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Summary

In this thesis we study pseudodifferential operators, which are integral opera-
tors of the form

feo [ (] e tate s ay)de

in the global class of ultradifferentiable functions of Beurling type S, (R%) as
introduced by Bjorck, when the weight function w is given in the sense of
Braun, Meise, and Taylor.

We develop a symbolic calculus for these operators, treating also the change of
quantization, the existence of pseudodifferential parametrices and applications
to global wave front sets.

The thesis consists of four chapters. In Chapter 1 we introduce global symbols
and amplitudes and show that the corresponding pseudodifferential operators
are well defined and continuous in S, (R?). These results are extended in
Chapter 2 for arbitrary quantizations, which leads to the study of the trans-
pose of any quantization of a pseudodifferential operator, and the composition
of two different quantizations of pseudodifferential operators. In Chapter 3 we
develop the method of the parametrix, providing sufficient conditions for the
existence of left parametrices of a pseudodifferential operator, which motivates
in Chapter 4 the definition of a new global wave front set for ultradistribu-
tions in S’ (R?) given in terms of Weyl quantizations. Then, we compare this
wave front set with the Gabor wave front set defined by the STFT and give
applications to the regularity of Weyl quantizations.
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Resumen

En esta tesis estudiamos operadores pseudodiferenciales, que son operadores
integrales de la forma

feo [ (] e tate s y)ds.

en las clases globales de funciones ultradiferenciables de tipo Beurling S,,(R?)
introducidas por Bjorck, cuando la funciéon peso w viene dada en el sentido de
Braun, Meise y Taylor.

Desarrollamos el cédlculo simbdlico para estos operadores, tratando ademés
el cambio de cuantizaciéon, la existencia de paramétrix pseudodiferencial y
aplicaciones al frente de ondas global.

La tesis consta de cuatro capitulos. En el Capitulo 1 introducimos los simbolos
y amplitudes globales, y demostramos que los correspondientes operadores
pseudodiferenciales estdn bien definidos y son continuos en S,,(R?). Estos re-
sultados son extendidos en el Capitulo 2 para cuantizaciones arbitrarias, lo
que conduce al estudio del traspuesto de cualquier cuantizaciéon de un oper-
ador pseudodiferencial y a la composicién de dos cuantizaciones distintas de
operadores pseudodiferenciales. En el Capitulo 3, desarrollamos el método de
la paramétrix, dando condiciones suficientes para la existencia de paramétrix
por la izquierda de un operador pseudodiferencial, que motiva en el Capitulo 4
la definicién de un nuevo frente de ondas global para ultradistribuciones en
S/ (R?) dada en términos de cuantizaciones de Weyl. Comparamos este frente
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de ondas con el frente de ondas de Gabor definido mediante la STFT y damos
aplicaciones a la regularidad de las cuantizaciones de Weyl.



Resum

En aquesta tesi estudiem operadors pseudodiferencials, que sén operadors in-
tegrals de la forma

feo [ (] e tate s y)ds.

en les classes globals de funcions ultradiferenciables de tipus Beurling S,,(R?)
introduides per Bjorck, quan la funcié pes w ve donada en el sentit de Braun,
Meise i Taylor.

Desenvolupem el calcul simbolic per aquestos operadors, tractant, a més a
més, el canvi de quantitzacid, l'existencia de parametrix pseudodiferencial i
aplicacions al front d’ones global.

La tesi consisteix de quatre capitols. Al Capitol 1 introduim els simbols i
amplituds globals, i demostrem que els corresponents operadors pseudodifer-
encials estan ben definits i sén continus en S, (R%). Aquestos resultats sén
estesos al Capitol 2 per a quantitzacions arbitraries, que condueix a l’estudi
del transposat de qualsevol quantitzacié d’un operador pseudodiferencial i a
la composicié de dues quantitzacions distintes d’operadors pseudodiferencials.
Al Capitol 3 desenvolupem el métode de la parametrix, donant condicions
suficients per a l'existeéncia de parametrix per 'esquerra d’un operador pseu-
dodiferencial donat, que motiva al Capitol 4 la definicié d’un nou front d’ones
global per a ultradistribucions en S’ (R?) mitjancant quantitzacions de Weyl.
Comparem aquest front d’ones amb el front d’ones de Gabor definit mitjangant
la STFT i donem aplicacions a la regularitat de les quantitzacions de Weyl.
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Introduction

Pseudodifferential operators (Udo) are integral operators of the form

~

fe | e tpla ) fle)de

where x - £ is the scalar product of the vectors z and ¢ in R?, f belongs
to a local or global class of functions, f is its Fourier transform and p(z, &)
is another function, called symbol, that satisfies the necessary properties to
ensure that the operator is well defined and continuous when acting on the
class of functions. Sometimes we need to use amplitudes a(z,y, ) instead of
symbols to understand the operator that, in this case, is written as an iterated
integral given by

fe o / S,y €) f(y)dy) .
Rd Rd

Such operators generalize linear partial differential operators with variable
coefficients and appear, among in many other applications (like topology, dif-
ferential geometry, signal and image processing, etc.), initially when looking
for an approximate solution (parametrix) of a differential equation given by
an elliptic or hypoelliptic linear partial differential operator with variable co-
efficients. The local theory of pseudodifferential operators grew out of the
study of singular integral operators, and it was developed after the systematic
studies of Kohn and Nirenberg [48], and Hérmander [43], and others.

After that, the theory of Wdo has been widely developed in local Gevrey
classes, which are spaces of (non-quasianalytic) ultradifferentiable functions



Introduction

in between real analytic and C'™° functions. The study of several problems in
general classes of ultradifferentiable functions has received a lot of attention
in the last 60 years. In the 80’s, several authors (Hashimoto, Matsuzawa and
Morimoto [41] and Iftimie [46]) gave different versions of Gevrey pseudodiffer-
ential operators of finite order, that is, given by symbols of moderate growth at
infinity. Boutet de Monvel had studied a certain class of operators of infinite
order, i.e. with symbols with exponential growth at infinity in some variables
(and hence more general for applications). In 1985, Zanghirati [65] gave sym-
bols of infinite order of Gevrey type; see the monograph Rodino [60] for an
excellent introduction to this topic. In all these cases the spaces of functions
considered are of Roumieu type (the topological structure of the spaces looks
like that of the space of real-analytic funtions). Motivated by these results,
Fernandez, Galbis, and Jornet [33] developed a full theory of pseudodifferential
operators of infinite order in the variable £ of the symbol (or amplitude) with
the corresponding symbolic calculus on classes of ultradifferentiable functions
of Beurling type (the topological structure looks like the one of the space of
all smooth functions) in the sense of Braun, Meise, and Taylor [20].

The classic theory of Wdo, as well as all the mentioned works, is of local
type. That is, it is based on the study of the solutions of the operators in
a small enough neighbourhood of a given point. In [32] the authors give
sufficient conditions to construct parametrices, i.e. approximate inverses, of
the symbols introduced in [33]. The existence of a left parametrix for the
symbol gives hypoellipticity in the corresponding class of functions for the
Wdo. Hence, the possible ultradistribution solutions of the operator when the
datum is an ultradifferentiable function are, in fact, as regular as the datum.

More recently, several authors have studied Wdo and Fourier integral operators
of infinite order in spaces of Gelfand-Shilov type, which are global classes of
ultradifferentiable functions with estimates in terms of the derivatives or of the
Fourier transform of Gevrey type, see for instance [22, 23, 24, 27]. In a more
general setting, Prangoski [58] introduced Wdo given by symbols of infinite
order in all the variables for ultradifferentiable classes defined in the sense of
Komatsu (with sequences), inspired by the classical global theory of ¥do in
the Schwartz class that can be found in the book of Shubin [64]. Prangoski
uses some kind of entire functions with prescribed exponential growth, which
is crucial to understand the operators using integration by parts. Later, Cap-
piello, Pilipovié¢, and Prangoski [25] gave sufficient conditions on the symbols
to construct parametrices for the operators in [58].

In the theory of partial differential equations, the wave front set locates the
singularities of a distribution and, at the same time, describes the directions



of the high frequencies (in terms of the Fourier transform) responsible for
those singularities. In the classical context of Schwartz distributions theory,
it was originally defined by Hormander [44]. In global classes of functions and
distributions, the concept of singular support does not make sense since we
need the information on the whole R?. However, we can still define a global
wave front set to describe the micro-regularity of a distribution.

Very recently, Rodino and Wahlberg [61] recovered the concept of the C'*
global wave front set of [45] for the context of tempered distributions, showing
that it can be reformulated in terms of the short-time Fourier transform. It is
very natural to use methods of time-frequency analysis in connection with the
wave front set, as the wave front set treats simultaneously analysis of points
(the variables) and directions (the covariables). The authors prove also in [61]
that this wave front set can be described merely by a Gabor frame, i.e. with
the information of the decay of the Gabor coefficients in a sufficiently dense
lattice.

Boiti, Jornet, and Oliaro [14] presented the ultradifferentiable version of the
analytic wave front set found in [26, 45, 61] in the Beurling setting for w-
ultradistributions, where w is a subadditive weight function in the sense of [20],
showing that it can be described also in terms of Gabor frames, and applying
it to the study of global regularity of pseudodifferential operators of infinite
order.

The aim of this thesis is to introduce and study pseudodifferential operators
in classes of global ultradifferentiable functions of Beurling type S, (R?) (as
the ones defined by [8] in the sense of [20]), using tools and techniques from
time-frequency analysis and Fourier analysis, and to provide applications to
global wave front sets in this setting.

In Chapter 1, we introduce global pseudodifferential operators in S, (R?) by
means of oscillatory integrals for global amplitudes. It turns out that the ac-
tion of a pseudodifferential operator on a function in S,,(R?) can be written as
an iterated integral, and we will show that this action is linear and continuous
from S,(R?) into S,(R?). Moreover, this operator will be extended linearly
and continuously to an operator from &’ (R?) into S’ (R?). We extend these
results for arbitrary quantizations in Chapter 2. Furthermore, we develop a
symbolic calculus, also valid for quantizations, necessary for the study of the
composition of two given pseudodifferential operators. Chapter 3 is devoted
to the construction of a suitable parametrix for the pseudodifferential oper-
ators considered. Finally, in Chapter 4 we define the analogous global wave
front set to the one given in [45, 61] for the ultradifferentiable setting using
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Weyl quantizations, completing the results started in [14]. Finally, we give
applications to the regularity of pseudodifferential operators.



Chapter 0

Preliminaries

We detail the necessary preliminaries for the following chapters. In particular,
we introduce the notation on multi-indices we use.

Let No = NU{0} ={0,1,2,...}. In the following « stands for (ay,...,aq) €
N¢, a multi-index of dimension d. We denote the length of o by

‘04‘:@14'4-0&(1

For two multi-indices o and 8, we denote 8 < o for 3, < oy, j = 1,...,d.
Moreover,
al =a;!- - ay!
and if § < «, then
ay) a!
B)  Bla—pB)r
For z = (z1,...,74) € R, we put

a ar ., Qg
o =T Lg s

and if € = (&1,...,&;) € R, z - € is the scalar product, and is equal to x,&; +
-+ x4&4. We denote

(@) =1+ [z,  zeR,



Chapter 0. Preliminaries

where |z| is the Euclidean norm of x. We write

N &\ § \ e
g 2(37;1) "'(az) )

and using the notation

0
D, =—i—, =1,....,d,
’ 28:10] J

where ¢ is the imaginary unit, we denote

D* = D% = D& ... D%,

The well-known inequalities collected in the next lemma will be frequently
used during the text.

Lemma 0.1. Let o, 8 € N, N €N, and m,n,r € Ng. Then

(1) Z =d". In particular, Z 1<dV.

lo|=N ' lee|=N

(2) ol <la|! < d*la!

(3) Z ( ) = 2lel In particular, if B < «, then <g> < 9lal,

B<a

ol
(4) Z m:Nlal, where Ozl,...,OéNENg.
a1+ tan=«a 1+ N:

(5) (Vandermonde’s Identity). Z < ) (7“ f k‘) = (n +1" m)

k=0

(6) If B < a, then (g) < <:;l> In particular, |gl' < |Z!'.

_ _ i+d—1
(7) For all j € Ny, {a € N{ : |a| = j}| = <‘] d—1 )

(8) The series >, .na €1 is convergent.
0



0.1 Weight functions

Proof. (1) — (3) are standard properties of multi-indices (see for example [60,
(1.2.2)—(1.2.7)]). The proof of (4) follows proceeding as in (3). Formula (5) is
shown in [7, Identity 132], and with this, we can show (6). Formula (7) is [55,
(0.3.16)], and then, we obtain (8):

TS ST S (VR DTS

aeNg 7=0 |a|=j =0 =0

The following proof is taken from [28, Lemma 2.6.2].

Lemma 0.2 (Peetre’s inequality). For allt € R and x,y € R?, we have
() < Va"(z = y) iy

Proof. Since (|z| — |y|)? > 0, we have 2|z||y| < |z]* + |y|*>. Then,
Ltz 4y <1+ (ol + y)* < 14202 +2Jyl* <200+ =) (1 + [y]),

and therefore (z + y) < v/2(x)(y), z,y € R%. From this, we deduce the result
for t > 0 if z 4 y is replaced by z. For ¢t < 0, replace « + y by y. O

0.1 Weight functions

In our setting, we work with weight functions as the ones defined by Braun,
Meise, and Taylor [20].

Definition 0.3. A non-quasianalytic weight function w : [0, 4+o00[— [0, 400]
18 a continuous and increasing function which satisfies:

(o) There exists L > 1 such that w(2t) < L(w(t) + 1), t > 0;

(8) /1+OO “’S)dt < too;

(7) log(t) = o(w(t)) as t — oo

(0) @, it — w(e') is convex.
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We extend the weight function to C? in a radial way: w(z) = w(|z]), z € C¢,
where |z| denotes the Euclidean norm in C¢.

Condition («) is weaker than the subadditivity. Indeed, as in [20, Lemma
1.2], we have, for z,y € R?, where L > 1 is the constant appearing in Defini-
tion 0.3(«),

w(z +y) < w@max{|zl, [y[}) < Lw(max{|z|, |y[}) + L < Lw(z) + w(y) J(r 1)-)

0.1
In [57, Proposition 1.1] it is proved that a weight function is (equivalent to) a
subadditive weight function if and only if satisfies

(ag) There exist C >0, to > 0: forall A > 1 w(At) < ACw(t), t > to.

See [21, 31, 56, 57, 59] for results involving property (ap).

As a consequence of (0.1), since w is an increasing function, we have

(:U+y
w

) <wmax{jal, [y}) < w@) +wly),  zyER. (0.2)

Moreover, since |(z,y)| < |z| + |y|, we also have
w(@,y) S w(lz[+ lyl) < Lo(@) + Lw(y) + L, z,y € R, (0.3)
and we can see, for all z,y,¢ € R?,

w(z,y,€) < w(V3max{|z|, |y, |€]}) < Lw(z) + Lw(y) + Lw(€) + L. (0.4)

On the other hand, let ¢ € Ny be such that d < 27. Then, using ¢ times
property («),

w(dr) < Llw((d/2)z)+ L'+ -+ L < Liw(x)+ L+ --- + L, T € R
Hence, for L' := LY+ ---+ L > 1, which depends on L and on d,

w(z) Sw(lzi] 4+ +]z4]) S w(dlz]s) < L'w(|z|) + L' < L'w(x) + L (0.5)

for all z = (z1,...,24) € R, where |z|, is the supremum norm in R?.

It is known that property () of the weight w, called non-quasianalyticity
condition, implies w(t) = o(t) when t — oo:

ngit):/:oow(t)dsg/joows(j)ds.

52

We consider now property (d) of Definition 0.3 and introduce:



0.1 Weight functions

Definition 0.4. Given w a weight function, the Young conjugate ¢ : [0, co[—
[0, 00] of ¢, is defined by

@ (t) == Ssglg{st — pu(8)}-

When the weight chosen is clear, we will write ¢, and ¢, simply ¢ and ¢*.
We will assume without loss of generality that w|jo; = 0, which gives some
useful properties (see [20]). In fact, ¢*(0) = 0, and because of the convexity
of ¢*, the function ¢*(t)/t is increasing and (¢*)* = ¢. Moreover, we have
by (0.1),

w((z)) <w(l+ |z]) < Lw(z) + L, r € R% (0.6)

Example 0.5. [20, Example 4.3] The following functions are, after a change
in some interval [0, M], examples of weight functions:

(i) Gevrey weights: w(t) =t", 0 < p < 1.

(ii) w(t) = (log(1 +1))°, s > 1.

(iii) w(t) =t? (log(e +1))°, 0 <p <1, s #0.
The following inequalities will be used throughout the next chapters. For their
proof, see [33, Lemma 1.4] and [15, Appendix A].
Lemma 0.6. For every A >0, keN, t>1,

th < X" (R re®), (0.7)
jiggo tieke’ (£) < gmkw(t)Hlog(®), (0.8)
jiéleU t72j€ktp*(%) < Cef(k:—l)w(t% (0_9)

for some C' > 0, independent of k € N.

It is possible to improve (0.8) when that infimum is attained in a finite set as
this result shows (see [33, Lemma 1.5]):

Lemma 0.7. If ¢ () <log(t) < FE5¢* (84F), then

t—N€2k@*(%) < e—kw(t)—&-log(t).
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By condition («) in Definition 0.3, there exists L > 1 such that w(et) <
Lw(t) + L. By abuse of notation, L > 1 will be this constant in the following.
Under this assumption we have the following results from [20]. For a detailed
proof of them we refer to [15, Appendix A] (cf. [42, Remark 2.8(c)]).

Lemma 0.8. (i) We have
k
k. _* x * €T 1
- < z J
AL*o ()\Lk)+kx_)\go ()\)+)\;L (0.10)
for every x >0, A > 0 and k € N.

(ii) For all s,t,\ > 0,

2o () () e e (3 om

(iii) For every A >0 and B > 0 there exists C > 0 such that

la]

Bl < ce (8, qc N (0.12)

Formula (0.12) can be improved by assuming a further condition on the weight
function w:

Lemma 0.9. Let w be a weight function such that w(t) = o(t*), t — oo, for
some 0 < a < 1. Then, for every A > 0 and B > 0 there exists C' > 0 such
that

la]

Blla! < Ce‘mp*(T), o € N

When considering a suitable change of weights, the following result is useful
to estimate their Young conjugate. We observe that if w < o, it is obvious
that ¢ < ¢r.

Lemma 0.10. Let 0 < a <1 and let w and o be weight functions. Then:

(1) If w(t'*) = o(a(t)) ast — oo, for all A\, > 0 there exists Cy,, > 0 such
that , .
«(J «(J .
) < J
)«pa</\) <Ch\,+ augpw(u), J € No.

(2) If w(t¥*) = O(o(t)) as t — oo, there is C > 0 so that for each A > 0,

Agof,(%) <A+ a%goz (%), J € No.

10



0.1 Weight functions

Proof. (1) By assumption, for all A, iz > 0 there exists C, ,, > 0 such that
pw(tt*) < Cy, + Aa(t), t>0.
Then, for j € Ny, since 0 < a <1,
J :
2of (L) =5 Y s
%(A) sup{sj = Ao(e’)}
< Gy +sup{sj — pew(e’)}

s>0

< Cypu +apsup {fl - w(es/“)}
s>0 “a [

g C)\A,/,L + a/,L Sup {t% — w(et)} —_ CA,/»‘/ + a/,L(’D: (%) .

t>0

(2) There exists C > 0 such that w(t'/?) < C + Co(t), so —o(t) < 1 —
C~lw(t'/) for all t > 0. Therefore, for all A > 0, j € Ny, we obtain

3 (5) = Asup {5 — o)}

< )\+aé sup {ij’ - 1w(es/“)}

Cszo a )\ a
A jC N AL riC
S/\+a58;21103{t7—w(e)}—/\—i—aacpw(T).

O]

We write P(&, ) for the polydisc of center £ = (&, ...,&,;) € C? and polyradius
r=(ry,...,rq), where r; >0, j=1,...,d. That is,

P r)={(z1,..-,24) ECY: |z, =&l <7y, i =1,...,d}.
Also,

8P(§,T> = {(Zl,...,Zd) S (Cd . |Zj _fj‘ :Tj,j = 1,7d}
By Cauchy’s Integral Formula for the derivatives (see for instance [62, Chapter
1.3]), we obtain:

Proposition 0.11 (Cauchy’s inequalities). Let  C C? be an open set, £ €

and r = (r,...,rq) € R4, r; >0, j = 1,...,d so that P({,r) C Q. If
f:Q — C is continuous and partially holomorphic, then

|
DU FE) <= sup [f(z), @eN £eq.

Y LeoP(e,r)

11
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0.2 Spaces of ultradifferentiable functions

We introduce the spaces of ultradifferentiable functions in the sense of [20] in
terms of the Young conjugate.

Definition 0.12. Let w be a weight function. For an open set Q C R%, we
denote

Ew(Q) :={f €C®RY) : |flgr < +oo, VK CCQ, A> 0},
and
Ey(Q) == {f € C®(R?Y) : VK CC Q, 3X >0 such that |f|x, < +oo},

where
flica == sup sup |D* f(z)]e > (5).
QGNS zeEK

The first space is endowed with the Fréchet topology given by the sequence of
seminorms | f|k, », where (K,), is any compact exhaustion of 2, n € N. This
is called the space of w-ultradifferentiable functions of Beurling type in ). The
second space is called the space of w-ultradifferentiable functions of Roumieu
type in Q.

For a Gevrey weight w(t) = t?, 0 < p < 1, the space £,1(Q2) is the Gevrey
class with exponent 1/p (see e.g. [60, Definition 1.4.1] for the definition of the
space).

We write * for (w) or {w}. For a compact set K CC €, we denote by
D.(K) := £.(Q2)ND(K) and we define the spaces of test functions of Beurling
and Roumieu type in §) as

D.(Q):= lim D.(K).

KccQ

It is important to remark that these spaces are non-trivial if and only if condi-
tion () is satisfied (see [20, Corollary 2.6] and [8, Lemma 1.3.10]). For further
information on these spaces, see e.g. [20, Corollary 3.6, Proposition 3.9].

The elements in DEW)(Q) are called w-ultradistributions of Beurling type in
Q, and Di,() is the space of w-ultradistributions of Roumieu type in SQ.
By [20, Proposition 3.9], D(.)(Q) C Dy.,;(2) with dense and continuous in-
clusion, therefore we consider Dy, (f2) as a subspace of D(,,(£2). Moreover, if

12



0.2 Spaces of ultradifferentiable functions

o(t) = o(w(t)) as t = oo, then Dy,}(2) C D) (€2) with dense and continuous
inclusion.

For T € D.(R), the support of T is defined by
supp(7T’) := {x € Q: VU neighbourhood of z, 3¢ € D, (U) with (T, ) # 0}.

The space of ultradistributions with compact support of Beurling and Roumieu
type in Q is denoted by £.(Q).

We deal with spaces of global w-ultradifferentiable functions as the ones in-
troduced by Bjorck [8]. First, we recall the definition of Fourier transform of
f e LYRY):

-~

Q) =Fr©)= [ e s@a, et

with standard extensions to more general spaces of functions and distributions.
The partial Fourier transform of f € L'(R??) is defined by

Fpoel @) = [ eV fay)dy.  wgert

Definition 0.13. Given a weight function w, the space S,,(R?) is the space of
all f € LY(RY) such that (f, f € C>*(RY) and) for all X > 0 and all multi-index
a € Ng,

sup |D® f(x)]e*™ < 400, sup | Df(€)|e*® < +o0.
z€R? EERE

These estimates form a fundamental system of seminorms for S, (R%). It is a
Fréchet space endowed with the topology generated by the seminorms given in
Definition 0.13. By [8, Proposition 1.8.2], it is contained in the Schwartz class
S(R?) and coincides with S(R?) when w(t) = log(1+t). Moreover, the Fourier
transform is an automorphism in S, (R%) and the space S, (R??) is invariant
under partial Fourier transform (see [13, Remark 4.10]).

Remark 0.14. [8, Proposition 1.8.6, Theorem 1.8.7] For any weight func-
tion w, we have D) (R?) C S, (R?) C &y (RY) with continuous inclusion and
Dy (R?) is dense in S, (R?)

The space S,(R?) is nuclear for every weight function w. See, for instance,
Boiti, Jornet, Oliaro, and Schindl [16, 17].

The following characterization will be useful throughout the thesis.

13



Chapter 0. Preliminaries

Lemma 0.15. If f € S(R?), then f € S,(RY) if and only if for all \,u > 0
there exists Cy , > 0 such that

lo]

IDf(2)] < Cr e (i@ o e Nt & e RY.

Proof. If f € S,(R%), then by [13, Theorem 4.8(5)], we have that for all
A, o > 0 there exists C'y , > 0 such that

sup |2° D f(z)| < Cx,ﬂe’\w*(l%)e““’*(%), o, € N& (0.13)
z€R4
We fix 8 = (B1,...,04) € N and z = (21,...,74) € RY. We assume without
losing generality |z;| = |2]s.-
If |z,| < 1, then |z| < V/d, so for every p > 0 we have C,, = supy,, <, €™ >0,
and therefore for all u > 0,
|$1|/81+'“+Bd <1< Cﬂe_”w(x).
Since by (0.13) we have that for all A > 0 there exists C, > 0 such that
D% f(@)] < sup [D* ()] < Cre (), aend,
z€R

then,

[o]

o[ DR f )] < 14D ()] < CyCpe () et
and the result follows for C, , := C,\C),, > 0.
Now, we assume |z;| > 1. We have
22D f ()] = |a1 | - - 24| | D f ()| < |21 |45 DO f ()] = |27 D f ()],

where v = (81 + -+ 4,0, ...,0) € N&, satisfying |y| = |3]. We use (0.13) for
a and 7. Then,

|x1‘ﬂl+”'+ﬁd’Daf(x)‘ — ]a;”D“f(x)] < C&He/\w*(‘%')e(uL#l)«p*(ML'7‘+1)7

where L’ > 1 is the constant from (0.5). We take j := 1 +---+ (4, = |B] =
7] € Ny, and from (0.8) and (0.5), we get

‘%') inf |z, ’*je(#L'H)w* (ﬁ)
j€No

ID°£(z)] < Oy e (

||

< €y e () gz s netea tios o]

al L]

< C;We)\w*(T)e—uL/W(lml) < C;’NeuL/ew*(T)e—mm

14



0.2 Spaces of ultradifferentiable functions

for some C} , > 0.

On the other hand we have that, by (0.7), for all ;4 > 0, 3 € Ng,

28] = |21|? - - Jza]® < (@) < o (L) gt

Therefore, by (0.6) and hypothesis, for all A, u > 0 there exists C,, > 0 so
that

[ 181

27D° ()] < (@)D" f(2)] < Oy perbe (5) e ()
for all o, 8 € N¢ and = € R?. This completes the proof. O

Given f € S,(R?), for A > 0 we denote

s = sup sup [D°f(z)]e ¢ (5) ) (0.14)

aeNg zeR4

By the proof of Lemma 0.15, {|- |x}1>0 is a fundamental system of seminorms
for S, (R%). In [13, Theorem 4.8] (see also [15, Theorem 2.5]), one can find
other equivalent system of seminorms of the space S,,(R?).

Proposition 0.16. The space S,(R?) @ S,,(R?) is dense in S,,(R?*?).

Proof. Let f € S, (R??). By the density of D, (R?*?) in S,,(R*?) (Remark 0.14),
for all £, A > 0 there exists ¢ € D, (R??) such that

sup |D*(f(z) — w(x))\e_w*(‘%‘)em(x) <e/2, a e N3%

zeR2d

Let K; and K> be compact sets such that suppv C K; x K», and set

w(z)

M:= sup e
reK1 X Ko

By [20, Theorem 8.1], for all e, A > 0 there exists x € D) (K1) ® D) (K>)
satisfying

o Do)~ xteple (5) < 5

15
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Therefore, for all « € N2¢,

sup |D*(f(z) — x(2))]e (5) e

reR2d

< sup [D*(f(x) — p(a))e e (8) i)y

reR2d
ey [ led
+ osup 0. s DO () — x(@)e (F)
€K1 X Ko rEK1 X Ko

e 1S
-+ M =e.

