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Abstract
During the last few years, satellite communications have advanced hugely in terms of telecom­

munications and information transmission. This, apart from a notorious spread of satellite fleets
by big organizations in the sector, brings with it a need to continue researching about devices used
in these communications. In this work, our intention is to delve into an indispensable device in
every satellite communication, antennas. The research has been focused on the scopes of man­
ufacturing and commerce of terrestrial antennas. The memory of this project will focus on Low
Profile antennas, which consist of groups of slots in a radial waveguide. In this case, a metasurface
will replace the dielectric element, so that losses will be reduced, and an alternative will be used
instead of the usual dielectrics. Furthermore, different implementations will be studied in order to
be able to recreate a beam steering on the radiation pattern.

Keywords: Satellite communications, Low Profile antennas, Slot arrays, Radial waveguide, Meta­
surface, Dielectric, Beam­steering.

Resumen
Durante los últimos años, las comunicaciones por satélite han supuesto un gran avance en

el ámbito de las telecomunicaciones y de la transmisión de la información. Esto, además de un
notorio despliegue de flotas de satélites por parte de grandes entidades dedicadas al sector, trae
consigo una necesidad de seguir investigando acerca de los dispositivos empleados en estas co­
municaciones. En este trabajo, se pretende profundizar sobre un dispositivo indispensable en toda
comunicación por satélite, las antenas. Cuya investigación se ha centrado en ámbitos de fabri­
cación y comerciales de antenas terrestres. La memoria de este trabajo se centrará en antenas de
bajo perfil, concretamente en agrupaciones de ranuras en guía de onda radial. En este caso, a
modo de elemento dieléctrico, se utiliza una metasuperficie. De esta forma se consigue reducir
las pérdidas y representa una alternativa frente a los usuales dieléctricos. Además, se estudiará la
implementación necesaria para conseguir desapuntamiento en el diagrama de radiación.

Palabras clave: Comunicaciones por satélite, Antenas de bajo perfil, Agrupaciones de ranuras,
Guía de onda radial, Metasuperficie, Dieléctricos, Desapuntamiento.



Resum
Durant el últims anys, les comunicacions per satèl∙lit han suposat un gran avanç en l’àmbit de

les telecomunicacions i de la tranmisió de la informació. Això, a més d’un notori desplegament
de flotes satel∙litals per part de grans entitats dedicades al sector, porta amb si una necessitat de
continuar investigant sobre els dispositius emprats en aquestes comunicacions. En aquest treball,
es pretén aprofundir sobre un dispositiu indispensable en tota comunicació satel∙lital, les antenes.
La investigació ha estat centrada en àmbits de fabricació i comercials d’antenes terrestres. La
memòria d’aquest treball es centrará en antenes de tipus Low Profile, les quals radiquen en agru­
pacions de ranures en guia d’ona radial. En aques cas, com a element dielèctric s’ha utilitzat una
metasuperficie, d’aquesta forma s’aconsegueix reduïr les pèrdues i una alternativa enfront dels
usuals dielèctrics d’antena. A més, s’estudiarà la implementació necessaria per aconseguir desa­
puntament en el diagrama de radiació.

Paraules clau: Comunicacions per satèl∙lit, Low profile, Agrupacions de ranures, Guía d’ona
radial, Dielèctric, Metasuperficie, Desapuntament.
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Chapter 1

Introduction

This document introduces the research and work carried out for the Bachelor’s Degree Final
Project of “Bachelor’s Degree in Telecommunication Technologies and Services Engineering”, en­
titled “Radial Line Slot array antennas with scannable beam using impedance surfaces”. Through­
out this document, the process executed to study the metasurface for an RLSA (Radial­Line Slot­
Array) antenna will be detailed.
In this first chapter, emphasis will be placed on the motivation that led to the study of this work and
the objectives that were taken into consideration. Furthermore, the methodology considered will
be discussed and finally a presentation of the structure will be detailed for a better comprehension.

1.1 Motivation

Nowadays, it is well known that telecommunications sector is booming due to the improve­
ments and growth of its technology. An example of such are satellite communications, which apart
from coming to prominence during the recent years, are expected to provide revolutionary appli­
cations at long term. This increase in the number of satellite communication services has led to the
need to use higher frequency bands such as the Ku and Ka bands to make way for new applications.

On the other hand, the fact of using higher frequency values leads to greater transmission
bandwidths. This is due to the fact that an average user needs higher transmission speed over time.
Thus, the idea of using higher frequencies and, therefore, greater bandwidths, allows us to use
smaller devices which results in a decongestion of the electromagnetic spectrum.

However, spectrum has become difficult to manage over the years due to high demand from
users and entities that ask for better spectrum management and distribution, while the emergence
of new terrestrial technologies such as cellular communications or streaming, limits the exploita­
tion and distribution of the spectrum. Taking this into account, one way to ensure that the spectrum
does not congest would be using antennas in higher frequency bands. That is why there is a need
to research and develop devices capable of working at these frequencies.
As a result, in this work the study of a type of RLSA antenna in the Ka band is proposed, in such a
way that the own data transmission needs are satisfied in those cases in which a low­profile, high
gain and efficiency antenna is required. An investigation will be carried out, as well as the imple­
mentation of several improvements such as the elimination of the dielectric and its replacement by

1



1.2. ANTENNAS FOR SATELLITE COMMUNICATION CHAPTER 1. INTRODUCTION

a metasurface. The study of the behavior of the antenna and the propagation of the electromag­
netic field within the radial waveguide will be presented in the following sections. The antenna
will acquire higher efficiency values at high frequency bands as a result of eliminating dielectric
losses. In addition, the antenna will have the ability to scan its beam and rotate it so that a link can
be established with satellites that are not in a fully vertical position with respect to it.

1.2 Antennas for satellite communication

Satellite communication terminals are hugely advantageous nowadays since they are capable
of operating in regions with not far advanced infrastructures. Great number of terminals in terms of
SATCOM (Satellite Communications) SOTM (Satellite On The Move) services have already been
implemented by many companies. In order to get high speed transmission, Shannon fundamentals
[1] must be fulfilled for channels with additive white gaussian noise AWGN [2]. Therefore, to
accomplish those statements, EIRP (Pt∙Gt) value must be high in transmission and figure of merit
should provide an accurate value in reception (Gr ∕T ), where Pt is the transmission power, Gt and
Gr are the transmission and reception gain and T is the equivalent noise temperature in reception.
The frequency work of the antenna considered in this project will be 30 GHz, which is contained
in the Ka band (26.5 ­ 40 GHz). Ka band is considered to be one the most advantageous and used
in satellite communications along with the Ku band (12 ­ 18 GHz). Currently, satellites working
at Ka and Ku band are more usual than L (1 ­ 2 GHz) and S band (2 ­ 4 GHz) [3].

As mentioned in a previous section, antennas are key elements in terminals and ought to have
the following characteristics: narrow beam, low sidelobes, low profile, small weight and size, low
power consuming, high reliability, and reasonable price. Three different types can be mentioned:
antennas with two­dimensional mechanical scanning, that is reflector antennas and passive arrays.
Alternatively, there are antennas with two­dimensional electrical scanning, containing phased ar­
rays. Additionally, antennas with combined scanning can also be found. In those systems the me­
chanical scanning is situated in the azimuth plane, meanwhile the electrical scanning takes place in
the elevation plane. An example of such would be low­profile phased arrays on rotatory platforms.

In the following subsections, several types of antennas for satellite communication will be
introduced following the characteristics described in [4] where a study of antennas for SATCOM
SOTM is carried out.

1.2.1 Reflector antennas

Reflector antennas provide high gain and reasonable side lobe level. A significant advantage
is the capacity to unify transmission and receiving antennas whereas operating in multiple bands.
Moreover, this type of antenna is hugely popular in SATCOM because of the fact that high gain
and acceptable secondary lobe level can be reached with minimum cost.
Although, the size and high profile of these types of antennas entail some disadvantages. An
example of such is shown in Fig. 1.1.

2



CHAPTER 1. INTRODUCTION 1.2. ANTENNAS FOR SATELLITE COMMUNICATION

Figure 1.1: Reflector antenna in [5]

1.2.2 Phased array antennas

Antenna arrays consist of a group of several antennas, which are normally dipoles, working
as a single antenna. Some of them present different implementations, one example of that could
be a type of array which consists of two types of scanning, one in the azimuth plane executed by
mechanical rotation of the antenna itself, and the other in the elevation plane. An example of such
consisting of a low­profile array for Ku­band was implemented by Intelwaves Technology Ltd.
Meanwhile, production of this type of antenna is mainly realized by ThinSat company.

Figure 1.2: Phased array antenna in [6]

Another example of such in [4] are phased array antennas implemented by Phasor company
as shown in Fig. 1.3. Phasor antennas are able to dynamically control amplitude and phase level
for each element of the structure. Therefore, that allows to electronically orient the beam in an
efficient way.
Some of the advantages are:

• Low dimensions.

• Several antennas can be used to form a unique logic antenna.

• Capacity of having multiple beams in order to point at two different satellite at a time.

• Beam shape can be modified, including the possibility of forcing nulls to avoid interferences
among satellites.

• No mobile parts are needed to form the beam.

