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ABSTRACT / RESUM / RESUMEN

Abstract

Automatic Speech Recognition (ASR) has proven to be an efficient and effective way
of converting speech to text over the last years. This work, performed in the context of
two projects from the Government of Spain and the Generalitat Valenciana, explores
the usage of ASR in the context of classroom video recordings. In order to do this, a
dataset consisting of more than 1400 hours of classroom recordings is exploited. The
dataset is divided into two sources (clip-on and camera microphones) which record
a given class at the same time, even though one of them is noisier than the other.
Several obstacles faced in the work carried out are described, such as the fact that
the transcriptions of the recordings were not initially included in the dataset, or the
fact that both sources of audio were not perfectly synchronized in some recordings.
This work also presents experiments performed with the cleaner source of audio and
replicated with both sources of audio so as to compare both approaches. Moreover,
a baseline system trained with nearly 4000 hours is retrained with both sources of
audio and the resulting system is compared to the rest of the developed systems.
Finally, this work ends with some conclusions extracted from the previously mentioned
experiments.
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Resum

En els ultims anys, s’ha demostrat que el Reconeixement Automatic de la Parla
(RAP) és una técnica efectiva i eficient per convertir parla a text. Aquest treball,
desenvolupat en el context de dos projectes recolzats pel Govern d’Espanya i la Ge-
neralitat Valenciana, explora 1'as del RAP en el context d’enregistraments de classes
d’aula. Amb aquesta finalitat, s’explota un conjunt de dades amb més de 1400 hores
d’enregistraments de classes. Aquest conjunt es composa de dos fonts de dades (mi-
crofons de solapa i camera) que enregistren una classe donada al mateix temps, encara
que una font d’audio té pitjor qualitat que I’altra. En aquesta memoria es descriuen
alguns dels problemes que s’han donat en el treball realitzat, com el fet que inicial-
ment el conjunt de dades no tenia cap transcripcié, o que ambdues fonts d’audio no
estaven perfectament sincronitzades en alguns casos. Aquest treball també presenta
experiments duts a terme amb la font de dades de millor qualitat, i replicats amb
ambdues fonts d’audio amb el fi de comparar les aproximacions. Aixi mateix, es
reentrena un sistema ja existent amb ambdues fonts d’audio. El sistema resultant,
entrenat préviament amb quasi 4000 hores d’audio, es compara a la resta dels sis-
temes desenvolupats. Finalment, aquest treball exposa algunes conclusions extretes
dels experiments anteriorment esmentats.
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Resumen

El Reconocimiento Automético del Habla (RAH) ha demostrado ser una manera efec-
tiva y eficiente de convertir habla a texto a lo largo de los tultimos anos. Este trabajo,
desarrollado en el contexto de dos proyectos apoyados por el Gobierno de Espana
y la Generalitat Valenciana, explora el uso del RAH en el contexto de grabaciones
de clases de aula. Con este fin, se explota un conjunto de datos con mas de 1400
horas de grabaciones de clases. Este conjunto se compone de dos fuentes de datos
(microfonos de solapa y camara) que graban una clase determinada al mismo tiempo,
aunque una de las fuentes tiene peor calidad que la otra. A lo largo de esta memoria,
se describen algunos de los problemas que se han dado en los proyectos, como el hecho
de que inicialmente el conjunto de datos no viene dado con ninguna transcripcién, o
que ambas fuentes de datos no estaban perfectamente sincronizadas en algunos casos.
Este trabajo también presenta experimentos llevados a cabo con la fuente de datos
de mejor calidad, y replicados con ambas fuentes de audio con el fin de comparar las
dos aproximaciones. Ademas, se reentrena un sistema ya existente con ambas fuentes
de audio. El sistema resultante, previamente entrenado con casi 4000 horas de audio,
se compara con el resto de sistemas desarrollados. Finalmente, este trabajo expone
algunas conclusiones extraidas de los experimentos anteriormente mencionados.
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CHAPTER 1

INTRODUCTION

This work explores the development of Automatic Speech Recognition (ASR) systems
with the main aim of transcribing real lessons lectured at the Universitat Politécnica
de Valéncia (UPV) in the Spanish language.

In this chapter, the main motivation is described, and the core objectives of the
work are specified. Moreover, the reader will find an outline of the document at the
end of this chapter.

1.1 Motivation

The need of this Master’s Thesis is motivated by two projects: the Multilingual
subtitling of classrooms and plenary sessions (Multisub) [I] project, a 3-year
project selected for funding by the Ministerio de Ciencia, Innovacion y Universi-
dades and addressed by the Machine Learning and Language Processing - Universitat
Politécnica de Valéncia (MLLP-UPV) research group, and the Classroom Activity
Recognition (CAR) project, a 4-year project funded by the Conselleria d’Educacio,
Investigacio, Cultura i Esport de la Generalitat Valenciana and addressed by the Va-
lencian Research Institute for Artificial Intelligence (VRAIN). These projects will be
thoroughly described in Chapter [3} but an outline is given below.

The Multisub project aims at modernizing educational resources by including
both lecture recordings as a support tool for both teachers and students, as well as
parliamentary resources by making data accessible to the general public. On the
other hand, the objective of the CAR project is to analyze the different interactions
between a teacher and their students, building a model of student engagement as well
as a model of teaching methodology.

Most students can benefit from the transcription of online classes in order to
have available the lecture in text format, supporting the lecturer’s explanation and
any other auxiliary material available by the student. Moreover, thanks to these
transcriptions, other students in special conditions such as foreign or disabled students
could be able to access the data in a way that is readable for them: for instance, a
student that does not understand the Spanish language could have these sentences
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translated to their native language by means of a translation system, while a deaf
person could immediately access the information transmitted by the lecturer.

Educational resources are shifting their attention to a mixed methodology which
has been recently put to test by the COVID-19 pandemic. This situation has required
social distancing and, in certain occasions, attending classes in a strictly online format.
In this regard, the recording of online lectures has made available a vast amount of
data that can be taken advantage of in order to develop high-quality ASR systems,
which is the intended purpose of this work.

Moreover, as it will be detailed in Chapter [3] the data is split into two sources
of data: audio coming from a clip-on microphone, and audio coming from a camera
microphone. Both microphones should record the same lecture at the same time.
Even though the clip-on microphone yields audio which is cleaner than the camera
microphone, it is desirable to exploit both sources of data. Furthermore, most of the
data is unlabeled, which is why this Master’s Thesis will also explore semi-supervised
learning.

Finally, it is essential that the developed systems achieve an acceptable error rate
in the audio coming from the camera microphone, since it is the most common source
of audio in real online classes due to the fact that the clip-on microphone is not
available in most real lectures. This is in some way intended because the camera
microphone works as a far-field microphone which is able to capture, for instance,
students’ interventions, while the clip-on microphone can only capture the lecturer’s
voice.

1.2 Main objectives

The main objectives of this work are the following:

e To gain a deeper understanding of state-of-the-art techniques applied to the
field of speech recognition.

e To explore different training strategies using information coming from two sources
(clip-on and camera microphones).

e To develop several ASR systems that are able to produce acceptable automatic
transcriptions from classroom video recordings.

e To apply the developed ASR systems for transcribing classroom video recordings
at the Universitat Politécnica de Valéncia (UPV) in the context of the Multisub
and CAR projects.

1.3 Document structure

This document is structured in the following way:

e Chapter [I] has established the main motivation for developing this Master’s
Thesis and has introduced the main objectives to be fulfilled in this work.

2 DSIC, UPV



1.3. Document structure

e Chapter [2] will introduce the fundamental knowledge that every reader should
acquire before going deeper into the work, while also introducing state-of-the-art
architectures used in ASR.

e Chapter [3] describes the projects in which this work is encapsulated, and intro-
duces both the tools used and the main dataset: a collection of data coming
from online classes lectured at the UPV.

e Chapter [4] describes the work done in order to train the main systems developed
in this work.

o Chapter ] reports the results obtained in the evaluation process of the different
systems trained.

e Finally, Chapter [6] presents some conclusions obtained from the work performed
in this Master’s Thesis.

DSIC, UPV 3
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CHAPTER 2

FUNDAMENTALS OF AUTOMATIC
SPEECH RECOGNITION

In this chapter, the essential knowledge in order to understand the ASR field is pro-
vided. This chapter will begin by giving general notions as an introduction. Two
sections will then be devoted to explaining the foundations of neural networks and
state-of-the-art neural network architectures, while later on going deeper into the for-
mal foundations of ASR. After that, the process of preprocessing acoustic samples
will be described, data augmentation in the context of ASR will be introduced, and
state-of-the-art ASR models will be detailed. Finally, evaluation measurements for
ASR systems will be provided.

2.1 Introduction

ASR could be defined as the process that obtains the most probable sequence of words
according to a certain acoustic signal. It is a cheap but effective way of obtaining the
text which has been uttered in a given recording. Many researchers and commercial
companies have put a vast amount of effort into this field, which is one of the reasons
why ASR is one of the most popular fields of machine learning nowadays.

In the past, ASR was behind Human Speech Recognition (HSR) in terms of error
rate. A study performed in 1997 found that, in spontaneous speech over the Switch-
board dataset [13], the error rate of a machine was located at a 43% while its human
counterpart was of a 4% [26]. However, since then the field has evolved and more
powerful methods have emerged. The introduction of techniques such as Artificial
Neural Networks (ANNs), and more recently Deep Neural Networks (DNNs; they will
be described in the next section) to ASR have boosted the recognition rate of the
most recent systems. Newer studies on the effectiveness of ASR show that automatic
recognition of utterances is approaching human accuracy. In fact, recent articles set
the error rate on the Switchboard dataset to 5.9 error points in 2017 [46] and to 5
error points in 2021, “practically reaching the limit of the benchmark” [47].

5
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One of the fields which could benefit the most from ASR is healthcare. Besides the
huge benefits for people with hearing loss, ASR can help in the diagnostic, treatment
or everyday life of patients while supporting professionals. In [59], a person’s narrative
spontaneous speech was transcribed and later processed in order to classify the person
as being healthy or suffering Alzheimer’s disease. In [40], patients were asked to
provide a description of a picture, being proposed a similar approach to the previous
one. Both approaches would otherwise require valuable resources, such as professional
time, expensive scans, or blood or spinal samples [40].

Moreover, ASR can also assist in the recognition of dysarthric speechEl, as seen
in [54], where a spoken digit classification task with dysarthric patients was addressed
by using ASR techniques, or in [44], where the RGB spectrogram of single words was
analyzed in order to recognize uttered by dysarthric individuals. Successful use cases
of ASR in the health domain include MobileCogniTracker [52], a mobile application
in charge of gathering remote cognitive tests. This application integrates speech-to-
text functionality, which allows the test to resemble the traditional one while helping
people with reduced motor coordination.

Another area which is in demand as of today is the area of virtual assistants.
Many commercial companies have created their own virtual assistant, which is able
to interact with the end user in order to fulfill their needs. These technologies heavily
rely on ASR to make the overall user experience as comfortable as possible. Some
examples include Alexa (Amazon)ﬂ Siri (Apple)El, Bixby (Samsung)ﬂ or Assistant
(Google)ﬂ

One last area of application that is worth mentioning is the generation of automatic
transcriptions in video repositories. These repositories can be academic, cultural,
scientific, political... In these huge repositories, it is interesting to have available an
ASR system that yields acceptable transcriptions which can then be postprocessed
by experts, or even immediately used as the video transcription. In the case of
universities, they are beginning to see benefits in recording classroom lectures to
support learning. From Massive Open Online Courses (MOOCs) to usual lectures,
the usage of online learning platforms is being popularized among students, who use
these platforms for reviewing concepts, attending the classes that they missed or
taking additional notes.