< 5 + SN 5

O]

The dual space of S,,(R?) is denoted by S’ (R?), consisting of all the linear
and continuous mappings f : S,,(R?) — C. We say that an element of S/ (R?)
is an w-temperate ultradistribution. The space S,(R?) is dense in S/ (RY).
Moreover, by Remark 0.14 we can identify £, (R?) as a subspace of S/,(R?).

The Fourier transform of 7' € S/, (R?) is defined by

(T, ) =(T,9), o €S,(R).

0.3 Ultradifferential operators

We introduce the ultradifferential operators of (w)-class (with constant coeffi-
cients). The notion of ultradifferential operator is used in structure theorems
for ultradistributions (see Braun [19], Langenbruch [51]). Let G € H(C?)
be an entire function satisfying log |G| = O(w). For ¢ € &¢,)(R?), the map
T : Ewy(R?Y) — C given by

D>G(0)
al

Ta(p) = Z il

aeNd

D (0), (0.15)

defines an ultradistribution in &, (R?), with support equal to {0}. The

ultradifferential operator of (w)-class is defined as the convolution operator
G(D) : D, (RY) = D,y (R?), p = T * u.

In [19, Theorem 7] it is shown the existence of entire functions with prescribed

exponential growth. The following theorem is taken from [51, Corollary 1.4].
We observe that condition (/) (non-quasianalyticity) is not necessary.

16



0.3 Ultradifferential operators

Theorem 0.17. Let w : [0,00[— [0,00[ be a continuous and increasing func-
tion satisfying the conditions (), (), and (6) of Definition 0.3. Then there
exist an even entire function f € H(C) and Cy,Cy,C3 > 0 such that

i) log|f(2)] <w(z)+C1, z€C;
ii) log | f(2)] > Cow(z), forzeU:={z¢e€C:|Im(2)| < Cs(|Re(2)] +1)}.

We prove the analogous result for several variables.

Theorem 0.18. Let w satisfy the hypotheses of Theorem 0.17. Then there
are an entire function G € H(C?) and some constants Cy,Cy,C3,Cy > 0 such
that

i) log|G(2)] Sw(2) +C1, 2 €CY

i’) 1og |G(2)| > Cow(2)—Cy, z€ U :={zeC:|Im(z)| < Cs(|Re(z)|+1)}.

Proof. By Theorem 0.17, there exist an even entire function f € H(C) and
C1,Cs,C3 > 0 such that

log |f(2)| <w(2)+Ci, z€C; (0.16)
log |f(z)| > Cow(z), z€U:={z€C:|Im(z)| <C3(|Re(z)|+ 1)}. (0.17)

Since f is even,
o0
f(2) :Zanz%, a, € C, n €Nj.
n=0

It follows by (0.17) that log|f(0)] > 0, so ag is not zero. Now, fix z =
(215...,24) € C*\ {0} and put

w=/zf+---+2;€C.

We define -
G(z) = an(z 4+ +23)" = f(w).
n=0

The function G is well defined and entire. We use (0.16) for w and we obtain

log |G(2)| = log|f(w)| < w(w) + Ch.

17
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This proves condition '), since
w(w) <w(yIZ1 4+ 123]) = w(z).

To prove i), we first observe that for a small enough 0 < ¢ < 1, |Im(2)| <
g|Re(z)| implies w € U. Indeed, by the Cauchy—Schwarz inequality,

[Im(f + -+ z0)| = 2] ) Im(z)) Re(z;)| < 2J Z | Im(zj)IQJ Z | Re(z))[?

J=1

= 2|Im(2)|| Re(2)| < 2¢| Re(2)[*.
On the other hand,

d
|Re(22 + -+ + 22)| Z|Rezj — | Tm(z,)|?)

\R (2)]* = [Tm(2)[* > |Re(2)[*(1 - 7).

Therefore,
Im(zi +- zé) < 2|Re(z)* 22 _ tan(a),
Re(27 + -+ 23) |Re(2)|2(1—¢2) 1—¢2
where o = aurctan(lfs2 ). Hence, for ¢ small enough,
’_’ \/ +zd) < an (2)),
e(v/z -+ 23) 2

where the right—hand side tends to 0 as € — 0. Therefore by (0.17) we have
log |G(2)| = log | f (w)| = Caw(w )

—ng( ) ng( +--~—|—z§|)
(0.18)
for all |Im(2)| < €| Re(z)].
Let ¢ € Ny so that 29 > /d. Since d|z? 4 --- + 23| > |22| 4+ - -+ + |22|, using ¢
times condition () of Definition 0.3 we have from (0.18) (as L > 1)
1
log|G(2)] 2 Coo( =/ lat]+ -+ + |23
C. 24 C.
> 2o s 2) - Cag 2 Treo(2) - Cag. (0.19)

18



0.3 Ultradifferential operators

Now, from the continuity of G at 0 (notice that |G(0)| = [f(0)| > 1), there
exists 0 < 6 < 1 such that if |z| < d, then

log|G(2)| = Cyw(z) — Cy (0.20)

for some C%,Cy > 0. For the set U = {z € C* : | Im(2)
we put C3 := 0¢/8 > 0 and we show that if z € U, then

< Cs(|Re(2)[ + 1)},

log|G(2)| > Caw(z) — Ci, (0.21)

for Cy := min{CoL7,C4} > 0 and C; := max{Chq,Cy} > 0. To this, we
distinguish two cases: if | Re(z)| < 6/2, then

de (9 d /9 dro 1 3
< < —(= —( = =_(Z 4+ = e
Im(z)| < G Re(=) |+ 1) < T(5+1) < 5(5+1) =5(5+3) < 5
Therefore |z| < |Re(z)|+|Im(z)| < d, and (0.20) is satisfied, and so is (0.21).
On the other hand, if | Re(z)| > ¢/2, then

| Tm(2)] < Cs(|Re(2)| +1) = %!Re@' + %

€ €d
- <
< 2\Re(z)] + 55 = e| Re(z)],

hence (0.19) holds, and also (0.21). The proof is complete. O

In what follows, G € H(C?) is the entire function of Theorem 0.18.

Proposition 0.19. For the function q(§) := G(£)™', £ € RY, there exist
C,K,R > 0 such that

|D%q(¢)] < CalR™1ole K () a €N, £ eRL

Proof. Let U and Cs > 0 be the set and the constant appearing in condition
i7") of Theorem 0.18. First we check that for the polyradius r = (R, ..., R)

with 0 < VAR < Cj, we have OP(&,7) C U for all € = (&,...,&) € R
Indeed, if z = (21,...,24) € OP(&,r), we have
[Tmn(2)] < Vd max [Im(z)| = Vd max |Tm(z; - &)| < Vd max |2 - &].
Then, by the choice of the polyradius r, we obtain
|Tm(2)| < VAR < C5 < Cs(|Re(2)| + 1),

19
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as we wanted.

We use Proposition 0.11, and by Theorem 0.18 there exist Cy, Cy > 0 such

that
al al
IDq(€)| < = sup |g(z)] < e — sup e B (0.22)
Y Leop(e,r) Y Leop(e,r)

for all @ € N¢, ¢ € R?. We estimate the supremum on the right-hand side
of (0.22): it is clear that

Cw(z) < —é(w(zl) bt w(z)), 2= (2ayeez) €OPE ). (0.23)

Since |¢;] — |z < |2, — & = R < Cy/V/d for j = 1,...,d, we use formula (0.1)
to obtain

1 1 1 .
—w(z;) < —w(|§j| - ﬁcs) < —Zw(fj) +w<ﬁ(§’3) +1,  j=1...,d
(0.24)
By formula (0.5), we deduce, for that L' > 1,
w(€) S w(Vdl]a) < L'w(|€loe) + L' < L'(w(&n) + - +w(€a) + L.
Therefore,
1
— (W) + - Fw(ée) < —pw@) + 1 (0.25)
Thus, we obtain, by (0.23), (0.24) for all j =1,...,d, and (0.25),
Cy
—Caw(z) < ——(w(zn) + - +wl)
C 1
< — @)+ (@) + O =Cs) + G
Cy Cy 1
< - =2 — . :
Since r* = Rll, the result follows by (0.22) for
K = Cy/(dLL') > 0, C = CreCe/ L)+ Cou(Ca/VD+Ca 5 )
O

The estimate in Proposition 0.19 can be adapted for any power of G for the
same constants.

20



0.3 Ultradifferential operators

Corollary 0.20. For n € N, let G denote the n-th power of G. Then, for
q"(&) :=G(€), £ € RY, it holds

IDq"(€)] < Cal BRIl Kw()

for the same constants C, K, R > 0 as in Proposition 0.19, for all a € N¢,
£ e R

Proof. Let r be the same polyradius as in the proof of Proposition 0.19. Pro-
ceeding as in (0.22), we have

ol ol
IDq"(6)| < — sup |¢"(z)] <e"P— sup e,
T zedP(¢,r) T zedP(¢,r)

for all a € N¢, £ € R4, where Cy,Cy > 0 come from condition i) of Theo-
rem 0.18. From (0.26) we deduce the result. O

As G(z) = Y cna aaz® for some sequence {an}o C C, for all z € C%, for
0

any n € N we have G"(2) = > cng baz® for another sequence {bo}. C C,

for all z € C?. To complete this section, we find suitable estimates for such

sequences. We begin estimating the derivatives of G at the origin.

Lemma 0.21. There exists C > 0 depending on G, w and d such that

|D*G(0)] < a!ecefc“"*(%‘), o € Ni.

Proof. Let R > 0 be arbitrary and set r = (R,...,R) € R% Take ¢ € Ny

so that v/d < 2. By Proposition 0.11 and by condition ') of Theorem 0.18,
using ¢ times condition (a) of the weight function, there exist C; > 0 and
L:=L%+---+ L > 0 such that for all a € N,

| | | - _
ID°G(0)] <L sup |G(2)| € o ewVaRITCr < X Tw(RIFIHC (. 27)
re z€0P(0,r) Rl Rl ’
for all R > 0. Since

inf {R-lolelw (M) = (sup{R'O‘le_f‘“’(R)}f1
R>0 R>0

< (sup{eslol=Eeop) (0.28)

s>0

= (Sup{ef(s(\an)—«P(S))})*1 _ e_f“"*(%)
>0

I

we obtain the claim for C := L 4+ C; > 0. O
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We now give the analogous estimate for G™ at the origin.

Corollary 0.22. Let n € N. For the same C > 0 as in Lemma 0.21 it holds

lo|

1D°G™(0)] < atenCe e () g et

Proof. Again, for arbitrary R > 0 and r = (R, ..., R) € R? we obtain as in
formula (0.27), that for all & € N¢,

| | — _
|DaGn(0)| < ﬁ sup |Gm(2’)| < - 6an(R)+nL+n01
r z€0P(0,r) R|a\

for all R > 0. As in (0.28),
: —la| ,nLw(R) < slal ,—nLe(s)1)—1
inf {R™"e } < (sup{e™e 1)

_ 7 o] o 7 oflal\\

= exp (nL sup {SE - gp(s)}) = exp (nLgo (E» .
Hence, the result follows. O
Corollary 0.23. Let n € N. If {a,} and {b,} are the sequences such that

G(z) = Z an,2", G"(z) = Z b2, z €4,
aeNg aeNg

then for C > 1 as in Lemma 0.21,

jaal <€ (8 aeng:

|

ba| < enCemor () 4 ent. (0.29)
Proof. 1t is enough to use Lemma 0.21 and Corollary 0.22 and take into ac-

count that for arbitrary a € N, |a,|a! < |D*G(0)], and |b,|a! < |[D*G™(0)]
for all n € N. O

We denote T(z) := T(—xz). We define the convolution of T' € E(wy(R?) and
p € S (R?) by (see [20, Definition 6.1])

(Tsp,¢) =(u,Tx9),  ¢€S,(R?).

22



0.3 Ultradifferential operators

Proposition 0.24. For an ultradifferential operator of (w)-class G(D) we
have that

G(D) : S,(R?) — S, (RY), G(D):S (R — S/ (RY)

are linear and continuous.

Proof. From [19], we deduce that for f € S,(R?), the operator G(D) acts

D>G(0)
ol

(GD))(x) =Y (=) D f(x).

aENg
Fix f € S,(R%) and A > 0. We have for all 3 € N,
DO(
DG < 3 PO s pay)

aeNg
By Lemma 0.21 there exists C' > 0 such that
|DG(0)] < ale€e ¥ (& ‘>, o € Ni.

Denoting |f]y asin (0.14), since f € S, (R?), we have for X’ := max{\,CL} > 0

|DP(G( )| < Z e e () | flaxe™ o (1557) -2nute),

aeNd

By (0.10) and (0.11), we have

]Dﬂ( )| < Z eCeCle ‘O‘|6_CL“’*(‘LL')|f]2XeCL*"*(%>€M*(‘Li‘)e—m(x)
aeNd
= orcngs (8) ety 3 ¢l
aeNd

Then, from Lemma 0.1 there exists C’ > 0 such that

ID(GD)f)@)e ™ (3 < ¢y,
Hence |G(D)f|x < C'|f|an as we wanted.
This shows that G(—D) : S, (Rd) — Sw(Rd) is continuous and
G(-D)" : SL(RY) — S, (RY)

23



Chapter 0. Preliminaries

is also continuous. Therefore, for u € S/ (R?), f € S,(R?), we have (for the
second equality, see [36, Proposicién 1.2.4])

(G(=D)'p, f) = (1, G(=D) f) = (p, T  f) = (T p, f) = (G(D), f).
This shows the result. ]

0.4 Time-frequency analysis

Here we present some results regarding time-frequency analysis. Some meth-
ods of this theory will be used in Chapter 4. We denote the translation, the
modulation, and the phase-shift operators by

T.fy)=fly—x);  Mcf(y)=eV f(y);  T(2)f(y) = e f(y — z),
for all z,y,€ € R? and 2 = (z, ).

One of the fundamental tools of this theory is the short-time Fourier transform.
We refer the reader to Grochenig [38].

Definition 0.25. Let ¢ € S, (R?)\ {0} be a window function. The short-time
Fourier transform of f € S/ (R?) is defined by

Vol ()= (AT = [ F)dly=ae ™Sy, == (@,€) €R™.

We observe that the conjugate linear action of S (R?) on S, (R?) is consistent
with the scalar product in L?(R?), (-,-)z2®ae). We can write the short-time
Fourier transform in terms of the Fourier transform:

Vof(2) = F-T(€), 2= (2,6) € R™, (0.30)

(see for example Grochenig and Zimmermann [39]). The adjoint operator of
the short-time Fourier transform is defined as follows: for ¢ € L?(R%), we
write A, : L?(R?*?) — L?(R?) for the operator given by

AyF = F(2)I1(2)ydz.
de

For all F' € L*(R*) and g € L*(R?), we have

WuF.g) = | PG g = [ FEVag)dz = (F.Veg) = (ViF.g).

R2d
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0.4 Time-frequency analysis

Hence, A, is the adjoint operator of V,, : L*(R?) — L?*(R*¥). Thus, for
Y € S,(R?) and F € S, (R?*), we define

Vi F = A,F. (0.31)

It is known that V; : S, (R*!) — S,(R?) is continuous (see for example [14,
(2.21)]). Furthermore,

Lemma 0.26. If ¢ € S, (R?) \ {0}, then
Vy : Su(RY) — S, (R*), Vy i SL(RY) — S (R*)
are continuous. Moreover, if u € S/, (R?), then there exist ¢, u > 0 such that

[Vpu(z)| < ce@, z € R*,

Proof. See [14, Propositions 2.9 and 4.7]. For the second inequality, we refer
o [39, Theorem 2.4]. O

It follows from [39, Lemma 1.1] (see also [14, (2.25)]) that for all f € S/ (R?),
g € SL(RY), (see [38, (3.17)] to understand the meaning of the integral)

ViV g) / Vo)), )z = @) [l e (Frg).  (0.32)

Therefore, we can show the following

Proposition 0.27. Let u € S/ (R?) and ¢, ¢ € S, (RY), ¥ # 0. Then,

Vou(2)l < 2m) [l gaay (Vaul * Ve (2), =z € R*

We recall from [39, Theorem 2.7] a characterization of S,,(R?) in terms of the
short-time Fourier transform.

Theorem 0.28. Let ¢ € S,(R?) \ {0} be a window function, and let f €
S/ (RY). The following assertions are equivalent:

(i) f € SL(RY).
(ii) For all A > 0, there exists C\ > 0 such that |V f(2)| < Cre ¥ 2z € RY.
(iii) Vi f € S,(R*).
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This provides also another equivalent system of seminorms for the space S,,(R%)
(see e.g. [14, Proposition 2.10], cf. [15, Theorem 2.5(h)’]): for ¢ € S,,(R%)\ {0},

Vol x = HV,,,f(Z)eMz)

. A>0. (0.33)

Lo° (R24)

The following results are well known in the Schwartz class S(RY) (see for
example [38, Chapter 3] or Grubb [40]). A similar proof of them remains
valid for S, (R?). We recall the inversion formula for the Fourier transform in
S.(RY):

f@) = @ry? [ iy f e S.m. (034

We will denote the inverse of the Fourier transform by
FUH@ = @0 [ iy, f e SL®.
Lemma 0.29. If T € S/ (RY) and g € S,,(R?), then
gT = 2m) (G« T), g+xT=3-T.

Lemma 0.30. If f,g € S, (R?) \ {0}, then

Vof(@,6) = e " Vyg(~2,-€), 2,6 €R".
Lemma 0.31. If ¢ € S, (R?) \ {0}, then

Myb(n) =T-0(n).  My(n) =Tydn),  y.n € R
Lemma 0.32. If f € S/ (RY) and ¢ € S,(R?) \ {0}, then

Vyf(z,€) = (2m) 4 (F« M_,)(6)  2,€ €R™

Proof. It is an immediate application of formula (0.30) and Lemmas 0.29
and 0.31. O

This result is taken from [14, (4.31)].
Lemma 0.33. If u € S, (R?) and ¢ € S,,(R%) \ {0}, then for all v € N,

Vu(Du)(z) =) | (AY) £ Vpsy(u)(2), 2= (2,6) € R*™.

By 6
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0.4 Time-frequency analysis

Proof. By definition, we have
Vy(Du)(z) = (D7u, (2)Y) = (u, D" (I1(2)1))).

D(I1(2)¢(y)) = D} (e by —x)) =) (g) &P DIv(y — x),

By

for all y € R?, we then obtain

Vo(Du)(2) = (g) &7 (u, e DJp(y — x)).

By

Therefore, we get the result since e Dy (y —x) = II(z) D’¢) and using again
the definition of short-time Fourier transform. O

In Chapter 4, we will use the following

Definition 0.34. Let f € S,,(R?*?). The Wigner transform of f is

Wig(f)(z,€) = /R eV f(x+y/2,x —y/2)dy, xR
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Chapter 1

Global pseudodifferential
operators

The local theory of pseudodifferential operators grew out of the study of sin-
gular integral operators, and developed after 1965 with the systematic studies
of Kohn-Nirenberg [48], Hormander [43], and others. Since then, several au-
thors have studied pseudodifferential operators of finite or infinite order in
Gevrey classes in the local sense; we mention, for instance, [41, 65]. We refer
to Rodino [60] for an excellent introduction to this topic, and the references
therein.

Gevrey classes are spaces of (non-quasianalytic) ultradifferentiable functions
in between real analytic and C'*° functions. The study of several problems
in general classes of ultradifferentiable functions has received much attention
in the last 60 years. Here, we will work with ultradifferentiable functions as
defined by Braun, Meise and Taylor [20], which define the classes in terms
of the growth of the derivatives of the functions, or in terms of the growth of
their Fourier transform (see, for example, Komatsu [49] and Bjorck [8], or [20],
for two different points of view to define spaces of ultradifferentiable functions
and ultradistributions; and Bonet, Meise, and Melikhov [18] for a comparison
between the classes defined in [20, 49]).
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Chapter 1. Global pseudodifferential operators

In Fernandez, Galbis, and Jornet [33], a full theory of pseudodifferential oper-
ators in the local sense is developed for ultradifferentiable classes of Beurling
type as in [20], and it is proved that the corresponding operators are w-pseudo-
local, and the product of two operators is given in terms of a suitable symbolic
calculus. In [32, 34], the same authors construct a parametrix for such oper-
ators and study the action of the wave front set on them (see also Albanese,
Jornet, and Oliaro [2] for a different point of view). On the other hand, very
recently, Prangoski [58] studies pseudodifferential operators of global type and
infinite order for ultradifferentiable classes of Beurling and Roumieu type in
the sense of Komatsu, and later, in Cappiello, Pilipovié¢, and Prangoski [25], a
parametrix is constructed for such operators. See [22, 23, 27, 55, 58] and the
references therein for more examples of pseudodifferential operators in global
classes (e.g., in Gelfand-Shilov classes).

The aim of this chapter is to study pseudodifferential operators of global type
and infinite order in all the variables in classes of ultradifferentiable functions of
Beurling type as introduced in [20]. Hence, the right setting is the class S,,(R?)
as introduced by Bjorck [8]. We follow the lines of [58] and Shubin [64], but
from the point of view of [33], in such a way that our proofs simplify the ones
of [58]. Moreover, we clarify the role of some kind of entire functions [19, 51]
(see Section 0.3) that become crucial throughout the text.

It is worth mentioning that in the case when the weight function satisfies
(see [18, Corollary 16(3))):

There exists H > 1 : 2w(t) < w(Ht) + H, t>0, (BMM)

the classes of ultradifferentiable functions defined by weights (as in [20]) and
the ones defined by sequences (as in [49]) coincide. In this situation, the
definition given by Prangoski for the Beurling case in [58, Definition 1] is
expected to be the same as our Definition 1.3. But, if the weight sequence
(M,), satisfies only condition (M2) of Komatsu, as it is assumed by [58], our
classes of amplitudes could differ in general from the ones given by Prangoski
(see [18, Example 17]). Hence, we are treating, even only in the Beurling
setting, different cases.

We first introduce our global symbols and global amplitudes following [58,
64] and define the corresponding pseudodifferential operators. We give in
Proposition 1.19 a characterization in terms of the kernel of an w-regularizing
operator, which is a continuous linear operator R : S’ (R?) — S,(R?). The
w-regularizing operators are crucial to understand the symbolic calculus in
the next chapter and, thus, to construct parametrices for pseudodifferential
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1.1 Symbols and amplitudes

operators (see Chapter 3). We also see in Example 1.21 that many operators
are pseudodifferential operators according to our definition.

The results of this chapter can be found in [6].

1.1 Symbols and amplitudes

We begin with the definitions of global symbol and global amplitude in our
context of spaces of global (non-quasianalytic) ultradifferentiable functions of
Beurling type, following Prangoski [58] and Shubin [64]. In the following,
meERand 0 < p <1

Definition 1.1. A global symbol in GS}"* is a function p(z,&) € C>(R*)
such that for all A\ > 0 there exists C > 0 with

lat

D3 DEp(a, )] < Cal(a, )y 7ol (532) gmatee),
for all o, € N&, z,€ € R?.
The symbols of Definition 1.1 are called of infinite order due to the term

e™ (@8 For the corresponding definition of finite order, we adapt [64, Defini-
tion 23.1] (see also [33]):

Definition 1.2. A global symbol of finite order in S7"* is a function p(z,§) €
C>(R?*®) such that for all X\ > 0 there exists C\ > 0 with

[o+B]

D2 D2 p(x, €)| < Cx((, £))Po+oleMe (552) (4 g)ym,
for all a, p € N&, z,€ € R?.

It follows from (0.7) that S;"* C GS;"“.

Definition 1.3. A global amplitude in GAJ"” is a function a(z,y,§) €
C>(R3) such that for all X\ > 0 there exists C > 0 with

_ |a+vy+pB| o latny
\D?DJD?a<x,y,§>r§cA(M)p 8 s (I252) o)

for all a,v, B € N, x,y,& € R

Lemma 1.4. For every z,y,& € R? we have

(@ —y) < V2(2,9)) < V2(2,9,6) < V6{x —y){(z,6)).
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Chapter 1. Global pseudodifferential operators

Proof. Since (Jz| — |y|)* > 0, we have 2|z||y| < |z|* + |y|*. By the Cauchy—
Schwarz inequality we obtain

l+lz—yf =14z -2z y+ [y]? <1+ |z +2Jz||y| + |y?
<1420z +2ly)* <21+ |z + |y|*).

As [yl* < (Jz =yl + [2])* < 2]z — y[> + 2[z[?, we get
Lz + [yl + 162 < 1+ |2 + [€° + 2]z — y[* + 2|z
<31+ [z + [z —yP + [€]%)
<31+ Jz —y*) (1 + |z + [€),
and the result then follows. O

It is immediate to check:

Example 1.5. Let p(z,§) be a global symbol in GS;"“. Then a,(z,y,§) =
p(z,€&) and az(x,y,§) := p(y, &) are global amplitudes in GA;“aX{O’m}’“’.

Proof. We need to estimate ]D;‘D;’Dfal(x,y,g)] for all a,y,8 € N¢, x,y,& €
R?. We can assume v = 0 because p(z,£) does not depend on the variable y.
Since p(z,§) € GS;", for all A > 0 there exists Cx = Cxz > 0 such that

(D2 Dy (w,y,€)| < Cx((w, €))7l (57 gt

for all o, B € N¢, z,y,& € R?. By Lemma 1.4 we obtain

(€))7t < V3" M

As /3 < e, we use formula (0.10) for £ = 1 and get

)P\DH-B\

(ex\Lw* ( lots| ) e|a+6|) ? < e (%) eMp

For m > 0, it follows that mw(z,&) < mw(z,y,£). So, for all A > 0 there
exists C} = Che** > 0 such that
x—y> platp | *(M)

DeDPay(z,y,&)| < C) <7 e ) gmw(@yi6),

D:DZaen8) < Az )
for every o, € N§, z,y,§ € R?. This shows a; € GA)"™ for m > 0. An
analogous proof works to see that a; € GAJ". If m < 0 the result is also
clear. n
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1.1 Symbols and amplitudes

The following result can be seen as the reciprocal of Example 1.5.

Example 1.6. Let a(z,y,§) € GAJ" and p(z,§) = a(z,y,)|,_,. Then
peE GSg}ax{m,mL},w‘

Proof. Let p € Ny so that 2 < e’?. By the chain rule, from Definition 1.3 we
have that for all A > 0 there exists Cy > 0 such that (as Y (2) = 2/°/)

o @ & o—a
207t s < X (2 )IDE05 DY ),
a<a
la+8]

< C/\<(‘/L‘7 x, £)>_P‘a+ﬁ|6)\L5P<P* (W) 2\a|emw(z_’z7§)

for all o, 8 € N¢, z,& € R%. By (0.10), we have

eALﬁpw*(":JLrg')yal < ez\pw*(‘aim)ez\pz_ﬁ;l L
From (0.4) it follows that

The result holds since ((z,&)) < ((z, z,§)). O

Let my,my € R. It is clear that if p; € GS)"* and p, € GS]"™** (respectively
a; € GAT" and a, € GA:)”?"“), then pipy € GS:}”ﬁm%w (respectively ajay €
GA;”1+m2’w), and that if m; < ms, then GSZ“’“ - GS;’L"”“’ and GA;"“" -
GA™2>v,

P

If wy < wi, as @), > ¢l and mws > mw; for m < 0, it holds that GS"* C
GS;"“* for m < 0 (vespectively, GAT** C GAT"** for m < 0). If m > 0, we
do not know if similar inclusions are true.