3



1.3. BEAM­STEERING LENS ANTENNAS FOR KU­BAND APPLICATIONS CHAPTER 1. INTRODUCTION

Figure 1.3: Phased array implemented by Phasor company in [4]

1.3 Beam­Steering Lens Antennas for Ku­band applications

Nowadays, there is a massive interest in finding low dimension and weight antennas at a rea­
sonable price for satellite communication on the move (SOTM). The most difficult part is to find a
way to combine those requirements along with high gain and beem­steering capacity. An example
of a beem­steering method will be discussed in this section based on the Risley prism theory [7].

The arrangement of a beam­steerable antenna is based on 3 lenses as shown in Fig. 1.4: station­
ary lens 0, rotatable lens 1 and 2. Altogether, the lenses can effectuate a 360º transmission phase
range by means of the rotation of multiple elliptical hole components the lenses are composed of.
Metasurface and lens 0 radiate a circularly polarized plane wave. The incident wave on lens 1
makes the beam converge and deflect in several directions. Thus, the beam is deflected another
time when it reaches lens 2 causing lens 1 and lens 2 to rotate round the antenna axis.

Figure 1.4: Risley prism theory in [7]

In this project, the mechanics behind the RLSA functioning can also be related to the Risley
prism theory. But, in this case the patches which form themetasurface and the distance among them
altogether with slots distribution is what makes the beam rotate and effectuate a 360º transmission
phase range. So, the similarity with the Risley theory comes when the platform containing the slots
is rotated and is, indeed, able to duplicate the tilt value. The main advantage comparing to Risley
principal, is the simplicity of just rotating a unique platform instead of two, in order to get higher
tilt values.
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CHAPTER 1. INTRODUCTION 1.4. OBJECTIVES

1.4 Objectives

This project consists of designing a beam steering RLSA antenna at Ka­band, the center fre­
quency of which will be 30 GHz. The dielectric used in the RLSA to provide the slow wave
propagation within the parallel­plate waveguide will be replaced by a metasurface. In the first
place, a study of such metasurface will be needed. Then, some further studies will be carried out in
order to find the most efficient procedure to develop the beam­steering comparing to the broadside
direction. Finally, the beam will be rotated in order to reach higher tilt values.

1.5 Methodology

The tasks taken into consideration to achieve the objectives of the project are detailed as fol­
lows:

1. A detailed explanation of the theory of the antenna considered during this project and steps
followed to implement it.

2. Study of the metasurface formed by a periodic structure equivalent to a relative permittivity
value.

3. Simulation of the antenna without considering the slots on the upper plate to verify that the
electric field propagates properly.

4. Simulation of the antenna considering the slots in order analyze the beam­steering value
obtained.

5. Rotation of the upper plate containing the slots.

6. Analysis of the final results.

Two simulation and analysis software suites are considered during this project:

• CSTMicrowave Studio: The simulations of the antenna were carried out using this program.
The electric field and radiation patterns were analyzed as it is an electromagnetic simulation
software [8].

• Matlab: Numerical computation program [9]. This program has been used in order to im­
plement the structure of the metasurface, generation of slots and analysis of the radiation
patterns.

1.6 Structure of the project

This structure represents the steps followed during the study:

• Designs and description of an RLSA antenna (Chapter 2).
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1.6. STRUCTURE OF THE PROJECT CHAPTER 1. INTRODUCTION

• Design and analysis of a metasurface in order to replace an homogeneous dielectric (Chapter
3).

• Study of different metasurface structures (Chapter 3).

• Simulation and study of beam­steering values of the antenna (Chapter 4).

• Study of the result of rotating the upper plate of the waveguide (Chapter 4).

• Conclusions (Chapter 5).
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Chapter 2

CP­RLSA: Circularly Polarized RLSA

In this chapter, the following points will be discussed: description of RLSA antennas and some
examples, antenna topology and general design considerations. Furthermore, design and analysis
codes have already been provided in [10], so the best parameters for the structure to work properly
have been chosen.

2.1 RLSA description

Radial Line Slot Antennas (RLSA) belong to a type of waveguide antenna whose design con­
sists of two surfaces where the upper surface includes a radiation slots distribution, whereas the
other contains a feeder element at the center of it.

As specified in [11], at the upper surface around the feed probe, there is a section free of slots in
order to allow waves to settle inside the radial waveguide. The position and orientation of the slots
will lead out to different kinds of wave polarizations which can be either transmitted or received.
Moreover, RLSAs include some features such as high gain and high efficiency as well as the apt­
ness of mass production and low weight, which together imply more advantages with regard to
parabolic antennas. Those antennas are made for diverse frequency applications including Wi­Fi,
5G, etc.

On the first place, a previous version linearly polarized was proposed for radar applications
[12]. Later, in 1985 a circularly polarized RLSA was suggested at the Tokyo Institute of Technol­
ogy, with a gain of 36.3 dBi, 60 cm of diameter and working at the frequency of 12 GHz [13]. As
mentioned above, the antenna presents a double layer inner structure, two surfaces, one of them has
slots over it, the other has the feeder without slots. In that layer TEM mode waves are generated
and propagate outwards along the radial direction until a 180º bend is found. The wave is reflected
to the upper layer where while propagating toward the center of the structure, the slots get excited.
Nevertheless, due to the difficulties as regards design and optimization matters as well as imple­
menting the bend, a new structure was considered in [14], a single­layer CP­RLSA (SL­RLSA).
This model consists of a radial guide fed by a homogenous dielectric in the center.
In this type of antennas, the progressive wave propagation itself causes the slots excitement, and
because of that an inner dielectric is needed for the slots to be in phase, and diffraction lobes not
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to appear.

Linearly­polarized RLSA antennas are not as popular as CP­RLSA, partly because of the po­
sition of the slots which can cause unwanted reflections. For that reason, the model of a CP­RLSA
antenna will be used in this work. Moreover, in satellite communications circular polarization is
used in the working band.

Figure 2.1: RLSA antenna description in [11]

2.2 Design and slots generation

This section describes the process followed in [10] to generate the slots distribution. As men­
tioned previously the antenna will work at 30 GHz. It will be mainly composed of a radial guide,
which consists of parallel plate guide, excited by a coaxial probe in the center. According to
waveguide theory and due to the type of feeding and geometry of the guide, a cylindrical TEM
mode would propagate whenever h < λg/2, where λg is the wavelength inside the guide and can
be calculated as follows λg = λo/

√
ϵr, where λo is the vacuum wavelength and ϵr is the dielectric

relative permittivity. This mode propagates outwards in a radial direction from the position of the
probe. This way, the power transported by the field is coupled to the slots, progressively radiating
until it reaches the end of the waveguide. The termination of the guide can be done, up to a point,
with an adapted load that absorbs the residual power. However, in practical designs, it is typical
to use a final shortcircuit in order to minimize losses.

As mentioned previously, in the case of a CP­RLSA antenna which will be considered in this
work due to its great performance, the radiator component is composed of a pair of slots separated
a distance of λg/4 from each other in order to generate a difference of phase which will excite them
in quadrature. Returning to the case of CP­RLSA, circular polarization is achieved by placing the
slots in such a way their orientation is defined by angles of θ1 = π/4 and θ2 = 3π/4 , with respect
to the radial axis. The Fig. 2.2 shows the representation of the slots in more detail, as well as the
representation of a single­layer CP­RLSA. This basic radiating unit is grouped by repeating itself
along a spiral whose direction of rotation is counterclockwise direction, centered at the origin of
coordinates. In such a way that a coherent sum of circular radiation to the right is achieved, as long
as the existing spacing between two turns of the mentioned spiral is equal to the wavelength inside
the waveguide, that is, Sρ = λg. In order to prevent the appearance of diffraction lobes, using a
material such as air must be avoided. In this way, a dielectric would be introduced whose relative
permittivity ought to be greater than one.

8
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(a) CP­RLSA antenna (b) Detailed slots distribution

Figure 2.2: CP­RLSA antenna and its slots distribution

Regarding the existing spacing between consecutive slots, the uniformity of the fields in the
aperture shows improvements when the slots are closer to each other, in such a way that and optimal
case would be achieved when the slots are overlapping. Finally, the distance between the first slot
and the feeder will still be unknown, that is ρ0. This distance will be defined as ρ0 = λg so that,
optimal waveguide dimensions will be reached.

Considering the characteristics specified above, the slots could already be unfolded and located
in a spiral of N turns. However, in order to maintain a uniform excitation for each pair of slots, it
is necessary to adjust the length of the slots in such a way as to compensate the dropping of the
cylindrical mode in the radial direction. This amplitude drop comes from the following relation
1√
ρ which comes from the ratio of the TEM mode amplitude. Furthermore, the slots which have

already been excited before or, in other words, have previously radiated, must be considered in
order to guarantee that the slots are uniformly excited. A solution to this problem lies in a compen­
sation model by means of which a residual power will be established which will denote the desired
radiated power and in turn will determine the radiation efficiency value for each of the turns of the
spiral. The residual power is defined as tres = W out∕W in.

Regarding the efficiency values, these should be translated into slot length values. Knowing
the value of the radiated power in each pair of slotsW rad, the distance from the slots to the feeder
ρ0, the angular spacing between pairs of slots Sϕ , and the input power W in, the relationship be­
tween efficiency and length of the grooves will be obtained. Although, it is an approximate result
which will be adjusted and corrected by analyzing the results.