Thanks to the effort made on building open toolkits capable of developing ASR
systems such as Kaldi [33] or HTK [56], as well as open audio datasets like Mozilla
Common Voice [4], Librispeech [3T], TED-LIUM [38], Europarl-ASR [12], or VoxPop-
uli [49], nowadays speech recognition can be accessed by everyone. Readers interested
on more information about available datasets are pointed to [19].

IDysarthric speech is caused by dysarthria, a disease that affects the motor system and is char-
acterized by a reduction in the intelligibility of the patient’s speech [54].
%https://developer.amazon.com/en-US/alexa. Last accessed: 11-09-2021.
Shttps://www.apple.com/siri/, Last accessed: 11-09-2021.
4https://www.samsung.com/us/explore/bixby/. Last accessed: 11-09-2021.
Shttps://assistant.google.com/. Last accessed: 11-09-2021.
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2.2. Neural networks

2.2 Neural networks

Before introducing ASR systems, it is essential to learn about neural networks, since
they will be frequently mentioned throughout this work. A Neural Network (NN),
also called connectionist model, Multilayered Perceptron (MLP) or Artificial Neural
Network (ANN), is a set of densely interconnected simple processors, also called neu-
rons. These processors are usually grouped in layers, where all processors of a layer
are connected to all processors of the following layer. A neural network has at least
an input layer (where the input is received), a hidden layer (where the input is further
processed) and an output layer (which yields the output).

In a neural network, the information is trasmitted from the i-th neuron of the
layer (k — 1) to the j-th neuron of the layer k according to the following formula:

M1
=903 oSt 1<) < My 2.
=0

where sf is the outputﬂ of the neuron j, 9;% is a weight connecting the ¢-th neuron to
the j-th neuron, M}, is the number of neurons in the layer k, and g(-) is a non-linear
function, also called activation function.

This basic model of neural network, where there are no cycles and information can
only flow forward, is also called Feed-Forward Neural Network (FFNN). Figure
shows a generic (feed-foward) neural network.

In this work only four activation functions will be described, but the reader is
pointed to [30] in order to check the different activation functions and their applica-
tions.

The first three activation functions to be described are the ReLU, the sigmoid and
the hyperbolic tangent functions, respectively defined as:

ReLU(z;) = maxz(0, z;) (2.2)
1
o(z) = m (2.3)

exp(zi) — exp(—2i)

tanh(z;) = exp(z;) + exp(—2)

(2.4)

where exp(z) = e*. Nowadays, it is common to use the ReLU function as the activa-
tion function of the hidden layer, but the other two are also used in some cases. The
last activation function which will be mentioned is the softmax function, defined over
a vector z, where each output is defined as:

softmax(z;) = o) (2.5)

225 exp(z;)

6In the particular case of k = 0, in order not to lose generality it can be considered that s? =z,
where z is the input to the neural network.

DSIC, UPV 7
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Input Hidden Output
layer layer layer

Figure 2.1: General structure of a neural network. In this neural network,

Mo =i, M1 = j and M2 = k. Each neuron m is connected with every other

neuron n of the following layer by a weight, which is usually represented as

0 nm. The biases of the network, which provide a fixed coefficient of 41, are
not included in this figure.

This function defines a probability distribution among all elements of z. As a con-
sequence, it is generally used as the activation function of the output layer, taking
advantage of the discriminative power of neural networks.

The set of network weights 6 can be learned through the backpropagation al-
gorithm. In this algorithm, each sample is processed until the output layer. The
derivative of the error is then brought back until the input layer. Finally, a new set
of weights 6’ can be calculated, modifying each weight proportionally to the error
obtained. For a formal description of the algorithm, the reader is addressed to [39].

A neural network can have more than one hidden layer (usually more than two).
In this case, it is called a Deep Neural Network (DNN). This allows for a better
sample representation, since DNNs learn a feature hierarchy: the hidden layers which
are closer to the input layer represent low-level, local features, while the hidden layers
closer to the output (usually softmax) layer represent high-level, invariant features
which help the classification process [57].

8 DSIC, UPV
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2.3 State-of-the-art neural network architectures

Nowadays, there are many types of neural networks. In this section, the neural net-
work architecture used in this work will be described, the Recurrent Neural Network
(RNN). Moreover, other interesting types of neural networks will also be outlined.

2.3.1 Recurrent neural networks

Recurrence is defined as “the fact of happening again’ﬂ This definition implies a
temporal sequence, and dependencies among periods of time. A Recurrent Neural
Network (RNN) is able to capture this information and the underlying dependencies
thanks to its recurrent connections, that is, connections among neurons that form
a directed cycle, creating a memory expressed as internal states [57]. Therefore,
RNNs are well-suited to model temporal sequences, which has been shown by their
excellent performance for a very long time. Near their introduction to the field of
ASR, RNNs were able to improve the already established state of the art in phoneme
recognition [36]. Today, this architecture is widely used in ASR.

Inside the recurrent-based architectures, the Long Short Term Memory (LSTM)
architecture [I7] can be found. This architecture enhances the capabilities of the
RNNs by identifying the exploding or vanishing gradient problem as a source of errors
of an RNN and establishing an LSTM cell as the essential unit. This cell is composed
of three types of gates: input gates, in charge of controlling the flow of information
entering the cell; output gates, which control the flow of information leaving the cell;
and forget gates, that control whether the information inside the cell disappears or
not. The cell also learns a set of weights to optimally combine these parameters [17].
Figure shows the basic structure of an LSTM cell.

The Bidirectional LSTM (BLSTM) architecture adds bidirectionality to LSTMs,
which is achieved by splitting the desired layer in two parts: one that analyzes the
temporal sequence in the forward sense, and another that analyzes it in the backward
sense. These are referred to as the forward and the backward states respectively. The
input at time t to the BLSTM, z;, is therefore

Ty = [ELE]

where 7, and ¥; are the result (at time t) of analyzing the sequence in the forward
and the backward sense, respectively [42]. Figure shows the generic bidirectional
schema, while Figure shows the common structure of a BLSTM network applied
to speech recognition. In it, the division of a BLSTM layer in forward and backward
neurons can be seen. Each of these groups is connected to both groups of the following
layer in order to have full information from the analyzed sequence.

"recurrence. Cambridge Dictionary. https://dictionary.cambridge.org/dictionary/english/

recurrence. Last accessed: 11-09-2021.

DSIC, UPV 9
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St

©

ft 1y —> tanh
1 o l
G G0

hi ?

Tt

Figure 2.2: Internal view of an LSTM memory cell. In the figure, x¢, h¢
and s; are the input, the output and the cell state at time ¢, while f;, i; and
o; are the forget, input and output coefficients at time ¢, which regulate the
flows through the LSTM. Circles with +, x and - denote the multiplication,
the addition and the concatenation operations, while squares labeled with o

and “tanh” denote the sigmoid and the hyperbolic tangent activation
functions, respectively.

Ot—1 Ot 0t—1 Ot Ot+1

ft* 1 ft ft+1

N ~N N
ft— 1 ft
N N N

bt,1 bt bt+1

-1 iy -1 it lt41
(a) Unidirectional recurrent network (b) Bidirectional recurrent network

Figure 2.3: Unidirectional network (left) versus bidirectional network
(right). These images correspond to an unfolded recurrent neural network.
In a time instant ¢, f; and b; are the forward and the backward part of the

bidirectional network, i, is the input to the layer, and o; is the output of the
layer (both of which may be another layer).
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FORWARD; BLSTM; BACKWARD;,
——
FORWARD, BLSTM, BACKWARD:;
——
FORWARD3 BLSTM3; BACKWARD;
OUTPUT
01 02 03 On,

Figure 2.4: Structure of a basic BLSTM network oriented to speech
recognition. The input to the network is meant to be the feature vectors
obtained by the preprocessing of the windows considered in the audio,
marked as dashed rectangles in the figure. Each output o; is the probability
of the i-th acoustic phenomenon taking place in the leftmost window.

2.3.2 Other neural network architectures

Besides the ones described above, there are many other types of neural network archi-
tectures. Two of the most well-known architectures are the Transformer architecture
and the Convolutional Neural Network (CNN), both of which will be briefly outlined
in the following:

e The Transformer architecture is a novel encoder-decoder architecture paired
with the idea of attention, which allows modeling dependencies without taking
into account the distance of the sequence [48]. These attention mechanisms were

DSIC, UPV 1 1
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generally paired with an RNN. The Transformer, however, is not supported on
recurrence, which allows more parallelism in the training phase. Instead, it
uses self-attention (attention computed over a sequence in order to produce a
representation of such sequence) in order to relate two arbitrary elements in a
time which is constant with respect to the relative distance of the elements [48)].

e Convolutional Neural Networks (CNNs) apply the convolution operator (element-
wise multiplication) to a map with respect to a set of convolutional kernels (also
called filters or simply kernels) in order to obtain a new map for each kernel
used. In a CNN, these kernels are grouped in layers called convolutional lay-
ers. It is also common for convolutional layers to be followed by pooling layers,
which reduce the size of the resulting maps and group information with respect
to local information obtained from the map, usually the maximum or average
value of the considered area. Due to their nature, they have been widely applied
to image recognition.

Both of these architectures have been used in ASR. Their usage will be described
in Section 2.8.2

2.4 Statistical ASR

ASR is encapsulated inside the branch of engineering known as Pattern Recognition
(PR), which deals with the automatic discovery of patterns in a usually large amount
of data [7]. In these types of statistical classifiers, the Bayes’ formula is usually
applied. This formula relates the posterior probability of a class given a sample with
the posterior probability of the sample given the class through the following equation:

P(xz|c)- P(c)

Pe|x) = Pl

(2.6)
where z is the sample (usually expressed as a vector) and c is the class of the sample.
When talking about classification, that is, looking for the most fitting class ¢ to the
sample z, the highest probability P(c | ) must be found:

¢ = argmax P(c | ) = argmax Plale) Ple) = argmax P(z | ¢) - P(c) (2.7)
ceC ceC P(x) ceC
where C' is the set of classes of the problem. The denominator P(z) can be safely
dropped since a maximization with respect to ¢ is taking place, so P(z) will be a
constant and thus irrelevant to the maximization.

The challenge that comes with PR systems which rely on Bayes’ formula is the
difficulty of estimating both P(z | ¢) and P(c). These probabilities must be approxi-
mated, since the number of possible inputs that the system can receive is potentially
infinite. In this case, a model is defined. This model should allow capturing features
of the problem at hand, learning patterns of the seen samples that allow their correct
classification while learning to distinguish among the different classes for handling
potentially unseen data.

].2 DSIC, UPV



2.5. Acoustic preprocessing

In the field of ASR, the sample x is usually substituted with a sequence of acoustic
vectors a} = aj1as . ..ay that represent the audio sample, while the class ¢ is normally
substituted with a sequence of words wi® = wjws...w,,. The substitution of the
relevant terms in Equation [2.7] yields as a result the following optimization:

w = argmax P(w{" | af') = argmax P(a} | wi*) - P(w{") (2.8)
witeW* witeW*

where W* is the set of possible sentences in a language. It is also usual to work with
the corresponding log-probabilities:

w = argmax log(P(a} | wi") - P(w]")) = argmax log P(a? | wi*) + log P(w*) (2.9)
wrew wrew

The model that estimates the probability P(a} | wi*) is referred to as the acoustic
model, while the model that estimates the probability P(w(*) is called the language
model. This work will mostly focus on extracting different acoustic models based on
BLSTMs, while the language model will be given.

