-tolerance 

solutions may have an impact on energy consumption. Therefore, a balance between 

energy consumption and efficiency must be sought after so as to implement fault 

tolerance functionalities. 

 

1.2 Objectives and motivation 

 

The aim of this work is to provide a new architecture and communication protocol to 

transmit data, actions, and alerts to the different elements that comprise a precision 

agriculture system with wastewater treatment functionalities. In order to achieve this 

goal, the following process was performed. 

Firstly, the different elements of a PA system are identified so as to assess the 

devices that comprise the architecture of the system. The field area and the water canals 

where the water treatment process is performed are the differentiated zones of interest. 

The proposed sensor nodes are designed to be deployed in these areas. The operation 

algorithms applied to the sensor nodes allow reducing the amount of forwarded data 

while the necessary information is transmitted. 

Furthermore, a heterogeneous communication protocol was designed to allow data, 

action, and alert transmissions among the different elements of the architecture. As the 

architecture is comprised of different areas with different requirements, WiFi and LoRa 

wireless technologies were utilized for zones with medium-range and zones with long-

range requirements, respectively. A bridge node allows forwarding the messages of the 

protocol from the WiFi nodes to the LoRa nodes. Moreover, a multi-hop LoRa topology 

was created to allow the addition of edge-computing functionalities and to overcome the 

coverage limitations by adding more nodes to relay the messages of the protocol to the 

gateway deployed at the desired location. This solution has a great potential to provide 

connectivity to other systems in remote areas. It also expands on the use of LoRa 
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contemplating a tree topology instead of the point-to-point topology that is currently 

utilized. 

The main objectives of this dissertation are: 

• Identifying the key parameters for precision agriculture and water quality 

monitoring.  

• Performing a study on the recent advances on smart irrigation and 

precision agriculture systems considering the utilized sensors, electronic devices, 

and communication technologies. 

• Designing an architecture for the monitoring of water quality and the 

estate of the fields located in remote areas with limited access to the 

infrastructure of service providers. 

• Design and development of a heterogeneous communication protocol for 

the designed architecture. 

• Designing and developing algorithms for data aggregation and generation 

of alarms according to the monitored parameters. 

• Evaluation of the performance of the proposal in simulated and real 

scenarios. 

 

1.3 Precedents 

 

WSN were the focus on past years and some works were performed regarding 

routing protocols for PA WSN. One of them is the PhD thesis presented by Yibo Chen 

in 2015 named “Routing algorithm dedicated to environmental data collection: 

precision agriculture”. The author proposed an architecture for IPv6 low power and 

lossy networks for PA. Furthermore, a routing protocol was presented introducing 

energy-aware routing metrics. Experiments were performed through simulations and 

deployments in real environments to test the performance of the proposal. 

More recent works propose IoT architectures for varied purposes. Diana Cecilia 

Yaccjirema Vargas presented in 2019 her PhD “Arquitectura de interoperabilidad de 

dispositivos físicos para el internet de las cosas (IoT)”. She designed an interoperability 

architecture so as to communicate IoT devices. Furthermore, she developed a smart IoT 

gateway to perform data analysis and storage. On the other hand, David Fernando 

Sarabia Jácome defended in 2020 his PhD “Arquitectura de análisis de datos generados 

por el Internet de las cosas (IoT) en tiempo real”. In his work, the author designed an 

architecture for Big Data management and has applied his solution to assisted living 

systems where artificial intelligence is applied to monitor sleep apnea. 

Furthermore, other PhD thesis of the research group have been related to the 

introduction of technology in agriculture and the development of architectures and 
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communication protocols for varied purposes. Carlos Cambra Baseca presented in 2019 

his PhD thesis “PLAtaforma Tecnológica Multimedia para la Agricultura de Precisión 

(PLATEM Precision Agricultre)”. The author developed a web platform for agriculture 

data integration that incorporates AI to process the data gathered from sensing nodes 

and drones. Furthermore, the data can be shared among farmers in order to expand the 

knowledge. José Miguel Jiménez Herranz defended in 2018 his PhD “Design of an 

architecture and communication protocol for video transmission and videoconference”. 

The architecture and protocol developed by the author are focused on Internet Protocol 

Television and use of HTML5 (Hypertext Markup Language). The Software Defined 

Network technology is utilized as well. Moreover, the proposal improves the Quality of 

Experience of the users. Juan Ramón Díaz Santos presented in 2016 his PhD “Design 

and Implementation of a Communication Protocol to Improve Multimedia QoS and 

QoE in Wireless Ad Hoc Networks”. In his dissertation, a protocol based on the 

organization of node clusters that maximize the utilization of the available resources for 

IP and multimedia traffic was implemented. Lastly, Miguel García Pineda presented in 

2013 his PhD “A Group-Based Architecture and Protocol for Wireless Sensor 

Networks”. In his thesis, an architecture and protocol for collaborative group-based 

networks that avoid overheads and the transmission of unnecessary messages. The work 

presented in this dissertation is a continuation from the work performed by Miguel 

García Pineda. 

Furthermore, the research group has been active in a project regarding the use of 

sensing nodes to monitor and transmit the data of a network for wastewater treatment of 

water intended for irrigation through the ERANETMED (Euromediterranean 

Cooperation through ERANET joint activities and beyond) project ERANETMED3-

227 SMARTWATIR.  

 

1.4 Thesis structure 

 

After the introduction of the motivations and main objectives of this thesis, the rest 

of the dissertation is organized as follows: 

In chapter 2, the state of the art on systems for water quality and precision agriculture 

monitoring is presented. Numerous works were analyzed to determine the most utilized 

sensors and electronic devices in precision agriculture systems. Moreover, varied 

architectures and protocols that consider the specific needs of providing connectivity to 

remote areas have been analyzed. Furthermore, the current trends and limitations of 

water quality monitoring for precision agriculture are discussed. 

In chapter 3, the proposed architecture that contemplates the fields and the water 

channels that contain the water to irrigate the fields is presented. The topology for a 

heterogeneous network that includes a WiFi/LoRa bridge is provided as well. 

Furthermore, the electronic devices that monitor the varied elements of the system are 

described and the algorithms that determine their operation and data management are 

presented. 
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In chapter 4, the heterogeneous communication protocol is described. The protocol 

has a low overhead and allows the communication between WiFi and LoRa nodes. The 

design and the functionalities of the protocol are discussed and the message exchange 

for each phase is specified. Furthermore, the messages and the contemplated alarms are 

detailed. 

In chapter 5, the study cases for special needs and functionalities are presented. 

Firstly, a multi-layer data aggregation fog computing framework to reduce the number 

of transmitted packages is presented. Then, the case of a network comprised of LoRa 

nodes is proposed. The security of different elements of the system is discussed as well. 

Furthermore, the case of heterogeneous networks that utilize WiFi, 3G, or CoAP are 

contemplated. Lastly, the case of the use of remote sensing drones as gateways is 

addressed. 

In chapter 6, the simulation experiments are described and discussed. The effects of 

the proposal for data aggregation on the consumed bandwidth and the number of 

forwarded messages are presented. The results of the performance assessment of the 

protocol for a LoRa network for water quality monitoring are analyzed as well. The use 

of multiple WiFi nodes and their effects on consumed energy and bandwidth is also 

studied. Moreover, the collisions in WiFi WSN transmission for PA are evaluated as 

well. Lastly, the effects of different drone flight settings on the coverage of the drone as 

a gateway are discussed.  

In chapter 7, the practical experiments are presented. The performance results that 

validate the proposed protocol are discussed. Coverage tests were performed as well 

with WiFi devices deployed on environments with different types of vegetation, 

different heights, and underground. Furthermore, LoRa coverage tests with low-cost 

devices and antennas were performed as well. Lastly, the results of a fruit quantification 

functionality are provided as well. 

In chapter 8, the conclusions on the performed work are presented. Furthermore, the 

problems faced during the thesis, the personal contributions, and the future research 

lines are detailed. Lastly, the publications derived from this work are presented. 
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Chapter 2                                                

State of the Art 

 

 

2.1 Introduction 

 

In this section, the state of the art is presented. In order to analyze the state of the art, 

the following research questions were considered: What are the current IoT solutions for 

smart irrigation for agriculture? What sensors, actuators, nodes, and wireless 

technologies are being utilized to develop IoT irrigation systems? Search engines and 

digital libraries were utilized by the authors to search manually for papers suitable for 

this survey. A total of 283 papers were obtained from Google Scholar [74], IEEE 

explore [75], Scopus [76], and the digital library of Sensors [77]. The keywords 

employed to obtain the total number of papers to be analyzed were IoT irrigation, IoT 

irrigation system, and smart irrigation. Furthermore, all papers were checked to ensure 

they included the keywords irrigation or water and IoT or smart in their content.  

In order to discern which papers to use, only papers written in English were 

considered. Furthermore, to observe the recent evolution in this field, the selected 

papers were published from the years 2014 to 2019 (both years inclusive). Finally, a 

total of 178 papers were utilized to compile this review.  

After the selection process, all papers were classified manually into IoT irrigation 

systems and architecture, protocol, and sensor proposals that were not used to create the 

figures in this paper but discussed relevant information. The papers from the first group 

(160) were then analyzed to determine the sensors and actuators that were employed to 

develop the IoT irrigation system, the parameters that were monitored, the type of 
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irrigation and agriculture, the type of node, the type of wireless technology and data 

visualization technique that was utilized to access the data and to manually choose the 

actions of the irrigation system. All the collected data has been then classified into 

different sections and converted into graphs and tables to provide a complete overview 

of the actual state of the art regarding IoT irrigation systems. 

The distribution of the papers regarding the country of the first author is presented in 

Figure 2.1. As it can be seen, the countries that investigate IoT systems for irrigation are 

countries where agriculture is a major economic source. India is the country with the 

highest number of papers with a total of 92 papers, 57.5% of the total. China and Spain 

are tied with seven papers each. Costa Rica, Ecuador, Indonesia Thailand, and the USA 

have between three and six papers. The rest of the countries that have investigated IoT 

systems for irrigation have one or two papers.  

 

 

Figure 2.1.  Number of published papers presenting IoT systems for irrigation per country. 

 

It is remarkable that only one out of the five countries with the highest agricultural 

land area (China, USA, Australia, Brazil, and Kazakhstan) is included in the top five 

countries of our survey in terms of water management. India, which is the country with 

the highest production of papers that presents IoT systems for water management is the 

7th country in terms of agricultural land area. With regard to the top six countries, in 

terms of published papers with irrigation systems, three of them (India, China, and 

Spain) have regions with high and moderate water scarcity problems. Again, there are 

some countries with regions affected by water scarcity that use irrigation systems in 

their agriculture and have published fewer papers on irrigation systems like the USA. 

Nonetheless, it does not mean that in these countries no efforts are done in order to 

reduce water use in agriculture. It is possible that in these countries the major efforts are 
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done by enterprises and their findings are directly patented and distributed in the market. 

Most of the papers are published by authors who come from developing countries.  

As per the number of papers per year of publication, see Figure 2.2, the interest in 

this topic has been increasing over the years. The lower number of papers for 2019 is 

due to the year not being finished when the selection process of the papers was 

completed. Thus, not all the papers performed in 2019 had been published. 

 

 

Figure 2.2. Number of published papers presenting IoT systems for irrigation per year. 

 

After the review of the papers that met the aforementioned criteria, a discussion on 

the previous works regarding different topics concerning precision agriculture irrigation 

systems and wireless communication for these environments has been performed. 

 

2.2 Water Management 

 

In this section, we present the information and analysis of papers that present 

different techniques for water management in the irrigation process. For this analysis, 

we consider the papers that include any sort of water pumping actuator as an irrigation 

system. From a total of 178 evaluated papers, 107 of them present an actuator for 

irrigation. After analyzing the 107 papers we discard the ones that just offer partial 

information, a total of 89 papers are included in this section.  

In the agriculture activities that use water inputs, also known as irrigated agriculture, 

there are different manners to distribute the water. The different options present 

different efficiency and, in some cases, a specific manner should be used for a specific 

crop. The specific manners to irrigate have a great variety but we can divide them into 
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the following categories: Attending to the way of water is distributed we can consider: 

(i) flood irrigation, (ii) spray irrigation, (iii) drip irrigation, and (iv) nebulizer irrigation. 

Regarding the existence of sensing systems, we can have (i) irrigation without any 

consideration, when the amount of water is not calculated or estimated, (ii) scheduled 

irrigation, when the water is supplied according to the estimated needs in a period of the 

year, (iii) Ad hoc irrigation, when the amount of water is calculated based on the 

sensors measurements. The vast majority of the papers included in this section propose 

to use pumps and valves to distribute the water in conjunction with sensors to measure 

environmental parameters in order to calculate the water needs. From the 89 evaluated 

papers in this section, 83 include clear information of the proposed irrigation system, 

the other six only mention that they include actuators for irrigation, see Figure 2.3. 

Those 83 include different levels of detail, there are 49 papers that only indicate that 

there are motor/pumps in their system (40 paper) or valves (nine papers) without more 

detail. From those papers which offer more details, 19 of them include sprinklers (the 

most used system) [5, 78–95], eight use drip irrigation [96–104], two propose the 

utilization of sprayers [96, 105], and the rest use very specific irrigation systems (robots 

[10], pivot [106], rain gun [107] or it can be applied to multiple systems [108]). In 

conjunction with the principal irrigation system, three papers propose the use of a 

fogging system [90, 92, 101] and two papers propose the use of fertigation in their 

systems [91, 102].  

 

 

Figure 2.3. Number of papers that propose different irrigation systems. 
 

In this paragraph, we describe the different agriculture systems that are included in 

the papers. Most of the included papers in this section do not describe the target 

agriculture system of their proposal. Nevertheless, there are 38 papers that include this 

information, see Figure 2.4. The most common use of irrigation systems is in outdoor 

agriculture, 50% of the proposed systems are for outdoor agriculture. Among this 

outdoor agriculture cases [5, 79, 81, 87, 89, 91, 95-98, 102, 106, 109-117], some papers 
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specify the agriculture products in more detail: general cereal [106], rice [98, 109], 

spinach, beans, carrots, walnuts, corn, barley and maize [97], and multi-height fields 

[110]. In addition, among the 14 papers about greenhouses [78, 82, 88, 90, 101, 118-

125], five of them specify the type of crop. There are three cases of hydroponic crops 

[82, 118, 119], one case of mushroom cultivation [90], and one paper on flower farming 

[121]. Finally, there are five papers focused on gardening [85, 103, 105, 117, 126], one 

of them specifically about green walls [126].  

 

Figure 2.4. Number of papers that proposed irrigation systems for different sorts of agriculture. 

 

Following, we describe the sensors used in the irrigation systems. From a total of 89 

papers that include irrigation systems, there are six of them that do not describe or give 

information about the utilized sensors for their system. Those six papers are more 

focused on the node, telecommunication, or visualization aspects. As in this survey, we 

include several parameters, we will divide this information into two figures. 

In the first graph, we are going to show what environments (air, water, soil, or plant) 

have been monitored in most papers. This information is presented in Figure 2.5. A 

paper that monitored the soil can measure one or more parameters, but this information 

is not included in Figure 2.5. The environment that has been monitored in more papers 

is the soil. It was measured in 76 papers, more than 85% of the cases. Weather is the 

second parameter in terms of the relevance of monitoring, it includes many parameters 

such as temperature, rain, and humidity among others. Weather is monitored in 60 

papers, up to 68% of the proposals. Water is less measured in the proposals of irrigation 

systems. It is measured only in 26 papers, less than 30% of the included cases. Plant 

monitoring is the less measured factor. It is monitored only in four proposals. There are 

15 papers that use the weather forecast to obtain data and include this data in their 

system.  
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Figure 2.5. Monitored environments in papers that propose an irrigation system. 
 

Following, the details about the number of monitored parameters are presented (see 

Figure 2.6). From the 89 included papers, more than half of the proposals measure 

between three and four parameters. Measuring fewer parameters (one or two) represents 

31% of the cases (17% one parameter and 14% two parameters). There are some rare 

cases (10% of them) where more than four parameters are monitored. The papers where 

more parameters are measured are [114, 117], with six measured parameters, and [5, 94, 

96, 111, 118, 125, 126] that measured five parameters. On the other hand, there are five 

papers (6% of cases) that do not measure any parameter [82, 90, 127–129].  

 

 

Figure 2.6. Number of monitored parameters in papers that propose an irrigation system. 
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Next, the details about the measured parameters are shown. Regarding the sensors of 

soil, plants, and water (see Figure 2.7), the most used sensor in the systems is the soil 

moisture sensor, which is used in 76 papers (more details in Section 4). First, we will 

analyze the data from soil and plant sensors. The soil temperature is much less 

considered in these systems, it is only measured in seven proposals. Attending to the 

soil characteristics, in one proposal the authors use a sensor that monitored the nutrients 

of the soil [130]. There are 14 proposals of IoT for irrigation management that include a 

pH sensor. However, not all of them specify if the pH sensors are for the soil or for the 

water [5, 91, 99, 104, 118, 120, 124, 125, 131, 132], only four of them indicate this 

(three for soil [116, 117, 122] and one for water [119]). Only four papers consider plant 

monitoring, in two papers the measured parameter is the plant height [114, 133], using 

an ultrasound sensor. In the other two cases, leaf wetness was considered in their system 

[95, 134, 135]. Different sensors are used, [134] used a sensor based on optical signals 

while [95] utilized a commercial FC-37 sensor.  

Now, the data from the water sensor are presented. In this case, we will consider for 

the commentaries not only the data of the graphic (proposals with irrigation system) but 

also the information of the paper which measures the water quality, having or not the 

actuators for the irrigation system. The water level in the tanks is measured in 17 [81, 

85, 101, 107, 108, 111, 112, 114, 119, 135–142] out of 88 papers that have a pumping 

system. There are different methods to monitor the water level in the tanks and the most 

used is the one based on ultrasound [81, 119, 139], the resistive methodology is used in 

one case [85], the rest of the cases do not offer information of how the data is measured. 

In the case of sensors based on ultrasound methods, the most utilized sensor is the HC-

SR04 [119]. In addition, there are six papers that do not include an actuator for the 

irrigation system even when they have water level sensors [110, 143–147]. There are 

nine papers where sensors for monitoring water flow are utilized [5, 106, 91, 94, 100, 

114, 125, 126, 132]. The sensors used are only described in two cases, the commercial 

Gems FT110 G3/8 sensor is used in [125] and the YF-S402 in the proposal presented in 

[126]. Both sensors are based on a Hall effect turbine. They have different prices and 

similar operational ranges. The Gems FT110 G3/8 [125] can measure flows between 0.5 

to 5 L/min. The other sensor, the YF-S402 [126], is capable of measuring flows 

between 0.3 to 6 L/min. Moreover, water flow sensors are used in three other proposals 

that do not include actuators for irrigation systems [148-150]. Regarding water quality, 

the water conductivity is monitored in four proposals [101, 118, 119, 125]. Only in one 

case [125], the authors indicate the used sensor. They use commercial sensors for 

monitoring pH and conductivity from B&C Electronics [125]. 
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Figure 2.7. Monitored parameters from the soil, water, and plants in papers that propose an 

irrigation system. 

 

Additionally, there are two papers without an actuator for irrigation systems that 

include in their proposals a sensor for conductivity [149, 151]. Nevertheless, no data 

regarding the equipment used are given. Regarding the pH of water, it is monitored in 

another three papers (apart from [119]) [150, 152, 153]. In one case, the authors specify 

the used sensor, the Lutron Pe-03 [150]. The temperature of the water is measured in 

two proposals [101, 119]. Only in one case did the authors specify that the used sensor 

is the DS18B20 [119]. No other proposals evaluated in this survey (having or not 

irrigation system) presented the use of temperature sensors for the water.  

On the other hand, with regard to the proposals that monitored the atmospheric 

parameter, the data is presented in Figure 2.8. Next, we are presenting the importance of 

these sensors for irrigation systems. No details of which sensors are used in which 

papers are given in this section. This information will be further discussed in Section 

2.4. The air temperature is the most measured parameter, it is monitored in 58 papers. A 

total of 51 proposals include a humidity sensor. Other parameters are less measured 

such as the rain, which is measured in eight out of 89 papers that proposed an irrigation 

system, or the wind, measured in only one paper. Meanwhile, there are 15 proposals 

that consider the weather forecast. From those 15 proposals, 10 of them use the data 

from the forecast in conjunction with the data gathered by sensors and five proposals 

use the weather forecast as the sole information for weather data/atmospheric 

parameters. 
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Figure 2.8. Monitored atmospheric parameters in papers that propose an irrigation system. 

 

Next, the information related to the use of actuators in the papers that proposes an 

irrigation system included in this section is listed in this paragraph (see Figure 2.9).  

 

 

Figure 2.9. Number of included actuators in papers that propose an irrigation system. 

 

The vast majority of the papers include only the actuator of the irrigation system 

(pump, valve, sprinklers, etc.). A total of 71 proposals (81% of cases) use only the 

irrigation system as an actuator. There are seven papers (8% of cases) that propose the 

use of two actuators (irrigation system plus another one). The use of three actuators is 
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presented in seven papers, the same percentage that the use of two actuators. Finally, 

there are some rare cases (3%) where authors have proposed the use of more than three 

actuators, in two papers they use four actuators [88, 122], and in one case the use of five 

actuators is presented [117].  

Next, we present in Figure 2.10 the description of the selected actuators. Since we 

are considering only the papers that include an irrigation system, the most used actuator 

in the different irrigation systems. Therefore, we do not include the use of irrigation 

actuators in Figure 2.10. The most utilized actuator is the sound emitter, used in seven 

cases [81, 99, 108, 109, 111, 116, 154]. It is generally used as an alarm for the farmers 

or as a dissuasive measure to prevent the entry of animals into the farming lands. In the 

second position, we found the use of artificial light systems. They are used in six cases 

[85, 87, 100, 121, 122, 125]. The use of artificial light is mainly related to the 

generation of artificial photo- periods to increase productivity, but they can also be used 

for operational purposes. Fans are included in five proposals and their use is related to 

modifying the atmospheric conditions (temperature, humidity, or even the balance 

between CO2/O2). The proposals that include the use of fans are [88, 115, 118, 112, 

125]. The use of ultrasonic sound emitter is found in four papers [32, 51, 64, 65]. The 

least utilized actuators in IoT irrigation systems are scarecrows [58, 115, 116], which 

are dummies or robots that are utilized or have the function of scaring birds and other 

types of animals to protect the crops, and heaters [78, 115], that modify the temperature 

to improve the performance or the health of the crops. 

 

 

Figure 2.10. Used actuators in papers that propose an irrigation system. 

 

In addition to the defined parameters, which are measured in different papers 

included in this survey, there is an important parameter that is crucial for irrigation 

scheduling. This parameter indicates the water loss due to the evaporation from the soil 

and transpiration through the stomata of plants; it is known as evapotranspiration (ET). 

Several authors measured both terms—evaporation and transpiration—separately, using 

different sensors to obtain the ET data [155]. It also can be estimated according to the 

vegetation and the climatic data by several mathematic models [156]. Some web-based 
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applications can estimate the potential ET given a location. For ET monitoring, remote 

sensing is the best option as many papers point out [157–159]. Among the possibilities 

for ET monitoring with sensors, the integration of soil moisture changes can offer 

evaporation data. Nonetheless, the measurement of transpiration is more complex; it can 

be estimated with the data of sensors that measure radiation, leaf area index, and vapor 

pressure deficit [160]. Due to the complexity of its measurement, it is not included as a 

monitored variable in most of the papers of precision agriculture. None of the papers 

considered by this survey includes all the necessary sensors for measuring the ET. 

 

2.3 Soil Monitoring 

 

An outline of the soil parameters considered for the IoT irrigation monitoring 

systems and the utilized sensors are detailed in this section. In this section, we include 

the data from those proposals that include at least one sensor for the soil, a total of 106 

papers are included. 

As indicated in the previous section, the most relevant parameter for the irrigation 

systems is soil moisture. The number of proposals that include different sensors is 

presented in Figure 2.11. The soil moisture is measured in all the 106 papers included in 

this section. The second parameter, in terms of relevance, is the soil temperature. The 

soil temperature is monitored in nine proposals. The pH is monitored in four papers 

[102, 116, 117, 161] and the nutrients of soil in only three cases [148, 130, 153]. 

 

 

Figure 2.11. Monitored soil parameters in all the evaluated papers. 
 

From the 106 proposals that include a soil moisture probe, 71 of them do not indicate 

the used equipment to measure the soil moisture, see Figure 2.12. In six cases [87, 152, 

162–165], they only include a picture of the device, but they do not indicate the model 

and manufacturer. In all those cases, the sensors employed are based on the 
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measurement of the conductivity between two electrodes that are inserted in the soil. In 

one case [144], the authors proposed to use a 4-fork sensor, based on the same principle 

as the previous ones. Nonetheless, no extra information about the sensor used was 

included in the paper, such as the manufacturer or model. The proposal presented in 

[149] only indicates that the utilized sensor was manufactured by EB. In [114] the 

authors only mention that the sensor used was a hygrometer. A total of 24 proposals 

clearly indicate the used sensor for monitoring the soil moisture.  

 

 

Figure 2.12. Information about the used moisture sensors in all the evaluated papers. 

 

Most of those proposals use similar sensors based on the conductivity between two 

electrodes. Different models of the aforementioned sensor have been used in the 

proposals (see Figure 2.13). The most used sensor, based on conductivity, is the YL69. 

It has been used in nine proposals [10, 93, 121, 137, 145, 166–169]. This sensor is 

characterized by a low price, and it is created specifically to operate with Arduino (and 

similar nodes). The output voltage goes from 3.3 to 5 V and the output values are 

related to soil moisture (0 to 300 for dry soil, 300 to 700 humid soil). Nevertheless, it is 

not possible to have a measure that indicates exactly the value of moisture without 

performing new tests and calibration of the sensor. The same range of measure is found 

in the other used sensor based on the same principle, the FC-28 [83, 122, 126] and the 

SEN0114 [95]. The S-XNQ-04 [105] has a similar operation principle. However, it is 

composed of three electrodes. In this case, the sensor output voltage goes from 0 to 2 V 

and the sensor is capable of measuring the soil moisture giving as a response the relative 

saturation moisture content expressed in percentage (%). This sensor has an accuracy of 

3% and it can measure from 0 to 100% of relative saturation. It can operate from −40 to 

85 °C.  
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A device able to measure the temperature and the moisture at the same time, the 

VH400, is utilized in [86, 89, 139, 146, 170, 171]. These sensors can be used from 

40 °C to 85 °C, but the accuracy and operational range of the sensor probe are not 

indicated in its datasheet. The operational principle of this sensor is based on the 

measurement of the dielectric constant of the soil using transmission line techniques to 

measure the moisture in any type of soil notwithstanding soil salinity. The output 

voltage of this sensor goes from 0 to 3 V. This output voltage is related to the 

volumetric water content in the soil. The sensor does not offer a linear relationship 

between the output voltage and the volumetric water content, but the sensor can 

measure from 0 to up to 60% of volumetric water content in the soil. This sensor has a 

relatively low price and can be implemented in Arduino systems (and similar).  

A sensor with completely different operational principles, the 200SS, is used in two 

proposals [106, 172]. It is a solid-state electrical resistance sensing device that is used to 

measure soil water tension. The 200SS [106, 172] has a pair of highly corrosion-

resistant electrodes, as a resistive device, the resistance of the sensor changes with the 

soil moisture. The electrodes are embedded within a granular matrix. The output values 

of the sensor go from 0 to 199 centibars. The higher the value of centibars the lower the 

water availability for the plants. The system presented in [104] uses an SM300 sensor. 

This device is able to measure two soil parameters (moisture and temperature). The 

SM300 [104] measures the soil moisture and temperature based on the generation and 

propagation of the electromagnetic field into the soil. The sensors measure the soil 

moisture as the volumetric water content, the operating range goes from 0 to 100% and 

the accuracy is ±2.5%. This sensor is manufactured by Delta-T Devices Ltd. This sensor 

is not specifically created to be integrated into an Arduino measuring system, even 

though it can be adapted since the output voltage goes from 0 to 1 V.  

Finally, the system detailed in [173] used the HA2002 sensor, but no information is 

available on the internet about this sensor in terms of operational principle or range of 

measuring. The sole information that was found was that the sensor is an HA2001 [173] 

sensor manufactured by Handan Dingrui Electronics Co., Ltd.  

Regarding the sensors used for monitoring the soil temperature, which are mentioned 

in [86, 89, 45, 94, 113, 117, 144, 173, 174], the different sensors are detailed in this 

paragraph. There are five papers that do not specify the sensors used [94, 113, 117, 144, 

174]. The other four proposals indicate in the paper the sensors selected. Although in 

one paper no information could be found about the sensor utilized [173], the authors 

indicate that their system includes the HA2001 sensor. 

In other cases, the information of the selected sensors is detailed. The proposal 

presented in [104] used an LM35 sensor. This device is able to measure temperature. 

The operating range is −40 to +125 °C and the accuracy is ±0.5 °C. The sensors offer an 

analogic signal and it is manufactured by Texas Instruments. The proposals presented in 

[86, 89] selected the THERM200 to measure the temperature. The operational range of 

these sensors goes from −40 °C to 85 °C and its accuracy is ±0.5 °C. The operation 

principle of this sensor is not specified in the datasheet.  
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Figure 2.13. Number of papers that used different models of soil moisture sensors. 

 

In terms of sensors for soil nutrients, three papers include in their proposals sensors 

for monitoring this variable [130, 148, 153]; nonetheless, not all of them indicate the 

used sensor. The only paper that clearly indicates the utilized sensor is the proposal 

presented in [130] includes an 1185 SunRom color sensor. This sensor is based on RGB 

color detection, in [130] authors relate the color of the soil with the nutrients. The pH of 

the soil is measured in four proposals [116, 117, 122, 161]. However, none of these 

proposals indicates the selected device or equipment in the paper.  

 

2.4 Weather Monitoring 

 

An overview of the weather parameters monitored in IoT irrigation monitoring 

systems and the most utilized sensors to monitor these parameters is provided in this 

section. The weather conditions are a key factor both in irrigation needs and in the 

performance of crops. Figure 2.14 shows the most monitored weather parameters in the 

currently available smart irrigation proposals. Temperature and humidity affect the 

evapotranspiration of the water in the soil. Air temperature is defined as the thermic 

level of the atmosphere and is usually measured in Celsius, Fahrenheit, or Kelvin 

degrees. It is the most monitored weather parameter with one hundred papers 

monitoring it. Humidity is the presence of water vapor in the air. The amount of water 

vapor in the air is expressed in percentage (%). It is the second most monitored weather 

parameter with 86 papers. Furthermore, luminosity is paired with temperature as direct 

radiation from the Sun raises the temperature and leads to more water loss in the soil. It 

is defined as the intensity or brightness of the light. It is measured in Lux. It is the third 

most monitored parameter with 28 papers. The amount of precipitation determines 

whether the irrigation is needed or not and the amount of water to be employed in the 

case of irrigation being necessary. It considers any form of hydrometeor that falls from 
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the atmosphere and reaches the earth’s surface. Furthermore, it includes rain and snow. 

A total of 14 papers considered precipitation monitoring. Although temperature, relative 

humidity, luminosity, and precipitations are the most important factors regarding IoT 

irrigation systems for agriculture, many systems propose the monitoring of other 

environmental parameters. Table 2.1 details all the papers that utilized these parameters. 

 

 

Figure 2.14. Most monitored weather parameters. 
 

Table 2.1. Papers that measure the most monitored weather parameters. 

Parameter References 

Air 

temperature 

[10, 78, 81, 83, 84, 94–102, 107–109, 111–118, 121–126, 130–139, 141, 143, 

144, 146–148, 149, 150, 153, 154, 162, 165, 166, 168–173, 175–213] 

Relative 

humidity 

[78, 83, 84, 91, 94–99, 101, 106–109, 111–118, 121–126, 131, 134–139, 141, 

143–148, 149, 150, 153, 154, 162, 165, 166, 168–173, 176–178, 181, 182, 

184, 186, 188–191, 193–197, 199, 201, 204–211, 213–216] 

Precipitation [80, 95, 98, 100, 111, 117, 126, 145, 165, 170, 188, 194, 208] 

Luminosity 
[78, 94, 98, 112, 113, 115–117, 121, 122, 126, 141, 149, 163, 169, 170, 176, 

177, 180, 182, 187, 191, 195, 196, 205, 207, 208, 210] 

 

As it can be seen, the four previously mentioned weather parameters are the most 

recurrent environmental factors in the literature. However, there are other weather 

factors concerning the air and climate that are monitored in some IoT smart irrigation 

systems. Ultraviolet radiation is electromagnetic radiation with wavelengths ranging 

from 10 nm to 400 nm and is monitored by seven papers [106, 116, 118, 125, 171, 189, 

196]. Measuring wind speed [94, 95, 106, 117, 122], wind direction [94, 95, 117], and 

atmospheric pressure [209] is also considered by some papers. Air pollutants are 
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considered in some IoT irrigation systems as well. CO2 [94, 113, 116, 117, 125, 189, 

196], ozone [153], gas [145, 194] and smoke [175] are the types of air pollutant 

considered by the currently available smart irrigation systems. Lastly, other parameters 

that are monitored concerning the surrounding area are movement and sound. 

Movement [87, 91, 108, 111, 115, 178, 192, 194, 197, 199, 214] and sound [91, 189, 

191, 214] are considered mostly for security purposes. Ultrasound sensors are deployed 

to detect intruders in the fields.  

There are varied sensors that can be utilized to measure weather parameters. 

However, there are smart irrigation systems that opt for not including these sensors and 

choose to ask for the environmental information to web servers such as Yahoo [112, 

178], which provide the weather and environmental data from meteorology agencies. 

Temperature monitoring is one of the most common parameters regarding weather 

monitoring in IoT irrigation systems. As it can be seen in Figure 2.15, The DHT11, 

DHT22, and the LM35, are the most utilized temperature sensors with 27, 13, and 14 

papers respectively. Al these sensors are low-cost sensors. On the one hand, the DHT11 

and DHT22 provide both temperature and relative humidity readings. On the other hand, 

the LM35 and the TMP-36 [83, 203] have broader temperature ranges. The papers that 

utilized these sensors are detailed in Table 2.2. These sensors are low-cost which may 

be relevant to their extended use.  

 

 

Figure 2.15. Most utilized temperature sensors. 
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Table 2.2. Temperature monitoring sensors. 

Sensor 

Temperature 

Range Accuracy Reference 

Min Max 

DHT11 0 °C 50 °C ±2 °C 

[78, 109, 111, 112, 114, 121, 137, 143, 144, 153, 

154, 166, 168–170, 172, 181, 182, 186, 190, 194, 

195, 199, 205, 210, 211, 213] 

DHT22 −40 °C 125 °C ±0.5 °C 
[126, 138, 145, 146, 165, 171, 177, 195, 197, 

202, 206, 207, 209] 

LM35 −55 °C 150 °C - 
[10, 98, 99, 103, 115, 130, 132, 134, 141, 149, 

154, 180, 183, 216] 

 

According to sensor type, thermistors such as the DHT11, the DHT22, and the 

AM2315 are the most utilized type of temperature sensors [106] (see Figure 2.16). The 

DHT11 and DHT22 are low-cost sensors. However, the AM2315 [106] has a higher 

price with the advantages of a higher range (−40 °C to 125 °C) has higher accuracy 

(±0.1 °C). Semiconductor-based integrated circuit temperature sensors like the LM35 

and DS18B20 [100], and band-gap proportional to absolute temperature sensors, SH10 

[84] and SH11 [95], are the next most utilized temperature sensors by type. The SH10 

[84] and SH11 [95] sensors provide both temperature and relative humidity readings. 

Furthermore, compared to the DHT11, they present better temperature ranges and 

accuracy. They are however similar to the DHT22 in terms of temperature ranges, 

accuracy, and price. The TMP36 [83, 203] is a temperature sensor comprised of a diode 

and the EE160 [125] is a resistive temperature detector sensor. The FM-KWS [173] and 

the BME250 [208] are of an unknown type. 

The most utilized relative humidity monitoring sensors are presented in Figure 2.17. 

As in temperature monitoring, the DHT11 and DHT22 sensors are the most utilized 

ones, with 29 and 13 papers that use them, respectively. As both sensors are able to 

monitor both temperature and humidity, most systems that utilize these sensors do not 

choose a separate sensor for each parameter. There are sensors with better accuracy. 

However, IoT irrigation systems generally do not need the highest accuracy levels 

available in the market. Table 2.3 presents the papers that utilize these sensors. 
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Figure 2.16. Most utilized temperature sensors by type. 
 

 

 

Figure 2.17. Most utilized humidity sensors. 
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Table 2. 3. Relative humidity monitoring sensors. 

Sensor 

Humidity 

Range Accuracy Reference 

Min Max 

DHT11 20% 90% ±5% 

[78, 109, 111, 112, 114, 121, 137, 143, 144, 152, 

154, 166, 168–170, 172, 181, 182, 186, 190, 194, 

196, 199, 205, 207, 210, 211] 

DHT22 0% 100% ±5% 
[126, 138, 145, 146, 165, 171, 177, 195, 197, 202, 

206, 207, 209] 

 

According to type (see Figure 2.18), the most utilized humidity sensors for IoT 

irrigation systems is the capacitive humidity sensor, which are the DHT11, the DHT22, 

the AM2315 [106], the SH10 [84], the HIH 4000 series [149] and the HH10D [217]. 

The DHT22, AM2315 [106], and SH10 [84] have the same range. However, the 

AM2315 has higher accuracy (±2%) than that of the DHT22 and the SH10 [84] (±5% 

and ±4.5% respectively). Resistive humidity sensors are another one of the types of 

available humidity sensors, such as the HR202 [98]. However, there are five humidity 

sensors employed for IoT irrigation systems that are of an unknown type. They are the 

FM-KWS [173], the BME280 [208], the EE160 [125], the HTU210 [95], and the SY-

HS-220 [99]. 

 

 

Figure 2.18. Most utilized humidity sensors by type. 
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Light intensity and UV radiation are another set of parameters that are frequently 

monitored in IoT irrigation systems. Figure 2.19 presents the most utilized sensors for 

light intensity monitoring. The light dependent resistor (LDR) is the most utilized 

sensor for light intensity monitoring [78, 98, 122, 126, 134, 170, 180, 182]. The second 

most used luminosity sensor is the BH1750 [112, 177, 197, 208] followed by the 

TSL2561 [196, 209] with one paper less. The LS-BTA Vernier was used as well in 

[149]. Among them, the BHT1750 [112] is the sensor with a broader range (1-65535 

Lux). There is not a commonly utilized sensor for radiation, but the sensors currently 

utilized in IoT irrigation management systems are the SN-500 [106], the GUVA-S12SD 

[171], the 6450 TSR [196], and the SP110 [125]. 

 

 

Figure 2.19. Most utilized luminosity sensors. 

 

Regarding rain, one of the ways in which it is incorporated in the decision-making 

process of irrigation systems is to stop automatic irrigation if rain is detected to avoid 

overwatering [91]. The RSM3ALS sensor was utilized in [170]. It is an optical rain 

sensor comprised of an LED (Light Emitting Diodes), an LRD (Lightning and Radio 

Emission Detector), an electronic control unit, lenses, and an ambient light sensor. 

When the sensitive area is dry, a high intensity of light is received by the IR receiver. 

When the sensitive area is wet, the intensity of the received IR light decreases. It is 

manufactured by Bosch and it is commonly used in the automotive industry. The SEN-

08942 [95] is a meteorology station manufactured by Sparkfun. It allows monitoring 

both wind speed and direction and it incorporates a pluviometer. The PRD180 [98] is 

comprised of a rain detecting board with two separate PCB (Printed Circuit Board) 

tracks and a control module that provides a digital and an analog output. The operating 

voltage is from 3.3 V to 5 V. It is manufactured by Elecmake. Like the PRD180 [98], 

the YL83 [126] is comprised of a series of conductive strands printed onto a Bakelite 

plaque. The water creates a short-circuit offering a low resistance between the lines 

connected to the ground and the lines connected to the positive polarity. 
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The type of agriculture most concerned with air and wind as a parameter concerning 

weather is greenhouse agriculture. For example, one of the aims of [118] is the 

sanitation of the air of the greenhouse from pathogens and chemical contaminants. This 

is then closely related to the activation of the actuators necessary to the regulation of the 

quality of the air. The contaminants that can affect the quality of the air are CO, CO2, O3, 

NOx, PM2.5, and PM10, among others [114]. In the context of agriculture, air 

contaminants are monitored with the use of sensors that can be low-cost sensors such as 

the MQ135, MQ131, MQ2, or MQ9 sensors or commercial sensors that can be found in 

professional weather stations. The MQ135 [114, 194], used for benzene, alcohol, smoke, 

NH3, NOx, and CO2 monitoring, and the MQ2 [114, 145], used for gas monitoring 

(propane, hydrogen, and LPG), are the most utilized low-cost sensors for air quality 

monitoring. The MQ131 [114] is utilized for ozone, Cl2, NO2 monitoring, and the MQ9 

[114] is utilized for CO/combustible gas, methane, carbon monoxide, and LPG 

monitoring. Another sensor that can be used to monitor CO2 is the CDM4161A [196].  

Wind speed and direction may be of interest to IoT irrigation systems such as for the 

proposal in [95], that utilized the SEN-08942 sensor manufactured by Sparkfun. 

Barometric pressure can be of interest as well and can be measured by the BME280 

sensor manufactured by Bosch [208]. 

Movement detection is often related to security measures or to the aim of scaring 

animals to avoid crop damage. The most utilized sensor for movement detection is a 

passive infrared (PIR) sensor [91, 145]. This sensor measures the infrared light that 

radiates around the objects placed at the front of the sensor. The change in infrared 

radiation is converted into changes in voltage that trigger the detection. It is often 

utilized for intrusion and pest detection. Ultrasonic sensors are often utilized to detect 

movement, such as the robot proposed in [115] that is able to perform some actions to 

scare the animals that may enter the fields. These sensors are comprised of a transmitter 

and a receiver that operate at the 40 kHz frequency. Its range is from 10 cm to 30 cm. 

Ultrasound at lower frequencies was utilized in [110] to repel the animals. Insects may 

cause great damage to the crops, for that reason some systems such as [94] include a 

pest warning functionality. The system in [184] is able to even detect the type of insect 

pests that are damaging the crops. These features are often accompanied by a buzzer to 

generate an alarm when intruders or animals are detected [111].  

Depending on the type of agriculture, the values from the measures for each 

environmental parameter can be utilized to determine the actions of different types of 

actuators. It can be part of a model like the one proposed in [122] where the on-

agriculture stage gathers the data on temperature, humidity, light, moisture, and wind 

speed in order to activate or deactivate fans, artificial light, a cooler, and water pumps. 

Many IoT irrigation systems have both a manual and an automatic mode to control 

irrigation. In [114], the amount of water released by the water pumps, or the duration of 

the irrigation can be selected in the manual mode. For the automatic mode, a preset 

value is utilized at the beginning. Then, the data is analyzed to determine the 

personalized settings. The most utilized actuators to modify the conditions of the 

climate that affects the crops or to protect the crops from animals and intruders are 

presented in Figure 2.20. 
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Figure 2.20. Most utilized actuators. 
 

Buzzers are the most utilized actuators in IoT irrigation systems regarding external 

agents. These sound emitters are usually utilized to scare animals and to alert the user of 

anomalies in the system or the intrusion of animals or people [81, 99, 108, 109, 111, 

116, 141, 145, 154]. Fans [88, 115, 118, 122, 125, 203, 217] and artificial lighting [88, 

101, 121, 122, 125, 132, 205] are tied in first place with seven papers each. The fans can 

be utilized to cool the temperatures and to create a breeze or light wind to aid in the 

pollination process. Artificial light is utilized to aid plants in performing photosynthesis. 

Different colors may be good for different aspects of the plant growth such as blue for 

the leaves and a mix of red and blue for the flowers. Coolers are the third most 

employed actuator for weather conditions controlling, utilized for cooling the 

temperature and for aiding in the control of the relative humidity, with four papers [78, 

88, 118, 122]. The least utilized actuators in IoT irrigation systems are heaters [78, 115], 

that modify the temperature to improve the performance or the health of the crops. Most 

of the actuators regarding weather conditions are usually placed inside greenhouses. 

Whereas buzzers and scarecrows can be placed in outdoor fields. 

 

2.5 Sensor Networks for Irrigation Systems 

 

In this section, an overview of the most utilized nodes for implementing sensor 

networks intended for irrigation systems is presented. Furthermore, the most employed 

wireless communication technologies are going to be presented as well. Lastly, the most 

frequent cloud systems for IoT in smart irrigation solutions and common architectures 

for these systems are going to be discussed as well. 
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2.5.1. IoT Nodes for Irrigation Systems 

 

In this subsection, the most utilized IoT nodes for IoT irrigation systems are going to 

be presented. Figure 2.21 presents the most utilized nodes for the implementation of IoT 

irrigation systems. As it can be seen, Arduino boards are the most utilized nodes for the 

implementation of IoT irrigation systems. The Arduino UNO was utilized in 34 papers 

and the Arduino Mega was used in six papers. Furthermore, a total of 59 papers claimed 

to use an Arduino board. The references of the most utilized nodes are detailed in Table 

2.4. 

 

 

Figure 2.21. Most utilized nodes to implement IoT irrigation systems. 

 

Table 2.4. Most popular nodes for IoT irrigation systems. 

Node Reference 

WEMOS MINI D1 [121, 137, 139] 

Node MCU [90, 92, 136, 147, 164, 164, 178, 204, 206, 209, 218–220] 

Arduino Mega [102, 105, 106, 122, 221, 222] 

Arduino UNO 

[83, 85, 89, 93, 99, 104, 105, 111, 112, 114, 119, 126, 134, 141, 

162, 163, 168, 170, 172, 178, 180, 190, 194, 195, 202, 204, 205, 

207, 211, 217, 219, 223–225] 

Raspberry Pi 2 Model B [116, 119, 216, 226] 

Raspberry Pi 3 Model B+ [108, 163, 227] 

Intel Galileo Gen-2 [80, 101, 127] 
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Figure 2.22 shows the types of Arduino nodes utilized in IoT irrigation systems. In 

addition to the Arduino UNO and the Arduino Mega, the Arduino Yun [110], the 

Arduino Due [146], and the Arduino NANO [202] were utilized in other IoT irrigation 

proposals. However, 15 papers did not specify the model of the Arduino board utilized 

[79, 82, 101, 131, 132, 140, 148, 171, 175, 182, 189, 213, 215, 218, 228]. 

 

 

Figure 2.22. Arduino nodes utilized to implement IoT irrigation systems. 

 

Some other popular boards are manufactured by other companies but can be 

programmed utilizing the Arduino IDE. One of these boards is the Node MCU, which 

was utilized in 13 papers. The other boards are the Wemos MINI D1 and the Galileo 

Gen-2 both utilized in three papers each. 

The nodes from the Raspberry family were frequently utilized as well. The most 

utilized Raspberry node was the Raspberry Pi 2 Model B and the Raspberry Pi 3 Model 

B+, with four papers and three papers, respectively (see Figure 2.23). They are followed 

by the Raspberry Pi 3 Model B [183, 202], the Raspberry Pi 1 Model B [126, 168], and 

the Raspberry Zero [203]. There were however eight papers that utilized an unspecified 

Raspberry Pi 3 [78, 95, 105, 150, 161, 199, 210, 214] and 13 papers [88, 101, 109, 115, 

146, 166, 171, 175, 185–187, 223, 229] that indicated that a Raspberry Pi node was 

utilized but the model of the node was not specified. The Raspberry Pi boards are more 

potent than the Arduino boards. Oftentimes, both Arduino and Raspberry Pi boards are 

utilized to implement an IoT irrigation system, using them according to the processing 

requirements of each task. 
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Figure 2.23. Raspberry Pi nodes utilized to implement IoT irrigation systems. 
 

Furthermore, there are other less popular nodes utilized by other IoT irrigation 

proposals. These other nodes are the waspmote [208], the crowduino [87, 131], the 

LPC2387 [186], the IPex16 from OdinS [125], the Renesas [128], the Mica mote [86], 

the eZ430-RF2500 [64], the AESP ONE [144], the FORLINX OK6410 [173], the 

BeagleBone Black [145], the Edison [79], the CC3200 Simple Link [112, 230] and the 

CC1310 [198]. 

The selection of the best node for an IoT irrigation system will depend on the 

necessities and the characteristics the farmer wants for the system. Arduino nodes and 

similar nodes from other brands provide a low-cost solution that can be implemented in 

developing countries and smaller farms. On the other hand, Raspberries have powerful 

computing abilities that allow the implementation of more demanding software and 

algorithms. 

Many works do not use a microcontroller board like the ones presented above and 

opt to implement their system with their circuit design. Figure 2.24 presents the most 

utilized processors for smart irrigation systems. The most utilized controllers are the 

ATmega328 [143, 154, 221, 231, 232] and the ATmega2560 [10, 122, 131] with five 

and three papers respectively. The Atmega1281 [184, 208] and the LPC2148 [98,174] 

are both utilized in two papers each. The other controllers comprise the LPC2138 [130], 

ATmega8 [152], the ATmega16/32 [115], the MSP430F5438A [117], the 

MSP430F5419A [64], the MSP430F2274 [64], the STM32L151CB [128], the 

STM32F205 [203] and the PIC16F877A [91]. The proposals that opt for developing 

their own designs for the nodes aim at addressing their own particular requirements. 

Therefore, the selection of the processor would depend on the characteristics of the IoT 

irrigation system considering the type of crop and its irrigation needs. 
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Figure 2.24. Most utilized processors to implement IoT nodes for irrigation systems. 

 

2.5.2. Communication Technologies 

 

In this subsection, an overview of the most employed wireless communication 

technologies is going to be presented as well. 

According to the Machina research report, the number of connected agricultural 

devices is expected to grow from 13 million at the end of 2014 to 225 million by 2024 

[233]. In addition, the report predicts that around half of those connections will use the 

newly emerging low power wide area network technologies which are particularly well 

suited to many of the applications in agriculture. 

When IoT devices are implemented, the employed communication technologies are a 

key point to achieve successful operation. In a generic way, communication 

technologies can be classified according to the environment where they will be 

deployed, the utilized communication standard, or the utilized spectrum band. 