η =
2πρ0
Sϕ

W rad

W in
(2.1)

After having determined the method that will be used to find the length of the slots, the degrees
of freedom suggested by the codes used to generate the CP­RLSA at a central frequency of f0 = 30
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GHz must be set. Firstly, the height of the waveguide, h, must be set. This value must be chosen
complying with the single­mode propagation criterion, that is h < λg/2 in this way, the cutoff
frequency of the second mode is higher than the central one. In [10] the existence of a compromise
between illumination and radiation efficiency is verified and demonstrated. Furthermore, when
the residual power is low or non­existent, the radiation will be maximum, while the illumination
efficiency will be low. This is due to the existence of couplings between slots that will entail low
illumination uniformity in the slots aperture.

2.3 CP­RLSA modelling and simulation using CST

In Fig. 2.3, a representation of the slots in CST can be observed once they have been exported
(Fig. 2.3a) and after including them in the upper plate (Fig. 2.3b). After this, both plates that
form the waveguide are modeled in z­ and z +. Then, the dielectric, or else the patch distribution,
is added obtaining a structure such as Fig. 2.3. Finally, a discrete port is created and located at
the origin of coordinates of the XY plane at a central height inside the waveguide. The upper
plate is located 1 mm from the origin, therefore the port will be placed between z = 0.33 mm and
z = 0.66 mm. Finally, the antenna boundary conditions are defined. Absorption conditions are
established on the x and y axes, that is, open conditions. On the other hand, on the z axis a short­
circuit condition is chosen, that is electrical wall, at the lower limit. And a radiation condition, or
add­space condition, at the upper limit since that zone will be the radiation area, that is where the
antenna radiates.

(a) Slots layout in CST
(b)CP­RLSAdesigned inCSTwith an open­circuit
ending

Figure 2.3: Plain view of the slots representation and CP­RLSA in CST

After having defined the boundary conditions, as well as the port, the simulation of the antenna
at a frequency of 30 GHz will be carried out. Furthermore, the far­field monitors (Field monitor)
must be set in this case to obtain the radiation patterns. In addition, electric and magnetic field
monitors can be established in case the electric or magnetic field of the antenna needs to be studied.
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Figure 2.4: CP­RLSA in CST

In Fig. 2.4, a preview of the RLSA antenna can be seen where the part corresponding to the
distribution of patches and the upper cover with the slots are exemplified. That distribution of
patches corresponds to the metasurface which will be studied in detail in the next chapter. More­
over, the open circuit conditions on the x and y axes is distinguishable. In Fig. 2.5 the phase of
the z­component of the electric field can be seen and as will be explained later, the electric field
has to propagate radially to ensure the correct performance of the antenna. Thus, analyzing this
phase is essential when analyzing the operation of the antenna.

Figure 2.5: Phase representation of z component of the electric field in CST

Additionally, in Fig. 2.6, once it has been verified that the electric field is propagating radi­
ally, it can be seen in which direction the maximum of the radiation pattern points analyzing its
3D representation. In this way it is attested that the main lobe points towards the correct angle
according to the previously designed antenna. The maximum of the radiation pattern is located at
θ = 0◦ in this case.
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As can be seen in Fig. 2.6, due to the established boundary conditions, the values presented
in the pattern cover a θ range between ­90º and 90º.

Figure 2.6: 3D representation of a CP­RLSA radiation pattern with a 0º tilt

2.4 Beam­steering methods

As defined at the beginning of this project, the objective of this antenna is to find the ability
to communicate either with several satellites or from different fixed points with a single moving
satellite. Specifically, the idea is to ensure that the antenna can reach various inclinations without
having to physically move the antenna. For this reason, this section will follow the steps taken
in [15] where two topologies of the same antenna are taken as an example and contrasted for the
cases in which a tilt of 0º (broadside case) and 10º are represented. In this study, a similar analysis
will be carried out, but changing certain parameters due to the fact that the computational cost is
much higher in this case due to the metasurface characteristics. Therefore, the distribution of slots
will have a total of N = 5 turns around the upper plate and not N = 8 as shown in [15]. Thus, two
antennas with a tilt of 0º and 10º respectively will be contrasted.

As specified in [15], in order to achieve a beam steering value other than 0º as regards the
initial antenna (broadside) a variation in the phase of the electric field must be forced between the
different pairs of slots. As can be seen in Fig. 2.7, the phase of the field is almost uniform (Fig.
2.7a) and therefore the direction of the beam is perpendicular to the structure (broadside), while in
the other example, the representation of the phase seems to follow a linear variation (Fig. 2.7b).
It should be noted that the term tilt refers to the difference that exists between the steering of the
main beam of the antenna and the direction θ = 0 (broadside).
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(a) Broadside design (b) 10º tilt

Figure 2.7: Phase of the z­component of the electric field in teh aperture

Therefore, in this section two methods of antenna steering are described, the first one refer­
ring to the alteration of the position of the slots, and the second one associated with the guide
permittivity which will be variable and will cause that inclination.

2.4.1 Variation of slots spacing

This section defines how the beam­steering can be formed by changing the configuration of
the slots. Previously, it has been briefly explained how the design and generation of the slots take
place, which is nothing more than a variation of the phase with respect to the copolar component of
the electric field. The aim of this project is to maintain the existing spacing between pairs of slots
along the y axis, in the same way that the distance between the turns of the semi­axis x­ decreases,
while it increases in x +.

Another more mathematical way of looking at the relationship between the spacing, which will
be called Sρ, and the pointing angle is shown in the equation:

Sρ =
λg

1− 1√
ϵr
sin (θT ) cos (ϕ′ − ϕT )

(2.2)

The distribution of slots as shown in Fig. 2.8, is implemented making use of a providedMatlab
file and developed in [10] at the UPV. With this program, it is possible to generate a distribution
of slots for a CP­RLSA design with parametrizable beam­steering values, that is, the coordinates
ϕT and θT will be variable. Notwithstanding, in this case, only θT will be variable since the slot
spacing on the y axis will be constant (ϕT = 0).
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Figure 2.8: Broadside slots distribution in Matlab

In Fig. 2.8 it can be seen how the distribution of slots around the center is uniform and does
not show any variation. Whereas, in Fig. 2.9, the representation of the slot is no longer uni­
form. Although in the left part, the slots are closer to each other, and in the right part a greater
spacing between them is observed, presenting an asymmetric distribution, corroborating the initial
statement.

Figure 2.9: 10º tilt slots distribution in Matlab

2.4.2 Variation of permittivity

The objective consists of ensuring that each point forming the radial waveguide has a different
permittivity value, in such a way that different electrical wavelengths are obtained in the waveg­
uide. Thus, phase control is achieved due to the different speeds of the propagation wave, the
linear phase shift achieved, is what causes a tilted beam. The association of different values of
permittivity will be carried out with a metasurface, which will be seen in more detail in later chap­
ters. It consists of patches and mushroom­like structures on a grounded dielectric slab. For each
permittivity value, a different patch width will be obtained. This permittivity will be calculated
according to equation (2.2).
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As said before, Sρ is the spacing between the slots and θT and ϕT are the spherical coordinates
in which the maximum of the beam will be defined. As studied in the previous section, ϕT will be
set to zero since the beam­steering will take place on the XZ­plane.

Likewise, the relative permittivity will be solved in the Equation (2.2), in order to achieve a
permittivity value according to a tilt value, forming the Equation (2.3).

εr(ϕ) =

(
λ0

Sρ
+ sin (θT ) cos (ϕ

′
)

)2

(2.3)

From equation (2.3) it can be extracted that the maximum permittivity will take place in plane
ϕ′ = 0. Additionally, when ϕ′ reaches a value of 180º, the permitivities will be minimum, that is,
cos (ϕ′ = 180º) = ­1. Then, the highest values of permittivity will occur in the positive direction of
the x semi­axis.

Fig. 2.10a and Fig. 2.11a show two patches distributions for the broadside case and for a tilt of
10º. In Fig. 2.10a the patches are all equipped with the same size, forming a uniform distribution,
as was the case with the slots. On the other hand, Fig. 2.11a shows a distribution of patches of
different sizes so that a main beam inclination can be achieved. However, in both cases the slots
will have a uniform distribution, since in this method the patches are what cause the beam to have
a certain inclination and not the slots as in the previous method.

This distribution of patches has been carried out through the implementation of a Matlab code
in which a grid is created and following Equation (2.3), a permittivity value is associated to each
cell of the grid, translating this later to CST into different values of patch width.

(a) Distribution of patches 0º tilt
(b) Distribution of slots 0º tilt

Figure 2.10: Broadside slots and patches distribution
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(a) Distribution of patches 10º tilt (b) Distribution of slots 0º tilt

Figure 2.11: Slots and patches distribution 10º tilt

(a) Detailed broadside distribution of patches (b) Detailed distribution of slots 10º tilt

Figure 2.12: Detailed patches distribution for 0º and 10º tilt

2.4.3 Rotating upper plate

In this section the theoretical process will be defined in relation to the effects caused by com­
bining a metasurface with a certain tilt value together with a distribution of slots with the same
inclination, in order to multiply the final angle by two. In addition, emphasis will be placed on the
result of rotating one of the waveguide plates as previously mentioned, in this case the rotation of
the upper plate containing the slots will be done, and the study of what angle should be achieved
using that rotation. Finally, the results found in CST will be shown and a comparison with the
theoretical model will be established.