2.5 Acoustic preprocessing

As with many other types of systems, ASR systems do not usually work with raw data.
Prior to being able to train the system and obtain the transcriptions of a given audio
sample, the acoustic data needs to be preprocessed. This procedure tries to capture
the most relevant features of the acoustic sample, and yields as a result a sequence
of acoustic features referred to as af’ in the previous section. In the following, the
process of extracting an arbitrary acoustic vector a; will be explained [I1] [23ﬂ

In order to follow more easily the process as a whole, the notation of a vector
will include as a subscript the (usually three) first letters of the process by which
it was extracted; the vector’s i-th position will be declared between parentheses.
For instance, Tyaw(n) would denote the n-th element of the raw audio. Moreover, the
multiplication will be explicitly stated through the - operator most of the time, except
in obvious cases such as 27.

The first step is to split the audio stream into equally-sized windows. The size of
these windows should be on the order of milliseconds, big enough to capture a speech
sound but small enough so that at most one speech sound is captured. Common
measures for obtaining the windows are 25 ms of window length, and 10 ms of shift
from one window to another. This creates a sequence of overlapped windows, each of
which will be eventually converted to the desired acoustic vector a;.

The next thing to be done after obtaining the windows is to subtract the mean to
each window. If this step was not performed, the frequential analysis would include
additional, unimportant data in the output [16].

8The specific chapter which supports this section is Chapter 9. The respective information in
the draft of the book’s third edition can be found in Chapter 26. Such draft may be found in
https://web.stanford.edu/~ jurafsky/slp3/, which was updated on 30-12-2020. Last accessed:
11-09-2021.
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After removing the mean, the next step applied is called preemphasis, and consists
of applying to the waveform a formula similar to a derivative function in order to
capture the most relevant changes of the audio signal, balancing the power of high
frequencies with respect to low ones. The resulting audio signal xp,. is computed as:

Zpre(N) = Traw(n) — k - Traw(n — 1) (2.10)

where Z,.y is the original audio signal and 0.9 < k£ < 1.0 is a coefficient which controls
the factor in which the previous signal is considered. Note that this operation may
need elements from the previous window, which should be provided as needed.

Since the frequential analysis through the Fourier transform requires the waveform
to be periodic, it is useful that both the beginning and the end of the waveform are
not abruptly cut. To do this, the sides are faded in and out by using a windowing
function [16], which is applied to the waveform in the following way:

and(n) = xpre(n) ' w(n) (2'11)

where w(n) is the chosen windowing function. There are many windowing functions,
but one of the most commonly used is the Hamming function, whose corresponding
w(n) is the following:

- (2.12)
otherwise

() = {0.54 —0.46-cos(Z2) 0<n<L—1
0
where L is the window length. Using this window function gives rise to the Hamming
window. Since the values at the edges of the function are small (which is intended
in order to make the window fade in and out), windows should be overlapping, since
otherwise information would then be missed during the analysis [16].
Then, the Discrete Fourier Transform (DFT) is applied to the resulting windows
to convert a signal from the temporal domain into the frequential domain. The basic
formula of the DFT is the following:

N-1
.m-n
ropr(m) = HZO Tuna(n) - exp (=27 i T) 0<m<N-1 (2.13)

where i = /=1, exp(x) = e and N is the number of frequency components that
need to be extracted. This formula not only obtains the frequencies and their phases,
but also the magnitude of each respective frequency, which in this case corresponds
to the energy or amplitude. A common and efficient way of implementing the DFT is
through the Fast Fourier Transform (FFT) algorithm, whose only limitation is that
N is a power of two.

With the output of the frequential analysis, the non-linearities present in the hu-
man hearing can now be modeled: lower frequencies are much better discriminated
than higher frequencies. This allows for a less refined classification by placing the
different frequencies in buckets, while still maintaining the general frequency infor-
mation, which is done by applying mel frequency filter banks. These get their name
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from the mel scale, calculated as follows:

f
=1127-In {14+ = 2.14
mel (f) 7 n< + 700 (2.14)
Every filter (also known as channel) of the filter bank maps to a single dimension of

the final vector. Figure [2.5] shows a filter bank consisting of 16 filters.

1

Weight

[ | | | | |
0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000
Frequency (Hz)

Figure 2.5: Mel filter bank consisting of 16 different filters. Each of the
different filters corresponds to a triangle.

The contribution of a frequency k to each of the filters composing the filter bank
H,,, can be calculated in the following way:

oo fm—1) <k < f(m)
Hp(k) = § 5250y fm) <k < f(m+1) (2.15)
0 otherwise

where m is the m-th filter, and f(m—1), f(m) and f(m+1) are the left side, center and
right side of the m-th filter, defined by the conversion of three equidistant frequencies
(measured in hertz) to the mel scale. Finally, the contribution of every frequency to
each element of the final vector is calculated by iterating over all frequencies:

reni) = gxmw) H,, (Fm ~ 2) (2.16)

where F), is the sampling frequency. Since the output of the DFT is supposed to be
symmetrical, it is enough by iterating over the first half of its output.

After obtaining the mel filter bank features, they are subject to a logarithmic
transformation, which also tries to model the human hearing but this time with
respect to energy: lower amplitudes are discriminated better than higher amplitudes.
This operation is trivially defined as:

10g(i) = log(zrp (i) (2.17)

DSIC, UPV 15



Chapter 2. Fundamentals of Automatic Speech Recognition

After this step, the inverse Discrete Fourier Transform is applied. This operation
transforms the frequential data back to the temporal domain, obtaining the cepstrumﬂ
It is applied in order to decorrelate the output of the filter banks, and it is implemented
through the Discrete Cosine Transform (DCT):

N i
zpor(i) = Y T1g(j) - cos <N (5 - 0.5)) (2.18)
j=1

where N is the number of filters in the filter bank.

Finally, both the derivative (delta) and second derivative (double delta) are com-
puted by taking previously computed vectors as required. These deltas are appended
to the vector xpcor, creating a new vector xyrcc. Each of the features of this new
vector is called Mel Frequency Cepstral Coefficient (MFCC) feature, and the whole
vector is often called MFCC vector.

The full process historically done was described for completeness. However, as
of today, the logarithm of the filter bank acoustic vectors (ziog, also called log-mel
filter bank coefficient vectors) is used as input of DNNs, using many filters in order
to obtain a better resolution (for instance, this work uses 85 filters when obtaining
the feature vectors), in some cases adding the delta or double-delta features. Using
these acoustic vectors has shown better results than converting the data back to the
temporal domain and using the traditional MFCC vectors instead [57].

2.6 Data augmentation

Data augmentation refers to the set of techniques applied to the data used during
the training phase that slightly change its representation so that the system does not
overfit to the data in the train set. Data augmentation in ASR usually modifies the
spectrogram or the audio itself.

One of the most well-known data augmentation techniques in ASR is SpecAug-
ment [32]. This technique was proposed in 2019 and it resembles other techniques
coming from different domains, such as cutouﬂ or random erasingiﬂ in image pro-
cessing. It works at the spectrogram level, directly affecting the feature vectors, and
proposes three kinds of modifications:

e Moving the signal in the temporal line. This is carried out by shifting the
acoustic signal for a small amount.

e Masking the signal in the frequency domain. This can be done by taking con-
secutive frequency channels, and applying to them the wanted masking value.

9The ceps- prefix in cepstrum is the inverse of the prefix spec- in spectrum.

10T, DeVries and G. W. Taylor. Improved Regularization of Convolutional Neural Networks with
Cutout. In arXiv:1708.04552, 2017.

117, Zhong, L. Zheng, G. Kang, S. Li, and Y. Yang. Random Erasing Data Augmentation. In
arXiv:1708.04896, 2017.
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e Masking the signal in the temporal domain. This is achieved by taking consec-
utive time steps, and applying to them the wanted masking value.

The masking value is usually zero, which implies that no information is kept in the
masking process. This process prevents overfitting and grants improvements with
respect to models that do not use this data augmentation technique [32].

Another data augmentation technique is speed perturbation [25]. This technique
slows down or speeds up the audio waveform by time-warping it through a parameter
denoted as « in the original paper, and calculating the new signal at time ¢ as zgp (t) =
Zpaw(Qt).

The last interesting data augmentation technique to be mentioned is noise injec-
tion [65], which artificially adds noise to an otherwise noise-free dataset. This noise
can either be created or taken from another dataset specialized in background noise.

2.7 Acoustic modeling: Hidden Markov Models

This section will establish the foundations of acoustic modeling, so that the reader can
fully understand the next section, which will discuss the state of the art in acoustic
modeling.

As it has been mentioned in Section [2.4] the acoustic model is in charge of estimat-
ing P(a} | wi), that is, the probability that a sequence of feature vectors is generated
by a sequence of words. Acoustic preprocessing helps by extracting the most relevant
features of the audio, but how to treat these feature vectors is still unknown.

To understand the model used, the problem will be better defined: ASR deals with
an undefined number of feature vectors on every utterance, since each of them has
variable length which is unknown beforehand. As a consequence, it is not straightfor-
ward to apply techniques such as support vector machines or neural networks due to
this fact. Instead, a model which is able to represent and identify temporal changes
is needed. Graphical models are suitable for this task since they are able to repre-
sent probabilities and logical structure in terms of graphs. In this framework, Hidden
Markov Models (HMMs), are suitable to represent temporal sequences.

As a reminder, HMMs consist of states that have transition probabilities among
them; after transitioning, a symbol is emitted. More formally, an HMM H is defined
as

H=(Q,%,A B, (2.19)

where @ is the set of states of the model, 3 is the set of possible symbols that can
be emitted, A is the transition matrix that holds probabilities of transitioning from
a state g; to another state g;, B is the emission matrix which stores the probability
of emitting any symbol o; in a given state ¢;, and 7 is a vector that establishes the
initial state probability [34]. HMMs are based on the Markov assumptions:

1. The state where the model is at time ¢, g;, only depends on the state where the
model was at time ¢t — 1, q;_1.
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2. The probability of transitioning at time ¢ from a state ¢; to another state g;11
is independent of the time ¢ in which this decision is taken. That is, these
probabilities are stationary.

3. The probability of emitting a symbol o; at time ¢ on a state ¢; only depends on
the state ¢; itself. This probability is also independent of the previous symbols
emitted oﬁ_l = 0103 ...0¢_1.

The previous definition and assumptions result in a first order HMM. These assump-
tions hugely restrict the model, but they greatly help when formalizing the definitions,
as it will be seen in the following paragraphs.

HMMs oriented to ASR are usually composed of three states, emit acoustic fea-
tures and are usually represented by means of a strictly linear topology, in which there
are transitions to the own state (loops) and to the next one. In principle, they could
be identified by phoneﬂ each tri-state HMM representing a different phone. How-
ever, additional context for the identification of a phone is desired, since the phone’s
context may modify its respective spectrogram, which is represented in a (slightly)
different acoustic feature. This is the main reason why triphones are introduced. Tri-
phones are phones that consider their context both to the left and to the right, and
are commonly defined as p;—p2+p3, where po is the phone to be identified, and both
p1 and p3 are the phone’s context.