If the scenario is considered, they can be classified into two types depending on the 

purpose of the IoT devices. On the one hand, we can distinguish the devices that 

function as nodes that transmit small amounts of data at short distances and have low 

energy consumption. On the other hand, there are devices that can transmit large 

amounts of data over long distances that have high energy consumption. Therefore, 

range, data rate, and energy consumption are some of the most important aspects to 

consider when deciding which technology to use. 

If the utilized standard is considered, there are a large number of wireless standards 

that are used in the communications of IoT devices. A general classification can be 

established between devices that communicate at short or long distances. Short distance 

communication standards usually reach distances of up to 100 m. Long-distance 

communication standards reach distances of kilometers.  

Also, another type of classification can be established based on the employed 

communication technology. In this way, three categories can be established. The first 
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category is formed by those that connect utilizing Ethernet or cable and WAN 

technology. The second category is comprised of those that connect via WiFi and WAN 

technology. Finally, the third category is formed by those that connect using both low 

power WiFi and WAN (Wide Area Network) technology. If the spectrum band used is 

considered, we can classify them into technologies that use the unlicensed spectrum or 

the licensed spectrum. Unlicensed spectrum bands are known as Industrial, Scientific, 

and Medical (ISM radio band bands, and are defined by article 1.15 of the International 

Telecommunication Union’s (ITU) ITU Radio Regulations (RR) [234]. The ISM bands 

can vary according to the region and its permits. Its main advantage is its ease of 

installation and the main drawbacks are related to safety deficiencies and possible 

interferences. The licensed spectrum bands are assigned according to the different 

proprietary technologies. They offer greater security, greater coverage, and fewer 

interferences. However, the cost of using a licensed band is higher.  

The most utilized communication technologies among the reviewed papers are 

presented in Table 2.5. In many of the proposals that we have studied, the authors 

combine several communication technologies instead of using one single protocol. As 

an example, it is very common for authors to start using either a wired or a wireless 

technology to connect the sensors with the nodes, and then, use a wireless technology to 

send data from nodes to remote or cloud storage centers.  

According to the descriptions provided by the different authors of their own 

implementations, we have verified that the most used communication technology in the 

different proposals is WiFi, as it can be seen in Figure 2.25. The reason could be due to 

is accessibility. The currently available low-cost devices for IoT usually support WiFi 

and, although its range can be considered short for the average expanse of a farm, small 

farms could be able to provide enough wireless coverage with several low-cost devices. 

GSM (Global System for Mobile communications) and ZigBee are widely spread 

wireless technologies as well, with 25 and 23 papers that use them respectively. GSM 

provides long-range communication at the cost of a mobile plan of the service provider 

that operates in the area. ZigBee provides low energy consumption and allows 

implementing networks with up to 65000 nodes. However, it has lower data rates than 

other available technologies and its range would imply the deployment of many nodes. 

Lastly, there are two new technologies that have been getting popular recently. LoRa is 

able to provide very long ranges, which makes this technology a very good option for 

secluded areas with no service. Moreover, regarding specific protocols for IoT systems, 

it is a little bit surprising that even though MQTT is a widely spread protocol due to its 

low power consumption and low overhead, it is not a popular protocol for IoT irrigation 

systems at the moment. It is observed that a relatively high number of papers, exactly in 

24 papers, did not describe the employed technology. In Figure 2.25 this group has been 

named as Undefined. 
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Table 2.5. Most utilized communication technologies in IoT crop irrigation systems. 

Technology References 

Ethernet [102, 112, 122, 150, 168, 182, 189, 190, 197, 203, 215] 

GSM 
[84, 85, 93, 98, 101, 107, 111, 114, 122, 123, 129, 135, 140–142, 154, 163, 

180, 204, 208, 235–239] 

Wi-Fi 

[78, 83, 90, 92, 95, 97, 100–103, 106, 109, 110, 114–116, 119–121, 127, 132, 

134, 138, 144, 145, 162, 163, 167, 168, 170, 171, 174, 176, 177, 178–180, 

183, 185, 186, 190, 194, 202–205, 207–209, 211, 214, 216, 217, 219, 220, 

224, 232, 237, 240–244] 

ZigBee 
[81, 88, 91, 113, 115–117, 143, 148, 170, 171–174, 189, 184, 188, 195, 202, 

208, 226, 235, 241] 

Bluetooth [95, 103, 131, 169, 180, 183, 185, 207, 225, 231, 245, 246] 

LoRa [5, 106, 128, 145, 193, 195, 196, 200, 208, 246, 247] 

GPRS [64, 93, 94, 117, 123, 129, 149, 152, 173, 188, 208, 212, 222, 236, 240] 

MQTT [97, 125, 136, 164, 165, 211, 226, 227] 

4G [94, 106, 128, 189, 192, 196, 203] 

6LoWPAN [125, 198] 

IEEE 

802.15.4 
[123, 153] 

 

 

 

Figure 2.25. Communication technologies employed to implement IoT irrigation systems. 
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We also observe that, in a large number of works, the end-users access the data, 

obtained during the monitoring process or to carry out the control of the system, through 

APPs or WEBs. Most of these communications are done through mobile devices using 

wireless technologies. 

Table 2.6 presents the communication modules that have been used in the reviewed 

articles. It is observed that most of the authors have not indicated the communication 

module employed. Furthermore, it can be observed that the most utilized module is the 

ES8266 WiFi module with 29 papers. It is followed by the SIM900 GSM module with 

nine papers and the NRF24L01 2.4 GHz module, the XBee S2 ZigBee module, and the 

SX1276 LoRa module with three papers each. Some other less utilized modules and 

chips for wireless communication include GSM modules such as the SIM800 [222, 237], 

the SIM300 [239], Ethernet modules such as the W5100 [132] or the Ethernet Shield 

utilized in [190], WiFi modules such as the ESP32 [170], the ESP1 [163], the ATWIN 

C1500 [241] and the Broadcom [203], LoRa modules such as the Feather 32u4 [241] 

and the LoRa ESP32 [246], 2.4 GHz RF modules such as the C2500 [64] and sub-1 

GHz RF modules such as the CC1310 [198] and the CC1101 [201], Bluetooth modules 

such as the HC-05 [180,248] and near radio frequency nodules such as the NRF4L 

[231]. There are other modules that are compatible with several technologies such as the 

JN5139 that admits both WiFi and ZigBee [172] or the Dragino LoRa GPS (Global 

Positioning System) shield [195]. 

 

Table 2.6. Most utilized communication modules. 

Technology References 

ESP82666 
[10, 83, 92, 97, 114, 119, 121, 132, 134, 136, 137, 144, 147, 162, 164, 165, 

167, 170, 174, 177, 178, 180, 209, 211, 217, 219, 220, 228, 232, 237, 243]  

SIM900 [84, 85, 93, 111, 132, 173, 180, 230, 242] 

NRF24L01 [175, 182, 224] 

XBee S2 [170, 172, 195] 

SX1276 [138, 145, 196] 

 

2.5.3. Cloud Platforms 

 

In this subsection, an overview of the most frequent cloud systems for IoT in smart 

irrigation solutions is going to be discussed. The two main storage systems used by the 

authors are traditional databases or cloud. In one article, the authors indicate that they 

store the data in a Raspberry Pi [175]. As it can be seen in Figure 2.26, a large 

percentage of the authors, more than 50%, have not defined the storage system they 

have used, there are 79 other papers where the storage system used is not specified.  
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Figure 2.26. Number of papers per storage system. 
 

To be able to provide the new services that are currently demanded in IoT, it is 

necessary to use middleware. Through middleware, it is possible to connect programs 

that initially had not been developed to be connected to each other. Bandyopadhyay et 

al. [249] presented a classification of the IoT-middleware, based on the various features 

and interface protocol support. One of the reasons why middleware is needed to connect 

IoT devices, which are initially autonomous, is to provide cloud services. We can take 

advantage of existing middleware using it on different cloud platforms. 

When we talk about the cloud, we identify a place where data, which is collected 

through sensors and transmitted to remote locations, will be stored and processed. In 

most of the articles, it is indicated that the data is processed in the cloud itself, and the 

end-users view all the information by connecting to the cloud. Cloud storage has been 

done on different platforms as it can be seen in Figure 2.27. In 24 of the reviewed 

articles, the authors specified that they store the monitored data in the cloud, but do not 

identify the utilized cloud platform (see Table 2.7). Most of the works in which the 

authors define the employed cloud platform, the utilized platform is Thingspeak, with 

14 papers. This platform is very intuitive and provides both free and paid options for 

storing, analyzing, and displaying the data on different devices. Algorithms can be 

developed using MATLAB to generate alerts. However, there are proposals that use 

other cloud platforms such as FIWARE [125, 200] and Dynamo DB [168, 210] with 

two papers each, and MongoDB [78], Ubidots [148], Amazon [141], M2X [250], 

NETPIE [92], SAP [251], InteGra [244], Firebase [205], InfluxDB [227]. These less-

used platforms are either more expensive, provide fewer services or are less intuitive 
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than Thingspeak. Table 2.7 lists the cloud platforms that have been used in the reviewed 

articles. 

 

Table 2.7. Cloud platforms. 

Cloud References 

Unspecified 

Cloud 

[82, 90, 100, 106, 114, 122, 127, 128, 138, 150, 161, 164, 165, 170, 172, 

183, 193, 202–204, 207, 220, 226, 247] 

Thingspeak [93, 106, 149, 167, 169, 181, 194, 197, 209, 211, 217, 221, 224, 241] 

 

 

 

 

Figure 2.27. Number of papers that employ each clouds service or platform. 

 

The rest of the articles where the authors identify the storage system utilize databases. 

As it can be seen in Figure 2.28, in 12 articles the information is stored in a database, 

but the name of the employed database is not specified. Other authors have identified 

the utilized databases. The most utilized one is MySQL [84, 95, 104, 108, 117, 126, 146, 

161, 175, 177, 195, 209] 12 papers, followed by SQL [119, 170] with two papers. Other 

less utilized databases were SQLite [102] and a NoSQL database with JSON [235] with 

one paper each.  
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Figure 2. 28. Number of employed Databases to store data of IoT nodes for irrigation systems. 

 

2.6. Discussion 

 

In this section, current trends regarding IoT irrigation systems for agriculture are 

going to be presented. 

 

2.6.1. Big Data Management and Analytics for Irrigation Optimization 

 

IoT systems, in general, generate a great amount of data due to monitoring different 

parameters in real-time, and IoT irrigation systems generate big data as well. Therefore, 

it is necessary to provide mechanisms to manage and analyze big data. Ahad et al. [252] 

comment on the need for sustainable management of big data to avoid overusing natural 

resources. Using blockchain, powering IoT devices with solar energy, selecting useful 

data and discarding unnecessary and redundant data, employing clustering techniques to 

reduce the volume of the information, implementing time-efficient algorithms, and the 

utilization of sustainable resources as alternatives to the components that are employed 

nowadays are some of the suggestions they provide. 

Although the data gathered from the sensors is already a big source of information, 

the analysis of this data is paramount to optimize the IoT irrigation system according to 

the crop and the weather conditions. For this purpose, Tseng et al. [253] presented a big 

data analysis algorithm to aid farmers in the crop selection process. Their proposal 

satisfied the five Vs (volume, velocity, variety, veracity, and value) of big data. They 

performed a 3D correlation analysis that evaluated the irrigation cycle to identify the 

irrigation practices performed by the farmer. Then, they calculated the soil moisture 

content to detect irrigation and to evaluate if the farmer applied pesticides or fertilizers. 

This information was coupled with data on the weather conditions and other aspects of 

the soil to provide the farmer with the cultivation risks of each type of crop. 
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Nonetheless, there are other technologies that are currently being utilized to analyze the 

big data produced by IoT irrigation systems for agriculture. 

AI is currently the type of technology most companies are interested in for various 

purposes. In the case of irrigation, the use of AI is tied to the optimization of the 

available resources such as water, fertilizers or energy or to obtain information from the 

crops such as the presence of diseases or the correct growth of the plants, vegetables, 

and fruits. One of the techniques employed to analyze the data gathered from the 

sensors so as to perform decisions on the irrigation systems is fuzzy logic. Fuzzy logic 

has been employed to improve irrigation scheduling in greenhouses and control the 

drainage implementing it on the controller of the system [151]. The fuzzy rules were 

provided according to the water availability utilizing the QtFuzzyLite software 

(FuzzyLite Limited, Wellington, New Zealand). Another fuzzy logic controller is 

employed to determine the coverage error for the resources so as to determine if the 

effective watering of the plants can be guaranteed [146]. The system presented in [187] 

utilized fuzzy logic to determine the duration of the irrigation process once the soil 

moisture values go below the 20% threshold. Light and temperature lead to the least 

accuracy in irrigation (40%) whereas any combination with the soil moisture values 

reached an accuracy from 62 to 81%. The authors conclude that the subsoil moisture 

sensor is the most important sensor to determine irrigation. The irrigation time was 

predicted in [213] as well, using the adaptive neuro fuzzy interference system (ANFIS) 

to predict the irrigation time. This fuzzy logic technique was implemented employing 

the MATLAB software. However, outdoor temperature and light are important to avoid 

the evaporation of the water. Another irrigation system utilizes iterative learning control 

(ILC) arithmetic to make decisions regarding the opening of the water valves [117].  

Machine learning is another technique that is utilized in irrigation systems to perform 

predictions. The prediction algorithm in [171] for soil moisture prediction obtained an 

accuracy of 96%. Prediction techniques can also be utilized to estimate the amount of 

available water for irrigation such as the case of [170], where the authors employ 

Fisher’s LDA method for that purpose. Water usage is predicted as well in [100] 

employing regression algorithms. The regression algorithms consider the temperature of 

the environment and the water flow to produce a water consumption forecast that is then 

visualized by the user through a mobile app.  

Feedforward neural networks and the structural similarity index were employed in 

[254] to develop an optimized smart irrigation system. The authors compared gradient 

descent and variable learning rate gradient descent optimization techniques to predict 

soil moisture and they determined that the latter was the best one. Furthermore, a study 

on machine learning applied to agriculture so as to perform predictions on irrigation was 

performed in [255]. Different machine learning techniques were applied to the data on 

the soil and the environment collected from jojoba plantations. The authors conclude 

that the boosted tree classifier was the best classification model was and the gradient 

boosted regression trees was the best regression model. They had 95% and 93% 

accuracy respectively. The authors suggest as well that different feature-sets would be 

better for different plots as some configurations achieved better results for different 

types of plots such as organic ones. Furthermore, the models considerably reduced their 
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accuracy when deliberated soil drying was performed. Moreover, the authors state that 

the data on the weather and the saturation could be not considered without it 

substantially affecting the accuracy of the models. 

 

2.6.2. Low-Cost Autonomous Sensors  

 

As we have seen in Section 2.1, the majority of the countries that dedicate more 

effort to researching IoT irrigation systems are countries where the farmers cannot 

afford commercial solutions. Therefore, most of the solutions for irrigation management 

are comprised of low-cost sensors and controllers so as to increase the scope of the 

benefits of utilizing smart irrigation systems. Apart from individual sensors, some 

shields integrate several sensors and connectors for irrigation and agriculture-specific 

IoT systems such as the OpenGarden shield [187]. It can be connected to an Arduino 

UNO and it is comprised of an LDR, a DHT22 connector, a soil moisture connector, a 

hydroponics connector, digital and analog pins, a DS18B20 [100] connector, and an 

antenna connector. This type of solution allows the easy implementation of low-cost 

smart irrigation systems. 

 

2.6.3. Sustainable Irrigation Systems 

 

Most irrigation systems do not have access to the power grid, therefore there is a 

need for alternative means of powering up the devices that conform the system. Even 

irrigation systems with access to the power grid may only receive power during a 

constrained time period. In India, for example, the system presented in [79] determines 

when access to electricity is available to turn on the irrigation motors. This system was 

designed to help farmers when access to electricity happens at irregular hours or even at 

night, when farmers may not be present in the field. To address the need for alternative 

ways of powering the irrigation systems in agricultural fields that are too far to access 

the power grid, many systems incorporate a solar energy functionality, making the 

system more sustainable [90]. Furthermore, the use of solar energy reduces the energetic 

costs which is an advantage for irrigation systems intended for developing areas. 

Considering those reasons, a total of 22 of the surveyed papers chose to utilize solar 

energy to power their proposed irrigation system [87, 90, 95, 96, 100, 106, 113, 116, 

119, 138, 140–142, 146, 150, 152, 191, 196, 223, 229, 231].  

Most of the energy consumption of the sensor nodes is produced by the data 

transmission. Thus, several studies focus on analyzing the energy consumption of 

wireless technologies. Ayele et al. [256] performed a simulated comparison of the 

energy consumption of BLE and LoRa in a Wildlife Monitoring System. The authors 

proposed a dual radio network model. The nodes were deployed on the collars of the 

animals. The communication between the nodes was performed over BLE until it 

reached a cluster head. Then, the cluster head communicated through LoRa to a Lora 
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gateway. The energy consumed by the LoRa star topology increased as the nodes 

increased, due to the overhead. However, the proposed solution eliminated the energy 

consumption caused by the overhead. The results showed a reduction of energy 

consumption of 97% compared to LoRaWAN. Bor et al. [257] presented an analysis of 

the parameters of LoRa transmissions. The authors focused on the effects of parameter 

selection on energy consumption and communication performance. The authors stated 

that a Spreading Factor (SF) of 8, a bandwidth of 500 MHz, 4/5 coding rate, and 8 dBm 

of transmission power (tx power) consumed 2.31 mJ and the optimal settings were an 

SF of 7, a bandwidth of 500 MHz, a coding rate of 4/5 and a tx power of 11 dBm which 

had an energy consumption of 1.60 mJ. Furthermore, the authors proposed an algorithm 

that was able to probe different settings and selected the best option in order to balance 

the energy consumption. Several experiments on the Carrier Sense Multiple Access 

(CSMA) channel access mechanisms of LoRa were performed by Phan [258]. The 

author presented an adaptation of the 802.11 CSMA protocol for LoRa and a new 

CSMA protocol. The energy consumption of the adaptation and the new proposal with 

different settings was compared as well. The results showed the new proposal had a 

lower energy consumption for all settings compared to the adaptation from 802.11. 

Moreover, Pötsch et al. [259] discussed the limitations of LoRa gateway deployment. 

The overhead caused by the LoRa gateways is analyzed as well. The energy 

consumption was compared for different spreading factors and bandwidths of 125MHz, 

250 MHz, and 500 MHz. The results showed less energy consumption as the spreading 

factor decreased and the bandwidth increased. Furthermore, the energy consumption 

increased as the tx power increased, being 50 mA approximately for a tx power of 5 

dBm and slightly above 120 dBm for a tx power of 19 dBm. 

The energy consumption of WiFi nodes has been studied as well. Mesquita et al. 

[260] performed a study on the performance of ESP8266 WiFi modules which are 

branded as ultra-low power. The authors performed several experiments to measure the 

energy consumption with sleep modes and different transmission configurations. The 

authors stated that the usual configuration of a Delivery Traffic Indication Message 

(DTIM) period of 3 and a 100 ms beacon interval had the lowest average current 

consumption, namely 14.71 mA. They also stated that ESP8266 modules were able to 

operate for 2 to 4 days with a small battery of 1000mAh of capacity. Montori et al. [261] 

presented a performance study on WiFi for IoT systems. The authors utilized ESP-12 

SoC modules to study their energy consumption under variations of the connectivity 

settings. Tests were performed with Lo-Po, alkaline, and NiMH batteries. The results 

showed similar performances for all batteries with the same configurations. Furthermore, 

the difference in energy consumption between awake and sleep mode was less than that 

stated on datasheets. Lastly, Putra et al. [262] performed an energy consumption 

comparison between BLE and WiFi with different settings for the beacons. Tests were 

performed for an iPhone device. The results showed BLE had 30% more energy 

efficiency than WiFi. Furthermore, the battery life of the smartphone was of 14 hours 

and 46 minutes for WiFi and 16 hours and 38 minutes for BLE. 

Energy-efficient algorithms have been utilized as well to reduce the energy 

consumption of the nodes. Thar Baker et al. presented in [263] an energy-aware 

algorithm for IoT applications based on cloud called (E2C2). The algorithm allows 
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utilizing the least possible number of services needed to complete the requirement. The 

proposed algorithm was compared to four other existing proposals. Results showed a 

better performance of the proposed algorithm regarding energy efficiency and the least 

number of services used to complete a task in an optimal manner.  

 

2.6.4. Frequency of the Data Acquisition 

 

The frequency at which the parameters are monitored may be different for each 

proposal. Real-time monitoring [5, 121] has been surging as the cost of the devices, 

whether they are processors, devices for data storage, or sensors, has experienced a 

considerable reduction. Some proposals decide not to monitor the parameters in real-

time so as to reduce energy consumption. Some authors have decided to take a 

measurement every 10 s [108]. 

 

2.6.5. New Forms of Data Acquisition 

 

The advances in technology as lead to new ways of obtaining the data from the 

sensors deployed in the fields. One of the new ways of gathering data from the sensor 

nodes is by utilizing drones [5]. Drones also allow obtaining new data that could not be 

obtained in other ways such as aerial images of the fields.  

Drones have been utilized for remote sensing activities for different purposes in 

vegetated areas. Andrew M. Cunlife et al. presented [264] a remote-sensing dryland 

vegetation quantification technique. The technique was able to employ structure-from-

motion (SfM) photogrammetry of pictures taken from drones to obtain 3D models of the 

vegetation structure. The technique was able to identify grass tussocks with volumes of 

a few cm3 employing canopy height models. Results showed the technique was able to 

predict biomass utilizing the detected canopy volume, obtaining coefficients of 

determination that ranged from 0.64 to 0.95. Moreover, Jian Zhuang et al. [265] 

proposed the use of lightweight drones for remote sensing of forests for ecological 

purposes. The system employed drone-derived canopy variables to detect patterns in the 

biodiversity of the forest. Results showed a correlation between canopy closure and 

stand basal area. Niche differentiation was performed utilizing edaphic and topographic 

variables. Lastly, the authors detected a correlation between canopy variables and light-

demanding species. Urbahs et al. [266] described the structural characteristics and the 

parameters of a UAV developed for its use in environmental monitoring. Paulina 

Lyubenova Raeva et al. [267] presented a study in which a drone was utilized to obtain 

vegetation indexes and thermal maps, relating the temperature of the vegetation and the 

soil. In order to do so, they used multispectral and thermal sensors. Stehr et al. [268] 

assured that drones could monitor the fields more frequently than the satellites. They 

also stated that drones could take more detailed photographs, and clouds do not hinder 

their vision. They also predicted that at the time when the cost of drones decreases and 
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their technology improves, more drones would be used in the field of agriculture. 

Furthermore, Kurkute et al. [269] described the process of developing a mechanism for 

spraying from a drone. 

Image processing techniques are implemented in farming to monitor the state of the 

crops. Parra et al. [270] showed the use of image processing techniques to detect the 

presence of undesired grass species. They utilize a drone with an Arduino module to 

take pictures. The obtained images are used to determine the best option to detect the 

presence of weeds. Their results pointed out that the combination of different layers of a 

single image can be used for detecting the presence of undesired plants. Ulzii-

OrshikhDorj et al. [271] proved the utility of a computer vision algorithm to detect and 

count citrus on the tree using processing techniques. Their system was able to estimate 

the yield and compare the yield estimation results obtained through several methods. 

They collected 84 images from 21 trees. Mello [272] created a system, which includes 

an aerial platform including a spectral imaging device, a position sensor, an orientation 

sensor and includes a ground-based sensor platform including at least one soil sensor. 

Hutchinson et al. [273] presented a technique for monitoring vegetation changes and 

dynamics using satellite image time series analysis. The BFAST time series 

decomposition method was applied to a ten-year MODIS (Moderate Resolution 

Imaging Spectroradiometer) NDVI (Normalized Difference Vegetation Index) time 

series dataset for the Fort Riley military installation and Konza Prairie Biological 

Station (KPBS) in northeastern Kansas. Their results had shown that the generated 

indicators are useful for different uses in land management. 

Other authors such as Puri et al. [274] made a study where they presented the best 

drones that can be used in monitoring and observation in agriculture so as to improve 

crops and prevent damage to the fields. Valente et al. [275] presented a collaborative 

system consisting of a WSN and an aerial robot that was used for real-time monitoring 

of frost in vineyards. Its solution was a mobile node that transported an aerial robot that 

ensured communication between the dispersed nodes and the base station of the robot. 

This method allowed them to overcome the limitations arising from the use of wireless 

networks. 

There are authors, like the following, who present a classification of UAV 

applications in PA. Hunt et al. [276] present a classification of the applications of the 

unmanned aircraft systems (UAS) for precision agriculture. The authors define the 

following three niches or sectors in their classification: scouting for problems, 

monitoring to prevent yield loss, and planning crop management operations. Tsouros et 

al. [277] review recent applications of UAVs for Precision Agriculture. Rao Mogili et al. 

briefly review the implementation of UAVs for crop monitoring and pesticide spraying. 

Daponte et al. [278] propose a survey on techniques, applied to precision agriculture 

monitoring, through the use of drones equipped with multispectral, thermal, and visible 

cameras. For each application, the main limitations are highlighted, and the parameters 

to be considered before performing a flight are reported. Authors such as Boehm et al. 

[279] propose using an IEEE802.11n network to distribute the images captured from a 

UAV to their ground control station. 
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Furthermore, fields and remote areas can hinder the progress of other activities such 

as cultural heritage conservation, and drones have been considered as a solution to 

implement systems such as the remote-sensing system for an archaeological survey of 

remains in mountain areas presented by Tesse D. Stek [280]. The author concludes that 

the use of drones can substantially improve the surveying process of archaeological 

projects adding to the on-site activities. Furthermore, remote sensing provides 

advantages such as being non-destructive, reducing the time and cost of the surveyance 

process, and the ability to access areas located on agricultural fields with difficult access 

and fields where the farmer or the proprietor must grant the access. 

The vegetation can also be in urban environments. For that reason, José Marín et al. 

presented in [272] a remote sensing system for urban lawn monitoring in smart cities. 

The system is comprised of an Arduino node with a camera mounted on a drone. 

Photographs are taken and classified into different grass qualities employing a rule-

based algorithm that classify the grass into very low, low, and high coverage. The 

system was tested with a dataset of grass pictures resulting in success in the 

classification of 100%. Lastly, the authors concluded that their system reduced the 

execution time of the process of taking pictures of the garden, compared to the same 

classification system mounted on a vehicle, for areas larger than 1000 m2. 

Another new form of data acquisition is the use of robots that can incorporate both 

sensors and actuators to perform activities such as soil moisture sensing, weeding, 

spraying water, or scaring the animals [115]. Robots can be utilized for the irrigation of 

precise areas due to their ability to travel to the desired location [87]. This robot is able 

to measure soil moisture and include proximity sensors to avoid collisions. The robot 

has a sprinkler system to irrigate the desired area. Furthermore, the wireless robot in 

[116] is comprised of both environmental and soil monitoring sensors and performs 

tasks such as water spraying, scaring animals and moving through the field. In order to 

improve the navigation of the robots for irrigation, the authors in [105] provided the 

robot with a coverage path planning (CPP) algorithm that has a map of the static 

elements and environmental data. The robot operating system (ROS) was utilized to 

develop the control system of the robot which is divided into three layers. The first layer 

reads the data from the sensors and controls the actuators, the second layer performs the 

communication among the elements of the system and the third layer performs the 

decision making and the path planning. This robot performs irrigation as a linear shower. 

Furthermore, these robots can be powered by solar panels [87, 116] to provide them 

with more autonomy.  

 

2.6.6 Underground communications 

 

IoUT is an IoT network comprised of at least one underground device with 

communication capabilities. In the case of the Over The Air (OTA) communication 

among the above-ground things, the communication can be affected by weather 

conditions, irrigation, and crop growth. Therefore, these aspects should be considered. 

On the other hand, underground communication has other requirements such as 
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adapting the transmission parameters to be able to transmit through the soil considering 

its changing conditions. 

The architecture of IoUT applications may be comprised of static and moving 

elements such as machinery, drones, sensing nodes, radios, and cloud [57]. These 

elements should be integrated and can be utilized for both real-time sensing and 

automation. 

The underground things are embedded systems with sensors for monitoring and a 

communication module. Underground things should be encapsulated in waterproof and 

weatherproof materials to avoid damages in the equipment from weather, animals, or 

machinery. They are powered by batteries, solar panels, or a combination of both and 

are expected to be low-cost. Underground things are deployed in large numbers to 

perform sensing in multiple places of the field. Base stations have a larger cost and are 

usually deployed at buildings or weather stations. They have access to more power as 

they have higher requirements. 

The machinery and vehicles utilized on the field can carry mobile sinks to gather the 

information from underground things as they move through the field. UAVs and robots 

can be employed as well for this purpose. The data is usually forwarded to a cloud 

service for its storage and analysis. 

Figure 2.29 shows a possible IoUT deployment for agriculture. Mehmet C. Vuran et 

al. in [281] determined the different components of an IoUT architecture as 

Underground Things for sensors and embedded systems deployed underground, mobile 

sinks that gather the data from underground things, base stations that act as a gateway, 

and cloud services that provide storage and data processing. However, there is no 

unified or standard IoUT architecture due to the different demands of the sectors that 

can employ this technology. One of the sectors that could benefit from IoUT is 

agriculture. In agriculture, IoUT is generally used for real-time sensing of soil moisture, 

ph, presence of organic matter, the composition of the soil, and nutrients [57]. It is also 

utilized for yield monitoring, precision planting, geolocation, map generation, soil 

sampling, drones, VRT (Variable rate technology), and auto steering.  The usage of all 

these elements allows applications to divide the field into different areas according to 

the conditions of the field. Another sector is that regarding oil and natural gas 

extractions and transport. Oil and gas reservoirs can benefit from IoUT applications to 

perform temperature and pressure sensing and to detect pipe and gas leaks. However, 

localization is necessary to determine the position of the underground nodes. Nasir 

Saeed et al. resolved this problem using isometric scaling [282] and CRBL (Cramer Rao 

Lower Bound) in the closed-form to perform 3D localization as opposed to the existing 

two-dimensional solutions. Lastly, seismic exploration is another one of the uses of 

IoUT [58]. It differs from other uses such as agriculture in the required burial depth of 

the node. 
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Figure 2.29. Example of IoUT using EM. 

 

The wireless communication in IoUT systems can be performed among underground 

elements, among above-ground things, and between underground and above-ground 

elements. The latter one is not symmetric because of the soil-air interface. Vuran et al. 

determine the communication range for underground communication to be 12 meters 

[57]. 

The characteristics of the soil as the communication medium is the principal aspect 

to consider in IoUT. The parameters that characterize the underground channel are the 

propagation of electromagnetic waves, soil composition, water content, the multipath 

effect, and burial depth [283]. Furthermore, when the transmission is performed among 

underground things, the communication is performed through a direct wave, a reflected 

wave, and a lateral wave with a path that proceeds along the soil surface. The latter one 

is the wave with the highest contribution to the received signal power [284]. 

The behavior of the signal in the 0.3-0.9 GHz band was studied to perform 

underground channel propagation models [283]. The results show that the effects of the 

reflected wave decrease with increases in burial depths, being negligible at depths 

higher than 2 meters. Therefore, for burial depths up to 2 meters, a two-path model 

should be used and for depths from 2 meters on, a single-path model can be considered. 

Regarding the distance between the nodes, the higher the distance, the higher the 

path loss. Furthermore, when the signal is reflected on the soil-air surface, its phase is 

changed and, when aggregated with the direct signal, ripples can happen. Another 

aspect to consider is the lack of uniformity of the soil. As the soil surface is not uniform 

and smooth both reflection and refraction occur. The multi-path effect can occur as well 

due to roots, stones, and air, resulting in random values of the phase and amplitude of 

the signal. Lastly, L. Li et al. conclude that the operating frequency and the soil 

composition are the key aspects for successful underground wireless communication 

and the existence of an optimal burial depth that minimizes the path loss for each 

operating frequency [283]. 
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Several technologies have been studied to be utilized for wireless underground 

communications [58]. Electromagnetic signals have low ranges, are very susceptible to 

interferences and attenuations, and have lower data rates. Acoustic communications are 

less susceptible to interferences in comparison to EM waves. It has high coverage 

ranges and low data rates. Mud pulse has medium interferences and attenuation, a high 

coverage range, and low data rates. Magnetic induction has a medium coverage range, 

data ranges of kbps, and low interferences and attenuation. Lastly, VLC has low 

interferences but high attenuation. It has a medium coverage range and data rates of 

kbps.  

N. Saeed et al. utilized magnetic induction to establish wireless communication 

between underground things for oil and gas reservoirs [282] to perform 3D localization 

based on the CRLB that considers channel parameters. The considered depth is 1.8 Km. 

The results show that the channel and parameters such as transmission power, error 

variance, coil size, and the number of underground things affect the localization 

accuracy. The performance is improved by increasing the number of turns in the coils, 

the transmission power, and the number of anchors. When the ranging error variance 

stays between 10 and 30%, the proposed solution is robust, but higher values are not 

accurate. In summary, the proposed solution is able to improve the localization accuracy 

by 30%. However, M. C. Vuran et al. determine that magnetic induction is not an option 

for IoUT systems [57]. 

A. Salam et al. studied the effects of soil type and moisture on the quality of wireless 

communication among the Underground Things [284]. From experiments performed 

both indoors and outdoors, results showed that lower soil moisture led to an increase of 

the channel capacity by 180%. Adapting the sub-carrier bandwidth to the soil conditions 

led to increases in capacity ranging from 56% to 136%. From experiments performed 

with sandy soil, silt loam soil, and silty clay soil with a system bandwidth of 20 MHz 

for all soils, the achieved capacity was 233 Mbps for sandy soil, 195 Mbps for silt loam 

soil, and 178 Mbps for silty clay soil. Furthermore, when studying the changes in 

capacity when increasing the distance from 50 cm to 100 cm, a decrease of 22 % was 

detected in sandy soil, a decrease of 29% in silt loam soil, and a decrease of 27% in silty 

clay loam soil. The water holding capacity of the soil is the principal soil parameter in 

the attenuation of electromagnetic waves. The higher the clay content of the soil, the 

higher the EM attenuation due to the small pore size. Moreover, the signal travels 

through both soil and air, with their respective conductivity and permittivity values, and 

through multiple paths. This results in an increase in the delay spread as the distance 

increases, obtaining less coherence bandwidth. Lastly, distance is another parameter that 

determines the channel capacity. Experiments were performed with antennas buried at 

20 cm of depth in silty clay loam soil using an empirical antenna bandwidth of 20 MHz. 

Results showed a decrease from 678 kHz to 411 kHz in the coherence bandwidth when 

the distance was increased from 50 cm to 12 m, and an increase in the number of 

subcarriers from 30 to 49. Moreover, a real-time permittivity and soil moisture 

monitoring for wireless underground communication called Di-Sense was presented in 

[285]. In order to do so, the propagation path loss and the velocity of wave propagation 

were utilized. Experiments were performed in a greenhouse with burial depths of 10, 20, 

30, and 40 cm, a frequency ranges between 100 and 500 MHz, and slit loam, silty clay 
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loam, and sandy soils. Results showed high accuracy for depths up to 40 cm and 

distances ranging from 1 to 15 meters. Lastly, a study on the performance of varied 

modulation schemes in underground communications was performed in [286]. Multiple 

antennas were utilized to exploit the direct, lateral, and reflected components of the 

wireless underground channel. Results showed bit errors rates of 10-3 for delay spreads 

below 0.05. Results showed that equalization impacts the performance of the IoUT 

communication with the 8-Tap Decision-Feedback Equalizer as the best one. 

Furthermore, DBPSK (Differential Binary Phase Shift Keying) and DPSK (Differential 

Phase-Shift Keying) presented a better performance for channels without adaptive 

equalizations. Lastly, the authors presented two new receiver designs for IoUT 

communications named Lateral-Direct-Reflected and 3W-Rake. The three antenna LDR 

design achieved a BER of 10-5. 

 Regarding the future challenges of IoUT, N. Saeed et al. commented on the 

difficulty in deploying IoUT nodes and accessing them for activities such as battery 

replacement [58]. Therefore, batteries should have a high enough capacity to reduce as 

much as possible the need for accessing the nodes and, the utilized protocols should 

implement energy-efficient functionalities. Furthermore, the nodes can get damaged if 

digging activities are performed. Another aspect is the transmission range that can be 

obtained in wireless underground communications, which is reduced due to the 

attenuation caused by the characteristics of the soil. Security in IoUT is not a topic that 

has been thoroughly studied yet. The physical security of the nodes is one of the 

security aspects that have to be considered as the nodes must be protected from 

corrosion, machinery, and digging activities. Furthermore, regarding cyberattacks, the 

interest in blockchain has been increasing. There are also problems regarding scalability 

and robustness. N. Saeed et al. also comment on the use of Software Defined Networks 

and cloud and fog computing to optimize data traffic, analysis, and data storage. 

Moreover, Rita de C. D. Leles et al. presented in [287] a summary of the challenges of 

IoUT for railways networks. The authors performed a coverage test in a tunnel where 

signal intensities of -55 dB were reached for 100 m of distance. The considered 

challenges are the environmental requirements such as power supply, electromagnetic 

compatibility, and the mechanical and thermal requirements, the mobility, the use of an 

independent frequency network that should provide enough bandwidth for the 

transmitted data, the QoS, the safety of the network and the energy efficiency. 

 

2.6.7. Security in IoT Systems for Irrigation 

 

Depending on the characteristics of the environment where the implementation of the 

IoT system is carried out, securing the system may become a challenging task as 

different types of threats must be considered. On the one hand, all the security issues of 

any IoT system can be applied to an IoT irrigation system for agriculture. Therefore, 

current works with their focus on securing IoT describes the security challenges that IoT 

irrigation systems may face. For example, organizations such as the Internet 

Engineering Task Force (IETF) study the different problems that affect this. 
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Furthermore, authors such as Garcia-Morchon et al. [288] present in their work the 

following list of security threats and managing risks: vulnerable software/code, privacy 

threats, cloning of things, malicious substitution of things, eavesdropping attacks, man-

in-the-middle attack, firmware attacks, extraction of private information, routing attack, 

elevation of privilege, denial-of-service (DoS) attacks. Regarding DoS attacks, 

Kamienski et al. [100] highly stressed the importance of protecting the irrigation system 

from DoS attacks or avoiding attackers from accessing the collected data or the system 

with the intention of damaging the crops. 

In order to face the above threats, it is necessary to apply the appropriate security 

measures, but as new threats and attacks appear daily, [288] propose using 

methodologies such as analyzing the business impact of the attack, assessing the threats 

considering their impact and probability, its impact on the privacy of the collected 

information and the process of reporting and mitigating incidents. 

However, on the other hand, when considering just the currently available studies on 

securing IoT irrigation systems specifically, it is possible to discern which aspects of 

IoT security are prioritized for this type of system.  

Jimenez et al. [289] identified the security threats specific to an intelligent 

wastewater purification system for irrigation. Apart from the previously mentioned 

security threats [288], the authors of [289] contemplate physical attacks that the IoT 

deployment may face. The IoT devices must be protected from the weather and possible 

animals that access the fields. However, strong weather conditions such as floods or 

animals such as wilds boars may result in the IoT device being damaged or lost. 

Furthermore, the IoT devices may also be damaged by the operators when they are 

performing their activities or be the aim of a person with malicious intentions. Another 

threat to the devices deployed on the field is the possibility of them being replaced with 

malicious nodes, providing the attacker with access to the network [79]. The deployed 

devices may also be susceptible to malicious code and false data injection, leading to 

wrong results and the malfunction of the system. Sleep deprivation attacks are aimed at 

depleting the battery of the devices. The deployed nodes are susceptible to booting 

attacks as well. Furthermore, attackers may also perform eavesdropping and interfere 

with the deployed devices. The concern of securing the physical devices deployed on 

the fields has led to many systems incorporating PIR sensors, scarecrows, and buzzers 

to detect intruders, either humans or animals, and to alert of their presence [109, 290]. 

Privacy is another aspect to consider. The data managed by IoT irrigation systems 

may not need as much privacy as the data managed by other IoT applications such as 

those for health. In fact, Jimenez et al. [289] remark that it may not be necessary for the 

gathered data of some irrigation IoT systems to remain private, but the correct 

performance of the system must be ensured, which is avoiding DoS attacks. However, 

the owners of the fields may be implementing new techniques they would prefer to 

remain private, or the water quality management system could be regarded as a critical 

infrastructure as the produce that results from the fields irrigated with that water would 

be consumed by people. Therefore, considering this aspect, Ahad et al. [252] and 

Barreto et al. [291] remark the need for user privacy, as the obtention of this 

information may lead to attacks to the owner or the personnel of the farm. Ahad et al. 
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[252] consider data and device privacy as well, because of the need for guaranteeing the 

ownership of the data to avoid repudiation and ensuring data availability. Barreto et al. 

[291] remark on the burden that could be originated from the exposure of the GPS 

locational data captured by IoT devices as attackers may gain information on the 

location of the farm to perform physical attacks. Lastly, Ahad et al. [252] also comment 

on the need for a secure storage system for the information, with particular emphasis on 

distributed data storage systems. Attacks such as SQL injections can lead to the 

obtention of private information from storage systems [292]. 

As cloud computing often goes hand in hand with IoT systems, threats to cloud 

services may compromise the IoT irrigation system as well. Flooding attacks and cloud 

malware injection are some of the attacks that can be intentionally executed to 

compromise the data and the performance of the cloud [292]. 

Ransomware is another security threat that could affect irrigation systems for 

agriculture [291]. All the data regarding pesticides and the fertigation system could be 

encrypted until a ransom is paid. For this reason, having a backup in a remote location 

is greatly advised. 

Barreto et al. [291] also remark some security threats that are not usually commented 

on when discussing the security of IoT systems for agriculture. One of these threats is 

the damage that can be caused by social engineering as the users of the IoT irrigation 

system could provide login information to people posing as technicians or click on 

malicious links on their e-mails. The other threats are agroterrorism, cyber-espionage, 

mostly related to accessing intellectual property or confidential information regarding 

aspects such as genetically modified crops. Other security requirements specific to IoT 

systems include network security, identity management, privacy, trust, and resilience 

[293]. They presented mechanisms that ensure data confidentiality, integrity, origin 

authentication, and freshness for each IoT technology. A large selection of IoT 

technologies was analyzed, from single-layer protocols to full protocol stacks. 

In WSN, failures that prevent the correct operation of the network may occur in the 

sensor nodes. Hereafter, some algorithms that reduce these problems are analyzed. 

Bagci et al. [294] developed a new distributed fault-tolerant topology control algorithm 

called Disjoint Path Vector (DPV) that is used for heterogeneous WSNs. These have 

two layers. The first one is a layer of nodes with low-cost ordinary sensors, limited 

power, and short transmission range. The other layer is comprised of supernodes with 

more energy reserves and better processing, data capacity, and actuators. These collect 

the information of the nodes. In the topology, each sensor is connected with at least one 

supernode by k-vertex disjoint paths (Paths with common endpoint but that have no 

other vertices in common). The typology is tolerant to a failure of k-1 in the worst case. 

The simulation showed that the algorithm is more efficient than other algorithms. DPV 

has a 4-fold saving in total transmission power of distributed anycast topology control 

under the assumption of no packet losses and a 2.5-fold saving with a packet loss rate of 

0.1. Azharuddin et al. [295] showed an algorithm called Distributed Fault-tolerant 

Clustering and Routing (DFCR). This algorithm is proposed for WSNs. The sensor 

nodes are grouped in clusters and a sensor node of the cluster is selected as cluster head 

(CH). The CH changes in each round of information forwarding. This is selected based 



Laura García García 

 

88 
 

on the residual energy of the CH, the distance between the sensor node and the CH and 

the distance from the CH to the base station. In case of failure, the sensor nodes send a 

help message to other clusters and, if they receive replies, they join this new cluster. 

They compared their algorithm with Minimum Hop Routing Model (MHRM) and 

Distributed Energy Balanced Routing (DEBR) with simulations. The results of the 

simulation showed that DFCR is better with regard to the number of live sensor nodes, 

energy consumption, etc. Authors in [296] proposed a lightweight algorithm, which is 

based on a set of rules to detect the characteristics of the packets in the network. The 

proposed approach can detect the malicious packets that are sent to the network. 

Furthermore, authors of [297] reviewed the architecture and features of fog computing, 

including real-time services and fog-assisted IoT applications based on the different 

roles of fog nodes. They presented security and privacy threats towards IoT applications. 

Kaur and Garg [298] developed an improvement of the DFCA, the Improved 

Distributed Fault-Tolerant Clustering Algorithm (IDFCA). In DFCA, when the CH fails, 

the operation is moved to the neighboring CH, causing a greater workload in it. In this 

study, when a CH fault happens, the sensor node selects the CH that was going to be 

chosen in the next round. Furthermore, the security level of LoRaWAN is studied in 

[299]. It is focused on the security of LoRaWAN. The LoRaWAN protocol is a MAC 

(Medium Access Control) layer protocol for LoRa, which provides the communication 

infrastructure and interfaces for gateway-sensor topologies, node coordination, and 

medium access. They proposed several countermeasures and changes to the LoRaWan 

protocol, which rendered all these attack vectors harmless. Many of these 

countermeasures can be implemented with minimal changes to the LoRa ecosystem. 

Blockchain is a new technique that is being applied to secure IoT systems [292], 

which allows secure data storage and communication. In agriculture, it is mostly 

utilized to secure the supply chain [300], although there are other proposals that use it to 

secure a greenhouse [301] or to secure the overall smart agriculture framework [302]. 

Regarding IoT irrigation systems for agriculture, blockchain has been applied in [303] 

to track and trace the information exchange of their proposed smart watering system. 

 

2.6.8 Common Architecture Designs for IoT Irrigation Systems for Agriculture 

 

In this subsection, an overview of the most frequent architectures for these systems is 

going to be discussed. 

Multi-agent architectures are popular in IoT solutions for irrigation management 

[226,230]. These types of architectures make a distinction among the different elements 

they are comprised of. Typically, the distinction is made according to the layer of the 

architecture the elements are encompassed in. For example, nodes positioned higher in 

the hierarchy may act as a broker for those lower in the hierarchy [226].  

Most architectures are divided into layers or functional blocks that represent the main 

actions to be carried out [304]. These blocks or layers can be considered as generic and 

are utilized in most of the available architecture designs for IoT systems intended for 
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irrigation management. The main elements of these architectures are devices, 

communications, services, management, applications, and security.  

IoT systems are comprised of devices located in a certain environment to perform 

multiple activities such as detection, monitoring, control, and action. The devices must 

have interfaces that allow their connection with other devices to transmit the necessary 

information. The data obtained through different sensors will generally be treated and 

their results will be applied to different actuators. Then, it is necessary to transmit the 

monitored data and response actions between the devices. Communication protocols are 

used for this task. In most cases, different communication protocols are used working 

together on the same IoT system. In order to perform activities such as device discovery, 

device control, or the analysis of the collected data, the use of services may be 

necessary as well. The applications allow the interaction of the user with the system. 

From the applications, the user will be able to visualize the information, both obtained 

by monitoring and that extracted from the data once they have been processed. On many 

occasions, the user can execute the actions that he considers appropriate to the situation 

presented by the data, the actions can also be carried out automatically. Lastly, 

providing security to the system may also be considered.  

Traditionally, the IoT architecture has been considered to be divided into three layers, 

which are the perception, network, and application layer. Later on, an intermediate layer 

placed between the network and application layers has been introduced in multiple 

studies. This layer, called service layer, is employed to store and process data using 

cloud and fog computing. For the last few years, authors such as Ferrández-Pastor [305] 

presented a new architecture proposal, based on four layers: things, edge, 

communication, and cloud. In these latest architectural proposals, the authors use the 

edge layer to locate critical applications and perform basic control processes. Also, as 

indicated by [305], cloud (internet/intranet) can provide Web services, data storage, 

HMI (Human Machine Interface) interfaces, or analytic applications. Figure 2.30 shows 

an image where the architecture models are shown. 

 

 

Figure 2.30. Evolution of the layered model in IoT architecture. 
 

In the case of the reviewed IoT systems for irrigation, both 3-layered [95, 133, 169, 

306, 307] and 5-layered architectures [230] are available. Commonly, the lower layer is 
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with performing data storage and analysis. Typical third layers are conformed of cloud 

services, databases, or applications. 

A novel take on IoT deployments for precision agriculture is being considered on the 

Internet of Underground Things [281]. The authors define the functionalities as in-situ 

sensing, wireless communication in underground environments, and the connection 

between the elements of the architecture such as sensors, machinery, or the cloud. In the 

case of IoUT, the sensors are deployed underground. The authors performed a study on 

wireless communication among above ground and underground devices. The path loss 

link between above ground and underground devices reached -80 dBm for 50 m. The 

distance between underground devices reached approximately 10 m for -80 dBm. The 

authors also comment on the effects of soil moisture on path loss. 

 

2.6.8.1 Field monitoring WSN 

 

Sensor nodes are a widely spread technology utilized in many agricultural 

monitoring systems to implement their solutions. Some authors have presented a review 

of the state of the art of the use of WSN in agriculture [308-312]. Tamoghna Ojha et al. 

[308] studied applications of WSN and its problems and challenges for the 

improvement of agriculture. Antonis Tzounis et al. [309] presented a survey on the 

latest IoT technologies and their implementation in the agricultural sector, as well as the 

challenges that arise in their implementation. Aqeel-ur-Rehman et al. [310] studied the 

need of using sensors in agriculture and the utilization of WSN in that field. Luis Ruiz-

Garcia et al. [311] reviewed wireless sensor technologies and standards for their 

communications in the agri-food sector, focusing on WSN and Radio Frequency 

Identification (RFID). Barcelo-Ordinas et al. [312] also presented the state of the art of 

WSN technology applied to precision agriculture, reporting hardware, and software 

solutions from the technological point of view. 

Other authors presented designs for new WSN architectures for agriculture [313-315]. 

Authors such as Srbinovska et al. [313] proposed a WSN architecture for a greenhouse 

of vegetables, achieving the monitoring of environmental parameters in crops and a 

reduction in costs. Xiaoqing Yu et al. [314] presented a hybrid WSN architecture 

applied to agriculture. A hybrid network of wireless sensors consists of wireless sensors 

that communicate through the ground in addition to wireless terrestrial sensors. 