Moreover, if 0 < p < p’ < 1 we need to impose conditions on the weight
functions w; and wy in the following way:

Example 1.7. Let 0 < p, < p; < 1. If w; and w, are weight functions such
that

(1) wy(t"/??) = O(wy(t)), as t — oo, then there exists C' > 0 such that for
m <0, GS" C GSI'“? and GAV“t € GAO;
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Chapter 1. Global pseudodifferential operators

(2) wy(t71/72) = o(wy (1)), askt — 00, then, for m < 0, GSJ"" C (N, cp GSh*
and GA"“" C (), cp GAR“2,

Proof. (1) As ps < p1, by assumption there exists C' > 0 such that wy(t) <
wy(tP1/P2) < Cwi(t) + C for all t > 0. Thus

mw; (t) < mC~ wy(t) —m, t>0, (1.1)

for m < 0. Moreover, we use Lemma 0.10(2) to get that there exists C’ > 0
so that for all A > 0, j € Ny,
1% .7 / P2 J
< — = . .
20 (55) <20+ 320, (3) (1.2)
Since ((x,&))7PrletBl < ((x,&))r2letbl for all x,& € RY, the result follows for
symbols. Now, let a € GAJ*". By Definition 1.3, for all A > 0 there exists

C)\ = CAC/L > (0 such that

p1lat+y+p8 " o
) | | A Do, (124L) e (w..6)
)

ID2D; Dfatan. € < O (1o Y

for all a,y,8 € N¢, z,y,£ € R%. By Lemma 1.4, as 0 < p; — ps < p1,

xr — pilat+y+pB] xr — p2leatv Bl —py oty
(M) +v+ S(M) + \@|++ﬁ|.

Since v/2 < e, from formula (0.10) for k = 1 and (1.2) we obtain

* aty+ P1 * aty+8
(eAC/Lle (l Ac”,f‘ ) e\a+7+5\) < e)\clpl%ul (%) e/\C,LPI

e>\p2<P22 (M) .

< e)\C'Lple)\C’pl
-1
By (1.1) we obtain a € GA;’;C .

(2) By the hypothesis, similarly as in (1.1) and (1.2), for —m > 0 and given
k > 0 there exists Cy ,, > 0 such that kws(t) < —mw;(t) + Ck . Hence

Moreover, by Lemma 0.10(1), for all A > 0 there exists C, > 0 such that

. (J P2, (J .
) <« e < . .
)\S%l()\) _C,\+)\p1<pw2<)\), j €Ny (1.3)
As before, the result for symbols follows due to the arbitrariness of k > 0. For
amplitudes we replace (1.2) by (1.3) and proceed in the same way. O
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1.2 Continuity of the operator

Now, take a weight function o such that w(t!/?) = o(a(t)), t — 0o. We show
that if f € Dyyy(R?*), then f € ,,cp GS;". Indeed, there exist n,C > 0
such that

|D3D{ f(,€)| < Cerneolmlothl o, B €N xR

We take R € N such that f(z,&) = 0 for {(z,€)) > e®. By Lemma 0.10, we
get that for all A > 0 there exists Cy = Ce“>t%.n > 0 such that

lo+8]

DD f(x,6)] < Cre e (5ER) | o, Be N, 5,6 R

For ((z,&)) < e, we have by (0.10)

AMoen (5) < (2, €)) Pl (eR\a+ﬁ|€AL%:(‘;*L*§'))”(@fwm&)exw(eﬁ))

< ((a, £)>—p|a+ﬂ|e/\p¢$ ( — ) My L g Aw(@,8) pAw(e™)

This shows the result. The same argument works to show that if f € D, (R*),
then f € (,,cg GST". We will discuss similar inclusions in Example 1.21(b).

1.2 Continuity of the operator

We define pseudodifferential operators for global amplitudes as in Defini-
tion 1.3 using oscillatory integrals. Let x € S,(R*) with x(0) = 1. We
consider, for n € N, the double integral for arbitrary f € S,(RY), z € R,
given by

A = [ ey X O) s (14)

We prove that {A1 ,(f)} converges for every f € S, (R?) when n — oo. This
limit will define a linear and continuous operator A : S, (R?) — S, (R?) given
by the iterated integral

AP@ = [ ([ e @y rwdn)ds,  feS®Y. (15)

Hence, the operator in (1.5) is independent of the choice of the test function
X € Su(R*) in (1.4).

We use a suitable integration by parts with an ultradifferential operator of
(w)-class as in Section 0.3, which will be also useful for next chapters.
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Chapter 1. Global pseudodifferential operators

Lemma 1.8. Let G be the entire function of Theorem 0.18. For everyn € N,

et@=y)-& — G (_Dy)ei(w—y)f (1.6)
1 4
_ n(_D,.)e@—v)<€ 1.
G"(y—x)G (=Dy)e (1.7)
1

— n(_ n(_ D Yelz—v)€) )
acmeich D;:)(Gn@G( NECTIE) (1)

Proof. Since G"(D) = Y- eng baD®, for some sequence {bo} € C, we have
(notice that e'®=¥¢ € £, (]R‘;) for all z,& € RY)

Gn(_Dy Z(w U)f Z b a za; y)- 5)
aeNd
Z b (— 1)l (=)ol (—ig)@ei=v) € = il egn(g).
aeNd

This shows (1.6). For (1.7), we can proceed similarly. A combination of (1.6)
and (1.7) yields (1.8). O

Proposition 1.9. Let x € S,(R*). For every function f € S,(R?), the
sequence {A1 \ (f)}nen as in (1.4) is a Cauchy sequence in S,(R?).

Proof. According to the notation (0.14), for any f € S, (R%) and X\ > 0, we
need to show that

[(Avkx = Ari) (FIx = 0 (1.9)
as [, k tend to infinity.

To this aim, we differentiate (A5, — A1/, )(f) under the integral sign, using
Leibniz rule, as follows:

r( [[[ e aw ) (0. 0) = x( 7. )) F)dude)
= Y o [t pra . ox

a1+”‘2+“3:°‘1 ) (1.10)
% D3 (x((@:6) = x(7 (@.9)) Fy)dyds,

for all « € N¢ and x € R?. Taking into account the sequences in Corollary 0.23,
we make an integration by parts via formula (1.8) for a suitable power n € N
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1.2 Continuity of the operator

(that we determine later) to obtain the following expression for the integrand
n (1.10):

1
<s> PG =)
x D (x(5:(,) - x@(:c,s)))f(y)))

— pilz—y 1 n n!
= e 6D ( = Zb 3

—X
115114, !
neENg  m+tn2tns=n, m<ay 112113

etlz=y)-€

G"(De) (6™ D*alw, y, €)x

O[l!

- A\l ear—n1 pyaz N2
X —1 DD a(x,y, &)X
. 1
x D Dy (X x(j(w,ﬁ)))f(y))
(e 1 el n! oy!
— oi@—y)-€
=e b.b, X
Gn(‘f %d 61+EZZ+E3:5 erleales! milnalns! (g — m)!

ni+n2+nz=n, m<aq

1
————D*Dy D}
G ( ) T Yy 3 a(x7y,£)x

x DD (x5 () = (7 5:6) ) Dy S ).

% (_Z')Im \gal—m Del

Hence, (1.10) is equal to

! ! ! !
beb" Z @ ¢ ' " ; a_l ;X

levolcval €11es! In,!
R o1 +omtas—a (1:Q9 (3% €1:€21€3: T)1:T)2:T)3: (O[l 7]1)
0 €1+extez=c
nm+n2+n3=n,n<ay

. _j)Iml 1
o [ eensC " comnpa 1 pespeprage,y,6)x
//de G"(f)g v Gy —x) ® e (z,9,¢)

x D2 D2 (x5 (5,6)) — x(7(2,€)) ) Dy £ ().

Now we fix A > 0 and we take s > A to be determined. Since f € S, (R?), for
that s > 0 there exists C, = C,3 > 0 such that

D= f(y)| < Cse‘SLS‘P*(LETSS“)e—Sng(y)_
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Chapter 1. Global pseudodifferential operators

Moreover, by Definition 1.3 there exists C = C ;s > 0 so that we obtain, by
Lemma 1.4 and (0.10),

D52 D Dol )] < O (L) gt () gt
! {(z,9,))
< C;\/i‘a2+62+n2‘e43L4‘P*(%ﬂ)emw%y,&)

lagtea+mal|

S Cle4sL4€4ngtp* (T)emw(x,y,g). (111)
By formula (0.7) we have if [¢] > 1 (if |¢| < 1, then |¢[la—ml < 1)
o 3 x(lor—m] 3
et < 0 () o,

On the other hand, by Corollary 0.23 there exists C; > 0 depending only on
G so that
le] In|

‘be‘ S encle—ncﬁtp*(%cl) ‘bn’ S enCle—ncup* (n01)

)

)

and from Corollary 0.20 there exist Cs, C3,Cy > 0 that depend on G, w, and
the dimension d such that, by formula (0.12)

1 ‘
——_|< Cmefanw(é);
‘G"(S) ’
1 _ 3, % ( leal
De ‘ < CmG 'C \El\e—nC’gw(y—fc) < CnC//eSL © (sLs)e—anw(y—m)’
)yGn(y_x)— 3514 >~ gy

for some constant C? = C”,; > 0. The same formula (0.12) guarantees the
existence of C?" = C”]; > 0 satisfying

! (L
e < 2lalpr < 2|a1\0;"esL3%0 (?)

(a1 —m)!
We can assume m > 0 without loss of generality. By (0.4) and (0.1),

w(x,y,&) < Lw(x) + Lw(y) + Lw() + L
< L*w(y — )+ (L* + L)w(y) + Lw(&) + L* + L. (1.12)
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1.2 Continuity of the operator

Therefore we obtain, with the previous estimates,

D3 (A iy — Ay ) () (@)

<o 3 o ({F) o () 3 a! el

X
051!(362!0[3! 61!62!63!

e,neNd ar1taztas=a
=T e1textez=e
nitn2+n3=n,m<ai

1 1
— a3 73 . =
- 771'772 ns! /‘D Dy ( (k(xvg)) X(l (ﬂfaf)))‘x
% (/0271 —nszJ(f) AL3p (L |)e)\L3w(§ C// sL3p (‘;Ll?l)x

2\O¢1|Cﬂ// sL3 (

% e—anw(y—w)Cle4sL4e4sL3tp* (%)emL2w(y—w)€m(L2+L)w(y) X
s

X emL“’(f)emL2+mLCseSL3‘p* (%)e_‘gﬁ“(y)dy) dg.
We take n € Ny so that
nCy > max{1 + AL* + mL,mL* + (A + L)L}.
Hence, in particular, we obtain
e(—"02+mL+>\L3)w(§) < e~ (&)
Moreover, if we put s > nCy such that
sL*>m(L*+ L)+ (A + L)L +1,
we have, by (0.1),

(L4 L) (y) =L (y) o (mL* ~nCa)u(y—r) < o=w() o= (ML) Lw(y) = (L) Le(y—2)

< o4 W) O FDL o= (M L)w(a).

Now, we assume |az + 73| > 0. Then, there exists C.” = CJ”;; > 0 such that,
by the triangular inequality,

1 1
D22 D (x (5 (2. ) = x(5 (@:€))|
1 a3+n3 1 az+n3 111 4sL3tp* az+ng
()™ 4 () opreterte ()

IN

1 1 |z +n3|

< (7 + 7)0;///648L3¢*(W)
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Chapter 1. Global pseudodifferential operators

for |as +m3| > 0. On the other hand, by the mean value theorem there exists
¢ which lies in the line segment between 1(z,€) and 1 (=, &) such that

1 1
x(5:6) = x(7(:6)] < V@Il - 7.0
It shows that, for some constant C”” > 0, as |(x,&)| < (z)(£),
‘D;ve,Dgs (X(%(xa 5)) . X(%(x’ 5)))‘ < C;///e4sL3tp (\a3+n3\+1) |7 7|

for all az,m3 € N&. Since s > A, by (0.11) (and the fact that ¢*(¢)/t is
increasing) we have 43L3¢*(%) < Ap*(3) +2sL3 *(la;?;*‘) Moreover,
by Lemma 0.8,

glorleste (%)eus@ (%)esﬁw (L 1')645L3 - (leateatnal ) y
rtter (58) ot () < v e () g () oo (22),

Furthermore, we obtain, by Lemma 0.1(4) and (0.10),

ol el ! 2+ (Lol 8 (el 8% (1nl
g ' ' ' RPN ‘77' '6>‘L ¥ (xﬂ)eSL (OLB)QSL ® (sLB)
o1 tomtas—a O1:09:(l3: €1:€2:€3. T]1:T]2:7]3:

€1+extez=e
m+nz+ns=n,m<ay

< ctmsesn A () o () o' (24)

~—

< e()\+2sL)(L+L2)6)\Lp* (L;l) esLtp* (%) enga* (%

As the selection of n and s depends on A, we write
4 2 2
D)\ — CSC;C(NC/NC;/NGML e(>\+25L)(L+L )emL +mLX

3 w01
6()\+L)L+)\L 6Agp (/\)CSQneanl > 0’

and hence,

D3 (Avyrx = Arjia) (F)()]
L1 e (lal nCro* () —neyer (b
SDA|%+T}6A“"( ) Z e “"("1)6 “"('Ll)x

e,neNgd

y est(;Ll)echp*(ﬁL')<x>e—(/\+L)w(a:)(/e—w(y)dy) (/(Qe_‘”(é)d{).

(1.13)
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1.2 Continuity of the operator

We use (0.7) and (0.6) to obtain
(z) < e? Wewl) < e¢" (Dl olw(z)

Similarly,
(€) < eFo¥ (2L gArw((€) < o2rv" CL)gh ohuld),

and thus the integrals converge by condition () of the weight w. For the
convergence of the series, we treat the sum in € (the other one will follow in
the same way). That is, we need to estimate

Z 6—nclgo*(%)est*(§)_ (1.14)
e€Ng

We have by (0.10), as s > nC,

e () g (5) _ oty none () et sore ()
< ef\e\e—nClga*(%)esLesgo (Tl) <e sL 7| |
The series > g el is convergent (by Lemma 0.1(8)), and also (1.14). Hence,

from (1.13) we show that for all A > 0 formula (1.9) holds and the result then
follows. O

Lemma 1.10. Given a(z,y,§) € GA)™ and f € S,(R?), for all X > 0 there
exists Cy > 0 such that for all x,& € R,

| / eIz, y,€) [ (y)dy| < Cre XD emaximmuto) (1.15)
]Rd

Proof. As in Proposition 1.9, we integrate by parts in the integrand of the left-
hand side of (1.15) with formula (1.6) for a suitable n € N to be determined.
We have

eilz=y)-€ 1

GT@G"(Dy)(a(:c, ¥,.6)f ()
= '@y 5 Z Z

neNd n+n2= n

Djta(z,y,§) Dy f(y),

and therefore

e atay, F
=20 >

neNd Ni+n2=n

i(x—y)-§ 1 2
7]1|772|Gn )/ e D a(z, y, §) Dy f (y)dy.
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Chapter 1. Global pseudodifferential operators

We fix A > 0 and we take s > A, to be determined. Similarly as in (1.11),
from Definition 1.3 for that s > 0 there exists Cy = C, s > 0 such that

[m1]

— plml 5
’Dzla(%y,fﬂ <C; (M) esLire (ﬁ)emw(fﬁy»&)

< C'seSLSeSL%* ( e ) e (@)

Since f € S, (R?) there exists C, = C’,, > 0 such that

In2]|

D7 f ()] < Clete () oot
Again, by Corollaries 0.23 and 0.20 there are C, Cy,C3 > 0 such that

[nl

|by| < enC1o—nC1¢” ("Cl )

| < Gpemren®,

‘ 1
’ G (¢)
We then obtain that the left-hand side of (1.15) is estimated by

Cge"cle_"CQ“’(g)C’SC;esLB (/

emw(x,y,ﬁ)e—stw(y)dy) %
]Rd

(1.16)

* n ! 2 ok m1 2 n2
X Z 677101@ (n‘Cl1) Z LQSL ¥ (?2‘)631’ ® (‘st‘)
.  Mlng!
neNg Ni+n2=n
From (0.4), we have
w(x) <w(z,y,§) < Lw(z) + Lw(y) + Lw(€) + L.
We consider m > 0. We take n € Ny so that nCy > A+ mL. Then

e—nCQw(é)eme(ﬁ) < G_Aw(f)-

Moreover, if we take s > nC) such that
sL?> > 1+mlL,

we guarantee the convergence of the integral as e s gmLu(y) < e W by
condition (7). On the other hand, it follows from Lemma 0.8 that

S M e () gorter () < oreter (1)

In,!
n+n2=n 2

Since s > nC}, the series depending on 7 in (1.16) is convergent as it is
proved in (1.14). Both n and s depend on A > 0, therefore the estimate (1.15)
holds. O
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1.2 Continuity of the operator

Lemma 1.11. For a(z,y,£) € GAT™ and x € S,(R*?), we denote
K@) i= [ e ala,p,€)x(a, ).
We have

(a) K(z,y) € S,(R*).
(b) The operator T : S,(R?) — S, (R?) given by T(f)(z) = [ K(z,y)f(y)dy,

x € R, is linear and continuous.

Proof. (a) Differentiating K (x,y) one obtains

al Bl
D*DPK (x,y) = —1)1Al
4 ( ) o¢1+a22+a3—a 041!042!043! 61'62'( )
Bi+B2=B (1.17)

« ‘/Rd ei(m—y)~§£a1+/31DgzDgza(x7 n g)D?sX(x’ S)dé—,

for all o, 3 € Nd, x,y € RY. We integrate by parts via formula (1.7) for an
appropriate power n € N. Then, the integrand in (1.17) is equal to
1
G"(y — )
N 1 7)' (O[l +61)‘
— oil@—y)-€ b
e S >

Ina!ns! (a —n)!
neENg  m+tnztnz=n, m<ai+p 112113 ( 1 '61 7’1)

gie=v)e G"(De) (™7 DD P a(x, y, £) D x(x, €))

x g D2 D Da(z, y, €) D2 D (x, €),
and this yields from (1.17) that D2 DJ K (x,y) is equal to

1 al B! ! (o1 + B)!
@@;:522% >

neNd o +astos—a Oél!OZQ!Odg! /81‘/82‘ 771'772'7]3' (ozl + 61 — 771)'
0

B1+p2=8
ni+nz+nz=n, m<ai1+p81

X (_1)\/31| /Rd ei(ﬂf—y)fgalﬂfl—mDgszﬂzDgza(l_’ n {)Dgngsx(x’ f)d&

We fix A > 0 and we take s > \. Since x € S, (R?*?), for that s > 0 there exists
Cy = Cysrs > 0 so that

D% DPx (2, €)] < Coetete” () m2t'utwe)
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Chapter 1. Global pseudodifferential operators

By Definition 1.3 there exists C = Cj ;s > 0 such that (as in (1.11))

(x — ) )P\az-‘rﬁz-‘rnz\ 25 L4 pip* ( \a2;fL24+n2\ ) o (.,6)

Doz D2 e C’
’ z y & a(x7y7§)| < S<<(x,y,£)>

< (el 2500 (%)emw(%y@‘
Formula (0.7) gives (if [{] > 1)
glentBiml < Ao (BB e
By (0.12) there exists C? = C”;; > 0 so that

m < glntiily 1 < gler+ail st (1)
o 1—"T):

and by (0.10), we have

i

2‘a1+61‘e>‘L3‘p* ( \a/l\zéjﬂ ) < €>\L2§0* ( |ai1’§1\ ) €AL3'
On the other hand, by Corollaries 0.23 and 0.20 there are Cy,C5, C3 > 0 such
that

|b | < enclefnClw*(n‘Z‘l)’ ‘#‘ < C;Le—nCQW(y—fL‘).

Hence, we estimate | DS D} K (z,y)| by

CSC;C;/€QSL4 e/\L3 C;zenC1e—anw(y—a:) ( / e)\L3w(§)e—23L3w(I,§) emw(xv%f)dg) X
Rd

. | | |
DI DS TR AR
UENg o1 +astos=a 10903 /81.I82. N1iM2:M3!
B1+B2=p
m+n2+n3=n,n<o1+p1

E \m\) 2 *(\a1+517771l) 3 *(Ia2+/32+n2\) 3 *(\a3+773\)
sLie (5L3 e/\L ¥ L2 eQSL ¥ 2sL3 GQSL ® 2sL3 .

X e
(1.18)

First of all we deduce from (0.3) and (0.1), for m > 0 (if m < 0 the proof is
easier)

mw(z,y,§) < ml(w(z,§) +w(y) +1)
<mL(w(z,&) + Lw(y — z) + Lw(z) + 1+ L). (1.19)

We take n € Ny satisfying
nCy > mL? + \L?.
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1.2 Continuity of the operator

Thus, by (0.1),

efanw(yfzr)emLQuu(yfa:) < ef)\LQuu(yfa:) < ef)\Lw(y)ekLQw(w)e)\L2. (120)

Now, we take s > nC; so that
2sL? > 2(AL® + AL + mL?) + mL.

Therefore,

e(—2sL3+mL)w(z,§) < 6—2()\L3+>\L+mL2)w(r,§) < e—(AL?’—i—)\)w({)6—(AL2+>\L+mL2)w(z).

(1.21)
By (1.19), (1.20), and (1.21) we obtain, from (0.3),
efnCzw(yfw) eAL3w(£)672sL3w(w,£) emw(m,y7§) < 7/\Lw(y)ef)\Lw(z)€f)\w(£) L2 emL+mL2
<e AL —)\w(z,y) —Aw(&) ALzemL-‘rmL2

The integral converges by condition () of the weight w. On the other hand,
since s > A we obtain, by Lemma 0.8,

() o ()

L 2SL34‘0*(|02+ﬁ2+"2‘)€28l/3¢7*(‘a3+23‘)

2sL3 2sL-

e (&

As | | |
3 al BL b gatnigial < g2latsin)
las ! B1!85! 171151121 - !
a1 togtos—a Q1 02:Q3: B! B2t i lm!ns!
B1+B2=p
n+n2+n3=n

we use formula (0.10) to get

p2latBl AL " (%)emmesw(ig) < AP HAL AP (%)esLi’ursL?est(%)'

The series depending on 7 in (1.18) converges as in (1.14). Since n and s
depend on A > 0, there exists C'y > 0 such that

]DngK(x,y)] < C,\e’\w(‘a;rm)e_m(m’y), o, eENI 2,y c R

(b) We note that for f € S,(R?), as ¢*(0) = 0, we have, for any p > 0,

sup |£(y)] < sup [F(1)|e"*® < sup sup |D*f(y)]e " ($)emew) = ],
yeRA yeR aeNd yeR4
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Chapter 1. Global pseudodifferential operators

being | - |, the seminorm in (0.14). Now, to prove that 7" is continuous, we
differentiate under the integral sign the function 7'(f), and by (a) we obtain
that for all A > 0 there exists C) = Cy, > 0 such that

DT(N@)] < [ DK @Il )ldy
<0y (B) [ e ig)iay
< e (8) e, / () g

for all o € N, z € R%, and for any p > 0. This gives the conclusion. O

Lemma 1.12. Every global amplitude is an w-temperate ultradistribution in
S/ (R3).

Proof. Since a € GA}"™ is a C*°(R*?) function, we have

(a(z,y,), f(z,y,0)) /// a(z,y, &) f(z,y,&)dadyds,  f € S.(R*).

Again since a € GAJ"™, there exists C' > 0 such that

af)| < [[[1ate.5.0l1f (v Oldrdyde

S C/// emw(w,y,f)’f(q;7y,{)‘dxdydg

= C(/// e_w(w’g)dmyd@ sup | f(z,y,&)ellmtD w0
z,y,6€RE

< C"|f’|m|+1

for all f € S, (R*), where C' = C [[[ e “@¥Odzdydé > 0 and | f|jn41 is as
n (0.14). Hence a € S/, (R3%). O

Since S,,(R??) is nuclear, there exists a kernel K4 for the pseudodifferential
operator A. If an amplitude a(z,y,&) belongs to S, (R3?), then by Fubini’s
theorem,

(Kalwg)oxw.) = [[ ([ 0wy de) o p)dady, x € S (@)
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1.2 Continuity of the operator

Then, the kernel K, is given formally, as in [64, (23.22)], by

Kaw.y) = [ € a(a,y, )i
which defines an ultradistribution in S’ (R*).

Moreover, we can also characterize the global symbols in S, (R??) in terms of
the kernel of the associated pseudodifferential operator (cf. [55, Proposition
1.2.1]):

Corollary 1.13. A global symbol a(x,&) belongs to S,,(R*?) if and only if

Koy i= [ e ala,e)ds

is in S, (R??).

Proof. As the function equivalent to 1 in R3? is a global amplitude in GA/OJ’“’,
the necessity follows by Lemma 1.11(a). On the other hand, when the kernel
belongs to S, (R??), a can be written as

a(z,8) = (27) " FyeK (2,2 — y).
Indeed, by (0.34),

FyoeK(z,x —y) = /

Rd

e VEK (2,2 — y)dy = /

R

—iy-§ iy-§
(] et de)dy
= @) [ e FS )y = (27)a(a6).

This shows the result since S, (R??) is invariant by partial Fourier transform
(see e.g. [13, Remark 4.10]). O

Remark 1.14. If x € S,,(R%) only depends on the variable &, we do not get
Lemma 1.11(a), but the following: K € C*°(R??), and for every X\ > 0 there
exists C'y > 0 such that

la+8]

|DS Dy K (2, y)| < Cyee" (1552) gmax(mmi®yo) o 3 e N g,y € RY

Indeed, |DEDSK (x,y)| is estimated as in (1.18), replacing e 2="“(=&) with

e 2L°©) and s is now zero. Using (0.4), it is enough to take n and s as in

the proof of Lemma 1.11(a) to obtain the estimate above.

However, under this weaker estimate on K, Lemma 1.11(b) is still true.
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Chapter 1. Global pseudodifferential operators

Theorem 1.15. The operator A : S,(R?) — S,(R?) given by (1.5) is well
defined, linear, and continuous.

Proof. We fix x € S,(R?*) so that x(0) = 1. For every f € S,(R?), the
sequence {Aj /. (f)}n in (1.4) converges in S, (R?) by Proposition 1.9. More-
over, the operator A;,, , : S,(R*) — S, (R?) is linear, and, by Lemma 1.11, is
well defined and continuous for every n € N. We denote by A, the operator
given by the limit:

n—oo

A =t [l F NG e O)duds, f € SR,

By Proposition 1.9, this operator is well defined from S,(R?) to S, (R?).
Since S, (R?) is barrelled, the family {4/, }, is equicontinuous by Banach—
Steinhaus theorem. Then, for every seminorm p of S, (R?), there exist C > 0
and another seminorm ¢ of S,(R%) such that p(A4;,,,(f)) < Cq(f) for all
f € S,(R?). When taking the limit, we have

P(A(S) < Ca(f),  feSu(RY),
which yields that 4, : S,(R?) — S, (R?) is continuous.

We show formula (1.5). Indeed, by Lemma 1.10 we have, for each n € N, that
for all A > 0 there exists Cy > 0 such that

| / e a2, ,€) [ (9)X (- (w,€))dy| < Cre < @emlnmita) up |y(n),

1
n neRr2d

which is integrable in £&. Moreover,

i(x—y)- 1 i(x—y)-
/ez(x ¥) fa(xv Y, g)f(y)X(ﬁ(mv 5))dy — /6 (@=3) Ea(xv Y, g)f(y)dy
pointwise on z,& € RY as n goes to infinity. An application of Lebesgue
theorem gives the conclusion. O
Definition 1.16. The operator A in (1.5) is called global w-pseudodifferential

operator associated to the amplitude a(x,y,§).