The introduction of triphones carries additional problems. If there are N phones
in a certain language, there will be N3 triphones. Some of them will never (or barely)
be seen in the training phase. Therefore, there will be some HMM states of the
different triphones that will not have enough information to estimate their own emis-
sion probabilities. This is why HMM states are grouped by their acoustic similarity
with respect to the HMM states of other triphones, which gives rise to the tied state
triphone, or senone [18].

Senones are used in order to identify the corresponding probability function of a
certain HMM state which can be shared among different HMM states. They are usu-
ally grouped through a Classification And Regression Tree (CART), which normally
contains linguistic information and can be queried to know the senone that a certain
HMM state points to. Figure [2.6] shows a graphical representation of this type of
parameter sharing with Gaussian mixture models as emission probability distribution
functions, also called GMM-HMM model.

Keeping in mind the information given in the previous paragraphs, the HMM that
models a word w can be obtained by finding the sequence of triphones that compose
w, and then concatenating together the HMMs corresponding to that sequence. Simi-
larly, one can build an HMM for a sentence w]* by concatenating the HMMs obtained
by the different words that compose the sentence (a process that will be formally de-
fined in Section . Since this HMM emits acoustic features, it is possible to obtain

12Technically, one could model phones: “distinct speech sound or gesture, regardless of whether
the exact sound is critical to the meanings of words”, as well as phonemes: “speech sound [...] that,
if swapped with another phoneme, could change one word to another”. As it can be seen, both
definitions are quite similar, and only differ from a word perspective. However, in order to follow the
literature, the “phones” notation will be used from now on. Source for the definition of phone and
phoneme: https://en.wikipedia.org/wiki/Phone_(phonetics)| Last accessed: 11-09-2021.
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TR

Figure 2.6: Graphical representation of parameter sharing by the HMM

states. The emission probabilities of each HMM state are modeled by the

senones, and each senone may model one or more HMM states’ emission
probabilities.

P(a} | w)¥| by applying the Viterbi formula:

P(af [ wy®)

Y Plai,si) =Y P(sq)P(af | s7)

sres steSs
n (2.20)
~ Y J[PGsi|si-1)Plai| s:)
spesSi=1

where S is the set of every possible state sequence that may appear in the corre-
sponding HMM (note that the length of each sequence must be exactly n). In the
previous equation, P(s; | s,—1) denotes the transition probabilities (obtained by the
matrix A in the HMM definition), while P(a; | s;) references the emission probabilities
(obtained by the matrix B in the HMM definition).

As it has been previously introduced, the emission probabilities of the HMMs can
be estimated through Gaussian mixture models, which gives rise to the GMM-HMM
model. However, more modern approaches use a DNN as a probability estimator.
This yields some advantages, the most obvious of which is better results because of
the DNN’s strong representation power [57]. Another advantage worth mentioning is
a more noise-robust model [43].

The combination of HMMs and DNNSs creates the DNN-HMM hybrid model, also
called CD-DNN-HMM (Context-Dependent DNN-HMM) hybrid model if senones are
being modeled. In this case, because of the disciminative ability of the DNNs, the

13 w]® is “syntactic sugar” that refers to the state sequence of the HMM built with the sentence

wi", so for simplicity it will be discarded after the first equality for better readability of the whole
equation.
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formula that supports this model slightly changes with respect to Equation [2.201"}

P(af |wi") = ) Plaf,sf) = D P(s})- Plaf | s7)

snes snes

= Z HP(Si | si—1) - Pla; | s:) (2.21)

snesi=1

D PR AR ()

spesi=1 P(si)

Again, S refers to the set of every possible state sequence of the HMM, and P(s; | ;1)
references the transition probabilities of the HMM. However, by applying the Bayes’
formula on P(a; | s;), more terms appear: P(s; | a;) can be obtained by examining the
output of the DNN whose input is a; (which implies that the network acts as a senone
classifier), P(s;) is the a priori probability of the senone, and P(a;) is the probability
of finding the acoustic vector a;. However, it is reminded that this probability is
included in a maximization (Equation [2.8or [2.9)). P(a;) is the same regardless of the
word sequence wi*, and therefore it can also be discarded.

As it has been introduced in the previous paragraph, the DNN which models the
probability P(s; | a;) acts as a senone classifier. This can be enforced by setting a
softmax as the last layer’s activation function, which guarantees a probability distri-
bution among all outputs. Note that in this case, for the network to be able to classify
senones, the number of neurons in the output layer should be equal to the number of
senones.

To conclude this section, it is worth noting that an architecture based on HMMs
is not the only possible architecture in order to address ASR. Other architectures
have emerged over time, such as transducer models [6]. Transducers are end-to-end
models, which means that they directly learn to map a sequence of acoustic features
to a sequence of graphemes or words through a single system, instead of relying on
acoustic and language models separately [50)].

2.8 Acoustic modeling: DNN-HMM hybrid approach

As it was previously mentioned, as of today HMMs are generally paired with DNNs.
However, it is common to use architectures more advanced than the feed-forward
network, in which the output of a layer is the input of another one, and information
can only go forward. Recurrent-based architectures, which give support to this work
and will be analyzed in this section, have become the state of the art in acoustic
modeling. However, there are other promising architectures which will be briefly
discussed as well.

14The same reasoning as Footnote [13| has been applied.
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2.8.1 Recurrent-based acoustic modeling

As previously mentioned, an RNN can be used as the acoustic model in the hybrid
DNN-HMM model. This implies that both the LSTM and the BLSTM models can
also work as the acoustic model. This work will focus on the so-called BLSTM-
HMM hybrid model [I5] by developing several acoustic models based on the BLSTM
architecture. This has been the predominant hybrid model for a long time, achieving
many successes throughout the years |20, 27].

As a note, a drawback of this model when used for real-time acoustic modeling is
that, theoretically, the whole utterance should be obtained before starting the decod-
ing process because of how the backward part of a BLSTM works. As a consequence,
some models are proposed based on limiting the future information to N frames. An
effective idea is the one proposed by the latency-controlled BLSTM, in which the
backward part can only look N frames ahead [58].

2.8.2 Other acoustic model types

Attention-based models have recently gained traction in ASR. However, the state-
of-the-art Transformer cannot be directly used in hybrid systems as the acoustic
model, since the original Transformer is a sequence-to-sequence architecture based
on attention. In [51], several layers inspired in the Transformer are stacked together,
creating an acoustic model and substituting the BLSTM in the BLSTM-HMM hybrid
architecture. According to the original paper, this yields improvements over the
BLSTM-HMM architecture.

Convolutional Neural Networks (CNNs) have also been used in acoustic modeling.
In the case of acoustic modeling, they require features which are correlated in time
and frequency, which means that MFCC vectors are not suitable to be used because
of the decorrelation obtained after the DCT step. However, using data in the spectral
domain points to improvements with respect to the DNN-HMM architecture [3, [41].

Those readers interested in a detailed study of recent techniques for acoustic mod-
eling are addressed to [58].

2.9 Decoding

The decoding or inference step is the process by which the system extracts a sequence
of labels given a sequence of inputs. In the case of ASR, labels correspond to words,
while the inputs correspond to the acoustic vectors extracted in the preprocessing
stage.

In hybrid models, this can be done by creating a Finite State Transducer (FST).
An FST is similar to a Finite State Automaton (FSA), but instead of having a single
symbol on each edge which the automaton “follows”, each edge now has an input
symbol, an output symbol. Two types of FSTs particularly interesting in this case
are the Weighted Finite State Transducer (WFST) and the Weighted Finite State
Acceptor (WFSA). A WFST also has in each edge a weight which maps symbols
from input to output (which acts as a transition cost). Therefore, a path in a WFST
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maps a sequence of input symbols to a sequence of output symbols [28]. A WFSA is
a WFST whose input and output symbols in each edge are the same.

Let o be the composition operator for FSA but applied to WFST and WFSA
(described in [28]); H a WFST which maps HMM states to context-dependent phones;
C a WFST which maps context-dependent phones to phones; L a WFST which
represents a lexicon that maps phones to words; and G a WFSA which represents
a grammar that obtains gramatically correct sentences with respect to the language
desired to recognize. The composition

N=Ho(CoLoG (2.22)

yields as a result an FST N which maps HMM states to sequences of words restricted
to the grammar G [28]. However, a more compact FST is desired for a faster de-
coding. This can be obtained by optimizing the computation of N through a series
of operations. Let min(-) and det(-) be the equivalent of the minimization and de-
terminization operations for FSA but applied to WFST and WFSA (also described
in [28]). The composition

N’ = min(det(H o min(det(C o min(det(L o G)))))) (2.23)

yields as a result an FST N’ = N which is more compact than N, and therefore
traversing it can be done in a more efficient way. Figure shows the basic compo-
sition of these structures in the decoding step.

This FST can be represented by a trellis or decoding graph, depicted in Fig-
ure[2.8] In this trellis, the horizontal direction represents the different feature vectors
extracted from the utterance during the preprocessing step, and the vertical direction
represents all HMM states product of the previously shown composition. In the trellis
represented by HMMs following the strictly linear topology, there are transitions from
a state ¢; to another state g; in these conditions:

1. Whenever both states are part of a triphone HMM. These are the usual transi-
tions inside the tri-state HMM.

2. Whenever the lexicon L allows it. This lexicon splits a word into its respective
phones, from which triphones can be extracted. In this case, ¢; must be the final
state of the HMM that models a triphone z, ¢; must be the beginning state of
the HMM that models a triphone ¥, and x must be found before y in any of the
words in the lexicon.

This trellis can be analyzed by means of the Viterbi algorithm, an algorithm which
may be optimized by dynamic programming. The final word sequence uttered can be
computed during the search of the best path by examining the lexicon, and finding
the sequence of phones that form each word. Even then, it is very costly to keep in
memory the whole search process due to the fact that, in the worst case, V' potential
words can start at each time ¢, being V the length of the considered vocabulary.
Moreover, using non-trivial language models (such as trigrams) increase the search
space [35].
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The bear is fierce

Figure 2.7: Composition of the different FSTs H, C, L and G. The weights
and the output symbols have been omitted for clarity. Squares represent
information coming from the previous level. The dashed square represents
the two phonetic transcriptions of the word “bear”, /ber/ and /bes/, which
have been obtained from the Cambridge dictionary
(https://dictionary.cambridge.org/).

In practice, an algorithm known as beam search is combined with the Viterbi
algorithm. This algorithm stores the N best paths and prunes the rest, being N a
parameter of the algorithm called beam size. Although optimality is not guaranteed,
in practice it allows an effective and efficient decoding, since it removes from the
search all sequences which are less likely to succeed.

Still, the searching process is expensive with a complex language model. Nowa-
days, a two-step decoding process has become popular, in which the first pass is done
with a relatively basic language model, and in the second pass the most promising
paths are rescored with a bigger language model [29] 22]. However, a one-step de-
coding process with LSTM language models subject to real-time constraints has been
achieved by using implementation tricks which are able to speed up the process, such
as not computing all outputs of the softmax layer at each step [22]. This was later
replicated with Transformer language models in [5].
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Figure 2.8: Representation of the decoding step by means of a trellis. The

first column represents the concatenation of the different HMMs. This trellis

is divided into n sections, being n the number of frames or acoustic features
from the sample.