Chaudhary et al. [315] have proposed and analyzed a programmable System-on-chip 

(PSoC) microcontroller that they integrate into a WSN network and use to monitor and 

control parameters in greenhouses. J. A. López-Riquelme et al. presented in [316] a 

FIWARE cloud-based software architecture for precision agriculture. Authors discussed 

the advantages of FIWARE and its open-source modules and enablers for agriculture. 

The hardware architecture was performed utilizing the MEWiN Mainboard with a 

SIM900 Module. Experiments were performed both in the laboratory and on real crops. 

The average power consumption of the node was 4.29 mA. Another architecture for 

precision monitoring intended for potato crops and based on Cyber-Physical Systems 
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(CPS) is presented by Ciprian-Radu RAD et al. in [317]. Their proposed architecture 

was divided into four layers being application, analyzing, networking, and sensing. The 

data obtained from the system has then to be processed so as to perform the decision 

making and control the system in real-time. The aims of the proposed architecture were 

the optimization of water and chemical usage, the increase in production and 

sustainability, and the reduction of costs. H. Navarro-Hellín et al. presented in [318] an 

architecture for WSN intended for water management. The system utilized ES-2 sensors 

for water temperature and conductivity, GS3 and HP II sensors for moisture, 

temperature, and conductivity, 10HS sensors for soil moisture, LMK sensors for 

pressure, and MPS-2 sensors for temperature and soil matric potential. The 

communication was performed over GSM/GPRS (General Packet Radio Service) and 

the data was stored both in a database and in SD (Secure Digital) cards. A web 

application allowed monitoring the data remotely. 

Furthermore, there are authors [38, 319-323] that present monitoring systems in 

agriculture based on WSN. Escolar Díaz et al. [319] proposed a methodology to 

implement WSN in agriculture and define the phases that cover the life cycle of WSN 

applications. Yingli Zhu et al. [320] presented the design of a real-time agricultural 

monitoring system based on WSN. They also provided the hardware design of the 

sensors and the software flow diagram. Manijeh Keshtgari and Amene Deljoo [321] 

also developed a WSN system for agriculture, through which they detected 

environmental data and made control decisions in real-time. Hwang et al. [322] 

proposed a monitoring system for agriculture that used a WSN, which collected soil and 

environmental information through sensors, image information using CCTV (Closed-

Circuit Television), and finally GPS location information. Garcia-Sanchez et al. [323] 

proposed a new platform called Integrated WSN Solution for PA, in which a WSN is 

deployed with IEEE 802.15.4 technology. It allowed the monitoring of the crop and its 

video surveillance. Garcia et al. [38] presented the design of a wireless network that was 

responsible for monitoring the crops and their irrigation system; the network consisted 

of a WSN and a wireless mesh network (WMN). Marco Mancuso et al. presented in 

[324] a WSN for environmental monitoring in a tomato greenhouse. Sensicast devices 

were utilized as the nodes. Their proposed system considered air and soil temperature 

and humidity. For data transmission, the proprietary SensiNetTM protocol was utilized 

over ZigBee. Results showed a relation between temperature and humidity and 

determined that both of them are non-linear. Another WSN for smart agriculture that 

utilizes ZigBee is proposed in [325]. The authors addressed the necessity of precision 

agriculture systems so as to reduce water consumption. The monitored variables were 

soil temperature and moisture. Several modules with ZigBee radios such as TelosB, 

ATmega256RFR2, and OpenMote-CC2538 were considered. The data was stored every 

15 minutes on an SD card for further analysis. Due to some data loss, the resulting 

efficiency of the system was 94.79%. Abd El-Kader, and Mohammad [326] studied the 

use of WSN in the potato crop in Egypt. They demonstrated that the cost of the WSN is 

compensated by the increase in profits and the reduction of costs. The sensor nodes 

contain sensors for temperature, humidity, light intensity, soil pH, and soil moisture. 

The sensor nodes are placed in the tubs of potato crops with a distance of 6 meters 

between them. The different sensor nodes communicate through radio frequency. The 
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Periodic Threshold-sensitive Energy-Efficient sensor Network (APTEEN) is used for 

routing strategy. In this protocol, node sensors are regrouped in a cluster and a sensor 

node has the responsibility of receiving, aggregating, and transmitting the data of cluster 

members to the gateway. They used APTEEN because it is the most suitable routing 

idea for their needs. In [327], Achouak et al. showed the use of a wireless network 

composed of sensors and actuators for controlling the requirements of crops in a 

greenhouse.  

The use of WSN to monitor the irrigation needs of crop fields is very common as 

well. Dursun and Ozden, [44] developed a low-cost WSN (US$ 96) to control the 

irrigation in dwarf cherry trees. The system has been based on 3 units i.e., a sensor unit, 

a base station unit and, a valve unit. The sensor unit has a moisture sensor and sends the 

data to the base station. The base station analyzes the data and decides the parts that 

need irrigation and opens or closes the valve units. This system allows to eliminate the 

moisture stress and reduce excessive irrigation. Yao et. al. [328] proposed a WSN for 

monitoring irrigation in agriculture and saving water. The sensor nodes are composed of 

soil moisture, air temperature, pressure, and light intensity sensors. The sensor node 

transmits the data to the gateway node and the latter, forwards it to a LAN or WAN. For 

decision making, they used a fuzzy neural network. The self-learning ability of the 

neural network and the employed fuzzy logic techniques are good for irrigation 

monitoring. Simulation results confirm that the system can be used for irrigation 

monitoring. Finally, Rocher et al.in [329] presented a sensor for monitoring the 

fertigation in smart irrigation systems for fruit-bearing trees which can be used jointly 

with our system. 

WiFi is a widely spread wireless communication technology. Many agricultural 

monitoring systems use WiFi for their communication between the different agents of 

their architectures such as the one proposed in [330] by Gerard Rudolph Mendez et al. 

They presented a WiFI Wireless Sensor Network for agriculture monitoring where 

temperature, humidity light, soil moisture, and water level data collected by the nodes. 

Furthermore, the data was forwarded to a server so it could be accessed later. Therefore, 

studying the coverage of WiFi in different agricultural environments is of great interest. 

 

2.6.8.2 Water monitoring WSN 

 

WSNs can also be used for monitoring water quality. He and Zhan [294] designed a 

water quality monitoring system for an environmental protection department. They used 

a CC2430 microprocessor and many different sensors, like water temperature, pH, 

turbidity sensors, etc. The employed wireless network transmission protocol is Zigbee. 

The sensor sends the data to the internet. Fustine et. al. [331] explained the need to 

monitor the Lake Victoria Basin which has increased due to anthropomorphic pressures. 

Thus, the authors presented a WSN for monitoring the Lake Victoria Basin. An Arduino 

microcontroller, water quality sensors (water temperature, dissolved oxygen, pH, and 

conductivity), and a wireless network connection compose the system. They used open 
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source hardware, a web portal, and a mobile phone platform to display the value of the 

sensors. The experiments showed that their proposal can be used for monitoring in real 

environments. 

Regarding sensor networks for water quality monitoring and wastewater treatment, 

the contamination of the wastewater may not only affect the quality of the water but 

also the treatment plants or the sewer systems. Therefore, it is important to deploy a 

monitoring network to detect contamination and contain the affected areas. In their 

study, Mariacrocetta Sambito et al. [332] compared different sensor positioning 

techniques intended for nonconservative immanent pollutants. The results showed that 

the optimal solution could be reached with less computational effort by implementing 

pre-screening and gray information techniques. Stefania Piazza et al. utilized an 

optimization approach by using the NSGA-II algorithm to compare the positioning of 

the sensor probes to the results obtained from experimental tests [333]. The results 

showed that the sensors positioned at the center of the network minimize the 

redundancy and maximize the detection likelihood. 

 

2.6.8.3 Meteorology monitoring WSN 

 

Due to the importance of meteorology monitoring, researchers have developed 

several meteorology monitoring systems. F. J. Mesas Carrascosa et al presented in [334] 

an environmental monitoring system for precision agriculture. The system is comprised 

of the Arduino ATMega2560 microcontroller, analog, and digital temperature and 

humidity sensors, a light sensor that detects the presence and absence of light, a clock, a 

Bluetooth module, an SD card module, and a photovoltaic panel. The system was able 

to forward the data to a database for further processing. Real measurements were 

performed on a farm located in the Spanish city of Cordoba. The price of their proposal 

is below 100 € and the results were similar to those of a real meteorological station 

Furthermore, a wireless weather station that included a web interface for users was 

developed by Hardeep Saini et al in [335]. The system was able to monitor temperature, 

humidity, pressure, wind direction, and wind speed. Zigbee was employed for data 

transmission and alerts were generated according to the measured parameters. Results 

showed the accuracy of the proposed system.  

 

2.6.9 Effects of vegetation on coverage and signal quality 

 

The effects of vegetation on radio signals have been discussed by and analyzed by 

many authors. Jose Antonio Gay-Fernández et al. performed in [336] wireless 

propagation and path loss modeling for environments with vegetation for the 2.4, 3.5, 

and 5.5 GHz frequencies in a peer-to-peer configuration. Tests were performed in 

different environments, where the results showed better propagation models for 
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grasslands followed by forests and scrublands. However, the authors remarked the 

importance of vegetation density. The attenuation caused by the foliage of tropical 

vegetation for frequencies 2 to 18 GHz and 26.5 to 40 GHz was assessed by Hairani 

Maisarah Rahim et al. in [337]. The results showed that the obtained attenuation 

depended on the frequency with results varying from 10.99 dB at 15 GHz to 24.23 dB at 

9 GHz. J. Acuña et al. presented in [338] a study on the interferences caused by 

vegetation barriers to wire-less networks with the aim to reduce the signal strength at 

the areas where coverage is not wanted. Several species of shrubs with different 

dimensions were studied. Results showed attenuations reaching 10 dB for 2.4 GHz and 

21 dB for 5.8 GHz. Leire Azpilicueta et al. performed in [339] a studio on the 

propagation of radio waves at the 2.4 GHz band through inhomogeneous vegetation 

environments. Measures were simulated in a park environment with grass, trees, and 

concrete as the elements that introduce attenuation using ZigBee and Bluetooth wireless 

technologies. The experimental measures were performed with Zigbee mote was placed 

at the trunk of a tree. The results verified that their proposed 3D ray launching algorithm 

was good enough for radioplanning in such environments. A model for radiowave 

propagation through the foliage of different tree species and locations for frequencies of 

1 to 60 GHz was presented by Jürgen Richter et al. [340]. Results showed that the 

estimated RMS error was 8.38 dB compared to the 11.51 dB of the ITU-R (International 

Telecommunication Union – Radiocommunication Section) 833-3 model. A study of 

wideband signal propagation from 1 to 60 GHz through different types of trees was 

performed by D. L. Ndzi et al. in [341]. The signal power is obtained with an 

omnidirectional antenna. Results showed that the signal path depends on the width and 

height of the vegetation. A simulation of the effects of vegetation on radiowave 

propagation for WSN was performed by Naseer Sabri et al. in [342]. The authors 

utilized the Free Space Path Loss Model and added foliage models to simulate the 

attenuation. The simulations were performed for frequencies from 1 to 3 GHz, distances 

up to 20 meters, and heights between 0.5 and 2 meters for the receiver and 3.5 meters 

for the transmitter. 

The factors that create signal attenuation in wireless transmissions through 

vegetation at 1.3, 2 and 11.6 GHz were discussed by Nick Savage et al. [343]. The 

maximum attenuation (MA), the nonzero gradient (NZG), and modified exponential 

decay (MED) were utilized to model the attenuation caused by vegetation. A wideband 

channel sounder was utilized to perform the measures at heights varying from 2.5 to 7.5 

meters. Results showed that vegetation density, the measurement geometry, and the 

state of the leaf are the factors that most contribute to the attenuation. The 11.6 GHz 

frequency was the one that presented a greater attenuation due to the leaves. A study on 

the radio wave propagation of 433 MHz signals at potato fields utilizing RSSI measures 

was performed by John Thelen et al. [344]. Results showed a communication range of 

78 meters and advise to place nodes between a 23 m range when the crop is on its return 

and a 10 m range when the crop is flowering. Furthermore, a characterization of 

vegetation movements on radiowave propagation was performed by M. H. Hashim et al. 

in [345]. The measures were taken in an anechoic chamber at 0.9, 2, 12, and 17 GHz 

with two types of trees and four different settings for wind. The results showed that the 

behavior of the signal propagation varied with calm and windy conditions, but it didn’t 
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vary much among different windy conditions. The comparison of the different studies 

on the effects of vegetation on the wireless signal is presented in Table 2.8. 

 

Table 2.8. Comparative of testbeds of studies on the effects of vegetation on the wireless signal. 

Ref Environments Heights Frequency Transmitter Receiver 

Jose Antonio 

Gay-

Fernández et 

al. [336] 

Forests, 

scrublands, and 

grasslands 

0.9, 1.2, 

and 1.6 

m 

2.4, 3.5, 

and 5.5 

GHz 

Rhode-

Schwarz 

SMR-40 

signal 

generator and 

an Electronics 

EM 6865 

wideband 

antenna 

Robde-

Schwarz FSH-

6 spectrum 

analyzer 

Muhammad 

A. et al. 

[346] 

Urban areas, 

rural areas, 

forests, and 

plantations 

- 2.4 GHz - - 

Hairani 

Maisarah 

Rahim et al. 

[337] 

Tropical 

vegetation 

foliage 

2m 

2-18 GHz 

and 26.5-40 

GHz 

Anritsu 

MG3694C 

Signal 

Generator 

Spectrum 

Master 

MS2730T 

J. Acuña et 

al. [338] 
Shrubs 1.25 m 

2.4 GHz 

and 5.8 

GHz 

Rohde&Schw

arz radio 

signal 

generator 

SMR-40 

Rhode&Schwa

rz FSP-40 

spectrum 

analyzer 

Leire 

Azpilicueta 

et al. [339] 

Park 1 m 2.4 GHz Zigbee mote 

Agilent N9912 

Field Fox 

portable 

spectrum 

analyzer 

Jürgen 

Richter et al. 

[340] 

Trees 5-17 m 1-60 GHz - - 

Nick Savage 

et al. [343] 
Trees 

2.5-7.5 

m 

1.3, 2, and 

11.6 GHz 

Channel 

sounder 

Channel 

sounder 

John Thelen 

et al. [344] 
Potato crop 0 m 433 MHz Mica2Dot 

Mica2 with 

MIB510 

programming 

board and an 

antenna with 

an 11.7 dB 

gain 

B. 

Dhanavantha

n et al. [347] 

Cornfields and 

coconut 

gardens. 

2 cm, 15 

cm, and 

1 m 

2.4 GHz 

Agilent 

N5182A 

Vector Signal 

Generator 

Agilent 

N9010A 

Vector Signal 

Analyzer 

Andrew Sports facility 0 - 130.8 2.45 GHz National National 
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Szajna et al. 

[348] 

and a forested 

area covered by 

snow. 

cm Instruments 

PXI-5670 

Instruments 

PXI-5690 low 

noise 

preamplifier 

paired with 

National 

Instruments 

PXI-5660 RF 

vector signal 

analyzer. 

Daihua 

Wang et al. 

[349] 

A plaza, a 

sidewalk, and a 

grassland. 

3 cm, 1 

m 
2.4 GHz 

RF transceiver 

working at 

2.4GHz 

Agilent 

N9912A 

spectrum 

analyzer 

Weisheng 

Tang et al. 

[350] 

Concrete road, 

flat grass, and 

undulating 

grass. 

5 cm, 50 

cm, and 

1 m 

470 MHz 

Silicon Labs 

Si4432 radio 

frequency 

chip 

MSP430F5438 

as the 

Microprogram

ed Control 

Unit (MCU) 

chip 

Seun 

Sangodoyin 

et al. [351] 

Rural flat and 
hilly 

terrains. 

10 cm, 

20 cm, 

50 cm, 

and 2 m 

3–10 GHz 

Tektronix 

AWG 7122c 

waveform 

generator 

Agilent 

DSA91304A 

Digital 

Sampling 

Oscilloscope 

Amir Torabi 

et al. [352] 

Ground plain, 

yard, and grass 

park. 

13 cm 

315 MHz, 

915 MHz, 

2.4 GHz 

- - 

Daniel P. 

Luciani et al. 

[353] 

Concrete, 

grass field and 

hallway. 

15 cm, 

30 cm, 

and 1 m 

2.48 GHz 

STMicroelectr

onics 

STM32W-

RFCKIT 

Laptop 

Hicham 

Klaina et al. 

[354] 

Soil, short and 

tall grass fields 

20 cm 

and 40 

cm 

868 MHz, 

2.4 GHz 

and 5.8 

GHz 

ZigBee nodes ZigBee nodes 

Peio Lopez-

Iturri et al. 

[355] 

Oak and pine 

tree fields. 

1 m, 2 

m, and 3 

m 

2.4 GHz - - 

D. L. Ndzi et 

al. [356] 

Mango and 

palm 

plantations. 

1.3 m, 
1.7 m, 
2.2 m 
and 

2.6 m 

0.4-7.2 GHz 
 

Agilent 

E8267D 

signal 

generator 

Agilent 

E4405B 

spectrum 

analyzer 

Jaime Lloret 

et al. [357] 

Rural and forest 

areas. 
3 m 

2.412-
2.472 GHz 

wireless 

multisensors 

and wireless 

IP cameras 

802.11g access 

points 

Our testbed 

[358] 

Orange field, 

scrubland, and 

grassland 

0, 0.5, 1 

m 
2.4 GHz 

ESP 32 Doit 

devkit v1 

ESP 32 Doit 

devkit v1 
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2.6.10 Communication protocols intended for irrigation and agriculture monitoring 

systems 

 

WSNs have specific requirements and several protocols were developed specifically 

for these types of networks. Many systems for agricultural monitoring employ these 

protocols to forward the data obtained from the sensors. U. B. Nagesh et al. presented in 

[359] the usage of a MQTT protocol applied to precision farming and weather 

monitoring. The proposed system monitored humidity, temperature, and power and 

utilized a Raspberry Pi as the controller. The Eclipse Paho MQTT client was utilized to 

implement the subscriber and an open-source MQTT broker was utilized to access the 

data. A system for controlling and monitoring a smart greenhouse employing IoT and 

the MQTT protocol was presented by Dipen J. Vyas et al. in [360]. The system 

comprised an ESP8266 Wi-Fi module and an Atmega328 board with temperature, 

humidity, and soil moisture sensors. For the MQTT broker, the authors utilized 

Mosquitto. Ravi Kisore Kodali et al. introduced in [165] a low-cost smart irrigation 

system that employed MQTT as the communication protocol. The system comprised the 

ESP8266 NodeMCU-12E, a soil moisture sensor, a temperature and humidity sensor, 

and a relay. Junsung Park et al. presented in [361] a greenhouse monitoring and control 

system. Communication among the nodes was performed over ZigBee employing the 

UDP-based CoAP communication protocol. Nodes sent the gathered information from 

the sensors to the gateway which converted the CoAP message into an HTTP one so as 

to forward the data to the server. Finally, A. Paventhan et al. performed in [362] a 

comparison of two different protocols for WSNs in agricultural environments. The 

authors compared the simple network management protocol (SNMP) and CoAP in its 

message format, security and resource management, and the user interface. They 

concluded that the CoAP presented better integration with the web and was expected to 

grow in usage for WSN applications. 

Other protocols were created so as to address specific requirements of precision 

agriculture. Awais Ahmed et al. presented in [363] a routing protocol for WSNs to im-

prove energy efficiency in environmental monitoring deployments. The energy-efficient 

sensor network routing (EESNR) protocol reduced the overhead of control messages. 

All the nodes were able to become the cluster head as long as the constraint on energy 

life and the established criteria was met. The authors performed simulations in NS3, 

comparing the proposed protocol to other existing protocols for WSNs like LEACH 

(Low-Energy Adaptive Clustering Hierarchy) and its variations. The results showed an 

improvement of 27.8% of the lifespan of the sensors compared to the other protocols. A 

routing protocol for sensor networks intended for agriculture monitoring based on the 

efficient zone was developed by Lutful Karim et al. in [364]. An energy-efficient zone-

based routing protocol (EEZRP) assigned different zones to the nodes depending on 

their distance to the base station and considering that nodes closest to the base station 

consume more energy. The proposed protocol considered the sensing range. The 

number of active nodes was fewer than in other protocols, but it might perform more 

processing and control operations. Simulations were performed to compare the energy 

consumption of the nodes to other protocols intended for WSNs like LEACH and DSC 
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(Digital selective calling). The results showed a significant reduction of the consumed 

energy compared to other protocols. S. Bhagyashree et al. proposed, in [365], Apteen, a 

protocol intended for expanding the lifetime of the nodes in WSNs for precision 

agriculture. It is a cluster-based hierarchical routing protocol that groups the nodes into 

clusters comprising a cluster head and member nodes. The sensed parameters, 

thresholds, time division multiple access (TDMA) schedules, and the count time were 

broadcast from the cluster head. The messages were for-warded utilizing ZigBee in 

order to send the data to a database. Karim Fathallah et al. presented, in [366], partition 

aware RPL (PA-RPL), a routing protocol for IoT in precision agriculture. It was a 

version of the routing protocol for Low-Power and Lossy Networks (LLN) (RPL) 

protocol that considered the partitions in farmlands to perform the routing topology. The 

protocol only considered one sink node. Simulations were performed employing the 

Cooja simulator. The results showed that the protocol was able to construct the network 

covering all the parcels. Lastly, a MAC protocol for precision agriculture based on 

storage and delivery intended for airground collaborative wireless networks (SD-MAC) 

was introduced by Song-Yue Liew et al. in [367]. In their proposal, a UAV flew over 

the sensors in order to collect the gathered data. This way, a re-duction in the 

duplication of data was obtained and the cost was reduced as a single UAV was able to 

gather the data from a large area. The proposed protocol forwarded the packets only 

when the UAV was within the range of the sensor. Sensors were deployed outside of the 

range of other sensors so as to avoid interferences. When the UAV was not close to the 

sensor, the sensor stored the information until the UAV was within range. Simulations 

were performed, comparing the proposed protocol to ALOHA (Additive Links On-line 

Hawaii Area). The results showed that the proposed protocol outperformed ALOHA. 

Furthermore, implementations of monitoring systems employing IoT protocols such 

as CoAP are starting to be performed. Adarsh B. U. et al. performed in [368] an 

implementation of a water quality monitoring system utilizing CoAP over 6LoWPAN 

(IPv6 over Low-Power Wireless Personal Area Networks). The Contiki OS cooja 

simulation environment was utilized to design the system. The monitored parameters 

were conductivity, pH, temperature, and ORP (Oxidation Reduction Potential). A 

TelosB mote was utilized so as to gather the data from the sensors and transmit it to the 

database. Actuators were utilized so as to add acid or basic solutions to the water 

according to the sensed data. The data could be accessed through a web interface. An 

environmental monitoring system that utilized CoAP as the communication protocol 

was developed by Tomislav Dimčić et al. in [369]. The authors utilized a Telit GSM-

GPRS modem with a Python engine and implemented CoAP on the application layer of 

the M2M system. Comparisons were performed with CoAP and HTTP where CoAP 

obtained a considerably lower transmission time. Lastly, a comparison of application 

protocols for IoT systems was performed by Nitin Naik in [370]. CoAP, MQTT, HTTP, 

and AMQP (Advanced Message Queuing Protocol) were compared according to 

message size and overhead, power consumption and resource requirements, bandwidth 

and latency, contrasting reliability vs. interoperability, security vs. provisioning, and 

IoT usage vs. standardization. CoAP presented the lowest size, power consumption, and 

bandwidth usage followed by MQTT, AMQP, and HTTP. However, MQTT was the 

most reliable, and HTTP and CoAP were the ones that presented more interoperability. 
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MQTT was the most secure protocol followed by CoAP and the most utilized for IoT 

systems. However, it is also the least standardized protocol, being HTTP and CoAP the 

most standardized ones. 

 

2.6.11 Unlicensed bands occupation and coexistence 

 

Some of the most employed wireless technologies operate on unlicensed bands. The 

most common is the 2,4 GHz ISM band but the 5GHz band is started to be more 

employed, as it can be seen in Figure 2.31. Some of the problems that arise from 

channel occupancy are addressed in [371]. They determine that the main problems of a 

crowded spectrum are achieving high performance, supporting overlapping WSN, and 

managing interferences. Authors propose establishing more unlicensed frequency bands 

or using spread spectrum techniques. The presence of IEEE 802.11 technologies can 

increase IEEE 802.15.4 packet loss however, failures are negligible employing -10 dBm 

transmit power [372]. Higher power transmissions could be a solution, but they could 

not be indicated for some applications like BANs due to electromagnetic energy 

absorption by the human body. It also would increase interference with other users of 

the 2,4 GHz ISM band and be susceptible to attacks like eavesdropping. Some 

suggestions presented in [373] include keeping low the power levels in order to allow 

coexistence and frequency reuse and employing Cognitive Radio Systems (CRS) to 

utilize the gaps with low spectrum occupancy. Employing this technique is advised for 

short range communications for it not to interfere with other users of the spectrum. 

Bluetooth, ZigBee, and WiFi share the 2.4 GHz band. Bluetooth and UWB (Ultra-

WideBand) employ adaptive frequency hopping to avoid interferences (channel 

collision) and ZigBee and WiFi use dynamic frequency selection and transmission 

power control. There are three types of solutions to avoid interference between 

Bluetooth and WLAN (Wireless Local Area Network) [374]. The first one is 

collaborative solutions where Bluetooth and WLAN have to exchange messages. They 

are called Packet Traffic Arbitration (PTA), where time slots are assigned to avoid 

collisions and Alternating Wireless Medium Access (AWMA) where TDMA is 

employed. The non-collaborative solutions do not perform a message exchange between 

Bluetooth and WLAN. Adaptive Frequency Hopping (AFH) changes the hopping 

sequence to avoid channels with high interference. Listen-Before-Talk (LBT) employs 

CSMA/CA so the channel is checked before transmitting. However, the radiation power 

of Bluetooth is lower than the access point (AP), so the WLAN may not detect the 

Bluetooth device and begin the transmission, resulting in collision. The OverLap 

Avoidace (OLA) Mechanism considers the Bluetooth device and the AP separately. The 

slot size of the Data-link is adjusted in order to avoid collision. Several experiments 

have been performed in order to determine the effects of interferences between 

Bluetooth and Wi-Fi. In [375], data traffic, a Bluetooth voice application, and the 

performance of the WLAN are considered. They conclude that packet loss is higher 

when the Access Point and the Bluetooth device are closer. They also study interference 

mitigation techniques such as the backoff strategy (BIAS) and adapting the frequency 



Laura García García 

 

100 
 

hopping pattern for Bluetooth devices. Their results show that there is not any technique 

that can improve the performance for all applications and suggest employing a 

combination of both. In [376], an analysis of the packet error rate under interferences 

from WLAN and Bluetooth is performed. They state that when the distance between the 

source and destination of a WLAN transmission is less than 3 m, there is no interference 

from a ZigBee network. The higher the number of WLAN APs, the higher the packet 

error rate of ZigBee. Their studies show that the major interference for ZigBee comes 

from WLAN. Bluetooth interferences decrease abruptly when the distance between 

devices increases. 

 

 

Figure 2.31. Wireless technologies in the frequency spectrum. 
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The coexistence between IEEE 802.15.4, IEEE 802.11, and BLE considering the 

distance, packet interval, and channel separation is analyzed in [377]. The comparison 

of the distance of short and medium ranged technologies is shown in Figure 2.32 and 

the one for long-ranged technologies is available in Figure 2.33. BLE is more affected 

by IEEE 802.15.4 interferences for distances around 7 m. IEEE 802.15.4 is more 

affected by IEEE 802.11 with distances up to 12 m. When the packet interval is varied, 

BLE networks are more affected by IEEE 802.15.4, being around 5 times less affected 

by IEEE 802.11. When considering interferer channel separation BLE is again more 

affected by IEEE 802.15.4 than by IEEE 802.11. An experiment is performed in [378] 

to determine the effects of interferences between IEEE 802.11 and IEEE 802.15.4. 

Results show that WLAN technologies can interfere greatly with ZigBee and 

interferences created by ZigBee devices are barely noticeable to WLAN technologies. 

They suggest a 7 MHz offset between operational frequencies in order to avoid 

interferences. Authors in [379] propose an adaptive radio channel allocation scheme that 

improves the coexistence between IEEE 802.11 and IEEE 802.15.4. Reaching between 

97% and 86% of success rate. Employing multiple channels is considered in [380] in 

order to overcome interference and obtain a higher performance. 

 

 

Figure 2.32. Maximum distance for short and medium ranged technologies. 
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Figure 2.33. Maximum distance for long-ranged technologies. 

 

A study of the co-existence between IEEE 802.11 and IEEE 802.16 was performed 

in [381]. Results show only in the scenario with 0 dB energy threshold and high 

connectivity, IEEE 802.16 technologies are unaffected. Otherwise, IEEE 802.11 and 

IEEE 802.16 coexistence suffers when utilizing the same channel. The interferences 

between IEEE 802.11 and IEEE 802.16 result in just a 40% of available capacity in the 

simulations performed in [382]. They also propose a coexistence algorithm that 

increases channel utilization up to 20% providing fairness among both technologies. 

Another solution is presented in [383] where authors employ the Common Spectrum 

Coordination Channel (CSCC) etiquette protocol to reduce interference between IEEE 

802.11 and IEEE 802.16 technologies sharing the 2,4 GHz ISM band. Results also show 

that CSCC can solve the hidden-receiver problem and improve system throughput. 

As data traffic increases cellular networks are considering employing unlicensed 

bands to provide multimedia services, specifically the 5 GHz frequency band. However, 

although this band is not as highly used as the 2,4 GHz ISM band, LTE-U (Long-Term 

Evolution – Unlicensed) technologies employing the 5GHz band may be faced by 

interferences caused by WiFi. The results provided by [384] show that LTE-U can 

obtain high throughput for small cell users while allowing WiFi networks to perform 

well. The coexistence between WiFi and LTE is also studied by [385]. They perform 

several simulations considering WiFi, Licensed-Assisted Access (LAA), Time Division 

Duplexing (TDD), and LTE Uplink (LTE-UL). When operating in the same frequency 

band, results show WiFi has higher performance than LAA. They also conclude that 

some configurations of LTE TDD and LTE UL can improve WiFi performance at the 

cost of slightly reducing LAA performance. 
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2.6.12. Future Challenges of IoT Irrigation Systems 

 

The IoUT is a new view of the IoT [57]. It consists of deploying both underground 

and above ground IoT devices that communicate among themselves with underground-

underground, underground-above ground, and above ground-above ground 

communication. It is especially useful and applicable to irrigation and precision 

agriculture IoT systems as the devices would not be impeding the work of machines and 

farmers and it would reduce the amount of physical damage the nodes deployed on the 

fields may receive. Although WiFi surprisingly allows underground-above ground 

communication in short distances and depths above 30 cm [386], it would be necessary 

to study the performance of other existing protocols or even the creation of a new 

protocol that employs lower frequency bands to transmit the information through the 

soil medium.  

The use of LoRa is increasing for irrigation and precision agriculture applications 

due to its long-range, which allows wireless communication to remote fields. However, 

the advances in 5G may lead to a decrease in the interest in LoRa technology. On the 

one hand, if the designed irrigation system produces lower amounts of data, as these 

types of systems present low variability in the data, LoRa presents itself as a very good 

solution. However, on the other hand, for IoT systems that require the transmission of 

large amounts of data, 5G would solve the problem of the limited amount of data that 

LoRa can transmit. Considering these aspects, a possible future is the use of LoRa and 

5G hybrid wireless networks to attempt in satisfying those needs [387]. 

There are diverse opinions on the existence and effects of climate change on earth. 

However, there is no doubt that many governments, companies, and the citizens 

themselves are increasing their awareness regarding sustainable consumption. This not 

only affects their view on the energy consumption of IoT systems for irrigation but also, 

the origin of the components of the devices and the impact of IoT devices on the 

environment and the fauna of the area where they are deployed. Therefore, the reduction 

in energy consumption and the use of alternative powering methods will continue to be 

a research trend. Furthermore, it may be a challenge to find new materials that are 

weather-resistant and do not increase severely the cost of the devices, but the use of 

recyclable materials in some of the elements of the IoT devices is to be expected [253]. 

As it has further been commented in Subsection 2.6.1, blockchain and AI will be 

incorporated into most IoT services [292], including those aimed at irrigation and 

precision agriculture. These technologies provide not only increased security but also 

optimization to the management of the IoT systems. This will lead to an increased 

understanding of the crops and a faster way to characterize genetically modified crops 

and the effects of new fertilizers and pesticides. Furthermore, it will aid in optimizing 

and reducing water consumption and improving the new mechanisms that are being 

proposed to determine if treated wastewater can be used for irrigation and which crops 

can be irrigated with wastewater depending on its composition.  

Lastly, farmers usually have a very small profit and thus, these IoT systems may not 

be affordable to them. Therefore, the cost of IoT devices and the overall system 
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implementation should have a decreasing tendency for these types of systems to have a 

commercial future. 

 

2.7 Conclusion 

 

In this chapter, the state of the art on IoT irrigation systems for precision agriculture.  

The most monitored parameters to characterize water quality for irrigation, soil, and 

weather conditions have been identified. The utilized sensors, actuators, wireless 

technologies for communication, protocols, and the challenges of deploying WSNs on 

these environments have been presented. Moreover, the current trends and challenges 

on the implementation of IoT systems for irrigation and crop management have been 

examined as well. 

After the in-depth analysis of the existing works, the proposed solution of this thesis 

will be presented in the following chapters. 
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Chapter 3                                             

Design of an Architecture for Irrigation 

 

 

 

3.1 Introduction 

 

In this chapter, the proposal of an architecture for water quality monitoring and field 

monitoring intended for irrigation is presented. The architecture contemplates a Canal 

area with groups of water monitoring nodes, a Field area with groups of field 

monitoring nodes and a meteorology monitoring node, and an Urban area where the 

gateway is located. Moreover, the topology considers WiFi clusters that obtain the data 

from the fields and the water channels and transmits it over a multi-hop LoRa wireless 

network to the gateway by utilizing a WiFi-LoRa bridge. The node sensors for each area 

are described as well. Then, the operation algorithms of the system are presented. Lastly, 

the irrigation algorithm that determines the irrigation requirements of the crop is 

presented. 

 

3.2 Architecture description 

 

The architecture for a wastewater treatment and field monitoring system intended for 

irrigation is presented in this subsection. 
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3.2.1 Areas and elements of the architecture 

 

The disposition of the area and the distribution of each of the zones we have 

identified are presented in Figure 3.1. As shown in Figure 3.1, we identify several urban 

areas, a canal area, and the fields. These areas communicate using wireless technologies. 

The wastewater disposed of by the population inhabiting the urban areas is transported 

to a purification station before being released to the irrigation canals. However, the 

quality of the resulting water may not be optimal and non-treated waters and different 

contaminants may worsen the quality of the water before reaching its destined field. 

Thus, an in-situ water purification system is needed to ensure the quality and the 

healthiness of the produce.  

In Urban Area 0, the gateway will establish a wired connection to transmit the data to 

the data center for storage and data analysis. We have chosen cabled communication 

because the performance of the data transmission is better, and the urbanized area 

allows easy access to the infrastructure of the service provider. The data that is received 

with information from the different nodes will be treated and analyzed to respond with 

appropriate measures in our system. Lastly, the adopted measures will be forwarded to 

the actuator nodes to let the contaminated water go through the biosorption process. The 

Canal area designates the zones where the irrigation canals are located. Auxiliary canals 

connecting to the principal one have been designed in a comb-shaped structure to 

perform the biosorption process. Then, the decontaminated water would be released 

again to the main canal ready for its use in irrigation. Lastly, at the Field area, soil and 

meteorological parameters are monitored to determine the necessary amount of 

irrigation.  

 

 

Figure 3.1. Deployment of node areas. 
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The detailed view of the Canal area is provided in Figure 3.2. This is the area where 

the different types of nodes will be deployed. Three models of sensor nodes can be 

identified. The Sensor nodes are comprised of a microcontroller and the different 

sensors that allow quantifying the contamination in the water. The actuator nodes are 

comprised of a microcontroller and the necessary actuators to open and close the gates 

to return the water to the main canal. The Cluster head is the node that receives the 

information from the rest of the nodes and forwards it to the gateway situated in Urban 

area 0. 

The auxiliary canals that contain the biosorption materials are deployed in a comb-

shape. As it can be seen in Figure 3.2, all the auxiliary canals have the same structure 

and are connected to each other for the water to go through the biosorption process 

several times if necessary. In order to determine if the water from the canal needs to be 

processed in the biosorption canals, the sensor nodes check for water pollution at the 

entrance of the canal. When contaminants are detected, the gates are opened to let the 

water flow into the biosorption canals. Once inside the biosorption canals, the water is 

treated to remove the contaminants. At the end of the auxiliary canal, another set of 

sensor nodes monitor the water to decide if the water can be returned to the main canal 

or if it needs to go through the biosorption process again. The actuator nodes are 

connected to the lock-gates that allow regulating the passage of the water flow. 

 

 

Figure 3.2. Example of canal zone in detail. 
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The Field area is depicted in Figure 3.3. The fields are divided into sectors and each 

sector has a deployment of a soil sensing cluster comprised of two Soil Sensing Nodes 

and a soil Sensing Cluster Head that aggregates the data from the soul sensing nodes 

and transmits it to the Aggregator node. The moisture sensors of the Soil Sensing Nodes 

and the Soil Sensing Cluster Head are deployed at different depths to determine if the 

water has reached the needed depth or if there is water stress. The Soil Sensing Cluster 

Head is placed at the same spot as the dripper with its sensors located on the vertical of 

the dripper [316]. The Soil Sensing Nodes are located at the mid-point between to 

drippers, which is at a distance of 45 cm from the dripper. All the Soil Sensing Nodes 

forward the data to the Aggregator node. This node aggregates the data from all the 

sectors to forward it to the gateway in the Urban Area. Lastly, the actuator node controls 

the opening of the gates and the water flow. 

 

 

Figure 3.3. Example of Field zone in detail. 

 

In this proposal, there are different types of nodes that can be grouped into sensor 

nodes and actuator nodes. In the sensor nodes, different physical sensors will be 

connected so as to allow, in some cases, to study the need for irrigation in fields so that 

the crop develops properly and does not get lost and, in other cases, to detect the quality 

of the water transported in irrigation water canals and be able to study and control its 

debugging. The sensor nodes will be distributed forming groups of three nodes. Three 

nodes are utilized for reliability reasons. If any of the measures estimated in a group is 

not validated by at least two of the group's nodes, it is not considered valid. The actuator 

nodes will be connected to the gates to open or close the water passage in a canal. The 



Chapter 3. Design of an Architecture for Irrigation 

 

109 
 

nodes are strategically placed, to maximize the impact of the measures taken in the 

studied area. At the same time, they must be located so that they can be connected 

correctly through a wireless transmission.  

The proposed architecture, formed by three layers, being Nodes Sensors & Actuators, 

Storage & Activation, and Artificial Intelligence, is shown in Figure 3.4. In the Nodes, 

Sensors & Actuators layer, all the nodes of the network are located. The different 

sensors that take measures of the water quality are connected to the nodes. Then, the 

data are periodically forwarded to the data center situated in the upper layer, where the 

data are stored. Furthermore, the actuators are connected to the nodes that are located at 

the gates of the canals so that the appropriate actions that have been decided in the 

higher layers are performed. On the other hand, the Storage & Activation layer hosts the 

devices where the information received from all the sensors is stored. Furthermore, this 

layer also hosts the system that allows for sending orders to the actuators so as to carry 

out the actions established by the decision-making process that is performed in the 

upper layer. Lastly, the systems that allow for processing the data that were stored in the 

lower layer are located in the Artificial Intelligence layer. This layer oversees the 

decision-making process whose result will be sent to the action functionality in the 

lower layer. 

 

 

Figure 3.4. Proposed architecture. 
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3.2.2 Topology 

 

In this subsection, we will detail the proposed topology for our wastewater 

purification system for irrigation purposes. The topology of the system is presented in 

Figure 3.5. The near-range communication is performed using WiFi and the long-range 

communication is performed utilizing LoRa. Due to the low amount of data that needs 

to be transmitted, to obtain the highest possible WiFi coverage and to increase the 

robustness, the nodes can adjust the WiFi connection to 2 Mbps. On the other hand, the 

AP can be set to 54 Mbps as it needs to manage the messages from several nodes. In the 

case the WiFi nodes do not need high distances, other WiFi settings can be utilized. The 

communication between the data center and the gateway is performed using a wired 

connection. As it can be seen, the system presents a star topology. This is due to the 

need of implementing a low-cost system where the number of nodes that can be 

employed is limited. In a star-topology of LoRa Nodes, there can be collisions and thus, 

losses due to all the nodes emitting in the same channel. As the system does not require 

performing in real-time, a delay can be introduced to avoid collisions. Furthermore, as a 

LoRa node can send the data to the data center through multiple gateways, more 

gateways would be installed if necessary. 

 

 

Figure 3.5. Topology of the system. 

 

The system is comprised of the following elements: 

• Water Monitoring Node: This node is comprised of an embedded board, 

an SD card module with an SD card for data storage, a turbidity sensor, a 
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salinity sensor, an oil sensor, a battery, and a solar panel for energy harvesting. 

This node communicates with the Water Monitoring CH using WiFi. 

• Water Monitoring CH: This node has the same elements as the Water 

Monitoring Node. However, this node has more capacity for data storage and 

processing as it receives the data from the Water Monitoring Node and a LoRa 

transceiver. It communicates with both the Water Monitoring Node and the 

Aggregator Node of the Canal Area. 

• Soil Sensing Node: This node is comprised of an embedded board, a soil 

humidity sensor, a soil temperature sensor, an SD module, an SD card, and a 

solar panel. This node monitoring the state of the soil and forwards the data to 

calculate the water requirements of the trees. 

• Soil Sensing CH: This node has the same elements as the Soil Sensing 

Node with more storage and processing capacity as it processes the data from 

the Soil Sensing Nodes and a LoRa transceiver. It communicates with the Soil 

Sensing Nodes through WiFi and the Meteorology Monitoring Aggregator Node 

through LoRa. 

• Aggregator Node: The Aggregator Node is a LoRa node with high 

processing capabilities and data storage resources to manage and aggregate the 

data received from all the sensors. It also has an energy-harvesting module to 

ensure it has enough energy to operate. Using a LoRa node to relay data in a 

LoRa network has been studied in works such as [317-319]. Adapting the LoRa 

SF and BW settings according to the data that needs to be transmitted can be 

done. 

• Meteorology Monitoring Aggregator Node: This node adds 

functionalities to the Aggregator Node described before. It has an air 

temperature and humidity sensor, a light sensor, a rain sensor, and a wind sensor 

to provide the Data Center with the necessary data to calculate the water 

requirements of the fields. It communicates with the CH Nodes, the Actuator 

Nodes, and the Gateway using LoRa. 

• Gateway: It is a commercial LoRa gateway connected to the internet 

through an Ethernet connection. 

• Data Center: The Data Center can be either a cloud service of a service 

provider or a private server that performs storage and data analysis to determine 

the water requirements of the fields. The results of the data analysis are then 

forwarded to the deployed nodes and the users. 

• Farmer User: This user is the owner or the manager of the fields. Thus, 

the Farmer User needs to know the problems of the nodes on the field area to 

replace them when necessary. Furthermore, the Farmer User needs to know the 

water requirements of the fields as well. 
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• Hydrographic Confederation User: This user is the owner or the 

manager of the canals. They are responsible for replacing the broken nodes in 

the canal area and they can only access the information of the quality of the 

water and the state of the actuators of the canal area. 

The protocol Stack of the system is presented in Figure 3.6. The Cluster Head is the 

node that acts as a bridge between the elements of the network that utilize WiFi and the 

elements that use LoRa. Regarding the LoRa network, LoRaTM defines the Physical 

Layer. Our proposed Heterogeneous Communication Protocol (HCP) is part of the 

Application Layer. Regarding the WiFi network, HCP is encapsulated in UDP. 

 

 

 

Figure 3.6. Protocol Stack. 

 

 

3.2.3 Alternative architectures for specific needs 

 

Due to specific needs of the farmers, alternative architectures may be necessary to 

address the functionalities that are required. In this subsection, the architecture designs 

to provide other functionalities are described. 
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3.2.3.1 WSN for monitoring numerous trees 

 

When the deployment of numerous sensor nodes is necessary, utilizing wireless 

technologies such as LoRa may present a problem as there can be collisions among the 

packets transmitted by all the nodes within the coverage area. Therefore, mesh networks 

of nodes utilizing medium-range technologies such as WiFi would be a possible 

solution to the requirement of monitoring a great number of fruit trees.  

The proposed system uses the information collected by the sensors of a WSN. The 

data from the sensor network will be sent through a WMN formed by APs located in 

environments where irrigation canals exist in urban and rural areas. In addition, in a 

centralized location, the network devices that allow the WAN connection to send the 

collected dataset to an external location will be installed, where it will be stored and 

processed. Also, in that location, equipment will be deployed to automatically respond 

to alarms that have been previously detected and where the action that must be carried 

out in response is known. The utilized communication technology is that of device-to-

device (D2D) and device-to-machine (D2M). The included features are: 

• Independent of communication technology. 

• Supports different manufacturers. 

• Adaptable to different physical environments. 

• Low power consumption. We avoid the need of the nodes of an external power 

supply. 

• Low bandwidth consumption. 

• Scalable, supporting the aggregation of new nodes. 

In the proposed architecture (See Figure 3.7), each sensor node gathers 

measurements from each one of the sensors that it has connected. All these data will be 

used later in the decision algorithms. The sensor nodes are installed in two areas, mainly 

in the water canals for irrigation and in the crop fields. The deployment of the sensor 

nodes in the water canals is that detailed in the previous section.  Whereas the nodes in 

the field area are placed in a manner of one node per tree that is monitored. When a 

sensor node generates an alert, due to the exceeding of a threshold value of one or more 

of the parameters, the measurements of all the parameters of that node are sent at that 

moment. The information will be sent from a single device to another device. The 

algorithms of the nodes allow reducing the number of forwarded messages to a 

minimum to obtain high energy savings.  

The WSN nodes collect information from the sensors connected to each one of them. 

The collected data will be stored in an SD card that will be included in the node 

hardware. In addition, the data will be sent periodically, through a WAN connection, to 

the place where they will be stored and processed, using AI. The AI uses the processed 

information to know what is happening and to use it in the decision algorithms. The 

actions that must be taken, as a result of the application of AI, are sent back to the WSN 

so that they receive nodes with actuators and carry out the appropriate actions. 

Previously, different parameters and thresholds that allow an optimal functioning of the 
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system were defined. Depending on the type of crop and the types of area, different 

corpus are created for different crops. For example, a corpus is defined for growing 

citrus, another for rice, or another for vegetables. Once the nodes have been identified 

and the different sensors and actuators labeled, information will begin to be collected. 

After a training phase, a casuistic series is obtained. Using a decision algorithm and 

rules that include all the possible cases, we determine the actions that the actuators must 

carry out. The system will be able to predict actions before receiving specific alarms 

from the nodes indicating an anomalous situation. 

 

 

Figure 3.7. Proposed Architecture. 

 

Figure 3.8 shows the 4 principal phases of the PA system, which include sensor 

nodes, data storing, AI, and actuator nodes. Firstly, the data acquisition from all the 

distributed sensor nodes is performed. Periodically, the data acquired in the previous 

phase is stored on the remote storing servers. Then, the different characteristics of the 

data such as location, date, time, humidity, temperature, and turbidity are extracted so as 

to be processed by applying the decision rules designed by experts. The processed 

information will be utilized to obtain models and predictions and its results will be 

stored increasing our database. Lastly, the corresponding actions are performed on the 

actuator nodes according to the obtained predictions. 
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Figure 3.8. Phases of our system. 

 

Figure 3.9 shows the flow of the data. Initially, the data is collected by the physical 

sensors. The algorithms will process the data and make the appropriate decisions based 

on the previously created rules. Finally, the action to be carried out will be decided. It 

will be sent to the actuators so that it is carried out properly. 

IEEE 802.11 technology is utilized. Due to the power consumption of IEEE 802.11 

technology, the published recommendations for WLAN in [320] are considered. To 

communicate the groups of nodes, use APs are used, which will allow us to extend the 

distance to which the nodes can be connected and, to extend the size of the network as 

well since there will be deployed as many APs as necessary for the transmissions to be 

carried out correctly. Therefore, a WMN is established. 

In case of being in a land with hills or mountains, the AP will be deployed in the 

highest areas so that the coverage will be maximum while using the least number of 

devices. Although, tentatively, most of the areas where they are going to be deployed 

are flat. An example of the location of an AP is shown in Figure 3.10, it can be seen that 

the AP is placed in a centralized position from which it makes a circular coverage of 

100 meters. As in a plantation of orange trees, the distance between the trees is 4x6 

meters, in an area of 200x200 meters that is the one represented in the figure, there are 

1600 planted trees. To cover all the trees, the use of more APs is needed, but in this way, 

1250 nodes can be theoretically connected. 
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Figure 3.9. Data Flow. 

 

 

Figure 3.10. AP coverage in field of oranges of 200 x 200 meters. 
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All groups of sensor nodes will connect wirelessly with a group of sensors located in 

an urban area, which we will call the "Urban area 0" group. To achieve this purpose, 

APs with DD-WRT (DresDren-Wireless RouTer) [321] firmware will be implemented. 

It is an open source firmware based on Linux that can be used with embedded systems 

and routers that provides multiple functionalities for security, QoS, bridging, and the 

use of SD-cards. Thanks to the firmware, a Wireless Distribution System (WDS) is 

activated. The WDS, working in repeater mode, will allow the APs to communicate 

with other APs (forming the WMN) and with nodes simultaneously. 

The group "Urban area 0", has as a distinguishing feature from the rest of the nodes 

that, being in an urban area, it can receive a power supply and establish a permanent 

wired or wireless WAN connection. The rest of the groups of nodes will send the 

measures to this special group so that they are forwarded to a remote location where our 

data storage systems and the equipment necessary to perform their treatment through AI 

will be located. 