When we consider a global symbol a € GS", its corresponding global w-
pseudodifferential operator is given by

a(z, D) f(z) = /R a(wo)f(€)de, e Su(RY, z e R
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1.2 Continuity of the operator

Remark 1.17. In the hypothesis of Proposition 1.9 we could have also used
x(&) in S, (R?) instead of x(z,&) € S, (R?*?). Also, Theorem 1.15 holds true if
we consider x (&) in S,(RY) with x(0) =1 instead of x(z,&) € S,(R*®). Both
results follow in the same way.

The use of amplitudes permits to extend the operator to spaces of ultradis-
tributions in an easy way (by duality). The following result is similar to [33,
Theorem 2.5].

Proposition 1.18. The pseudodifferential operator A : S,(RY) — S, (RY)
extends to a linear and continuous operator A : S’ (R?) — S’ (R%).

Proof. Given the amplitude a(z,y,§) € GAT"*, we denote
b((E, Y, g) = a(y, z, _5)7

also in GAJ"”. We denote by B its associated pseudodifferential operator.

The transpose operator of B defines a linear and continuous operator A=
B': S/ (R?) — S/ (R?) and we check that A|s re) = A. We denote

(Bso)(x / / @€, €)x(06) by dyd;
(Asth)(x / / @0 Ea (0,1, €)X (06 (y) dyde

for § > 0, z € R, and x is a function in S, (R?) with x(0) = 1. By Fubini’s
theorem we obtain (see [47, Teorema 1.2.5])

[oBso) = [(as)s, w6 e Su®.

Proceeding as in the proof of Theorem 1.15 (see Remark 1.17), we obtain, by
Lebesgue theorem,

JoBo) = [(wo.  voes.@.
O
From the proof of Proposition 1.18 we obtain that, given a pseudodifferen-
tial operator A : S,(R?) — S,(R?) with amplitude a(z,y,&), the transpose

operator restricted to S, (R?), A’[s, g : Su(RY) = S, (R?), is still a pseudod-
ifferential operator, with amplitude a(y, z, —£).

The following result clarifies the role operators with kernel in S, (R??) play.
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Chapter 1. Global pseudodifferential operators

Proposition 1.19. Let A : S, (R?) — S, (R?) be a pseudodifferential operator.
The following assertions are equivalent:

(1) A has a linear and continuous extension A : S.,(R?) — S, (R).

(2) There exists K € S,,(R*) such that

(Ap)(z) = | K(z,9)ey)dy, ¢ € S,(RY).

Rd

Proof. (1) = (2) We define K(z,y) := A(5,)(z) for =,y € R% where 4, :
Su(R?) — C, 6,(f) = f(y) is the evaluation map (clearly, §, € &, (R?) C
S/ (R?)). First, for fixed y, € R? and e; € R?, an element of the canonical
basis for some 1 < ¢ < d, we check

—0y,0y, = S' (R?) — lim M

t—0 t
Indeed, for f € S, (R?),
: 5y0+t€i — 63/0 : 1
i (£, 215 =00 ) — i (7 + 1e2) — F0)) = 0,7 ) = (. ~0,.8,,)

t—0 t—0 ¢

From the continuity of A : 8 (RY) — S,,(R%), we have

tim (o, (20 =00 )Y —  (0,6,)),  pe SLRY.

t—0 t

In particular, for u = §,,, ro € R?, we obtain that

(8agr A =00y = (A1) (0) — A(8,0)(0))
= %(K(%,yo +te;) — K (20, 0))

tends to B _
<61’07 A(_ay15y0)> = A(_ayi(syo)(xo)

when ¢t — 0. Given o € N we easily have
Oy K (w0, yo) = A((=1)18;8,,) (o),

by proceeding by induction on |«|. Hence, as g((—l)‘C“'E?;(SyO)(') € S.(RY),
we get that 0705 K (z,y) exists (and is continuous) for all a,3 € N§, thus
K € C>=(R*?).
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1.2 Continuity of the operator

To show that K € S, (R?*!) we denote, for k € N,
B:= {(—1)‘“'6;5 ke (13! ) RelW) . q e NI ye Rd}
which is (weakly) bounded in &/ (R?). Indeed, for f € S, (R?),

(1, (~1)lags,ete (8) errew)|

sup sup
aeNg yeR?

= sup sup |Daf(y)|e_k“"*(%‘) M) < too.
aeNg yeR?

Hence B is bounded in S, (R?) (as S,,(R?) is barrelled). Then, A(B) is bounded

in S, (R?) since A is continuous. Therefore, for the same k as before, we have

sup sup |DEA((~1)926,)(x)|e e (F) ebtowete (5 ghtoe) < 4o
a,BeNd z,ycR?

Thus, by (0.3) and (0.11), we deduce

sup sup [DEDSK (z, y)lee (5 hoton < fog
a,BeNG z,ycR?

This shows K (z,y) € S,(R?*?) since k € N is arbitrary.

We finally check the formula in ( ). We write 1 := [ ¢(y)d, dy € S/ (RY). For
any f € S,(R?) we have (u, f) = ([ ¢(y)d,dy, f) = [ ©(y)f(y)dy, which shows

u = . Then, by the assumptlons on A we obtain
(49)(@) = (5. A( [ o),y
= <5m,/<p(y)g(5y)dy> = /ﬁ(%)(ﬂv)sO(y)dy = /K(x’y)w(y)dy

for all z € R

(2) = (1) By Proposition 1.18, A admits a linear and continuous extension
A: S (RY) — S (RY). Since S, (R?) is dense in 8 (R?), for u € S (R?) there
exists {u,}, C S, (R?) that converges to u (in the topology of S/ (R%)).

We claim that {A(u,)}, is a Cauchy sequence in S, (R%). First, we observe
that, for all k > 0,

B .= {ajK(a:, -)eilw (‘T)ek“’(z) fa € Ng, T € Rd}

51



Chapter 1. Global pseudodifferential operators

is a bounded set in S, (R?). Indeed, by (0.11) we have, for all k > 0,
sup sup |858§K(x,y)|eik“’*<%)ek”(z)e%“"*(%)ek“(w

«,BeNg z,y€R?

< sup sup [P0 K (a,y)le e (55) gareton),
(x,ﬁeNg z,yeRd

which is finite since K € S, (R?*?). Then, the polar set B° is a 0-neighbourhood
in 8 (R%). Since {u, }, is a Cauchy sequence in S’ (R%), given € > 0 and k > 0
there exists ng € N such that if n,l > ng, then u,, — u; € eB°; that is,

[

((tn — ) (), 02K (2, e (F) o) < o

On the other hand, we differentiate under the integral sign and we get

02 (A, — Au)(w) = [ (w, = ) ()02 K (,9)dy.

Thus,
sup sup |0%(Au, — /Tul)(x)|efk“’*<%)ekw(z)
aeNg zeR4
= sup sup | [, — )02 K (z, )y (B b <
a€eNg zeR4

and the claim is shown.

Since S, (RY) is Fréchet, the sequence {A(u,)}, converges to some f € S,,(R%).
By the uniqueness of the limit, A(u) = f € S, (R?), as u,, — u in S’,(R%). This
shows that A(S/,(R%)) C S, (R%). An application of the closed graph theorem
shows that A : S (RY) — S,,(R?) is continuous. O

Definition 1.20. A pseudodifferential operator A : S,,(RY) — S, (R?) satisfy-
ing (1) or (2) of Proposition 1.19 is called w-regularizing.

Example 1.21. (a) Particular cases of weight functions give already known
definitions of symbol classes and pseudodifferential operators as in [33, Exam-
ple 2.11]. For example, when w(t) = log(1 + t), for which S, (R?) = S(R?), it
is known (see for instance [47, Ejemplo 1.3.1]) that ¢} (¢) is either 0 (for ¢ < 1)
or +o00 (for t > 1). In this case, we have that a € GA]"™ if and only if for all

a, 3,7 € N¢ there exists C' > 0 such that

D3 Dy D{a(z,y,€)| < Clx — )17 (,y, )" zy, € € RY
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1.2 Continuity of the operator

This characterization coincides with [64, Definition 23.3] for m’ = 0 (see [33,
Example 2.11(1)] for a symbol in the sense of Grigis and Sjostrand [37]).

In the same way, if we consider a Gevrey weight (w(t) = ¢* for some 0 < p < 1),
then for all n € N there exist A,,, B,, > 0 such that (see [47, Ejemplo 1.3.2])

ol / lexl/
An(a!)l/p<nlp) "o een() < (al)up(ii) " ac Ng.

Therefore if a € GAJV, for all n € N there exists C,y > 0, where we denote

n' = pnl/p > 0, such that

|D Dy Dfa(x, y, )|
(z—y)
(z,9,8))
(z—y)
((z,9,6))

for all o, 7, 8 € N&, z,y,¢ € R%. Conversely, given n € N take n’ = (np)~ > 0.
Then, there exist C!,,C”, > 0 so that

n'

D2 Dy D{a(,y. €)

platy+Bl ;o latyts]
) e Py (T)e”nw(xvyag)

scn(<

)’)'a*%me, (aly!Bl)P/Pplatrtbl/pgmly.)”

scn(

\
(x —y) \rlatr+8l )
<, a1 B1)P/P ()l +B1/pgml(@.y.8)]
(Tomey) o)
(x —y) \rlotrtal - (Letesl)
<cy enPe ) gme@ns),
((( ,y,€)>)

for each o, 7y, 8 € Nd, z,y,& € R%. Then, this definition of amplitude could be
compared with Cappiello [23, Definition 2.1] (see also Rodino [60]), which is
the corresponding definition for the Gevrey class (of Roumieu type).

(b) Given a weight function w, for 0 < p < 1, take another weight function o
satisfying w(t(1+°/7) = O(o(t)) as t — co. We show that

S,(R*) C (1) GSI"™ C S, (R*).

meR

Indeed, if p(z, &) € S,(R??), then for all \, m > 0 there is C) ,,, = Cx (xpmyr. > 0
with (we use (0.6), but we do not know if o(1) = 0)

D2 DEp(x, €)| < Cy s (552) g-OtmiLote)

< Oy, eOFmLra) ek (52) —Ormya((@6)
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Chapter 1. Global pseudodifferential operators

for all o, 8 € N¢, z,& € R For all A > 0, formula (0.7) yields

ewo(‘“”‘) ~Qtm)e (@) < ek(1+p)w2("‘§’3‘)e—Apga;(@)e—(xp+m)a(<(x,g)>)

A+0)e] ( |t ‘) ((z, §)>—P|a+ﬁ\€—mo(<($,§)>)'

By hypothesis there is C' > 0 such that w(t) < Co(t) + C < Co((t)) + C, for
all ¢ > 0. Moreover, from Lemma 0.10(2), we obtain

AU+pMJA)<A+ém%@§) j € No.

Thus, we have p € GS;m/C’“’. Due to the arbitrariness of m > 0, we get the

first inclusion. The second inclusion is immediate.

The weight functions w(t) = log®(1+t), t > 0, with s > 1, satisfy w(t(1+°)/r) =
O(w(t)) as t — oo. Hence, for w(t) = log®(1 + t),

(] G = S.,(R*). (1.22)

meR

In fact, for all ¢ > 0, we have
w(t1+P/Py =1og® (1 + tUH9/P) < log®((1 4 t)1F0)/7)
L+p\e, +p
<(——) log"(1+1¢) = (——) w(t).
(=,7) og+9) (* ; ) wit)
So, the identity (1.22) follows from the previous arguments.

(c) We consider now an ultradifferential operator of (w)-class in the sense of
Komatsu [49] of type

G(z,D) := Z a(z)D7,

yeNg

where a, is a C*(R?) function satisfying that there exist 0 < p<landn € N
such that for all A > 0, there exists C\ > 0, with

sup |D%. (x)| < CAeAW*(%l)e_W*(@), o,y € Ng.
z€R4

We want to show that p(z, &) = (2m)~¢ > engd A4 (2)€7 is a global symbol as
in Definition 1.1. First, we need to check that p(z,£) defines a series that
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1.2 Continuity of the operator

converges uniformly in z € R? (and pointwise in ¢ € R?). To this, we fix
r € R? and we have that there exists C,, > 0 such that (by Lemma 0.1(7))

p(z, &) < Y la, ()]l

yENd
< 3 e gl < S e g 31
yeNG k=0 [vI=k
00
< CnZe_"cp*(%)’g‘ka"—d_l — d IC Ze—ngo (& 2’§|
k=0

We use formula (0.7) to obtain

b9 <2710, (5) e D) <2 e S (1),

k=0

Now, for v € N¢ we estimate the derivatives of a.(z)¢” for all z,& € R? as
follows: there are 0 < p <1 and n € N such that for all A > 0 there is C) > 0
such that, by (0.11), we have for all o, 8 € N¢, 8 < 7,

(D2 D (a, (2)€)] < Cre (% )e”@*('ai”>wjl,\s|'”
la]

< Oy (T‘)e—w*(v) —ngp~ (12 )2\%5 (z, £))DI=rlBl,

We use Lemma 0.9 (under the assumption w(t) = o(t”) as t — 00) to get that

there exists C4 > 0 such that 8! < C}e™? (@) From Lemma 0.1 and (0.7)

we have

|

D2 DY (0, (2)€7)] < Cye? (8) e (5) = () g

o]

x e (B ((, €))rlBlent?e (k) gnitett@on
We use (0.10) to get
2

e—nso*(%)glvlenmp (L) < (
<\

o] 2 2
) enL-i—nL S e—|'y|enL+nL )

Again, by (0.7) it follows that

e () < (@, )1l ene @) < (g, €))—Plolenel (@),
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Chapter 1. Global pseudodifferential operators

2
Hence, for C{ = C\Cie™* " > 0,

D2 D2p(x, €)] < Cree (552 ()Pl Plen( e o)) 3 el

~ENg

The series converges by Lemma 0.1(8). Then, by (0.6) we obtain, for m =
nL(1+ L?) > 0, that p € GS}"*.

We take f € S, (R?). Then, by formula (0.34) it follows that
G(z,D)f(x) = Y ay(x)D"f(z) = (21)™* Y aw($)/€ix'5§7f(€)d€-
~vENg v€ENG

The latter series is convergent. Indeed, there exists C, > 0 such that by
Lemma 0.1

lay ()] [ 1€ £(€)|de < " G €[FIF(€) |2 de
> (@l >t

yeNg
=270, 3 () e ® [l i@l

k=0

From (0.7) and (0.6), we obtain that (4]¢])Fe=m¢" (W) < enw(d(€) < gm'w(©)em’
for some m’ > 0. Thus,

vl = 1Nk ()| T
PO ol [ 1@ < e (3 (5)) f e oiRs

which shows that the series converges, since f € S, (R%). Therefore, by the
Lebesgue theorem it follows that

Ga.D)f(@) = [=<(2m) " 3 ay()7) Flede = [ e <pla, &) Fle)ie

veNg

= P(z,D)f(x).

Notice that since the constant n € N is fixed, the coefficients a, satisfy a
similar estimate as in (0.29) in Corollary 0.23 for the ultradifferential operator
of (w)-class G"(D) with constant coefficients.

(d) As a consequence of (c), we can easily study some linear partial differential
operators with variable coefficients which are examples of pseudodifferential
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1.2 Continuity of the operator

operators. We consider

P(z,D) := Z a,(z)D",

[v[<m

for some m € N, where a, € C*(R?), satisfying that there exist 0 < p < 1
and n € N such that for all A > 0 there is C > 0 with

sup |D%, (z)] < C’,\e’\p‘p*(%)efn“’*(%), o € NZ
z€R4
Therefore, if p(x,§) := (2m)7* 3, <, a4(2)€7, then by (c) we have that p €

GSZ’/"“ for m" = nL(1 + L?) > 0.

On the other hand, for a linear partial differential operator with polynomial
coefficients, we have that

pl@,8) = > e,

[n|<n,|y|<m

where ¢, € C, is a global symbol of finite order in S”*™ in the sense of
Definition 1.2, where w(t) = o(t”) as t — oco. In fact, there exists C' > 0 such

that

.y M in—al Y e q-sl

[n|<n,|v|<m

for all @ <n, B <~. From Lemma 0.9 we have, since w(t) = o(t”) as t — oo,

! ! o la
UK 0 < 2‘7”'7'04!,3! < gntm Ape (‘71#”)

(n—a)l (v —B)!

We have
||l g | Bl < ((x, €)Yl Bl < (g, £)yrtmmplatAl

Hence, for all A > 0 there exists C) ,,, > 0 such that

la+8]
X

) (, )y,

for all o, 8 € N&, z, & € RY. This shows that p € Sg+m’w, and also, by (0.7) we
have p € GSZ””’“.

| Dz D¢p(x,6)| < Comn (2, €))PlotBlMe" (
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Chapter 1. Global pseudodifferential operators

(e) An ultradifferential operator of (w)-class with constant coefficients is a
global symbol if w(t) = o(t”), t — oo, for some 0 < p < 1. In fact, let G be
an entire function in C? such that log|G(z)| = O(w(z)) as |z| — oo (see (')
of Theorem 0.18). We show that G, restricted to R??, is a global symbol in
GS;" for some m > 0.

Indeed, for x, & € R? we consider the polydisk P((x,&),r) whose polyradius is
r= ({(z,&)",...,{(z,£))?). By Proposition 0.11,

alp!
ra+p

sup  {|G(y,8)[}, o, BENG z,£€R™
(v:)€0P((2.6).7)

|DEDG(z,€)| <

By assumption there exists C' > 0 such that |G(z)| < Ce“®), z € C?. We
see that if (y,t) € OP((x,€),r), then |(y,t) — (z,€)] = Vd((x, €))*, 5o |(y, )| <
(1) = (2, )] +[(2,6)] < (1 +Vd)((2,€)). As r*T7 = {(z,£))71*™], we have

ID2DEG(r.£)] < alfl{(z, €)1\ CeCHUOA ),
for all a, 8 € N¢, z, & € R From property («) of w, there is m > 0 satisfying

0

Cw((1+ Vd)((2,€))) < mw(x,€) +m.

Finally, from Lemma 0.9, for all A > 0 there exists C'y > 0 so that

alfl < Cree (55)

and hence

D2 DIG(x,€)| < CCxe™|(x, £))~rlatplehne” (252) gmotee)

for all o, 6 € Nj, z,& € R, which shows G € GS)"*.
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Chapter 2

Quantizations for
pseudodifferential operators

In the present chapter we deal with the change of quantization in the class
of global pseudodifferential operators introduced in Chapter 1. The symbols
are of infinite order with exponential growth in all the variables (see Defini-
tion 1.1), in contrast to the approach of [33, 65], who treat pseudodifferential
operators of infinite order in the local sense and infinite order only in the
last variable, for classes of ultradifferentiable functions of Beurling type in the
sense of [20] and for Gevrey classes. In [33], the composition of two operators
is given in terms of a suitable symbolic calculus.

As we mention at the beginning, one of the main goals of this chapter is to
extend the results in Chapter 1 by adapting them for a valid change of quan-
tization for these symbols (see Definition 2.25). Namely, we follow the ideas
for the change of quantization within the framework of global symbol classes
of Shubin [64, §23]. In [58] it is considered the change of quantization and its
corresponding symbolic calculus for classes in the sense of Komatsu [49], also
in the Roumieu setting. However, our classes of symbols (and amplitudes)
might not coincide with the ones defined in [58] even only in the Beurling
setting, as mentioned in the introduction of Chapter 1.
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Chapter 2. Quantizations for pseudodifferential operators

We develop the symbolic calculus and we state some previous results needed
to compose two pseudodifferential operators. In this setting, to study the
composition of two pseudodifferential operators, we need to show first the
good behaviour (in terms of its estimates) of the kernel of a pseudodifferential
operator outside a strip around the diagonal in Theorem 2.20. Thus, we
improve [55, Theorem 6.3.3] and [58, Proposition 5], where similar estimates
for Gevrey classes or classes of ultradifferentiable functions in the sense of
Komatsu [49] are obtained only in the complement of a conical neighbourhood
of the diagonal. This investigation leads to the construction of parametrices
for pseudodifferential operators in Chapter 3.

The results of this chapter are contained in [4, 6].

2.1 Symbolic calculus

Definition 2.1. We define FGS;"* as the set of all formal sums 3~y a;(z,§)

such that aj(z,&) € C*(R*?) and there is R > 1 such that for every n € N
there exists C,, > 0 with

D2 DPa;(z, )] < Col(w, €))~llasli) gnoe” (2525 gmoee) (2.1)
).

In Definition 2.1 we assume that ag(z, &) satisfies the estimate (2.1) for all
log ({8 > 0, i.e. for ((z,€)) > R

S

or each j € Ny, o, 8 € NI and log (* ’5» > Lt
J

Let a be a global symbol in GS]"*. The formal series ),y a; defined by
ap := a, a; = 0 for j € N, belongs to FGSm“, as a result, we may regard a

global symbol as this formal sum Yoy, @

Definition 2.2. Two formal sums ) a; cmd > b; in FGST"* are called equiv-
alent, denoted by > a; ~ > b;, if there is R > 1 such that for every n € N
there exist C,, > 0 and N, € N with

’D;"Df S (a

J<N

Cn<($, €)>—p(|a+BI+N)e"P%0* (7‘”5'”) emw(mé)’ (2.2)

fOT’ all N > Nn; 0476 S Ng and 10g (((ac,f))) >

3\2

).

We understand that a global symbol a € GS™ regarded as a formal sum
satisfies a ~ 0 if there exists R > 1 such that for all n € N there are C,, > 0

o (

z[3
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2.1 Symbolic calculus

and NV,, € N so that \DgDﬁ (z,&)| is estimated by the right-hand side of (2.2)
for all N > N, a, 8 € Nj, and log (*=% Uodh) > 2ot (&),

Now, we investigate the class of pseudodifferential operators for which their
symbol is equivalent to zero. In fact, this gives a sufficient condition for a
pseudodifferential operator to be w-regularizing (see Definition 1.20) in terms
of formal sums.

Proposition 2.3. If A is a pseudodifferential operator associated to a symbol
a(x,§) equivalent to zero in FGS)"*, then A is w-regularizing.

Proof. Tt is enough to show that a € S,(R??) since operators with symbols
in S, (R??) have kernels in S,,(R*?) (Corollary 1.13), and these operators are
w-regularizing by Proposition 1.19. By assumption, there exists R > 1 such
that for all n € N there exist C,, > 0 and N,, € N so that, by (0.11),

\D“Dﬁ(w§ﬂ<<6h«%€» pllact 1) ginpg” () )

Co(z,8))” pN 2npe” (%)eznw*(%)emw(%g)
< C (<($ )>) N€2nmp*(%>em‘0 (\a+ﬁ\) mew(.€)

forall N > N, a, B € N, and log (LR&») > 2o (4£). From Definition 0.3(a)
there exists 0 < € < 1 depending on R and on the weight w such that

oY s comen -1 meere
By formulas (0.7) and (0.6), we have

x’é. * *
tog ({2 < (1) 4wl €0)) < 07 (0) + L+ Ll ©),
for all z,& € RY. We take N > N,, depending on R > 1 and on z,¢ € R such

that
GG )i () 2 (52) = e ()

Then, we use Lemma 0.7 to obtain

((((33},5»)_]\’6271% %) S( <(L€)> (((x},f))>>ﬂ

—nspw(<(w,5)>)e F el (D+L)p o Lpw(z.€)

<
<e (P (+L)p o (—neptLp)w(@.)
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Chapter 2. Quantizations for pseudodifferential operators

Thus
]DiD?a(x,f)] < Cne%e(“”*(l)’%)pew*(@)e(_"”*“”rm)“(r’@.

Hence the result follows choosing n large enough. O

The reciprocal of Proposition 2.3 is also true for weight functions of the form
w(t) =log”(1+t) for s > 1. Although we do not consider the case s = 1 in our
setting, the same argument works too. We first need a lemma, which holds
for every weight function w.

Lemma 2.4. Ifa €,z GS;", then a ~ 0 in

meR meR

FGST™.

Proof. Fix m € R. By assumption, for all n € N there exists C,, > 0 (which
depends on m) such that

D3 Da(, )] < Cuf(w, ) 01t#emre” (52 omamivte
for all o, 8 € N¢ and z,£ € R From (0.6) it follows that
—nLw(z,§) < —npw(((z,£))) +nL.
Moreover, from (0.7) we get
<(x7§)>PNe*”ﬂw(<($»f)>) < enpso*(%)’
and therefore by (0.11), we have that for all n € N there exists C/, > 0 so that

\a+i\+w) mw(@,€)

’DSD?G(%@! < C;((x7£>>_P(\Q+BI+N)enpg;*(7 . |

for all N € Ny, o, 8 € N¢, and z,¢ € R As the argument does not depend
on the choice of m € R, it holds that a ~ 0 in FGS}"* for all m € R. O

Proposition 2.5. Let w(t) =log”(1+t) for s > 1. If A is an w-regularizing
operator with symbol a, then a ~ 0 in FGS;** for all m € R.

Proof. Since A is w-regularizing, the symbol a belongs to S, (R??) by Proposi-
tion 1.19 and Corollary 1.13. For w(t) = log®(1+t), s > 1, by Example 1.21(b)
we have S, (R*!) C ),,cr GS)". Hence, Lemma 2.4 gives the conclusion. []
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2.1 Symbolic calculus

Now, we proceed to construct a symbol from an arbitrary formal sum (follow-
ing the lines of [33, Theorem 3.7]). To do so, we need some kind of partition
of unity. Here, we cannot use the estimates as in [33, Lemma 3.6] due to
some technical issues. Instead, we consider the usual estimates for ultradif-
ferentiable functions. This is because of the fact that our symbols are defined

in the whole R? for each variable. This is not very restrictive as pointed out
in [33, Remark 1.7(1)].

Given a weight function w, we consider another weight function o such that
w(t'/?) = O(o(t)), t — co. Let ® € D(,)(R*?) be such that

| <1, ®@t)=1if|t|<2, ®(t)=0 if |t| > 3. (2.3)

Let (j,). be an increasing sequence of natural numbers such that j,/n — oo
as n — oo. For each j, < j < jni1, we define

1 n k(D
\Ilj,n(l'ag) =1- CD(T(x?g))? An,j = Rejsaw(n)’ (24)
n,J

for some R > 1, and all z, £ € R%. Notice that A, ; — oo as j — oo. If (z,€) is
in the support of U, ., by (2.3), we have |A (z §)| > 2. So, it ¥, ,(x,§) #0,

((z,6)) > 24, ;. (2.5)

For the estimate of the derivatives of the function ¥, ,, let C' > 0 be as in
Lemma 0.10(2). By such lemma, for all £ € N there exists Cy, = Cyr2c > 0
such that

|DO‘D'B jn(l‘ f ‘ = ‘DQD*B(I)( ( 5))‘A;7\Jq+ﬂ|

< Ckekﬁc%('&;m)A P|a+/3\

kL2C _kL2pyp la+8] pla+8|
< Cie e W( kL2 )An] ,

(2.6)

for all o, 8 € N¢ and z,£ € RY. The points in the support of any derivative of
U, ., satisfy 2 < |2 (z,€)| < 3. Thus

From (2.6) we obtain using (2.7) and (0.10) that for all k € N there exists
O}, = CreF*CekL+FL))p () such that

‘Dngﬁ‘I/j,n(ZU,f)’ < Cil(z,€))” pla+8 ’W%(‘ fﬁ\),
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Chapter 2. Quantizations for pseudodifferential operators

for each a, B € N¢ and z, € € R, Hence, ¥, , € ng’“.

With the properties of ¥, ,, in (2.4), we are in a position to show the following
fundamental result. The proof follows the lines of [33, Theorem 3.7].

Theorem 2.6. Let ) a; be a formal sum in FGS;". Then, there exists a
global symbol a € GS;" such that a ~ ) a;.