2.10 ASR Evaluation

In ASR, it is essential to have universal measurements that are able to compare dif-
ferent systems. The most common evaluation measurement is the Word Error Rate
(WER), which compares the minimum amount of insertions, deletions and substitu-
tions needed for the obtained transcription to become the reference transcription and
is calculated in the following way:

WER = IJF@'*S (2.24)
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where |R)| is the length of the reference transcription measured in words, and I, D and
S are the minimum number of insertions, deletions and substitutions needed for the
system output to become the reference transcription R. This measurement is similar
to the Levenshtein distance and it is usually multiplied by 100 in order to yield a
percentage. Notice that it could reach a figure higher than 100% since the potential
number of insertions I is unbounded.

Another evaluation measurement is the Senone Error Rate (SER), defined in the
following way:

|Sinc‘|
|Stot.|

where |Sinc.| and |Siot.| are the number of incorrect and total senones analyzed re-
spectively. This measurement is not as common as the WER, but it will be of use in
this work in order to establish a comparison between the performance of the different
acoustic systems during the training phase.

SER = (2.25)
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CHAPTER 3

PROJECT DESCRIPTION, DATASET
AND TOOLS USED

This chapter describes the main projects in which this work has been developed.
Moreover, the speech dataset in which this work has been supported is analyzed.
Finally, the core tools used in this work are introduced.

3.1 Multisub and CAR research projects

In this section, both of the projects that support this Master’s Thesis, Multisub and
Classroom Activity Recognition, are described. Both projects are created in or-
der to boost Open Education, while Multisub also addresses Parliamentary Openness.

Open Education (OE), also known as the Open Educational Resources (OER)
movement, promotes a new style of teaching and learning through the use of new
technologies. It aims at providing open access to high-quality educational content,
usually digital, on a global scale. This can be achieved by the negligible cost of
reproduction derived from the widely extended usage of technology [8].

Parliamentary Openness (PO) is defined as “increased commitment to openness
and to citizen engagement in parliamentary work” [53]. It strives to promote a cul-
ture of openness, achieve transparency in parliamentary information, make this kind
of data more accessible to the general public and enable its electronic communica-
tion [53].

As it will be seen in Section due to the nature of the dataset, it is expected
that the systems developed as a part of this work focus on OE. However, these systems
could also be applied to PO.

3.1.1 Multisub

The first project which enables the work described in this document is Multilingual
subtitling of classrooms and plenary sessions (in the following Multisub),
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a three—yearﬂ project funded by the Ministerio de Ciencia, Innovacién y Universi-
dades de Espana under reference RT12018-094879-B-100 (MCIU/AEI/FEDER, EU),
addressed by the MLLP-UPV group.

The objective of this project is to generate high-quality automatic transcriptions
and translations of real-life scenarios by using both ASR and MT technologies. In
this sense, OFE and PO are the core application areas of this project.

The main challenges of this work related with the Multisub project are the fol-
lowing:

e Channel variability noise and reverberation: as it will be detailed in [3:2] there
are two sources of recordings (clip-on and camera), one of which is noisier than
the other. However, it is desired that the different systems developed work
nicely for both types of audio, and specially for the noisier source of audio.

e Far-field speech recognition: some microphones allow capturing long-range in-
teractions, the source of which is located far away from the device. An example
of this could be a student asking a question to the lecturer.

e Multitalker recognition: in an utterance, there may be more than one speaker,
such as in a classroom with teacher-student interactions. It is desired that the
resulting ASR system recognizes all of the interactions.

The project also covers other interesting points related to ASR:

e On-line speech recognition: an on-line ASR system should be able to transcribe
sentences as they are being uttered, that is, it should work in a real-time envi-
ronment, which implies additional constraints.

e Speaker diarization: it is the process that segments an utterance in different
parts depending on who is speaking, which can be used for instance to classify
a class recording on teacher or student interventions.

3.1.2 Classroom Activity Recognition

Another project in which this work has been carried out is the Classroom Activ-
ity Recognition (in the following CAR) project, a four—yealﬂ project funded by
the Conselleria d’Educaci6, Investigacio, Cultura i Esport de la Generalitat Valen-
ciana within the Prometeo grant for research groups of excellence under reference
PROMETEOQO/,/2019/111, which was addressed by the Valencian Research Institute
for Artificial Intelligence (VRAIN).

The main objective of the CAR project which can be found in this work is the
provision of high-quality automatic transcriptions of classroom video recordings. As
in the Multisub project, this also implies far-field speech recognition, as well as
speech enhancement by trying to find a mapping between noisy and clean audio.

Other relevant objectives considered by the project are:

LGrant period: 01/01/2019 - 31/12/2021.
2Grant period: 01/01/2019 - 01/01/2023.
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e Provision of an automatic classification of activities from classroom transcrip-
tions: an automatic classifier of different types of class interactions needs to be
built. Readers interested in this topic are addressed to [37], which highlights
recent work made in this direction.

e Provision of a behavioral pattern model of students and lecturers: this objective
explores causal and temporal dependencies among the different class interactions
detected, and intends to create behavior models for teachers and students.

e Provision of an academic performance assessment model: the models are ana-
lyzed, and discrete variables such as “time spent on explaining theory”, ‘num-
ber of posted questions by the lecturer” or “number of asked questions by fe-
male/male students” can then be extracted and subsequently examined in order
to determine the most influential factors.

3.2 Videoapuntes dataset description

Videoapuntes is a project launched by the UPV in 2012 with the main aim of produc-
ing high-quality classroom recordings which include audio, video and the slides used
by the teacher. The resulting recordings are made available online on the virtual UPV
platform PoliformaT. The video repository in which these recordings are stored, also
called Videoapuntes, contains as of today more than 50000 hours of video recordings,
a number which greatly increased these last years due to the COVID-19 pandemic
and the fact that most of the classes were recorded.

The dataset used in this work is a representative subset of Videoapuntes com-
posed of a total of 487 classes lectured at the UPV, which is translated to more
than 700 hours of recordings in total. However, audio is duplicated since there are
two main sources of audio which record the same class at the same time: a lapel
or clip-on microphone (“clip-on microphone” or simply “clip-on” from now on), and
a microphone integrated in the webcam available in the class (“camera microphone”
or simply “camera” from now on). This means that the real length of the dataset is
double the previous amount, roughly 1400 hours.

Even though both the clip-on and the camera microphones record the same lecture,
they do so differently. The clip-on microphone only captures the lecturer’s voice and
features both integrated noise reduction and high audio quality. In contrast, the
camera microphone captures a lot of background noise but it is intended to be seen as
a far-field microphone, that is, a microphone which is able to capture sounds whose
origin is located far away, like interventions from students.

In this regard, it is interesting to cite the paper that explored data augmentation
by artificially injecting noise: “[...] learning multiple types of noises [in DNNs| are
not only possible, but also complementary” [55]. A DNN, thanks to its discriminative
capabilities, is able to learn complex boundaries even in the presence of noise and
recognize them separately. This gives support to the theory which states that the
acoustic model developed in this work could be trained with both sources of audio,
performing great in both of them at the same time.
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In real-life situations, the camera microphone is the most common source of audio
due to the fact that it is very common for a classroom of the UPV to be equipped
with a camera which is able to stream the lecture; the camera is usually in charge of
transmitting both audio and video. However, it is less common for the clip-on micro-
phone to take an active part in a lecture, since it must be requested and sometimes
synchronized beforehand. This is why it is desirable that the developed systems per-
form nicely in the camera part of the dataset, even when it is noisier than the clip-on
counterpart.

In the dataset there is a large volume of unlabeled data available (train partition
or set), and there is also a smaller volume of manually transcribed data (developmentﬂ
and test partitions or sets). The transcriptions of the development and test partitions
were manually obtained by workers of the Servipoli Foundatiorﬂ It was not part of
this work to split the data into partitions, which were already given when the work
described in this document started. Table[B.I]shows the duration of the whole dataset
split in the respective train, dev and test partitions.

Table 3.1: Initial duration of the dataset, split in partitions.

Partition ‘ # lectures ‘ Clip-on rec. hrs. ‘ Cam. rec. hrs. | Total hrs.

Train 475 740.5 740.2 1480.7
Dev 6 11.7 11.7 23.4
Test 6 11.2 11.2 224

However, having two separate sources of real-life data carries additional problems:
data coming from both sources may not be perfectly synchronized, there are record-
ings where the audio coming from the clip-on microphone is cut, there are audios
which only contain background noise, or some recordings end abruptly, among other
problems. The most conservative approach, which has been taken in this work, is to
discard those recordings that show any anomaly similar to the ones stated above.

Discarding a recording took place if the offset between the clip-on and the camera
recording was too long. This offset was calculated by minimizing the difference of
energy and the zero-crossing rateﬂ between the clip-on and the camera recordings.
This reduced the available number of videos in the train partition from 475 to 433.
Table [3:2] shows the remaining duration of the dataset. The reader should notice how
the duration of both the clip-on and the camera recordings now reflect the same figure
in the train set, as opposed to Table 3.1}

As previously mentioned, most of the data was unlabeled, which is why the train-
ing transcriptions were obtained from the unlabeled train set by applying the most
recently developed Spanish ASR system by the MLLP-UPV research group, trained
with nearly 4000 hours of data coming from different sources [2I]. This system will

3In most of the document, this partition will be denoted as “dev”.

dwww.servipoli.es. Last accessed: 20-06-2021.

5“Rate at which a signal changes from positive to zero to negative or from negative to zero to
positive”. Source: https://en.wikipedia.org/wiki/Zero-crossing_rate. Last accessed: 11-09-
2021.
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Table 3.2: Duration of the dataset after synchronizing clip-on and camera
audio, split in partitions.

Partition ‘ # lectures ‘ Clip-on rec. hrs. ‘ Cam. rec. hrs. | Total hrs.

Train 433 655.1 655.1 1310.2
Dev 6 11.7 11.7 23.4
Test 6 11.2 11.2 224

be analyzed in Section [£.2]

The MLLP-UPYV system recognized the clip-on recordings, which allowed the ob-
tention of acceptable base transcriptions on both sources of data: the clip-on tran-
scriptions were used as the camera transcriptions since both sources were previously
synchronized. If the camera recordings had been transcribed with the baseline system,
the resulting transcriptions would have been much worse. This allowed the problem
to become a supervised one with recordings and their respective transcriptions, even if
these transcriptions were unsupervised. Obtaining these transcriptions was not done
by the author, and it is outside of the scope of the document.

3.3 Tools used

This section details the main tools used in order to develop the final acoustic models:
the transLectures-UPV toolkit (TLK) and TensorFlow.

3.3.1 TLK

TLK [I0] is an ASR toolkit capable of performing every task in the ASR pipeline:
acoustic preprocessing, training, and decoding. It is able to preprocess audio samples,
train GMM-HMM and DNN-HMM hybrid acoustic models, including BLSTM-HMM
models, and allows the integration of language models trained externally to the de-
coding step.

As a tool, TLK offers three high-level scripts which are defined in the following:

o tLtask-preprocess: it is in charge of preprocessing the samples in order to
extract the respective feature vectors. It can yield MFCC vectors, as well as
filter bank vectors.

e tLtask-train: it takes the feature vectors previously generated and trains a
model. It is able to train monophone and triphone models, as well as to convert
the triphone models into tied phone models and to perform speaker adaptation.
Internally, it uses the Baum-Welch and the Viterbi algorithms for parameter
estimation.

e tLtask-recognise: it is able to obtain the most probable hypothesis for a
sequence of acoustic vectors. To do so, it performs the Viterbi algorithm as
explained in Section [2.9
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3.3.2 TensorFlow

TensorFlow [2] is an open-source library created for machine learning. It enables
an easy environment of creation and training of machine learning models. When
developing a model, TensorFlow uses dataflow graphs in order to represent both the
computation in a specific algorithm and its state.