Once the AI system makes a decision regarding the action that must be carried out, it 

will store the adopted measure and send it at the same time to the "Urban area 0" group 

using the WAN connection. Together with this group of nodes and the network devices 

that allow us to connect to the WAN network, a team will be implemented that will 

allow us to store all the actions that the AI has already dealt with, with the appropriate 

response. So, when an alarm is generated in any group of sensors, when exceeding the 

thresholds allowed in any of the parameters studied, if the same event was previously 

produced, the associated action will be carried out immediately employing fog 

computing so as to avoid unnecessary latencies. Lastly, from the central node of the 

"Urban area 0" group, the order of the action will be sent to the affected node or 

actuating nodes, so that they carry out the recommended action. 

3.2.3.2 Architecture for remote fields with cellular connection 

 

The use of cellular technologies can be considered as well for field monitoring in PA 

systems. Figure 3.11 shows the four layers that form the proposed architecture where 

the ESP32 nodes are located. The ESP32 nodes are located in the lower layer, which 

have the necessary sensors connected to them to obtain the information from the 

environment. The characteristics of the utilized nodes and their antenna are depicted in 

the specifications of the nodes in [322, 323]. These nodes perform the transmission 

using the IEEE 802.11 standard, with a maximum data rate of 150 Mbps in the 2.4 GHz 

band. Their low cost makes their use in agricultural systems affordable to farmers. 

Furthermore, power consumption can be optimized by programming the nodes to go to 

sleep mode when measures are not being taken. Moreover, these applications do not 

usually record video or transmit data in real-time as variations in the state of the crops 

are slow, resulting in a reduced amount of data for transmission [28]. In the immediate 

upper layer, a network of wireless APs is available through which the data is sent to an 

AP that acts as a gateway to the Internet. That gateway receives the data from the node 
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and uses 3G to forward the data to the database. The Internet is in the next layer. Finally, 

the upper layer is where the data is stored, and its consultation and treatment of the 

obtained data is performed. The farmers can access the data through a web or a mobile 

interface.  

 

 

Figure 3.11. Architecture. 

 

3.2.3.3 Architecture for IoUT functionalities 

 

In this section, the proposed architecture for an IoUT solution for agriculture is 

presented. Figure 3.12 shows the different levels of the proposed architecture. It is 

formed by four levels: Nodes and Sensors, Wireless Network, Internet, Data Center, and 

Artificial Intelligence. 
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Figure 3.12. Architecture for IoUT. 

 

The nodes are located in the lower level with the sensors connected to them. These 

sensors will obtain all the necessary information of the crops for a later decision-making 

process, in which Artificial Intelligence is used in order to perform smart agriculture. 

The level above the first one is the level of the wireless network. At this level, the 

transmission of data, obtained in the fields of agriculture through the sensors by using a 

wireless network, is performed. At this level, the APs are located, which collect the 

signals sent by the nodes and transmit them until they reach a gateway device. The 

gateway allows the connection through the Internet to a remote location. The next level 

is the Internet, where the obtained data is transmitted using an Internet Provider 

connection to the location where they are stored. This connection can be achieved using 

different technologies, such as DSL (Digital Subscriber Line), wireless technology, and 

3G / 4G mobile data. We select the one that fits our requirements with the lowest costs 

depending on the location of the crops. Finally, in the upper layer, we locate our Data 

Processing Center that employs Artificial Intelligence. At this level, the information 

storage and treatment systems are located. In this location, the data will be stored so that 

it can be retrieved at any time and then be processed. With this data, the farmers and 

engineers can obtain relevant information for decision making. 

3.2.3.4 Architecture for the use of drones for data acquisition 

 

The architecture of the precision agriculture scenario is divided into four layers, 

which are: the Sensor Node Layer, the Drone Layer, the Internet Layer, and the Data 

Center Layer. Figure 3.13 shows the different layers. 
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Figure 3.13. Architecture layers. 

The Sensors Node Layer is the bottom layer. All the sensor nodes deployed in the 

crops are located in this layer. The layer immediately above is the Drone Layer. It is 

comprised of the remote sensing drone that is responsible for obtaining images of the 

crops and collect the information stored by the nodes through its wireless interface, the 

location where the drone has its base station, the IT equipment where the information 

that the drone has collected during its flight is stored, and the network devices that 

allow us to connect to the Internet. The connection to the Internet is performed by 

employing a Service Provider. Depending on the location of the crop fields, the 

technology used to connect to the Internet may vary, choosing among cable or wireless 

technologies to establish the connections. The following layer is the Internet. The 

Internet is accessed through the Operator to send all the acquired data to a remote 

location, where the information will be processed. The connection to the remote 

location is made by establishing a Virtual Private Network (VPN). This way, the data 

will be protected when crossing the Internet. Finally, the Data Center Layer, where we 

store the obtained information is located at the remote location. This information can be 

processed using AI to ensure that decision making is optimal. 

3.2.3.5 Architecture for IoT irrigation system with security and management 

functionalities 

 

In this subsection, an architecture proposal for an IoT irrigation system for irrigation 

with security and management functionalities is presented. In order to ensure the correct 

performance of the IoT irrigation system for precision agriculture, the architecture 

should provide interoperability, scalability, security, availability, and resiliency. 
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After having carried out an exhaustive study of works presented by other researchers, 

our architecture proposal is divided into four layers that we define as devices, 

communication, services, and application, as shown in Figure 3.14. Furthermore, the 

aspects related to management and security should be treated jointly between the 

communication and services layers. 

 

 

Figure 3.14. Architecture proposal for an IoT irrigation system for agriculture. 

 

The first layer is the Device layer, where all the devices that will perform the 

functions of detection, monitoring, control, and action are located. We would have four 

types of nodes. The water monitoring node would monitor water quality to determine if 

the water is apt for the irrigation of the crops. The soil monitoring node would monitor 

soil moisture, soil temperature, and other parameters that aid in the irrigation schedule 

decision process. The weather monitoring node would measure air temperature and 

humidity, precipitation, luminosity, radiation, and wind parameters so as to aid in the 

decision-making process. Lastly, the actuator nodes would perform the actions resulting 

from the decision-making process. 

The second layer is the communication layer, comprised of three blocks. The Hop-

to-Hop communication block allows defining data link layer technologies and to 

transmit the frames that contain the data of the device layer. From this block the frames 

will be sent to the network communication block, to reach the remote locations. The 

routing function can be assumed in this block in mesh networks, such as 802.15.4 

networks. The end-to-end communication block is responsible for delivering the 

capabilities of the transport and application layers of the TCP/IP model when 

communication crosses different network environments. Finally, the network 

communication block is responsible for the communication (routing) between the 

networks, of the hop-to-hop at end-to-end blocks, using the address, for example, IPv4 

and IPv6, and the ID resolution. In addition, it will be responsible for managing the QoS. 
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The next layer is the services layer, which is comprised of three blocks. The services 

block includes the IoT services and operability for their discovery and search. The 

organization block performs the assignment of the services according to the needs of the 

users or the available resources. At last, in business environments that relate to IoT, the 

modeling and execution of service block will be invoked from the execution of the 

applications. 

There are two blocks, management, and security, that act on both the previously 

described communication and services layers. The management block is based on the 

fault, configuration, accounting, performance, security (FCAPS) model, and framework. 

This is a model of the ISO (International Organization for Standardization) 

Telecommunications Management Network [324]. 

The security block guarantees both the security and privacy of the systems and is 

comprised of four blocks. The authentication block is responsible for the authentication 

of users and services. The authorization block manages access control policies. 

Furthermore, access control decisions will be made based on access control policies. 

The key exchange & management block is used to achieve secure communications 

between peers. Finally, the trust & reputation block is responsible for scoring the user 

and calculating the level of trust of the service. 

The last layer is the application layer. It allows users to interact with the IoT system. 

From this layer, users can receive alarms, visualize the gathered data in real-time, or 

activate the actuators or actions that have not been programmed automatically. 

 

3.3 Sensor nodes 

 

In this section, the different nodes, sensors, and actuators proposed to collect data 

from the field and carry out the corresponding actions that allow treating the water are 

described. 

 

3.3.1 Soil monitoring node 

 

The state of the soil is critical in agriculture. Monitoring known parameters that 

characterize the soil is key for precision agriculture systems as they are needed to 

determine the amount of water for the irrigation of the crops and to optimize the 

production. The available sensors to monitor the characteristics of the soil can perform 

their measurements through the physical characteristics of the soil or its chemical 

characteristics. However, chemical sensors are not adequate for these systems as they 

would require the assistance of a person to clean, calibrate, and perform the 

measurement. Therefore, a precision agriculture system will usually be comprised of 

sensors that need low maintenance.  
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Soil quality depends on several aspects and its degradation is mostly caused by soil 

compaction, acidification, and salinization. The salinity, acidity, and water holding 

capacity of the soil are some of the most considered aspects when monitoring the state 

of the soil but other factors such as nutrient availability, labile and organic carbon, 

rooting depth, soil structure and texture affect the quality of the soil as well [325]. 

Most precision agriculture systems focus then on three factors to characterize the soil. 

The PH of the soil is measured to determine its acidity or alkalinity. Very acid soils can 

lead to deficiencies in nutrient availability despite the addition of fertilizer. Low PH 

levels can result in aluminum toxicity leading to poor growth, smaller quantity, and 

produce size. Moreover, the persistence of herbicides can be affected by the PH levels 

as well. Lastly, microbial activity can be affected as well leading to unhealthy plant 

conditions. 

Soil humidity is measured to determine if the crops are suffering from water stress 

due to a lack of water in the soil. High humidity results in root diseases and the waste of 

irrigation water. On the other hand, low humidity can cause yield loss and even the 

death of the plant. Furthermore, the movement of the water in the soil determines how 

the nutrients will reach the plants whether they are added to the irrigation water or 

through other means. The content of clay, sand, and silt of the soil determines its water 

holding capacity. 

Soil temperature experiments change within the day and throughout the year. Solar 

radiation and air temperature are determinant factors on the temperature of the soil. Soil 

temperature can affect the chemical and physical properties of the soil. The PH 

increases with soil temperatures between 25ºC and 39ºC [326]. The moisture content, 

salinity, and the structure and aeration of the soil are affected as well. The organisms 

and the organic matter in the soil are influenced by soil temperature resulting in more 

soil respiration between temperatures of 10ºC and 28ºC, an increase in the activity of 

micro-organisms and macro-organisms between temperatures from 10ºC to 24 ºC and 

the decomposition of the organic matter with temperatures between 2ºC and 38ªC. 

Furthermore, the water uptake of the plants gets reduced with high soil temperatures 

and the nutrient uptake decreases with low soil temperatures. Lastly, high soil 

temperatures lead to an improvement in root growth whereas low soil temperatures 

result in a decrease in root growth. 

The proposed soil monitoring system is presented in Figure 3.15. The data 

acquisition and transmission are performed with the ESP 32 Devkit v1 node. Although 

this node is not an industrial node, the low-cost nodes can also be utilized in realistic 

agricultural environments considering real-time data transmission is not necessary for 

the proposed system. Furthermore, the node is placed inside a protective box to avoid 

damage from the weather, animals, or machinery. Utilizing low-cost nodes and sensors 

in precision agriculture solutions also allow farmers to improve the performance of their 

crops and optimize resources without investing large amounts of money, which makes 

the proposed solution more accessible. Temperature is measured with a soil temperature 

monitoring sensor probe such as the THERM200 [327]. The soil humidity multi-sensor 

array is comprised of low-cost soil humidity sensors such as the FS200-SHT10 sensor 

[328] at depths of 20 cm, 30 cm, 40 cm, and 50 cm in a manner similar to that presented 
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in [329] for the scenario of a sensor buoy. Lastly, a low-cost soil PH sensor is connected 

to the node to monitor the PH of the soil as the MS02 [330]. The probes are inserted 

into the soil to gather the measurement. These probes act as a fixing structure to ensure 

that the box does not move due to meteorological conditions, mainly wind and rain, or 

due to the pass of fauna. Moreover, due to the general characteristics of citrus orchards, 

we do not expect high soils erosion, which might alter the location of the sensor or the 

generation of disturbances in our measures.  

 

 

 

Figure 3.15. Proposed soil monitoring node for scenarios 1 and 2. 

 

Two scenarios are contemplated, one with the node placed in an on-ground position 

and the other with the node located above-ground at different heights. The tests have 

been performed considering a deployment strategy that is focused on the field area, 

where the nodes are located among the crops both on the surface of the soil and above 

the ground contemplating that the sensors must be buried into the ground. There are 

other areas in PA systems such as the canals where the irrigation water is transported 

that can be monitored with sensors such as the conductivity sensor presented in [331]. 

However, they are not the focus of this paper. 

 

3.3.2 Water monitoring node 

 

In this subsection, the sensors used for monitoring water quality and irrigation needs 

in the farmland are described.  
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The sensor used to monitor water quality will be used to monitor turbidity and 

conductivity. For the detection of turbidity, optical sensors are used, while for 

conductivity monitoring, inductive sensors are used. For the detection of turbidity, 

optical sensors are used, while for conductivity monitoring, inductive sensors are used. 

The turbidity sensor is based on that presented in [43]. It is made with two LEDs that 

emit at different wavelengths and two light detectors. One of the LEDs has a maximum 

wavelength of 612–625 nm and the other of 850 nm. The light detectors are a light-

dependent resistor (LDR) that responds to the visible light of the first LED and a 

photodiode that responds to the infrared (IR) light of the second LED. The turbidity 

sensor is placed before and after the application of the filters to treat the water. The 

LEDs are powered at 3.3 V using the 3.3 V output voltage.  

The conductivity sensor is based on the prototype described in [42]. It is composed 

of two copper coils. The first coil is powered with a sine wave and the second coil is 

induced. The induced voltage depends on the conductivity of the water. The powered 

coil is powered with the Arduino using an analog output (PWM) pin. The generated 

voltage in the induced coil is measured. Both the turbidity sensor and the conductivity 

sensor are connected to the same node. They are placed before and after the filters and 

will monitor the correct operation of the wastewater treatment filters by registering the 

changes in water quality. Additionally, we use a sensor to detect the presence of 

hydrocarbon in the water. The sensor is based on the photoluminescence effect linked to 

the hydrocarbons. In the design of the sensor, different light colors are used to excite the 

molecules of a hydrocarbon. The light source is an LED and a photodetector is used as a 

receptor of the emitted light.  

In the proposed system, the nodes are deployed throughout the expanse of the canals, 

both for urban areas and farming areas. The quantity of nodes depends on the number of 

canals and their specific needs. The Arduino Mega 2560 is one of the options of 

embedded systems that execute the algorithm that indicates how to gather, manage, and 

forward the data (See Figure 3.16) [332]. The node has 16 analog input pins and 54 

digital input/output pins, allowing for connecting many sensors to one single node. 

Moreover, it provides a universal serial bus (USB) connection, 4 universal 

asynchronous receiver-transmitter (UART) serial ports, a power jack, a 16 MHz crystal 

oscillator, an in-circuit serial programming (ICSP) header, and a reset button. However, 

as the node does not provide an integrated wireless interface, it is necessary to 

incorporate wireless modules. The nodes can be provided with WiFi connectivity 

through a ESP8266 module [333] or with LoRaWAN connectivity by employing the 

module F8L10D-N [334] which transmits in the 868 Mhz band. 
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Figure 3.16. Example of the Arduino Mega 2560 and the ESP8266 and F8L10D-N modules. 

 

3.3.4 Meteorology monitoring node 

 

In this subsection, the description of the meteorology monitoring node for agriculture 

is going to be presented. 

There are several environmental parameters whose knowledge is important to 

farmers and the development of a comprehensive system for precision agriculture. 

Temperature is one of the most important factors that affect plants. The correct growth 

of plants, blooming, photosynthesis, or water and nutrient absorption are some of the 

aspects that depend on the temperature of the environment. To measure temperature, on 

this prototype the DHT11 sensor has been utilized. This sensor has been utilized to 

measure humidity as well. Humidity affects plant transpiration, its photosynthesis, and 

its growth. Low levels of humidity are related to withered plants, small sized leaves, or 

burnt or dried leaf tips. High humidity levels are related to higher root and leave 

diseases, nutrient deficiencies, or weak growth. The rain determines whether the 

irrigation should be activated or not. Furthermore, high amounts of rain should be 

accompanied of the implementation of proper drainage so as to avoid excess of 

humidity in the soil. A rain sensor was utilized so as to determine the presence or 

absence of rain. Lastly, the amount of light is related to the photosynthesis process of 

the plants and may affect the constitution of the fruit. 

Apart from the sensors described previously, the system is comprised of an ESP32 

Devkit V1 microcontroller [335]. Furthermore, an SD card is incorporated to the 

prototype so as to store the information in case of the malfunction of the wireless 

connection or the server and the power is provided through a 12V solar panel and a set 

of batteries. The connection of all the sensors and modules is presented in Figure 3.17 

and the node prototype is shown in Figure 3.18. The DHT11 sensor is located inside a 

protective plastic with open spaces to let the air flow. The open spaces are protected 

with a net to avoid the incursion of insects. The other sensors are located on the bigger 

encapsulation. The solar panel is supported by an aluminum structure and the rest of the 

circuit, and the microcontroller is located inside the encapsulation. 
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Figure 3.17. Connection of the elements of the system. 

 

 

Figure 3.18. Prototype of the meteorology monitoring node. 
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The algorithm of the system is presented in Figure 3.19. This algorithm determines 

when the data is forwarded according to the variations in the monitored values. 

Therefore, the number of forwarded messages is reduced. Firstly, the thresholds of the 

parameters are set. These thresholds indicate the limits in the variations so as to assess if 

a message with the value of the parameter is forwarded. Then the initial values are 

measured and used as reference values. The counter and variables of the different 

metrics are initialized afterward. The system starts taking measures and calculates the 

averages of temperature and humidity, and the maximum value for luminosity. As each 

parameter has different variations throughout the day, the decision for the data 

transmission is different for humidity and temperature, luminosity, and rain. For 

humidity and temperature, the average value in the determined period is calculated. 

When the counter reaches the specified time, the variations in the gathered data are 

evaluated. If the variation does not surpass the threshold, the data is not forwarded, and 

the previous values are maintained. If enough variation has been detected, the standard 

deviation is calculated, and the data is forwarded. For the luminosity, increases in 

luminosity are determined to obtain the maximum luminosity value. When the counter 

reached the determined time, the variations are evaluated, and the data is forwarded if 

the threshold is surpassed. Lastly, for the rain, when the counter reaches the set time, the 

data is forwarded if there are changes. If there have not been any changes, the previous 

values are maintained. 

 

3.3.4.1 Determination of data acquisition frequency 

 

To determine the best dt for each parameter, the followed approach has been to 

evaluate the accumulate relative error (ARE) of the data in the database (DB) for 15 

hours. The data is real environmental data gathered by our environmental monitoring 

system presented in the previous section. The algorithm has been applied to the 

gathered data to determine the best dt. The 15-hour period includes two time lapses with 

big changes at the beginning and at the end of the experiment (sunset and sunrise), and a 

long time lapse with minor changes (the night). We consider that the best dt is the 

highest one that allows to have an ARE lower than 5%. Therefore, we minimize the 

number of packets and keep a good data accuracy in the DB.  

First, the data about temperature when different dt are utilized in the algorithm is 

presented. The values of temperature in de DB with different dt are presented in Figure 

3.20. We can see that, at the beginning, of the data set the data values of temperature are 

decreasing slowly due to the sunset. During the night, the temperature still decreases 

more leisurely. At the end of the experiment, after sunrise, the temperature starts to 

increase. When different dt are used, the values of temperature in the DB change, and 

some fluctuations are lost. For example, for the dt of 50, 55, and 60 min, the minimum 

temperature (7ºC) is not recorded in the DB, and the increment of temperature during 

the sunrise is not correctly gathered with dt higher than 25min.  
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Figure 3.19. Algorithm of the system. 
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Figure 3.20. Value of Temperature in the DB with different dt in the algorithm. 

 

Regarding the ARE in temperature values of the DB, see Figure 3.21, we can affirm 

that, ARE increases dramatically when the dt is higher than 25 min. ARE for dt between 

30 and 55 min are almost the same and increases again with dt of 60 min. Therefore, 

considering the ARE during this experiment and the aforementioned information in 

Figure 3.21, the best dt for temperature sensing, according to our data, is 25 min. 

 

Figure 3.21. ARE of Temperature in the DB with different dt in the algorithm. 

 

Following, the data stored in the DB that is gathered by the Humidity sensor is 

shown, see Figure 3.22. During the sunset and the first hours of the night, the humidity 

increases. Then, after the sunrise, the humidity decreases due to the increase of 

temperature. As the changes in humidity are slower than in the case of temperature, no 

big differences can be seen in the values of the DB with the different dt beyond a delay 

on the notification of the changes. The maximum and minimum values are gathered 

with all the dt and a good representation of data variability is archived in all the cases.  
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Figure 3.22. Value of Humidity in the DB with different dt in the algorithm. 

 

In terms of ARE of humidity data, see Figure 3.23, it increases almost constantly as 

the dt upsurges. The only dt that overtakes the limit of 5% is the dt = 60 min. 

Nonetheless, the dt of 50 and 55 min are close to reaching 5%. Therefore, we can say 

that to ensure that ARE do not exceeds the 5%, it is better to use a dt of 45 min for the 

data of humidity.  

 

Figure 3.23. ARE of Humidity in the DB with different dt in the algorithm. 

 

Finally, we focus on the data of illumination, see Figure 3.24. This data presents the 

highest changing rate in sunrise and sunset. Consequently, we expect to have high 

mismatches in the data when high dt are used. In this case, the dt higher than 5 (the 

original data) are not able to record the maximum light value. Moreover, the dt higher 

than 15 min cannot gather properly the abrupt changes in the sunrise and the sunset. 

Thus, according to the capability to record the maximum, minimum values, and the 

variations in the data, the maximum acceptable dt is 15 min, as seen in Figure 3.25. 
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Figure 3.24. Value of Illumination in the DB with different dt in the algorithm. 

 

Figure 3.25. ARE of Illumination in the DB with different dt in the algorithm. 

 

As it can be seen, the obtained results vary from 45 minutes to 5 minutes depending 

on the parameter. Other environmental monitoring systems such as [336], perform a 

measure each hour. The selected time period must serve the required purpose. Our 

results indicate the best time period for each parameter in the Spanish Mediterranean 

weather in order to preserve the information of the changes in the weather. However, 

other climates may require different settings and other applications may not need much 

accuracy.  

 

3.3.5 Actuator node 

 

To carry out the design of the actuator nodes, several factors must be considered. The 

actuator node must have a linear actuator. The linear actuator is a device that converts 

the rotational motion of a low-voltage direct current (DC) motor into linear motion. 

This allows us to operate a hydraulic or pneumatic actuator that will move the gates to 

open or close the canals. Furthermore, an SD card will be needed as well. The hardware 
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necessary to receive and transmit the actions must be arranged. Furthermore, for its 

operation, it must have a self-powered system for power generation. The energy system 

consists of rechargeable batteries and small solar panels which are responsible for 

recharging the batteries. In this way, we ensure a long service life of the devices in 

operation. It will also have a USB port so that administrators can connect directly to the 

node. 

 

3.4 System operation algorithms 

 

In this subsection, the performance algorithm of the elements of the proposed system 

is presented. The proposed algorithm has been divided into two parts. The first part 

shows the algorithm used by the sensor nodes to obtain the data and transmit them to a 

central node. This node is called Central Node and it is located in Urban Area 0, from 

which the data and alarms are sent to the AI and storage systems. The second part 

presents the manner in which the data are stored in the Storage Server and treated in the 

AI computers so as to later send the response action to the actuator nodes. 

The algorithm presented in Figure 3.26 shows the operation process of a group of 

nodes. As can be seen in Figure 3.2, a sensor node is not deployed on its own but in a 

group of three nodes that measure at the same point. This group is formed by one sensor 

node named Central Node, and two more sensor nodes. All sensor nodes are capable of 

detecting different parameters related to water pollution. All the sensors connected to 

the nodes take measurements every minute. If there are variations with respect to the 

reference values, the data are sent to the Central Node of the group, and at the same 

time, the data are stored in the SD card. In addition to performing the usual functions of 

any other sensor node, distributed Central Nodes are responsible for sending data and 

alarms with information from any node in their group. These alarms and information are 

forwarded to the Central Node located in Urban Area 0, via wireless communication. 

This grouping of nodes allows for guaranteeing fault tolerance. If only one node detects 

pollution, the node sends an update to the Central Node of their group, and this Central 

Node checks if itself or the other sensor of the group has also detected pollution. If 

pollution is not detected by more than one node, it is considered a false positive. 

All the groups of nodes located in the different areas, urban or canal, can send 

updates to their Central Nodes via wireless communication. The Central Nodes send the 

information, via wireless communication as well, to the Central Node of Urban Area 0. 

The Central Node of Urban Area 0 is responsible for sending all information and alarms 

collected in all areas to the data center through a wired/wireless transmission medium. 

The data center is primarily responsible for storing the data, which can be consulted at 

any time, and generating analytical and machine learning models. In addition, it is also 

responsible for generating the actions that the actuator nodes must take.  
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Figure 3.26. Algorithm for node groups. 
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Generally, the action resulting from the detection of an alarm is associated with the 

start-up of one actuator node at least in one area. When the Central Node of Urban Area 

0 receives an alarm, if it is known and has been previously treated, this node decides an 

action and makes an order to the actuator nodes so that the corresponding action is 

carried out. Moreover, the Central Node of Urban Area 0 sends the alarm to the storage 

and AI data analysis system. 

The second algorithm that we propose so as to store the data and alarms that are 

generated in the sensor nodes is provided in Figure 3.27. Once saved, they are processed 

by AI, and then the decisions that are made are forwarded to the actuator nodes. 

 

 

Figure 3.27. Algorithm for storage data, obtain patrons’ big data and take decision to actuator 

nodes. 

 

receive data in storage server

Data = Alarm ?
No

detect data patterns

send decision to actuator sensors

take action on actuator nodes

Apply AI engine

end

Yes

System

store in server

Tag the data

Apply decision rules 
Feed with 

decision rules
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Initially, when the data are received in the Storage Server, the system must 

differentiate if it is an alarm or if it is the data that have been obtained during an 

observation period. In case of an alarm, the received data will be tagged before being 

stored. If it is not an alarm, the data are stored directly. Then, they go to the computer 

where they are treated by AI. In this way, patterns of behavior can be detected. 

Depending on the problems that can be detected and the place where actions should be 

applied, several decision rules have been created. Those rules are applied based on the 

detected patterns. Finally, the decisions that have been made based on the rules are sent 

to the actuator nodes so that they are put into action in an appropriate manner. 

 

3.5 Proposed algorithm for irrigation 

 

In this subsection, the performance algorithm of the irrigation system is depicted. 

The presented system determines the irrigation requirements of the fields according 

to the weather and the state of the soil. For the field area, an irrigation software was 

created to analyze de data from the fields at the Data Center so as to determine the 

amount of water required by the fields. The flow chart of the performance of the Data 

Center is presented in Figure 3.28. After the network establishment, all the variables, 

fixed and obtained from both the user and the sensors, are initialized. All the required 

variables are listed in Table 3.1. Then, the Data Center receives all the data from the 

sensors and stores it for later analysis. The system generates an alert if some variables 

such as the salinity of the soil or the water surpass a threshold. Therefore, if the data 

center receives any Alert Notification, the notification is processed and then, an Action 

is decided and forwarded to the relevant actuator. If there is no alert notification, the 

system checks if the calculation timer is reached. The calculations for the irrigation 

requirements need to be performed once a day as the irrigation is done each morning. 

Therefore, when that time is reached, all the data is processed to create reports for the 

user. Then, the intermediate variables are calculated. Lastly, the calculated irrigation 

requirements are forwarded to the Field Actuator for it to irrigate the fields the 

following morning. The PA system may include irrigation water monitoring and an 

agrometeorological monitoring node to obtain more precise irrigation schedules for the 

intended fields. However, this paper is focused on the field area. 
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Figure 3.28. Flow chart of the Data Center. 

 

Table 3.1. Variables required by the system. 

Fixed Variables Variables set by the User 

Elevation above sea level Height of the tree 

Date Selection of soil type 

Latitude Time period for irrigation calculation 

Height of wind speed measurement 

Selection of Single Coefficient Approach or 

Dual Coefficient Approach for ETc 

calculation 

Variables obtained from the monitored data 

Maximum air temperature of the day Water salinity 

Minimum air temperature of the day Soil conductivity 

Maximum relative humidity of the day Soil humidity 

Minimum relative humidity of the day Soil temperature 

Hours of sunlight of the day Mean temperature of the actual month 

Wind speed Mean temperature of the previous month 

Precipitation amount 
Estimated mean temperature of the following 

month 
Hour of the precipitation 
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Algorithm 3.1 presents the algorithm that determines the irrigation needs of the crops. 

The basis of the calculations of the irrigation requirement of a crop is presented on the 

FAO (Food and Agriculture Organization) Irrigation and Drainage Paper No. 56 on 

Crop Evapotranspiration [337]. For our system, we introduced the monitored 

parameters as variables of the equations for irrigation calculation presented by the FAO. 

Although the FAO does not contemplate the use of sensors deployed on the field to 

acquire the necessary data for the calculations of the evapotranspiration of the crop 

(ETc), many papers have implemented varied forms of ETo (reference 

evapotranspiration) and ETc calculations using the data from sensors deployed on the 

fields [12, 13, 316].  

 

Algorithm 3.1. Irrigation algorithm 

1) Variable initialization 

2) User parameter initialization 

3) ETo calculation 

4) Determination of the Crop Stage 

5) If Water stress then 

6)    Calculate irrigation adjustment due to water stress 

7) end if 

8) If High salinity levels then 

9)      Calculate irrigation adjustment due to salinity 

10) end if 

11) If Precipitation then  

12)    Determine the precipitation amount 

13)    Determine the hour of the precipitation 

14)    Calculate irrigation adjustment due to precipitation 

15) end if 

16) Calculate ETc  

17) Calculate Irrigation requirements of the crop 

18) End. 

 

Algorithm 3.1 is executed once a day after the data center receives the data gathered 

throughout the day. This is done because some variables require the minimum and 

maximum value of a day to perform the calculations, such as temperature and relative 

humidity, and other variables require a total of the day, such as sunlight hours and 

precipitation amount. Therefore, the monitoring process and the reception of the data at 

the specified intervals is contemplated in the flow chart in Figure 3.27. Whereas 

Algorithm 3.1 receives the processed data of the day with the variable initialization 

process, as well as the fixed variables. Then, the variables set by the user are initialized. 

Using all the gathered data, the ETo is calculated. Then, the crop stage is determined. 

The crop stage differs among crop types and the time of the year. Then, the presence of 

water stress and salinity stress is determined according to the readings from the soil 

sensors so as to adjust the irrigation requirements as stated in the recommendations of 
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the FAO. Water stress and salinity stress can result in higher water requirements in an 

effort to counteract the caused damage. Furthermore, if precipitation is detected, the 

amount of irrigation water may be reduced, or the irrigation day may be postponed 

according to the amount of precipitation. This is calculated utilizing the irrigation 

adjustment due to precipitation as recommended by the FAO. Lastly, the ETc is 

calculated, and the irrigation requirements are determined. 

Figure 3.29 presents the case of an irrigation schedule for an orange orchard in a 

Mediterranean climate for one month. The climate data were obtained from the 

agrometeorological station MO12 in Región de Murcia, Spain [338] for the month of 

October 2020. During the period of one month, there were four precipitation events and 

one water stress event. As it can be seen, the irrigation scheduling begins with one 

initial irrigation event. Then, the Root zone depletion is calculated to determine the 

irrigation needs of the orange trees. Water stress is detected on day 15 and another 

irrigation event is scheduled for day 16. It is noticed that the Root Zone Depletion is 

reduced by both irrigation and precipitation events. 

 

 

Figure 3.29. Simulation of an irrigation schedule for an orange field in Murcia. 

 

The case of the irrigation of an orange field in the area of the station of Gandía 

Marxuquera, Comunidad Valenciana, Spain [339] for the month of October 2020 is 

presented on Figure 3.30 as well. In this case, in the area of Gandía, situated in a norther 

region, there were seven precipitation events. However, four of them were 0.1 mm and 

thus, are not visible on the graph. Considering a first irrigation of 45 mm as in Figure 

3.28, as it can be seen, the next irrigation event is scheduled for day 19 instead, three 

days after the irrigation event of the MO12 station. In that manner, the algorithm takes 

into consideration the different weather conditions of each area to provide the necessary 

amount of irrigation water for each field. 
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Figure 3.30. Simulation of an irrigation schedule for an orange field in Gandía. 

 

3.6 Conclusion 

 

In this chapter, the architecture for water quality monitoring for an irrigation PA 

system and has been presented. Three areas have been considered being the Canal area 

where the water quality is monitored, the field area where the state of the crops is 

monitored, and the Urban area where the gateway is located. The data is forwarded 

utilizing both WiFi and LoRa wireless technologies, where the CH node is the 

WiFi/LoRa bridge that allows the connection between the WiFi and the LoRa nodes. 

Furthermore, a tree topology for LoRa has been introduced. This allows reaching further 

distances and reducing the amount of data and the number of messages forwarded from 

one node to the following node. Furthermore, specific scenarios have been 

contemplated as well. Then, the sensor nodes for monitoring water quality, soil 

conditions, and meteorology conditions have been described. Lastly, the operation 

algorithm for the system and the algorithm that calculates the irrigation requirements 

have been presented as well. The aforementioned work has been published in several 

papers authored in several publications: [28, 38, 45, 48, 340, 341]. Moreover, the 

communication protocol for the presented architecture will be described in the 

following chapter. 
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Chapter 4                                   

Protocol Design 

 

 

4.1 Introduction 

 

In this chapter, a new communication protocol for the architecture presented in 

Chapter 3 intended for PA systems located in remote areas is presented. It is intended 

for heterogeneous networks comprised of both WiFi and LoRa devices, including a 

WiFi/LoRa bridge to perform the conversion between each wireless technology. Thus, 

the proposed protocol is encapsulated over UDP and LoRa. Furthermore, this protocol 

has a low overhead, which is beneficial for the LoRa transmissions. The structure of the 

header and the messages is detailed. Furthermore, the alerts caused by water salinity, 

water pollution, malfunctioning elements of the nodes, low battery, or down nodes are 

contemplated.  

 

4.2. Protocol description 

 

In this section, the proposed protocol for a precision agriculture system is presented. 

The message format is described in Figure 4.1. The first field of the Header is the 

NODE_ID field. It is one byte long and has the specific ID of each node. This field is 

set to 0 when the node has not yet been registered or when the sender is the Data Center. 

It is followed by the NODE_TYPE field which is 4 bits long. Table 4.1 depicts the 
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different node types and the value at the NODE_TYPE field. The MESSAGE_TYPE 

field is 3 bit long and determines the type of message the nodes or the Data Center is 

sending (See Table 4.2). The next field is the Priority Field. The messages with priority 

have this flag as 1. All messages have the priority flag activated except the DATA 

message. The DATA message does not have priority unless access to the data has been 

requested by the user. The next field is the Payload which has the information that is 

forwarded in the message. Not all messages have a payload. 

 

 

Figure 4.1. Message format of the protocol. 

 

Table 4.1. Values of the NODE_TYPE field. 

Value Node Type 
Bit 

3 2 1 0 

0 Data center 0 0 0 0 

1 Gateway 0 0 0 1 

2 Aggregator Node of 

Canal Area 

0 0 1 0 

3 Aggregator Node of 

Field Area 

0 0 1 1 

4 Actuator Node of 

Canal Area 

0 1 0 0 

5 Actuator Node of Field 

Area 

0 1 0 1 

6 Water Monitoring CH 0 1 1 0 

7 Water Monitoring 

Node 

0 1 1 1 

8 Meteorology 

Monitoring Aggregator 

Node 

1 0 0 0 

9 Soil Sensing CH 1 0 0 1 

10 Soil Sensing Node 1 0 1 0 

11 Farmer User 1 0 1 1 

12 Hydrographic 

Confederation User 

1 1 0 0 
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Table 4.2. Values of the MESSAGE_TYPE field. 

Value Message Type 
Bit 

Description Priority 
6 5 4 

0 REGISTER 0 0 0 This message is sent when creating the 

topology for the node to be assigned an 

ID. 

Yes 

1 DATA 0 0 1 This is the message format to forward 

data. 

Both 

options 

2 ACTION 0 1 0 This is the message that is sent to the 

actuators with the actions they have to 

perform. 

Yes 

3 MALFUNCTION 0 1 1 This is an Alert message that is 

forwarded to the Data Center when a 

malfunction in one of the elements of a 

node is detected but the node is able to 

perform other activities. 

Yes 

4 IS_DOWN 1 0 0 This is an Alert message that is 

forwarded to the Data Center to notify 

that a node is not functioning. 

Yes 

5 LOW_BATTERY 1 0 1 This is an Alert message that is 

forwarded to the Data Center to notify 

that a node has a low battery and thus, 

there is a problem with the energy-

harvesting functionality. 

Yes 

6 POLLUTION 1 1 0 This is an Alert message forwarded to 

the Data Center by the nodes in the 

Canal Area to notify that pollution has 

been detected. 

Yes 

7 SALINITY 1 1 1 This is an Alert message forwarded to 

the Data Center by the nodes in the 

Canal Area to notify that high levels of 

salinity have been detected in the water. 

Yes 

 

A scheme of the phases of the protocol is presented in Figure 4.2. When the system 

is deployed, the first process performed by the protocol is the Activation Phase to 

connect all the devices. Then, the Verification Phase is performed to ensure all devices 

work properly. Then, the User Registration Phase is performed to add all the Users to 

the system. The Data Acquisition Phase, the Data Transmission Phase, the Action Phase, 

and the Alert Phase can happen at the same time between the different elements of the 

architecture. Lastly, the Verification Phase is performed periodically to assess the state 

of the devices. Hereunder, an in-depth description of each of the phases is provided: 
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Figure 4.2. System diagram flow chart. 

 

1. Activation phase: In this phase, the topology presented in Figure 3.5 is 

established. The nodes detect their neighbors and establish a connection with the other 

nodes. The initial set-up of all the variables necessary for the correct functioning of the 

system is established as well.  

All the nodes have a static address assigned by the network designer. The nodes 

establish the connection with one another according to the specifications of the 

WiFi/LoRa technology. Once the topology has been established, the nodes send a 

REGISTER message to obtain the Node ID from the Data Center (See Figure 4.3). The 

Register process begins with the Gateway, followed by the Aggregator Node, then the 

CH, and, lastly, the Sensing Nodes. As it can be seen in Figure 4.3, the NODE_ID is set 

to 0. The NODE_TYPE is part of the initial configuration of the node. Therefore, 

depending on the type of the node, the NODE_TYPE field in the REGISTER message 

will have a different value. The MESSAGE_TYPE is the REGISTER message, and the 

P flag is set to 1. Lastly, in order to know which of the nodes has forwarded the 

message, the payload of the REGISTER message will be a Byte with a random number. 

The answer from the Data Center will substitute the random Byte with the Node ID 

assigned to the node. An example of the REGISTER message for a Water Monitoring 

Node is provided in Figure 4.4. 
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Figure 4.3. Message exchange in the Activation phase. 

 

 

Figure 4.4. Example REGISTER message for a Water Monitoring Node. 

 

2. Verification phase: The nodes verify that all the sensors, the solar panel, the 

radio, and the communication are functioning correctly. If any of the elements of the 

system has a problem, a notification is generated.  

Once the nodes receive the NODE_ID, they begin the verification process to check if 

all the sensors and elements that comprise the node are working properly. If there is not 

any problem, no messages are sent. However, if there is a problem with any of the 

elements of the node, a MALFUNCTION notification will be sent to the Data Center 

(See Figure 4.5). The Verification phase is performed periodically to assess the 

performance of the system as it is exposed to the elements, animals, and machinery of 

the workers of the farm. 
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Figure 4.5. Message exchange in the Verification phase. 

 

The payload of the MALFUNCTION message is different according to the Node 

Type. It consists of a set of flags that indicate which sensor is malfunctioning (See 

Table 4.3). The Actuator Nodes only have two flags while the Soil Sensing Node and 

CH, and the Meteorology Monitoring Aggregator Node have 5 flags. When one of the 

sensors is not working correctly, the MALFUNCTION message is forwarded with the 

flag of the broken sensor set to 1. The sensors that are working properly have their flags 

set to 0. 

 

Table 4.3. Payload of the MALFUNCTION message according to Node Type. 

Node Type 
Bit 

4 3 2 1 0 

Actuator Node of 

Canal Area 

- - - Gate 2 Gate 1 

Actuator Node of 

Field Area 

- - - Flux sensor Gate 

Water Monitoring 

CH/Node 

- - Oil sensor Turbidity 

sensor 

Salinity 

sensor 

Meteorology 

Monitoring 

Aggregator Node 

Wind 

sensor 

Luminosity 

sensor 

Rain sensor Humidity 

sensor 

Temperature 

sensor 

Soil Sensing 

CH/Node 

pH sensor Temperature 

sensor 

Humidity 

sensor 3 

Humidity 

sensor 2 

Humidity 

sensor 1 
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3. User registration phase: The user is registered at the Cloud platform to access 

the data from the sensors and to indicate any changes in the initial variables. If any new 

information is provided by the user, the data is forwarded to the nodes that need that 

information.  

In this phase, the user is registered to the system. There are different types of users 

with different privileges. Table 4.4 presents the types of users and the nodes they have 

access to. As it can be seen, the Farmer user has access to the nodes deployed on their 

farm whereas the Hydrographic Confederation User has access to the nodes deployed on 

the water canals. 

 

Table 4.4. Nodes that can be accessed by each User Type. 

User Type Node Type 

Farmer User 

Meteorology Monitoring Aggregator Node, Aggregator 

Node of Field Area, Actuator Node of Field Area, Soil 

Sensing CH, and Soil Sensing Node 

Hydrographic Confederation User 

Aggregator Node of Canal Area, Actuator Node of 

Canal Area, Water Monitoring CH, and Water 

Monitoring Node. 

 

The message exchange between the User and the Data Center is presented in Figure 

4.6. As it can be seen, the employed message is the REGISTER message. In the case of 

the user, The NODE_TYPE field has the values of the User Type. The NODE_ID and 

Payload fields are used in the same way as the nodes on the Activation phase. 

 

 

Figure 4.6. Message exchange in the User registration phase. 
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4. Data acquisition phase: The nodes of the cluster gather the data from the 

sensors. The sensing nodes send the data to the Cluster Head for its latter transmission 

to the data center. The system enters this phase more regularly than the Data 

transmission phase. Depending on the activities performed by the node, it can vary from 

minutes to hours. 

According to the NODE_TYPE, the payload of the DATA message is different. The 

bits required for each of the parameters are the minimum size necessary according to the 

resolution required for the calculations. This way, the size of the message is reduced as 

much as possible while ensuring the desired functioning of the system. The P flag of 

this DATA message is set to 0. The message exchange for this phase is presented in 

Figure 4.7. No Acknowledgement (ACK) are forwarded to reduce energy consumption. 

Instead, The CH has a Reception Timeout to assess if the messages from the Monitoring 

Nodes have been received within the expected time. This is a parameter that is 

configured at the establishment of the network. When the Reception Timeout is reached, 

a DATA message is forwarded to the Monitoring Node with a Payload of 1 bit set to 1 

(See Figure 4.8). 

 

Figure 4.7. Message exchange for the Data Acquisition phase. 

 

 

Figure 4.8. Payload format of the Data messages at the Data transmission phase. 
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5. Data transmission phase: The nodes start gathering the data from the sensors. 

This data is stored on an SD card. Then, all the local analysis is performed, and the data 

is transmitted to the specified node. For the Cluster Heads, the data from the sensor 

nodes is aggregated and forwarded to the gateway. If any alerts arise during this phase, 

then an alert notification is forwarded. There are different types of alerts. This phase is 

entered when a notification occurs and once a day to forward the data stored in the SD 

card. Unless it is a message with priority, the information is forwarded to the Data 

Center once a day. The message exchange for the Data Transmission phase is shown in 

Figure 4.9. 

 

 

Figure 4.9. Message exchange for the Data Transmission phase. 

 

6. Action phase: Once the data reaches the data center, it is stored and processed 

using AI based on a dataset of preestablished values of the correct performance. With 

the correct performance in mind, decisions are taken throughout the performance time. 

When actions are required, the specific action is forwarded to the actuator nodes. 

The message ACTION is forwarded from the Data Center to the Actuator Node (See 

Figure 4.10). The payload of the ACTION message is the new values of the Actuator 

Node, such as an open or closed gate. The Actuator Nodes of the Canal Area are LoRa 

Class B nodes so they can receive an ACTION message when necessary, with a latency 

below 30 seconds, which is an acceptable latency for our system. The Actuator Nodes 

of the Field area are LoRa Class A nodes. As the calculations for the amount of water 

needed for irrigation are performed for the next day, the Actuator Node will forward an 

empty DATA message so it can receive any queued ACTION messages from the Data 

Center. The Aggregator Node will discard the empty DATA message and forward the 

ACTION message. 
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Figure 4.10. Message exchange for the Action phase. 

7. Alert phase: When the system receives an alert notification, the system 

processes the notification and determines the action that has to be taken to solve the 

problem. Depending on the type of alert, the action that has to be taken by the element 

of the network that has reported the alert will be forwarded. The alert messages have 

priority over the rest of the messages. Therefore, if an alert is received, the node will 

send the alert before continuing with sending other information. There are different 

types of alert messages according to the detected problem. 

a. Pollution detected: When the water is contaminated, an alert message is 

forwarded to the data center and the user that has access to the information of the 

nodes in the canal area. The data center will decide the necessary action and 

forward it to the actuators that need or take the action. This alert generates a 

response from the Data Center as described in the Action phase. 

When pollution is detected in the water, a POLLUTION message is forwarded 

to the Data Center (See Figure 4.11). The payload of this message is the measured 

pollution levels. The Data Center uses this information to determine the required 

action. Furthermore, the priority messages need to be acknowledged to ensure the 

message has been received. The acknowledgment is done by forwarding a 

message with the same header as the POLLUTION message and the payload set 

to 0.  

b. High salinity levels detected: When high salinity is detected, a 

SALINITY message is sent to the Data Center (See Figure 4.11). The payload of 

this message is the salinity levels detected by the node that sends the alert. The 

message is acknowledged by a message with the same header and the payload set 

to 0. Then, a decision is taken to modify the amount of irrigation water so the 

salinity levels of the soil, resulting from the irrigation, are reduced in comparison 
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to those that would result from taking no action. This alert generates a response 

from the Data Center as described in the Action phase. 

 

 

Figure 4.11. Message exchange for the Pollution and the Salinity alerts. 

 

c. Cluster Head node is not operative: When the Cluster Head Node is 

detected to be down, the system generates an IS_DOWN message to notify the 

user (See Figure 4.12). The message is acknowledged with an IS_DOWN 

message with the payload set to 0. The sensing nodes that send their data to the 

Cluster Head will store the information on their SD card until the CH node is 

replaced.  

This message is forwarded from the Aggregator Node to the Data Center when 

the Aggregator Node detects that no messages are received from the CH Node. 

Therefore, the NODE_ID of the message is the ID of the Aggregator Node and 

the payload of the message is the NODE_ID of the CH Node. 
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d. Sensing node is not operative: The CH node sends an IS_DOWN 

message to notify the user and continues with its operation (See Figure 4.12). The 

payload of the IS_DOWN message is the NODE_ID of the Sensing Node. For the 

acknowledgment of the message, the payload of the message is 0. If decisions 

need to be taken, the CH will only consider the operative nodes.  

 

 

Figure 4.12. Message exchange for the CH is not operative and the Sensing node is down alerts. 

 

e. Actuator node is down: The gateway sends an IS_DOWN message to 

the Data Center and to the Actuator Node of the next canal to operate as indicated 

by the sensing nodes of the previous canal (See Figure 4.13). The payload of the 

IS_DOWN message is the NODE_ID of the broken Actuator Node. For the 

IS_DOWN acknowledgment, the payload of the message is 0. In case of 

malfunctioning, the water will always go through the biosorption process to 

ensure water quality.  

 

 

Figure 4.13. Message exchange for the Actuator node is down alert. 
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f. Aggregator node is down: If the Aggregator Node is down, the 

Gateway will generate an IS_DOWN message and send it to the Data Center, 

which will send the IS_DOWN message to the user for the node to be repaired 

(See Figure 4.14). The message is acknowledged by an IS_DOWN message with 

a payload of 0. Then, The Cluster Head nodes will store the data until the 

Aggregator node is active again. As the CH nodes cannot receive any decision 

from the data center, the nodes will decide if the water needs to go through the 

biosorption process locally. On the field area, the last irrigation schedule provided 

by the data center is maintained. 

g. The gateway node is down: If the Gateway Node is down, the clusters 

and the Aggregator Node will perform fog computing and make independent 

decisions based on the information gathered up to the gateway being down (See 

Figure 4.14). When the Gateway is operative, the stored data is forwarded, and the 

decision process is again performed by the data center. If there is more than one 

gateway, the Aggregator Nodes and the Actuator Nodes will forward the data to 

the available Gateway. When the Data Center detects that the Gateway Node is 

down and sends an IS_DOWN notification to the User with the ID of the Gateway 

for the User to replace it. 

 

 

Figure 4.14. Message exchange for the Aggregator node is down and the Gateway is down 

alerts. 

 

h. Node with low battery: If the energy harvesting system of the node is 

malfunctioning and the node detects a low battery or the battery is malfunctioning 

and it is not charging, a LOW_BATTERY notification is forwarded to the Data 

Center, which conveys the notification to the user (see Figure 4.15). If there is 

enough energy available, the node will forward all the stored data. The node will 

continue functioning until the battery expires. The node of the layer above will 

store the data of the node with a low battery until it is down. This problem may be 

caused by weather conditions damaging the node, or elements blocking the solar 

panel, such as soil or leaves. 
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Unlike the IS_DOWN message, the LOW_BATTERY message is forwarded 

by the node with the problem and thus, the payload of this message is 1 as the 

NODE_ID in this message is that of the node with a low battery. Furthermore, the 

message is acknowledged with a message with the same message and the payload 

set to 0. However, if bad weather conditions were detected by the Meteorology 

Node and the LOW_BATTERY message is received, the message forwarded to 

the User by the Data Center will indicate this aspect in its payload. 

i. Malfunction detected: If the node detects a malfunction in one of its 

elements, a MALFUNCTION message is forwarded to the Data Center as 

specified in the Verification phase (See Figure 4.15). A message with the same 

header and the payload set to 0 is forwarded as an acknowledgment. 