Proof. For the functions ¥;, defined in (2.4), it follows, by (2.7), that for
(x,€) in the support of their derivatives we have

(€*R)™ < ((x,€)) e () < (2R) ™, (2.8)
for some R > 1. We check that for all n € N there exists C,, > 0 such that
‘DgDéﬂ(\Pjvn(xv f)aj(.’I,', €>)’

2.9
< Co(2R) 7 ((, £))~Plotslgnee” (lotar) o (:) (2.9)

)

for all j € Ny, o, 8 € NI, and log ( {z. E)>) > ?gp*(%) This will ensure that
W, na; € GS)"* since log ( (@) < n 4" (L) implies ¥, ,, = 0. Choose p € NO S0
that 2 < e”?. Since 3 a; € FGS;” v for all n € N there exists C, = C} 5 >
such that

o (lotB|+i

D2 D (2,€)] < Cp(a, €)) i) 2nio (5552 mates)

for all j € Ny, a, 8 € N¢, and log (<(“ £)>) > ﬂap*(i)( > 2"TL590 (545)). More-

over, since ¥, ,, € GSg“ there exists C) = C}) 5 > 0 with

* \a+BI)

D2DIW, (2, €)] < O (x, €))~Plaal ez oo (535).

for all a, 3 € N¢ and z,£ € R?. Then, by Leibniz rule and Lemma 0.8 (with
the choice of p € Ny), we have (since 3 ;.. 5.4 (”)( 5) = 2la+hl)

| D2 DE (W (x, € (2, €)))

a\ (B na—ans-i apb

< > <&><§>|Dm D0, €)[| DY Dy, 6)|
a<a; B<B

< OO ((x, €)ool 2nt7pe (15EEE) mesta € glats| (2.10)

n-—n

lotB]

< C;LC;L/e%pi:lL‘S<(x75)>fp(la+6|+j)enpw*( .

)enpw*<%>emw<m,£>7
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2.1 Symbolic calculus

for all j € Ny, a, 8 € N¢, and log (1 5”) > ?gp*(%)( > 2nL? )). Then,

— J (277,LP
from formula (2.8) we obtaln (2.9).
Let (C,,), be the sequence of constants appearing in (2.9), and let (j,),, be the

sequence that defines ¥, ,, in (2.4). By induction, we can take such sequence
(Jn)n so that j; := 1, j, < Jni1, jn/n — 00, and

[e'e) .7n+1 1
Cor1 Y, (2R)™ < c > (2R)”
J=JIn+1 J=Jn
We check that
R jn+1 ! .
c,=0C, (2R)~" (2.11)
J=Jn

satisfies C,41 < %6,1. Indeed,

— > VR i 1
Cot1 < Cunt D @R <C, 3 (2R) ™ = 5T,
J=In+1 J=In
We prove that
00 Jnt+1—1
a(%ﬁ) = ao(w,f)'i‘Z Z \I’j,n(ll’,f)aj(l’,f) (212)
n=1 j=jn

is a global symbol in GS}"“. First of all, we observe that a defines a locally
finite sum: as j,/n — oo, for fixed x,& € R? there exists n € N such that
|(z,6)| < 24, ; for all j > j,, thus ¥,, = 0 for all j > j,. Hence a is
well defined, and a C* function. By (2.9) we have, for the same sequence of
constants (Cy), > 0 (according to the definition of Cj, > 0 in (2.11)),

0o Jk+1—1
DD (D0 D Wil &as(@.9))|
= =
oo jkjljl
<30 IDED(Y;k(w, E)ag(w,€))]
k=n j=jk
Jrey1—1

< <($,§)>fp\a+6\emw(m,£) i Ckekpw*('aﬁm) Z (QR)*PJ'

k=n J=Jk

< <(fc,5))“""*’3‘6“*0*(@)emwmf) S G,

k=n
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Chapter 2. Quantizations for pseudodifferential operators

for all o, 8 € N¢ log( T5)>) > ot (L) (> %,ngo*(%jm)). We recall that if
log (<("” -£)) ) < 2" (£), then ¥;,, = 0. As >3 C} is a constant depending on

n and

oo Jr+1—1 n—1Jk+1—1
a— E E U ra; = ag + E E W ka;
k=n j=jk k=1 j=jk

is a finite sum of symbols, we obtain a € GS}"*.

We claim that @ ~ " a;. By Definition 2.2, it is enough to show the estimate
in (2.2) for N > nj,. We consider log (“I )Y > 2Zo*(&). For arbitrary j € N
there exists k € N such that j, < j < jri1. If k < n, then 5 < j,, and we have

T, n .l k .rJ
o (U280 > 2 () 2 o = B (),

Therefore, by (2.3), ¥;, = 1. If k > nand N > j we similarly obtain ¥, , = 1,

as
((z,9)) (NN kL
A N J
s (on ) = 52 () = 5 (0)
Hence, we only deal with the case k > n and 57 > N. Following the proof
of (2.9) (see (2.10)) we obtain that, for the same sequence (Cy ), > 0,

| DD (4, €)ay(x, )]
< Ck<($ 5)> p(la+Bl+N) ekpso
)"

< C{(z, ) pllatBl+N) kpe” (

i—N

) (,€))ra= W ehre (35%) gmatee

*(|a+m+N
k

la+B|+N
3

)(QR)_p(j—N)emw(:c,E), (2.13)

for all N > nj,, ,BENdandlog((m“)Z?@*() Since k > n and j > N,

oo Jr+1—1 -1
‘D;Df(a— <|pel(> +Z U, pa; — Z )
k=1 j=jk J=1

Jk+1—1

<DeDi(YS Y W)

k>n j=jr j>N

Jr+1—1

<Y Y IDIDL(Y; )l

kzn j=jx j=2N
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2.1 Symbolic calculus

and, by (2.13), we obtain
’Dg‘D?(a - Z a;)

j<N
k (\w+m+N) Jrgrt
(2R)”N<(x €)= pllatBl+N) gmw(@,8) ZC ekre Z (2R)#?
k>n j=jr >N
(QR)pN<(:C )" p(latBl+N) oy (W)@mw(%f)Zék_ (2.14)
k>n
This gives the result since >, -, C) is a constant that depends on n. O
In short, for every n € N we write, for j, < j < jni1,
\I/j = lllj,na \IIO = 1 (215)

In what follows, 7 stands for a real number. Let & € Ny be the smallest natural
number satisfying
7|+ |1 — 7| <2~ (2.16)

Proceeding as in Lemma 1.4, it is easy to check:

Lemma 2.7. For every z,y,§ € R? and 7 € R,

((2,5,€)) < VB(r)(z — y)(((1 = T)a +7y,)).

Proof. We have
yI* < (Jz| + o — y])* < 20zf* + 2z — y|%,
2 < (lo = 7(x —y)| + I7(z = y))?* < 2z — 7(z — y) [ + 2|7(z — y)|~.
Then,
|2 ]* + [yl* < 3|z f* + 2| — y?
< 6z — 7(x — y)|? + 6l72le — yP? + 2l — y?
< 6|1 —7)z + Ty[* + 6(1 + | 7[*) ]z — y|*.
Therefore, it is easy to see that

L+ [ + Jy|* + [
I+ [z —y)A+ |1 = 7)o+ 7y +[£7) —

<6(1+][7]*).
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Chapter 2. Quantizations for pseudodifferential operators

Given m € R we denote for k € Ny as in (2.16),
m’ =mLF. (2.17)
We observe that m’ = m if and only if 0 <7 < 1.
The next result generalizes Example 1.5.
Lemma 2.8. If b(x,§) € GS"” and 7 € R, then
a(z,y,£) == b((1 — )z + 7y,§)

1s a global amplitude in GAfax{O’m/}’“.

Proof. We take p € N such that max{|1 — 7|, |7], (v/6(7))?} < e’P. By assump-
tion, for all A > 0 there exists C'y > 0 such that

\D;’.‘D;D?a(m,y,gﬂ < |1 = 7|l ON((1 = 7)x + Ty, &) PletrHBlx

5 wf laty+
y e}\Lprw (%)emw((lf‘r)w+7y,§)

for all o, 7,8 € Nd, x,y,& € RY. We use Lemma 2.7 to get
<.fL' _ y> )p|o¢+’7+5|

((z,9,))

The choice of p € N gives |1 — 7[lol|7|V1(\/6(7))rlet7+6l < e2ePlaty+8] - Then,
by (0.10), we get

(1 =7z 47y, )17 < (V)

[6217\a+v+/3\€/\1325w*(%)]ﬂ < e/\psa*(M)e/\pZ?ile_

Finally, since w is radial and increasing, using k times condition («) of Defi-
nition 0.3, we conclude for m > 0

emw((1=m)at+7y.8) < omw(2"(2,9.6)) <« gm/w(zy.€) gmLF+mL " 4o tml (2.18)

O

Since U, as in (2.15) is a global symbol in GS%“, it follows that

Corollary 2.9. Let ¥;(z,§) be as in (2.15). Then V,;((1—7)z+7y,§) € GAg’w
for all T € R. Moreover, for all A > 0 there exists C > 0 such that

\a+w+m)
A

IDSDIDY,(1—7)x+7y,&)| < Ca{(1—7)z -y, €)oo
for all a,v, 3 € N& and z,y, ¢ € RY.
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2.1 Symbolic calculus

Lemma 2.10. Let a(z,y,§) be an amplitude in GA" and let A be the asso-
ciated pseudodifferential operator. For each f € S,(RY), we have

ZA ) in S, (RY),

where A;j is the pseudodzﬁer@ntzal operator defined by the amplitude
(U —¥)((L = 1) + 7y, &alz, y,£), Jj €N

Proof. By Corollary 2.9, (V; — W, )((1 — 7)z + 7y,8)a(x,y,§) € GAJ" for
Jn < J < jni1- Since A, y11 — 00 as N — oo, for each f € S, (R?) we have

>4 (H))
- i // eI — W) (1= 1)z + Ty, E)ale,y, €) f(y)dydE
= lim // VL — Uy (1= 1) + 7y, €))a(, y, &) f(y)dydé.

We show that this limit is, for all 7 € R, equal to A in L(S,(R?), S’ (R?)). We
recall that

(I)(((l —T)$+Ty,€)>

An7N+1
and ®(0) = 1, being ® € D, (R*) the function in (2.3) with w(t'/?) =
O(o(t)), t — oo. Since S, (R?) is Fréchet-Montel, it is enough that for each
f.9 € Su(RY),

/// elley)e (@((1 — T)jj_ Ty,ﬁ) - 1>a(x,y,§)f(y)g(:):)dyd§dx — 0 (2.19)

as k — oo. We integrate by parts with formula (1.6) for some power s € N
determined later of the ultradifferential operator G(D). Then, the integrand
in the left-hand side of (2.19) equals

(1= ¥n) (1 = 7)z +79,8) =

ei@—y)stl(g)Gs(Dy){ (cp((l —DEETEY 1)a(e,y, )7 ()o(e) )
!
— eile—y) mx

neNd nm+nz+n3=n

" (;)Ungl (q)((l — T)Z-i- Ty,é) . 1>D22a(33,y,f)D;“"f(y)g(x).
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Chapter 2. Quantizations for pseudodifferential operators

Therefore, the integral in (2.19) is equal to

' ‘771
: i(a—y)-€
Z b Z 771'772 773 /// ’ G5 ( X

neNd  mmzt+nz=n

x D" (@((1 - T)ﬂliJr Ty,ﬁ) _ 1)D22a($’3/’f)DZ3f(y)g(:c)dyd§dx,

From Corollaries 0.23 and 0.20 there are C;,Cy,C3 > 0 (depending only on
G) such that for all n € N¢ and ¢ € R?

‘bn’ S 65016_8019"*(!8‘1) ‘ < Cs 75C2w(§)

e

It follows from Lemma 1.4 (and (0.10)) that for all A > 0 there exists Cy > 0
such that

D, y,€)] < Che's" (58 gretene),
Since f, g € S, (R?), there exist C\.m»Cm > 0 such that

1D f(y)] < O e? () e-nisnot),

|9(2)] < Cpe™MEFDD,
Now, for 7; = 0 we have that ® = 1 if |((1 — )z + 7y,&)| < 2k, and for
m| > 0 it follows that Dy (@ (=257 ) - 1) = Do ((L=227) i gero
for [(1—=7)z+7y,£&)| < 2k; therefore we assume that |((1—7)x+7y,£&)| > 2k.
We then have

1< o= o+ 7)) <

As @ € D,y (R*) C D, (R*"), by (0.10), there exists CY > 0 such that

Dgl(é((l—T)z+Ty’§) 1)| < cpete (), gen

For m >0 (if m < 0, then mw(z,y,&) < 0), formula (0.4) gives

(It =7+ [ (] + D (vl + D€l + 1).

?v\*—‘

| [Im]

mw(z,y, &) < mLw(x) + mLw(y) + mLw(§) + mL.

If s € N satisfies sCy > mL 4 1, we get e(75C2tmL)w(©) < o=w() and therefore
the integrals in (2.19) are convergent by cond1t1on (7) of Definition 0.3. On
the other hand, from Lemma 0.8, since ) =3I < 2l we have

1772 n3!

Z ! eu%*(%)em%*(%)e,\ﬁ *(Lns) )< ALg* (%)ekLzﬁ-/\LS'

11511,
ni+n2+ns=n 122103
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2.1 Symbolic calculus

Now, the series

Z e—sClga* ( Jg‘! ) @ALLP* (L\L‘)
neNg

converges provided A > sC; (see (1.14)). Thus, there exists C' > 0 such that

A 1-— 1

[ eeoe(a( BT ey, ) w)gte)dpdeds] < O 0,
k k

and hence (2.19) is satisfied, which proves the result. O

Lemma 2.11. Let Y p; be a formal sum in FGS)". Let (Cy,), and (C}), be
the sequences of constants that appear in Definition 2.1 and in Corollary 2.9.
Assume that the sequence (j,), in the proof of Theorem 2.6 satisfies in addition

n ] , . . .
—gp (‘7) > max{n,log(Cy,r5+1),108(C! 15:1)} for jn < j < jni1,

where p € N is so that 3(t) < eP. For
Z\Il] X 5 p] €T f)
7=0
its corresponding pseudodifferential operator P is, in L(S,(R%), S (R%)), the
limit of the sequence of operators
Sy Su(RY) = S,(RY),  NE€N,

where each Sy ., N € N, denotes a pseudodifferential operator with amplitude

N

Do = ) (L =)z +7y.6) Y pil(L = 1)z + 7y, €)

=0 1=0

in GA;}IaX{O’m,}’“, where m’ is as in (2.17).

Proof. For each j € Ny, we check that
J
Ui Zpl (1=7)z+7y,§) = Z((‘I’g = U)p)((1 = 1)z + 7y,§)
1=0

is a global amplitude in GA:}“aX{O’m/}’“. We choose p; € N so that

max{2, 2|1 — 7, 2|7|, (V6(7))’} < eP".
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Chapter 2. Quantizations for pseudodifferential operators

From (2.7) we assume (since 0 <1 < j)
(A2nL251 1 §)2An,j < <((1 - T)x + Ty,§)> < V104, ;.
By Definition 2.1 and the first part of Corollary 2.9, for all n € N we have for

the sequences as in the statement of the lemma,

IDSDYDL (V) — Vyp)pi) (1 — 7)a + 7y, €]

< > <g> @) <g> DDy D (W) = Wy 1) (1= 7)a + 7y, €)%

ST RTVP S

x | DY~ D) D p((1 = ) + 7y, €)|

=D S 0 | GAT S PR T
i s\ V)P
afay<y;B<p

_ [@+74+B8]  ;op, - (164745 - -
. (M>p ' e"L " (|"+LQ;1B‘> ’1 - T“aial‘T’hiﬂCanzﬁl X
x’ y7
x (1 —=71)x+ Ty, §)>*P(\a*&+vfﬁ+ﬁ75\+l) %

251 *(\a7&+wfﬁtﬂfﬁl+l
2nL pY InLoPL

e ) gmes(=r)atry )

We first notice that, since (2R)~? < 1, by (0.11),

—pl QanmW*(\a—aﬂfwﬁfﬁw) < eanmW*(m—aﬂﬂwﬁw)

(A=7)z+7y,8)) e pyEs

By Lemma 2.7, we deduce
(1 = 7)z + 1y, §)>—p\a—&+v—7y+ﬁ—5\

< (\/6<T>)pa+y+5((((i;é))))”“—&ﬂ—%ﬁ—ﬁ

Then, from Lemma 0.8, since Y (£) (Zy) (g) = 2l0e+7H+8l we have by the choice
of ]71 S N,

(\/6<T>)p|a+v+ﬁ||1 _ 7.|\a||7.|lwl Z (g) (;) (g) %

G<aF<y;B<B

251 *(\&Jr:ng\) 25, *(\af&ﬂfjﬂi‘fﬁl)
nL™pe nL2P1 enL Py nL2P1

X e
IfH-wi—ﬁ\)

(V6(7))rlt+Pl(2[1 — T|)|a‘(2|T|)‘”'2‘5‘6”L251p“’*( nL2P1

* [ loty+8] 2p- t
< enP¥ (Lottal )enPEt:ﬁL i

IN
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2.1 Symbolic calculus

By (2.18), we obtain that Y>7_ (¥, — U, ,,)p, € GAZlaX{O””/}’“. Hence, the

function N ‘ N N
J
> (¥, - ‘I’j+1)( ) Pl) => Up;— Uy Y p

7=0 =0 7=0 1=0

is a global amplitude in GAfax{o’m/} w

Now, we prove that Sy, converges to the operator P in L(S,(R%),S’ (R%))
when N — oco. Since S, (R?) is a Fréchet-Montel space, it is enough to show
that, for all f,g € S,,(RY),

(Snr—P)f,9) =0, as N — oo.

Since P and Sy, N € N, act continuously from S,(R?) into S, (R?%), we have

(Sxe = P)f.g) = [ (Swe = PUf(@)g(e)da
/ // s y)g Z‘I’JPJ Wi ZPZ} ) dydf) (z)dz,

for every f,g € S,(R%), where ¥, Wy.1,p;,p;, and p are evaluated at ((1 —
7)x + 7y,£&). We prove that, for each f,g € S,,(R?),

/ // o y)s Z \Il]p]> d?/df) (x)dz, and

j=N+1

b) [ ([f e (wn, gpl)ﬂy)dyds)g(x)dx

tend to zero when N — oo.

Let us show that a) goes to zero. We integrate by parts with formula (1.6) for
some s € N determined later. The integrand in a) equals

etl@— u)st ( Z v, -pj- )

j=N+1

— eilz—y)€

. \771+nz\D771\I/ Dnz Dns
§ , T b f(y).
771'772'773

j=N+1

neNd  m-+n2+nz=n
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Chapter 2. Quantizations for pseudodifferential operators

Hence, we reformulate a) by

)
//Gs Db > 717‘ Tl

I, !
neNg  m-+tnztnz=n 2 773

x ( / eleu¢ Z DD DY f(y)dy ) de ) g () de

J=N+1

(2.20)

When ¥; # 0, and j, < j < ju+1, we have log (%) > %gp*(%)
by (2.5). By Corollary 2.9, for each n € N we have (for C;, = C” ,;., >0 asin

the statement of the lemma),

1DV (1 — 1) +7y,8)| < C;Le"Lﬂl“’*(n‘Lnﬁil)
Moreover, for that n € N, we have from Definition 2.1, by (0.11), (we denote
Cn = CQnLI7+1 > 0)7
Dy (1 = 7Y+ 79,6)

In2|+3j

< G2 oe (55) (1 = 1) 4 7y, £)) Pl ) gmes=m)atru )

S CnenLﬁJrl(p* (nlLT,ﬁQJ‘rl)enLﬁ+1ptp* (nL%+1 ) <((1 — T)CC + TY, £)> PJ mw((l T)x+T1Y,£)

[n2]

< CnenL5+1ga* (nL’J+1 ) (2R) pjemw((lf‘r)er-ry,g).

We may assume that m > 0 (otherwise, the proof is simpler). Property () of
w yields that there exists C' > 0 such that (t) < Cev((®) t € R%. By (0.6), w
obtain, according to the support of ¥, (see (2.5)),

e ((1=m)z473.8) < o(mAB)w((1-T)z+73,8))) o =3w((((1-T)a+7y.£)))
e(m-i-?))Lw((l T)x+7Y,£) (m+3 L03<(( T).T} 4 Ty,§)>_3
< e(m+3) Lw((1-T)z+7y.§) (m+3) LC3673%¢*(%)'
Moreover, by (2.18) (where k € Ny is as in (2.16)) and (0.4)
€(m+3)Lw((1—T)w+Ty,f) < e(m+3)Lk+lw($,y,§)e(m+3)Lk+1+~-~+(m+3)L2

< (B L2 (@(@) 4w (y) +w(8)) o (m+3) L2 4 (m+3) L2

Take 0 < sC; < £ < n. Since f,g € S,,(R?) there exist C}/ > 0 (depending on
¢,m,7) and D > 0 (depending on m, 7) such that
[m31

‘D;”f( )’ < C// (Lt *(“ﬂl)ef((m+3)L’“+2+1)w(y),

7

l9(x)| < De (oL +1eto)
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2.1 Symbolic calculus

From Lemmas 0.8 and 0.1, we have by the choice of p € N

! 1 (Il 1« (_Inal 1 (_lnzl
Z % 7—“771+772\6an @ (an"*'l)ean ® (an"*'l)eZLp ® (2L5+1)
M1:12:M)3:
ni+n2+n3=n
p+1, % [nl !
< <7'>|T]|6ZLp ® (sz+1) E %
SR RUPRUEE

< eeLw*(%)ezL SP_ L

By Corollaries 0.23 and 0.20, there exist C,C5, C3 > 0 such that

|by| < escle_scl‘”*(slg“ )

s

, ’G ‘ < C.s —ngw(ﬁ)

We then estimate the modulus of (2.20) by

/(/Cge—s(?zw(f) Z 68016*5C1@ g / Z C C/ LLp* Lﬂ)eéLZle LTX

neNg j=N+1

X (2R) P CBem LT (mA8) L2 o (mA3) L o (m43) LA (w(w) e (y) +0(8)) o

% efsgw*(,%)Cz/ef«mw)ﬁ“ﬂ)w(w dy) dg) De—(m+3)L* P +1)w(@) 7.

Since ¢ > sC|, the series depending on 7 € N¢ converges (as in (1.14)). Notice
that the constant depending on n € N is C,C!. Take s € Nj such that
sCy > (m + 3)LF*2 4+ 1. This yields, for j; < N +1 < j;;1, the following
estimate for the modulus of a):

Ez(/e_“’(”’)dx)(/e_w(y)dy)</e‘“(5)d§)(z nizljnlmw)

where E, > 0 is a constant depending on ¢. The convergence of the integrals
is guaranteed by property () of the weight function. By assumption we have
3%@*(%) > log(Csyp5+1) 4 log(C 541 ) +n. This proves a).

For the integral in b), we proceed in a similar way: we consider the same
integration by parts (1.6) as in the previous case, for some s € N determined
later. Then, the integrand is equal to

i(z—y)-& 1 s a
T g O P (T 2o 1)

eiz—y)-& N
G Db X D (3 D) DY 1)
neNg  m+tnztnz= nnl T2 7]3 =0
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Chapter 2. Quantizations for pseudodifferential operators

We claim that

/ /GS Z Z ni' Flmtnz] o

|
neNg  mtn2+nz=n 12 773

X (/ei(xy)-fDZl\I/N+1(ZDZzpl)Dz3f(y)dy) df)g(m)dw
1=0

converges to zero as N — oo. Given N € N, we take n € N such that
o SN 41 < o1 Uy (1= 7)z + 7y, €) # 0, then log ({U=mlrtruo) >

NL_HQO*(%) Put 0 < sC; < ¢ < n, where C; > 0 is the constant from

Corollary 0.23. Similarly as before, for the same constants C,, = Cs,,;511 > 0
and C/, = C,,p5+1 > 0 we have this estimate for the modulus of b):

neNd

—MCPe (mA+3)(LF 2+ L2+ L) o (m+3) L2 (w (@) +w(y) +w(§)) o

Mz

l:O

« e 3T (2 )Cé/e—((m+3)L"'+2+1)w(y)dy) dg) De—(m+3)L 2+ 1)w(@) 7.

The same s € N as before guarantees the convergence of the integrals and of
the series on 7 € Nd. The proof of b) now follows by the selection of (j,) and
because the series >~ (2R) ™" is convergent. O

2.2 Properties of formal sums

Example 2.12. Let a(,y,&) be an amplitude in GAJ" and let
= Y =D (D) Dty
[B+v]=7

Then, the formal series ) p; belongs to FGS?aX{m’mL}’” for all 7 € R.

Proof. We want to estimate |DyDgp;(x,§)| for all j € Ny, a,e € N¢ and
log (<(‘°‘""E ) > 2" (L), for some R > 1. We consider p € Ny so that 2 < e,

- J
Since a € GAT"™, by the chain rule we have that for all n € N there exists
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2.2 Properties of formal sums

C, = Cy,15 > 0 such that (for |5 + | = j)

| DS Dg[0¢ "7 (=D..)’ Dya(a, y, €) |

y:m] {

< Z( )]DQD”‘ “Dg[0¢ T (=D,)’ DYa(x, y,€) |, |

a<a

(67

< Cnemw(x,w,§)<(x’x’§)>—P(|0¢+6\+2j)62"1‘ﬁp‘p*(4‘a2t:£¥2j) > (?)

a<a

By formula (0.11), we have 62"L5”“"*(|a;;‘;%21) < enLoe” (st J)e"W (). Fur-
thermore, log (LR&») > ?go*(%) implies e"?¢" () < ((x,£))7. Since Y. (2) =
2lel from the choice of p € Ny, we have, by (0.10),

Q\alenLEW*('a:z‘;j) < enpw*(%)enpzzgﬂ Le
From (0.3) we have that w(z,§) < w(z,z,§) < Lw(z,§) + L. Thus, we obtain

| D3 Dg[0¢ " (= D,)’ Dyal, y,€) |

y=)]

< Cnen/) Ef:l L® <(£17 £)> \Oé+e|+])enptp (%) emax{O,mL}emax{m,mL}w(m,E)'
Finally, by Lemma 0.1(2), (1), we have

Z |T|IB|‘1_T‘M< 2 dlBl|r |8l s a1 — 7|

] I |
P s B gz Nl
J J
(d|7])* dll
(XN Ly 1)
k=0 Bl=k = 1=0 Ivl=t
< zJ: (d*|7])* d (@1 —1]) < ITl A 17|
- k! {!
k=0 1=0
Then, we obtain the result. ]

Proposition 2.13. Let Y p; € FGS"™ be a formal sum. Then ) q; given by

G = Y (1200 Doz, ~€)

|l +h=j

is a formal sum in FGS".
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Proof. By assumption, there is R > 1 such that for all n € N there exists
C,, = Cy, > 0 satisfying (using (0.11))

|D7D§QJ(1'1§)|
1 «x @ [0
< ) = 2rMDET D (x, )|

|a|+h=j
|2a+w+m+h)
2n

< G Y Lt ool gy e
ol ey @

<C, Wf)«x g)) et gnee (4552)

% Z 7‘1_27|\a|<(x €))rlelenee’ (%)

|a|+h=j
for every j € N, v, 8 € Ng, and log ( (“))) 27"80 ( L. Wetakelog( 15») >
?‘P*(ﬁ)( > %"w*(;—n)) In particular, as |a] < j, we obtain "% (‘T) <

{(z,€))rlol. Finally, using Lemma 0.1, we have

N dlel|1 — 27|« (d]1 — 2 .
> Lieaecy ’ray'ﬂ <yt 2l T‘ > 1=t

|a|+h=j al |a]=0 k=0 || =k
which gives the conclusion. O

Definition 2.14. Let Y p; € FGST". We define (3_p;)" as the formal sum
>_q; in FGST"™ given in Proposition 2.13.