An analysis based on [15] will be carried out in which the mathematical foundation for a pin
structure is established. In this case, this foundation will be applied to the metasurface made with
patches and the Equation (2.3) will be taken up and applied to the models considered for this study.
The Equation (2.4) establishes the variation of the spacing between the pairs of slots of the upper
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plate as a function of the angular position (ϕ′), that they occupy in cylindrical coordinates, that
is, the radial spacing. This spacing causes the beam to be displaced (θs − ϕs) with the design of
a constant patch distribution over the dielectric, in which εrs is defined as the equivalent relative
permittivity in the guide.

Sρ(ϕ
′) =

λ0√
εrs

1− 1√
εrs

sin(θs) cos(ϕ′ − ϕs)
(2.4)

In addition, the Equation (2.5) will be taken into account to this time point the beam in the
direction (θE , ϕE) in such a way that the equivalent permittivity is modified as a function of the
angular position (ϕ′) in cylindrical coordinates, SρE is defined as the spacing between pairs of
slots.

√
εr(φ

′) =
λ0

SρE
+ sin(θE) cos(φ′ − θE) (2.5)

The Equations (2.4) and (2.5) refer to the CP­RLSA designs when two different antenna im­
plementation models mentioned below were taken into account:

­ Methodology 1: Configuration of rings for a given tilt and a distribution of patches with a
constant permittivity (all patches have the same size) (1)

­ Methodology 2: Configuration of rings for a broadside case and a distribution of patches with
a variable permittivity (the size of the patches changes according to the formula) (2)

As mentioned above, an analisys of the behavior of the antenna when the rings of the first
methodology are combined in the same design together with the distribution of patches of the
second will be studied. In the first equation the spacing parameter Sρ(ϕ

′) has been calculated by
means of an offset (θs, φs) for a fixed relative permittivity value εrs. On the other hand, the size
of the patches has been designed for a specific pointing (θE , φE) taking into account a constant
spacing SρE . The pointing direction (θ0, φ−0) referring to a array provided by a certain spacing
and permittivity as a function of the angular position (ϕ′) of the pair of slots, is defined by the
Equation 2.6.

sin(θ0) cos(φ′ − ϕ0) =
√
εr −

λ0

Sρ
(2.6)

In the Equation 2.6, the value of the spacing Sρ between the slots, belongs to the design of
constant patch size (1), and the permittivity is given by the design of variable patch size (2). In
this way it is established that:

sin(θ0) cos(φ′ − ϕ0) =
λ0

SρE
+ sin(θE) cos(φ′ − ϕE)− (

√
εrs − sin(θs) cos(φ′ − ϕs)) (2.7)

sin(θ0) cos(φ′ − ϕ0) = (
λ0

SρE
−
√
εrs) + sin(θE) cos(φ′ − ϕE) + sin(θs) cos(φ′ − ϕs) (2.8)
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As stated in [15], the expression (2.9) must be fulfilled for any value of (ϕ′), therefore:

√
εrs =

λ0

SρE
(2.9)

Therefore, the design of the slots using Matlab has to be done considering the permittivity that
is used when the variable patch distribution is generated, thus leaving the pointing equation shown
in Equation 2.10.

sin(θ0) cos(φ′ − ϕ0) = sin(θE) cos(φ′ − ϕE) + sin(θs) cos(φ′ − ϕs) (2.10)

Equation (2.10) is reformulated as:

sin(θ0)[cos(φ′) cos(ϕ0) + sin(φ′) sin(θ0)] = sin(θE)[cos(φ′) cos(ϕE) + sin(φ′) sin(θE)]

+ sin(θs)[cos(φ′) cos(ϕs) + sin(φ′) sin(ϕs)

So, if the dependence is separated into sine and cosine, it remains:

sin(θ0) cos(ϕ0) = sin(θs) cos(ϕs) + sin(θE) cos(ϕE) (2.11)

sin(θ0) sin(ϕ0) = sin(θs) sin(ϕs) + sin(θE) sin(ϕE) (2.12)

From the previous equations, the pointing in elevation and azimuth is defined as:

sin2(θ0) = [sin(θs) cos(ϕs) + sin(θE) cos(ϕE)]
2 + [sin(θs) sin(ϕs) + sin(θE) sin(ϕE)]

2 (2.13)

tan(ϕ0) =
sin(θs) sin(ϕs) + sin(θE) sin(ϕE)

sin(θs) cos(ϕs) + sin(θE) cos(ϕE)
(2.14)

The previous equations can be applied in different cases such as:

1. Same elevation and azimuth angle: θs = θE and ϕs = ϕE

sin2(θ0) = 4 sin2(θs), sin(θ0) = 2 sin(θs) (2.15)

tan(ϕ0) = tan(ϕs), ϕ0 = ϕs (2.16)

In this case the elevation angle is multiplied by 2.

2. Same elevation angle and azimuth angle is rotated 180º: θs = θE and ϕs = ϕE + π

sin2(θ0) = 0, sin(θ0) = 0 (2.17)

In this case, the beam­steering would be 0 (broadside)

3. Same elevation angle and azimuth angle is rotated an arbitrary angle: θs = θE and ϕE =
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ϕs + α

sin2(θ0) = sin2(θs) [cos(ϕs) + cos(ϕs + α)]2 + sin2(θs) [sin(ϕs) + sin(ϕs + α)]2

= sin 2(θs) [2 + 2 cos(ϕS) cos(ϕs + α) + 2 sin(θs) sin(ϕs + α))]

= sin2(θs) [2 + cos(α) + cos(2ϕs + α) + cos(α)− cos(2ϕs + α)]

= 2(1 + cos(α)) sin2(θs)

tan(ϕ0) =
sin(ϕs) sin(ϕs+α)
cos(ϕs)+cos(ϕs+α) =

sin(ϕS)+sin(ϕs) cos(α)+cos(ϕS) sin(α)
cos(ϕs)+cos(ϕs) cos(α)+sin(ϕs) sin(α) =

tan(ϕs)+
sin(α)

1+cos(α)

1−tan(ϕs)
sin(α)

1+cos(α)

ϕ0 = ϕs + tan−1
(

sin(α)
1+cos(α)

)
For instance, if the arbitrary angle were π

2 , the beam­steering angle would be:

sin2(θ0) = 2 sin2(θs) (2.18)

ϕ0 = ϕs +
π

4
(2.19)
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Chapter 3

Study and design of a metasurface

In this chapter the analysis of the metasurface using patches and mushrooms will be carried
out. CST Microwave studio will be used in order to simulate and study the dispersion diagrams of
each structure and to design the unitary cell which will be used to create the metasurface.

3.1 Metamaterials

Traditionally, the internal structure of different antennas used to be formed by either a dielectric
of a determined permittivity, or by layers of the same dielectric. Both structures allow the field
to propagate through the waveguide. However, a new type of material arises that can replace
in most cases this internal structure formed by dielectrics, with the peculiarity that unlike what
happens with the dielectric, the characteristics of this new material called metamaterial do not
depend on its own composition but on its form. That is, generally, metamaterials are periodically
molded into a surface. When this surface is generated in two dimensions, it is usually called a
metasurface. Metamaterials have had a great impact in different fields such as photonics, where
in [16] the characteristics for recent metasurface applications for flat optical devices are collected
and, as specified, the metasurfaces are useful for designing different types of properties such as
amplitude, phase, and polarization. As a matter of fact, it is possible to carry out a large number
of flat optical devices such as holograms for the generation of beam vector [17].

There is a type of metasurface called EBG (Electromagnetic Bandgap) on which the type of
metasurface used during this project will be based. This EBG ismade up of two plates, a completely
metallic upper one and a metallic lower one that will also include the periodic metasurface. A
remarkable characteristic is that this structure can achieve a range of frequencies in which the
electromagnetic waves stop propagating. Moreover, different studies and passive devices in the
microwave and millimeter bands have been carried out based on this EBG structure [18] [19] due
to their importance in the field of antennas.

General dispersive characteristics of a metasurface are given by its repeating unit cell. De­
pending on this unit and how it is arranged, we will find different behaviors in their respective
propagation modes.
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In this project, a metasurface made up of patches and mushrooms will be studied.

3.2 Dispersion diagram

Dispersion diagram is an existing graphical relationship that shows the dependence with fre­
quency of thewavenumber or propagation constant of awave propagating through a certainmedium.
In the case of free space εr = 1, any electromagnetic wave in that medium will propagate at the
same speed regardless of its frequency. It is also often said that dispersion diagram consists of a line
increasing along with frequency, which is also called a Light Line and is represented in Fig. 3.1.
In the following sections, dispersion diagram is modified simply by playing with the topology and
geometry, mostly of the unit cell, so that the desired propagation constant is obtained.