 

 

Figure 4.15. Message exchange for the Node with Low Battery and the Malfunction alerts. 

 

j. Data center down: This is not a habitual problem as data centers have 

backup systems. However, if the data center is not a hired service from a service 

provider and it is a server created by the user, it is possible for it not to have a 

backup and the data center could be susceptible to blackouts, failures of the 

equipment, and accidents such as fires. In case this problem arises, the User 

application will notify the User that the Data Center cannot be accessed. 

Furthermore, The Aggregator Node will perform fog computing and make 

independent decisions based on the information gathered up to the Data Center 

being down. This way, the system can operate independently until the Data Center 

is running again. 

k.  User not available: If the user is not available, the system will function 

in an autonomous manner. The notifications intended for the User will be queued 

at the Data Center until the User is active again. 
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4.3 States of the nodes 

 

According to the varied nodes and the functionalities they have, the states of the 

nodes are different. 

The Gateway and the Aggregator node can have four states (See Figure 4.16): 

• Activation state: This is the first state. The nodes send the REGISTER message 

to the data center and receive their Node ID. 

• Verification state: This state is reached for the first time after the activation state. 

The node verifies the correct functioning of its elements and the correct 

communication with its neighbors. If any malfunctions are detected, a report is 

forwarded to the data center. If all the elements of the node work properly, no 

message is forwarded. This state can be accessed again by request of the data 

center or the user. 

• Data transmission state: The nodes send DATA messages to the Data Center 

with the information received from the Sensing and CH nodes. 

• Alert state: This state is reached when the node detects a malfunction either on 

its elements or when communicating with other nodes. The forwarded messages 

are detailed in the Alert phase in the previous section. 

 

 

Figure 4.16. States of the Gateway and Aggregator nodes. 

 

Events are detailed as follows: 

• Event 0: This event occurs when the node has a failure or when it reboots.  

• Event 1: This event happens when the Activation process where the connection 

is established has been completed. 
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• Event 2: This event happens when the node verifies its correct functioning. 

• Event 3: This event occurs when verification of correct functioning is requested 

from the Data Center or the User. 

• Event 4: This event happens when an alert is detected. 

• Event 5: This event occurs when the node finishes communicating the alert. 

• Event 6: This event happens when the alert is not solved, and the alert is related 

to a failure that inhibits communication with other nodes. 

The Actuator has three states (See Figure 4.17): 

• Activation state: This is the first state. The Actuator sends the REGISTER 

message to the data center and receives their Node ID. 

• Verification state: This state is reached for the first time after the activation state. 

The node verifies the correct functioning of its elements. If any malfunctions are 

detected, a report is forwarded to the data center. If all the elements of the node 

work properly, no message is forwarded. This state can be accessed again by 

request of the data center or the user. 

• Action state: This state is reached when the Actuator receives an action. Then, 

the Actuator performs the action and forwards a message with the current state 

of the Actuator. 

 

 

Figure 4.17. States of the Actuator nodes. 

 

Events are detailed as follows: 

• Event 0: This event occurs when the node has a failure or when it reboots.  

• Event 1: This event happens when the Activation process where the connection 

is established has been completed. 

• Event 2: This event happens when the node verifies its correct functioning. 

• Event 3: This event occurs when verification of correct functioning is requested 

from the Data Center or the User. 
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The Sensing nodes have four states (See Figure 4.18): 

• Activation state: This is the first state. The nodes send the REGISTER message 

to the data center and receive their Node ID. 

• Verification state: This state is reached for the first time after the activation state. 

The nodes verify the correct functioning of their elements. If any malfunctions 

are detected, a report is forwarded to the data center. If all the elements of the 

node work properly, no message is forwarded. This state can be accessed again 

by request of the data center or the user. 

• Data acquisition state: The nodes send DATA messages to the CH node with the 

information obtained from the sensors. 

• Alert state: This state is reached when the node detects a malfunction on its 

elements. The forwarded messages are detailed in the Alert phase in the previous 

section. 

 

 

Figure 4.18. States of the Sensor nodes. 

 

Events are detailed as follows: 

• Event 0: This event occurs when the node has a failure or when it reboots.  

• Event 1: This event happens when the Activation process where the connection 

is established has been completed. 

• Event 2: This event happens when the node verifies its correct functioning. 

• Event 3: This event occurs when verification of correct functioning is requested 

from the Data Center or the User. 

• Event 4: This event happens when an alert is detected. 
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• Event 5: This event occurs when the node finishes communicating the alert. 

• Event 6: This event happens when the alert is not solved, and the alert is related 

to a failure that inhibits communication with other nodes. 

The CH nodes and the Meteorology Monitoring Aggregator node have five states 

(See Figure 4.19): 

• Activation state: This is the first state. The nodes send the REGISTER message 

to the data center and receive their Node ID. 

• Verification state: This state is reached for the first time after the activation state. 

The node verifies the correct functioning of its elements and the correct 

communication with its neighbors. If any malfunctions are detected, a report is 

forwarded to the data center. If all the elements of the node work properly, no 

message is forwarded. This state can be accessed again by request of the data 

center or the user. 

• Data acquisition state: The nodes obtain the data from the sensors. 

• Data transmission state: The nodes send DATA messages headed to the Data 

Center with the information received from the Sensing nodes and the 

information gathered from its sensors. 

• Alert state: This state is reached when the node detects a malfunction either on 

its elements or when communicating with other nodes. The forwarded messages 

are detailed in the Alert phase at the previous section. 

 

 

Figure 4.19. States of the CH nodes and the Meteorology Monitoring Aggregator node. 
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Events are detailed as follows: 

• Event 0: This event occurs when the node has a failure or when it reboots.  

• Event 1: This event happens when the Activation process where the connection 

is established has been completed. 

• Event 2: This event happens when the node verifies its correct functioning. 

• Event 3: This event occurs when verification of correct functioning is requested 

from the Data Center or the User. 

• Event 4: This event happens when the node needs to transmit data. 

• Event 5: This event occurs when the node finishes forwarding the queued 

information. 

• Event 6: This event happens when an alert is detected. 

• Event 7: This event occurs when the node finishes communicating the alert. 

• Event 8: This event happens when the alert is not solved, and the alert is related 

to a failure that inhibits communication with other nodes. 

 

4.4 Conclusions  

 

In this chapter, a heterogeneous communication protocol for a precision agriculture 

system was presented. The protocol designed to communicate devices that employ WiFi 

and LoRa communication technologies has low overhead with a header of only 2 Bytes. 

The format of the header and the messages has been specified. Furthermore, the 

different messages and the message exchange between the varied elements of the 

architecture have been specified. Lastly, the states of the nodes have been detailed. The 

performance of the protocol will be further explained in Chapter 7 section 7.2. 
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Chapter 5                                                

Study Cases 

 

 

5.1 Introduction 

 

There are specific needs of PA systems that require specific designs to address those 

needs. In this chapter, different functionalities for the main architecture and for the 

specific architectures presented in Chapter 3. Firstly, a multi-layer fog computing 

framework for architecture presented in subsection 3.2.1, and the topology presented in 

subsection 3.2.2 is described. Then, a protocol for a PA system with a wireless network 

comprised entirely of LoRa nodes is designed. After that, the security aspects of LoRa 

networks are analyzed and the security actions to be taken are proposed. The case of 

heterogeneous WiFi/3G networks and how to provide fault-tolerance and energy-saving 

functionalities is proposed as well. Furthermore, the use of CoAP for IEEE 802.11 

networks for PA is discussed. Lastly, the use of drones for the data acquisition of WiFi 

nodes deployed on the fields is addressed. 

 

5.2 Multi-layer fog computing framework for constrained LoRa 

networks 

 

In this section, our multi-layered fog computing proposal for the precision 

agriculture and irrigation water quality monitoring system described in Chapters 3 and 4 

is presented.  
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The deployment of the water quality monitoring system for irrigation purposes and 

the precision agriculture system is presented in Figure 5.1. The Canal Area is comprised 

of a series of subcanals in a comb shape where the biosorption process for water 

purification is performed. The Field Area is where the fields are situated. These fields 

can be further divided into different zones to apply different processing to each of the 

areas and have a more detailed overview of the state of the plants. The Urban Area is 

the zone where the Gateway is located and connected to the Data Center. There are 

clusters of sensing nodes at each subcanal and deployed on each zone of the fields, with 

a cluster head for each cluster. Actuator nodes are deployed as well at each subcanal to 

manage the gates to the biosorption process and to control the amount of water for the 

irrigation of the fields. Furthermore, the cluster head forwards the data to the aggregator 

of their Area. Then, the aggregator forwards the data to the Gateway destined to the 

Data Center. The CH nodes and Actuators at each Zone are detailed in Table 5.1. The 

system is scalable, and more zones can be added when necessary. If monitoring more 

fields is necessary, more gateways could be added so that the data transmission is 

divided into the deployed gateways and a bottleneck scenario is avoided. 

 

 

Figure 5.1. Water quality monitoring and precision agriculture system. 

 

The topology of the system is presented in Figure 5.2. It is comprised of the 

following layers: 

• Layer 1: The first layer is the layer comprised of the sensor and actuator nodes. 

These devices forward all data to the next layer and do not perform any computations. 

The data acquisition is performed at different frequencies depending on the selected 

settings. These settings are the Research Mode, the Advanced Farmer Mode, and the 

Regular Farmer Mode. Table 5.2 presents the characteristics of each mode. For the 

case of the actuators, the actions are performed when the message with the new action 

is received. Then, a message with the new state of the actuator is forwarded to the 

data center.  



Laura García García 

 

162 
 

 

 

Table 5.1. CH nodes and Actuator nodes at each Zone. 

Zone CH Actuator 

Main canal CH 1 Canal Area Actuator Node 1 &2 

Secondary Canal 1 CH 2 Canal Area Actuator Node 3 &4 

Secondary Canal 2 CH 3 Canal Area Actuator Node 5 & 6 

Secondary Canal n CH n+1 Canal Area Actuator Node 2n+1 

Biosorption Output CH n+2 Canal Area Actuator Node 2n+2 

Field Area Zone 1 CH 1 Field Area Actuator Node Field Area 1 

Field Area Zone 2 CH 2 Field Area Actuator Node Field Area 2 

Field Area Zone m CH m Field Area Actuator Node Field Area m 

 

 

 

 

Figure 5.2. Multi-layered fog topology of the precision agriculture and irrigation quality 

monitoring system. 
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Table 5.2. Data forwarding and aggregation settings. 

Settings 
Data Acquisition 

Frequency 
Data Aggregation 

Data Forwarding 

Frequency 

Research Mode 10 minutes 
Data driven aggregation 

at layer 2 

4 times a day + 

Alerts 

Advanced Farmer 

Mode 
30 minutes 

Data driven aggregation 

at layer 2 and layer 3 

2 times a day + 

Alerts 

Regular Farmer 

Mode 
1 hour 

Data driven aggregation 

at layer 2 and layer 3 
Once a day + Alerts 

 

 

• Layer 2: This layer is comprised of the Cluster Head nodes. These nodes receive 

the data from the sensing nodes and perform the first data aggregation process 

detailed by the Algorithm 5.1. For the Canal Area, these nodes evaluate the quality 

of the water by considering the values obtained by all the nodes at the cluster. The 

CH node receives the turbidity or salinity levels from the sensor nodes of the cluster. 

The outlier values are discarded. This is performed by calculating the variance 𝜎𝑖
2 

and determining if it surpasses the 𝑇ℎ𝑠𝑖𝑔𝑚𝑎2 threshold. Then, the CH compares all 

the received values using the 𝐶𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒−𝑣𝑎𝑟  variable to obtain a final result of the 

salinity or turbidity levels of the water. If the turbidity or salinity surpasses the 

𝑇ℎ𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 threshold, an alarm is forwarded to the next layer. For the case of the CH 

nodes of the field area, the same process is performed with soil moisture and soil 

salinity. That way, the Aggregator nodes at layer 3 and the Data center are able to 

determine if the variations in the calculations due to water stress or salinity should be 

applied when determining the necessary amount of water for irrigation. 

• Layer 3: This layer is comprised of the Aggregator nodes. These nodes receive 

the data from each of their areas, being the canal area or the field area. This node 

performs the decision-making process that determines the actions of the actuator of 

their areas. In the case of the canal area, the Aggregator node sends a message to the 

actuator node of the specific canal to open or close the gates. At the field Area, The 

Aggregator node calculates the water requirements for a time frame of one month 

and forwards the actions to the Actuator when irrigation is required. The data 

exceeding the time frame of one month is deleted from the storage system of the 

Aggregator node. The data is aggregated as detailed in Algorithm 5.2 and forwarded 

to the data center when the data forwarding timer is reached so the user can access 

the history of all the variables. According to the state of the actuators in the Canal 

Area and the selected settings, the amount of data forwarded to the data center varies. 
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Algorithm 5.1. Data Aggregation at layer 2 

1) Gather data from the sensors of the CH node 

2) Receive the data from the n sensors of the cluster 

3) for each variable var do 

4)      for each node i in the cluster do 

5) 
           𝜎𝑖

2 =
∑ (𝑆𝑗−𝑆𝑖)

2𝑗
1

𝑛
 

6)           if 𝜎𝑖
2 > 𝑇ℎ𝑠𝑖𝑔𝑚𝑎2 then 

7)                Discard data from sensor i 

8)           end if 

9)           If 𝑉𝑖 > 𝑇ℎ𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 then 

10)                 𝐶𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒−𝑣𝑎𝑟 = 𝐶𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒−𝑣𝑎𝑟 + 1 

11)           end if 

12)      end for 

13)      if 𝐶𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒−𝑣𝑎𝑟 ≥ 3𝑛
2⁄  then 

14)           Add the average of the value for the variable 𝑉𝐴𝑣𝑔 to Alert-Payload string 

15)      else if 𝑉𝐴𝑣𝑔 > 𝑇ℎ𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 then 

16)           Add the average of the value for the variable 𝑉𝐴𝑣𝑔 to the Alert-Payload 

string 

17)      else 

18)           Store aggregated data 𝑉𝐴𝑣𝑔 

19)      end if 

20) end for 

21) if there is data on the Alert-Payload string then 

22)      Send Alert message with the content of Alert-Payload 

23) end if 

24) if timer for data forwarding has been reached then 

25)      Forward stored aggregated data 

26) end if 

27) End 

 

• Layer 4: This layer is comprised of the gateway. This node will store all the data 

in the rare case the Data Center or the connection to the data center is down. This 

layer does not perform data aggregation nor performs computing as all the necessary 

data aggregation and computation have been performed on the lower layers. 

• Layer 5: This layer is comprised of the Data Center. The data center stores all 

the data and processes the information to perform analysis and predictions on water 

quality, water requirement, and quality of the soil, among others. 

By providing a multi-layered fog computing functionality to the topology of the 

water quality monitoring and precision agriculture system, the obtained benefits are 

twofold. On the one hand, it provides the system with fault-tolerance capabilities by 

providing autonomy to each of the layers of the topology in case any of the elements of 

the network gets damaged or stops functioning and the decision made at the Data Center 

cannot be forwarded. This is a key aspect considering the tree topology of the system.  
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Algorithm 5.2. Data Aggregation and decision-making at layer 3 

1) Update Actuator decision making rules from the Data Center 

2) Receive data from the devices in layer 2. 

3) Receive Actuator State 

4) if Canal Area Alert received then 

5)           Forward Action message to the required actuator so as to open the gates of the 

biosorption canal closest to the CH node that activated the alarm 

6)           Forward Alert message destined to the Data Center 

7) end if 

8) if Field Area Alert received then 

9)      Store Alert for further processing 

10)      Forward Alert Message destined to the Data Center 

11) end if 

12) if data_forwarding_timer is reached then 

13)      if Research Mode then 

14)           if all gates are closed then 

15)                Add the data from the Main Canal to the Payload string 

16)           else 

17)                Add data from all CH nodes at canal area to the Payload string 

18)           end if 

19)           Add data of the CH nodes at the field area to the Payload string 

20)      else if Farmer Mode then 

21)           Add data of the Main Canal and the Biosorption Output to the Payload 

22)          for each field area do 

23)              for each Zone at Field area do 

24)                 Calculate average of the variables measured by all CH nodes at the same zone 

25)               end for 

26)           end for 

27)           Add average data of the field zones to the Payload 

28)      end if 

29)      Forward message with the data stored at the Payload string 

30) end if 

31) If water_requirement_calculation_timer is reached then 

32)      For each zone in field area do 

33)           if water_stress alert && Salinity alert received then 

34)                Calculate water requirements with water-stress and salinity modifications 

35)           else if water_stress alert received then 

36)                Calculate water requirements with water-stress modifications 

37)           else if Salinity alert received then 

38)                Calculate water requirements with salinity modifications 

39)           else  

40)                Calculate water requirements  

41)           end if 

42)           if irrigation_day is true then 

43)                Forward Action message to the actuator nodes of each area with the amount of 

water needed for the next irrigation 

44)           end if 

45)      end for 

46) end if 

47) End 
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On the other hand, it reduces the energy consumption by filtering the data and 

limiting the number of messages that are forwarded to the data center. This reduction in 

data and messages also helps to reduce the collisions that may be caused when different 

LoRa nodes transmit at the same time. It also allows the system to meet the duty cycle 

requirements of LoRa. 

 

5.3 Protocol design for LoRa nodes 

 

In this subsection, a protocol for a water quality monitoring system comprised by 

nodes that communicate through LoRa is presented. 

The proposed protocol, as can be seen in Figure 5.3, is divided into four fundamental 

phases, which are: Discovering Neighbors, Send Data, Storage and Data Processing, 

and Action. As its name suggests, in the Discovering Neighbors phase, the different 

sensor nodes send wireless signals to discover the nodes that are part of the group. Then, 

the sensor nodes determine the Central Node, and the Central Node identifies the 

gateway which is the Central Node in Urban Area 0. Therefore, a LoRa multi-hop 

network is established as in [318, 342]. 

Once the nodes are activated and their connection is established, they go into the 

Send Data phase. The different sensors that are connected to each node begin to 

measure their respective parameters. The data collection period has been set to take 

place every minute. If the observed data differ by an amount greater than a previously 

established threshold, the measurement is sent to the Central Sensor Node of the group, 

and this node will store the data and compare them to check if they exceed the alarm 

threshold. It also checks if the alarm has been detected by more than one of the sensors 

of the group in order to provide fault tolerance capabilities. In case of exceeding the 

alarm threshold, the data are forwarded to the Central Sensor Node of Urban Area 0. 

Then, it is forwarded to the central storage system in the data center. In case of not 

exceeding the alarm threshold, the data are stored in the Central Sensor Node of the 

group until all the data are sent every 24 h period. Every day, the Central Sensor Node 

of Urban Area 0 will send all data to the Storage Server through the wired network. 

The next phase is responsible for making the decisions to correct anomalies. It is the 

Data Processing phase. In this phase, the data are sent from the Storage Server to the AI 

system. This system will be responsible for making the pertinent decisions that will be 

sent to the actuators. 

Finally, during the Action phase, the operation that the AI system considers adequate 

to solve the problem detected by the sensors will be sent to the Actuator Nodes.  
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Figure 5.3. Proposed protocol. 

 

The protocol stack is presented in Figure 5.4. As it can be seen, the Network 

Interface layer uses an ethernet protocol in the wired network, and a LoRaWAN 

protocol to perform wireless transmissions. The wired network is based on the stack 

defined by the TCP/IP reference model. IPv4 and IPv6 protocols are used in the 

Network layer. The protocols TCP and UDP are used in the Transport layer. Finally, the 

Application layer can use any protocol of this layer to implement the proposed system. 

On the other hand, for the wireless network, the physical layer utilizes the LoRa 

modulation. Then, the Medium Access Control layer utilizes LoRaWAN. Lastly, the 

Application layer employs the proposed protocol.  

 

 

Figure 5.4. Protocol stack. 
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5.4 Comprehensive security framework for a LoRa network for 

wastewater treatment 

 

In this subsection, a security framework for a LoRa network intended for a 

wastewater treatment system for irrigation is presented.  

 

5.4.1 Overview of the system 

 

As it can be seen in Figure 5.5, our system is distributed in different locations. In 

some of them, we have implemented groups formed by nodes that can contain sensors 

or actuators. Red circles with black dots inside identify groups of sensor nodes. The 

black dots of each circle represent a sensor node. Stars identify actuators nodes. The 

data is transmitted wirelessly using LoRaWan between all the nodes and among the 

node groups. Besides, there is a remote location, which will be reached through wired 

technology, where our data storage center and the equipment to carry out the work with 

AI are located. 

 

 

Figure 5.5. Location of devices and equipment. 
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Both the sensor nodes and the actuator nodes are distributed in external locations. 

For this reason, they will be protected by integrating them in watertight boxes to 

withstand water, weather variations, and possible animal attacks. 

From one of the groups of nodes, that is located in an urban area, a WAN connection 

is established with the remote location through an Internet Service Provider (ISP). In the 

remote location, the network devices that are connected to the ISP and to the different 

available equipment are deployed. The Data Center and the equipment that utilizes AI to 

process the information collected by the sensors is deployed at the remote location as 

well. Behavior patterns will be detected through AI and decision rules will be applied in 

the actuator nodes according to the detected patterns. 

The vulnerabilities of the systems to control water, which is performed through 

actuator nodes in our water management proposal, may compromise the objective of our 

system. Severe problems of both irrigation saturation and shortage as well as an 

unwanted lack of control of the water purification system may be generated. 

Furthermore, attackers may obtain the control of the nodes so as to perform massive 

attacks, which may affect the Internet. 

 

5.4.2 Securing the system 

 

For the system, it is paramount to guarantee the availability and accessibility to all 

the devices at any time. 

In the report in [343], an attack on a water and wastewater treatment plant managed 

by an international company, the attackers compromised the internal network by 

launching an attack from a server located on the demilitarized zone (DMZ). It was 

discovered that the attackers performed the following steps: 

• The DMZ server had been violated due to a bad policy that allowed establishing 

RDP connections. 

• The server was violated and controlled through different IPs (Internet Protocol) 

by different attackers that were enemies to the company. 

Those attackers performed more attacks on other plants of the same company. 

All systems that manage information or provide a service are susceptible of being 

attacked. Irrigation and water management systems may not manage information that 

must remain private but ensuring the correct performance of the system is crucial. 

Furthermore, these systems are not only susceptible of attacks from people with 

malicious intentions but also may be affected by animals, weather conditions and people 

that accidentally compromise the system. The scenario where people is interested in 

controlling the waterflows of the canals according to their own interests is also possible. 

The main problem with IoT devices is that they are not designed considering that 

their security is paramount in certain fields. Once the network security is established, it 

is important to perform a penetration test on the different components that comprise the 

system so as to verify the effectiveness of the solution. 
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In the next sections, we describe and propose the solutions for our system. Figure 5.6 

shows the basic security scheme that we will implement on our system. The three 

network areas that we are going to utilize can be observed. They are the IoT network 

area, the ISP network area, and the network area of the data center and the AI 

equipment. 

 

 
Figure 5.6. Basic scheme of security and data flow. 

 

As it can be seen, two firewalls will protect the areas of the network that belong to us 

from the shared network. The green arrows represent the data flows that will be 

established between the IoT network, the data center, and the AI. Considering the way 

the system performs its functions and its vulnerabilities, attacks can be classified into 

four categories: physical attacks, attacks on the data in transit, attacks on the 

management system, and attacks on the data.  

 

5.4.2.1 Physical attacks 
 

Physical attacks comprise those attacks that require physical access to the device. In 

the case of our proposed system, removing the sensors, accessing the nodes through the 

serial port, or removing the batteries are some of the physical attacks that can be 

performed.  

Another important thing to consider in our system is the possible presence of animals 

that could bite the wires or take the devices. Thus, nodes should be enclosed on a 

protective box so as to protect the device from possible attackers and the elements. The 

box should include a combination lock and the password to the lock should only be 

known by the administrator of the system. Moreover, considering that the nodes are 

deployed over several irrigation canals, there is a possibility of losing the devices in 

case of flooding or extreme rain. This security issue cannot be avoided, but the system 

includes the mechanisms so as to alert of malfunctioning or lost nodes. Therefore, the 

administrator would know to replace the damaged devices in case of these types of 

events.  
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It is also important to consider that most of the nodes, as well as network devices and 

the computers employed on our system, are provided with different access ports. For all 

the equipment, we will only utilize the ports necessary to transmit the information or to 

access the administration of the different devices and equipment. We will disable the 

rest of the ports so as to avoid the unauthorized access from attackers external to the 

project. 

Another important remark is reducing the usage of USB memory drives or other 

external memory devices. These elements are connected to the computing resources and 

may be infected with malware. By utilizing just the necessary ports and previously 

analyzing them, it is possible to avoid subsequent attacks. Furthermore, physical 

security is also very important at the transmission network and at the different storage 

and computation devices. 

 

5.4.2.2 Attacks on the data in transit 
 

These attacks would aim at making the system unable to communicate or 

intercepting the transmitted data so as to gain knowledge on the information gathered by 

the system.  

It is necessary for our system to be protected against eavesdropping and tampering. 

In order to achieve it, the combination of forwarded data encryption and the protection 

of the networks where the transmission is performed should be performed. Attackers 

may try accessing through the physical network infrastructure or through the software 

components provided by the services of the network itself. The impact of an attack 

performed utilizing software components would probably be greater [344].  

Our proposed system utilizes both wired and wireless communication, and both types 

of communication should be secured. The most effective way of establishing greater 

security over the wired network is having a proprietary telecommunications service 

comprised of an optic fiber network. However, this proposal is not viable. For this 

reason, for the wired communication, a VPN will be established so as to avoid 

eavesdropping and access to the network.  

As for LoRaWan, replay attacks, jamming techniques, and wormhole attacks could 

compromise the communications [299]. Replay attacks consist of fooling the device by 

utilizing old information that has been retransmitted. However, the attacker should 

know the channels and the employed frequencies so as to sniff the transmission. This 

attack is addressed by keeping track of frame counters as seen in Figure 5.7. Jamming 

consists of disrupting radio transmissions by transmitting high power radio signals in 

the vicinities of the nodes. The spreading factor and transmissions on the same 

frequency may cause interferences among the devices. Although this attack is difficult 

to avoid, it is easier to detect, and proper actions can be taken so as to re-establish 

communication. If the nodes of the network begin to lose the connection, the 

communication frequency should be changed. Lastly, wormhole attacks consist of 

capturing packets and replaying to the source so as to avoid them reaching the gateway. 



Laura García García 

 

172 
 

Regretfully, this type of attacks is hard to detect but utilizing previous analyzed data, 

abnormal behaviors could be detected. 

 

 

Figure 5.7. Frame counters. 

 

Authentication between the end-device and the network is one of the implemented 

security measures. Moreover, LoRaWAN also incorporates end-to-end encryption [345]. 

It utilizes AES (Advanced Encryption Standard) with CMAC (Cipher-based Message 

Authentication Code) and CTR (Counter) to provide integrity and encryption, 

respectively. The authentication is performed with a unique identifier and 128-bit AES 

key. AES-CMAC is utilized to compute the Message Integrity Code (MIC). 

Furthermore, LoRaWan already addresses some security issues by implementing 

several security measures. 

 

5.4.2.3 Attacks on the management system 
 

Our proposed system utilizes Fog computing so as to manage alerts and control the 

nodes from the edge. However, an attack on the Fog server could compromise the 

correct functioning of the system. Fog servers are susceptible to attacks of DoS, Man in 

the Middle (MITM), or placing a rogue gateway [346].  

 The structure of Fog computing implies that DoS attacks would affect the closest 

networks but not the whole system if several Fog servers are utilized. Furthermore, the 

utilized protocols and their security mechanisms have to be considered and will become 

determinant in the success or failure of the attack. Man in the middle attacks could 

intercept data such as the alerts of the system, resulting in the system not taking the 

corresponding actions to resolve the problem if these messages are not forwarded. 

Tracking the messages and detecting abnormal behavior could help in detecting these 

types of attacks.  

 If this attack is utilized for eavesdropping, proper encryption techniques should be 

utilized. Furthermore, the system should be designed so as to avoid the introduction of 

rogue gateways that could disrupt the correct functioning of the system.  

Moreover, all devices must be configured with passwords and access codes that will 

only be known by the authorized management personal. As usual, the personnel 

entrusted with the management and administration of the system will employ different 
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passwords to access the devices and their personal accounts. Furthermore, different 

access levels to management privileges will be established according to the activities 

related to each job position.  

If our devices are not provided with a strong authentication system, some of the 

previously addressed problems may arise. These attacks may be denegation of service, 

modification and/or data thief, brute force attacks, etc. Device monitoring, freezing 

accounts, and throttling are some of the common measures that we will employ so as to 

avoid fraudulent access to the devices. Actualizing firmware and the operating systems 

of all the utilized devices is critical. All devices and equipment must update throughout 

their lifespan. Furthermore, the amount of equipment with external access to the Internet 

browser must be reduced. 

 

5.4.2.4 Attacks on the data 
 

The data gathered from the system could be compromised by a third party. 

Unauthorized people could acquire the data or modify it so as to disrupt the correct 

performance of the system. The aspects that concern data security are integrity, 

confidentiality, and availability [347].  

In the case of our proposed system, the integrity and availability of the data is 

preferred to its confidentiality. However, enough encryption techniques should be 

utilized so as to provide the system with enough confidentiality. Furthermore, the 

information stored on Fog servers and the cloud should be properly protected. Secure 

passwords to access the data, authentication, encrypted data forwarding, and 

guaranteeing that user accounts cannot be duplicated are some of the measures to be 

considered.  

At the data center, our data is previously protected by a firewall that prevents the 

connection of unauthorized users from the shared network (ISP). Moreover, the access 

permissions and updates of operating systems and firewall software of the different 

equipment must be adequate. These tasks must be performed on all implemented 

proprietary network resources as well. 

The data of our system must be isolated from the data from any other network at all 

times. This way, a direct transfer can be avoided. Table 5.3 summarizes the proposals to 

reject the attacks. Furthermore, Figure 5.8 shows the summary of the phases of our 

security system. At the start, the proposals defined in Table 5.3 should be applied to the 

different equipment and devices. 

 

Table 5.3. Proposals to Rejects Attacks. 

Attacks How our proposal refuses the attack 

Access to physical device. 

Hardening devices and facilities. 

Access control in the facilities. 

Alarms. 

Periodic inspections of the sensor nodes. 
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Compromised physical 

Device. 

User/password access. 

Visual identity verification (authentication phase). 

Compromised node. 
Use of algorithms to detect compromised nodes. 

Change of trust level. trust elimination. 

Malfunctioning or lost the 

nodes or equipment. 
Replacement of the damaged devices. 

Power failure. 
Equipment protection against failure to supply power. 

Persistent storage. 

Lost data because of failures 

or battery discharge. 

Persistent storage. 

Authentication. 

Access to user date in 

physical device. 

User/password access. 

Privileges management. 

Infestation with Malware. 

Reducing the usage of USB memory drives or other 

external memory devices 

Control ports. 

Loose of connectivity. 
Persistent data storage. 

Authentication. 

Identity impersonation. 

Visual identity verification (authentication phase). 

Control ports. 

Use of short-range technologies. 

Firewall. 

Trust policies. 

Phishing, active spoofing, 

compromised data 

Hashing and authentication. 

Use of a trusted chain. 

VPN IPSec. 

Firewall. 

Network data access using 

passive spoofing. 

Control ports. 

Ciphered using session key. 

Key management. 

Firewall. 

Access to network key using 

passive spoofing. 

(man-in-the-middle) 

Asymmetric encryption. 

Key-regeneration using trusted chains. 

Firewall. 

Access to private user 

delivered data using passive 

spoofing 

Asymmetric or symmetric encryption guaranteeing 

confidentiality. 

VPN IPSec. 

Data modification. 

Compromised data 

Hash function to guarantee data integrity. 

VPN IPSec. 

Overload and/or loose of 

resources. 

Capacity plan and forecast. 

Control the number of asymmetric operations. 

Firewall. 

Persistent data storage. 

Erroneous packets delivery 
Control sent and received packets. 

Packet retransmission. 

Data storage overload Distributed data management and storage. 

Denial-of-Service / Data 

availability 

Distributed data management and storage. Distributed 

access to data services. Distributed security processes. 

Firewall. 

Access to not reliable data. 

Data disclosure. 

Data access only through trusted nodes. 

Session key regeneration. 
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Figure 5.8. Phases of the security system. 

 

5.5 WSN for smart irrigation in citrus plots with fault-tolerance and 

energy-saving algorithms 

 

In this section, the case of a heterogeneous network with IEEE 802.11 and 3G that 

contemplates the deployment of numerous nodes on the fields is presented. Furthermore, 

fault tolerance and energy saving algorithms will be presented. 

In Figure 5.9, an example of deployment of the different nodes in an orchards area is 

shown. The black dots represent the nodes with the field sensors, the Field Node (FN). 

They are measuring soil moisture at different depths along with the temperature sensor. 
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One node with a moisture and temperature sensor is placed at the base of each orange 

tree. In each plot, one or more nodes will be used as Sink Field Nodes (SFN). The sink 

node is in charge of collecting the data from each node via Wi-Fi and forwarding the 

data to the DB using 3G technology. Moreover, the sink node has also a rain sensor. 

Along the river, different channels are used to get the water to the different plots. At the 

beginning of each channel, the filters for water purifying are placed. Two nodes are 

placed to measure water quality. One before the filter named as Water Node Before 

(WNB) and one after the filter, named as Water Node After (WNA). The nodes that 

measure water quality have a Wi-Fi antenna and they send the data to the closest FN, 

which will transmit this information until it gets to the SFN.  

 

 

Figure 5.9. Example of location of nodes in the field. 

 

The path that follows the data from a WNB to the DB can be seen in Figure 5.10. In 

blue, we can see the nodes that measure water quality. In light orange, the sensors that 

measure the data from soil status can be seen. Finally, the sensor that measures the data 

from soil and rain are colored in dark orange and the database is colored in grey. 

 

 

Figure 5.10. Data forwarding from the WNB to the DB. 
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Next, the operation algorithm applied in the nodes that monitor water quality, the 

WNB and WNA, and activate the filters when needed are described. The algorithm 

presented in Figure 5.11, shows the operation process of the nodes. Firstly, the WNB 

gathers data from salinity and turbidity. Then, the node evaluates if it is necessary to 

send the data or not. This will be performed applying the algorithm described in the 

following subsection. If the data changes from the previous sent value, the WNB must 

send the new gathered data to the WNA. Thus, the WNA will evaluate the needed 

action. The actions are meant to activate the filters to purify the water, if pollution is 

detected, or irrigate with river water if the water is clean. To determine the pollution of 

the water, the data from the WNB is compared with established thresholds. However, if 

it is not necessary to send the data from the WNB to the WNA, the data is not sent, and 

no actions are taken on the filters. If no data is received, the WNA gathers new data as 

usual. If data from WNA is higher than a threshold, it indicates that the filters are not 

operating properly, then an alarm is sent. The last step is to evaluate if it is necessary to 

send the data gathered by the WNA. Then, according to the need of sending the data of 

WNA and WNB, the WNA will forward the data that requires to be sent. 

 

Figure 5.11. Operation algorithm of WNA and WNB. 

 

In the FN, the operation algorithm includes the gathering of new data, the activation 

of the local irrigation, and the need of sending data. The algorithm can be seen in Figure 
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5.12. First, the node gathers new data. If the humidity level is lower than the established 

threshold, the node activates the local irrigation. If the soil moisture is higher than the 

threshold level, no action is taken on the irrigation system. Then, the node checks if, in 

the last 5 minutes, any message with data from another node was received. If data were 

received, the node adds the gathered data to the received message and forwards it. If no 

data were received, the node evaluates if the gathered data must be forwarded or not. If 

the data must be forwarded, the node sends it to the next node. Then, the node waits 5 

minutes to gather new data.  

 

Figure 5.12. Operation algorithm of FNs. 

 

5.5.1 Fault tolerance algorithm 

 

Figure 5.13 presents the fault tolerance algorithm for the nodes deployed throughout 

the crops. The nodes employed are Arduino Mega provided with WiFi connection 

employing the ESP8266 module. Firstly, the connection is established between the 
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nodes. Nodes detect their neighbors and ask for the metrics to determine the shortest 

path to the base station. When the node determines the next hop, it starts performing its 

sensing activities. Then, the forwarding decision algorithm presented in the next section 

of this paper is applied. When necessary, data is forwarded to the next hop. If the ACK 

is received, the node continues with its normal functioning. If an ACK is not received, 

the data is forwarded again. If after three tries an ACK is not forwarded, the process of 

detecting the neighbors and selecting the one closest to the base station is performed 

again. Then, the data and a warning are forwarded so as to inform that there is a broken 

node. 

 

 

Figure 5.13. Fault tolerance algorithm. 

 

Figure 5.14 presents the message exchange between the components of the 

architecture of our proposed system. Firstly, the connection establishment process is 

performed where nodes send a broadcast message to reach the other nodes. Then, the 

nodes send the metrics indicating the distance to the base station. When the nodes 

perform correctly, the data is forwarded to the next hop and an ACK is received. Then, 

the information is forwarded from node to node to the router in the base station, where 

the information from the nodes is received employing Wi-Fi. 3G is employed to 



Laura García García 

 

180 
 

forward the information to the database. When there is a failure in a node, the data is 

forwarded three times in order to ensure the error was not caused by interferences. The 

neighbor discovery process is performed again and when the next hop is selected, the 

data is forwarded as usual including a warning to alert of the broken node. 

 

 

 

Figure 5.14. Message exchange among the elements of the system. 
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5.5.2 Energy saving algorithm 

 

In this section, the energy saving algorithm is described. Many algorithms have 

appeared in the last years for WSNs to diminish the energy usage. The majority of those 

algorithms are based on the selection of different transmission settings, using different 

routing protocols, or using specific protocols with fewer communication requirements 

or less packet size. However, the best way to save energy is to avoid unnecessary packet 

exchanges. In WSNs, when the sensors are measuring a parameter, the node usually 

sends the gathered data without considering the relevance of this data.  

It is extremely important to consider the relevance of the gathered data in order to 

know if it is important to forward it. The reason is that if the node sends this data a high 

energy consumption in this and other nodes will be generated. The data transmission is 

considered as the procedure that requires more energy. Thus, the rest of the processes as 

processing, coding, and decoding the data can be despised. In another paper, [348], the 

authors have proposed a smart algorithm that decides if the gathered data must be 

transmitted or not. Based on their algorithm we propose a simplified version adapted to 

our proposal. 

The adapted algorithm is shown in Figure 5.15. In our case, the decision algorithm is 

applied to all the nodes during its operation algorithm (Figures 5.11 and 5.12). These 

algorithms start with the new gathered data and must decide to send it or not. The 

gathered data corresponds to two variables, m and n. The new gathered data is set as Xm 

and Xn. Those variables are, in the case of WNB and WNA, the conductivity and the 

turbidity and, in the case of FN, soil moisture and temperature. Then, the algorithm 

searches in the node memory for the established thresholds for each variable (Δm and 

Δn). These thresholds represent the minimum variation in the parameter that must be 

overcome to consider the new information as relevant. Next, the algorithm searches in 

the node for the previous transmitted values. If there were no previous transmitted 

values, the new values are set as the last transmitted values (Ym and Yn), and the values 

are transmitted. If there were Ym and Yn in the node memory, the algorithm compares 

the Xm and Xn with the Ym and Yn. If the difference exceeds Δm or Δn, the gathered 

data is transmitted. Otherwise, the data is not transmitted because it is considered that 

the gathered data does not contain relevant information. 
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Figure 5.15. Energy saving algorithm. 

 

5.5.3 Protocol description 

 

Nodes communicate employing IPv4. For this proposal, a modification of the TCP 

protocol is presented. It incorporates on the TCP datagram the fields presented in Figure 

5.16. In the data forwarding message, the TCP header is followed by the W Node ID 

field. This field is employed if there is a warning. The W Node ID indicates the ID of 

the node that is malfunctioning. Node 1 ID indicates the ID of the first node that wants 
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to forward information, which has a size of 1 Byte. The next field is sensor ID and has a 

size of 1 bit. The Sensor data field is where the data gathered from the sensor is 

positioned on the datagram. There are two types of sensors. For WNA/WNB sensors, 

the size of the data field is 6 bits whereas, for FN sensors, it is 8 bits. Sensor 2 ID has a 

1-bit size and indicates the ID of the second sensor. Lastly, Sensor 2 Data is employed 

to transmit the information gathered from the second sensor. Its size is 4 bits for both 

types of sensors. 

 

 

Figure 5.16. Message structure. 

 

When a node receives information from other nodes in order for it to be forwarded, 

the information is placed on the datagram following the data from the other nodes. As it 

can be seen in Figure 5.16, where Node 1 Data is followed by Node 2 Data and so on 

depending on the number of nodes that are forwarding data at the moment. The W Node 

ID field is only employed when there is a warning. Finally, the ACK message is 

composed of only the TCP header, without adding any more data. 

 

5.6 Utilizing CoAP in IEEE 802.11 networks for PA 

 

In this subsection, the association problem of the nodes to de AP of the architecture 

presented in Chapter 3 subsection 3.2.2.1 is presented. 



Laura García García 

 

184 
 

The problem that arises when trying to connect a large number of nodes to the 

"Urban area 0" is the distance at which it can be found. To solve this, a WMN is utilized 

as shown in Figure 5.17. Here, we can see the nodes that will connect as clients to the 

APs. The whole set of APs will form the WMN that in the "Urban area 0" will be 

connected with cable to a switch that will allow reaching a server. The server is 

responsible for managing the number of users that are associated with each AP. When 

the nodes associated with an AP reach a threshold, the server ensures that the nodes that 

exceed this threshold are associated with another AP. 

 

 

Figure 5.17. Network architecture of our nodes-balanced system. 

 

One of the main obstacles, historically speaking, at the time of using wireless 

technology if we compared it with the wired, was the shortage of bandwidth. Since the 

appearance of this technology, the transmission speed has increased remarkably. The 

initial 1Mbps of the IEEE 802.11 standard has developed into the theoretical 7 Gbps 

that can reach the IEEE 802.11ac standard, including the future standard IEEE 802.11ax 

that will provide speeds of up to 11 Gbps. 

With these transmission speeds, the problem of bandwidth is beginning to disappear 

in certain environments. For example, in practice, if we use the IEEE 802.11ac standard, 

we can transfer 900 Megabytes per second. It is achieved by using eight 256 QAM 

channels of 160 MHz each. These channels can transfer a maximum of 870 Mbps, 

although it is usual to use no more than 2 or 3 of the eight channels.  

This network is not a usual network in which very varied types of traffic and with 

different requirements, such as HTTP, multimedia streaming, SMTP (Simple Mail 

Transfer Protocol), POP3 (Post Office Protocol), FTP (File Transfer Protocol) or VoIP 

(Voice over IP), which may require large bandwidths are found. Although the 

bandwidth of an AP is shared for the transmission of different groups of nodes, because 

the bandwidth required by CoAP for the transmission of the information of the IoT 

devices is very low, we will not find limitations from the point of view of bandwidth. 

Actually, the frames will have a maximum size of 1077 bytes, which is lower than the 

ISP
WMN
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maximum size of a CoAP packet (1125 Bytes). Figure 5.18 shows an IPv4 CoAP frame, 

with the different fields that form it and the size of each of them. In this case, the token 

has a length of 1 Byte and the Observe option is utilized. 

 

 

Figure 5.18. CoAP frame. 

 

If the APs that meet the IEEE 802.11n standard are utilized, using the 20 MHz 

channel, a transmission of 72.2 Mbps can be achieved theoretically. However, the real 

transmission rate is approximately 50 Mbps. Since the maximum size of a COAP 

datagram is 8616 bits, at a speed of 50 Mbps the transmission is performed in 0.000172 

seconds. Theoretically, there can be transmitted approximately 5800 datagrams in a 

second. 

The main challenge of our proposal, when associating groups of nodes with APs, is 

to know the maximum number of simultaneous connections that APs can establish, 

together with a design that covers all the observed space with the minimum amount of 

AP needed. Generally, the limitation is given by the manufacturer. For example, if the 

Linksys WRT600N v1.1 [349] APs which work in the 2.4 and 5 GHz bands with the a / 

b / g / n standards are used, a theoretical maximum of 253 users that are assigned by 

DHCP (Dynamic Host Configuration Protocol) are supported, although by default only 

50 are allowed. 

In response to the initial proposal, for example, when the number of nodes associated 

with an AP exceeds 50, from the server located in "Urban area 0" through the WMN, it 

will be indicated to the surplus nodes that they must be associated with another AP. 

 

5.6.1 COAP 

 

CoAP is an application protocol for IoT systems that works over UDP. It is a 

simplified version of HTTP so it provides interoperability with it. However, CoAP has 

not been widely implemented utilizing WiFi. In fact, the available libraries for WiFi 

chips are scarce. Particularly, for the ESP8266 chip, there is the ESP-CoAP library [350] 

that allows implementing CoAP and provides the biggest number of functionalities 

compared to other available libraries. However, one of the things to consider with CoAP 

is that the client has to make a request to obtain the data. Therefore, clients could be 

requesting data when it would not be necessary, making the system forward more 

messages than necessary and increasing the energy consumption. For that reason, CoAP 

provides an “observer” option that would allow the system to forward the information 

regularly to the client once the client subscribes to a resource. 

MAC Header IP Header UDP Header COAP Header Payload TrailerObserve Option

14 Bytes 20 Bytes 8 Bytes 4 Bytes 1024 Bytes 4 Bytes3 Bytes

Token

1 Byte

Payload marker

1 Byte
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Although the ESP-CoAP library allowed observing one resource, the ability to 

observe more than one resource was found necessary. Therefore, the library for the 

server was modified so as to allow observing several resources as well as allowing 

several observers to one resource and canceling the observe if wanted. 

The notification class was modified so as to allow observing several resources as 

shown in Figure 5.19. 

 

 

Figure 5.19. Code for observing several resources. 

 

ParseOption was modified as well so as to enable the possibility of canceling 

observing a resource (see Figure 5.20). 
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Figure 5.20. Code for canceling the observation with a GET message. 

 

5.7 Decision-making algorithm for underground communication 

 

In this section, a data transmission decision technique is going to be presented 

according to the characteristics of the underground transmission. 

One of the key functionalities of precision agriculture systems is soil monitoring. 

Soil monitoring nodes are the elements more susceptible of being deployed 

underground in an IoUT system. These nodes incorporate sensors to monitor soil 

humidity, temperature, ph, and nutrients. Particularly for irrigation systems, nodes such 

as the Arduino UNO or the Node MCU are the most utilized in scientific papers. 

Considering the extended use of low-cost nodes for IoT precision agriculture systems, 

as high soil moisture values lead to high signal attenuation in underground 

communications, the decision-making process regarding the transmission of the data 

gathered by soil monitoring IoUT nodes can be improved making use of the soil 

moisture values provided by the sensors.  

The decision-making algorithm is presented in Figure 5.21. After obtaining the 

information from the sensors, the humidity threshold (Hth) is evaluated. According to 

the selection of the settings performed by the user, humidity values are divided into 

three different ranges as it is exemplified in Figure 5.22. If the value of Hth is 3, then 

the humidity of the soil is high, and the data is stored. Then, if the value stored at the 

variable that indicates the time of the last transmission (TLT) surpasses the maximum 

time the node can stay without forwarding any data (Max Time), the urgent 

transmission (UT) flag is activated. If the maximum time has not been surpassed, the 

node goes into sleep mode. If the value of the humidity threshold is 2, the settings of the 

transmission mode (TM) are checked. A value of 1 indicates the default mode and the 

value 0 indicates the energy-saving mode. When the normal mode is activated and the 

value of the humidity threshold is 2, the transmission power (TP) of the antenna is set to 

high (value 1). The high setting depends on the characteristics of the utilized antenna 

and should be specified at the preliminary setup. This is done to increase the quality of 
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the signal that reaches the receiver when there are medium levels of soil moisture. Then, 

the urgent transmission flag and the counter of the last transmission time are set to 0 and 

the node goes to sleep. Lastly, if the humidity threshold is set to 1, the transmission 

power of the antenna is set to default, and the data is forwarded. In this manner, the soil 

monitoring node is able to decide when and how to transmit the gathered data according 

to the moisture levels of the soil. 

 

 

Figure 5.21. Underground transmission decision-making algorithm. 

 

 

Figure 5.22. Humidity threshold example from soil moisture values. 
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5.8 The use of remote sensing drones as mobile gateway for WSN in 

precision agriculture 

 

In this section, the parameters and elements considered when employing drones for 

data acquisition are presented. In the first subsection, an overview of the available types 

of drones that can be utilized in PA and the description of the flight plan of the 

considered scenario is provided. In the second subsection, the characteristics of 

commercial nodes that can be utilized for our proposed scenario are detailed. In the 

third subsection, the background on the antenna radiation model and the best antenna 

types for the scenario are presented. Furthermore, the theoretical framework used to 

perform the calculations is described. 

 

5.8.1. Drone parameters 

 

Drones in PA have been mainly used for remote sensing by image gathering. 

However, drones can be utilized as well for data gathering of nodes deployed on the 

field. These drones can have fixed or rotary wings, which determines how they fly as 

well as other parameters such as the ones detailed in Table 5.4. 

 

Table 5.4. Characteristics of commercial drones for PA systems. 

Drone 
Nominal 

endurance 

Cruise 

speed 

Typical 

climbing 

speed 

Max 

wind 

speed 

Typical 

range 

altitude 

Wing 

type 

Swinglet [351] 30 min 10 m/s 3 m/s 7 m/s 20-500 m Fixed 

Phantom 3 advanced 

[70] 
23 min 16 m/s 5 m/s - 120 m Rotatory 

SenseFly eBee [352] 45 min 
15.84 

m/s 
- - - Fixed 

 

Fixed-wing drones can fly for hours and long distances on a limited amount of 

energy [353], which makes them popular for precision agriculture purposes, including 

taking pictures of the fields, as it provides good autonomy. However, stationary flights 

are not possible with fixed winged drones. Furthermore, this type of drone requires a 

drone catapult to launch it if a person cannot do it, and a big enough surface for landing. 

On the other hand, rotatory winged drones are the most common. They can stay in 

one place to perform inspection activities. This type of drone is available with 3 to 8 

motors. They can take off and land vertically. However, these drones have less 
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autonomy with endurances below 1 hour. Other solutions opt for using their developed 

drone [354]. This allows detailed customization of the UAV for the required PA 

solution. 