In this work, TensorFlow was used to train BLSTM-HMM acoustic models, since
training a neural network in TLK is internally performed by TensorFlow. More-
over, the labels (senones corresponding to each acoustic vector) were converted into
TFRecords, a TensorFlow format for storing sequential binary recordsﬁ which the
network can later process.

6Source: https://www.tensorflow.org/tutorials/load_data/tfrecord. Last accessed: 11-09-
2021.
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CHAPTER 4

ACOUSTIC MODEL TRAINING

This chapter details the process done in order to obtain the different ASR systems
which will be evaluated in the next chapter. First, an introduction to the training
pipeline and the strategies followed to train the different acoustic models will be
provided. Then, the training pipeline will be explained, and after that, the baseline
ASR system will be evaluated in order to check the performance of the acoustic system
with respect to the speech dataset. Finally, the training phase of the different acoustic
models will be described.

In this chapter and the following ones, some special terms will be used for clarity:

e The terms “clip-on audio” and “camera audio” will be used in order to refer to
audios captured by the clip-on microphone or the camera microphone, respec-
tively.

e The terms “clip-on WER” and “camera WER” will denote the WERs obtained
in the clip-on and the camera recordings, respectively.

4.1 Introduction

As it was seen when describing the speech dataset, there are two sources of audio:
clip-on and camera. Given this fact, several training strategies can be followed to
obtain competitive systems. In this work, two training strategies were followed:

1. The first one was to train from scratch different types of acoustic models in
order to compare their performances with respect to the acoustic model of the
baseline ASR system. In this regard, two types of acoustic models were trained:

e In order to check the behavior of the ASR system with respect to isolated
clip-on audios, the first one was trained from scratch only with clip-on
audio.

e The second acoustic model was trained with both clip-on and camera audio.
This system is justified by the fact that it is desired to evaluate the impact
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of using both sources of audio data with respect to the usage of isolated
clip-on audios.

2. The second strategy applied was to fine-tune the acoustic model of the baseline
ASR system with both clip-on and camera audio. The fine-tuning process will be
thoroughly described in Section[4.6] but in short, it consists in using a previously
trained model in order to adapt it to the training set.

Moreover, in the context of the Multisub project, two types of acoustic models
were also developed (trained and fine-tuned) taking into account only camera record-
ings. However, they were not part of the work described in this document since they
were not developed by the author.

4.2 Baseline system

Table [4.1] shows the resources used in order to train the baseline acoustic model. This
table was obtained from [2I], Table 1].

Table 4.1: Resources used to train the acoustic model by the MLLP-UPV
research group.

Resource Duration (h)
Internal: entertainment 2932
Internal: educational 406
Internal: user-generated content 202
Internal: parliamentary data 158
RTVE2018 contest datasets 205
VoxForgeﬂ 21
Total 3924

The first thing to be done was to establish the baseline of system performance
to be compared with the rest of the experiments. This baseline was obtained with
the latest MLLP-UPV Spanish ASR systenﬂ consisting of a BLSTM-HMM hybrid
system with eight BLSTM layers. Table shows the WERs achieved with this
system with respect to the dev and test partitions.

Table 4.2: WERs obtained by the baseline Spanish ASR system in the dev
and test sets.

| Clip-on WER (%) | Camera WER (%)
Dev 11.6 57.4
Test 12.1 60.4

VoxForge: Free Speech... Recognition. http://www.voxforge.org. Last accessed: 11-09-2021.
2As a reminder, this system was also used to extract the training transcriptions.
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4.3. Training pipeline

These are already satisfactory results on the clip-on recordings. The camera
recordings are hard to be recognized due to their high background noise and consid-
erably lower quality than the clip-on recordings, which explains their higher WERs.
The development of the diverse systems, covered in the following sections, will focus
on lowering these error rates, mostly on the camera setting.

4.3 Training pipeline

This section outlines the sequence of steps taken in order to train the different acoustic
models.

Figure [4.1] shows a summary of the training pipeline followed in order to train the
different systems described. Assuming that the training transcriptions exist, the usual
acoustic modeling pipeline consists of the following steps: first, since the network is
trained discriminatively, the transcriptions must be aligned in order to have samples
with its respective labels; then, the network training (in this case the BLSTM training)
can be performed.

However, in this case the transcriptions of the train partition were not available. To
circumvent this problem, it was decided to obtain them in an unsupervised way, using
the latest MLLP-UPV Spanish ASR system in order to produce these transcriptions
in a reasonable time with acceptable quality.

Generation of
unsupervised transcriptions
with clip-on audio

Alignment of the
unsupervised transcriptions

N

Clip-on Clip-on + camera Clip-on + camera
audio system audio system audio system
training training fine-tuning

Figure 4.1: Summary of the sequence of steps taken in order to train the
different systems.

The following subsections will analyze in detail the first two steps. The proper
training phase of the different acoustic models will be covered in different sections.
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4.3.1 Generation of unsupervised transcriptions with clip-on
audio

As it was mentioned on Chapter [3] most of the classroom video recordings do not
contain transcriptions. This part corresponds to the train set, since the transcriptions
of both the dev and the test sets were manually produced. However, it is very chal-
lenging to do the same in the train set, because it consists of more than 1300 hours
of data. Manually transcribing this set demands a lot of resources and time, and it is
practically not feasible unless a large-scale work schema is used such as crowdsourcing,
which in turn is usually very expensive.

In order to obtain the training transcriptions, the baseline MLLP-UPV Spanish
ASR system was used at the very beginning of the pipeline in order to obtain the
training transcriptions. Then, these transcriptions were obtained in an unsupervised
way, which makes the rest of the experiments a more challenging task.

Due to the low audio quality in the camera part, the transcriptions were obtained
with respect to the clip-on part of the dataset. These transcriptions could also be
used in the camera part because data coming from both parts was assumed to be the
same.

4.3.2 Alignment of the unsupervised transcriptions

Before starting the proper training phase of the systems, the transcriptions must be
aligned. This process, usually called forced alignment, obtains the most probable
label (senone or tied phoneme) for each acoustic vector. The model used to align
the transcriptions was the baseline BLSTM model. Notice that only the senones
corresponding to the acoustic vectors are needed, which is why an HMM is not needed
to do this work. The BLSTM aligns the data by using the corresponding acoustic
vector as input and choosing the most probable senone obtained in the output layer.

This process used the clip-on acoustic vectors because this audio had a lower WER
than its camera counterpart, which is an indication that it is understood in a more
reliably way by the model. If the camera recordings had been used for this, the
senones obtained in this alignment would have been of a poorer quality than the ones
obtained with the clip-on recordings.

The alignment could be used for the camera part by simply replacing the acoustic
vectors of the clip-on recordings by the ones of the camera recordings, in the exact
same order. This could be achieved because, when cleaning the dataset, the clip-
on and the camera recordings were forced to be perfectly synchronized as well, as
explained in Section [3.2

4.4 Features of the developed acoustic models
The first acoustic model developed in this work is composed of four BLSTM layers of
1024 neurons for each layer: 512 analyze the acoustic features in the forward sense and

512 analyze it backwards. The number of BLSTM layers was an element analyzed
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throughout the experiments, as it will be seen later on. Between the last BLSTM
layer and the output layer, there is a bottleneck layer of 200 neurons.

The output of the model is the probability of every senone appearing in the acoustic
vector passed as input. As a consequence, in the output layer there are 10041 neurons,
which corresponds to the number of senones. The activation function of the output
layer is a softmax activation function, in order to yield a probability distribution at
the end of the network. The hidden layers have no explicit activation function because
the activation function is already embedded in the LSTM cell, as previously seen in
Figure [2:2]

The system is trained with a batch size of 40. This means that 40 samples are
processed before changing the internal parameters of the network. When the training
has gone through every sample of the dataset, it is said that an epoch has passed. The
training algorithm iterates through several epochs until convergence or until manually
stopped.

Moreover, the technique known as dropout was also applied, which disables (drops)
a certain percentage of neurons in the training phase so that the rest of the neurons
learn to generalize, preventing overfitting [45]. In this work, the dropout rate has
been set to 0.1, meaning that 90% of the neurons were active during the training
phase at each time step.

Since a classification problem is being tackled, the cross-entropy loss function has
been applied during the training phase:

L N.C
CE Ngg nc - 10g se(zn; w) (4.1)

where w is the weight vector to be found by optimizing the function, N is the number
of samples, C' is the number of classes (in this case, the number of senones), x,, is the
n-th sample of the dataset, ¢, . is the c-th dimension of the one-hot encoded vectmﬂ
refering to the n-th sample, and s.(x,;w) is the c-th output of the last layer of the
neural network, which is P(c | z,,) assuming a softmax activation.

In all of the trainings, the system used the Adam optimizer [24], starting with
an initial learning rate @ = 5e-5. This learning rate will be modified in a specific
experiment later on. Moreover, the system has a learning rate decay d = 0.5. The
learning rate decay is applied whenever the results obtained in the current epoch are
not improved with respect to the previous ones, being the new learning rate on the
next epoch a1 = oy - d.

As for data augmentation, SpecAugment was used by masking 27 frequency chan-
nels twice, and again masking 10 time steps twice, which makes a total of four mask-
ings. In the decoding part, beam search has been applied with a beam size N = 150.

3This vector has C' dimensions; it has a one in the respective class dimension, and a zero in the
rest of the positions. Therefore, every class is encoded in its corresponding dimension.
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4.5 First training strategy: training from scratch

This section describes the process done to train the systems from scratch. Both types
of systems will be mentioned, showing their respective performances in the training
phase.

4.5.1 Clip-on audio system

The first system explicitly trained as a part of this work used as training data only
the clean audio coming from the clip-on microphone. As a reminder, these are more
than 650 hours of clean audio with no background noise.

The system was trained for a total of 15 epochs. Figure shows the error
obtained on the development partition with respect to the training epoch.
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Figure 4.2: SER obtained per epoch in the development partition when
training the clip-on audio system from scratch.

4.5.2 Clip-on and camera audio system

This system used as training data not only the clean audio coming from the clip-on
microphone, but also the noisy audio coming from the camera microphone, which
means that it used the whole train partition in the training phase. Ideally, it would
be able to learn audio features from the clean audio while learning the background
noise pattern present in the camera recordings, being able to perform nicely in both
types of audios.

Three different configurations of this system were trained with 4, 6 and 8 BLSTM
layers respectively. All of the systems were trained for a total of 15 epochs in order
to compare them to the previous results. As a side note, considering models with
more layers increases the time taken for the model to process samples, which implies
a higher train and recognition time. Figure [L.3] shows the error obtained in the
development partition with respect to the training epoch.
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Figure 4.3: SER obtained per epoch in the development partition when
training the clip-on and camera systems from scratch, with respect to the
number of layers.

The error rates in the dev partition still converge smoothly, but they reach a
minimum error rate which is higher than the one shown in Figure[d.2] This is expected
due to the fact that, as it was already established, the camera recordings show worse
acoustic features than the clip-on recordings. The error rate in Figure could thus
be taken as a sort of average between the error rates already seen when training the
clip-on recording system and the error rates which would be seen when training the
camera recording system.