Figure 3.1: Free space dispersion diagram in Matlab

3.3 Unit Cells

As previously mentioned, metamaterials are a type of material that cannot be found naturally,
and their usefulness does not lie in their properties but in their structure. Therefore, in order to carry
out a metasurface and, consequently, to achieve the appropriate one for the implementation of the
RLSA antenna studied throughout this project, different types of structures could be considered
and used as an alternative to a dielectric.
In [15] the structure used was based on a pin model. Those pins were found in cells of a size of
around 2 mm and 2.5 mm, the height of the waveguide was 3 mm and 4 mm, depending on the
study, being the pins the only structure used and with either a constant or a variable height. This
antenna presented highly satisfactory results since it was able to reach beam­steering angles up to
20º, although with 20º the directivity is affected, as well as the SLL. It can be said that the antenna
attains the expected objectives.
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In the case of the metasurface considered in this project, it is made up of patches and mush­
rooms, some of them slotted. This implies that the simulation time will be longer because a per­
mittivity value and cell size which satisfy the 3 structures must be found in order to combine them
and thus obtain a greater range of permittivity.

In a first study, the analysis of 3 different structures will be carried out for different values of
permittivity and cell size: patches, simple mushrooms and slotted mushrooms. Mushroom struc­
tures will be based on a study carried out in [20]. The aim of the study is to find a table with
information regarding patch width, propagation constant β and therefore, effective permittivity
εeff . Furthermore, boundary conditions are established as: magnetic walls in x+ and x­, electric
wall in y+ and y­ and periodicity in z+ and z­, simulating the parallel­plate waveguide character­
istics containing patches or mushrooms.

General features for the three structures are established as:

• p : standard cell size (period)

• hs : substrate height

• hg : waveguide height

(a) Patch (b) Simple mushroom (c) Slotted mushroom

Figure 3.2: Unit cell structures

As can be seen in Fig. 3.2 the three structures to determine the metasurface are introduced. the
first one in 3.2a consists of a slice of square PEC material lying on a dielectric and as can be seen
it is the simplest structure. In the case of simple mushrooms, the patch structure will be exactly
the same, but adding a cylinder inside of the dielectric under the patch as shown in Fig. 3.2b. As
regards slotted mushrooms, this structure follows the features of the simple mushroom, but a slot
is added contouring the patch and has a thickness of 0.1 mm, although this value can be changed
in order to reach higher permittivity values.

3.3.1 Wave propagation in radial waveguide

The propagation constant in a waveguide, and concretely a parallel­plate waveguide in this
case, of a certain mode shows the variation of the phase along the propagation direction at a de­
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termined frequency (30 GHz). This constant can be defined as shown in (3.1) where α is the
attenuation coefficient and β the phase constant.

γ = α+ jβ (3.1)

The antenna has been designed considering metallic plates which are PEC (Perfect Electric
Conductor), and since the dielectrics are considered to be ideals and without losses, that is α = 0.
Propagation constant will be defined as (3.2).

γ = jβ (3.2)

Hence, the phase constant can be considered to be proportionate to the wavenumber, k, of a
plane wave. The equation of such can be found in (3.3), where µr = 1, due to the environmental
conditions, and εr is the permittivity inserted inside the radial waveguide.

β = k = ω
√
µ0µrϵ0ϵr =

ω

c0

√
ϵr (3.3)

Notwithstanding, in this work, finding a value for the propagation constant is not as simple as
considering (3.3), since the waveguide is not filled with a homogeneous dielectric but a distribution
of patches and mushrooms. Consequently, a study will be carried out to analyze the variations of
the propagation constant for this model. This study is simply based on observing the electromag­
netic behavior of the patches and mushroom structure. In order to achieve this behavior and be
able to study it, the Eigensolver mode of the software CST will be used to simulate either a patch
or a mushroom in a unitary cell as explained previously. The aim of this module is to resolve the
wave equation inside the structure, providing the propagating modes for the operation frequency,
and therefore the dispersion diagram for each of them, as well as other curves. In this case, the
TEM mode is the one considered.

In order to analyze properly all of this, several ideas must be taken into account, the first
one would be that the field distribution is periodic in the whole structure. Moreover, each cell
provoke a phase­shift. This phase­shift will depend on β value solutions reached after simulating
each structure, which goes along with the value of the periodicity of the cell, p. As patches and
mushrooms present symmetric structures, phase­shift values in x and z axes will be the same, that
is ϕx = ϕz , and where ϕx = kxp and then ϕz = kzp. That means that the phase­shift value
corresponding to the incident wave when the inclination is 0º, is the same value for a wave which
arrives with a perpendicular inclination, 90º. Thus, propagation constant can be defined as:

β =
√
k2x + k2z (3.4)

24



CHAPTER 3. STUDY AND DESIGN OF A METASURFACE 3.3. UNIT CELLS

Figure 3.3: Dispersion diagram in CST

After having simulated the periodic structure with the specified boundary conditions using the
Eigensolver module on CST, the dispersion diagram can be found as well as other curves as said
before. An example of such is shown in Fig. 3.3 where the curves are associated to each propagat­
ing mode inside the waveguide.
As can be seen, at a frequency of 30 GHz, i.e., central frequency of the antenna, there are three
propagating modes. However, there should be only one (fundamental mode) to ensure the well­
functioning of the antenna. In the case of Fig. 3.3 Mode 1 is the fundamental mode.

In order to realize an analysis of the metasurface, each type of structure must be studied sepa­
rately to obtain the appropriate cell width, guide height, substrate height, and permittivity charac­
teristics to provide a metasurface that complies with the established requirements, which basically
consist of the electric field propagating radially and, furthermore, being capable of causing a beam­
steering. The study of each structure is carried out independently in CST starting from some initial
values and observing the dispersion diagramwhich is similar to the one shown in Fig. 3.3. The sim­
ulation is carried out using the Eigensolver option in CST, having previously selected the boundary
conditions explained in this section.

3.3.2 Study of structures

In this section each structure will be studied as previously defined. The objective is to find
a range of values of β between 600 rad.

m and 1200 rad.
m . Such range corresponds to permittivity

values ranging from 1 to 3.5, approximately, as εr =
(

β
2π
k

)2
, k = c0

f .

3.3.2.1 Patches simulation

Starting from the initial features:

• p = 2.5 mm

• hg = 3.5 mm

• hs = 0.508 mm (according to dielectric width standards)

25



3.3. UNIT CELLS CHAPTER 3. STUDY AND DESIGN OF A METASURFACE

A structure like the one shown in Fig. 3.4 is obtained.

Figure 3.4: Patch structure

In Fig. 3.4, the arrangement of the patch placed on the dielectric block can be seen. A study
of the dispersion diagrams resulting from changing the permittivity value of that dielectric block
must be carried out (substrate permittivity).

As a first test, a substrate permittivity value of 1.5 is chosen, but the range of values of β
oscillates between 643.6 and 651 for different patch sizes when, as previously mentioned, a range
similar to 600­1200 in terms of β values must be reached in order to implement a metasurface with
a large variety of patch sizes and reach higher beam­steering values.

Distance between patches (mm) β value
0.2 651
0.3 650
0.8 645
1.8 643
2.2 643.6

Tabla 3.1: CP­RLSA Design parameters

Then the initial value of 1.5 will be increased to reach a reasonable range.

For the case of a permittivity value of 4, Table 3.2 shows the interval of β values for different
patch widths. As can be seen, this is a highly positive range that could offer good performance.
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Distance between patches (mm) β value εeff

0.2 Out of range /
0.3 1190.4 3.59
0.5 935.6 2.22
1 701.8 1.25
1.5 676.4 1.16
2 673 1.15
2.3 670.8 1.4
2.4 670 1.4

Tabla 3.2: CP­RLSA Design parameters

The effective permittivity has been found according to the already mentioned equality (3.5).

εeff =

(
β
2π
k

)2

, k =
c0
f

(3.5)

Therefore, for the initial features established, with a perimittivity value of 4 the structure offers
positive results.

3.3.2.2 Simple mushrooms simulation

In this case, the permittivity value of 4 found in the previous section will be maintained so that
the values of the structure and cell will be alternated to find the range of values of β.

The dimensions of the simple mushroom are defined as follows:

• Cylinder height: 0.508 mm

• Cylinder radius: 0.3 mm

Figure 3.5: Simple Mushroom structure
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In this case, the values of period and waveguide height are alternated taking into account the
same value of substrate height and permittivity used in the case of the simple patches, to get the
dimensions of the structure which provides the best β range.
After carrying out several studies it has been determined that the features that offer better results
are:

• p: 2.2 mm

• hs: 0.508 mm

• hg: 3.5 mm

Those parameters are the same as the ones used during the patch structure excluding the period
value which is lower.

The resulting table can be found below:

Distance between patches (mm) β value εeff

0.2 905 2.075
0.3 751 1.429
0.4 710 1.277
0.5 693 1.216
0.6 684 1.185
0.7 676 1.157
0.8 670 1.137
0.9 666 1.124
1 662 1.110

Tabla 3.3: CP­RLSA Design parameters

3.3.2.3 Slotted­mushrooms simulation

First, the main dimensions of the structure will be established as before:

• Cylinder height: 0.508 mm

• Cylinder radius: 0.3 mm

• Slot width: 0.1 mm

In this case, the analysis will be more detailed as there are more parameters to take into account
such as the slot located in the patch of the mushroom, this slots width value will be considered as
0.1 mm at first and will be modified in order to achieve higher or more specific values of β while
studying the dispersion diagram.
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Figure 3.6: Patch structure

Starting from the previous characteristics for a period of 2.2 mm as considered in the case of
simple mushrooms, a substrate height of 0.508 mm and a permittivity value of 4, the results for
this structure are obtained as follows:

Distance between patches (mm) β value εeff

0.2 726 1.335
1 671 1.140

Until now, a substrate width of 0.508 mm had been considered, but judging by the results
found, other normalized substrate heights such as 0.787 mm and 1.575 mm will be tested to see
what happens in these cases.