The intended purpose of the drone will determine its flight plan. For the drone to 

carry a node that acts as a gateway, the drone must be in the area of coverage of the 

node long enough for all the data to be transmitted. For small amounts of data, a straight 

flight plan where the nodes are flown over can work. However, for significant amounts 

of data, flight plans where the drone circles the node until all the data is transmitted may 

be necessary [355]. In Figure 5.23, these two types of flight plans are shown. In the 

scenario considered in this paper, the flight plan follows straight lines that fly over the 

nodes deployed on the field. The flight plan that circles the node for a fixed-wing drone 

or hovering over the nodes for a quadcopter would solve the problem of having enough 

connection time to perform the connection and transmit all the data before the node is 

out of the coverage area of the drone. However, as previously stated, in this paper we 

consider the challenge presented by the scenario where an imaging drone that has a 

previously defined flight plan that covers the field following straight lines while 

carrying the gateway node. 

 

 

Figure 5.23. (a) Flight plan with straight lines, (b) Flight plan circling the nodes. 

 

Furthermore, each country has its regulations for drones. Some countries require the 

obtention of a license that may distinguish between recreational and professional use. 

The height, areas allowed for flights, and weight of the drone may also be restricted 

depending on the type of license. 

 

5.8.2 Low-cost nodes for precision agriculture deployments 

 

Nowadays, there is a wide variety of low-cost nodes that can be employed for PA 

purposes using WiFi communication. Some of the most utilized ones are presented in 

Table 5.5. In the scenario contemplated in this paper, low-cost nodes are utilized both 

for the field monitoring and for the gateway mounted on the drone. As can be seen, the 
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characteristics of the nodes can vary greatly. The weight and size of the nodes should be 

considered to determine if the chosen drone would be affected by it or if it is able to 

carry the node without interfering with its flight. If no sensors are connected to the node 

carried by the drone and a big processing capacity is not necessary, nodes such as the 

WEMOS MINI D1 would be best to reduce the energy consumption due to its low 

weight and size. 

 

Table 5.5. Characteristics of popular nodes for PA systems. 

Controller FLASH RAM EEPROM Weight Size 
Operating 

Voltage 
Reference 

WEMOS 

MINI D1 
4MB - - 3 g 

34.2 x 

25.6 

mm 

3.3V [356] 

Node MCU 4MB 520kB - 10 g 

48 x 

26 x 

11.5 

mm 

3.3V [357] 

Arduino 

Mega 
256 kB 8 kB 4 kB 37 g 

101.52 

x 53.3 

mm 

5 V [358] 

Arduino 

UNO 
32 kB 2 kB 1kB 25 g 

68.6 x 

53.4 

mm 

7 V-12 V [359] 

Raspberry 

Pi 3 Model 

B+ 

- 1GB - 50 g 

85x 56 

x 17 

mm 

5V [360] 

 

Other wireless technologies such as LoRa and 5G would reduce the need for using 

drones for data collection or completely eliminate it in small fields due to their wider 

range. However, these technologies are more costly and, therefore, less accessible for 

farmers with lower budgets. 

Furthermore, multiple parameters can affect the communication system, such as the 

transmitted power, the protocol, or the link budget. Regarding the transmitted power 

parameter, it would fundamentally affect the drone coverage, as it would consume a 

greater amount of energy, and its flight capacity would be reduced. Using different 

protocols would affect the total connection time since, depending on the transitions 

between different states, which are associated with the actions implemented by the 

nodes, the connection time necessary between the nodes and the drone can be altered. 

On the other hand, the link budget would be defined as an addition of transmitted power 

and gains minus the losses. The received power is based on the losses, which occur 

when the signal is transmitted through the medium and can be affected by aspects such 

as the weather or the objects that interrupt the line of sight between the emitter and the 

receiver. However, in the studied scenario, there are no objects between the emitter and 

the receiver, and the drone would not fly with adverse weather conditions. Therefore, in 

this scenario, the losses would be constant. Lastly, the transmitted power and the gains 
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will be based on the antennas and their configuration and, therefore, they would not 

vary unless that different types of antennas or nodes with their configuration were used 

in order to increase the transmitted signal. 

 

5.8.3 Antenna radiation model 

 

There are many types of antennas available to transmit at the 2.4 GHz band. 

However, not all of them are advised for the scenario of a gateway carried on a drone. 

In Figure 5.24, the Theoretical WiFi Coverage Area (TWCA) and the Assumed WiFi 

Coverage Area (AWCA) for both an omnidirectional and a directional antenna are 

displayed. Common radiation patterns for both antennas are displayed as well. For the 

scenario, the gateway node is considered to be carried by the drone, placed in a manner 

so that the antenna emits its energy in a downward direction, towards the earth. For the 

case of the directional antenna, the radiated energy is focused on a specific direction. 

Whenever the gain of a directional antenna increases, the coverage distance increases, 

but the effective angle of coverage decreases [361]. On the other hand, omnidirectional 

antennas have a radiation pattern that is given based on the directive gain. This type of 

antenna provides uniform radiation in one of the reference planes. Therefore, regarding 

directivity, omnidirectional antennas are better suited for the scenario as it allows the 

node to be in the coverage area of the gateway for a longer time than that of directional 

antennas. For other scenarios such as that of a flight plan that circled the nodes on the 

ground, directional antennas would be a better fit as the drone could remain in a zone 

where the node is inside the coverage area, and the radiated energy would remain on the 

intended spot. 

 

 

Figure 5.24. Area covered by the sensor antenna located on the drone (a) Omnidirectional 

Antenna case, (b) Directional Antenna case. 

 

Furthermore, the antennas can have linear or circular polarization. Depending on the 

type of polarization, their coverage area will vary. The polarization of the antennas from 

both the emitter and receiver should match to avoid loses. In our scenario, the antennas 
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are placed at the same position in a horizontal manner with the same polarization for the 

antennas of the gateway node on the drone and the nodes on the field. 

Some low-cost nodes incorporate built-in WiFi antennas such as the PCB antenna 

while others need a communication module or an external antenna, such as a whip 

antenna, to provide better performance. The antenna gain and the selected transmission 

power determine the Coverage Radius (CR). Therefore, it is essential to determine the 

distance that must be covered to select the antenna. For lower flying heights, the 

required coverage radius is lower, and the built-in PCB antenna has been utilized in IoT 

applications for distances up to 30 meters in most low-cost modules for RSSI values 

below -80 dB and, up to 120 m for the best performing module [362]. For higher flying 

heights, the area to be covered is wider, and whip antennas would provide better 

performance but, its size is bigger and should be placed in a manner not to interfere with 

the flight of the drone. 

From the point of view of the node in the soil, the radiation pattern of the gateway in 

the drone can be compared with a sphere. Based on this assumption, we can use a 

trigonometrical problem to calculate the time that a single node has a wireless 

connection to the mobile gateway, in different scenarios (different drone flying heights, 

flying velocities, etc.).  

The concept of sagitta (s) of a circular arc is widely used in architecture and optics. 

The sagitta of a circular arc is the distance from the center of the arc to the center of its 

base, see Figure 5.25. 

 

 

Figure 5.25. Sagitta of the circular arch described by the coverage of the drone. 

 

The mathematical equations of this problem are equations 1 to 7. The s can be 

calculated as the difference between the radius (r) and the apothem (ap), see equation 

(5.1). According to the Pythagorean Theorem, s can also be calculated as a function of r 

and chord (c), see equation (5.2). Moreover, it is possible to apply the versine function 

s: Sagitta
r: Radius
c: Chord
α: Angle
ap: Apothem
ar: Arc

r r

c
ap

s ar

α



Laura García García 

 

194 
 

to obtain the value of s according to equation (5.3) where α is the angle formed by the 

two r which forms the triangle with the c. alternatively, there is one last method to 

calculate the s, see equation (5.4). 

 

 

(5.1

) 

(5.2

) 

(5.3

) 

(5.4

) 

 

In our problem, the ap represents the flying height (fh), the r is the radius of the 

drone coverage (dc), and the chord represents the coverage in the soil. The known 

variables are the fh and dc, and our objective is to calculate the value of c. Therefore, 

the employed equations in our calculations will be equation (5.1) and equation (5.2). 

Combining them, we can obtain equation (5.5), which can be expressed as equation (5.6) 

to obtain the value of c. Finally, considering the flying velocity (fv), we can calculate 

the time (t) during which a single node has coverage from the gateway mounted on the 

drone (equation (5.7)). 

 

 

(5.5

) 

(5.6

) 

(5.7

) 

 

Now we can use equation (5.7) to calculate the time during which a node has 

coverage for different scenarios. In our calculations, we include values of dc, fh, and fv, 

which can be found in real applications. The selected values are dc from 200 to 25 m; fh 

from 5 to 100 m and fv from 5 to 20 m/s.  
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5.8.4 System description 

 

One of the main problems in the considered scenario is that the drones may face 

collisions between the sensor nodes located within the coverage range of the drone. To 

solve this problem, in this section, we propose a data acquisition system for precision 

agriculture deployments where the sensor nodes forward the data to one sole mobile 

gateway mounted on a remote sensing drone. Furthermore, the message exchange 

between the elements of the architecture introduced in Chapter 3 subsection 3.2.2.4 is 

presented.  

The PA scenario is comprised of multiple sensor nodes deployed in several 

agricultural fields. No networking structure is established among the nodes. Thus, the 

nodes do not communicate in any way among themselves. A sensor network where the 

nodes deployed on the field forward the data through relay nodes located in between the 

soil monitoring nodes would address the problem of sending the information to the base 

station, but it would significantly elevate the cost of the deployment. More so for node 

densities where large distances separate the nodes. The nodes incorporate various soil 

monitoring sensors that are able to obtain data on the physical parameters necessary to 

manage and monitor the crops. Depending on the node model, like the ones previously 

presented in Table 5.5, the node may use an embedded antenna to communicate, or it 

may need a separate communication module from the ones available at the market. The 

data is stored in the SD cards connected to each one of the nodes until the remote 

sensing drone retrieves the information. Figure 5.26 presents an example of a soil 

monitoring drone with a temperature and a humidity sensor. 

 

 

Figure 5.26. Design example of the soil monitoring node. 
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The drone is located on a base station, where the route begins and ends. The drone 

takes photographs of the fields and the terrain during its flight. When the drone reaches 

the base station, all the retrieved information is forwarded to the data center where the 

information is stored on a database for further analysis.  

A connection between the sensor node and the drone, with a good enough quality to 

ensure the data is transmitted successfully, is one of the requirements of a PA system 

that employs a drone to gather data from sensor nodes deployed on the field. Other 

requirements include low energy consumption for the drone to complete its route, the 

availability of the operating frequency band, and good weather conditions to avoid 

signal attenuation and damages to the drone and sensor nodes. 

Regarding the data rate, it is crucial to consider that the parameters measured in PA 

systems vary at a slow pace. Therefore, continuous monitoring is not necessary, and the 

data can be captured each minute or at larger time intervals such as 5, 10, or 30-minute 

intervals. Therefore, the information stored in the SD card is not a large amount, and the 

necessary data rate would hardly surpass 1 Mbps. Furthermore, works such as [363] 

show real data rates obtained at different flying heights and distances that surpassed 1 

Mbps for heights of 20 m and distances of 45 m, with the drone acting as an 

intermediary node and therefore, with more chances of experiencing interference and 

signal attenuation. A fixed-winged drone is utilized in [352] to capture images from the 

fields and forward them using WiFi, where a UDP throughput up to 176 Mbps was 

obtained from real experiments. Therefore, although parameters such as flying height 

and speed are undoubtedly determinant in the success of the data transmission, once the 

connection between the sensor node and the drone is established, the necessary data rate 

is not high. 

Low energy consumption should be sought on both the drone and the sensor nodes. 

The sensor nodes can go to sleep mode during idle time to reduce energy consumption. 

Furthermore, if the settings of the drone indicate a fixed time for the drone to gather the 

data from the sensor nodes, the nodes can activate at that time to avoid being in sleep 

mode when the drone flies over them. Lastly, the lifetime of sensing nodes can surpass a 

year if the energy consumption is optimized, and the battery is chosen to ensure it. 

Using solar panels to power the sensor nodes would even nearly cease the problem of 

battery-less sensor nodes. Choosing between using batteries or solar power would be 

determined by the type of crop or the desired size for the sensor node. Trees remain 

productive each year without needing to plant new ones, but other crops are not used 

after the harvest, where the field is left to rest until the planting season. Therefore, the 

nodes could be fixed or be removed and deployed again according to the type of crop 

and its characteristics. 

Most fields are far from populated areas, and interferences from other networks are 

lower than industrial or urban environments. However, testing the area for other 

networks is a good practice to choose the best settings and communication technology 

for the PA system. 

Lastly, extreme weather conditions are unavoidable, but some measures can be taken 

to reduce the damage that can be caused by the elements of the PA system. For example, 

if a weather station is incorporated into the PA system, the drone could decide whether 
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it is safe or not to fly. The sensor nodes should have a protective encapsulation and be 

able to store the data of several days to ensure no data is lost. Furthermore, if the drone 

were to be lost due to extreme wind or rain, the SD cards in the sensor nodes would 

ensure the data can be accessed manually.  

The information monitored in each one of the sensors is unique and, as we have 

previously commented, it must be forwarded to a remote location where the data center 

is deployed. Due to the limitations intrinsic to the deployed network which has a limited 

processing and storage capacity, limited power availability, and a short time interval for 

the communication between the node and the drone, we consider a system comprised of 

soil monitoring nodes. These remote sensing drones obtain video and photographs of 

the fields and gather the data from the nodes, the base station of the node that includes a 

gateway to send the data to the remote location, and the data center situated in a remote 

location where the data is stored and analyzed. 

The functioning algorithm of the drone is presented in Figure 5.27. Firstly, the drone 

loads the flight plan, which can be designed using the existing software for flight plan 

designs and considering crop requirements. After the setup, the drone asks for the 

weather information gathered by the weather station. If the wind speed is greater than 

the threshold value (wth), the flight is canceled, and the drone waits until the next 

scheduled flight. If the wind speed is correct, the rain amount is then checked. If the 

threshold value (rth) is surpassed, the flight is canceled as well. If everything is correct, 

the drone checks the available energy. If there is enough energy, the drone begins the 

route through the fields. If there is not enough energy, the drone cancels the flight. The 

drone then checks if a node is asking for a connection. If there is no node to connect 

with, a photo of the field is taken, and the available energy is re-evaluated. When a node 

is detected, a connection is established, and the drone receives the data. When all the 

data has been received, the drone sends a disconnect message to the node to indicate 

that the connection is terminated and that the node should go to sleep mode and should 

not try to connect to the drone for the time determined in the settings. By doing this, the 

possible interferences caused by other nodes deployed in the fields in the coverage 

range of the drone are avoided. Although interferences among the nodes for the 

configurations of node coverages for orchards of fruit-bearing trees, as contemplated in 

this scenario, would only be possible with the case of 1 node per 60 m2 of node density. 

The detailed explanation of the different node densities considered for different types of 

crops is presented in section 6.6.1. After that, an oblique photo of the field is retaken, 

and the drone looks for another node. When the route was finalized, the drone goes to 

the base station and forwards the data to the database at the remote location for further 

analysis. Then the drone waits at the station until the scheduled time for the next flight 

is reached.  
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Figure 5.27. Algorithm of the drone. 

 

The functioning algorithm of the node is presented in Figure 5.28. After the setup has 

been completed, the node starts gathering the data from the nodes and storing it on an 

SD card. If it is the scheduled time for the drone flight, the node gets activated to wait 

for the drone. If it is not the scheduled time, the node goes into sleep mode for the time 

specified in the setup parameters. If a drone is detected, all the data stored on the SD 

card is forwarded to the drone. When the node receives a disconnect message, the node 

disconnects from the drone and deletes all the data stored in the SD card. Then, the node 

goes into sleep mode for the time stipulated on the settings so as to save energy and to 

avoid the drone having interferences with other nodes. While the node does not detect 

the drone, it checks if the maximum time activated time is reached to determine if it 

needs to go to sleep mode. This way, the node is not constantly activated if the drone 

decides to cancel the flight due to weather conditions. Then, it keeps gathering the data 

from the sensors each time the time interval between measures loaded from the setup 

has been reached. 
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Figure 5.28. Algorithm of the node. 

 

The message exchange between the elements of the architecture is presented in 

Figure 5.29. The drone sends beacons so the nodes can detect it and ask for a 

connection. When the connection establishment is performed, the node sends the data to 

the drone. The drone then sends an ACK and a Disconnect message to indicate that the 

node should go into sleep mode for the stipulated time. After that, the node sends an 

ACK to the drone to indicate that the Disconnect message has been received correctly. 

The process is repeated with all the nodes deployed on the field within the coverage 

area of the drone as it follows its route. When the node reaches the base station, the data 

is forwarded to the database, and the database confirms the reception of the data with an 

ACK. 
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Figure 5.29. Message exchange between the elements of the architecture. 

 

5.9 Conclusion 

 

In this chapter, the proposed solutions for different specific cases have been provided. 

The cases that have been addressed are the following: 

• A multi-layer fog computing framework has been proposed [364]. It 

provides fog functionalities to the nodes deployed on the canal and field areas in 

order to reduce the amount of data and messages that are forwarded in the 

network. The simulation results will be detailed in Chapter 6 section 6.2. 

• A protocol for a network entirely comprised of LoRa nodes has been 

proposed as well. This work has been published in [48]. Moreover, the 

simulation testbed and the obtained results will be detailed in Chapter 6 section 

6.3. 

• The security threats that LoRa networks for PA systems may face have 

been discussed. Physical attacks, attacks on the data in transit, attacks on the 

management system, and attacks on the data have been considered. Furthermore, 

the actions that can be taken to address these security issues have been presented. 

This work was published in [289]. 

• A WSN for the case of WiFi/3G heterogeneous networks for the 

monitoring of citrus plots has been presented as well. Furthermore, fault-

tolerance and energy-saving algorithms have been provided as well. This work 

was published in [28] and the simulation results on bandwidth consumption and 

consumed energy will be commented in Chapter 6 section 6.4. 
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• A discussion on the use of CoAP for PA systems comprised of IEEE 

802.11 nodes, previously published in [38], has been performed. The simulation 

results will be depicted in Chapter 6 section 6.5. 

• An algorithm for underground communication for IoUT networks has 

been presented [365]. 

• The use of remote sensing drones to gather de data from WiFi nodes 

deployed on the field while maintaining the designed flight plan for the remote 

sensing activities has been presented as well [9]. The simulation results on the 

best parameters to achieve a successful data transmission will be analyzed in 

Chapter 6 section 6.6. 
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Simulation Results 

 

 

6.1 Introduction 

 

In this chapter, the simulation experiments of the proposals described in the previous 

chapters are presented. Firstly, simulations of consumed bandwidth and the number of 

forwarded messages are performed to assess the effectiveness of the proposal for data 

aggregation. Then, the case of a protocol for a network where all the nodes transmit the 

data utilizing LoRa is contemplated. Simulations are performed to assess the amount of 

data that is stored on the SD cards of the nodes, the energy consumption, and the 

consumed bandwidth. Then, the consumed bandwidth and energy consumption for 

deployments of multiple WiFi nodes are presented. After that, the collisions that may 

happen in WiFi WSN for PA are evaluated. Lastly, different configurations of flight 

settings for remote sensing drones have been considered to determine the adequacy of 

the remote sensing node as a gateway. 

 

6.2 Results for a multi-layer fog computing framework 

 

In this section, the simulation results from the study case presented in Chapter 5 

subsection 5.2 are presented.  
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The Canal area is comprised of four clusters that forward the data to one aggregator 

node. There are eight actuator nodes in this area. For the Field area, three zones were 

considered with three clusters per zone, one aggregator node which is an 

agrometeorological station as well, and three actuator nodes. The sensing nodes and the 

CH nodes communicate through WiFi. The CH nodes and the Aggregator nodes 

communicate through LoRa at the EU 863-870 frequency band, with a bandwidth of 

125 kHz and a spreading factor of SF8. These LoRa settings allow a maximum payload 

of 222 Bytes including the LoRa header. Furthermore, as collision management is not 

part of the scope of this paper, it is assumed that there are no collisions. 

The Researcher mode performs the data acquisition process every 10 minutes and 

thus, the high amount of forwarded data (See Figure 6.1). As it can be seen, the nodes in 

Layer 1 forward all the data to the CH nodes in Layer 2. The state of the Actuator nodes 

is forwarded each hour. The Researcher Mode obtains a reduction of 35% at the 

forwarding times compared to not performing any data acquisition (See Figure 6.2). In 

this case, no data aggregation was performed at Layer 3. Furthermore, there is a water 

salinity alarm on the first day. At the times the data forwarding timer is reached, the 

data forwarded nearly reaches 20000 Bytes for an hour. 

 

 

Figure 6.1. Data forwarded by each layer at the Researcher Mode. 

 

 

Figure 6.2. Data forwarded by each layer at the Researcher Mode without data aggregation. 
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At the Advanced Farmer Mode, as it can be seen in Figure 6.3, the amount of 

forwarded data is decreased due to the data acquisition frequency of 30 minutes. The 

state of the Actuator nodes keeps being forwarded each hour. Thus, there is a fluctuation 

in the amount of data forwarded each time the timer is reached. Furthermore, the data is 

aggregated at Layer 3 as well and the data is forwarded to the data center twice a day. 

With this mode, compared to not performing data aggregation, a reduction of 60% was 

achieved when the forwarding time is achieved (See Figure 6.4). With data aggregation, 

a reduction of 66% of the forwarded data was obtained compared to the Research mode. 

The reduction reached a 76% at the times where the de states of the actuator are 

forwarded. 

 

 

Figure 6.3. Data forwarded by each layer at the Advanced Farmer Mode. 

 

 

Figure 6.4. Data forwarded by each layer at the Advanced Farmer Mode without data 

aggregation. 
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Lastly, the data forwarded by each layer to the next layer of the hierarchy on the 

Regular Farmer Mode is presented in Figure 6.5. The algorithms allow reducing 

substantially the amount of data forwarded by the higher Layers to the Data Center with 

an 83% for layers 1 and 2 and an 80% when the data forwarding timer is reached. 

Furthermore, a reduction of 69% in the transmitted data at the forwarding time is 

obtained compared to not performing data aggregation (See Figure 6.6). This reduction 

in the forwarded data leads to a reduction in the energy consumption of the devices as 

the higher energy consumption is produced when data is transmitted. 

 

 

Figure 6.5. Data forwarded by each layer at the Regular Farmer Mode. 

 

 

Figure 6.6. Data forwarded by each layer at the Regular Farmer Mode without data aggregation. 

 

Regarding the number of forwarded messages, the results of the Researcher Mode 

are presented in Figure 6.7. Between 234 and 249 messages are forwarded per hour 

except when the system is firstly activated where 53 messages are generated. As it can 

be seen, the hierarchical structure of the framework allows reducing the number of 

forwarded messages at each layer. Furthermore, a reduction of 9% of the messages at 
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the peaks compared to not performing data aggregation was achieved (See Figure 6.8). 

This is important regarding LoRa as there is a limitation in the number of messages that 

can be forwarded due to the duty cycle. Other LoRa settings would not support the 

Researched Mode. This is a key aspect if longer distances need to be reached as higher 

spreading factor values would be necessary and thus, the number of messages that could 

be forwarded would decrease. 

 

 

Figure 6.7. Number of messages forwarded by each layer at the Researcher Mode. 

 

 

Figure 6.8. Number of messages forwarded by each layer at the Researcher Mode without data 

aggregation. 

 

At the Advanced Farmer Mode, the number of messages oscillates between 78 and 

83 messages per hour except for the first hour with 53 messages (See Figure 6.9). The 

reduction of messages at the peaks is 68,67% compared to the Researcher Mode and 21% 

compared to not performing any data aggregation (See Figure 6.10). 
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Figure 6.9. Number of messages forwarded by each layer at the Advanced Farmer Mode. 

 

 

Figure 6.10. Number of messages forwarded by each layer at the Advanced Farmer Mode 

without data aggregation. 

 

Lastly, at the Regular Farmer mode, the number of forwarded messages remains 

between 39 and 55 messages per hour (See Figure 6.11). With an 85.33% of reduction 

at peaks compared to the Researcher Mode and 29% compared to not performing data 

aggregation (See Figure 6.12). This mode is optimal for remote areas as it would allow 

other LoRa settings with more restrictions regarding the number of messages that can be 

forwarded by each device. Furthermore, it would not be detrimental to the farmer as the 

calculations of the irrigation requirements only need one measure of each variable per 

day except for the meteorology data where the maximum and minimum values of 

temperature and relative humidity are necessary. 
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Figure 6.11. Number of messages forwarded by each layer at the Regular Farmer Mode. 

 

 

Figure 6.12. Number of messages forwarded by each layer at the Regular Farmer Mode without 

data aggregation. 

 

6.3 Simulations of a LoRa protocol for wastewater treatment 

 

In this section, the simulation results for the protocol presented in Chapter 5 

subsection 5.3. 

 

6.3.1 Simulation Description 

 

The considerations under which the simulation was conducted are detailed in this 

subsection. 
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6.3.1.1 Water Details 
 

For the simulation, we have considered a region that entails two urban areas (UAs) 

with their channel to collect the water, the main channel, and one irrigation channel (IC) 

with the small pools (POs) in which water is treated. A total of 6 locations are 

considered in this simulation: 2 urban areas (UA1 and UA 2), the irrigation channel (IC 

1), and the 3 pools (PO 1, PO 2, and PO 3.). In each one of these areas, a total of three 

nodes (a cluster) is located. The cluster comprises three nodes with LoRa interfaces. 

The six locations are close enough to ensure good coverage with a single LoRa gateway. 

Since we are going to simulate our results using the algorithms described above, we 

need to generate different values of pollution in the monitored areas. To generate these 

values, we have included in our simulations the movement of water from point to point 

and some pollution inputs generated by random numbers at different intervals. The 

generated pollution coming from UAs and the pollution from the IC is diluted into the 

channel and flows to the next station. The pollution levels are maintained along with the 

IC. They only decrease in the pools where biosorption material is cleaning the water. 

Each pool has the capacity to reduce 50% of the pollution present in the water.  

The following consideration is the probability of a false positive or a false negative 

due to an abnormal monitored value of one of the sensors. We have defined the chance 

of giving a false positive as 5% and 1% for a false negative.  

The simulation has a duration of one week in which each sensor measures the water 

quality once per minute. This timing is required since the arrival of pollution to the 

fields can transfer the problem of pollution from the water to the soil, and in this 

medium, the recovery is more complex. The simulation is carried out in two different 

periods of the year, in summer and in winter. This will affect only the energetic-related 

parameters. 

 

6.3.1.2 Network Details 
 

Regarding the packets sent through the network, we consider that the sensed data 

have a length of 37 bits for each measurement. The headers of the packets sent through 

LoRa comprise a preamble of 8 bytes and a header of 13 bytes. The data packets that are 

forwarded over LoRa will have a minimum size of 141 bits, which corresponds to a 

message with one measurement. Furthermore, the maximum packet size is 4176 bits, 

which is the maximum size allowed by LoRa. Lastly, the LoRa ACKs have a size of 21 

bytes which corresponds to the preamble and the header. 

The simulation for the energy consumption of the LoRaWAN nodes is performed 

according to the energy consumption model presented in [366]. The total energy 

consumption of the node is presented in Equation (6.1). 
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ETotal = EMicrocontroller + ESensors + Etx + Erx (6.1) 

 

where EMicrocontroller is the energy consumed by the microcontroller, ESensors is the 

energy consumed to activate the sensors and gather the data, Etx is the energy consumed 

to transmit the data, and Erx is the energy consumed to receive the ACK from the 

gateway, which according to [366] is 0.27 mJ. 

Equation (6.2) is utilized to determine the energy consumption per bit at the 

transmission.  

 

Ebit = (Power Consumption x ToA)/(8 x (Preamble + Header + Payload)) (6.2) 

 

As for the LoRaWAN parameters, considering that our system requires a minimum 

range of 2 km, all possible settings would meet the requirement in the scenario of free 

space for a frequency of 868 MHz (See Figure 6.13). However, as there are vegetation 

and trees in the area, we consider a scenario with few obstacles, as presented in Figure 

6.14. Therefore, for a transmission power of 7 dBm, the settings of BW250-SF7 and 

BW500-SF7 would not meet the requirement. For the case of 433 MHz, the required 

maximum theoretical distance is reached with all settings. 

 

 

 

Figure 6.13. Maximum theoretical distance at 868 MHz for free space. 
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Figure 6.14. Maximum theoretical distance at 868 MHz for few obstacles. 

 

Considering the results of the theoretical distances for each LoRa setting, the settings 

selected for our system are the EU 863–870 frequency band, BW 125 kHz, and SF 8. 

Therefore, for the selected settings and a selected transmission power of 13 dBm with 

its power consumption of 92.4 mW/h, the energy consumed per bit for each sensor is 

45.55 μJ. 

 

6.3.2 Results 

 

In this subsection, the results of the simulation are presented. First of all, the storing 

and sending procedure of each node is represented as the SD status. Then, the 

bandwidth of the full network is depicted. Finally, the issues related to the remaining 

energy in the node are evaluated. 

 

6.3.2.1 Status of the SDs 
 

Considering the protocol described in Chapter 5 subsection 5.3, one of the main 

aspects of this protocol is storing data, instead of sending it, waiting until the moment in 

which the water quality changes to send all stored data. We have to consider that the 

nodes which are not a CH store the data before sending them to the CH once the node 

detects a change. This procedure implies that the CH node stores large amounts of data 

just before sending them. Figures 6.15 and 6.16 show the stored information in the SD 

of each one of the included nodes in our topology. While Figure 6.15 focuses on the 

first 60 min of the simulation, allowing for seeing some of the processes in detail, 

Figure 6.16 summarizes the whole simulated period.  
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In Figure 6.15, we can identify the stored information in the SDs of the clusters of 

six included locations: (a) UA1, (b) UA2, (c) IC1, (d) PO1, (e) PO2, and (f) PO 3. 

Focusing on Figure 6.15 a), we can identify that the three nodes store information until 

minute 35. In minute 35, Node 3 and Node 2 detect a change in water quality. Node 1 

has a false negative. Node 3 sends data to Node 2 and erases the data. Then, Node 2 

checks that both nodes registered a change and sends all the data stored in the SD to the 

gateway. We can identify that Node 3 continues storing information during the rest of 

the period. In UA2, in Figure 6.15 b), we can see the same case in minute 5, in this case, 

Node 3. Then, we identify a case in which the three sensors detect a water pollution 

change, see minute 52. In that case, the two nodes (Node 1 and Node 3) send the CH 

node data. Thus, the stored information is incremented three times. At that moment, the 

SD of the CH node stored 5550 bits of information. Similar cases can be seen in Figure 

6.15 c) in minutes 41, 47, 51, and 59, and in Figure 6.15 d) in minutes 51 and 57. This 

delay of 10 min between IC1 and PO1 is the simulated time that the water remains in 

each pool. Finally, Figure 6.15 e), f) show the normal data storage process in the SDs. 

Since water is treated twice and three times, there are fewer water quality changes. 

On the other hand, Figure 6.16 shows the SD usage for each node along the 

simulated period of one week. We can identify that locations UA1, UA2, and IC1 have 

a similar trend. All these areas, in Figure 6.16 a)–c), have low volumes of data stored in 

the SDs due to the constant exchange of information with the gateway caused by 

changes in water quality. Meanwhile, PO1, PO2, and PO3 are clusters characterized by 

larger amounts of data stored in the SDs, particularly during the second day of our 

simulation. In general terms, we can see that areas characterized by a lot of change 

follow the patterns seen in Figure 6.15. We can have false positives, false negatives, or 

true positives related to the water quality, which induce the sending event of stored data. 

In addition, we can see a secondary pattern here, mainly in the areas characterized by a 

lower degree of change. In these cases, when no changes are detected, Node 1 and Node 

3 send all the information to the CH at midday to free their SDs, and as a method of 

control, as explained in Chapter 3 Figure 3.26. This behavior can be particularly 

identified in the node of PO3, in which the unique movements of data in the SDs are 

related to the process. Thus, we identify a pattern of storing information until midday 

when all the data are sent to Node 2, and then Node 2 sends data to the gateway to free 

its SD. The maximum amount of stored information is 106,486 bits (13.3 Kbytes). 

 



Chapter 6. Simulation Results 

 

213 
 

 

Figure 6.15. Stored information in the SDs cards of nodes. Details of the first 60 min of 

operation. Different letters (a) to (f) denote the different locations of the cluster: (a) UA1, (b) 

UA2, (c) IC1, (d) PO1, (e) PO2, and (f) PO 3. 
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Figure 6.16. Stored information in the SDs cards of nodes. Summary of the whole simulated 

period. Different letters (a) to (f) denote different locations of the cluster: (a) UA1, (b) UA2, (c) 

IC1, (d) PO1, (e) PO2, and (f) PO 3. 
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6.3.2.2 Consumed Energy 
 

Figures 6.17 and 6.18 show the node energy. The nodes have an energy harvesting 

system that has been dimensioned to ensure that it can cover the node’s energy 

requirements. In comparison, Figure 6.17 shows the remaining energy along with the 

simulation in each location in the worst scenario (winter with three consecutive days 

with a reduced energy harvesting). We can see the different locations in Figure 6.17 a)–

f). In all four locations, we identify a similar trend. Node 2 is the node that consumes 

more energy since it receives the information of Nodes 1 and 3 and sends all the 

information to the gateway. Nodes 1 and 3 of each location have the same tendency in 

their energy levels in general terms. No significant differences can be seen among the 

energy levels of Nodes 1 and 3, along with the locations. Nonetheless, the energy of 

CHs differs from one location to another.  

The CHs of locations with greater changes in water quality (Figure 6.17 a–c) send 

more packets which are translated into more energy consumption. The CH with higher 

energy consumption is the CH of UA2 (Figure 6.17 b). This node reaches a minimum 

energy of 12,320 mW/h just before the sunrise of the fifth day. The rest of the CHs, 

located in areas with fewer or no changes in water quality (Figure 6.17 d–f) have higher 

energy levels. Another interesting trend can be identified in PO3 (Figure 6.17 f). We 

can see a sharp decrease in energy levels at midday due to the large amounts of data 

sent at that moment. The absence of water quality conditions causes this during the rest 

of the day. Since the other CHs send data when the nodes detect a change, this 

decrement of energy level is distributed throughout the day. 

Finally, Figure 6.18 shows the energy level of CHs in three different simulations for 

which we have modified the energy harvesting conditions. Figure 6.18 a) represents the 

worst conditions, the winter period with just 9 h of energy harvesting and three 

consecutive days with a reduction of 50% in the energy harvesting. These results 

summarize the data shown in Figure 6.17. Figure 6.18 b) shows a period of winter but 

without attenuated energy harvesting. We can identify that the CH of UA2 still has 

lower levels of energy than the others. Nevertheless, the difference is lower than in the 

previous scenario. On the other hand, Figure 6.18 c) shows a period of summer without 

attenuated energy harvesting. In this case, we have 14 h of energy production. We can 

see that the energy levels of CHs are similar to those in previous cases. During summer, 

nodes have their batteries full for most of the day. 
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Figure 6.17. Energy consumed by the nodes. Summary of the whole simulated period. Different 

letters (a) to (f) denote different locations of the cluster: (a) UA1, (b) UA2, (c) IC1, (d) PO1, (e) 

PO2, and (f) PO 3. 
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Figure 6.18. Energy consumed by the nodes. Summary of the whole simulated period. Different 

letters (a–c) denote different ambient conditions: (a) winter period with reduced energy 

harvesting for three days, (b) winter period with full energy harvesting, (c) summer period. 
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6.3.2.3 Consumed Bandwidth 
 

Figure 6.19 portrays the entire network’s consumed bandwidth, including the 

communication inside each cluster and the communication between the CHs and the 

gateway. A detail of the consumed bandwidth of a short period can be seen in Figure 

6.19 a). It represents the first 720 min of the simulated network, the first half of the day. 

We can see that in a considerable amount of time, the network does not generate any 

packet exchange due to the application of the algorithm. In this simulation, during the 

first 720 min, we can identify that in 612 min, there is no exchange of information in 

our network. Minute 661 is the moment when all the information is sent to the gateway. 

At this moment, we reach the maximum bandwidth usage, 177,187 bits/min (2.95 kbps). 

Considering Figure 6.19 b), we can identify the consumed bandwidth during the 

whole simulated period. We can find seven peaks in the consumed bandwidth, which 

correspond to the seven middays. The maximum peak in this period is found on the 

second day. At that moment, a consumed bandwidth of 381,357 bits/min (6.35 kbps) 

can be identified. It is important to note that among the 40 performed simulations, we 

have represented the one with the highest maximum bandwidth. Figure 6.19 c) shows 

the box and whiskers diagram of the maximum bandwidth of all the 40 simulations. The 

average maximum bandwidth is 306,411 bits/min (5.1 kbps). With the selected LoRa 

settings, the maximum data rate is 3125 bps [367]. Therefore, we conclude that the data 

of the third cluster should be forwarded in two periods to avoid peaks of bandwidth 

consumption above 3125 bps. 

A second simulation was performed to verify that changing the data forwarding 

settings of cluster three to two data forwarding times, being 9 h and 21 h, allows the 

bandwidth to remain below the maximum 3125 bps. The consumed bandwidth in the 

second simulation is presented in Figure 6.20. Figure 6.20 a) shows the results for a 

short period of time. In this case, the first 1400 min are shown as the system spends 

more than 1100 min with low bandwidth consumption. Then, there is a peak of 155,011 

bits/min (2.58 kbps). The results for the complete simulated period are shown in Figure 

6.20 b). The peak with the highest bandwidth consumption is the same as the one 

displayed in Figure 6.20 a). The second highest bandwidth consumption peak reached 

142,764 bits/min (2.37 kbps).  

Another 40 simulations were performed to obtain the box and whiskers diagram of 

the maximum bandwidth for this simulation scenario (See Figure 6.20 c). The average 

maximum bandwidth was 128,204 bits/min (2.13 kbps). Furthermore, the change 

produced in the simulation does not have relevant repercussions on the global energy 

consumption of the proposed system. 
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Figure 6.19. Details of consumed bandwidth in our simulation. Different letters denote different 

details: (a) initial period, (b) whole period, (c) summary of the maximum bandwidth of 40 

simulations. 
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Figure 6.20. Details of consumed bandwidth in second simulation. Different letters denote 

different details: (a) initial period, (b) whole period, (c) summary of the maximum bandwidth of 

40 simulations. 
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6.4 Simulations of WSN with fault-tolerance and energy-saving 

functionalities 

 

In this section, the simulation performed with the protocol and algorithms proposed 

in Chapter 5 section 5.5 is going to be described.  

 

6.4.1 Simulation description  

 

First, the number of employed nodes and the topology are described. In our 

simulation, we include a total of 23 nodes. From those 23 nodes, there are different 

types of nodes such as WNA (1 node), WNB (1 node), FN (20 nodes) and FNS (1 node). 

In Figure 6.21, we show the location and type of the nodes. In blue, we can see the 

WNA and WNB placed in the Jucar River and in the channel used to transport the water 

to the orchards. The FN are represented in red dots and are numbered in letters, from “a” 

to “u”. The node “k” is the FNS, which will collect the data from the rest of the nodes.  

 

 

Figure 6.21. Topology for the simulation. 

 

According to [348] we assume that the energy used for transmission and reception is 

50nJ/bit, and 100pJ/bit/m2 considering a distance of 3m between FNs. In our 

simulations, we are not going to use any type of encryption to avoid energy use. The 
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initial battery of the FNs is 0.1J and the FNS has a different battery with 0.5J. We 

consider that the nodes gather data each 5 min. The data is sent only if the gathered data 

is relevant, see Chapter 5 Figure 5.11. For the simulation, we consider a 10% chance 

that the gathered data is relevant and must be sent.  

When one node sends information, according to Chapter 5 Figure 5.11 and 5.12, the 

following nodes in the topology have to add their gathered data to the received 

information and send it. The length of the TCP header is 160 bits. The length of the data 

gathered by WNA or WNB is 20 bits. The length of the data gathered by FNs is 22 bits. 

The ACK packet length is 160 bits.  

The same scenario will be tested with different energy configurations. The first 

configuration is the previous one, with 0.1J in all the FN nodes and 0.5J in the FNS. The 

second configuration gives 0.5J to FNS and 0.25J to nodes d and r. In the last 

configuration, nodes d and r have 0.425J, the nodes c, e, j, l, o, p, q, and s have 0.15J, 

the FNS 0.5J, and the rest of the nodes 0.05J. The number of iterations will be 20000. A 

total of 9 simulations will be performed for each configuration.  

 

6.4.2 Results 

 

In this section, we present the data obtained from the aforementioned simulation, 

including the total bandwidth consumed from the FNs and the remaining energy after 

10000 iterations.  

Firstly, we are going to present the results from the bandwidth consumed by the 

network. Figure 6.22 presents the consumed bandwidth during 5000 iterations. The 

mean consumed bandwidth is 1938 bits. The maximum consumed bandwidth is 7252 

bits at iteration 4165. The minimum consumed bandwidth is 0 bits, this occurs many 

times in the 5000 iterations.  

 

 

Figure 6.22. Consumed bandwidth. 
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Next, the remaining energy in the nodes is shown (see Figure 6.23). The node 

represented by a k in Figure 6.23 is the FNS and has 5 times more energy than the rest 

of the nodes. In Figure 6.23, we are representing the energy use related to the data 

transmission and reception.  The nodes j and f consume the energy much faster than the 

other normal FNs. The node with less remaining energy is the r node, with 0.028J. The 

average remaining energy in the FN is 0.081J. The FN with higher remaining energy is 

the h node with 0.95J. The FNS has a remaining energy of 0.36J.  

 

 

Figure 6.23. Remaining energy in nodes after 5000 iterations. 

 

Now, we are going to evaluate the different energetic configurations. Table 6.1 

shows the iterations before the first node dies. In the first configuration, the first node 

that dies is node r. The first node dies between iterations 6762 and 6919. The mean 

lifetime of the network is 6841 iterations. For the second configuration, the first node 

that dies is node q. This happens between iteration 1306 and 13609. The mean lifetime 

of the network is 13300 iterations. For the last configuration, the first node that dies is k 

node. The mean lifetime of the network is 18126 iterations, the minimum and maximum 

are 18079 and 18189. In Figure 6.24, we can see the maximum remaining energy in one 

node and the mean remaining energy in all the nodes for the different configurations. 

The configuration that uses the energy less efficiently is configuration 1, where there is 

one node with up to 3J when the first node dies. The second and third configurations 

have almost the same maximum remaining energy in one node. However, configuration 

2 has a higher mean remaining energy in the nodes, 0.06J, while configuration 3 only 

has 0.04J. In addition, configuration 3 is the one that presents the longer lifetime. 
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Figure 6.24. Remaining energy in nodes after 5000 iterations. 

 

 

Table 6.1. Number of iterations before first node dies with different energetic configurations. 

 Iteration first node died 

Simulation Conf 1 Conf 2 Conf 3 

1 6919 13236 18094 

2 6862 13153 18189 

3 6844 13326 18158 

4 6765 13409 18129 

5 6875 13343 18098 

6 6762 13414 18114 

7 6833 13609 18079 

8 6850 13144 18146 

9 6861 13065 18124 

Mean 6841 13300 18126 
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6.5 Simulations of collisions in IEEE 802.11 WSN for PA 

 

In this section, the obtained results after simulating the scenario described in Chapter 

5 section 5.6 are presented. For our simulation, we consider a different number of nodes 

that send data to a single AP. Firstly, the number of nodes that are unable to send their 

data because another node is sending data is calculated. Then, we calculate the number 

of nodes that, after applying the CSMA/CA, are still unable to communicate their data 

to the AP. Finally, we show the number of attempts of sending data that failed during 1 

second in the network.  

The number of nodes that are unable to send the data when it is expected is shown in 

Figure 6.25. We consider that each node has a different clock time, and they have to 

send the data every second, as long as we are considering the worst case when the 

orange trees are being irrigated. Due to the different clock times, each sensor sends the 

data at a different moment. Our purpose with this graphic is to evaluate the effect of 

increasing the number of nodes in the number of nodes that are unable to send the data.  

First of all, the number of nodes that are unable to send their data when it is expected 

because the network is currently being used by another node is evaluated. As it is 

expected, the higher the number of nodes, the higher the nodes unable to send the data. 

This is because as more nodes are in the network for more time the channel is used. In 

blue bars, the mean value after 30 different simulations (with different clock times) is 

represented and the line represents the minimum and maximum simulation results. The 

number of nodes unable to send the data increases following a second order polynomial 

relation. If we consider the percentage of nodes unable to send the data, the relation is 

still positive and increases following a linear relation. In the first case, with only 25 

nodes, our simulation indicates that 4% of the nodes are unable to send the data when it 

is expected. In the most extreme case, with 250 nodes, 32% of the nodes detect a 

message when they try to send their data. 

 

 

Figure 6.25. Number of nodes unable to send data when it is expected. 
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Next, we present the number of nodes that are unable to send the data after the 

application of the CSMA/CA algorithm using an exponential Backoff algorithm to 

calculate the waiting time, see Figure 6.26. The used Backoff algorithm gives 5 

attempts before considering that the connection is unreliable. Again, we present in the 

graphic the mean, the minimum, and the maximum of 30 simulations. The results show 

that when there are less than 75 nodes (25 or 50) no node was unable to connect to the 

AP and send the data. However, when we connected up to 75 nodes to a single AP with 

the network parameters set in the previous section, some nodes were unable to connect 

and forward their data. As it is expected, the higher the number of nodes connected to 

the same AP, the higher the number of nodes unable to connect after applying the 

CSMA/CA. The relation between the number of nodes and the number of nodes unable 

to connect follows a potential relation. The number of nodes unable to send the data is 

up to 23 for a network with 250 nodes. If we consider the percentage of nodes instead of 

the number of nodes, the values are 0%, 0.04%, 0.33%, 1.07%, 1.60%, 3.03%, 4.95%, 

7.60% and ,52%.  

 

 

Figure 6.26. Number of nodes unable to send data after the CSMA/CA. 

 

Finally, we present the data of the number of failed attempts in all the network 

during 1 second. This value is important because it represents the number of times that a 

node must apply CSMA/CA and the Backoff algorithm. This process not only consumes 

time but also consumes energy. Even it is performed in the microprocessor, and they are 

energy efficient, some energy is consumed and if this process should be repeated many 

times in one second (a maximum of 5 times) it will have an effect on the battery lifetime. 

Moreover, the time that the microprocessor remains to apply the algorithm is time that 

cannot be utilized to perform other actions. Therefore, it is important to consider the 

number of failed attempts to send the data in the network, see Figure 6.27. The number 

of attempts that fail, increases with the number of nodes in the network. With 250 nodes 

a total of 267 attempts failed during 1 second (mean value). It means that to send 250 
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packets with data 267 attempts failed and 226 attempts succeeded (250 less the number 

of nodes unable to send the data, see Figure 6.26). For the best case, with the lowest 

number of nodes, the mean number of failed attempts is almost 2, the maximum and 

minimum are 6 and 0.  

 

 

Figure 6.27. Number of failed attempts of sending data to avoid collisions. 

 

Observing the obtained results, we propose the connection of a maximum of 50 

nodes to each one of the AP, so that no collisions appear, and the operation of the 

network is optimal. 

 

6.6 Drone coverage analysis 

 

In this section, the theoretical values obtained after applying the equations described 

in Chapter 5 subsection 5.8.3 are analyzed. Furthermore, the energy consumption of the 

drone is analyzed, as well. 

 

6.6.1. Coverage analysis 

 

In this subsection, we first calculate the time during which a node has coverage from 

the gateway. Then, we calculate from those cases and with different bandwidths the 
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Before starting to analyze the theoretical results, some assumptions must be made 

related to the connection and the density of nodes on the soil.  

• First, we must consider the time required to establish the connection. We 

performed tests in real environments to determine the time required by Arduino nodes 

to establish the connection between each other. The results showed connection 

establishment times, ranging between 2 and 4 seconds. To ensure the connection of the 

nodes, we will consider the worst-case scenario of connection time of 4 seconds. Since 

the data is forwarded after the connection establishment, we will consider 5 seconds of 

total required time for connection establishment and data transmission. Therefore, all 

the combinations of dc and fh, which gives, as a result, a time in coverage equal to or 

less than 5 s are considered as unfeasible scenarios for connection. Since the current 

velocities in WiFi have increased in the last years and the gathered data by the sensors 

are small, we can consider that all the information can be sent in this period of 5s. 

• Moreover, all the coverage areas do not have the same properties in terms of 

signal strength. The further points have lower Received Signal Strength Indicator (RSSI) 

values, and the connection will be difficult in those situations. Nonetheless, the 

estimation of the effects of RSSI on the establishment of the connection is not the 

purpose of this paper. 

• Finally, regarding the density of nodes, we must consider the number of nodes 

that will be able to connect to the drone at the same moment and which have to share 

their time in coverage. There is a different type of scenarios regarding node density in 

precision agriculture. The densest cases are related to the intensive agriculture of fruit-

bearing trees as orchards. The farmers use to grow their trees in a density of one tree 

each 16 to 20 m2. In the case that we have one node per tree, the node density will be 

one node each 16 to 20 m2. Nonetheless, this is not usual, since the conditions of the 

soil and irrigation techniques are relatively homogeneous. Therefore, we can expect that 

in the densest networks, we have one node every 3 or 4 trees, having a density of 1 node 

each 60 m2. Other scenarios can include cereal or energetic crops. In these cases, the 

crops create a uniform soil coverage, and it is not possible to differentiate the individual 

plants. Moreover, as the outcomes of these crops are much lower than in the case of 

fruit-bearing trees, the investment in precision agriculture is lower. In addition, if we 

consider that most of the cereals and energetic crops do not need irrigation, the node 

density can be further lower. It is no exaggeration to say that in these cases, we can have 

only one node in each field having node densities of one done each 5000 m2 or even 

more. In between both cases, we can find another example of fruit-bearing trees as olive 

trees. The density of trees in the field is lower than in the case of orchards. Moreover, 

since no irrigation systems are used in the culture of olive trees, the monitoring 

requirements are lower. Thus, we can expect densities of one done each 750 m2 in the 

cropping of this type of crop. Nevertheless, the final density will be a factor that the 

farmer will define. To select the density of the nodes, the farmer will consider the 

environmental parameters (soil proprieties, homogeneity of the terrain, and past climate 

events), culture parameters (crop resilience, irrigation requirements, and susceptibility 

to specific diseases or pests among others), and economic constraints (benefits of the 

crops and the required investment).  
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Therefore, and to facilitate the comprehension of the results section, we detail the 

included parameters and their range in our model in Table 6.2. In Table 6.2 we describe 

if the parameter is considered as fixed-parameter or no, which means if this parameter is 

previously defined by the scenario or not. The defined parameters are the node density, 

the flying parameters (velocity and height), and the required time for communication. 