4.6 Second training strategy: fine-tuning of the base-
line MLLP-UPYV Spanish ASR system

Fine-tuning an acoustic model means taking an acoustic model which was already
trained, usually with data from other domains unrelated to the task, and then resume
training considering the partitions of the dataset as usual. This is done in order to
obtain a model whose parameters are better tuned to the task. The former model
is referred to as the pretrained model, while the latter model is called the fine-tuned
model.

Fine-tuning a system falls inside the set of techniques known as transfer learning.
Transfer learning takes features learned on a specific problem, and uses them in order
to tackle another similar problem. In this schema, the pretrained model can have
more layers added and the previous ones can be frozen (usually the ones closer to the
input so that they do not change their way of representing the samples), being the
fine-tuning step an optional last step [9].
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Theoretically, the fine-tuning of a system should be done with a learning rate
lower than the one used to train the system, since it is desired to slightly readjust
the weights of the network. However, because of the uncertainty of these fine-tuning
experimentsﬁ and because the learning rate was already low enough, two different
systems were trained: one with a learning rate o = 5e-5 (the same as the previous
systems), and another with a learning rate one magnitude lower: a = 5e-6.

The pretrained model used was the baseline MLLP-UPV Spanish acoustic model,
whose description was already given in Section f:2] The fact that this model had 8
BLSTM layers increased the time taken in order to finish an epoch. Even then, this
model was already trained for 16 epochs, so the resulting models were expected to
perform better than the previously developed models.

Both models were fine-tuned using the whole training set (clip-on and camera
speech data) for 15 epochs. Figure shows the error rate in the training phase of
both fine-tuned systems.
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Figure 4.4: SER obtained in the development partition when fine-tuning
the systems with an initial learning rate a = 5e-5 and a = 5e-6.

As it can be seen, the first system (trained with a learning rate o = 5e-5) oscillates
in terms of error rate and it does not smoothly converge, which is usually caused by
a high learning rate. However, this behavior still applies to the second system (of a
learning rate @ = 5e-6). The non-convergence could be caused by the fine-tuning of
the systems with respect to the camera recordings, which are a difficult type of audio
to treat, knowing that the baseline system was not trained in noisy conditions.

However, even if the systems did not converge, the results obtained were not poor.

4The MLLP-UPV group had not applied fine-tuning to its systems before, so the behavior of the
model with respect to the learning rate when fine-tuning was unknown. This experiment was also
meant as a test of whether a lower learning rate was really needed for them to fine-tune an acoustic
model.
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In fact, the minimum error rate of the first system in the dev set during training is
22.5% (13th epoch), while the best error rate achieved by the second system is 24.5%
(15th epoch), two absolute points higher. A lower error rate may help achieve a
smoother convergence, but it could also force higher error rates in the training phase,
as seen from the previous data.
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CHAPTER 5

ASR SYSTEM EVALUATION

For the acoustic models to be evaluated in terms of WER, they have to be integrated
with a language model, creating an ASR system. This chapter details the process
carried out to evaluate each of the ASR systems with respect to the dev and the
test partitions. First, the steps taken in order to evaluate these systems will be
explained. Then, some of the parameters to be optimized will be introduced. After
that, the different acoustic models developed will be integrated into an ASR system
and evaluated in terms of WER. Finally, the best results obtained will be discussed.

5.1 Introduction

A high validation error in the training phase by the acoustic models may hint at a
lower performance, but the resulting ASR systems need to be evaluated in order to
check their performance. In order to evaluate the WERs of the different systems, the
acoustic model has to be integrated with a language model. Therefore, the evaluation
is not based only on the acoustic model anymore, but on the ASR system as a whole.

Figure shows a summary of the steps taken in order to evaluate the different
developed systems. Before the evaluation, a set of training experiments have to be
performed in order to optimize different decoding and model parameters. The cri-
terion to optimize these parameters is the WER obtained in the dev partition with
respect to the set of parameters that need to be optimized. When these optimal
parameters are obtained, an unbiased evaluation with respect to the test partition is
needed in order to check if the parameters obtained in the dev partition are still valid
with respect to a totally different partition which has not been explicitly optimized.

The language model used in the decoding step was already given as part of the
baseline ASR system and it was not part of this work to obtain it, but its details are
shown here. It is an interpolation of a Transformer and n—grarrﬂ language models,
with weights 93% and 7% respectively. The n-gram was chosen to be of order 4

1An n-gram language model takes a window of n — 1 words in order to compute the probability
of the word wy, as P(wn, | w?il). The parameter n is also called the n-gram order.
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Clip-on Clip-on + camera Clip-on + camera
audio system audio system audio system
training training fine-tuning
Parameter
optimization

and decoding
(dev partition)

System evaluation
(test partition)

Figure 5.1: Summary of the sequence of steps taken in order to evaluate
the different systems.

and it was trained with 102G running words coming from different sources, while the
Transformer was trained with a subset of roughly 1G running words. Those interested
in the extraction process or in more details are pointed to [21] [5].

5.2 Parameter optimization

Two of the most well-known parameters to be optimized after training the systems
are the Grammar Scale Factor (GSF)E], and the Word Insertion Penalty (WIP):

e The GSF scales the probability of the language model, since depending on the
task, the language model can hold more or less importance. If this parameter
was not present, the acoustic model could dominate over the language model.

e The WIP is added as a constant that multiplies the number of words extracted
by the system in order to reward or punish the system by extracting too many
or too few words.

These are added to the optimization formula of ASR from Equation yielding the
following equation:

W = argmax log P(ay | wi*) + B - log P(w(*) +~v-m (5.1)
w{'bew*

2Also found in the literature as Language Model Scaling (LMS).
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where (3 is the GSF and ~ is the WIP. Currently, both parameters are learned exper-
imentally by testing different values. However, in the experiments it was decided to
only modify the GSF, since it yields more variability in terms of error rate. Therefore,
in all of the experiments, the WIP parameter was considered equal to zero.

Moreover, one can also experiment with the senone priors. As it was established
when explaining the fundamentals of acoustic systems in Section the priors es-
tablish the a priori probability for each senone. This probability is used in order to
regularize senones: since the term is dividing, the most frequent senones are penalized
with respect to the least frequent senones, which are rewarded. The following section
will detail the process carried out in order to extract the priors for each senone.

5.3 Senone prior extraction

As it was introduced in the previous section, the priors hold the a priori probability
of each senone. In TLK, priors are specified in the form of a text file, each line having
a log-probability for each of the senones. This log-probability can be easily related to
each senone, since the latter are identified by a number 0 < i < N, where N is the
maximum number of senones.

Four types of priors have been extracted in order to experiment with them:

1. No priors at all. This is the case where the denominator P(s;) in Equation m
is ignored. This was done because it is desirable to see the practical effect of
the priors in the recognition.

2. Priors coming from the baseline ASR system. Since they are already computed,
they were also considered in the experiments.

3. Priors coming from the alignments of the training partition. They are supposed
to be a reliable way of computing the priors, since they represent the dataset’s
senone distribution. They were easily obtained by calculating the probability of
each senone in the labels used to train the different systems.

4. Priors from the alignments, with the log-probability of the silence (sil) lowered.
In the original priors coming from the alignments, log P(sil) = —0.578723. Since
the probability of the silence was overestimated with respect to the rest of the
senones (with an average log-probability near -11) due to the dataset’s features,
it is desired to tone this probability down. The log-probability of the silence
was subtracted two, four and six points, yielding three different sets of priors
which were also tested in the experiments.

5.4 Evaluation of the clip-on ASR system trained
from scratch

The first experiment consisted in modifying the GSF parameter and the priors file,
aiming to optimize the WER obtained in the clip-on part of the dataset. Figures|[5.2
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and show the results obtained with respect to the development partition by con-
sidering different GSF parameters and the prior sets described in Section [5.3] Each
point in the graph corresponds to a full recognition of the corresponding part of the
dev set. The six types of priors described in Section [5.3] were tested. Moreover, a
minimum choice of three GSF parameters (8, 10, 12) was tested, decreasing this pa-
rameter by two until reaching a clear error curve in every execution. This made a
total of 26 recognitions of the dev set (both the clip-on and the camera parts).
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Figure 5.2: WERs obtained in the clip-on part of the dev set with respect
to the GSF parameter and the priors considered.

As it can be seen, modifying the GSF impacts the WER in a smooth way in the
clip-on part of the dataset by establishing a very clear error curve. However, this
situation is different in the camera part, decreasing the WER even at a GSF = 2
and behaving erratically in some executions. This is because the camera part has not
been considered during the training phase, so this type of audios is unknown to the
system.
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Figure 5.3: WERs obtained in the camera part of the dev set with respect
to the GSF parameter and the priors considered.

Choosing the right set of priors proved to be relevant from these results: neglecting
the priors resulted in losing 4.5 WER points with respect to the best clip-on audio
system. Moreover, tuning special priors such as the prior of the silence resulted
in a positive change up to a point: giving it too much relevance, as well as too
little relevance, led to a decrease of the performance of the system. This could have
happened because the silence plays a major role in the recorded lectures since a
lecturer often pauses between phrases, while there are other situations which may
have also been taken as a silence by the clip-on microphone such as a student asking
or answering a question.

The best WERs were obtained with a GSF = 8, with the priors coming from the
alignments where the silence log-probability was subtracted two or four points. With
these results, the WERs of the test partition were obtained with respect to the best
system: the one using GSF = 8 and the priors coming from the alignments where the
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log-probability of the silence was subtracted two points (the tie was solved by choosing
the priors which had a better performance in the camera partition). Table shows
these results.

Table 5.1: WERs obtained in the test set with respect to the best
parameters obtained in the optimization phase.

Clip-on WER (%) | Camera WER (%)
10.3 | 76.9

After this first experimentation, the decrease in WER obtained with respect to
the baseline was of 1.8 points (14.9% relative decrease) in the clip-on recordings of the
test set. However, the camera WER failed to improve with respect to the baseline,
with an increase of 16.5 points (27.3% relative increase). The next experiments will
mostly focus on lowering the camera error rates since, as previously stated, the camera
system is the most common system found in classroom video recordings.

5.5 Evaluation of the clip-on and camera audio sys-
tem trained from scratch

Figures[5.4and[5.5]show the WERs obtained with respect to the priors which obtained
the best results in both the camera and the clip-on recordings when experimenting
with the clip-on audio system: the priors coming from the alignments of the training
set where the log-probability of the silence was subtracted two points. This was
done to avoid a highly dense experimentation. Still, in this case, four recognitions
of the whole dev set were needed for each of the three systems, making a total of 12
recognitions of the dev set.

Comparing the results given in these figures against the ones previously given in
Figures [5.2] and [5.3] it can be seen that the clip-on WER slightly varies with respect
to the clip-on audio system: it increases 0.3 points in the system with four BLSTM
layers, and it decreases 0.4 points in the system with eight BLSTM layers. However,
the camera WER achieves an astonishing decrease with respect to the former system
developed, decreasing 45.7 points in the system with four BLSTM layers and 47.3
points in the system with eight BLSTM layers.

Finally, Table [5.2) shows the WERs obtained in the test set with respect to the
layers of the system and GSF = 8. The chosen value of the GSF parameter was the
one that yielded the best results in the camera part of the experiment.