Considering a substrate height of 1.575 mm, the fundamental mode does not propagate at a
frequency of 30 GHz

Figure 3.7: Dispersion diagram hs = 1.575 mm and p = 2.5 mm
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For the case in which a substrate height of 0.787 mm is considered, the table results as follows:

Distance between patches (mm) β value εeff

0.2 902 2.061
0.8 740 1.387
1 724 1.328

As can be seen, the interval is reduced, so the size of the period will be increased to see if
higher values of β can be reached. For the case in which the period has a width of 2.8 mm:

Distance between patches (mm) β value εeff

0.2 1109 3.115
1.6 708 1.270

This interval is the one with the best performance since, as can be seen in Fig. 3.8, for a fre­
quency of 30 GHz the maximum value that β can reach is obtained.

Figure 3.8: Slotted mushroom dispersion diagram example

3.3.3 Unit Cell Conclusions

After evaluating the three structures and finding an interval of values of β for each one of
them, we proceed to determine cell dimensions that will be common to all the structures in order to
implement the metasurface. Since the slotted mushroom structure is the most complex, the period
and substrate height values found for this structure will be used.

• p = 2.8 mm

• εr = 4

• hg = 3 mm

• hs = 0.787 mm

Therefore, patches and simple mushrooms structures will be simulated again under these char­
acteristics and the resulting final table is the one indicated below:
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Permittivity (mm) β value Type of element
1.15 674 Patch
1.16 678 Patch
1.21 692 Patch
1.25 703 Slotted­Mushroom
1.27 708 Slotted­Mushroom
1.28 712 Simple Mushroom
1.37 735 Patch
1.39 740 Slotted­Mushroom
1.46 759 Simple Mushroom
1.72 825 Slotted­Mushroom
1.86 856 Slotted­Mushroom
2.71 1035 Simple Mushroom
3.12 1109 Slotted­Mushroom

The table shows that simple mushrooms do not provide a large value range of β, so they can be
put aside. In addition, more patch and slotted mushroom values will be calculated in order to avoid
large gaps between permittivity values. The readjusted table without simple mushrooms results as
follows:

Permitivitty (mm) β value Type of element Patch width (mm)
1.15 674 Patch 0.8
1.16 678 Patch 1.3
1.21 692 Patch 1.8
1.23 696 Patch 1.9
1.25 703 Patch 2
1.29 715 Patch 2.1
1.32 722 Patch 2.2
1.37 735 Patch 2.3
1.39 740 Slotted­Mushroom 1.8
1.49 766 Slotted­Mushroom 2
1.54 780 Slotted­Mushroom 2.1
1.63 801 Slotted­Mushroom 2.2
1.72 825 Slotted­Mushroom 2.3
1.86 856 Slotted­Mushroom 2.4
2 889 Slotted­Mushroom 2.5

2.23 938 Slotted­Mushroom 2.5
2.52 998 Slotted­Mushroom 2.45
3.12 1109 Slotted­Mushroom 2.6

Tabla 3.4: Patch width values depending on permittivity

This table is the one that will be used in Matlab to create a grid in which each cell will be
assigned a permittivity value following formula (2.3), starting from a value of tilt and a value of
Sρ. The value of Sρ is obtained by adjusting Equation (2.2), that is, Sρ provides the interval of
permittivities for different tilt values for the cases in which ϕ ∈ (0, 90) . This interval must be
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within the range of permitivities in the previous table. The result in Matlab is shown in Fig. 3.9.

Figure 3.9: distribution of permittivity values in a grid using Matlab

Where a radial distribution of permittivities is observed. Such distribution will be saved in
a .txt file and interpreted by a CST program where either a patch or a slotted mushroom will be
designed for each cell depending on the permittivity according to Table 3.4.

In the following studies, the analysis are carried out for the initial values of cell size and guide
height:

• p : 2.8 mm

• λ0 : 10 mm

• Antenna radius : 3λ0

3.3.4 First study: p = 2.8 mm and hg = 3 mm

After obtaining the data of effective permittivities εeff and size of patches and mushrooms
described during the previous section in Table 3.4, the simulation of the complete structure will
be processed, which will be formed by patches with a size of 30x30 cells to lessen the simulation
time, a dielectric which permittivity value will be 4 and its width 0.787 mm, and finally the upper
platform. This platform is the one that contains the slots, but at first these will not be considered
since the efficiency of the propagation of the electric field through the antenna must be analyzed
first and once satisfactory results have been obtained, the slots are included and simulated with far
field conditions.

Therefore, when analyzing the field, the appropriate conditions are established for this as the
electric field condition in the z­ and z + directions and the open condition in x­, x +, y­, y +. In
addition, the port location is set to a central position within the guide and also the Field Monitor is
considered to obtain the electric field results.
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The results are shown in Fig. 3.12 and Fig. 3.11, where it can be seen an zoomed image of the
distribution of patches for a 0º tilt and 5º tilt respectively. It can be noticed that in order to recreate
a 0º tilt all the patches must have the same width, therefore, the whole distribution will be made of
equal patches.

(a) Upper platform (b) 0º patches distribution

Figure 3.10: RLSA antenna without slots

Notwithstanding, as shown in Table 3.4 and previous studies, in order to get higher values of
permittivity slotted­mushrooms are needed. For example, in Fig. 3.11 the distribution corresponds
to a tilt of 5º.

(a) Upper­platform
(b) Metasurface using Patches and
Slotted­Mushrooms

Figure 3.11: RLSA antenna without slots 5º tilt
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Figure 3.12: Amplitude Electric field RLSA antenna, mesh = 5 tetrahedrons per wavelength,
0º tilt

Fig. 3.12 shows the result for a first analysis considering a distribution of patches with the same
width and a mesh of 5 tetrahedrons per wavelength. The results are very unsatisfactory since no
cylindrical distribution of the electric field is obtained. Therefore, in order to observe better its
behavior, the mesh will be increased to 9 tetrahedrons per wavelength. The results for this mesh
are those of Fig. 3.13.

Figure 3.13: Electric field RLSA antenna, mesh = 9 tetrahedrons per wavelength, 0º tilt

The square shape of the patches forces the radial field to have this pattern, which can best
be seen in Fig. 3.14. where Fig. 3.14a shows the electric field pattern obtained against electric
field propagation that was obtained in [15] considering pin structures, Fig. 3.14b, where a radial
propagation of the electric field is clearly observed.
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(a) E­Field phase using patches
(b) E­Field amplitude using pin struc­
tures

Figure 3.14: RLSA E­Field phase

The distribution of the elements found in Table 3.4 when considering a tilt value different than
0º, for instance 5º can be seen in Fig. 3.11

Therefore, the possibility of considering patches of a smaller size or another type of structure
such as circular patches, rotated square patches or even hexagons was studied since these are more
feasible. But, due to the simplicity of the patches and the cost of simulation time, it was considered
the first option over the others. To reduce the size of the patches without the patches being too far
apart from each other, as this could render them ineffective, the period size (cell width) must be
reduced.

3.3.5 Second study: p = 1.5 mm and hg = 3 mm

This study starts from the premise found during the first study in which it is shown that the
patches must have a smaller width, and thus their period must be reduced in the same way. There­
fore, the features considered will be a cell size of 1.5 mm and a waveguide height of 3 mm.

The study of the table of permittivities and patch sizes should be carried out again. The results
obtained for this cell size are shown in Fig. 3.15, where it can be seen that the shape of the wavefront
is much more cylindrical than in the previous study.
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Distance between patches (mm) β value εeff Patch width (mm) Type of structure
0.1 1057 2.830 1.40 Slotted­Mushroom
0.11 1051 2.800 1.40 Slotted­Mushroom
0.12 1031 2.690 1.40 Slotted­Mushroom
0.13 1007 2.570 1.40 Slotted­Mushroom
0.1 996 2.513 1.40 Patch
0.12 980 2.433 1.38 Patch
0.15 952 2.296 1.35 Patch
0.2 921 2.150 1.30 Patch
0.25 882 1.971 1.25 Patch
0.3 858 1.865 1.20 Patch
0.35 831 1.749 1.15 Patch
0.4 810 1.662 1.10 Patch
0.5 780 1.541 1.00 Patch
0.6 759 1.459 0.90 Patch
0.7 743 1.398 0.80 Patch
0.8 731 1.354 0.70 Patch
1 721 1.317 0.50 Patch
1.1 717 1.302 0.40 Patch

Tabla 3.5: Patch width values depending on permittivity

Figure 3.15: E­Field Phase 0º tilt
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After observing that the electric field is already propagating radially, the far field radiation
pattern must now be analyzed to see if the antenna reaches the required objectives.

Figure 3.16: 5º tilt

Figure 3.17: 10º tilt

As can be seen in Fig. 3.16 and Fig. 3.17, the radiation patterns have secondary lobes at con­
siderable high levels, as well as low directivity. Moreover, there is not a clear main lobe in the
pattern. Thus, the results are not satisfactory and a further study of the structure must be carried
out in order to determine where the problem can be.