Furthermore, we have detailed the calculated parameters in our model based on the 

abovementioned variables.  

 

Table 6.2. Parameters included in our model. 

Parameter Fixed parameter Acronym Units Range 

Flying height Yes fh (m) 4 to 104 

Flying velocity Yes fv (m/s) 1 to 20 

Drone coverage No dc (m) 25 to 200 

Node density Yes nd (nodes/m2) 60 to 5000 

Time in coverage No - (s) Calculated 

Required time for 

communication 
Yes - (s) 5 

Nodes in coverage No - (nodes) Calculated 

Connection feasibility No - No Units Calculated 

 

Now, we are going to analyze the results of applying the equations to calculate the 

time in coverage for different scenarios. The time in coverage of a node placed on the 

soil when the drone is moving at 20 m/s can be seen in Figure 6.28. The higher the dc, 

the higher the time in coverage. The maximum time in coverage is 20 s in the case of 

dc=200m. The fh has a relatively low impact in the time in coverage for gateways with 

dc of 150 to 200 m. The increase of fh from 0 m to 100 m reduces the time in coverage 

by less than 25%. For the drone with dc of 25 m, even with the lower fh, the time in 

coverage is only 4 s which handicaps the correct establishment of the communication 

and the data sending. Thus, assuming this minimum time for establishing the connection, 

at fv of 20 m/s, the gateways with dc of 25m cannot be used no matter their fh. When 

the used gateway has a dc of 50 m, the maximum possible fh is 39 m. For dc of 75m and 

100 m, they can be used with fh from 4 to 64 m and 4 to 89 m respectively.  
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Figure 6.28. Time in coverage when a drone flies at 20 m/s and different dc. 

 

Following, the time in coverage for fv=15 m/s is presented in Figure 6.29. Compared 

with Figure 6.28, as the drone is moving slowly, the time in coverage increases. The 

highest time in coverage for this scenario is 27 s, 7 s more than in the previous case. For 

the minimum dc, the time in coverage when the fh is the lesser is the same as in the 

previous case, 4 s. For this combination of dc and fh, the decrease of fv does not 

produce a relevant change in the time in coverage. Thus, with dc of 25m, the 

communication with this velocity is not possible, no matter the fh. For the other dc (50 

to 100m), the maximum fh that offers enough time in coverage to ensure the 

communication increases from 34 to 39m (dc = 50 m), from 64 to 69 m (dc = 75 m), 

and from 89 to 94 m (dc = 100 m). 

 

 
Figure 6.29. Time in coverage when a drone flies at 15 m/s and different dc. 
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The results of time in coverage when the drone flies at 10 m/s can be seen in Figure 

6.30. In this case, the maximum time in coverage is 40 s. On the other hand, from the 

minimum dc and fh, the time in coverage is 5 s and can be used for receiving data from 

one node. With this fv, the maximum fh for different dc increases significantly 

compared with previous velocities for dc = 25, 5 m the maximum fh are 14, 44 m. 

Nonetheless, for dc of 75 and 100 m, the maximum fh is the same as in the previous 

velocities, and for dc higher than 100 m the communication is feasible at all the fh.  

 

 

Figure 6.30. Time in coverage when a drone flies at 10 m/s and different dc. 

 

Following, in Figure 6.31, we can see the theoretical values of time in coverage for fv 

= 5 m/s. The maximum time in coverage increases to 80 s with dc of 200 m and fh of 4 

m. For the dc of 25 m, the maximum fv where it is possible to establish a 

communication with a single node is 19 m. For other dc in all the cases where there is 

coverage for the sensor, the time in coverage is high enough to establish the connection 

and communicate the data. 

In Figures 6.28 to 6.31, we presented the time in coverage of a single node and 

evaluated if this node will be able to transmit the information or not according to the 

required time to establish the connection and send data, which has been set in 5 s. Next, 

we are going to analyze for each combination of dc and fh, the area in the soil which has 

coverage. Then, according to the aforementioned node densities in Table 6.2, we 

calculate the number of nodes that will have coverage in a certain period and need to 

send their data to the gateway. According to the time in coverage, the minimum 

required time to establish a connection, send the data and close the connection, and the 

number of nodes, we estimate if the drone can be used to receive all the data of the 

WSN or not. The summary of different considered scenarios and the results in terms of 

the success or not of the connection is presented in Figure 6.32. In Figure 6.32, we can 

identify in different rectangles the different scenarios, which combine different node 
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densities and fv. In each scenario, we can consider the combination of dc and fh in the x 

and y-axis. Thus, we cover all the parameters that affect the success or not of the 

gathering of all data stored in the nodes placed in the soil. The success of the connection 

is indicated in colors; the area colored in grey indicates that there is no coverage (NC) 

for this combination of fh and dc. This is found when the fh is higher than the dc. The 

areas in red represent combinations of dc and fh when even that we have coverage, the 

time in coverage is too short of ensuring the transmission of data from all the nodes. It 

means that the time in coverage of the nodes contained in the area in coverage is lower 

than 5s for each one and the gathering of data contained in the nodes cannot be attained. 

Combinations colored in yellow represent the combination of dc and fh that can be used 

to receive the data but with very adjusted time. Therefore, if an unexpected problem as a 

punctual loss of connection appears during the communications can endanger the 

collection of the data of certain nodes. In green, we present the optimal combination of 

dc and fh that ensure the data gathering. 

 

 

Figure 6.31. Time in coverage when a drone flies at 5 m/s and different dc. 

 

According to Figure 6.32, we can determine for a given fv, fh, and node density if we 

will be able to communicate and receive the data from all of our nodes or not with 

different types of dc. Now, we are going to analyze the different scenarios, for the 

scenario with the maximum node density (1 node each 60 m2) there is only one 

combination that allows the communication. This combination is found for the lowest fv 

(1m/s) at fh = 24m and dc = 25m. The result of this combination of parameters is good 

coverage (yellow). For the other node densities, we can find more combinations. For 

node densities of 1 node every 750 m2 and the maximum fv no combination allows the 

communication. For other fh of 15 and 10 m/s few combinations allow a good 

connection. Meanwhile, when the fv decrease to 5m/s we can identify some 

combinations of fh and dc that result in an optimal connection (fh = 24 m and dc = 25 

m). For the lowest fv several combinations allow good and optimal connectivity. Finally, 



Chapter 6. Simulation Results 

 

233 
 

for the scenario with the lowest density of nodes (1 node every 5000 m2) we can 

identify some combinations that allow optimal connection even with the highest fv with 

fh equal or smaller than 100 m. For the other fv (15 to 1 m/s) several combinations of fh 

and dc ensure that the drone can act as a mobile gateway and gather the data of nodes 

placed in the soil.  

In case that none of the combinations of the given parameters (fh, fv, and node 

density) with different dc values offers us a good (yellow) or optimal (green) solution, it 

will be necessary to evaluate if the possibility to modify the given parameters (fixed 

parameters) exists. For example, decreasing the fv or increasing the fh can be useful to 

ensure communication; meanwhile, we maintain the original purpose of the drone. 

These adjustments must be carefully considered to guarantee that the original purpose of 

the drone surveillance of the crop is possible. To do so, there will be necessary to 

evaluate the loss of image resolution due to the increment inf the fh and the reduction of 

overlapping between obtained images due to fh.  

Otherwise, in case there is no possibility to change the given parameters, it will be 

necessary to use some other communication process in the nodes placed on the soil. For 

example, it will be possible to use a clustering algorithm to communicate all the 

gathered data from the cluster to the cluster head and this cluster head sends the data to 

the node. This will minimize the time consumed to send the data as fewer processes of 

communication establishment must be done. Nonetheless, this solution is limited to the 

coverage of WiFi antennas of nodes placed in the soil, and it can only be applied in 

cases with high node densities.  

 

6.6.2 Energy consumption 

 

In this subsection, the energy consumption of the drone is presented. 

The energy consumption of a quadcopter drone is presented in equation (6.3), where 

the minimum flight power for hovering at the lowest height (β) is 30, the multiplier for 

the velocity of the motor (α) is 10.5, and the maximum power that the motor can 

achieve (Pmax) is 85, according to [368]. The flying time (t) will be set to 20 minutes as 

it is the typical nominal endurance for quadcopter drones. 

 

𝐸𝑛𝑒𝑟𝑔𝑦 = (𝛽 + 𝛼 ∗ 𝑓ℎ)𝑡 + 𝑃𝑚𝑎𝑥(𝑓ℎ/𝑓𝑣)                                           (6.3) 

 

For quadcopter drones, the energy consumption of the drone is highly dependent on 

the flying height. To increase the coverage time, some authors have presented proposals 

for flights plans where the drone circles the node on the ground until all the data is 

transmitted. In our case, we consider the transmission of small amounts of data gathered 

from soil monitoring sensors. Therefore, that type of flight plan is not necessary for our 

scenario. 
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Figure 6.32. Summary of communication in different scenarios, grey is N.C., red is not enough 

time in coverage. 
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The energy consumption of the quadcopter drone for a flying time of 20 minutes is 

presented in Figure 6.33. The energy consumption is height dependent, and the speed of 

the drone barely creates a difference in energy consumption. Considering that flying 

heights between 15 m ad 25 m provide better coverage, the selection of a flying height 

within that range would minimize the energy consumption while maximizing the 

coverage of the node placed at the drone. 

 

Figure 6.33. Energy consumption of a quadcopter drone at 10 m/s for different fh. 

 

Considering the different node densities studied in this paper, the approximated 

number of nodes that the drone can cover in a flight of 20 minutes at different fv is 

presented in Table 6.3. This calculation was performed determining the space covered 

by the drone at each fv taking into account that the nodes are placed at the center of a 

square sector of 60 m2, 750 m2 or 5000 m2, according to the node density, and the drone 

flies over them in a straight line to gather the information. Therefore, for a node density 

of 1 node per 60 m2 the number of nodes that can be covered is considerably greater 

than that of the other two configurations. 

 

Table 6.3. Nodes covered in a 20-minute flight for different fv and node densities. 

Velocity 1 m/s 5 m/s 10 m/s 15 m/s 20 m/s 

1 node per 60 m2 19 99 199 299 399 

1 node per 750 m2 - 7 15 23 31 

1 node per 5000 m2 - - 1 2 3 
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6.7 Conclusion 

 

Firstly, the results of the simulations of the algorithms for a multi-layer fog 

computing framework for water quality monitoring and precision agriculture have been 

presented [364]. The results show a significant reduction for each of the modes 

compared to not using the data aggregation algorithms. Furthermore, the effects of 

utilizing different modes for data acquisition have been presented as well.  

Regarding the use of a LoRa network with multiple nodes in a tree topology, the 

results show that the proposed system is able to transmit the necessary information and 

alerts with a low bandwidth generation [48]. However, the scheduled data forwarding of 

the central node of the last auxiliary canal had to be modified to two transmissions 

instead of one to ensure the fair access policy of LoRa. Lastly, the system is able to 

sustain energy consumption even on winter days with fewer hours of light and adverse 

weather conditions.  

For the case of deployment with multiple WiFi nodes [28, 38], the results show that 

the energy consumption was able to be maintained with the established battery. 

However, different energy configurations show different network lifetime and different 

remaining energy in the rest of the nodes. Furthermore, regarding the collisions that 

may happen among IEEE 802.11 nodes, an association of a maximum of 50 nodes to 

each AP is proposed for optimal performance. 

Lastly, different scenarios were simulated to determine the optimal drone parameters 

for the drone to be able to gather the data from the sensor nodes [9]. The results indicate 

that for the highest node density there is only one case in which the drone can be used 

when the drone has a flying height of 24m or lower and velocities equal or lower to 

1m/s and we include an antenna with coverage of 25m. For the rest of the node densities, 

we can find several combinations that ensure that the drone can be efficiently used as a 

mobile gateway. Nonetheless, in maximum flying velocity, no connectivity is achieved 

for the medium node density.  
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Chapter 7                                                  

Practical Experiments 

 

 

 

7.1 Introduction 

 

In Chapter 4 the proposed protocol was presented. In this chapter, the results that 

validate the performance of the protocol are detailed. Furthermore, different coverage 

tests were performed to determine the best locations for the nodes deployed on the 

fields. These tests consider different vegetation types, different vegetation densities, and 

underground, on-ground, near-ground and aboveground locations for the nodes. In 

addition, the energy consumption for WiFi and LoRa transmissions utilizing low-cost 

nodes is tested as well. Lastly, as an added functionality, a proposal for fruit 

quantification is provided, where images of fruit trees are analyzed utilizing the 

histogram. 

 

7.2 Results from tests on real devices of the proposed protocol 

 

This section presents the performance results of the protocol presented in Chapter 4.   
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7.2.1 Testbed description 

 

The tests have been performed in a real environment. Two types of nodes were 

utilized. The Wemos Mini D1 [356] and the Heltec LoRa WiFi 32 v2 [50] (See Figure 

7.1). The Wemos Mini D1 is an embedded system with 1 analog input, 11 digital 

input/output pins, and 4MB of flash memory. This node includes the ESP 8266 chip and 

has Wi-Fi connectivity. The Heltec nodes have both LoRa and Wi-Fi connectivity 

through the ESP32 microprocessor and a SX1276/SX1278 LoRa chip. Furthermore, it is 

comprised of an OLED (Organic Light-Emitting Diode) display, 18 ADC (Analog-to-

Digital Converter) input ports, and 2 DAC (Digital-to-Analog Converter) output ports, 

with 3 UART, 22 GPIO (General-Purpose Input/Output), 6 GPI, 2 I2C (Inter-Integrated 

Circuit), 2 SPI (Serial Peripheral Interface), and 2 I2S (Inter-Integrated Circuit Sound). 

The Heltec devices are available for both the 433 MHz and the 868 MHz bands. 

Therefore, the tests were performed for both 433 MHz and 868 MHz for the LoRa 

nodes of the network with the antenna shown in Figure 7.1. Furthermore, a preliminary 

test was performed to test the coverage of the utilized LoRa nodes with the antennas 

provided by the vendor.  

 

 

Figure 7.1. Nodes utilized to implement the protocol. 

 

The topology utilized for the tests (See Figure 7.2) corresponds to one of the 

branches of the topology proposed in Chapter 4 subsection 4.2.1. Several libraries were 

created using the C++ programming language in order to implement the protocol on the 

aforementioned nodes. Each node type has its own library that specifies implements the 

state of the nodes introduced in Chapter 4 subsection 4.2.3. The environment where the 

tests were performed is shown in Figure 7.3. For the normal performance of the system, 
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the time between messages would be high, however, in order to test the performance in 

a worst-case scenario, the number of forwarded messages was incremented. Both WiFi 

sensing nodes forward the data message each minute. Then the WiFi 1 node sends the 

LOW_BATTERY message at minute 7 and the IS_DOWN message at minute 9, and 

the WiFi 2 node sends the LOW_BATTERY message at minute 6 and the IS_DOWN 

message at minute 8. The total time for each test was 10 minutes. The REGISTER 

messages are forwarded at the beginning when the nodes are connected. Lastly, the 

alarms are generated according to the data. The payload of the data messages was 

generated in a random manner within the range of each parameter with the addition of a 

range extension of values that would not be possible for the parameter in order to trigger 

an alert. Therefore, the forwarded alerts are more numerous than those of normal 

performances. For the case of LoRaWAN, there is a 1% policy to avoid collisions. With 

the proposed protocol, this policy is not considered.  

 

 

Figure 7.2. Topology of the testbed. 

 

 

Figure 7.3. Nodes utilized to implement the protocol. 

   
a) b) c) 

  
d) f) 
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7.2.2 Test results 

 

In this subsection, the test results of the proposed protocol are presented. 

7.2.2.1 Consumed bandwidth 
 

For LoRa networks, the consumed bandwidth is an important metric as the maximum 

data rate can be very limited depending on the LoRa settings. The data rate for the most 

restrictive settings for the EU 433 and the EU 868 frequency bands is 250 bps [369]. 

Therefore, maintaining lower data rates facilitates the selection of a great variety of 

configurations. The tests for both frequency bands were performed with variations in 

the packet forwarding delay of the CH node so as to reduce de number of lost packets 

due to collisions. 

The results for the tests performed for the 433 MHz frequency with a packet delay of 

0ms at the CH node are presented in Figure 7.4. As it can be seen, for the two nodes that 

only transmit in LoRa (see Figure 7.4 a and b), the maximum data rate remains below 

250 bps considering that the tested scenario has more packet transmissions than that of 

the normal performance of the system. For the LoRa 1 node, the maximum data rate 

was 112 bps and the average data rate for the duration of the test was 1.68 bps. For the 

LoRa 2 node, the maximum data rate was 160 bps and the average data rate in the 10 

minutes of the test was 2.63 bps. The rest of the nodes transmit using WiFi and LoRa 

for the CH node and only WiFi for the monitoring nodes. Therefore, the overhead of 

utilizing WiFi and UDP leads to an increased data rate compared to that of the LoRa 

nodes. The CH node reaches a peak of 760 bps when both WiFi and LoRa packets are 

received within the same second (See Figure 7.4 c) and an average of 13.69 bps for the 

duration of the test. Lastly, for the WiFi nodes, both of them reached a maximum data 

rate of 256 bps (See Figure 7.4 d and e) with an average of 2.49 bps and 1.25 bps 

respectively for the tested time. The total consumed bandwidth is presented in Figure 

7.4 f). The peak in bandwidth consumption reaches 760 bps corresponding to the CH 

node and the average data rate for the duration of the test was 21.64 bps. 

Figure 7.5 shows the results for the tests performed with the 433 MHz frequency 

band and a packet forwarding delay of 250 ms for the CH node. For the LoRa 1 node, as 

it can be seen in Figure 7.5 a), the maximum data rate is 112 bps, and the average value 

for the duration of the test is 2.21 bps. For the LoRa 2 nodes, the maximum data rate 

reaches 216 bps and the average reaches 3.61 bps (See Figure 7.5 b). The maximum 

data rate for the CH node is 808 bps and the average value is 15.47 bps (See Figure 7.5 

c). For both of the WiFi nodes, the maximum data rate was 256 bps with an average of 

2.08 bps in both cases (See Figure 7.5 d and e). For the total consumed bandwidth in the 

network (See Figure 7.5 f), the maximum data rate was 1056 bps, and the average value 

was 25.89 bps. 
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Figure 7.4. Consumed bandwidth of input packets for the 433 MHz LoRa notes and 

transmission delay at the bridge of 0 ms for a) LoRa 1 node, b) LoRa 2 node, c) CH LoRa/WiFi 

node, d) WiFi 1 node, e) WiFi 2 node, and f) for the complete network. 

 

The consumed bandwidth from the tests performed in the 433 MHz frequency band 

and a packet delay of 500 ms at the CH node is presented in Figure 7.6. As seen in 

Figure 7.6 a), the maximum data rate for the LoRa 1 node is 160 bps. The resulting 

average data rate is 2.24 bps. In Figure 7.6 b) it can be seen that the maximum data rate 

for the LoRa 2 node is 304 bps. It is higher than the value of 250 bps for the most 

restrictive LoRa settings regarding the data rate. However, the data rate obtained at the 

test does not surpass the data rate for the second most restrictive LoRa settings. The 

maximum data rate for the CH node is 824 bps with an average of 15.17 bps (See 

Figure 7.6 c). In Figure 7.6 d) and e) it can be seen that the maximum data rate is 256 

bps with an average for the duration of the test of 3.32 bps and 1.25 bps respectively. 

Regarding the total consumed bandwidth in the network, the peak data rate was 984 bps 

with an average of 25.62 bps (See Figure 7.6 f). 

  
a) b) 

  
c) d) 

  
e) f) 
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Figure 7.5. Consumed bandwidth of input packets for the 433 MHz LoRa notes and 

transmission delay at the bridge of 250 ms for a) LoRa 1 node, b) LoRa 2 node, c) CH 

LoRa/WiFi node, d) WiFi 1 node, e) WiFi 2 node, and f) for the complete network. 

 

Figure 7.7 presents the results for the test performed with the 868 MHz LoRa nodes 

and a packet delay of 0 ms for the CH node. Figure 7.7 a) shows the results for the 

LoRa 1 node where the peak data rate is 112 bps and the average data rate for the 

duration of the test is 2.1 bps. The results for the LoRa 2 node as shown in Figure 7.7 b) 

indicate that the maximum data rate is 208 bps and an average data rate of 3.21 bps. For 

the CH node, the maximum data rate is 608 bps and the average for the 10 minutes of 

the test is 14.68 bps (See Figure 7.7 c). For the WiFi nodes, the maximum data rate is 

256 bps, and the average data rate is 3.32 bps and 1.25 bps respectively (See Figure 7.7 

d and e). Lastly, Figure 7.7 f) presented the results of the total network where the peak 

data rate is 872 bps with an average of 23.63 bps. 

  
a) b) 

  
c) d) 

  
e) f) 
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Figure 7.6. Consumed bandwidth of input packets for the 433 MHz LoRa notes and 

transmission delay at the bridge of 500 ms for a) LoRa 1 node, b) LoRa 2 node, c) CH 

LoRa/WiFi node, d) WiFi 1 node, e) WiFi 2 node, and f) for the complete network. 

 

The results of the test performed utilizing the 868 MHz frequency band and with 250 

ms of packet delay at the CH node are presented in Figure 7.8. As it can be seen in 

Figure 7.8 a) for the LoRa 1 node, the maximum data rate is 160 bps and the average 

data rate for the duration of the test is 2.05 bps. The maximum data rate for the LoRa 2 

node is 256 bps and the average data rate is 3.56 bps (See Figure 7.8 b). For the CH 

node, as seen in Figure 7.8 c), the maximum data rate is 808 bps and the average data 

rate for the duration of the test is 15.05 bps. For the WiFi nodes, the maximum data rate 

is 256 bps, and the average data rate is 3.73 bps and 1.25 bps corresponding to the WiFi 

1 and the WiFi 2 nodes (See Figure 7.8 d and e). For the complete network, the peak 

data rate value was 872 bps with an average data rate of 25.57 bps (See Figure 7.8 f). 

  
a) b) 

  
c) d) 

  
e) f) 
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Figure 7.7. Consumed bandwidth of input packets for the 868 MHz LoRa notes and 

transmission delay at the bridge of 0 ms for a) LoRa 1 node, b) LoRa 2 node, c) CH LoRa/WiFi 

node, d) WiFi 1 node, e) WiFi 2 node, and f) for the complete network. 

 

The results for the tests performed with the 868 LoRa nodes and a 500 ms packet 

delay at the CH node are presented in Figure 7.9. As it can be seen in Figure 7.9 a), for 

the LoRa 1 node, the maximum data rate is 160 bps and the average data rate for the 

duration of the test is 2.24 bps. For the LoRa 2 node, as seen in Figure 7.9 b), the 

maximum data rate is 256 bps, and the average data rate is 3.57 bps. For the CH node, 

as shown in Figure 7.9 c), the maximum data rate is 760 bps, and the average data rate 

is 13.77 bps. For the WiFi nodes, the maximum data rate is 256 bps, and the average 

data rate is 3.32 bps for the WiFi 1 node and 1.25 bps for the WiFi 2 nodes (See Figure 

7.9 d and e). Lastly, for the complete network, the peak data rate is 968 bps, and the 

average data rate is 24.16 bps (See Figure 7.9 f).  

 

  
a) b) 

  
c) d) 

  
e) f) 
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Figure 7.8. Consumed bandwidth of input packets for the 868 MHz LoRa notes and 

transmission delay at the bridge of 250 ms for a) LoRa 1 node, b) LoRa 2 node, c) CH 

LoRa/WiFi node, d) WiFi 1 node, e) WiFi 2 node, and f) for the complete network. 

 

The data rate values for all the tests remain very similar. Thus, it can be concluded 

that the proposed system is viable and adequate for heterogeneous networks intended 

for water quality and field monitoring in order to automate and improve irrigation. 

However, it is necessary to determine the packet loss that can occur due to the 

characteristics of LoRa. 

 

  
a) b) 

  
c) d) 

  
e) f) 
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Figure 7.9. Consumed bandwidth of input packets for the 868 MHz LoRa notes and 

transmission delay at the bridge of 500 ms for a) LoRa 1 node, b) LoRa 2 node, c) CH 

LoRa/WiFi node, d) WiFi 1 node, e) WiFi 2 node, and f) for the complete network. 

 

7.2.2.2 Packet loss 
 

The utilization of LoRa can lead to packet loss due to the collisions that occur when 

two or more packets are forwarded at the same time. The successful packet delivery rate 

of each test has been determined. The results are shown in Figure 7.10. As it can be 

seen, the high delivery rates were obtained for all tests, but the additions of delays help 

in improving the number of successful packet deliveries. For a delay of 0 ms, 91.26% of 

the packets were successful for the 433 MHz frequency band and a 94.02% successful 

packet delivery rate was obtained for the 868 MHz frequency band. For a packet delay 

at the CH node of 250 ms, the successful delivery rate was 93.33% and 98.43% for the 

433 MHz and 868 MHz respectively. Lastly, for a delay of 500 ms, the successful 

  
a) b) 

  
c) d) 

  
e) f) 
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packet delivery rate for the 433 MHz was 98.46% and for the 868 MHz frequency band 

the obtained result was 98.37%. As it can be seen, for the 868 MHz frequency band the 

delay of 250 ms allowed reaching a high delivery rate but for the 433 MHz frequency 

band a delay of 500 ms was necessary.  

 

Figure 7.10. Successful delivery rate of the performed tests. 

The addition of transmission delays helps in avoiding the collisions of the LoRa 

packets. As the performed tests contemplate a worst-case scenario, better successful 

delivery rates are expected with the normal performance as fewer packets would be 

forwarded, making it more difficult for two packets to collide. Furthermore, as our 

system includes mechanisms to ensure all data is delivered, the lost packets can be 

recovered.  

 

7.3 Coverage studies for different deployment strategies in varied 

environments 

 

When deploying devices for PA systems, the foliage of the plants may reduce the 

obtained coverage. Furthermore, other node placements such as underground nodes may 

be contemplated. In this section, a coverage study of low-cost WiFi nodes with different 

types of vegetation and different deployment configurations is presented. Furthermore, 

the coverage of low-cost LoRa nodes with different low-cost antennas is presented as 

well. 

7.3.1 Coverage results for deployments with vegetation obstructions 

 

The tests were performed at three different types of environments as seen in Figure 

7.11 The first one is a grass field with low vegetation and a regular terrain. The second 

one is the field with thicket. The terrain of this field presents irregularities in height and 

a big amount of thicket that obstructs the direct vision between the transmitter and the 
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receiver. The third field is a citrus plot. Orange trees are organized in rows that cover 

the expanse of the area in an ordered manner. Depending on the position of the emitter 

and the receiver, trees may or may not obstruct the direct vision between them. 

The signal strength was measured utilizing the ESP 32 Devkit v1 programmed 

utilizing the RSSI () function of the Arduino WiFi library and transmitting using the in-

built antenna with a time span of 5 seconds between each transmission. The placement 

of the nodes inside the protective box can be seen in Figure 7.12. Five radio 

transmissions were performed per measurement and spot and results were averaged to 

avoid instability in the results as in reference [370]. 

 

 

Figure 7.11. a) Grass field. b) Thicker field. c) Orange field. 

 

 

Figure 7.12. Placement of the node inside the box. 

 

Two different scenarios were considered as previously shown in Chapter 3 

subsection 3.3.1. In the first scenario, both transmitter and receiver were placed on the 

ground to consider the possible disturbance that the nodes may cause if they are 

positioned at higher heights with some agricultural applications, the machinery, and the 
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usual activities that can be performed by farmers. Furthermore, it is a deployment 

position that has been considered in soil monitoring scenarios such as [371] that employ 

drones to collect the data from the on-ground nodes. The aim of testing on-ground 

deployment strategies with different vegetation types is to determine the feasibility of 

the communication with nodes placed using this configuration. The measures performed 

on this scenario were taken with an angle of 0 and 15 degrees to obtain data on how 

results may change with varied degrees and a variation in vegetation density. Due to the 

arrangement of the trees in the orange field, it was not possible to make 360-degree 

measurements, so it was decided to replicate the measurements at 0 and 15 degrees for 

all vegetated environments in scenario 1. Furthermore, the measures were taken 

separating the emitter from the receiver, creating more distance between them with each 

measurement. 

In scenario 2, on-ground, near-ground, and above-ground placements of the receiver 

with varied emitter heights were tested on the citrus plot. The aim of the second 

scenario is to assess different deployment strategies for crops comprised of trees as 

opposed to vegetation that present the bulk of its foliage closer to the ground such as 

wheat fields [372]. The layout of how the measures were taken is presented in Figure 

7.13 a). Due to the differences in the amount of foliage and the structure and layout of 

the vegetation, the signal strength for each type of vegetation will differ. The satellite 

image of the fields with vegetation is presented in Figure 7.13 b). It is a Mediterranean 

area with great extensions of citrus plots and surrounded by mountains. This climate has 

warm to hot temperatures in summer and cool to warm temperatures in winter, where no 

below-freezing temperatures are normally reached. Furthermore, the precipitation is low 

and irregularly distributed. All the measures of each scenario were done on the same 

day, the temperature remained almost constant at 20 degrees Celsius as the data was 

gathered during the central hours of the day. Moreover, there was no presence of 

precipitations. 

 

 

Figure 7.13. a) Layout of the measures. b) Satellite image of the fields. 

7.3.1.1 Results 
 

In this subsection, we show the results of analyzing the received signal strength with 

different deployment strategies positioning the nodes at several distances in different 
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environments. First, the data gathered in each of the environments (grassland, scrub, 

and orange field) at two different orientations are evaluated. This way, we study the 

signal attenuation in the aforementioned environments to show the possible positive and 

negative effects of having different types of vegetation. Second, we evaluate the signal 

at different heights of the emitter and receiver at the orange orchard. 

 

7.3.1.1.1 Scenario 1: On-ground deployment with different types of vegetation. 

 

Firstly, the results from the on-ground nodes deployed on grasslands are presented. 

The RSSI of the measures performed at 0º and 15º are shown in Figure 7.14. As the 

height of the grass is mostly uniform, the results at both degrees are quite similar. The 

differences are mainly explained by the irregularities of the terrain and the different 

irradiation pattern of the antenna. Initially, no objects in the studied area can cause any 

rebound or reflection of the emitted signal. Thus, we can consider this signal attenuation 

as the attenuation when both nodes are placed on the soil with no interferences. When 

the signal is transmitted over grasslands with very low grass, less than 1.5 cm, the RSSI 

at the maximum measured distance, 20 m, is -81 and -82 dBm at 0º and 15º respectively. 

The attenuation is higher in the first 6 to 7 meters decreasing 30 dBm approximately. 

Then, the attenuation occurs at a slower pace and the RSSI values are similar, -80 dBm, 

until 13 m. The last measured points present lower RSSI, less than -80 dBm. 

 

 

Figure 7.14. RSSI in grasslands. 

 

The results of the RSSI measures performed in the scrub environment are shown in 

Figure 7.15. Initially, as it can be seen, the results from the different orientations show 

different RSSI values due to the different foliage patterns. As the scrub is not distributed 
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uniformly along the terrain, the RSSI in both orientations is not the same. Furthermore, 

the data does not present a regular attenuation as in the grassland case. At some points, 

farther distances present higher RSSI values than those obtained at measurement points 

situated closer to the emitter. Both observations are mainly explained by the effects of 

scattering and absorption of this vegetation, which causes shadow areas, and the 

reflection and refraction might lead to the multipath effect. A clear shadow area can be 

seen between 4 m and 6 m in the case of scrub 15º, where suddenly two points have 

lower values (-73 dBm and -72.5 dBm). At the maximum distance, the observed RSSI 

are -83 dBm and -85 dBm. They are quite lower than in the case of grasslands. 

 

 

Figure 7.15. RSSI in scrubs. 

 

Therefore, it is possible to conclude that the shrubs present in the scrub field cause 

alterations in the attenuation. Furthermore, the multipath effect can be affecting the 

RSSI received in each measurement greatly, causing the fluctuations in RSSI values. In 

some cases, for the same measurement point, a variation of more than 10 dBm was 

found between the maximum and minimum gathered values. Thus, with the data 

obtained in this study, changes in the vegetation or even some events as blooming, 

shedding, and growing, or just the wind moving the shrubs might be affecting the RSSI. 

Consequently, when the WSN is installed in scrub areas, it is important to note that the 

RSSI mean values might not be a good indicator and the minimum values should be 

considered when making the network planning. Further studies will focus on this aspect. 

The attenuation of the WiFi signal in the orange fields is now analyzed. As it is 

explained in the previous section, the data gathered at 0º was taken having direct vision 

between the node configured as AP and the node configured as the receiver. On the 

other hand, the data gathered at 15º was taken without having a direct vision in all the 

cases as the trunks of the orange trees obstruct the path between the emitter and the 
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receiver. Figure 7.16 presents the mean of the RSSI data gathered both at 0º and 15º. 

We can note that in the first meters, the RSSI is higher in the data gathered at 15º than at 

0º. Nonetheless, from 7 m, the RSSI is higher at 0º than at 15º. It is important to note 

that at 0º, from 16 m, the RSSI starts to decrease very abruptly losing the connection 

between 17 m and 20 m. In the case of data gathered at 15º, in the last 2 measured 

points, there was no connection. In order to represent the data in the graphics, the points 

where the connection was lost are represented as -100 dBm.  

 

 

Figure 7.16. RSSI in Orange fields. 

 

Thus, in the orange fields, we can conclude that the RSSI of on-ground deployments 

decreases faster than in grasslands or scrubs. Furthermore, from the obtained data it is 

appreciable that, in the first meters, the orange trees may cause constructive 

interferences at 15º. Nevertheless, at higher distances, the interferences cause negative 

effects, and the connection is lost earlier than in other environments and it is lost earlier 

when there is not direct vision between both devices. This effect will be the object of 

study for our future works as this type of crop are abundant in the Mediterranean area 

and agriculture systems will be deployed in similar fields. 

Finally, a comparison of the data from the grassland, scrub, and orange fields in the 

same graphics is shown in Figure 7.17 to determine the differences in the signal 

attenuation for each type of vegetation. The multipath effect can cause constructive and 

destructive interferences. As it has been commented on the previous figures, the 

multipath effect can be considered as the cause of the fluctuations in the measured RSSI 

values as there is not only attenuation but also signal recoveries after obstacles and 

dense vegetation. From the obtained results it can be seen that, in the first meters, there 

is a positive effect on RSSI, with possible constructive interferences that would 

increment the RSSI. However, after 10 m, there are interferences that cause negative 

effects. As a result, the RSSI is lower than in environments without vegetation. This can 
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be due to the characteristics of the vegetation. As it can be seen in Figure 7.11, although 

the scrubs on the field do present thicker vegetation, there are areas where it is sparser. 

This type of scrubs and their layout is typical of Mediterranean areas. Therefore, there 

may be areas where the vegetation is not as thick and present less attenuation. 

Furthermore, both 0º and 15º measures were similar at many points so, at the position of 

the sender and receiver, the signal at the scrub field may present elements that introduce 

less attenuation than that of the grass field. Considering the position of the emitter and 

receiver at the grass field, the structure of the grass creates a rough surface where the 

signal is less likely to be reflected, similar to the walls of a small anechoic chamber, 

whereas the areas with dirt on the scrub field present less vegetation and as the dirt is 

compacted, the signal may be reflected. Other studies that perform measures at 

grasslands and scrublands such as [373] perform their measures in fields with other 

characteristics. In their case, the scrubland is an area with thick tropical vegetation and 

the grass field do not present common grass like that of parks and golf fields. Therefore, 

as stated before, the characteristics of the vegetation, a thicker, uneven surface in the 

case of grass and a sparser heterogeneous amount of vegetation in the case of the scrubs, 

may lead to the obtained results. 

 

 

Figure 7.17. RSSI in all fields. 

 

After discussing the results obtained from the RSSI measures of the on-ground 

deployment strategy in different vegetation environments, a model of the signal quality 

for each vegetation will be obtained to determine the theoretical maximum coverage for 

the on-ground deployment.  

Equation (7.1) describes the power balance formula that determines the received 

signal power (Prx) according to the transmitted power, the gain of both the transmitter 

and receiver antennas, and the losses from air transmission, humidity, and vegetation as 
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in [374]. However, unlike in [374], the signal loss produced by the vegetation, in this 

case, is not that of [375] but will be obtained from the real measures performed in 

different environments. 

 

Prx(dB) = Ptx-1m(dB) – 10n log d (m) – L humidity(dB) – Lvegetation(dB)              (7.1) 

 

Most of the values are known such as the transmitted power (Ptx-1m) that for the 

ESP32 it is -45.75 dBm, which can be theoretically calculated through equation (7.2). 

Where the frequency is expressed in Hz and c is 3*108 m/s. The characteristics of the 

ESP32 chip are depicted in [322]. When the medium is air, the value n equals 2. The 

distance between transmitter and receiver is d. Lastly, Lhumidity is 0.026 dB for the 

hydrometric H and K areas of Spain [376].  

 

                     Ptx-1m = 20 log10 d + 20 log10(f) + 20 log10(4π/c)                             (7.2) 

 

In order to determine the signal loss caused by each type of vegetation, the 

mathematical model for the Prx for each type of vegetation needs to be obtained. 

The data from Figure 7.14 can be adjusted to a mathematical model, which will be 

our signal attenuation model with no interferences. As the observed differences at the 

same distance but with different orientations are minimum, we are going to consider 

that the RSSI does not change with the orientation of the antenna. We have observed 

that this happens with low vegetation environments in contrast to high vegetation 

environments where the results may vary with different angles. Thus, for the case of the 

grasslands, both sets of data are to be used for the mathematical model, see Figure 7.18 

a). The mathematical model is a logarithmic model, and its expression can be seen in 

equation (7.3). In Figure 7.18, the gathered data is represented in squares and the lines 

represent the model, its confidence intervals, and its prediction intervals. The correlation 

coefficient of this model is 0.98, the R2 is 96.68%, and the mean absolute error is 1.44. 

Prx-grass (dBm) = -52.25 – 12.24 ln d(m)                                     (7.3) 

 

As in the grassland, we can obtain a mathematical equation that models the gathered 

data. As in the previous case, the mean of both sets of data is used. The obtained model 

follows the same pattern as the previous one and is shown in equation (7.4). The 

mathematical model, with the intervals of confidence and prediction, can be seen in 

Figure 7.18 b). The correlation coefficient of this model is 0.93, the R2 is 87.86%, and 

the mean absolute error is 3.40. 

 

Prx-scrub (dBm) = -47.95 – 12.25 ln d(m)                                    (7.4) 
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Figure 7.18. Model of RSSI in a) grasslands b) scrubs c) orange fields at 0º d) orange fields at 

15º. 

 

Regarding the orange fields, as we consider that the interferences are different at 0º 

and 15º, the gathered data is going to be utilized separately to build two mathematical 

models. The first one would be for a deployment strategy where the nodes are located at 

the line of sight, placed on the streets between the rows of trees. The mean of the data 

gathered at 0º is utilized to create a model, see Equation (7.5) and Figure 7.18 c). The 

correlation coefficient of this model is 0.94, the R2 is 88.84%, and the mean absolute 

error is 3.10. 

 

Prx-orange 0º (dBm) = -48.15 – 13.89 ln d(m)                                 (7.5) 

 

Secondly, the model for the deployment where the trajectory between the emitter and 

receiver is obstructed by the tree trunks is obtained. The model from the data gathered at 

15º is presented in equation (7.6) and Figure 7.18 d). The correlation coefficient of this 

model is 0.95, the R2 is 91.08%, and the mean absolute error is 4.29. We can compare 

both models and see that they are similar, but the slope is more pronounced in the 

second case. 
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Prx-orange 15º (dBm) = -39.12 – 18.74 ln d(m)                                (7.6) 

 

From the obtained models, the signal loss caused by each type of vegetation can be 

obtained. Therefore, the theoretical equation and the model are equivalent as shown in 

equation (7.7), which is obtained for the grass mathematical model. 

 

  Ptx – 10n log d – Lrain – Lgrass = -52.25 – 12.24 ln d                       (7.7) 

 

Therefore, the signal loss caused by grass can be expressed as Equation (7.8). 

 

    Lgrass = Ptx – 10n log d – Lrain + 52.25 +12.24 ln d                        (7.8) 

 

When the known values are replaced in equation (7.8) the resulting equation for the 

signal loss caused by grass is equation (7.9). 

 

   Lgrass = 6.474 – 20 log d + 12.21 ln d                                  (7.9) 

 

Equation (7.9) can be then simplified to equation (7.10).  

 

     Lgrass = 3.554 ln d + 6.474                                        (7.10) 

 

Following the same process, the resulting equations for the rest of the vegetation 

types are equation (7.11) for scrub, equation (7.12) for the orange trees at 0 degrees, and 

equation (7.13) for the orange trees at 15 degrees. 

 

Lscrub = 3.5641 ln d + 2.174                                       (7.11)  

Lorange_tree_0 = 5.2041 ln d + 2.374                                  (7.12) 

Lorange_tree_15 = 10.0541 ln d - 6.656                                 (7.13) 

 

In other to determine the maximum distance between nodes for each type of 

vegetation, the aforementioned expressions for signal loss for each type of vegetation 

should be applied to equation (7.14). 
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                  D = 10(Ptx – Lrain – Lvegetation – Prx)/ 20                                  (7.14) 

 

Where Lvegetation is replaced by Lgrass, Lscrub, Lorange0, and Lorange15 accordingly. The 

results for the maximum distance for each type of vegetation can be seen in Figure 7.19. 

Although results show distances greater than those of the empirical data, the real data 

for RSSI values between -90 and -100 is harder to obtain due to the nodes not 

connecting to each other. However, the model does not regard that. But, as it can be 

seen, for the orange field, values above -90 stay within the 20 m limit. Considering a 

signal strength between -90 and -100 is of bad quality and would not be considered 

when designing the network, values are reflecting the empirical case. 

 

 
Figure 7.19. Maximum distance for desired Prx. 

 

7.3.1.1.2 Scenario 2: On-ground, near-ground, and above-ground deployments for 

orange tree monitoring. 

 

In this subsection, the results for the scenario with on-ground, near-ground, and 

above-ground deployment strategies with different emitter heights at an orange orchard 

are presented. 

In this scenario, the results have been classified according to the height of the 

receiver as there was more variability with changes in the height of the receiver than 

with changes in the height of the emitter. The different receiver heights that were 

measured were on-ground (0 meters), near-ground (0.5 meters), and above-ground (1 

meter). While the different heights of the emitter were 0.5 m, 1 m, 1.5 m, and 2 m.  
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The results for the receiver on the on-ground position and different positions of the 

emitter are presented in Figure 7.20. As it can be seen, the higher signal qualities were 

obtained for the emitter height of 50 cm for most distances. Good results were obtained 

as well for the height of 1 m. The lower RSSI values obtained at a height of 1.5 m and 2 

m are due to a high density of the foliage of the trees. The average height of the orange 

trees was 2.5 meters. Therefore, the bulk of the foliage was between 1 and 2.5 meters. 

That led to great interferences for those heights when a tree was reached. It can be seen 

as well how the RSSI fluctuates at different distances alternating between lower and 

higher RSSI values. This effect can be due to the multipath effect as a result of the 

reflection on leaves and fruits as well as the attenuation caused by the foliage. One of 

these fluctuations is the peak reached at the 0.5-meter height for a distance of 9 meters 

at an area with abundant foliage. For the 0.5-meter case, the signal is boosted, however, 

for the rest of the emitter heights, the quality of the signal was reduced as the emitter 

was placed among the foliage. It is noticeable as well how the quality of the signal is 

recovered after an area with abundant foliage. 

 

 

Figure 7.20. RSSI for on-ground receiver and different configurations for the emitter. 

 

For the near-ground configuration of the height of the receiver (0.5 m), the results 

showed in Figure 7.21 were obtained. In this case, the best RSSI values were obtained 

for the emitter at a height of 1 m. The overall signal quality is better than that of the on-

ground position of the receiver. However, the signal quality is less stable, resulting in 

high fluctuations along the different measurement spots as the distance between emitter 

and receiver increases. Particularly, the fluctuations of the RSSI at different heights, 

compared to those of the on-ground receiver position shown in Figure 7.21, are more 

evident with acute fluctuations of 27.4 dBm at the 1.5 m emitter height and 23.24 dBm 

at the 1 m emitter height. The lowest RSSI values were on the range between -80 and -

70 dBm for the 1.5 m height. These values were due to a highly dense mass of foliage 

from the top of the orange trees. However, when the highly dense foliage is surpassed, 
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the signal is recovered. Particularly, after the low values reached at meter 17 for the 

emitter height of 2 m, the signal was recovered in 11.5 dBm.  

 

 

Figure 7.21. RSSI 1for near-ground receiver and different configurations for the emitter. 

 

Lastly, Figure 7.22 presents the RSSI values for the receiver at the above-ground 

position (1 m) and the emitter at different heights and distances. This configuration 

presents worse signal quality than those of Figures 7.20 and 7.21 as the line of sight 

between the emitter and receiver nodes is at the same height as the bulk of the foliage. 

In the case of the above-ground position of the receiver, the emitter heights of 1 and 0.5 

m are the best options as the RSSI values indicate better signal quality than those of the 

emitter heights of 1.5 and 2 m. This is due to the attenuation caused by the highly dense 

foliage of the treetops that obstructed the line of sight between emitter and receiver. As 

the signal was attenuated by a more constant density of foliage, the fluctuations in 

signal quality are in most cases less prominent than those of the on-ground and near-

ground deployments. However, for the emitter height of 0.5 m, as it was not obstructed 

with dense foliage, there are great variations with several peaks. The first peak presents 

a degradation of the signal, which reaches a low value of -71 dBm at a distance of 4 m 

to the receiver. Then, the signal recovers and reaches a peak with a high value of -55.16 

dBm at a distance of 8 m from the receiver. Then, another high peak is reached with a 

value of -41.66 dBm at a distance of 12 m from the receiver, which is a fluctuation of 

20.34 dBm. Lastly, another low peak happens at a distance of 16 m from the receiver 

with a value of -73.16 dBm. 

Considering all the receiver deployment strategies, it can be seen that for emitter 

heights of 0.5 m and 1 m, with no obstruction of the line of sight between emitter and 

receiver, the signal presents high fluctuations that may be caused by the multipath effect. 

For the case of the 1 m emitter heights, the fluctuations are less prominent than for the 
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case of 0.5 m with similar RSSI values at the points with no peaks. Therefore, due to the 

stability of the signal and the good RSSI values, the emitter height of 1 m is the best 

option for all on-ground, near-ground and above-ground receiver positions. While 

emitter heights of 1.5 m and 2 m are more stable, they are also more affected by the 

attenuation of the highly dense foliage as it is to be expected. Thus, the obtained RSSI 

values are generally lower than those of the 0.5 m and 1 m emitter heights. 

 

 

Figure 7.22. RSSI for above-ground receiver and different configurations for the emitter. 

 

From the obtained signal quality results, a heuristic signal attenuation model was 

obtained for the on-ground, near-ground, and above-ground deployments after 

discarding the outlier values. As in the first scenario, the aim to obtain a theoretical 

maximum coverage to aid in the design of a soil sensing network deployment. The 

model presented in equation (7.15) was obtained for the on-ground deployment. In 

Figure 7.23 a), the data gathered from the tests performed in real environments is 

presented as dots. The model, confidence intervals, and prediction intervals are provided 

as well. For the near-ground deployment, the model presented in Figure 7.23 b) is 

expressed as equation (7.16). As it can be seen, this is the configuration with better 

signal quality. Lastly, the model for the above-ground deployment is presented in 

equation (7.17). The graphic representation of the model, the confidence and prediction 

intervals are shown in Figure 7.23 c). 

 

Prx-on-ground (dBm) = -42.05 – 11.53 ln d(m)                           (7.15) 

Prx-near-ground (dBm) = -41.55 – 8.10 ln d(m)                           (7.16) 

Prx-above-ground (dBm) = -49.80 – 6.68 ln d(m)                         (7.17) 
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Figure 7.23. Model of RSSI in the orange field with emitter a) on the ground b) at 50 cm of 

height c) at 1 m of height. 

 

Utilizing equation (7.1) and the models presented in equations (7.15), (7.16), and 

(7.17), the vegetation losses caused by the foliage of the trees at the on-ground, near-

ground, and above-ground deployments are presented in equations (7.18), (7.19) and 

(7.20) respectively. 

 

Lveg_on_gorund = 20.22 ln d + 12.03                                         (7.18)  

Lveg_near_ground = 16.79 ln d – 2.68                                         (7.19) 

Lveg_above_ground = 15.37 ln d + 17.18                                      (7.20) 

 

Lastly, applying equation (7.14), the maximum theoretical distance for a determined 

Prx is obtained (See Figure 7.24). Where Lvegetation is replaced by Lveg_on_gorund, 

Lveg_near_ground, and Lveg_above_ground. Acceptable signal quality would be obtained up to 

26 meters for the on-ground deployments, 115 meters for the near-ground deployments, 

and 91 meters for the above-ground deployments. Considering these results, it can be 

  

a) b) 

 

c) 

Figure 7.24. Model of RSSI in the orange field with emitter a) on the ground b) at 50 cm 

of height c) at 1 m of height. 
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concluded that near-ground deployment strategies are the best option for soil monitoring 

network deployments in crops comprised of trees, such as orange orchards. The 0.5 m 

and 1 m height were found to be the better option for emitter positioning which could be 

expected as it is a height with a low presence of foliage. However, even with no or few 

obstructions of the line of sight between emitter and receiver, the signal quality 

presented high fluctuations, which were less acute for the case of the emitter placed at a 

height of 1 m. 

 

 

Figure 7.24. Maximum distance for desired Prx at on-ground, near-ground and above-ground 

deployments. 

7.3.1.2 Discussion and challenges 
 

In this subsection, a discussion on transmitting at different heights in environments 

with vegetations is provided. Furthermore, the challenges of deploying wireless sensor 

networks for precision agriculture are presented. 