Proposition 2.15. Let > p; € FGS)"™* and ) q; € FGS)™“. The formal
sum Y. r; given by
(
= Y S = o) @ D (e )0 Dian(a. )
|8+7|+k+h=3

belongs to FGSTJFW’“.
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2.2 Properties of formal sums

Proof. Let p € N, satisfy 2 < e”?. By assumption, there is R > 1 such that
for all n € N there exists C,, = Cy,,;5 > 0 with

| D; Dgr(x, €|

S Z /6' |’T|‘m|1_T||’Y|‘DQD€(8’Y‘DBP}L(~T 5) agquk($,§))‘

| B+~ |+k+h=j
1
< Z o |]T\‘B‘|1—T]|7|><
|B+|+k+h=j
« € a = —a e—¢-
x> <a> (g)|D;+ﬂD;”ph<x,5mD; DT g ()
a<aje<e

1Bl1 — ]I
< Cne(m1+m2)w(w,5 <( f)) p(latel+7) Z M
|8+ +k+h=j i

[0 € P, % [&+E+B+y[+h P % la—ate—e+B+v[+k
X E <~> (~> e2nL pe ( 2nLP )eQnL pe ( 2nLP )
[e% €

a<aje<e

(z, §)>*plﬁ+vl X

for all j € Ny, a, e € N¢, and log( {(=.9) ) > Q”J.L;go (anp) By Lemma 0.8, we
have

B \&+Z+ﬁ+'ﬂ+h) P *(\a—a+e—?+5+w+k) P *(\a+e\+j) *(\mﬂ)
eQnL pe ( 2nLP e2nL pe 2nLP < enL pe nip ) e"P¥? n

Then, as Y (2) (5) = 2>+ it follows by (0.10) and the choice of p € Ny, that
oL e (m)2la+e\ < e ('“ﬂﬂ)eanil Le

On the other hand, if we take log( 15») > ﬂ(p*(i)( > Q”TLﬁcp (Qan)) this

implies log ( (I7£)>) > FoP (Iﬂﬂ‘) for |8 4+ 7| > 0, and therefore as in the
proof of Example 2.12 we have

Z R '|T’|ﬁ||1 7| (2, €))~P1B+lenee +(122d)

|B+v|+k+h=j

( Z ’T“ﬂl ( i |1 —T‘7> < &Il pd1=7]
| <
181=0 NG
This completes the proof. ]

Definition 2.16. Let > p; € FGS)"* and } q; € FGS;™*. We define

(>-pj) o (>°¢q;) as the formal sum Y r; in FGS;"1+7"27“ given by Proposi-
tion 2.15.
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Chapter 2. Quantizations for pseudodifferential operators

The following result is taken from [65, Proposition 2.19]. See for example [47,
Proposicién 2.2.8] for a detailed proof.

Proposition 2.17. Let } p; and > q; be formal sums in FGS)"* and in
FGS)™*®. If Y pj ~ > 0 and Y- q; ~ > q; for some formal sums 3 p’, > qj,
then (3-p;) o (3-q5) ~ (22p)) o (X2 4))-

2.3 Behaviour of the kernel of a pseudodifferential operator

To study the transposition and composition of operators, we need to analyse
the behaviour of the kernel of a pseudodifferential operator. We will show,
similarly to the local case, that the kernel satisfies the estimates of a function
in S,,(R??), but outside a strip around the diagonal.

For r > 0, we denote

A, = {(x,y) ER* |z —y| <7}

We begin with a lemma.

Lemma 2.18. Given r > 0, there exists Y € C®(R??) satisfying 0 < x < 1,
x(@,y) =1if (z,y) € R*\ A, and x(z,y) =0 if (z,y) € A, )2 such that for
all A > 0 there exists Cy > 0 with

\a+ﬂ|)

DD x(m,y)] < Cre 52) | 0 Be N, 5,y e R

Proof. Let 1) € D,y (R?) such that 0 < ¢ < 1, ¥(§) = 1if [{] < r/2 and
W) = 0if |£] > r. Set ¢ := 1 — ). Then, it is enough to take x(z,y) :=
¢(z —y), v,y € R O

Leibniz rule yields

Lemma 2.19. If x is the function in Lemma 2.18, then xf and (1 — x)f
belong to S,,(R*?) for all f € S, (R??).

This result is crucial for the proof of Theorem 2.24. It is an improvement
of [55, Theorem 6.3.3] and [58, Proposition 5] (see the introduction to this
chapter). See [33, Theorem 2.17] for the corresponding result in the local
case.
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2.8 Behaviour of the kernel of a pseudodifferential operator

Theorem 2.20. Let a € GA" and r > 0. The formal kernel

Koy i= [ e ala,y,€)ds

satisfies

1. K(z,y) € C*(R*\ A,).
2. For every XA > 0 there exists C\ > 0 (depending on r > 0) such that

lat]

DI DI K (z,y)] < C’Aew*( By )e_k“’(z’y), o,y €N, (z,y) € R*\ A,.

Proof. Let o be a weight function satisfying w(t'/?) = O(c(t)) as t — co. We
consider ¥ € D,)(R*) with 0 < ¥ < 1, ¥(¢t) = 1 if (¢) < 2 and ¥(t) = 0 if
(t) > 3. We denote by A, the operator associated to the kernel

Klwoy) = [ e Sale, 0, 9@ (@, €)de.

We show that K,, — K in S’ (R?*?). By Lemma 1.11 we have that K,, € S,,(R*?)
for all n € N. On the other hand, for the pseudodifferential operator associated
to a, denoted by A, we have (K,p ® x) = (Ax,p) for all p,x € S,(R?).
Furthermore, since A4, — A in L(S,(R?),S,,(R%)) by Theorem 1.15, we have

(K,p@x) = lim (A,x, ) = lim // Ko (2, y)x(y) o (z)dyda,

and this shows K,, — K in o(8,(R*),S,(R?*?)) since S,(R?) @ S, (R?) is
dense in S, (R?*?) (Proposition 0.16). The family {K,}, is equicontinuous as
S.,(R??) is barrelled, hence the convergence K, — K is also for the topology

of precompact convergence. Since S, (R??) is Montel, K,, — K converges in
the bounded sets of S,,(R?).

On the other hand, there exists ¢o > 0 such that |z — y|. > ¢ for all (z,y) €
R4\ A,. We assume that given (z,y) € R*\ A, |z — y|lo = |71 — 31|, for
some 1 <[ < d. We have, by Leibniz rule,

DSDY (K, (z,y) — Ky (z,y))
_ Z o! ’7! (_1)|71/ ei(m—y)'f€a1+71x
Rd

lvolcva! 1~ !
o1 +omtas—a Ol1:0lg:0l3: Y1:7Y2-
Y1+v2="

x D22 Dyra(w,y, ) Dg* (¥(27" (2,€)) — ¥ (27" (x,€)))de,
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Chapter 2. Quantizations for pseudodifferential operators

for all o,y € N¢, z,y € R% Following [33, Theorem 2.17], we integrate by
parts N times, N € Ny, and we obtain

DYDY (K, (z,y) — K (2,9))

N+|v1
arlaglag! yilye! 2 — yi| N Jpa

ajtaztaz=«a
Y1+Y2=Y

x DY (649 DI DY al, y, €) D2 (B(2"(2,€)) — W2~ (z,€))) ) de

N+
_ Z a! o (=1)NHml Z Lx
ot T arlaglag! yilye! o — y| Y Nyt Ny T Na=N NN IN5!
n+r2=y Ni<(a1+v1 )

((a1 + ’Yl)l)! / i(z—y)-€ o1 +y1—N N.
X 1z [e31 1 161D042D’72D 2 X
((061 +’)/1)l _Nl)' ]Rde 5 x Yy & (I(l’,y,g)

x D3* D (W(27" (2,€)) — W(27 " (2, €)))de.

Now, we integrate by parts via some power of the ultradifferential operator
G*(D), where s € N will be determined later, with formula (1.7). The inte-
grand above is then equal to

1
G*(y — )
x DD (U(27" (2, €)) — w(27 " (x,€))) }

‘ 1 n!
— pilz—y)-§
=e E b E X
G*(y — x) K ni!m2!ns!

neNg M +n2+n3=n
m<ai1+vy1—Nie

g GH(DQ €~ D2 D DYl . )

(a1 + 71 — Nigy)!
(a1 +71 — Nieg —m1)!
x D Dt (W(27" (2,€)) — W(27 " (2,€))).

ar+y1—Niej—m D?ZDJQDéerl+7'2a(x, n f) %
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2.8 Behaviour of the kernel of a pseudodifferential operator

Thus we obtain

|D?D;(Kn(x>y) - Kn+1($7y))’

ol ~! 1 N!
S Z a1!a2!a3!’yl!'ygl |£Ul—yl|N Z N1|N2|N3'X
ajtoastaz=a N1+Ns+N3=N
Y1t+y2="7 ng(a1+'y1),
(v +’>’1 Z 16| Z n! (1 + 71 — Niey)!
(a1 +m) — N1 ! nend T abns=n m!ne!ns! (cn +v1 — Nieg —m1)!
m<ai+y1—Nie
1
g =] L€ Dz o D a1

X | D D&t (U (27 (2, €)) — W(27 Y (x,€))) |de.
By Corollaries 0.23 and 0.20, there exist C,C5, C3 > 0 such that

‘b | < escle—sClw (lm) ’ < CS —sCaw(y— 90)

’ ’G — )
We set A > 1 such that A? = d+cl2, and we take p € N so that max{y/24,6} <
e’P. We fix A > 0, and we take g > A. Since a € GAT"™ there exists
Cy = Cy,p25es > 0 with
‘Dgz D;jyzl)é\fzez+?72a(x7 v, §)|
( <x — y> p(laz+y2+n2|+N2) 4uL2PH3 pp (\a2+W2+ﬂ2\+N2

4,L2P+3 ) emw(w,y,ﬁ),
(#,9,8))

for each g, 2,72 € N, N, € Ny, and z,y, ¢ € RY. We see that ¥(27"(x,£)) —
V(2= (z,€)) is supported in

B, = {(z,€) e R*: 2" < ((2,¢)) <6-2"}.
Hence, there exists C), = C} 5515 > 0 such that, by (0.10) (and recalling the
choice of p € N),

| D2 DYt (W (27 (w,€)) — W (2D (,€)))
< a0 e () (2%) ol
<2Cle AL pp” (%)G\aﬁngwm«x’g))—\aﬁnsl—f\’s

< 20264@25%92{5:1 Lt €4ML25+3W’* (%> ((z,8)) PN,
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Chapter 2. Quantizations for pseudodifferential operators

for all (z,&) € B,. Now (0.7) yields
‘§|\a1+wl—Nl—\m\ < <(x7§)>|a1+m—N1 < €AL4w*(‘“%”r”)eAL“w(((w,éD)«x’£)>—pN1.
Since |z; — yi| > ¢y, we have

(@ =9 < 1 dloy =l < gl =+ dfo = = Ay =

So (z — y)V < AN|z; — |V, N € N. Therefore, by Lemma 1.4,

T — p(laz+vy2+n2]+N2) az+y2+12 xr — pN2
(<< y) ) 1 _ /3 (<< y>>) 1

(xayag» |xl - yl|N n (xayag) |$l - yl|N
[aa+y2+n2] —pN, <$ — y>N
S e

< (VBA) st (g ) o,

Let C' > 0 be the constant in Lemma 0.10(2). By formula (0.12) and using
Lemma 0.10(2) we obtain, for some C}/ > 0,

(a1 + 71 — Niey)! (a1 + 1))
(1 +71 — Nieg —m)! ((q +71)0 — N)!
< 2|a1+’y1\—N12(a1+’71)ln1!N1!

*( In1l 25 * N
< 4|a1+71\0;’6”’:3‘/’ (%)e“L pC*"G(yL’A‘%c)

. w( In1l 25 (N
< 4|a1+’71\0//6#L2pCe“L3‘P (;EB)G“L py (“Léﬁ).
= p

Writing |ag +72 + 12| + N = Ny + (|ag + 2 + 12| + No) + N3, we use Lemma 0.8
(as p > A) as follows:

4|0¢1+’Y1\6)\L480* (%) eltL3ga* (l‘;’Tlg‘) (\/§A)|a2+72+n2\+NeﬂL25P@* (;Z%;) %

4HL2}7+3p[P* ( loo+vo+na|+No ) e4l¢L2f)+3p§0* ( |0¢3+713H’N3)

X e 4, 0,2P+3 4,L2P+3

w( lag+ 3% (1ml 5 ~F 1P 5 5 rp\2
e>‘L3+)‘L46)‘L2¢’ (%)G“L ® (#)e”LPPZle L? <€4NLP+3PZf:1 Lp) X

D Hp* N1~) p+3 *(\042+72+j72\+N2) p+3 *(\03+n§\+N3)
nLPpe (/LLP €4HL PP 4pLP+3 €4HL Py 4pLP+3

X e

3 = m) 5 *< N~)
uiier (Ji) oo (J25)

7 D 2 [ |aty]
eAL3+AL46(8L3+1)pL”p P L‘e)\L @ (%)e
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2.8 Behaviour of the kernel of a pseudodifferential operator

Then, there exists
Crpis = €1 050,200, L7 P EI L Ol en L7 C oL DRLTp DI L ALY
such that, by Lemma 0.1,

1D Dy (Ko (2,y) — Knga(2,9))]

2% \a+'v\ _ [n] LS [n]
< Oy pua3l2blM e (50 § esCre" (38) o (L3)3‘"‘)x

neNd

o o-sCaw(y—2) / AL (@O gmte) (5 €)y-N 3N 0" (57) g
Rd
(2.21)

for all N € Ny. So from (0.8) we obtain using (0.10) and (0.7) that there exists
C’ > 0 with (since (z,&) € B,,)

; —pNqN “LﬁP‘P*( 5) < ot XTI LY —pN upe™ ()
Jnf ((z,6))"7"3%e il <e 7 ot (2, €))7 e T

< ehP Tioa I g pw({(@.)+olog(((2:6)))

< C/eupzf;l L o= (n=D)pw(((.6))

< Cleupzf 1 L o= (1=2)pw(((2,£))) p—pw(2")
We put s € N such that

SCQ 2 ()\ —+ m)L2
Then by (0.1) we have
e—ngw(y—J;) < 6502w($)6_()\+77L)Lw(y)6502.

From (0.4), w(z,y,§) < Lw(((x,€))) + Lw(y) + L. We take p > sC; large
enough satisfying

(1 —2)p > AL* +mL + 2\L + 5C,.

Therefore, the series depending on n € NZ in (2.21) converges by (0.10), pro-
ceeding as in (1.14), and we see that

AL +mL—(u=2p)(((2.6))) 3Ca(e) < (=2ALw((2:6))) < g=Moas(w) o= ALw(E).
The integral in (2.21) then converges. On the other hand, from (0.10) we have

that
2 x( |laty] [ |aty] 2
glalglyl AL e (—M2 ) < e (—A )e,\L+,\L _

85



Chapter 2. Quantizations for pseudodifferential operators

By (0.3), —ALw(z) —ALw(y) < —Aw(z,y)+ AL, hence we get that for all A > 0
there exists Cy > 0 such that

ot

D2 DY (Ko (2, y) — Ko (1,3))] < Cre™ (55) erwtzagmmotz)
for all o,y € N&, (z,y) ¢ A,.

By Lemma 2.18, take x such that y =0 in A, and x = 1 in R?*\ A,,. Since
{xK,} is a Cauchy sequence in S,(R??), there exists T' € S, (R?*?) such that
XK, = T in S, (R?*). We notice that T' = yK in S/ (R??), since K,, — K in
S’ (R??). Therefore we have that for all A > 0 there exists C4 > 0 such that

D2DYK (2,y)| = [DEDIT(a,y)| < e (S5 emwen (2.99)
for all o,y € N&, (z,y) ¢ A,,. This completes the proof. O
We observe that the constant C§ > 0 in (2.22) grows as r — 0. Indeed, if r
tends to zero, then ¢, tends to zero, too. Therefore, the constant A > 1 tends

to infinity, and also the constant p € N. Hence C) , , > 0 grows, and so the
constant in (2.22).

Now, we prove that an operator given by an amplitude can be decomposed as
the sum of (any quantization) of an operator given by a global symbol and an
w-regularizing operator. But first, we need some preparation. The following
result is proved in [33, Lemma 3.11].

Lemma 2.21. Let m > n and ie%“”*(%) <t< ede () fort > 0. Then
e (8) > pln=De(t) g2ne” (£7)
for j large enough.

Lemma 2.22. Let 7 € R and let k € Ny as in (2.16). Then,

k+2
wiz,y) < LPw((l =) +1y) + L0y —2) + Y L, 2,y eR™
t=1

Proof. We denote v = (1—7)xz+7y and w = x—y. By the triangular inequality,
2| < Jvl+|7ljw| and [y < |v|+[1—7[[w|. Then, as |(z,y)| < v2max{|z|, [y[},
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2.8 Behaviour of the kernel of a pseudodifferential operator

by formula (0.1) we obtain
w(z,y) < w(V2(Jvl + (|1 =7+ [7])]w]))
< Lo(fo] + (It = 7]+ |7))|wl]) + L
< L*w(v) + LPw(@*|w|) + L* + L
k42
< L*w(v) + LF2w(w) + Z L.
O

Lemma 2.23. For all T € R there exists C = 2max{(1 — 7)%,72} > 1/2 such
that

[v]? < O(Jv +trw]* + |v — t(1 — 7)w|?), v,w€R?Y tER.
Proof. f = v+trw and y = v — (1 — 7)w, obviously v = (1 — 7)z + 7y. So,
we need to find C' > 0 such that
(1 =7z + 7y < C(|=* + [y]*).
Since 2|7||1 — 7||z||y| < (1 — 7)?|z|* + 7%|y|?, we have
(1= 7)z+ 7yl < (1 —7)%2 + 7°yl* + 21 — 7|7 |2||y]
<2(1 = 7)*a|* +277y/?
< 2max{(1 —7)%, 7°}(|z|* + [yI*).

O

Theorem 2.24. Let a(z,y,§) be an amplitude in GAJ"* with associated pseu-
dodifferential operator A. Then, for any T € R, we can write A as

A=P+R,

where R is an w-regularizing operator and P is the pseudodifferential operator
given by

2) = [« ek ry uinnds, we SR,

Smax{m,mL},w

being p € GS, . Moreover, we have

Z Z lm )|’Y|8§+’Y(_DI)5D; a($7y7£)|y=x :

|
J=0|8+~]= 1/87
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Chapter 2. Quantizations for pseudodifferential operators

Proof. We consider the sequence (j,), as in the proof of Theorem 2.6, with
the extra assumption (see Third step below):

n .
;tp <]> > max{n,log(Cy,5+s),10g(Daprots) } for ju < j < jusr,

where (Cy,), and (D,), are the sequences of constants of Definition 1.3 and
Corollary 2.9, and p € Ny is such that max{|1 — 7|, 2|7|} < eP.

Put

= 7T|ﬂ| 1— )¢ (=D, DY a(z,y,€)|

/Bl | y=x '
[B+~|=7

By Example 2.12, >~ p, € FGS?aX{m’mL}’w. Now, we write
=)y (,6)p;(2,9),
7=0

where (¥;); is the sequence in (2.15). By Theorem 2.6, we have that p(z,§) €
GS;““{"""LL}"“ and p ~ > p;. By Lemma 2.8 and Theorem 1.15, the operator
P as in the statement of the theorem is continuous. Moreover, by Lemma 2.11,
it is the limit of Sy, in L(S,,(RY), S’ (R%)), where Sy , is the pseudodifferential
operator with amplitude Zjio(‘llj — U ) (A=) +7y,8)(Cy pi(1—7)z +
Ty,€)) in GA;“aX{O’m/L}’”, m/ as in (2.17). That is, for u € S, (R?), we have

N
:]\}I_IPOO// (N (T = W) (1= 7)o+ Ty, €) X
7=0

X sz (1= 1)z + 7y, ) uly)dyds.

=0

On the other hand, from Lemma 2.10, A = Y \_, An, where Ay is the pseu-
dodifferential operator with amplitude (¥y — ¥ n,1)((1—7)x+ 7Y, &)a(z,y,§)

in GAT" C GAE‘aX{O’m/L}’”. That is, for u € S, (R?),

Au(z) = S,(RY) — i / / Gy — Ty ) (1 — )z + 7y, €)%
a(x,y, §)u(y)dydE.
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2.8 Behaviour of the kernel of a pseudodifferential operator

Hence, A — P is written as the series Y. y_, Pv,-, where each Py, corresponds
to the pseudodifferential operator associated to the amplitude, which belongs
to GA;“aX{O’m Lhw " given by

N

aNﬂ'(xﬁ y?&) = (\IIN_\IINJrl)((l_T)x_‘_Ty? 5) (CL(.%, Y, f)_zpj((l_T)x_‘_Tya 5)) .

J=0

Our purpose is to show that the kernel K of A — P given by

K(z,y) =Y Ky(z,y) = Z/ ey (x,y, €)dE
N=0 N=0 Y R?

belongs to S, (R?*?). To this, take r > 0 and let x(x,y) be as in Lemma 2.18

satisfying x = 1 for (z,y) € R*\ Ay, and x = 0 if (z,y) € A,. As an, €
GA;‘“X{O’” L} we have that K satisfies the estimate in Theorem 2.20, and

by Lemma 2.19 it follows that YK € S,(R?*?). Thus, we want to show that
(1 - X)K € SW(RQd)‘

Now, we follow the lines of [64, Theorem 23.2] (see also the scheme of the
proof of [33, Theorem 3.13]). Given z,y € R?, we consider

v=(1-7)z+ TY; W=z —y.

We proceed similarly as in [33, Theorem 3.13]. The Taylor series of a(z,y, &) =
a(v+Tw,v— (1 —7)w,§) at w=01is, for N > 1,

N

a(z,y,§&) = Z <_5'1’1'7T6|(1 — )z — y)ﬁﬂ(af@;a) (v,v,8)+
[8+~[=0 e
— 1)\l
+ Z (53' 7.\/3\(1 — 7.)Ifylojm(% v, &)z — ),
|B+yl=N+1 700

where
way (2, y,§) == (N+1) /1 (8707a)(v+tTw,v—(1—7)tw, &)(1—t)Vdt. (2.23)
0

Note that the expression (978)a)(v,v,£) means that in 879)a(z,y,£), it is
necessary to take v = (1 — 7)z + 7y instead of x and y. Then, for N > 1, we
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Chapter 2. Quantizations for pseudodifferential operators

have
/ SOy — ) (v, )alx, y, €)dE
_ /ei(zy){(\PN — U1 (v, €)x

N 7]
y ( Z (5'17)' 781 — ) (2 — w@ﬂ(@f@a)(vw,{))%—i—

[B+~|=0

—I—/ei(x_y){(‘lf]v —Unp)(v, €)%
—1)Ml
(X S 1 = 1) g, (2,5,€) (@ — y) "+ ) de.

11
|B+y|=N+1 Clel

Since (z — ) t7ele—v) ¢ = Dfﬂei(‘”*y)'f, we integrate by parts to obtain

/ D0y — Wy ) (0, €)alx, y, €)dE
_ / Wy — Wy 1) (v, €)alv, v, E)dé+

/8+7 1 i(x—y)- o Y
n Z 3 5+7—0é)'6'v'/€( FerIBI(1 — yP(—1) x

[B+~v]=1 a<ﬂ+'¥

x Dg(Wn = Un1)(v,€) (8ﬂ‘97D§+%a“)(v,v,€)d€+
1 ,
+ Z Z o 56;'77_ o /el(z—y)'leﬁl(lT)'v(l)lle

[B+7|=N+1a<p+y
X DE(Uy — Unit)(0,§) DT wg, (z,y, £)dE.
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2.8 Behaviour of the kernel of a pseudodifferential operator

Thus,
KN (fL‘, y)

= /ei(x_y)'g(‘l’N - ‘I’NH)(Uaf)(a(% Yy, &) — ij(v,f))d§
_ / GE (B — W) (0,€) (a(v, 0,€) — po(v, €))dé+

al B+)! 1
+Z( Z Z Bly! alﬁ+7_a)x

=1 |B+yl=j <Pty

" /ez'(z—y)-sTﬂ(l — ) (=) Dg(Ty — Un) (v, )%

x (9]0, D¢ a) (v, v, €)dE — / TSy — Wiy 1) (0, )y (0, €)dE ) +
(B +1)! 1 ie=9)€ 1811 _ 1yl(_1yhl
+|5+’;N+1a<;r'y B"}/' a' B—F’}/_a) /6 ! ( T) ( ) .
X DE(Wn = Wy i1)(0,€) D gy (a,y, €)dE.

Look at the three addends above. According to the change of variables we have
made, we see that py(v, &) = a(v,v,£), and hence, the first integral is equal to
0. On the other hand, when a = 0, the first part of the second addend equals

Z (—ﬁllﬁi:“vl /ei(w—y)'ngﬂ(1_T)|'Y|(\PN_\I]N+1>(,U’§) (858;D?+"a) (0, v, )dE,
1Bvyl=5 7

and by the definition of p;, we see that the second part coincides with:
/ e“z—w-f(m W) (0, Oy (v, )
S e / =y € 2181 (1 7)ol (— 1)1l

|B4+7|=3

X (Uy — Uni1)(0,€) (0007 DI a) (v,v, €)dE.

Hence, we have obtained that Ky (z,y) = ZIJ\,BIJrVI:l A} + Qn, being

N _ (B+7)! 1 ie—y)€ 181 (1 _ \ll(_1yhl
A= 3 S el KB D

X DE(Un — Uni)(v,€) (870, D¢ %a) (v, 0, €)d,
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and

Qw(z,y) = Z Z B+ 1 781 — 7)P(—1)Px

1~/ l — |
pamn+rassiy O Bty —a)

X /ei(wy '5D?(‘I’N — \I/N+1)(07§)D§+W_awﬁv<xv Y, §)d¢.

N N r , N . N )
SONZr:1 KTA([:I;, y) = Zril Zlﬁ"”ﬂ:l Aﬂ’\/ + Z’r‘:l Q'r'- Slnce Zr:l Z|ﬁ+’y|:1 —
Z|6+7|:1 ZT:\B+7I’ we obtain

Z Z Ay (,y)

r=1[B+y|=1

B+ 1 i(a—y)€ 181 (1 _ 1l
ﬁJrZVI 1r ;’Y|07’5<;3+’Y ph! O‘!(B"’_’V_O‘)!/e T =)
X (1) Dg(W, = W,41)(v,€)(970] DI a) (v, v, €)dé
N
D (5T7)! 1 /emy)-f:Tm(]_ _ hl—1)hix

L B A a)
X Dg(Vip1q) — Uny1)(v,6) (afa;Df‘f‘"/—aa) (0,0, €)d.

Therefore, SN | D lpan=1 Ay = E;V I — Wy, with

Yy (8 J'r )! 1 /6i(fc—y)'£7.ﬁl(1 — )hix

|B++|=j 0F£a<p+y Byl al(B+7 — a)!
X (=1)"Dgw;(v,€)(870; D¢ a) (v, v, §)dg,

and

N
B+ ) 1 i(z—y)-€. 18] 11
e TSP — 1)
|f3+zw|:—10;éaz<;a+v ! O‘!(B“L'V_a)!/

X (_:l)lfy'D?\IlNJrl(’Uaéf)(afagﬂ;y‘DﬁJrV “ )(’U,’U,g)dg.

Thus, we can write the partial sums of the kernel by
N N N
YK =Ko+ > Li+Y Q; — Wy,
=0 j=1 j=1
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2.8 Behaviour of the kernel of a pseudodifferential operator

where

IS Bl a!(ﬁ—i—’y—a)!/e( Ferflx

|B+~|=j 0Fa<B+y
x (1= 1) (=)D, (v,£) (9207 DI~ “a) (v, v, €)dE;

Qo= Y BFED L ki iy

1~/ | _
|B+v|=7+1 a<p+y ﬁfy o 'B—i_f)/ a)

X /ei(m_y)fD?(‘lfj = U51) (0, ) D wg, (2, €)dE;

wp (z,y,6) = (J + 1)/0 (858;7@) (v +trw,v — (1 — 7)tw, &) (1 — t)? dt;

N
Wrle.y):= 3, 2, iy a!(ﬁJrvoz)!/e( Ferllx

|B+v|=10Fa<p+y
X (]' - T)Iyl(_]')thg\pN+l(Ua 5) (8583D5+77aa) (Uv v, §)d§
It is easy to see that Ky € S, (R?*?). Indeed, we have

Kolw,g) = [ €1~ 0)((1 = 1) + 7,€)(ale, .) - ale, 2,€))de.