Finally, after having investigated the reason for these patterns, it was concluded that the fun­
damental mode was mixing with mode 3 as was already explained in Fig. 3.3, this mode is more
intense than the first one in the air zone, that is, the waveguide. As the tilt value is increased, the
size of the patches gets larger according to Table 3.5 and therefore higher order modes appear.

37



3.3. UNIT CELLS CHAPTER 3. STUDY AND DESIGN OF A METASURFACE

Figure 3.18: Mixing modes representation

Thus, a solution to this type of problem is to reduce the height of the waveguide so that only
the fundamental mode can propagate through it. This waveguide height is reduced to 1 mm, hg =
1 mm, and the study is performed again.

Figure 3.19: 10º tilt

3.3.6 Third study: p = 1.5 mm and hg = 1 mm

In this section, the final metasurface structure will be introduced. This structure will be entirely
made of patches as slotted­mushrooms don’t offer good results, for example in Table 3.5 the
interval of permittivity that can be reached thanks to slotted­mushrooms is not that significant,
εr = (2.57, 2.83) for this type of structure. So, as the simulation times are higher using mush­
rooms, and the fact that they don’t give a large interval of permittivity, slotted­mushrooms will not
be considered in future analysis.

In order to implement the metasurface, a table of values if permittivity is needed, as explained
in previous sections. The information extracted from this table is shown in Table 3.6.
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Distance between patches (mm) β value εeff Patch width (mm)
0.1 1024.77 2.66 1.40
0.13 1001.6 2.54 1.37
0.15 988.6 2.48 1.35
0.2 961 2.34 1.30
0.25 938 2.23 1.25
0.3 918.7 2.14 1.20
0.4 885.6 1.99 1.10
0.5 862 1.88 1.00
0.6 843.6 1.80 1.00
0.7 831 1.75 0.90
0.8 822 1.71 0.80
0.9 815 1.68 0.70
1 810.9 1.67 0.50
1.1 807 1.65 0.40
1.2 806 1.645 0.30
1.3 804.8 1.64 0.20

Tabla 3.6: Patch width depending on permittivity value

In the first place, the distribution of patches and slots is studied for the case of a 5º tilt, this
representation of such can be observed in Fig. 3.20a.

(a) Slots and patches distribution (b) Metasurface using patches

Figure 3.20: RLSA 5º tilt
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Figure 3.21: Permittivity interval in Matlab 5º tilt

As can be seen in Fig. 3.21, the interval of permittivity reached in Matlab in order to get a 5º
tilt is approximately εr = (1.65, 2.1). This interval can be found in Table 3.6, so it is possible
to implement a metasurface in order to get a 5º tilt only using patches.

The phase is represented in Fig. 3.22

Figure 3.22: E­Field phase 5º tilt

The results obtained are satisfactory and can be seen in Fig. 3.23. The radiation pattern will be
studied later in the final results section.
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Figure 3.23: 5º tilt 3D pattern using CST

An analysis is carried out for the broadside case to corroborate the performance of the antenna.
In this case, all patches take the same width value.

Figure 3.24: Broadside antenna 3D pattern using CST

As can be seen in Fig. 3.24, the pointing has a 0º inclination and the pattern looks fully directive.

Finally, the maximum tilt of the antenna must be found. Therefore, a tilt of 10º will be consid­
ered, for this structure the interval of permitivity values can be adjusted so that no mushrooms are
needed, but smaller patches. For convenience, only patches will be used. The result can be seen in
Fig. 3.25, where a very high level of secondary lobes and low directivity can be seen. Therefore,
the limit tilt will have a value lower than 10º.

Figure 3.25: 10º tilt cartesian pattern

So far, the results show that the maximum angle will be a number between 5º and 10º tilt. Now,
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an angle of 7.5º will be considered. The results are shown in Fig. 3.26.

Figure 3.26: 7.5º tilt cartesian pattern

As can be seen in Fig. 3.26, the main lobe direction is 9.3º when it should be value around 7.5º,
moreover, there can be seen high values of secondary side lobes level. Thus, another study for an
angle between 5º and 7.5 must be carried out. The following angle considered is 6º.

Figure 3.27: 6º tilt cartesian pattern

As the limit angle approaches a value of 5º, the radiation pattern results are improved, but in
the case of a 6º tilt angle as shown in Fig. 3.27 even though the pattern seems to present good SLL
values and directivity, the main lobe direction presents and angle of 7.3º when it should be a value
around 6º.

Thus, the maximum tilt value is 5º for this antenna. Notwithstanding, this angle can be in­
creased by changing the arrangement of the different parts of the antenna. The analysis of the
results and all the necessary changes in order to get higher tilt values will be explained during the
following chapter.
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Chapter 4

Final results

In this chapter, final results obtained through CST for a metasurface design consisting of
patches will be introduced. The models that will be presented below refer to different values of
beam­steering, which will also show other parameters of interest such as angular width or SLL
level.

The process of construction and modeling of the antenna layout in CST starts from the follow­
ing steps: first, the bed of patches is imported, those patches are created as thin layers with zero
thickness to relax computational cost. Just below this bed of patches is placed the 0.787 mm thick
dielectric substrate according to the standard dielectric thickness sizes. Finally, the platform is
created where the imported slots generated in Matlab are embedded. This platform is 1 mm thick
and is located at a height of hg = 1 mm from the metasurface.
Finally, the boundary conditions are established, as well as the field and port position monitors, and
then the simulation is performed using the Frequency Domain Solver. In Fig. 4.1 an example of a
complete antenna can be seen prior to its simulation. Table 4.1 compiles all the design parameters
that the antennas hold in common, which will be analyzed in further sections.

• εr: Relative permittivity of the dielectric.

• N: Number of slot turns in the upper platform.

• tres: percentage of residual power transmitted.

• wr: Slot width.

• thr: Slot thickness.

Parameter f0 (GHz) εr N tres d (mm) wr (mm) thr (mm)
Value 30 4 5 0.9 1 0.5 1

Tabla 4.1: CP­RLSA Design parameters

In order to generate the slots, the value of the parameter Sρ applied for the implementation of
the metasurface is used, from which the relative permittivity is extracted following the relationship
established in (4.1).
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εr =

(
1

Sρ

)2

(4.1)

4.1 Beam­steering methods

To obtain different tilt values, several methods can be carried out. In the first place, it should be
noted that the antenna is made up of two plates which also form the waveguide, one containing the
patches and the other the slots in it. In order to form the beam­steering, there exists two different
methods:

• Method 1: Slots distribution for an angle of 0º and 5º tilt patches distribution (Fig. 4.1).

• Method 2: Slots distribution for an angle of θ = 5◦ and uniform patches distribution
(broadside) (Fig. 4.2).

In Fig. 4.1a the slot distribution in the upper plate is equispaced in other to offer a broadside
transmission of the field whilst on the lower plate the distribution of patches offers a beam­steering
of 5º. In this case, the lower plate is the one that determines the tilt angle, while the slots distribution
does not modify the field propagation.

In Fig. 4.1b the patches present a uniform distribution offering a broadside propagation of the
electric field, and the upper plate containing the slots determine the tilt value, that is the beam­
steering. As can be seen the turns of the slots are rearranged in a way that every turn is closer to
one another in the left part while they are more distant in the right one. With this new arrangement
of the turns of slots, the beam­steering is formed at a specific angle, which in this case is 5º.

(a) Broadside slots distribution (b) 5º tilt patches distribution

Figure 4.1: Method 1
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(a) 5º tilt slots distribution (b) Broadside distribution of patches

Figure 4.2: Method 2

Furthermore, it is possible to achieve higher tilt values by combining the structures in Fig. 4.1
and Fig. 4.2. Although, Method 1 will be the one considered in order to get the chosen value of
tilt, this idea will also be studied during the following sections.

4.2 Broadside antenna

In the first place, a broadside type antenna will be considered. This term comes from the fact
that the slots used are endowed with a null beam steering, so the maximum of the radiation pattern
will be in the broadside direction θ = 0º, that is, perpendicular to the structure.

In Fig. 4.3, the structure and design of an antenna of these characteristics is shown. Unlike
Figs. 4.1 and 4.2, there is no need to either implement a specific patches or slots distribution to get
a broadside propagation of the electric field. In this case, the turns of the slots in the upper plate
as well as the distribution of patches will be uniform.

As can be seen, a model of N = 5 turns of slots has been used. The relative permittivity value
will be εr = 1.7778 according to (4.1).
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Figure 4.3: CP­RLSA broadside antenna

Figure 4.4: Comparison of radiation patterns: CST vs Matlab broadside distribution

The operating parameters of this antenna are listed in Table 4.2.

Parameter Dmax (dBi) SLL (dB) ∇θ−3dB (º)
Value 28.3 ­14.9 6.3

Tabla 4.2: Broadside CP­RLSA antenna parameters

In Fig. 4.4 radiation patterns shown belong to the results obtained using Matlab and CST soft­
ware after simulating the whole structure.

As regards Matlab distribution, there can be seen that the secondary lobes are more defined and
higher than the ones shown in the CST distribution, there is also a slightly difference between the
nulls depths. This latter issue happens because of the fact that in Matlab the cross­polar component
of the field is not taken into account, whilst in CST that component is indeed considered.