Node height is one of the key factors of sensor network deployments in rural and 

vegetated areas due to multiple reasons. Coverage and signal quality are one of these 

reasons as the main objective of the sensor network deployment is to gather and forward 

the data so it can be accessed by the user. However, other aspects such as the amount of 

foliage [377, 378, 379], the plant height [378], the machinery utilized at the fields, the 

presence of animals, or the irrigation system may present some challenges. Thus, the 

aim when designing the sensor network deployment for a determined rural environment 

is to consider the specific challenges and needs of the area while opting for the best 

signal quality and coverage configuration. The need of performing preliminary tests to 

determine the real performance of the nodes in contrast to the advertised by the 

manufacturer was also stressed in other studies [372], with an emphasis on low-cost 

nodes such as the ones utilized in our testbed. As there are many variables to consider, 
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other testbeds have focused on specific environments, node height, and frequencies to 

study how the signal is affected (see Chapter 2 subsection 2.5.9). 

The crop type is always described on the testbeds presented in Chapter 2 subsection 

2.5.9 as it is an indicator of the plant height and possible foliage density. Particularly, 

the effects of the attenuation caused by high foliage density were remarked in [380]. 

Though many studies have been performed regarding the effects of vegetation on signal 

quality, each study provides new insights on a specific type of crop, wireless technology, 

the response of a specific node, or the performance of the deployment strategy among 

other variables. Furthermore, a useful and interesting use of monitoring signal quality in 

vegetated environments is to use RSSI to identify vegetation growth [372]. Nonetheless, 

the deployment strategy is to be considered as the height of the node that is measuring 

the signal quality should be known to establish the reference height value of the crop. 

Crops such as lettuce or potatoes [381] have a low height, present a uniform foliage 

density for the height of the plant, and are planted with a small distance between plants. 

Thus, on-ground deployments would not be suitable for the characteristics of this type 

of crop. Asparagus, like some types of shrubs [382], present a medium height, the 

foliage density is uniform as well, and the separation between plants can be greater 

between rows. In this case, on-ground deployments would be possible if the nodes are 

deployed between rows. However, as the distance between rows is small, it could be an 

inconvenience for the farmers to access the plants. Therefore, above-ground 

deployments with posts placed on the plant row would be the best solution. Lastly, 

plants with high heights such as orange trees are planted with a separation between 3 

and 5 meters and can reach heights above 7 meters. The bulk of the foliage is at the 

treetop, with space without foliage at the tree trunk level. Therefore, above-ground 

deployments would be susceptible to more signal interferences and would interfere with 

farming activities such as pruning. Furthermore, considering the results of the presented 

testbed, a near-ground deployment strategy would be the best option. However, the 

results show a high fluctuation of the signal quality at emitter heights of 0.5 m and 1 m 

with no obstructions in the line of sight between emitter and receiver that can be caused 

by the multipath effect.  

The node density is another aspect to consider. Deploying one node per plant is 

neither necessary nor affordable. The data that is necessary to calculate irrigation needs 

or other aspects such as fertilizer needs does not vary significantly from plant to plant. 

Therefore, the field can be divided into different zones with a node or a cluster of nodes 

per zone. Moreover, the cost of deploying nodes all over the field can be too elevated 

for most of the farmers. As such, the nodes can be deployed as clusters that monitor one 

area and communicate with an AP or gateway that forwards the data to the user or the 

data center. Furthermore, if the nodes in the cluster are utilized to detect false positives 

and false negatives or to evaluate the area reached by the water in the case of drip 

irrigation, the distance between the nodes will not be very high as well. Lastly, as 

meteorology data is also necessary for the calculation of the irrigation needs and the 

data cannot be measured near the ground, if a node for meteorology monitoring is 

utilized, the node should be deployed above-ground and in an exposed area as it is 

recommended by the FAO [337]. 
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The type of irrigation may also influence the decision-making process when 

designing a WSN deployment for a field. Flood irrigation would make on-ground 

deployments impossible as the nodes could get damaged or could move even when 

placed in protective boxes. For pivot irrigation, the node cannot be placed at a height 

higher than the shortest point of the structure of the irrigation system. Furthermore, for 

drip irrigation, wet areas can be avoided which facilitates the deployment of the nodes. 

Energy consumption is a recurrent topic regarding WSN. Although the amount of 

daily data necessary for irrigation calculations can be as few as one value for each 

variable, most systems will gather data in real-time or at frequencies of 10 minutes, 30 

minutes, or 1 hour. Therefore, energy harvesting solutions such as the use of solar 

panels have been widely implemented [383]. Furthermore, the performance of the 

energy harvesting solutions can be monitored by the nodes to ensure there is enough 

energy [384]. However, the foliage of the plants could create a shade on the panel 

resulting in a reduction or the absence of harvested energy. Therefore, this aspect should 

also be considered when selecting the height of the node. There are however new 

solutions that allow charging the batteries of the nodes in a fast manner without the need 

of connecting the nodes to any device or removing the insulation, such as utilizing 

Wireless Power Transfer (WPT) [385]. 

Finally, the selection of the wireless technology to be used on the precision 

monitoring system is also to be considered. Aspects such as coverage distance, data rate, 

energy consumption, equipment cost, and the simplicity of implementation are often 

evaluated when taking this decision. Regarding coverage, there are low range 

technologies such as Bluetooth, mid-range technologies such as Zigbee or Wi-Fi, and 

long-range technologies such as LoRa. High data rates are not often necessary for PA 

monitoring systems; therefore most technologies could be utilized. Regarding the cost 

of the devices, WiFi has been the technology with the most options regarding price 

ranges. However, ZigBee and LoRa devices have had a cost reduction in recent years, 

making them more affordable. Lastly, Wi-Fi is the easiest technology to use regarding 

implementation simplicity due to both the available options in the market and the 

extensive documentation, removing in many cases the need for an expert to deploy the 

network. This accessibility results in this technology being significantly the most 

utilized in IoT systems for PA [383], followed by GSM and ZigBee. In terms of energy 

consumption, Bluetooth Low Energy (BLE), ZigBee, or LoRa are presented as low-

power technologies. Among these technologies, ZigBee is the most used low-power 

technology in agriculture networks [383] and its performance in vegetated environments 

has been studied in detail [372]. WiFi presents higher energy consumption. However, 

for Ad Hoc networks WiFi was found to have more energy efficiency than LoRa in 

shorter distances [386]. Being LoRa more efficient for distances greater than 300 m. 

Furthermore, as it was commented previously, energy harvesting solutions help in 

alleviating the higher energy consumption of non-low-power technologies. It could be 

argued that ZigBee would be the best technology for PA systems, and it is the best 

option regarding energy consumption, but the convenience of Wi-Fi often wins in 

deciding the wireless technology if the requirements for coverage and energy 

consumption are met, which it does for many architectures and the few data that needs 

to be forwarded. Furthermore, Wi-Fi is convenient for the user as well if there is a need 

to connect directly with a device utilizing a smartphone, tablet, or laptop. Which is the 
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case for remote areas, and countries without a well-developed communication 

infrastructure. 

 

7.3.1.3 Limitations of this study 
 

Precision agriculture systems have specific needs that require the consideration of 

specific aspects of the agricultural environment to be monitored. This paper provides a 

first approach to identify the aspects that affect the deployment of wireless networks for 

precision agriculture systems. It is thus limited to the specific types of vegetation that 

were considered in the testbed and to a specific low-cost ESP32 WiFi node. 

Furthermore, this study is limited to sunny weather conditions with medium 

temperatures which is the predominant weather in the Mediterranean coast of Spain. 

Although similar results are to be expected with a replication of this testbed utilizing 

low-cost WiFi nodes, more tests and replications are needed to determine the exact 

influence of certain aspects such as weather conditions, different stages of the crops 

where there is presence of flowers and fruits, and the use other types of low-cost nodes 

to determine if there are significant differences among them. However, although this 

study provides a first approach to perform soil monitoring wireless node deployments, 

we consider that our study provides some insights to wireless sensor deployments in 

orange fields that could be of interest to those interested in deploying a precision 

agriculture system to monitor citrus crops or other types of tree crops. 

 

7.3.2 Coverage results for underground deployments 

 

As Vuran described in [282], IoUT may be comprised of underground and 

aboveground elements. In this study, we test the signal strength between an 

underground and an aboveground node so as to determine the possible use of low-cost 

Wi-Fi nodes for IoUT purposes. As it can be seen in Figure 7.25, four RSSI-meter 

nodes were buried underground at distances 10 cm, 20 cm, 30 cm, and 40 cm deep into 

the ground. They were placed in the same hole one on top of the other and adding the 

necessary soil between each protective box so as to reach the required depth. Then, the 

AP was placed at heights of 50, 100, 150, and 200 cm for each of the measures. One 

meter was added to the separation of the AP and the initial point for each measure. The 

orientation of the antennas and the position of the nodes was always the same for all the 

measures. The images of how the nodes were placed on the field are presented in Figure 

7.26. When the RSSI-meter nodes were buried, the soil was slightly compacted, and the 

soil of the surrounding areas was not disrupted. 

To perform this test, four nodes were programmed to measure the RSSI and one node 

was programmed as an AP. The utilized node was the Mini D1 ESP 8266 node for both 

the AP and the RSSI-meter. The Mini D1 presents 11 digital input/output pins and has 

an operating voltage of 3.3 V. The specifications of the ESP8266 chip and the antenna 

can be found in [387].  
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Figure 7.25. Diagram of the testbed. 

 

 

Figure 7.26. Deployment of the nodes. 
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The nodes that measured the RSSI were placed on 80x80x36 mm sized protective 

boxes and the AP node was placed inside a 155X105X62 mm protective box that 

included the power supply. The power supply was a DC 5V-1000mA power bank with a 

capacity of 2000mAh. The ESP8266 nodes were placed inside the box with the antenna 

placed upwards. The nodes were taped in order to avoid any movement of the node 

inside the box at the time they were buried. A cable that connected the node to a laptop 

went through a hole of the box that was sealed afterwards so as to avoid the soil getting 

to the node. The data on the RSSI was gathered through the serial port of the node using 

the Arduino IDE. 

The test was performed in a Mediterranean area in a field where a citrus plot used to 

be. The satellite image of the field can be seen in Figure 7.27. As it can be seen, the area 

is used for agriculture and several citrus fields surround the field where the tests were 

performed. That area of the field was selected due to the lack of thicker and other types 

of vegetation. The soil was a predominantly sandy soil and has the appropriate qualities 

for citrus plantations. There is no presence of housing in the area and the use of IoT 

systems for agriculture was unknown. Therefore, a preliminary test was performed to 

confirm the absence of any other signal from other networks in the area. 

 

 

Figure 7.27. Field where the experiments were performed. 

 

7.3.2.1 Mathematical model for deployments with a height of 50 cm 
 

This subsection presents the results of the experiment. We show the gathered RSSI at 

different distances. Then, the attenuation effect of the soil is described. 

First, the values of RSSI are presented for each set of data (10, 20, 30, and 40 cm of 

buried depth). The mean, maximum, and minimum of the RSSI gathered at different 
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distances are shown. This step is necessary in order to evaluate the variance of the data. 

Figure 7.28 presents the data of the RSSI gathered by the node buried at 10 cm. Even 

though we can expect to have a uniform decrease in the signal as no vegetation or 

building are in the studied area, the soil itself can cause multipath effect. The soil is not 

uniform, and it can have different densities at different points which can cause those 

constructive and destructive interferences. In the first measured point, at 1m of the node 

in horizontal distance, the mean RSSI was -66 dBm. The RSSI decreased quickly and 

uniformly to -84 when the node was placed at 3 m from the AP. This signal is 

considered as a poor or unstable signal, and the communication between both devices 

might have further problems. From this point, 3m, the signal is affected by the multipath 

effect and the attenuation is not uniform. In some points, 4, 6, and 9 m the RSSI 

increases. It is important to note that some points as 1 or 4m have a big difference 

between the maximum and the minimum RSSI values, with a standard deviation higher 

than 4 in both cases. The mean standard deviation of this set of data is 3.21. At 

distances 10 and 11 m, the connection between the node and the AP was lost.  

 

 

Figure 7.28. RSSI with node buried at a depth of 10 cm. 

 

Figure 7.29 details the data gathered with the node buried at a depth of 20 cm. In this 

case, the signal attenuation is more uniform than in the previous case. The RSSI in the 

first measured point is -61 dBm (with a minimum of -62 dBm and a maximum of -60 

dBm). The last measured point where the node is connected to the AP is 8m with a 

RSSI of -90 dBm. In this case, no clear evidence of multipath effect is found. We 

suspect that, as in the previous case, there were different densities in the soil which 

might cause it. Nonetheless, the data (mean, maximum, and minimum) follows a 

uniform attenuation. The standard deviation of this data is 1.67. Apparently, in this case, 

the standard deviation increases with the distance.  
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Figure 7.29. RSSI with node buried at a depth of 20 cm. 

 

The data of RSSI from the node buried at 30 cm can be seen in Figure 7.30. In this 

case, the attenuation follows almost a linear relationship. There is one measured 

distance, 5m, where the RSSI increases, but in the rest of the cases it decreases with the 

distance. The mean RSSI at 1 m is 71 dBm (minimum and maximum are -68 dBm and -

74 dBm). The last measured point where the node was connected to the AP was at 7 m, 

with a mean RSSI of -95 dBm. The mean standard deviation of this data is 1.75, which 

is similar to the standard deviation with the node buried at depth of 20 cm.  

 

 

Figure 7.30. RSSI with node buried at a depth of 30 cm. 
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Figure 7.31 presents the data gathered with the node buried at a depth of 40 cm. The 

mean RSSI at 1m was -72 dBm, the minimum was -73 dBm, and the maximum -71 

dBm. The RSSI indicates a signal attenuation with the distance following a uniform 

behavior. Besides, at 4 m, the RSSI increases because a possible multipath effect could 

be causing a constructive interference. The signal of the AP was lost after 6 m. The last 

measured RSSI was -92 dBm. The standard deviation of the data gathered at a depth of 

40 cm was 1.57. This data has almost the same standard deviation as the data from the 

nodes buried at a depth of 20 cm and 30 cm. 

 

 

Figure 7.31. RSSI with node buried at a depth of 40 cm. 

 

Finally, we can use the data shown in Figures 7.28 to 7.31 to create a visual model 

by interpolating this data. The model can be seen in Figure 7.32. The points where the 

signal was lost are entered as -110 dB to generate this model. Even though we can 

expect the best results with the shallowest node, the node buried at 20 cm seems to have 

better signal in the first 8m. Although the node which has coverage at further distances 

is the node buried at 10cm, we must consider not only the link existence but also the 

coverage in terms of RSSI. The values of RSSI lower than -70 dBm are considered as 

fair, lower than -80 dBm are considered as unstable signal, and lower than 90 are 

considered as a very unstable connection. Thus, although the node buried at 10cm has 

coverage until 9 m, we should only consider the values higher than 90 dBm. Therefore, 

the node which has higher coverage is the node buried at 20 cm. The explanation is that 

probably the signal of the node buried at 10 cm is highly affected by the air-soil 

interface.  
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Figure 7.32. Visual model of the RSSI at different depths. 

 

7.3.2.2 Mathematical model for deployments at a height of 50 cm 
 

In this section, the mathematical model of the received power is presented. The 

received power is obtained utilizing the power balance formula [388, 389] provided in 

equation 7.21. 

 

𝑃𝑟𝑥 = 𝑃𝑡𝑥−1𝑚 − 𝑛 ∗ 10 ∗ log 𝑑 − 𝐿ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦 − 𝐿𝑠𝑜𝑖𝑙                       (7.21) 

 

Where Prx is de received power expressed in dBm, Ptx-1m is the transmitted power at 1 

meter in dBm which is -59,857 dBm for the ESP8266 nodes, n is the attenuation 

variation index which is 2 for air, d is the distance between transmitter and receiver 

expressed in meters, Lhumidity is the losses due to humidity for the two main hydrometric 

areas of Spain, areas H and K, which is 0.0026 dB [376] and Lsoil are the losses due to 

the underground propagation of the signal. The theoretical received power at 1 meter is 

obtained with equation 7.22. 

 

𝑃𝑡𝑥−1𝑚 = 20 log10 𝑑 + 20 log10(𝑓) + 20 log10  
4𝜋

𝑐0
                (7.22) 

 

Where c0 is 3*108 m/s and f is the operational frequency in Hz. Furthermore, the 100 

mW power commonly used for WiFi transmissions should be considered. The losses 

due to soil, Lsoil, are presented in Equation 7.23 [284]. 
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𝐿𝑠𝑜𝑖𝑙 = 𝐿𝑚 + 𝐿𝛼                                                 (7.23) 

 

Where Lm is the attenuation caused by the variation in wavelengths and Lα 

corresponds to the losses due to the attenuation constant. Each of them is presented in 

equations 7.24 and 7.25 respectively. 

𝐿𝑚 = 20 log  
𝜆0

𝜆
 = 20 log (

𝑐0
𝑓
𝑐

𝑓

) = 20 log(√𝜇𝑟𝜀𝑟)                     (7.24) 

𝐿𝛼 = 8.69𝛼𝑑𝑠𝑜𝑖𝑙                                                (7.25) 

 

The attenuation constant is given by equation 7.26.  

 

𝛼 =
1

5.31∗10−3∗
√𝜀′

𝜎

                                                 (7.26) 

 

Obtained from the expressions of penetration depth d=1/α and the expression 

simplified expression for mediums where μ=1 as soil [390], expressed as d = 5.31 ∗

10 − 3(√𝜀′/𝜎). The real part of the permittivity for a sandy soil ε’ is 6.53 (TDR), the 

imaginary part of the permittivity ε’’ is 1.88 (TDR) and the conductivity σ is 2.32 

(mS/m). 

The results of the model for a depth of 10 cm are presented in Figure 7.33. As it can 

be seen, the results are very similar to the real measures obtaining a determination 

coefficient r2 of 0.8256. The results of the model for a depth of 20 cm are presented in 

Figure 7.34. The r2 for this depth is 0.8259. Figure 7.35 presents the results of the model 

for the depth of 30 cm. The obtained determination coefficient r2 for this depth is 0.6084. 

Lastly, the results of the model for the depth of 40 cm are presented in Figure 7.36. The 

r2 of this depth is 0.0158. This is the depth where the model is the least approximated, 

however, it is still useful for an estimation. The heterogeneity of the soil and possible 

stones or other materials that change the dielectric characteristics of the soil may 

introduce further losses that do not affect the other depths. 
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Figure 7.33. Results for the model at a depth of 10 cm. 

 

 

Figure 7.34. Results for the model at a depth of 20 cm. 

 

 

Figure 7.35. Results for the model at a depth of 30 cm. 
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Figure 7.36. Results for the model at a depth of 40 cm. 

 

7.3.2.3 Coverage results for all heights 
 

In this section, the results from the coverage experiments performed between an 

underground node and an above-ground AP at different depths and heights are presented. 

The RSSI values for each depth and each AP height are presented in the following 

figures. The measures at each height and length were taken five times and the average 

was calculated for each case. 

Figure 7.37 presents the RSSI obtained from the node buried at 10 cm of depth. As it 

can be seen, the signal was able to reach 10 meters of length the node getting 

disconnected from the AP. The good quality RSSI signal values reach a length of 2 

meters for a height of 1.5 meters. This height is also the best for the range between -70 

and -80 dBm. Furthermore, there is a noticeable difference between the quality of the 

signal below and above the height of 1 meter. For the heights below 1 m, acceptable 

signal quality only reaches the 2-meter mark. However, for heights above 1 meter, it 

reaches up to 7 meters of length. For the RSSI values between -80 and -90, the 

maximum distance is up to 7 meters for heights below 1 meter and up to 9 meters for 

height above 1 meter. 
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Figure 7.37. RSSI at 10 cm of depth. 

 

The RSSI obtained from the node buried at 20 cm of depth is presented in Figure 

7.38. In this case, there is a similar pattern to that of the node buried at a depth of 10 cm. 

However, the signal reaches 9 meters of length before getting disconnected. 1 meter less 

than in the case of the node buried at 10 cm of depth. However, it is important to remark 

that acceptable RSSI values reached up to 8 meters, 2 meters more than the node 

situated above. Good signal quality values reached a similar distance. Lastly, the signal 

reached RSSI values between -80 and -90 dBm further than in the previous case for the 

AP located at heights below 1 meter. 

 

 

Figure 7.38. RSSI at 20 cm of depth. 
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Figure 7.39 presents the RSSI obtained from the node buried at 30 cm of depth. The 

reduction of the quality of the signal is evident with the node buried at this depth. No 

good-quality signal values were obtained. The signal was able to reach up to 7 meters of 

length before disconnecting. Furthermore, the signal was considerably better for heights 

above 1 meter, with acceptable RSSI values up to 6 meters of length. 

 

 

Figure 7.39. RSSI at 30 cm of depth. 

 

Lastly, Figure 7.40 presents the RSSI obtained from the node buried at 40 cm of 

depth. Similar to the node located at 30 cm of depth, the signal was able to reach 7 

meters before getting disconnected. However, acceptable RSSI values only reached the 

3-meter mark. 
 

 

Figure 7.40. RSSI at 40 cm of depth. 
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7.3.3 Coverage results for LoRa low-cost nodes 

 

In this subsection, the coverage results for the tests performed with low-cost LoRa 

nodes and antennas are presented.  

The coverage tests performed with LoRa nodes were done using the Heltec LoRa 

WiFi 32 [50] nodes. For the antennas, different low-cost antennas for the 433 MHz and 

868 MHz frequency bands were utilized (See Figure 7.41). The characteristics of the 

antennas are presented in Table 7.1. The tests were performed in the location shown in 

Figure 7.42, which is a wide and long street with fields at one side and buildings on the 

other side. The nodes were placed in a line-of-sight manner where the emitter remained 

static, and the receiver moved to the different measuring points. The RSSI was 

measured at each measuring point. 

 

 

Figure 7.41. Utilized antennas for a) 433 MHz and 3 dBi gain, b) 433 MHz with 5 dBi gain and 

c) 868 MHz with 3 dBi gain. 

 

Table 7.1. Characteristics of the antennas. 

 Antenna 1 Antenna 2 Antenna 3 

Frequency band 433 MHz 433 MHz 868 MHz 

Gain 3 dBi 5 dBi 3 dBi 

Voltage Standing Wave Ratio ≤ 1.5 ≤ 1.5 ≤ 1.5 

Input impedance 50 Ω 50 Ω 50 Ω 

Maximum input power 10 W 50 W 10 W 

 

The results for the 433 MHz frequency band are presented in Figures 7.43 and 7.44. 

For the antenna with a 3 dBi gain, the best signal quality is obtained with the Spreading 

Factor of 7 (See Figure 7.43 a). The next SF configuration with the best signal quality is 

SF 10 (See Figure 7.43 d). The worst case is that of SF 11 (See Figure 7.43 e). In this 

case, as there is a great difference between the quality of the signal obtained with SF 7 

and the rest of the SF configurations, the selection of the best SF for a transmission with 

these low-cost devices should be considered. 
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Figure 7.42. Location of the tests. 

 

 

Figure 7.43. RSSI values for 433 MHz nodes with antenna of 3 dBi for a) SF 7, b) SF 8, c) SF 9, 

d) SF 10, e) SF 11 and f) SF 12. 
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Figure 7.44 shows the results for the antenna with a gain of 5 dBi. In this case, the SF 

7 and SF 10 configurations have the best signal quality as well (See Figure 7.44 a and d). 

However, the RSSI values obtained with this antenna are not as differentiated as in the 

previous case. Therefore, with the use of this combination of node and antenna, other 

aspects should be considered to select the best LoRa parameters. The SF configurations 

with the lowest RSSI values are the SF 11 and SF 12 (See Figure 7.44 e and f). 

 

 

Figure 7.44. RSSI values for 433 MHz nodes with antenna of 5 dBi for a) SF 7, b) SF 8, c) SF 9, 

d) SF 10, e) SF 11 and f) SF 12. 

 

Finally, the results for the 868 MHz frequency band are presented in Figure 7.45. 

These tests were performed with an antenna that had a gain of 3 dBi. In this case, Sf 7 

had the best signal quality as well (See Figure 7.45 a). The configuration with the worst 

signal quality was SF 11 (See Figure 7.45 e). As in the previous case, other aspects 

should be considered when selecting the best parameters for LoRa transmissions as the 

RSSI values for all the SF configurations are similar. 



Laura García García 

 

280 
 

 

Figure 7.45. RSSI values for 868 MHz nodes with antenna of 3 dBi for a) SF 7, b) SF 8, c) SF 9, 

d) SF 10, e) SF 11 and f) SF 12. 

 

Among the three studied cases, the node transmitting at 433 MHz and the antenna of 

3 dBi had the best performance on average. The worst performance was that of the 868 

MHz frequency band. Furthermore, all nodes reached the lowest RSSI values possible 

before the 1 km mark. Therefore, nodes with better quality or topologies such as multi-

hop LoRa networks should be utilized to reach greater distances. 

 

7.4 Energy consumption comparison between WiFi and LoRa 

 

In this section, the energy consumption of transmitting with WiFi and LoRa utilizing 

affordable nodes is going to be presented. 

In order to perform the tests on energy consumption, we utilized the Heltec WiFi 

LoRa 32 node which is presented in Figure 7.46. It is able to transmit with both WiFi 

and LoRa. This node has an ESP32 microprocessor and a LoRa SX1278 node chip. It 
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has an SH1.25-2 battery interface onboard as well and an integrated management 

system for lithium batteries so as to manage charge and discharge, switch automatically 

between USB and battery power, protect against overcharge and detect battery power. It 

also has an integrated OLED display, a CP2102 USB to serial port chip, and supports 

the Arduino IDE (Integrated Development Environment). It is comprised of 29 general 

GPIO ports. It has 3 UART (Universal Asynchronous Receiver-Transmitter) ports, 2, 

SPI ports, 2 I2C (Inter-Integrated Circuit) ports, and one I2S port. It also has a 4 MB 

flash memory. Table 7.2 shows the energy consumption provided by the manufacturer 

[50].  

 

 

Figure 7.46. Utilized Heltec WiFi LoRa 32 node. 

 

Table 7.2. Energy consumption of the node. 

Mode Energy consumption 

LoRa 10 dB tx power 50 mA 

LoRa 12 dB tx power 60 mA 

LoRa 15 dB tx power 110 mA 

LoRa 20 dB tx power 130 mA 

WiFi AP mode 135 mA 

WiFi scan mode 115 mA 

 

In order to perform the tests, the Heltec WiFi LoRa 32 v2 was programmed using the 

Arduino IDE. The WiFi.h and LoRa.h libraries were utilized to establish the connection 

between the two Heltec WiFi LoRa 32 v2 nodes. The default settings were utilized for 
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both WiFi and LoRa. Table 7.3 shows the default settings for LoRa. The forwarded data 

was the same for both WiFi and LoRa transmissions and it had a length of 80 bytes. 

 

Table 7.3. Default settings of LoRa. 

Tx Power 17 dB 

Frequency 433 MHz 

SF 7 

Signal Bandwidth 125 KHz 

Coding rate 4/5 

Preamble length 8 Symbols 

 

Tests were performed forwarding a packet with a 5-second interval and a 30-second 

interval. The utilized battery was a 4955 power bank with a capacity of 2000 mAh and 

an output of 5V DC and 1000 mAh.  

The tests on the energy consumption of WiFi were performed for the two selected 

transmission time intervals. Figure 7.47 shows the average battery life for each 

transmission interval. As it can be seen, a difference of 1 hour was obtained between 

transmitting with each time interval. For the time interval of 5 seconds, the obtained 

battery life was 10 hours and 10 minutes whereas 11 hours and 14 minutes of battery 

life was obtained for the 30 seconds time interval. Therefore, the transmission interval 

can severely affect the energy consumption of the devices that utilize WiFi for their 

communication. 

 

 

Figure 7.47. Battery life with WiFi communication. 
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The tests performed with LoRa considered 5 seconds and 30 seconds time intervals 

as well. However, no significant differences were obtained between both transmission 

intervals. In fact, the average battery life for the 30 seconds transmission interval was 26 

minutes less than that of the 5 seconds transmission interval. As it can be seen in Figure 

7.48, the lifetime of the battery was approximately 10 hours. 

 

 

Figure 7.48. Battery life with LoRa communication. 

 

As the manufacturer stated, the power consumption for both WiFi and LoRa 

transmissions is practically the same with transmission powers of 17 dBm or 18 dBm. It 

is surprising as LoRa is branded as a low-power consumption communication protocol. 

Therefore, the transmission power of LoRa has to be decreased so as to improve its 

battery consumption, which leads to less coverage. 

To assess if the battery life was increased when transmitting with less transmission 

power, another test was performed changing the tx power of the LoRa transmissions to 

10 dBm. The time interval for this test was 30 seconds. The average battery life for this 

case is presented in Figure 7.49. As it can be seen, the battery life improved compared 

to that with a transmission power of 17 dB, obtaining more than one hour more of 

battery life. Furthermore, the battery life surpassed that of WiFi with a transmission 

interval of 30 seconds in 20 minutes. The difference would be then more noticeable 

when utilizing batteries with more capacity. However, the overall difference between 

the power consumed by both technologies is not that great. Therefore, other factors, 

such as the range that can be reached with each technology or the data rate may be the 

factors to be considered when selecting the wireless technology to be utilized in an IoT 

system. 
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Figure 7.49. Battery life with LoRa communication and 10 dBm of tx power. 

 

7.5 Quantification of fruit production through image processing 

 

In this section, the description of a system for fruit production quantification is 

presented. Furthermore, we show the obtained pictures and the processing techniques 

used to quantify the fruit production. First, the combination of bands to find the best 

composition for fruit detection is presented. Following the correction of the effect of 

distance is described. Finally, we show the correlation between the number of pixels 

and production. 

As this is a preliminary test, to minimize the use of resources, the pictures will be 

taken in the horizontal plane using a camera. In the future, the pictures will be taken in 

the vertical plane with a drone. To carry out our proposal it has been necessary to use a 

"curtain" of an opaque material. It allows us to hide the trees behind the tree to be 

studied. Furthermore, a mobile device has been used from which the images are 

obtained, which will then be treated.  

As we take pictures in different fields and the distances between trees might are not 

always the same, the distance between the camera and the trees is not constant in all the 

cases. To solve this problem, we propose to use a reference object. Using this reference 

object, we will be able to correct the distance effect, which may appear when acquiring 

the images. Figure 7.50 shows how a tree image is captured. 
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Figure 7.50. Scenario description. 

 

Our experiment is based on the fact that these fruit trees, when the fruit is collected, 

have lost their leaves. Due to this phenomenon, it is possible to recognize and 

differentiate the fruits from the rest of the objects that may appear in the images. 

Therefore, the possible effects of overlapping structures are minimized. The branches 

are the sole overlapping structure and, since they are thinner than the fruits, their 

possible influence in the prediction model can be despised. Moreover, as the trees are 

similar in shape and height, the possible underestimation is a constant value. Therefore, 

it will not affect our prediction model. 

Once the images were obtained, they have been processed. Decomposing them in the 

basic colors R, G, and B layers (or rasters). The RGB images are to be combined using 

mathematical operations to obtain new rasters. Then, the histograms of these new 

rasters are obtained. In this way, it will be possible to detect the region of the histogram 

that represents the fruit and does not represent the soil. 

Subsequently, the histogram is normalized by the surface of the reference object. 

Finally, the histograms of the difference images are compared with the real kilograms of 

fruit that were harvested from the tree. A regression model is used to relate the 

histogram and fruit production.  

The data obtained can be used by the farmer as a tool, because he can estimate the 

harvest he is going to obtain. In addition, this system allows the irrigation to be adjusted 

according to the observations made.  
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cover the 
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tree
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7.5.1 Evaluation of best band combination 

 

The first step is to evaluate which band or bands of the image can be used for fruit 

detection. The coloration of Persimmon in the moment of yield is between orange and 

red, therefore we expect to find high pixel-values in the band of red, intermediate values 

in the green band, and low values in the blue band. In Figure 7.51, the RGB 

composition and the representation of single bands are presented. The representation of 

a single band is shown as a color ramp from black (when the pixel value is low) to 

white (when the pixel value is high). As expected, the fruits have been clearly identified 

in the red band. Nonetheless, the color of clouds and soil is similar to the color of fruits. 

The spectral signature is a well-known term, used in remote sensing, which is used to 

identify different surfaces by comparing the data of two or more bands. It has been used 

to identify fruits [391]. 

 

 

Figure 7.51. System description. 

 

Therefore, it is necessary to combine the red band with a second band (green or blue). 

In order to evaluate which is the best band composition, it is necessary to represent and 

compare the different options. In this paper, and with the purpose of maintaining the 

system operation as simple as possible, we are going to evaluate the combination of 

only two bands and using the mathematical operators of addition, subtraction, 

multiplication, and division.  

Figure 7.52 summarizes the different combinations of R and G or B bands in 

greyscale. The fruits can be distinguished in five out of ten combinations. From those 

combinations where fruits can be distinguished, in two of them the differences between 

fruits and soil are higher (R - B and R - G). The highest difference between the value of 

fruit pixels and soil pixels is observed in the R - G combination. Moreover, in Figure 

7.52, we can observe the effect of the curtain, and how the curtain is more effective in 

some band combinations (R+G or R-G) than in others (R/G or G/R). 

 

RGB composition Red Band Green Band Blue Band
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Figure 7.52. Combination for R band with G or B band to maximize the fruit detection. 

 

7.5.2 Correction of the distance effect 

 

Following, it is necessary to consider the effect of distance from the camera to the 

tree. Since our units of surface are the pixel and the distance from the camera to the 

object affects the relation of surface in the picture (pixel2) to surface in reality (cm2), the 

effect of different distances must be included in our method. During the picture 

collection, a reference was included in all the pictures. The reference was attached to the 

trunk of the tree.  

Then, the surface of the reference object in pixels is calculated. The size of the 

reference in each picture is shown in Table 7.4. The value in pixels of the reference 

object will be used to normalize the values of the histogram. Other relevant data for 

future subsections, such as code of crop field and fruit weight are included. The field 

number is used as picture ID and the weight is used for the correlation of histograms 

and fruit production. 

 

Table 7.4. Reference object in the used pictures. 

Image nº 1 2 3 4 5 

Reference surface 

(pixels2) 17192 6299 8771 6299 8273 

Field number 2446 2696 3230 1535 1541 

Fruit weight (kg) 37 35  20 47 43 

R + G R - G R x G R / G G / R

R + B R - B R x B R / B B / R
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7.5.3 Analysis of histogram data 

 

The next step is to obtain the histogram of the picture, it can be done using different 

options. In our case, we use the code described in [273] to obtain the data of the 

histogram using Matlab. Then the obtained histogram is represented, see Figure 7.53. In 

this graphic, the comparison of different histograms can be observed. The histogram 

represents the number of pixels in the image that have a certain value. In the original 

raster (RGB rasters) the value of pixels is between 0 and 255. Besides, in the newly 

generated raster, the pixels can have values from -255 to 255. In Figure 7.54, the 

different pictures are numbered according to the fruit weight in kg. Before analyzing the 

differences in the histograms of different pictures, it is necessary to normalize the data. 

Therefore, we are going to consider the surface of the reference object as 1UA (1 unit of 

area). Thus, the results of the histograms can be comparable even if the pictures have 

different sizes and are taken at different distances. The corrected histograms are 

presented in Figure 7.54. It is possible to see that the histogram shape has changed. In 

Figures 7.53 and 7.54, the different pixel values represent different surfaces. In our case, 

the persimmon, according to Figure 7.52, will be represented by the highest values. 

Therefore, the last part of the histograms is where the data about the fruit is contained. 

 

 

Figure 7.53. Histogram of studied images 

 

 

Figure 7.54. Corrected histogram of studied images considering the effect of distance. 
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As different parts of the fruit might have different colorations, which correspond to 

different pixel values, several pixel-values will be used in the correlation. First of all, 

we check the values of pixels in the generated rasters. The observed values of pixels in 

persimmon fruits go from 72to 171. The representation of histograms in this range is 

displayed in Figure 7.54. In this graphic, the images of trees with more fruits have 

higher values in the Count (UA). The distributions of values along the range (72 to 171) 

are related to the fruit coloration. In images 4 (47 kg), 2, (35 kg), and 3 (20 kg) the peak 

of pixels associated with fruit is found around 73 to 75 pixel-value. Meanwhile, in other 

images, this peak is found at 102 pixel-value. This is caused by differences in fruit 

maturity or fruit quality. The fruits of the images with a peak located at the highest 

pixel-value have a better coloration (uniform red color).  

Finally, the correlation between the summation of pixels with pixel values between 

72 and 171 and fruit production is presented in Figure 7.55. The mathematical model 

can be expressed as shown in equation (7.27). The correlation coefficient of the 

mathematical model is 0.97. The correlation coefficient offers information about the 

goodness of the correlation. It can take a value between 0 and 1, the closer to 1 the 

better the model. 

 

∑ 𝐶𝑜𝑢𝑛𝑡𝑠 (𝑈𝐴)171
72 −19.44

2.61
= 𝐹𝑟𝑢𝑖𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑘𝑔)                            (7.27) 

 

 

 

Figure 7.55. Detail of the corrected histograms. 
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7.6 Conclusion 

 

In this chapter, tests have been performed in a real environment with WiFi and LoRa 

nodes to determine the performance of the proposed protocol. The consumed bandwidth 

for both 433 MHz and 868 MHz frequency bands remained within the limits for the 

most restrictive LoRa configurations. Therefore, the proposed protocol can be 

implemented considering all the deployment needs. Furthermore, high successful packet 

delivery rates were obtained utilizing packet transmission delays of 500 ms at the CH 

node.  

The best location for the above-ground and underground nodes has been determined 

as well [45, 340, 365]. On-ground deployments had the least coverage even with 

vegetation where the bulk of the foliage is at higher heights. On the other hand, near-

ground deployments provide the best coverage with orange trees. However, on-ground 

and near-ground deployment strategies in orange fields presented high variability of 

signal quality even with no obstacles in the line of sight between emitter and receiver. 

As opposed to higher emitter heights that presented a more attenuated but stable signal 

quality. Regarding the underground nodes, the results showed the optimal depth is 20 

cm and the optimal height was 1.5 m. The connection was available up to distances of 

10m. Furthermore, for the LoRa low-cost nodes and antennas, the maximum RSSI 

values were obtained before reaching 1 km. 

The energy consumption for WiFi and LoRa transmissions was evaluated utilizing 

the Heltec WiFi LoRa 32 device [392]. Similar results have been obtained for both 

LoRa and WiFi with the default settings and 5 seconds of transmission interval. 

However, WiFi outperformed LoRa with a 30 second transmission interval. A similar 

battery life was obtained when lowering LoRa transmission power to 10 dBm. 

Lastly, images of fruit trees have been utilized to determine the amount of fruit to be 

harvested in kg [393]. These images include a reference object to counter the effect of 

the distance. Normalized histograms were performed to analyze the pictures and obtain 

the correlation with the fruit production. For the persimmons, the red band was the best 

option to identify the fruits. However, it is necessary to combine the red band with a 

second band (green or blue), to differentiate the fruits to the color of the soil. The 

highest difference is observed in the R - G combination. 
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Chapter 8                                      

Conclusion 

 

 

 

8.1 Introduction 

 

In this chapter, the conclusion on the work performed in this dissertation is presented. 

Then, the future lines of research are discussed. Finally, a list of the publications 

derived from the results presented in this thesis is provided. 

 

8.2 Conclusion 

 

Considering the objectives listed in Chapter 1, we can affirm that the main goals of 

this PhD thesis have been achieved. 

The introduction of technology in agriculture allows increasing the quality of the 

crops, reducing resource consumption, and increasing the production. However, the 

remote location of the fields and its lack of access to the electric grid leads to a 

necessity of providing wireless solutions able to provide coverage to all the electronic 

devices deployed throughout the fields and irrigation canals. This work has provided a 

solution to this problem with the realization of the established objectives. 

Firstly, an in-depth analysis on IoT and smart solutions for irrigation was performed. 

Over 280 papers were studied and classified to obtain an overview on the current trends 

of Precision Agriculture (PA) systems for irrigation. In this analysis, the main 
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parameters to be monitored regarding the quality and quantity of the irrigation water, 

the aspects of the soil and the plants, and the weather conditions that affect the 

calculation of the irrigation requirements and the determination of the state of the crops 

have been detailed. Then, the most utilized technologies for the deployment of wireless 

networks were presented. The most popular nodes and their characteristics have been 

provided, and the most utilized communication technologies and cloud platforms have 

been determined. Furthermore, the new trends and challenges regarding the deployment 

of wireless sensing nodes have been discussed. 

The next objective aims at designing an architecture for a water quality monitoring 

system for the irrigation of crops. In order to design the architecture, the main areas to 

be monitored were identified in Chapter 3. One of the novelties of the proposal resides 

in the water treatment system that determines the water quality to decide if the 

biosorption process is needed. In some areas of the world, the water discharged into the 

water canals may be contaminated, this water treatment addition helps in improving the 

quality of the produce harvested from the fields. Once the need for this functionality has 

been established, the deployment design of the sensing nodes has been presented. 

Clusters of three sensing nodes have been proposed so as to avoid false positive and 

false negative results in contamination. This strategy has been proposed for the field 

area as well so as to obtain a better assessment of the moisture in the soil. The 

architecture considers the use of medium-range and long-range wireless technologies. 

The CH node is the bridge that incorporates transceivers for both the medium-range and 

the long-range wireless technology. This node then forwards the messages to the 

aggregator node, which is the node that forwards the messages to the gateway. The 

topology of the system has been presented as well. This topology is another novelty as 

allows establishing a heterogeneous network and presents a tree topology with multiple 

hops for the LoRa part of the network, in contrast to the usual point-to-point 

implementation of LoRa connections. For specific requirements, other deployment 

strategies and architectures have been presented. These specific requirements cover the 

need of monitoring numerous trees, the use of cellular communications at the gateway, 

underground sensor deployments with wireless communication, the use of drones for 

data acquisition, and the provision of security and management functionalities. After 

that, the proposed sensing nodes have been presented. The algorithms that indicate how 

the nodes operate have been presented as well. The algorithms determine how the data 

is gathered and if it is stored for later data transmissions. Moreover, the data can be 

analyzed on the node to determine if there were variations in the data and if it is 

necessary for the system to transmit it. This is important for variables that have slow 

variations such as the weather conditions. Lastly, an algorithm for the determination of 

the irrigation requirements of the crops has been provided. 

After the requirements of the system have been determined, a heterogeneous 

communication protocol has been presented in Chapter 4. LoRa has been gaining 

popularity in the recent years as it is a good solution to provide connectivity to systems 

with low data transmission located in remote areas. However, in order to reduce the 

number of collisions, the nodes or the presented proposal that are deployed in proximity 

to each other use a medium-range wireless technology. It is therefore necessary to use 

nodes that act as a WiFi/LoRa bridge to provide between the WiFi nodes and the LoRa 

nodes. Considering the tree topology is comprised of devices that utilize multiple 
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wireless topologies according to the necessities of the area where the nodes are 

deployed, the developed communication protocol allows the communication of the 

nodes of the system with interoperability between WiFi and LoRa. The developed 

protocol has a reduced header of 2 Bytes which is considerably smaller than that of 

LoRaWAN. The configuration of all the fields in the header has been detailed and the 

varied messages and their payload have been defined. Several types of alarms are 

contemplated, as stated on the main objectives, and each of them has its own message. 

Furthermore, the message exchange among the elements of the network has been 

thoroughly explained. The implementation of the protocol has been performed in the 

C++ programming language and different libraries were created for each of the node 

types of the system.  

Chapter 5 has provided varied solutions to specific needs of the proposed 

architecture and other possible solutions to different deployment strategies. As 

determined on the objectives, data aggregation algorithms have been presented to 

reduce the amount of data and messages that are forwarded by the nodes. The proposed 

topology has been updated in this chapter to add fog computing to the CH nodes and 

establish the aggregator nodes as edge nodes. Two algorithms have been presented, one 

for each of the aforementioned nodes which are situated in separated layers. Moreover, 

the scenario of deploying all LoRa nodes on the canal area has been contemplated as 

well. The main security threats of the system have been identified and the available 

solutions were listed. Energy-saving and fault tolerance algorithms have been provided 

as well. To expand on the available protocols, the use of CoAP for PA systems was 

introduced. The case of underground communication has been introduced as well and an 

algorithm that adjusts the transmission power according to the soil humidity readings 

has been proposed. Lastly, in this chapter, the problem of the use of drones for data 

acquisition was studied.  

In order to meet the last objective, the results of the performance of the 

aforementioned proposals and the study cases that were presented have been discussed. 

In order to do so, simulations and practical experiments have been performed. Chapter 6 

presents the results of the simulated experiments. Firstly, the results of the data 

aggregation algorithms are discussed. The adoption of different configurations of data 

acquisition allows up to 88% in data reduction and up to 85% in the reduction of the 

number of messages. Furthermore, a reduction in the data up to 69% and a reduction in 

the number of messages up to 29% at the data forwarding time was obtained compared 

to not performing data acquisition. Then, the results for the case of utilizing all LoRa 

nodes were presented. The results showed that it is possible to implement this 

deployment strategy, but the data transmission had to be performed twice a day in order 

to meet the data rate restrictions of the LoRa network. For the cases of deploying 

numerous WiFi nodes, the bandwidth consumption, energy consumption, and the 

collisions were studied. Lastly, the results for the use of remote sensing nodes for data 

acquisition show that the solution is difficult to achieve for high node densities, but it is 

possible for lower node densities utilizing several configurations of the drone flight 

settings if the fastest drone velocity is not employed. 

Finally, the results performed in real environments have been presented in Chapter 7. 

Firstly, the validation of the proposed protocol is provided. The bandwidth consumption 
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and the successful delivery rate were presented for various configurations of frequency 

and forwarding delay at the CH node in a worst-case scenario. The results show that the 

proposed topology is applicable and the deployment of heterogeneous WiFi/LoRa 

networks with multiple LoRa hops is possible. Furthermore, the high successful 

delivery rate shows that the protocol is a good solution to implement the communication 

within the proposed architecture. In addition, the specifications of the protocol indicate 

how the lost packets can be recovered, ensuring all the data reaches the data center. 

After that, the coverage results of deploying WiFi nodes on vegetated and underground 

environments have been provided. The best location for the WiFi nodes regarding 

height, and depth for the underground nodes, has been obtained as well. Moreover, the 

coverage obtained for low-cost LoRa nodes and antennas was evaluated. Maximum 

RSSI values were obtained before reaching a distance of 1 km. A comparison of the 

energy consumption of the node LoRa/WiFi node transmitting with each of the 

technologies has shown that there is not a great difference. Therefore, the design for the 

energy-harvesting aspect of the nodes would not present many differences with the use 

of this type of node. Lastly, the results for a fruit quantification functionality where an 

image processing technique is used to determine the amount of produce in fruit trees 

have been provided. 

The future lines of research that derive from the work presented in this dissertation 

are discussed in the following section. 

 

8.3 Faced problems 

 

In this section the problems that have arisen during the thesis are detailed. One of the 

problems regarded the difficulty in finding a simulator for heterogeneous networks with 

WiFi and LoRa devices. Furthermore, a device with both WiFi and LoRa transceivers 

that were able to transmit with both wireless technologies at the same time was 

necessary. Moreover, the variety in node types required multiple implementations of the 

protocol that addressed the specific aspects of each node. 

As the proposed protocol is needed for a heterogeneous network, there were not 

simulators available to address the peculiarities of the studied scenario. Therefore, the 

option of developing the protocol directly for embedded boards was chosen. My stay at 

Korea University helped me in gaining the knowledge to implement the protocol 

through the work done with CoAP.  

Furthermore, a device able to transmit utilizing LoRa and WiFi at the same time was 

necessary. After a research on the available embedded systems, a preliminary test was 

performed with the Heltec devices to corroborate that they were apt for the needed 

purpose.  

Lastly, as each device type has different functions, a different library had to be 

created for each one of the devices. Each one was tested independently using the 

devices for each phase of the development of the protocol. Multiple problems arose 
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during the implementation of the protocol. The problems were isolated and addressed 

until the complete protocol was successfully implemented. 

 

8.4 Personal contributions 

 

During the progress in this work, I have gained a new perspective regarding how to 

tackle the problems that arise and how to deal with the frustrations that leading with 

these problems generate. I have also gained confidence in myself and my ability to 

design and implement protocols, which will be valuable for my future work. Lastly, I 

have also grown as a person through the experiences I have lived during these last years, 

including the time of the pandemic. The lessons I have learned will help me not only in 

my career but also during my lifetime. 

 

8.5 Future research lines 

 

There are several research lines for continuing the work presented in this dissertation. 

The topology for the heterogeneous wireless network presented in this work only 

incorporates two wireless technologies. As a future research line, more types of 

technologies such as ZigBee or BLE could be added to the system in order to provide 

new functionalities. Furthermore, the proposed communication protocol could be 

extended to support these newly added technologies. 

The proposed architecture includes sensing nodes and actuators. However, more 

elements can be added to the architecture. For example, the vehicles and machinery that 

are utilized on the fields could be provided of sensors to perform some monitoring 

actions or to act as a tracker for remote monitoring of its activity. These vehicles could 

also be utilized as a gateway that obtains the information from the nodes deployed on 

the fields. Furthermore, other devices such as cameras could be introducing to provide 

images that can be analyzed to detect the evolution of the crops or the presence of pests 

and crop diseases. Therefore, the transmission of multimedia content should be 

considered as well as the Quality of Service and Quality of Experience metrics. 

By introducing a tree topology for a LoRa network, multiple LoRa devices need to 

communicate. Creating a routing protocol for multi-layer LoRa networks would allow 

providing more scalability to our proposal. Furthermore, it would open new possibilities 

for LoRa networks that could be extended to other purposes. It could be applied to 

monitor other remote areas such as forests or infrastructures deployed on the ocean by 

relaying the information through the LoRa nodes strategically deployed at the edge of 

the coverage area of the next hop in the network.  

Lastly, the studies on IoUT are still very scarce. In this dissertation, the coverage for 

WiFi communications was tested. For future works, the performance of other wireless 

technologies such as LoRa and ZigBee for IoUT applications could be studied to 
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expand on the knowledge of the performance of these technologies in underground 

environments. 
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