In the test partition, the relative results with respect to the clip-on audio system
are still consistent with those obtained in the dev partition. In the system with
four BLSTM layers, the clip-on WER increases by 0.1 points but the camera WER
significantly decreases by 44.2 points. This behavior is similar to the system with
eight BLSTM layers, where the clip-on WER decreases by 0.3 points and the camera
WER decreases by 48.6 points. By including the camera recordings to the training
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Figure 5.4: Different WERs obtained in the clip-on part of the dev set with
the systems trained with the clip-on and the camera recordings, with respect
to the GSF parameter.
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Figure 5.5: Different WERs obtained in the camera part of the dev
partition with the systems trained with the clip-on and the camera
recordings, with respect to the GSF parameter.

data of the model, the system effectively learns to better distinguish the relevant
acoustic features even in the presence of background noise.

With respect to the baseline, the relative results are outstanding: the system with
four BLSTM layers achieves a decrease of 1.7 points of WER (14.0% relative decrase)
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Table 5.2: WERs obtained in the test set with respect to the best
parameters obtained in the optimization phase.

# layers | Clip-on WER (%) | Camera WER (%)

4 10.4 32.7
6 10.2 314
8 10.0 28.3

in the clip-on part of the test set, and of 27.7 points (45.9% relative decrease) in the
camera part. In the system with eight BLSTM layers this situation is even more
positive, with a decrease in terms of WER of 2.1 points (17.4% relative decrease) in
the clip-on part, and of 32.1 points (53.1% relative decrease) in the camera part.

5.6 Evaluation of the fine-tuned ASR system

Figures and show the behavior of both systems in terms of WER. Again, the
priors which performed the best in the first experiment were used: the priors obtained
from the alignments, with the silence log-probability subtracted two absolute points.
In this case, the clip-on part of the dev set was recognized a total of nine times, while
the camera part was recognized eight times.
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Figure 5.6: WERs obtained in the clip-on part of the dev set with the
fine-tuned ASR systems, with respect to the GSF parameter.

In this case, the system that performed the best in the clip-on recordings in terms
of WER was the second system (of learning rate o = 5e-6), obtaining a difference of
0.5 points with respect to the first system (of learning rate a@ = 5e-5). However, the
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Figure 5.7: WERs obtained in the camera part of the dev partition with
the fine-tuned ASR systems, with respect to the GSF parameter.

first system reached much better WERs in the camera recordings than the second
one, with a difference of 7.4 points.

Finally, Table [5.3]shows the WERs extracted by both systems with respect to the
test partition. Since the main aim of this experiment was to optimize the results in
the camera recordings, the GSFs used to recognize the test partition were the ones
which yielded the best result in the camera part of the experiment for each system:
GSF = 8 for the system with learning rate o = 5e-5, and GSF = 10 for the system
with learning rate av = 5e-6.

Table 5.3: WERs obtained by the fine-tuned ASR systems in the test set
with respect to the best parameters obtained in the optimization phase.

Initial LR | Clip-on WER (%) | Camera WER (%)
5e-5 9.7 29.2
5e-6 10.0 37.2

In the case of the test set, the system of learning rate a = 5e-5 performs much
better than the system of learning rate a = 5e-6. This could be caused by the fact
that the weights of the network were altered more easily with a higher learning rate,
which benefited the test set the most since it was not seen during the training phase.

Moreover, the increased WER obtained in the camera recordings by the system
of learning rate v = 5e-6 could be explained by the fact that the baseline system
was trained with cleaner data than the classes recorded by the camera: even if both
systems did not smoothly converge in the training phase, the system of learning rate
a = 5e-5 could have been able to adapt better to the camera recordings thanks to its
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higher learning rate, which is shown in the 8 absolute WER points of difference in
the test set.

The relative results with respect to the baseline system are great, but they do
not improve the previous best results in the camera setting: the fine-tuned system
of learning rate o = 5e-5 achieves a decrease in WER of 2.4 points (19.8% relative
decrease) in the clip-on part of the test set, and of 31.2 points (51.7% relative decrease)
in the camera part. The fine-tuned system of learning rate @ = 5e-6 achieves a
decrease in WER of 2.1 points (17.4% relative decrease) in the clip-on part, and of
23.2 points (38.4% relative decrease) in the camera part.

5.7 Discussion

Table[5.4summarizes the best WERs obtained for all the ASR systems developed with
respect to the test set. Note that the results obtained with the systems developed
only with camera recordings are also displayed. Even if these were not extracted in
the work done by the author, it is useful to compare the different results.

Table 5.4: Summary of the best WERs obtained in the test set and relative
decrease of the WER from the baseline by each of the developed systems in
the context of the Multisub and the CAR projects. The systems in italics
correspond to systems not developed by the author. The executions where
the baseline was not improved are displayed as “0.0”.

% decrease
Strategy ASR system | # layers WER (%) wrt. baseline
Clip-on | Camera | Clip-on | Camera

- Baseline 8 12.1 60.4 — —
Clip-on 4 10.3 76.9 14.9 0.0
From Camera 6 100.2 29.7 0.0 50.8
scratch Clip-on + 4 10.4 32.7 14.0 45.9
camera. 6 10.2 31.4 15.7 48.0
8 10.0 28.3 17.4 53.1
Fine-tuning a = de-5 8 100.2 29.7 0.0 50.8
camera a = he-6 99.2 33.7 0.0 44.2
FTﬂ clip-on a = 5e-5 g 9.7 29.2 19.8 51.7
+ cam. o = 5e-6 10.0 37.2 174 384

Overall, the best performing system was the system trained from scratch with
eight BLSTM layers, closely followed by the fine-tuned system with a learning rate
a = be-5. The former system achieved the best WERs out of all systems in the
camera part of the dataset, while the latter system obtained the best WERs in the
clip-on part.

3Fine-tuning.
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5.7. Discussion

Adding the camera recordings to the training set helped the overall WER, as shown
in the changes from the clip-on audio system to the clip-on and camera audio systems.
Moreover, the only cases where the system was not able to improve the baseline were
those systems that only had information about one audio setting (either clip-on or
camera). This may point to the fact that, even if audio sources are quite different, it is
benefitial to consider each of the sources when training, provided that the recognition
of such sources is essential.

The systems trained only with camera recordings have the worst clip-on WERs,
but they show an excellent performance in the camera recordings, reaching less than
30% WER in two of the three developed systems. Like the system trained only
with clip-on recordings, they failed to relate acoustic features to the opposite type of
recordings.

With respect to the camera recordings, it was surprising to find that the fine-
tuned clip-on and camera system performed (slightly) worse than the systems trained
from scratch with camera audios, given that the fine-tuned system was pretrained
with roughly 4000 hours. As hinted before, this may be due to the fact that the
corpora that were used when training the pretrained acoustic model (already shown
in Table were clean enough, and they could not be linked to the camera part of
the dataset by the acoustic model.

This leads to the hypothesis that a fine-tuned system may not only need a suitable
learning rate or more epochs in the fine-tuning phase, but also to have seen samples
similar to the ones to be recognized, especially in terms of external conditions such as
background noise. In this regard, one could train a system with data augmentation
based on adding artificial noise to the samples. However, this was not the case in
the baseline system, because it was (and is) intended to be used in controlled, almost
noise-free scenarios.
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CHAPTER 6

CONCLUSIONS

In this work, the transcription of classroom recordings has been explored through
different techniques that have proven useful to accomplish the main goals. The major
problems found during the course of this work have been described and solved. Two
main types of systems have been developed from scratch, each addressing different
audio sources: one which was trained only with the clip-on recordings and through
which an initial exploration was performed, and several others which were trained with
both the clip-on and the camera recordings. Moreover, the baseline system was fine-
tuned with respect to both types of recordings. In all of the systems, an exploration
of the best system parameters was performed, and the different WERs were reported.
Finally, the best results from each system were gathered and discussed.

Both sources of audio were mixed in the training of state-of-the-art BLSTM-HMM
acoustic models, which allowed the different ASR systems to obtain a good perfor-
mance in both types of recordings. These systems obtain high-quality transcriptions
in the case of the clip-on recordings and acceptable transcriptions in the case of the
camera recordings, improving the baseline ASR system in most of the cases. Fur-
thermore, they could be used in order to transcribe classroom video recordings, as
seen from the WERs of the test partition. Therefore, it can be said that all proposed
objectives were fulfilled.

By looking at the error rates of the three types of developed systems in this work,
it can be said that it was benefitial for the system to include the noisier samples, even
more when these were an essential part of the recognition: the camera WER dropped
from a 76.9% in the case of the clip-on audio system to a 21.6% in the clip-on and
camera ASR system with the same number of BLSTM layers, while the clip-on WER
stayed near a 10%. This can be an indication that data coming from different sources
can be mixed in the training process so that the acoustic model learns to identify both
at the same time, which may acquire relevance when there is more than one type of
audio to be recognized by the model, as it was the case in this work.

In terms of WER, it is benefitial to use the system trained from scratch with eight
BLSTM layers for the camera recordings and the fine-tuned system with learning rate
« = 5e-5 for the clip-on recordings, but it depends on the situation whether or not to

55



Chapter 6. Conclusions

use it. Using a system with eight BLSTM layers may be a disadvantage if recognition
speed or memory consumption are a key factor to be taken into account. If that was
the case, one could then use systems with four BLSTM layers instead of eight, thus
sacrificing some performance (0.6% WER on clip-on recordings and 4.4% on camera
recordings, choosing the clip-on and the clip-on + camera ASR systems trained from
scratch, respectively) but obtaining an overall less consuming decoding. This could
be the case, for instance, when using the system in a real-time environment knowing
in advance that the lecturer will use a clip-on microphone, or in environments with
limited resources.

Moreover, fine-tuning a system may help recognize samples provided that they are
of a similar nature, for instance in the image domain. Fine-tuning may not be the
best choice if there is a considerable distance between the samples used to pretrain
the system and the samples used to fine-tune the system, but it may be very useful
if there is not a huge amount of data available. Data augmentation based on adding
background noise to the recordings used in the pretraining phase could also be applied,
yielding a very noise-robust pretrained system which could then be fine-tuned.

6.1 Future Work

Future work could focus on performing experiments with isolated recordings with
different background noise conditions, in order to check if the systems trained with
the noisier sources of audio have properly learned to separate the actual utterance
from the background noise (and if so, to which extent), or rather the systems simply
“memorized” the background pattern of the camera recordings.

Another experiment could also involve adding more layers to the system trained
from scratch with both the clip-on and the camera samples, and see the point where
the systems stop learning because of the depth of the network. This experiment could
be enhanced by testing other architectures for the acoustic system, such as CNNs, a
Transformer acoustic encoder, or other architectures.

Moreover, the baseline system is not perfect, which means that errors coming from
the transcriptions of the unlabeled training data obtained by this system cannot be
ignored. Future work could focus on minimizing these errors by, for instance, starting
from the already established transcriptions and iteratively training systems (or fine-
tuning either the baseline system or any of the systems extracted in this work) and
recognizing again the training partition.

Finally, the language model was not modified. It would have been desirable to
adapt the language model to the academic and scientific domain, which best fits the
available data. A possibility would be retraining from scratch the language model
with data coming from different sources, as well as from the training transcriptions.
Another possibility would be taking an already created language model and fine-
tuning it, in a similar way to the acoustic model fine-tuning. A final, more difficult
option would involve having several language models and choosing among them at the
beginning of the lecture the one which fits best, or using dynamic language modeling
techniques such as a neural cache-based language model [14].
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