46



CHAPTER 4. FINAL RESULTS 4.3. 5º TILT ANTENNA

4.3 5º tilt antenna

As regards antennas with a 5º tilt, the metasurface will no longer be uniform and will have
an azimuthal distribution of patches as shown in Fig. 4.5. Likewise, the distribution of slots will
maintain a tilt of 0º, however the relative permittivity will be different altering the distribution of
slots. That is, in order to get a central distribution of patches as shown in Fig. 3.9, the parameter
Sρ needs to be changed, and attending (4.1), the value of the relative permittivity εr will change
as well. Therefore, εr needs to be changed in the Matlab code that implements the distribution of
slots. The permittivity for this case will be εr = 1.8765.

(a) 5º tilt slot distribution (b) 5º tilt patches distribution

Figure 4.5: CP­RLSA 5º tilt antenna

Figure 4.6: Comparison of radiation patterns: CST vs Matlab 5º tilt distribution

In Fig. 4.6, it can be seen that the distribution of patches on the metasurface causes the beam
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steering of 5º, since the curves obtained in Matlab refer to the radiation pattern provided by the
slots only.

In this case, secondary lobes reach higher values in CST, and seem to bemore stable and similar
between them up to θ = |40º|. Furthermore, the differences between both software are associated to
the fact that, as explained during the last section, in CST the cross­polar component of polarization
is considered, which is higher for angles where there is huge differences between both diagrams.

Parameter Dmax (dBi) SSL (dB) ∇θ−3dB (º)
Value 27.1 ­11.6 6.2

Tabla 4.3: Broadside CP­RLSA antenna parameters

On the other hand, a configuration very similar to Fig. 4.2 could also be considered in order
to get a 5º beam steering, where the slots provoke the inclination of the beam. The results of this
configuration can be seen in Fig. 4.7.

(a) 5º tilt slot distribution (b) 5º tilt patches distribution

Figure 4.7: CP­RLSA 5º tilt antenna

Parameter Dmax (dBi) SSL (dB) ∇θ−3dB (º)
Value 28.2 ­15 6.3

Tabla 4.4: Broadside CP­RLSA antenna parameters
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Figure 4.8: Radiation pattern in Matlab 5º tilt distribution

4.4 Antennas with rotating upper plate

In this section, a study of different combinations of metasurface distribution and slots will be car­
ried out in order to achieve higher tilt values than those seen during the previous sections. More­
over, the rotation of the upper plate will be introduced to redirect the pointing of the antenna at
different angles not achievable by the antenna itself. The rotation of the plate will be based on
the fundamentals of the Risley prism theory defined in [21] where an antenna with the same char­
acteristics is shown and the theoretical model seen in chapter 2. Specifically, in the following
subsections a study of the effects of rotating the upper plate of the waveguide will be specified
making use of the combination of the models described in figures 4.1 and 4.2, with which it will
be possible to increase the limit angle and shape it just by rotating the upper plate around the z axis
through an angle of 180º and 90º.

4.4.1 0º rotation

In this study, the slots will be spread out around the upper plate considering a 5º distribution,
and as for the patches distribution, a 5º tilt distribution will be considered as shown in Fig. 4.9.
The result, as demonstrated above, should offer a beam­steering angle twice the one each platform
can propagate.
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(a) 5º tilt slot distribution (b) 5º tilt patches distribution

Figure 4.9: CP­RLSA 5º tilt antenna

In Fig. 4.10 it can be seen that the beam­steering angle is θ = 10.8, therefore, it can be stated
that the antenna meets the expectations proposed for this tilt value as studied in (2.15). Further­
more, SSL and directivity values are optimum and the beam width is not high, notwithstanding
there can be observed a gratin lobe in the left side of the diagram.

Figure 4.10: Radiation pattern for a CP­RLSA antenna with a 5º tilt distribution of slots and
patches in CST

Parameter Dmax (dBi) SSL (dB) ∇θ−3dB (º)
Value 27.5 ­11.4 6.3

Tabla 4.5: Double 5º tilt CP­RLSA antenna parameters
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4.4.2 180º rotation

As has been demonstrated in (2.17), if the platform of the slots is rotated 180º with respect to
that of the patches, the effects of both are counteracted and, therefore, a broadside case should be
obtained. In Fig. 4.11, the design of the antenna under these characteristics can be seen, where the
upper plate has been rotated 180 degrees while the lower one has the same patch distribution as in
Fig. 4.9b.

(a) 5º tilt slot distribution. 180º rotation (b) 5º tilt patches distribution

Figure 4.11: CP­RLSA 5º tilt antenna. Upper platform rotated 180º

The radiation pattern obtained in this design is shown in Fig. 4.12, where it can be seen that
the pointing angle is practically 0 degrees.

Figure 4.12: Radiation pattern for a CP­RLSA antenna with a 5º tilt distribution of slots and
patches in CST and the upper plate rotated 180º
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Parameter Dmax (dBi) SSL (dB) ∇θ−3dB (º)
Value 27.5 ­12 6.2

Tabla 4.6: 5º tilt CP­RLSA antenna parameters. Upper plate rotated 180º

4.4.3 90º rotation

In this case, the upper plate will be rotated 90º to verify the third case in which an angle of tilt
of 5º was considered. The arrangement of the platforms can be seen in Fig. 4.13 where it can be
observed that again the distribution of patches is the same.

(a) 5º tilt slot distribution. 90º rotation (b) 5º tilt patches distribution

Figure 4.13: CP­RLSA 5º tilt antenna. Upper platform rotated 90º

The beam­steering angle for this case should adopt an intermediate value between the case of
180º, where a result of 10º was obtained, and the broadside case, that is, around 5º. Conversely,
in this case as the platform is rotated 90º, the beam will also rotate in the azimuth direction. The
maximum will take place at a cut of ϕ = 45.

As can be seen in Fig. 4.14, the design meets the premises.

Parameter Dmax (dBi) SLL (dB) ∇θ−3dB (º)
Value 27.6 ­13.1 6.4

Tabla 4.7: 5º tilt CP­RLSA antenna parameters. Upper plate rotated 90º
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Figure 4.14: Radiation pattern for a CP­RLSA antenna with a 5º tilt distribution of slots and
patches in CST and the upper plate rotated 90º

After having analyzed three ways to change the beam­steering of the antenna by means of
spinning the upper platform, the results of such are shown in Table 4.8, where it can be seen that the
values of directivity, SLL and beam width are quite similar. It can be concluded that the antenna
offer good results and it is easy to modify any characteristic of such just by adjusting physical
changes on it.

Antenna Dmax (dBi) SSL (dB) ∇θ−3dB (º)
0º rotation 27.5 ­11.4 6.3
180º rotation 27.5 ­12 6.2
90º rotation 27.6 ­13.1 6.4

Tabla 4.8: Comparison table

Figure 4.15: Comparison diagram
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Chapter 5

Conclusions

After having disclosed the final results for this antenna which operates at 30 GHz, a final
analysis and evaluation of the antenna can be carried out. In general, the concept of using an
antenna of this type is a great advantage in different sectors such as satellite communications,
which we have focused on during this project. It is especially useful in applications which require
high gain and Low Profile antennas. In addition, due to the fact that the metamaterial is simply a
printed circuit board, the manufacturing will be low cost. Regarding the antenna studied during this
project, in the first place, it should be noted that the fact of having analyzed three types of structures
for the implementation of the metasurface, and especially due to the introduction of mushrooms,
hasmade it difficult to find a range of permittivities. Themushrooms have not turned out to give the
expected results, instead they offered longer simulation times and made it difficult for the electric
field to propagate radially. Although, it should also be noted that, since it is a periodic surface,
once the structure of the cell unit has been obtained, its implementation is relatively simple, and
this has caused passive electromagnetic devices to have opted for integrating this type of EBG
metasurface. Regarding the generation of slots, the process has been facilitated by the use of
Matlab codes generated in [10]. These codes were provided from the beginning of the project and
have been of great help, especially because in this way a simulator has not been needed that could
have complicated and multiplied the simulation times of the antenna.

After having analyzed the final results obtained in a global way, it can be concluded that the
antenna construction process has been laborious, taking into account the previously exposed limi­
tations. In a first case, if a metasurface is considered with all the patches of the same size, that is
to say, broadside distribution, it is true that configuring the rings of the upper plate for different
angles causes the beam steering to point at the angle established by this plate. However, when a
broadside centralized distribution of the slots in the upper plate is considered, in such a way that
the radial distribution of patches of different sizes above the dielectric of the lower plate is what
causes the beam steering, there exists a limit angle at 5º. This is a very low tilt value, so the chosen
metasurface made up of variant patches size does not perform as well as the pins in [15]. Further­
more, the fact of having reduced the size of the cells makes this antenna difficult to make due to
its size, it is not possible to build patches of such a small size, since some of them measure around
1 mm.
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GLOSSARY

SATCOM Satellite Comunications

SOTM Satellite On The Move

AWGN Additive White Gaussian Noise

EIRP Effective Isotropic Radiated Power

RLSA Radial Linear Slot Antenna

CP­RLSA Circular Polarized Radial Linear Slot Antenna

SL­RLSA Single Layer Radial Linear Slot Antenna

EBG Electromagntic Bandgap

TEM Transverse Electric and Magnetic Field

PEC Perfect Electric Conductor

SLL Sidelobe Level
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