Since 1-¥, € S, (R?), following the proof of Lemma 1.11 (with an integration
by parts with formula (1.7)), for all A > 0 there exists C > 0 such that (k is
as in (2.16))

‘DQD?KO(:E, y)’ < C)\e)\tp* ( ‘Q;{—BI ) e*)\L2w((177)z+'ry)ef)\Lk+2w(yfz)’

for all o, 3 € N&, z,y € R%. An application of Lemma 2.22 gives the result.
Therefore, by Lemma 2.19, (1 — x)K, € S,(R??). In what follows, we only
treat the case m > 0 (the other case is easier and follows in the same way).

First step. To show that 77, I;(x,y) € S,(R*?), we compute D}DsI;(x,y)
for 0, e € N¢:
DIDI(x,y)
Bly! a'(ﬂ +v—a)! 0:1105105! €1 'eses!

[B+~]=7 0Fa<B+y 01+62+05=0
€1+€xt+ez=¢

% (_1)h+e1|7|ﬁ+ez|(1 _ T)\’y+02| /ei(z—y)~§€91+el >

x DI Dy D W, (0, ) D2 Dy (9207 DE 1 a) (v, v, £)dé.
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Chapter 2. Quantizations for pseudodifferential operators

An integration by parts with formula (1.7) (for some power s € N, determined
later) yields

. 1
i(z—y)-§ G*(D 01+4€1 D02DE2DQ\I/‘ >
€ Gs(y—x) ( 5){5 T y & ](Uvg)

X D(’spfs(aﬂamﬁ“—“ )(v,v,€)}

! 61 + €)!
— 7(r y)»&_ - n ( 1 1 501+€1_m><
T 25", W O )

x DD Dt \Ifj(u, g)Dﬁs D (920) DI B a) (v, v, €).

Therefore,

e B+ 1 1
DDyl =22 Bl al(B+vy—a)lGo(y —w)sz

|B+|=j 0Fa<B+y neNd

0! €! !

x oy, (=yhtal 10101 exleleal lnl ke
014021 05=0 01.02.93. €1:€2:€3: 11:12:13:
€1t+€extez=€
m+n2+n3=n

% (‘9(3_1—1_61)!)'7-|ﬁ+62|(1 _ T)\’Y+92| /ei(fc—y)'§£91+61—7]1 %
1 €L — M)
DI DDV (0, €) DO DS (020 DL a) (v, 0, €.

Fix A > 0 and take n > A to be determined later. Fix p € N such that
max{2,2|1 — 7|,2|7|} < e” and ¢ € N such that 2¢? > 3R. Write n > n
satisfying

o L
n > max {nL”, ALPT2 n L3 = (ALP™? +mL + 1) + 1}.
p
By Definition 1.3 and Corollary 2.9, for that n there exist Cy, Dy > 0 such
that for each v, & € R? we have by the chain rule
|D% D (9207 DI ™ a) (v, v, €)|

< Ci(v, €))728+2retstestns (2 max{|1 — 7, [}l

12842y —a+63+e3+n3] )
8

% eSnpga ( emw('u,v,&);

|at0o+ex+mno| )
8n

D DD (0,€)] < D(v, )l 3ive”
Since |5 + | = j, we obtain

((v,§)>—p|26+2~y—a+03+53+ns\<(U7§)>—p|a+02+52+n2\ < (<(U’€)>_j)2p
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2.8 Behaviour of the kernel of a pseudodifferential operator

and as in (0.4), mw(v, v, &) < mw(v2max{|v|, [£]}) < mLw(v)+mLw(€)+mL.
By (0.7) we have (1f| | >1)

|§“61+617771‘ S 6)\L5+2gp*(\01}\-};165;2771\)6)\L5+2w(£)'

By the choice of p € N and from (0.12), there exists E, > 0 such that

|h+92|(5+7) (01 + €1)!

2Inax 1 — T , T ‘93+€3| T |B+e2| 1
( {l 5171} |77 T ——

~ ~ P2 _* 711
< ePPI2B+2Y| gpPlOtel o AL (ALUI71+2).

By Lemma 0.8 and the selection of nn (recall that |5 + | = j), we deduce

P2 |771I) P2 *(I91+61—n1l> ~ (\0+92+€2+n2\) ~ (\2ﬁ+2w—a+es+sa+n3\)
eAL @ ()\LEJr2 eAL 7] N €8np¢* lotfateotnal 68np¢* £

L:D+2 *

° \91+<1\) 87pe (\2B+2’Y+92+93+~62+63+n2+n3|)

< ALWW( 5612\) (%)empw*(\92+93+6253+772+7,3\)
; )\LP+2¢*(\ 1:;12\)( 2" (i ))gpeALm *(‘eﬁfigi“;“‘)em’*(W)
< A (L) e () o nner ().
Moreover, since Ziiiﬂiifﬁ, gﬁi < e?%*<l we obtain by (0.10),
A (355 ) polo-vel e € e () st

01105105 €1lexles! —
01402+05=0 ~L17727737 F1E2:R3
€1+e€xtez=e€

From Corollaries 0.23 and 0.20 there are C';, C5, C5 > 0 such that

by < exCresre (),

- < Ce —sCow(y— ’E)
’GS —CL“

On the other hand, we recall that if the derivatives of ¥;(v,&) do not vanish,
then we can assume 245 ; < |(v,€)] < 345, (see (2.4)). So, in particular,

le%tp*(%) < ge%w*(%) < ‘(U,§)| <e Zo (%).
e -3 - 3R —

By Lemma 2.21, we then have, for j € N large enough,

(62@*(2%))2/) < (6—(ﬁ—1)w(%))2p (eﬁcp*(%))zp. (2.24)

95



Chapter 2. Quantizations for pseudodifferential operators

Now, using ¢ times property («) of Definition 0.3 (where ¢ is such that 27 >
3R), we have

w(550.8) > 20(Gr00) ~ T~ T~ 12 (.6 —a.
3R L 3R L L L

Therefore, since 2w(v,§) > w(v) +w(§), we obtain

(em DGR < (o= T w(0:6)) 2 ga(i=1)20

< (e—%ww))?ﬂ(e—’;’zéw@))?f)eq(ﬁ—l)zp’ (2.25)
and we get (since — = 3) that D"D Ii(z,y)| is less than
M+n2+13="n n1!n2!n3!
or equal to
DD D il B S—— 0 IS > AP
al(B+v—a)!

|B+71=j 0£a<p+y

(32 o () e (255) ) gt

neNgd

% /EAL5+2w(E)Dn(<(U’ £)>—j)2;)Cneme('u)eme(£)emLX

x (7" () (= 3pdw(0)) 2 (o= 3pd (@) P a0 g
By the choice of 7, since 1 > %(AL’7+2 +mL + 1)+ 1, we have
e~ T PO LT gmLw(©) < p=wl&)

which ensures the convergence of the integral in £ which defines DZDZI i(x,y).
Furthermore, since 1 > %Q(ALQ +mL) + 1, we see that

efﬁ;qlpw('u)eme('u) < 67)\[/2“)(1]).

Then, according to Lemma 2.22, it is enough to take s € N such that
SCQ Z )\Lk+2
where k € Ny is as in (2.16), in order to obtain

e—AL w(v) —sCQw(y z) < e —Aw(z,y) )\Zk+2 Lr

For the convergence of the series depending on 7 € N¢, it is enough to assume
that n > sC; (see (1.14)). Since n > nLP, using formula (0.10) we obtain
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2.8 Behaviour of the kernel of a pseudodifferential operator

(since [+ 1] = )

(0. 7) 7 () (7% (7)) < (((0,€) ) (en9" (D) 200 Thea
< ((2R) )t Tia

Finally, the convergence of the series (by Lemma 0.1(8))

= —J\2p N 2
22 2 m (@RI 2. Ry 2 G

J=11B+|= J075a</3+7

oo

=1
Z a5 \5+7! <> i

-1 B4 = = !

2j

shows that Y77, I; € S,(R*) and by Lemma 2.19, (1 —x) >_72, I; € S,(R*?).

Second step. Since supp (1 — x) € Ay, it is enough to estimate | DI D5Q; (z,y)]
for 0,e € N¢, (z,y) € Ay,.. We have

DyD;Q;(,y)
B (B+)! 1 0! €!
- Z Z ﬂlryl ol ﬂ +v— ) Z 011050 €,'esles! X

[B+7]=5+1 a<p+~ 01+02+03=0
€1+€x+ez=¢

x (_1)h+e1|7-|ﬁ+ez|(1 — T)\w+02| /ez’(:c—y)~££01+el %
x D D DE (W5 = W) (0, §) D D (D wgy ) (w,y, €)de,

where wg., (z,y, £) is defined in (2.23). As in the first step, we use integration by
parts given by formula (1.7) for a suitable power of G(D), G*(D), determined
later. The integrand above then equals
1
Gy — )
x DD (Dﬂ”—awwu 0,6}
= ei(m—y) 5 Z b Z 77' (91 + 61)! 591-‘1-61—771 X

7’]1'7’]2'773' (91 + €1 — 771)'

eilz=y)€ GS(Dg){fel“'ElDzQDZQD?(\I’j — V) (v, §)x

neNd  m+n2+nz=n

X Dﬁ"‘DZ"‘D?+"2(‘I’j = Uy1) (0, €) D5 D (D™ g, ) (2, y, €).
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Chapter 2. Quantizations for pseudodifferential operators

Thus, we obtain
DIDSQ;(x,y)
(B+)! 1 1
p— b
> Z Bl B+~ — ) Go(y _x)Z X

[B+v]=7+1 a<B+y neENg
| | |
x 3 ot € ik (01 + )t (—1)lrrerlploel
01 +05 7 05=0 011021051 € lexles! miIne!ns! (01 4+ €4 — my)!
€1textez=e¢
Ni+n2+n3=n

X (1 _ T)\”H—Qzl /ei(w—y)-£§91+61—n1 D22D52D?+"2 (\I/j - ‘I/j+1)('07 f)X
x DI D (DI g ) (x, y, £)dE.

We estimate the derivatives of wg,. Since v+trw = (1 —7+tr)r +7(1 —t)y
and v — (1 —7)tw = (1 —7)(1 —t)z + (7 +t — 7t)y, we have, by (2.23),

Dg?’ DZ?, (D?H*o‘*%wﬁv)(aj, n {)

:(j+1)/0 -1y 3 <Z~z) <Z§>x

03<03
é3<es

s |1 — 7+ o]l (1 — 7|1 — )=l (7|1 — ))& |r + ¢ — tr]lol x
% D% D3 DA s =6 9890 DI+ oy 1 tra0,0 — (1 — )tw, €)d
We take in this step p € Ny such that pp > 1 and
max{2(1 +[r]), (1 +2r)’} < e,
Then,
1= 7 ]I = 71— )= |71 = #) |7 4 ¢ =t
< (2L + [r])) el < et

Moreover, since (x,y) € A,,., we have

(v +trw) — (v— (1 = 7)tw)) = (t(x —y)) < 1+ 2r < €.
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2.8 Behaviour of the kernel of a pseudodifferential operator

On the other hand, by Lemma 2.23, there exists C = 2max{(1—7)%,7%} > 1/2
such that

((v+trw, v —t(1 — T)w, &) =1+ [v +tTw]* + v — t(1 — T)w|® + |¢€]?

1
>14 =|v|? 2
> 1+ o +1¢]

1 2
> (0,0

Hence, we have

1 1
\@max{|1 — T|, ’T‘}«U,f» z 61+§<(U7§)>‘

Now, if k € Ny is as in (2.16), then, by (0.1),

((v+trw,v —t(1 — 1w, &)) >

emw(v—&-trw,v—t(l—r)w,&) < eme(Q(\v|+(|1—T|+\T|)|w\))eme(g)emL
< 6mL2w(|v\+2k\w|)6me(§) emL2+mL

mL3w(v) emLkJrSw(w)eme(g)emLk+3+...+mL

IN

e

We take n > n such that (¢ € Ny is such that 29 > 3R as in the first step)

q

n L 3 2 L P2
7> max { = (mL? + AL?) + 1, = (1 + mL + ALP*) + 1},
p p

Then, by Definition 1.3, using appropriately (0.10) (and Lemma 0.1) we have
that there exists C; > 0 so that for each 63, €e3,7m3 € NI, a < 8+~ € N¢ and
x,y, & € RY, by the chain rule

|DJ D (D 1w ) (2, y, )|
eP(P+(1+4P))[2842y—a+03+e3+n3]

(0, €))Pl2A+—atiareatml

1
<+ 1)/ |1 — t}7erCP)fatesl
0

~ 5514 *(\2B+2wfa+93+63+773\
16nL pe 167 L5P+4

X e )emL3w(v)emLk+3w(w)eme(§) emLk+3+~~+det

< Crel O DI 17 g L (4 1) (, ) =

~ 1
167 LP+3 po* (128427 —atb3+e3+n3] 3 k43 .
w elom PP ( TonLpI3 )emL w(v)emL w(w)eme(g) ‘1 _ t‘]dt
0

Now, we proceed similarly as in the first step to obtain an estimate for
|DSDSQ;(x,y)]: By Corollary 2.9, there exists Di > 0 such that for each
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Chapter 2. Quantizations for pseudodifferential operators

02, €2,m2, € N and v, & € RY,
| D32 Dy DE™ (U5 — Wj44) (v, €)|

Dy {((v, §)>_P|0¢+92+62+n2|616'ﬁL5+3 - (%) |

Since |8+ | = j + 1, we obtain
—platbatea1n2 - —a —j\2
((v,§))Platbateatml((y, &) PRFr=al < (((v,€)) 7)™
By (0.7), we have (if [¢| > 1)
’5“91+61*7]1| S e)\LiH—QSO*(\91>\+Le;+2n1\)€>\L;7+2w(§),

and from (0.12), for A > 0 there is E, > 0 such that

(ﬁ‘f")/)' (01+61)' ’ ‘\B+€2\’1_7—’|’Y"'92
Byt (6 + e —m)!

< 6P5‘2ﬁ+2’)’+91+92+61+62‘EAe)\L5+2<p* ( AlL%IQ)

By Lemma 0.8, it is easy to check that

—~ P2 _* Im11 p+2 x(101+e1—m1l
P12 42y 0 eal oblOr+er | LT (S8 ) aLFRer (1tasml)

~ 543 *(|a+92+e~2+772\) ~ 543 *(\25+2w—a+gg+e3+n3\)
16nL pe 16RLP+3 el6nL pe 16nLP+3

X e

2 5 , ~3 5 , 2 [ ]10+€] 3, «( _nl
S e)\L ZZ:I Lp616"L 925:1 Lpe)‘l’ 14 ( L2 )enL ¥ (nL3) X
i\ 2P -, 2p
% (e%s@ (ﬁ)) (em %)) :
and also,

e ()

nL3¢*(7jz‘3,)€2|0+e+n| < ew*("’t‘)enw (—’L‘)GAL2+AL nL4nL?

(& (&

By (2.24) and (2.25), we obtain

(e%*%ﬁ )2p < (eﬁsa*(%))zp(e B w(0)) 2 (= 3Ed ()P gali-1)2p

From Corollaries 0.23 and 0.20 there are C,, Cy, C3 > 0 such that for all € N¢
and z,y € RY,

‘bﬂ’ < esCle—sC&go*(sg‘l) 7‘ < Cs —sCaw(y— z)
- IL’

e
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2.8 Behaviour of the kernel of a pseudodifferential operator

For the constant CJ. > 0, which is equal to

~ = = 2p
~ 543 45+1 7 p ~ .3 P p, . 3 2~ =% (L
CﬁDﬁ@lGnL P> o1 L 616nL P> pe1 L (] l)enL +nL eq(n 1)2p (eQngo (2n)> >

1
2 P P 2 k+3 . .
x Eye'l Soho1 LP ALPHAL gmLF o +mLesCIC§</ 1 _t‘jdt)
0

we can estimate [D}DgQ;(x,y)] by

WL _ « (1nl 3 a—1 k43
Clﬁe)\(p ( z : e éCll,D c nLgo (nL ) ) emL w(v)efﬁpw(v) emL w(w) %
neNg

—sCQw( x)
DU a'ﬁ+7—a)x

|B4+]=7+1 a<B+y
X /(<(U7§)>j)2p(eﬁ“a*(%)) e(mLJr)‘LEH*%P)w(&)df'

Take s € N with
sCy > mLFT3 4 \LF2,

Then, as nn > %q(mLB + AL?) + 1, we have, by Lemma 2.22,

(T ML )w(©) o (—sCatmLE () o« p=Aw(ey) AXET LY

Since n > %(1 + mL + ALP*?) 4 1, the integral depending on & converges.
Taking n > sC, the series depending on 1 converges (as in (1.14)).

As the series, by Lemma 0.1,

DD e 3 g
J=1|B+y|=j+1a<p+y B +7 Oé) =1 |B+~|=j+1 (ﬁ +7)
(2d)7+1 X (2d2)7H
1< 0L
Z]+1) 2 _Z(j+1)!

|B+vI=5+1 J=1
converges, we can proceed as in the first step and obtain that (1—x) Z;‘;l Q; €
S, (R2%),

Third step. Let Ty : S,(R?Y) — S, (R?) be the operator with kernel Wy. Since
A—P = >%_, Py, converges in L(S,(R?),S.(R?), it follows that (T)
converges to an operator T : S,(R?) — S, (R?) in L(S,,(RY), S’ (R%)). Indeed,
we have shown that

j=1 j=1

N —oc0
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Chapter 2. Quantizations for pseudodifferential operators

converges in S, (R??) as N — oo, hence in 8/ (R?*?). By the kernel’s theorem,
T converges to some operator T in L(S,(R?), S/ (R)).

We show that 7' = 0 in L(S,(R?),S’(R?)). To this aim, we fix N € N, j,, <

N+1 < j,i1, and we denote ay := Re~™i¢ (M) According to the support of
the derivatives of Wy, we can assume that 2ay < ((1—7)z+7y,§)) < 3ay.
For f,g € S, (RY), we have

Tnt.9) = [ Tut@g(@de = [ ([ W) fw)dy)g(@)ds.

For fixed N € N, we show that Fubini’s theorem can be used in this integral.
In fact, for all A > 0 there exists Cy > 0 such that

| DEWn1(v,€)(070, D¢ %a) (v,0,€) f(y)g(w)] (2.26)
< Oy " (10D g2 (128+27—al) gmes(v,0,6) o ~No(y) g~ Nz

Since 2ay < (((1 — 1)z + 1Yy,&)) < 3ay, in particular we have || < 3ay and
therefore 1 < e~@®evGav) - Moreover, by (0.4) and (2.18) (where k and m/
are as in (2.16) and (2.17)),

mw(v, v, 5) < mLW(U) + me(ﬁ) + mL
< m'Lw(z,y) + mLw(3ay) + mL*™ + ...+ mL.

Taking A > m/L* + 1 we use (0.3) to get

e Lol) Ao (w) g A(@) < gmele) ) gm' L7

and then we obtain that (2.26) is estimated by a function in L' (R3¢ ). There-
fore, we can use Fubini’s theorem in

B+ 1
(Twf.9) //Z 2 Bl al(B+y— o)l

|B4n1=10£a<B 47
« {/emymm(l )P D) DEW (0, €)
x (920 DL a) (v, v,€)dE } (y)dy ) g()de,
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2.8 Behaviour of the kernel of a pseudodifferential operator

and integrating by parts in the integrand with formula (1.6) for a suitable
power s € N to be determined, we have

i(z—y)-§

Dy ){DE W11 (v,€)(070; D a) (v,0,6) f ()}

@

GS(&)G
= il Z 3 777 7Im DM DEw L (v, €)

neNg  m-+tn2tnz=n 771 772 773
x Dy (856;1??“ “a) (v, v, §) D f(y).
Thus,

(B+7)! !
{Inf.g9) = Z ) 5!7? a|5+7 12 ) '77

— X
I,
[B+v|=1 0#£a<B+y GNd nm+n2+n3=n T:12:7)3:

X 7-\m+ﬁ|(1 _ 7- |’Y| 7// i(x—y)&_ — s 5) /Dngg\I’NH(v,f)x
x D (9207 D %a) (v, v, §) D fy)g(x)dydédz.

To estimate [(Txf,g)|, let p € Ny be such that max{|1 — 7,2|7|} < €. By
Definition 1.3 and Corollary 2.9, for all n € N there exist C,, = Cy,5+s > 0,
D,, = Dy, ;5+s > 0 such that by the chain rule

Dy (878 D) (v, 0, €)

[28+2v+ng — o]

< Cn<(U, §)>*P\QB+2’Y+772*O¢|(2’T|)|n2|e4nL5+3P@* (W)emw(u,v,g)

and

p+3 o« Imto
’DZID?\PN-H(Uag)‘ S Dn<<v7§)>7p|m+a‘€4n[l i pe (4nLJf:“+I3).

From the choice of p € Ny,

(2’7—‘)|772\’7—‘\771+5\’1 — T,Ivl < ePlmtmatftal

We take 0 < ¢ < n. Since f,g € S,(R?), there exist E, > 0 (depending on
¢,7,m) and E’ > 0 (depending on 7,m) such that (where k is as in (2.16))

D ()] < B () e (onie s+ i,

)

9(2)] < Fre-(mErDE sinte)

By Lemma 0.8 we have

W LT3 0" M1+al) P+3 *(\2B+2w+nra\) P+3 *(\"11+"12\) *(IB+W\)
€4nL pY (4"’L5+3 e4nL PP TIPS < eéL ] LT3 eangp - ’
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Chapter 2. Quantizations for pseudodifferential operators

_n 2| 2|n|
and (&S 27714'7]24‘773:7] nilnalns! 3 <e )
77' =~ ¢LP+3 *(‘"14’”2\) L3 *( 773\)
E ' o '(eplm-irnzle Y \pta )e P \s
n1+n2+n3=n T112:7)3:

< RO Drheg A0 2y ()

On the other hand, since 2ay < ((v,£)) and 1 < |[B+7| < N < N+ 1, we use
that ¢*(z)/z is increasing to get

(0, €))~Plm+al((y, €))~Pl2B+2vHm=al < (4 €))=rI28+21]
< (@Rl (552).

From Corollaries 0.23 and 0.20 there are C;, Cy, Cs > 0 such that for all € N,
£ eRY,

|b77| < esClefsCup*(Sg‘l) Cs —ngw(ﬁ)

’ G

Hence, we can estimate [(T f, g)| by (since % < elBly

al et 18+l 1 o
Z Z ((2R)2P> a!(ﬁ—k*y—a)!ec .

|B47]=1 0£a< B+
)) €L2P+2Lf/</C§eSCQW(§)X

( Z oL LL‘ o 5C1¢" (
% (/CnDnElElemw(v,v,g)e((mL+L)Lk+1+1)(w(y)+w(z))dy) df) dr.

neNd

We take ¢ > sC; to guarantee that the series on 7 is convergent (see (1.14)).
We recall that the only factor that depends on n is C,D,. We see that if
sCy > (mL + L)L*™' + 1, then there exists C}, > 0 such that

emw(v,0.8) o —((mL+L)L’€+1+1)w(y)e—((mL+L)Lk+1+1)w(x)e—scw(5)

2.2
< e (@) (@) g=w(y) —(€) (2.27)

In fact, by (0.3), (0.6), and (2.18),

e (:0.8) w(1:6) < Q(mLAL)w(v.€) gmL+L

< e(mL+L)L’“w(z,y,g)e(mL+L)L’“+---+(mL+L)L+mL+L
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2.8 Behaviour of the kernel of a pseudodifferential operator

Therefore, by (0.4), we obtain (2.27), as
om0 (0:0,€) g ({(1.6) () () 0 E)

< ((ML+L) LM 4 1) (w(@)+w(y)+w(8)) o (ML+L) L ot (mL+L)

So, we have

/ / / e~ ((0:0))) g =e(a) =) =(€) Gy 1 oy
2y <{(v.6))<3an

< e—w(Q(IN) /// e—w(m)—w(y)—w(i)dydgd;p_
R3d

By property () of Definition 0.3, there exists C' > 0 such that 3log(t) <
w(t)+ C, t > 0. Thus,

e—w(QaN) < (ZCLN)_BGC.
By the choice of the sequence (j,),, we have

e"C,D, < a‘;’\,.

Hence, there exists C’ > 0 such that, similarly as in the previous steps,

) N ePTl | 18+ 1 C,.D,
(Tnfog)l <O > > ((2R)2P> AdB+y—a) a¥

[B+7|=10#a<B+y

1 N 2 P
o> ()

en — 1l
Since the series converges for R > 1 large enough (which may depend on 7),
and since n — oo when N — oo, we show that |(Tx f, g)| tends to zero when

N — co. It proves that the sequence (Ty) converges to the operator "= 0 in
L(S,(R%),S! (RY)), as we wanted. O

Following [64, (23.39)], given an amplitude a(z,y,§) € GAT™ and 7 € R,
there exists a symbol p, defined by

p‘r(vvé) = ]:w»—%KA(v +TW, v — (1 - T)’U)),

where K4 is the kernel of the operator A given by the amplitude a. This
symbol is called 7-symbol of the pseudodifferential operator A. We write p for
the 0-symbol and, when 7 = 1/2, we write p,, for the Weyl symbol. It is unique
by the uniqueness of the kernel of A. Moreover, we have (see [64, (23.38)])

Ka(z,y) = (2m) " Felp yp- (L= 1)z +79,£).
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Chapter 2. Quantizations for pseudodifferential operators

Definition 2.25. The pseudodifferential operator P, associated to the symbol
- is called T-quantization of the operator and satisfies

A=P.
When T =1/2, Py 5 is called Weyl quantization and it is denoted by
PY =p“(z,D).
Thus, by Theorem 2.24, we have

~Y Y ﬁ, 771 = )¢ (= D,)’ DY a(w,y, €, - (228)

J=0|8+v|=j

Example 2.26. Let p € GS)"“. Then, we define a(z,y,£) := (2m)~"p(*2,€),
which belongs to GA’;”X{O’W}"” by Lemma 2.8. Therefore,

x) = // ei(“_y)"g(%r)_dp(%—'—y,§)u(y)dyd§, u € S, (RY).

On the other hand, by definition of p; /5, we have, by (0.34),
Tty iz _ Tty
pua(T 5 6) = FureKalay) = Farse [ e 2m)p( "5 Y ) )

2
—Fea(TE ) (P ).

So, in this case, the Weyl symbol coincides with the original global symbol p.

Given b € GS;", we denote here and below the Weyl quantization 6 (x, D)
by

b (x, D)u = (27r)_d/ e'=e) 5b($ _2‘_ i £)u(s)dsd£, r€RL (2.29)
R2d

As a consequence of formula (2.28) and Theorem 2.24, we can describe the
precise relation between different quantizations for a given global symbol in
terms of equivalence of formal sums as the following result shows (see [64,

Theorem 23.3)).

Theorem 2.27. Ifa, (x,£) and a,,(x,§) are the 1 and To-symbol of the same
pseudodifferential operator A, then

ar,(x,&) ~ Z Z (11 — )@ |8aD°‘aT1($ £).

J=0 |al= J
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2.4 The transposition and composition of operators

Proof. By the comments below Theorem 2.24, the pseudodifferential operator
A is determined via the 7y-symbol a,, ((1 — 1)z + 7y,§). We denote e =
(1,...,1) € N¢ and use the fact that

(x+y)°* Z B' Py, a€NY x,y € R
Bty=a

By formula (2.28), the 75-symbol of A has the following asymptotic expansion:
Uy ()

(=D g 1 A8+ 18
il Ty (1 —79)70; ‘YDJD;(an((l—Tl):c+71y,§)]y=x)

2
&Mg

<
I
o

=

+vl=7

(% Bl< 7oL 1) (1 — 7)) 9§ Dsa (. €)

=2
I

I
M8

.
I

B

J

I
@_\H

<
Il
=)

2
I

<

‘(—72(1 —71) + (1= m)m)*og DSa,, (x,€)

(7’1 - 7'2)‘C’|6°‘D‘3“af1 (,8).

I
2~

<
I
o

R
I

<

2.4 The transposition and composition of operators

Given a symbol a(z, &), let A be the pseudodifferential operator associated to
the amplitude a((1 —7)z + 7y, ). By Proposition 1.18 (see [33, Theorem 2.5])
we obtain that the transpose A' is associated to the amplitude a((1 — 7)y +
Tz, —¢). Hence, if a,(x,§) is the 7-symbol of A, then the (1 —7)-symbol of A
is given by

ay_,((L=7)z+71y,8) = a((1 =)y + 72, -§). (2.30)

This formula is equivalent to a’(7z + (1 — 7)y,&) = a1, (ty + (1 — 1)z, =E).
As a consequence of (2.30), when y = x we have al(z,&) = a;_,(x,—&). On
the other hand, for 7 = 0, a!(y, —¢) coincides with ao(x €), and for T=1/2

we have af, (*3%,€) = aw(”y —5)

By Theorem 2.24, the transpose of a pseudodifferential operator (restricted
to S, (RY)) can be described, modulus an w-regularizing operator, by another
pseudodifferential operator with a precise relation between their 7-symbols:
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Chapter 2. Quantizations for pseudodifferential operators

Theorem 2.28. Let A be the pseudodifferential operator with T-symbol a,(x, &)
in GS)"“.  Then its transpose restricted to S,(R?) can be decomposed as
A" = P + R, where R is an w-reqularizing operator and P is the pseudod-
ifferential operator associated to the symbol given by

p(x, &) ~ al(x,€): Z Z (1—-27 ‘O‘lﬁg‘DgaT(ﬁ,—f).

J=0 |al= J

Proof. First, by Proposition 2.13 it follows that the formal sum above belongs
to FGS;"“. By assumption we have that A’ has the (1 — 7)-symbol aj__ (7,¢)
given by formula (2.30) with y = x. Moreover, from Theorem 2.27, the 7-
symbol of A" satisfies

1
ai(a:, ) ~ Z Z 7[(1 - 27)'“'8?D?a§77(x7§)
=0 o= &
> 1
= —(1 — 27)'0"0“D0‘aT( ,—&).
ol
7=0 Jal=

O

In what follows, we deal with the composition of two pseudodifferential opera-
tors given by arbitrary quantizations. In fact, given such quantizations of two
pseudodifferential operators, we can describe the formal sum of the 7-symbol
of the resulting composition:

Theorem 2.29. Let a,, (v,§) € GS;™* be the T1-symbol of A and b.,(r,§) €
GS;"** be the To-symbol of B. The T-symbol c.(z,§) € GSZ“”’”’” of Ao B
has the asymptotic expansion

Z Z Caﬁ’yéalazagD?aTl(x7€) 8§be7-2($,§), (231)
7=0 Ja+B—ar—az|=j
a+pf=y+6

where the coefficients copysa,a, €qual

[ a—antan a—|—5—0¢1—042 Y )
l5| Z Z l ’ ( a— )(CMl) (OCQ)X

K, l=0 | oy | =k
laz|=1

X T‘O‘_all(l — 7')‘5_0‘2‘Tllall(1 — Tg)lo‘z‘.
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2.4 The transposition and composition of operators

Proof. We first assume 7, = 0 and 75 = 1. Then, for u € S,,(R?),

(Ao B)u(z) = / ¢ Sag(w, ) Bu(€)de,  w € R

~

We see that Bu(z) = I(—z), where I(€) = [ e~%b, (y, £)u(y)dy. Indeed,
f(-a) = [ eer)a
= [ [ e by, uty)dya
= [ ([ e 0ty uty)ay) dé = Bu(a).
Hence, by (0.34), Bu(¢) = (2r)?1(£) and
(Ao Bju(o) = [[ =D ety Ouipidyds, xR,

where c(z,y,£) = (2m)%ao(z,€)bi(y,€) is an amplitude in GAZ“J””“". By
formula (2.28) (see Theorem 2.24), the 7-symbol ¢, (z, &) has the asymptotic
expansion:

eSS Y CU T - 0 DDy (e, O (5,6, (232

1~/
Jj=0 \5+'y|*j Bﬁy
Z )PI(B +~
(27) E W Tl — T)\'v\angaO(;g’g) - OEDIb (2, £).
J=0 |B+ry|=j
5""5:,@-‘1-'7

(2.33)

Now, we treat the general case, by making use of (2.33). By Theorem 2.27,
we have

5 > = '“l‘angglaﬁ(x,g);

J1=0 |a1 |=51

-y > &

J2=0 |asz|=j2

1 - 7—2)|0‘2‘85‘2D;)‘2b72(33’§),
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Chapter 2. Quantizations for pseudodifferential operators

so we reformulate (2.33) as

cr(x, &) ~ (27r)di Z wﬂﬂl(l _ T)Mx

=0 |B4~1=j Slel B!
+e=B+y
iy 3 oi'Tlal'é‘?lD;“an(:c,O)x
J1=0 |ea =51 '
Xaﬁm(z >t 1‘Tz>'a2‘8§‘2Ds2bm<x,g>).
J2=0 |az|=j2

By the change of variables v/ = a; + 6,0’ =a; + 8,0 =as +¢, /= as +7,
it follows that

z.&~ @)y Y]

8"’ D¥a, (z, 5)85 Db, (x,6)x

11571
J=0 o'+ —a1—as|=j v 5
a/+ﬂ/_6/+’y/
X io: Z ozfozl+a2|(al+ﬁl_a1 _a2)! 'Y/' %
k=0 |a1|=k (Oé'—Oél)!(ﬁ'—Oég)! 01!(7'—041)!
\a2| l

o'

9 —ay 1— 18" —az| |l 1 — lovz]
aQ!((S/ — O62)!7' ( T) Ty ( 7'2) )

which concludes the proof. O

The coefficients appearing in (2.31), which depend on the quantizations, are
sometimes simplified. For instance, when 7, = 7, = 7. As an immediate
consequence we obtain [64, Problem 23.2] adapted to our context. First, we
need a lemma (see [9, Theorem 5.5]).

Lemma 2.30. For all B,v,e € N¢ such that € < 3+, it holds

(B+vy—e)lel Byt 052s (B=)(B—€e+vy—0)10—B+e)l

B—e<5<B—et+y

B+ 1 Z 1

Example 2.31. Given two pseudodifferential operators A, B : S,(RY) —
S, (RY), the T-symbol of the composition operator C' = A o B is given by

ey 3 /w (1~ 70} D . ) 0 D2, x, ).

J=0|B+~I=j
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2.4 The transposition and composition of operators

Proof. Formula (2.33) states that ¢, (z, ) is equivalent to (since 6 = S+~ —¢)
+)! 1

2 1)81R18 (1 — 7yl (8
) Z Z -7 Z (5+’y—e)!e!ﬁ!7!><

J=0 |B+~I=j e<B+vy
x 077 Dl ag(x, €) - 9: Db (, ).
Moreover, by Lemma 2.30,

(27) Z Z DB — 7yl

=0 |8+~|=j

1
<22 x
St o52s B0 B—ety =)0 - +e)
B—e<d<B—ety

x 0 Djag(x,€) - OcDIby (,£).
Weput u=—-6,v=0—€e+v—46,and § =§ — B + €. Therefore,

d = (_1)|u+5| s .
f) ~ (271') Z Z WTI#+ \(1 _ 7_)|u+ I

J=0 |v+6+p+8|=j
0
x Oy D ag(x, €) - 0L Dby (2, €),

and taking j = j1 + jo + J3, J1,J2,J3 € No, we have that ¢, (z, &) is equivalent
to

\M

(2m) Z Z 'V' |u\1 )IV\X

J1=0[v+pl=j

N 8”D“( Z Z lél@&DéGo@ f))

J2=08|=j2

x o D > Z )9 Dlby (2,€) ).

Js=010|= ]3

We get the result since Theorem 2.27 gives

~y B 5i D ()

k=0 |5|=k

Z Z )9 Dby (x, €).

k=0 |0|= k
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Chapter 2. Quantizations for pseudodifferential operators

Corollary 2.32. Given two pseudodifferential operators A, B : S,(R?) —
S, (RY), the Weyl symbol of the composition operator C = Ao B is given by

Cu(@,€) ~ (27) Z Z ,B, GOMS (8¢ DYy (,€))(8¢ Db, (,£))-

J=0|B+~|=j

In particular, we obtain [6, Theorem 5.7].

Corollary 2.33. Let A, B : S,(R?) — S,(R?) be two pseudodifferential op-
erators with global symbols a(x,§) € GS)™* and b(x,§) € GS)**. Then, the

global symbol c(x, &) € GS)" ™ associated to C = Ao B : S,(R?) — S, (R?)
satisfies

c(x,€) ~ (2m)*(a(,§) 0 b(z, €)) = (2m) Z Z O)NDb(x,))-

J=0 |5 J

We finally show [64, Problem 23.1]:

Example 2.34. The global symbol p(z, &) of a pseudodifferential operator P
can be expressed in terms of P via the formula

p(x,€) = (2m) e TP () ().

Proof. By Theorem 2.28, we deduce that if P is the pseudodifferential operator
given by the symbol p(x, &), the transpose operator is given by the amplitude
p(y, =€) (see (2.30)). So, for f € S, (R?) we have

(P = [ [ evply, -6 f)ay) e

By an integration by parts with the ultradifferential operator G™(D), for n €
Ny large enough, with the formula (similar to (1.6))

1
G (€)

e WE —

G"(~D, e,

one can show that

1€ = [ ply.~Of )y, S € S.®)
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2.4 The transposition and composition of operators

belongs to L'(R?). In fact, the integration by parts yields

1 mn
GT(g)G (Dy){p(% =& f(w)}

e e 2 2

neNd  m+tn2= 7]

—iy-§

,n D ply, —€) DY f(y).

Therefore,

/ e IEDIp(y, —€) D f(y)dy
neNgd 771+712 =n 771 772

From Corollaries 0.23 and 0.20 there are C;,Cy,C3 > 0 (depending only on
@) such that for all n € N¢ and ¢ € R?

by < 6"0167"0“0*(71‘3‘1)

’ < Cn 7nC2w(E).
=@

Assume m > 0 without losing generality. For all A > 0, there exist Cy, > 0
(see (1.11)) and Dy > 0 such that for all n;,7, € N¢ and y, & € R,

’Dm (y, =& < C'AeAL @ ( ‘)emw(yré).

D7 f(y)] < D, * Loz ) —(mL+1)w(y)

Therefore,

|
()] < enCrCpenen® Y e () T

In,! X
neNd n+n2=n The: (234)

x Oy Dy e (533) e (3) / =) = (L) gy
We take n € Ny such that nCy > mL + 1. In particular, by (0.3),
o—1C2() gmes(y,—€) o ~(MLAD(y) < o—() g—w(v) gmL,

This implies the convergence of the integral in (2.34). On the other hand, by
Lemma 0.8

S e () e () ¢ o () o0

I, - ’
mm=n T2
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Chapter 2. Quantizations for pseudodifferential operators

so it is enough to fix A > nC} to obtain that the series depending on 7 € N
in (2.34) converges (see (1.14)). Hence, there exists C’ > 0 that depends on
A > 0 such that [I(£)] < C'e ), ¢ € RY.

Thus we have I(—z) = (P'f)(z) € S,(R%). Hence I € S, (R?). Therefore, as
et e £,)(R*) C S/ (R*?), for f € S,(R?), we have by (0.34)

(Ple). £) = (4, P'f) = [ e <T(-a)as
— 2n)1(-=) = ) [ (e, f(2)da.

This shows the result. O
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Chapter 3

Parametrices

The notion of hypoellipticity comes from the problem of determining whether
a distribution solution to the partial differential equation Pu = f, where
[ is a smooth function, is a classical solution or not. The authors in [33]
provide adequate conditions for the construction of a (left) parametriz for their
symbols, which guarantee the hypoellipticity in the desired class in [32]. For
the operators defined in [58], the corresponding construction of parametrices
is done in [25].

We develop the method of the parametrix for the class of operators introduced
in Chapter 1. That is, we obtain sufficient conditions for the symbol of a
pseudodifferential operator to have a parametrix and, in particular, to be
w-regular in the sense of Shubin [64]; see the definition of w-regularity at the
beginning of Section 3.1 and Corollary 3.4. Given a pseudodifferential operator
P, we say that another pseudodifferential operator () is a left parametrix for
Pif
QoP=1+R,

where I is the identity operator and R is an w-regularizing operator.

The conditions imposed to symbols to construct parametrices motivate the
definition of a wave front set given in terms of Weyl quantizations for S/ (R?)
in Chapter 4, called Weyl wave front set.
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Chapter 3. Parametrices

We also give examples of symbols with prescribed exponential growth which
satisfy the conditions to admit a parametrix. However, we need to take weight
functions w bounded from above by the Gevrey weight function o(t) = ¢'/2.

Finally, inspired by Boggiatto, Buzano, and Rodino [9], we show that some
type of symbols, which in addition satisfies the sufficient conditions of the
existence of parametrices, called w-hypoelliptic symbols, are still w-hypoelliptic
under a change of quantization. Moreover, we compare the notions of w-
regularity and w-hypoellipticity following the ideas of [13].

The following results appear in [4].

3.1 Global regularity

We say that a pseudodifferential operator P : S/ (RY) — S (R?) is w-regular if
given u € S/ (R?) such that Pu € S,,(R?), then we have u € S,,(R?). See [13] for
a study of w-regularity of linear partial differential operators with polynomial
coefficients using quadratic transformations (cf. [53] for the non-isotropic case).

In this section, we provide a sufficient condition for global w-regularity of a
pseudodifferential operator. We use the method of the parametrix. The proof
is based on [50, 65]. The result will follow the lines of [2, 32] (cf. [25]). The
following estimate is proved in [11, Proposition 2.1].

Lemma 3.1. Let w be a subadditive weight function. For all A > 0 and
7,k € Ng, we have _ _
AL (%) AeL(R) ARl (BFH)

< .
i K T Gtk

The following result is obvious and the proof is elementary (see Section 2.2).

Lemma 3.2. If > a; € FGS)"™" and b(x,§) € GS;'™**, then ) a;(z,§)b(z,§)
is a formal sum in FGSZ“J””Q"”.

Theorem 3.3. Let w be a weight function and let o be a subadditive weight
function with w(t*?) = o(o(t)) as t — oo. Let p(z,€) € GS‘me’“ be such that,
for some R > 1:

(i) There exists ¢ > 0 such that |p(z,€)| > ce™ ™8 for ((x,£)) > R;
(11) There exist C > 0 and n € N such that
D DEp(w, )] < Cot A (a,€)) Pl Pleneivielenen D p(a, g)),
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3.1 Global regularity

for o, B € N, ((2,€)) > R
Then, there exists q(x,&) € GSLm""” such that gop ~ 1 in FGS‘pm"w

Proof. We set .
qo(z,§) = p(@.6) ((#,6)) = R

We show by induction on |a + 5| € Ny that there exists C; > 0 such that
D2 Do, )] < O (w, €)1 leneetlebenec (i gy(z, €)], - (3.1)

for all a, 8 € NZ, ((z,€)) > R. Indeed, the inequality is true for a = 8 = 0. By

induction we assume the inequality (3.1) holds for all (&, 8) < (o, 8). Since
p(w,f)QQ(-’IJ,é) = 1, we have

p(l‘aé)DgD§BQO($’€)

! B! = I
==X : —— DID;p(x, €)D" DI Py (. €).
0#£(a,8)<(a,B) al(a —a) ﬁ'(ﬁ B)! ¢ ¢

Therefore, by condition (i7) and by the inductive hypothesis, we obtain

a a! ,6' a a4 B
\p(x,{)Dwaqo(x,g)] < Z a2 51 __ole *5‘<(:c,f)> pla+B] o
0£(&,8)<(a,8) B (86— B)!

X e%wi(n\&l)e%%(nlﬁ\)’p(x7 g)ma—aw—éw y
x ((z, &) Plo—atB—Blgunes(nla=al) gres mlB=BD |0 (1 £)].

As a!(o?ia)! E!(/fiﬁ)! < I&\ll\zl&\! IEI!‘I?iE\! (Lemma 0.1), we get, by Lemma 3.1,
wea(nlal) oo (nla—al) Lon(nlBl) gres(nlB—B)
1< et 181 e T o b nlal ghes (nlsl)
at o —al Bl 18- Bl
Thus,

’D$D§QO(:U7§)’

—pl 1o (nlal) . Lo* (n C \ la+5]
< C{O‘J“Bl((x,{» platBlemes(lal) gmes Bl g (2, &) Z (6) .
0A(a, )< (.5)
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Chapter 3. Parametrices

We take C; > 0 large enough so that
= /dC\F
() <1
k=1 ( Gy )

With this, we obtain, by Lemma 0.1(1),

O 16+8] lo+8] C\Fk la+8] dC\ F
~Z (a) + < kz_: Z (a) < Z: (a) <1,
0#(a,8)<(a,8) =1 |nl=k k=1

which completes the proof of (3.1). Without losing generality, assume that
C <.

We define recursively, for j € N,

0(@.6) = g6 3 ;@gqu(z,g))(mp(x,e)).

0<|yI<s

We claim that there exist constants Cs, C3 > 0 with C; < Cy < C3 such that
]Danqj(x &) < Claﬂf\cﬂ«x €))~PUetBl20) gl (n(latBl+2)) glmlw(@.8) (3 9)

for all a, B € Nd, ((x,€)) > R. We proceed by induction on j € Ny. If j = 0,
then formula (3.1) implies formula (3.2) since |go(x,€)| < (1/c)el™“@9 for
((xz,€)) > R (by condition (7)). Now, fix j € N. By induction, we assume
that (3.2) holds for all 0 < ¢ < j for some constants Cy, C3 > 0 large enough
satisfying C3 > Cy > C; to be determined. The derivatives of g;(x,§) are
estimated by

al 3!
DaDﬁ ] < DalD X
‘ T 5Qj<-r,£)| —a1+a22+a3 aal'a2la3‘B1'52'/B '| q0($7§)’
B1+PB2+B3= 5
« Z ]DQQDB2+7qJ Ivl(x f)HDcvervDﬁa (,8)).
0<M<J
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3.1 Global regularity

By (3.1), (3.2), and condition (ii), we have

D3 D q;(x, €)|

a! A o+ - Lo
< Cal e p|a1+51|en</’a("‘al|)x
- Z aqlaslas! B1!B5! 65! <( §)>

a1tastaz=a

B1+B2+B3=p
. 1 -
X e%%%(”|51|)‘q0(x,§)‘ Z 7'0£6¥2+52+7|C?J) 17l o

0<|y|<j
x ((z, £))~Plaz+Batrl+26=1D) o o (n(laatBa+l+2(=17D)) glmlw(.6) o

% C\a3+w+53\<(x’£)>—p\a3+v+/33|e%wi(n\asﬂl)e%%(n\ﬁsl)‘p(x,g)‘

| I
pllatBI427) g mlo(z.€) o! B! o1l
x, & g Ci
<( )> 041'a2'013' /31'52'53

ajtastaz=a
B1+B2+B3=p

1, L 1 i
% enPo(nlail) pmes (nlfal) E : 7'0£Oé2+ﬂ2+w|0§ MX
0<|y[<y
x en P (a2 tB21+2i—IvD) les+y+8s] 3¢5 (nlas+7]) o 705 (nlBs )

We multiply and divide on the right-hand side of (3.3) by

(laz + Ba| + 25 — [y)!]es + ]! B5]!
Then, as
a! J51 laf! B!
aqloslas! /31!/32!53 ]a1|'|a2\'|a3|‘ |51|"52Wﬁ3"7

we have, by Lemma 3.1,

erea(nlonl) ores(nlfil) pres(n(laatBel+2i—|7) o es(nlas+y]) pres(nlBs)

o ! 1Bult (Joz+ Bo| + 27 = 7D Jas+A[t (B!

< reimlatsl),
~ (Ja+ B+ 25)!

We check that

|af! 18!

(‘a2 + /82’ + 2.] - h/|) < 2|a1+0¢3|2\ﬂ1+ﬁ3 (3 4)
|z |t |! | B2 1] B!

(la+ Bl +25)!

|z + ]! B!
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Chapter 3. Parametrices

Indeed, we multiply and divide by (|ay +as|+ |81 + Bs] +|7|)! on the left-hand
side of (3.4), which is therefore estimated by

|al! 18]! |as + ]! B! 1
a 23
[aza]! 1B 11Bs]! (lax + sl + 181 + Bal + D! (a8 )

ot 8L 1 1

= o/ as|! | Ba]!] B3] | '] Ba ]! (\a2fﬁtﬂ-§?il’yl)'

As we have, for a = a; + @ + as,

a! _laatas (ol ) _jagtan [ o
o |!|eva | fexs ! o |Nas|! \ o] | — ’0‘2”

(and similarly for 5 = ) + 82+ 33), we deduce formula (3.4) by an application
of Lemma 0.1(5):

@\ (181 _ (la+8\_ [ la+8l+2
loa| )\ 182 ) = \laa + Bal | = \Jaa+ Bo +25 —|7])

We then have from (3.3),

]Dangj(x,g)\ < {(z,&))° (latB1+25) o 05 (n(|atB1427)) glmlw(@.8) o
X Z 2‘041*‘0‘3\2|ﬂ1+33\0{0‘1+51|0£02+,32| «

ajtaztaz=a

B1+B2+B3=p
x Cjcleatsl 3 i'CQ'C’;”'CW‘.

0<|v|<j

Since C' < (', we have

C‘a+f8‘cj 20\ |1 +61] 20\ las+8sl

2 3 C C
ajtaztaz=a 2 2
B1+B2+Bs=B
|8

<ck*ley N (g)'aﬁa”ﬂﬁﬁ” <opicg Y (201)

o taztaz=a k=0 |n|=k
B1+B2+B3=p8

Thus, we take, according to Lemma 0.1(1), Cy > 0 large enough so that

i(”éf)k <2

k=0
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3.1 Global regularity

Now, the remaining sum is estimated, using Lemma 0.1, by

2 vl!<cc(/;2)h§i: (002) IEEDI M (002)

J
0<|71<; k=1 =k k=1

Hence, taking C'3 > 0 large enough so that

f:,i(df@)’“ <12,

k=1""" 3

we prove (3.2). By Lemma 0.10(1), for all A > 0 there exists Cy > 0 such that
for each j € Ny,

\D‘,“D?qj (z,8)] < CrCYPlCi((, £)>—P(\(¥+5\+2j)6)\m@:(7la+ﬁ;‘+2j)e|m|w(a:,§)

for all o, 8 € N, {(z,€)) > R, and the estimate (2.1) in Definition 2.1 hence
follows.

We extend ¢; to the whole R?*® for all j € Ny in the following way: we take
¢ € D) (R??), supported in {(z,&) € R* : ((x,§)) < 2R} and ¢ = 1 in
{(z,€) € R* : ((z,€)) < R}. Hence for all j € Ny, g; := q;(1 — ¢) € C(R*)
satisfies that ¢; = ¢; in ((2,£)) > 2R and vanishes if ((x,§)) < R. Since
1—-¢¢€ GS%“, by Lemma 3.2, we have ) ¢; € FGS‘pm"‘“. By abuse of notation
we write )  ¢; for the formal sum ) g;.

We show > g op ~ 1. We denote Y r; = > g; op as in Proposition 2.15 for
7= 0. In fact, if j € N, we have

0@ O = — 3 71!@2%-|7|<m,s>><D;p<x,s>>

0<|v|<j
- _Tj(xvf) + QJ('rvé.)p(xvg)
Hence r;(z,&) = 0 for all j € N. Moreover, ro(z,§) = qo(z,&)p(z,§) = 1 if
((x,€)) > 2R. Therefore > q; op ~ 1. Finally, by Theorem 2.6 there exists

q € GS‘pm"“) such that ¢ ~ )" ¢;. So, by Proposition 2.17 we have gop ~ 1 as
we wanted. O

Corollary 3.4. Let w and o be as in Theorem 3.5. If p satisfies the hypotheses
in Theorem 8.3, then its corresponding pseudodifferential operator P is w-
regular.
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Chapter 3. Parametrices

Proof. By Theorem 3.3, there exists a pseudodifferential operator @ such that
Qo P =1+ R, where I is the identity operator, and R is an w-regularizing
operator. Then, for every u € S/ (R?) we have

u = Q(Pu) — Ru.
Therefore, if Pu € S, (R?), we have u € S,,(R?). O
By Theorem 2.24, we observe that if P is w-regular, then P, is w-regular, for
all 7 € R.

Given two global symbols a and b, we write a#b for the Weyl product of
a and b, that is, the symbol corresponding to the composition of the Weyl
quantizations of a and b:

(a#b)*(z, D) = a"(x, D)b"(x, D).

We observe that the Weyl product of a and b has the following asymptotic
expansion (cf. Corollary 2.32):

> _1)I8l
(a#b) (2, &) ~ Y > ( 1)62"5+7|62Dfa(:8,f)@fD;b(m,ﬁ). (3.5)

18!
3=0 |B+~1=j 7!

Let p € GSL’”"“ be as in Theorem 3.3. Then, there exists ¢ € GSL’""“ such that
the associated pseudodifferential operators P and () satisfy Qo P = I + R,
where [ is the identity operator, and R is an w-regularizing operator. Hence,
by Theorem 2.24, we can write the pseudodifferential operator associated to
the amplitude p(£¥,€), P*(z, D), by P+ R/, for some w-regularizing operator
R’, and also for q(%, )7 namely Q" (z, D) = Q+ R", for some w-regularizing
operator R”. Thus, using Proposition 1.18,

Q" (z,D)o P"(z,D)=(Q+ R")o(P+ R')
:QOP“I—R//OP“I—QOR/“I—RNOR/:I—i—RIN,

for some w-regularizing operator R"”'. Therefore, we have

Corollary 3.5. Letp € GSLml’“’ satisfy the hypotheses in Theorem 3.3. Then,
there exists q € GSL"L"“ such that q#p ~ 1.
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3.2 Example

3.2 Example

Now, we construct a global symbol p(x, &) with prescribed exponential growth
in all the variables satisfying the conditions in Theorem 3.3 for Gevrey weights
w(t) =t" 0 < a < 1. It is inspired by [3, Capitolo 4].

We start by considering
fy=e",  0<b<1/2, t>1. (3.6)

First, we show that, for all n € N,

b

f(n) (t) — (a[),ntnb_n + al,nt(n—l)b—n + a2$nt(n—2)b—n 4ot anfl,ntb_n) et

aO,n + alantib + a2,nt72b + e + an—l,nti(nil)b o

- $n(1-b) €,
where
ap, = b", n>1;
A = Q10 + ap_10—1((n — k)b — (n — 1)), 1<k<n-2,n>3;
an—l,n:b(b_]-)(b_2)(b—n+1), n22,
and
|akn] < (0+1)"n", 0<k<n-1 (3.7)

It is clear that if b = 0, then f(¢) = e. Therefore, its derivatives are always
zero, hence we consider b > 0. We proceed by induction on n € N. If n =1,
then f/(t) = bt*'e!’ = ag,t" ‘¢!, and the result is clearly true. If we assume
that f fulfils the statement for n € N, then we have that f"V(¢) = (f™)'(¢)
is equal to

(aomt”b*n + al,nt(nfl)bfn + ag,nt(”*z)b*" 4ot an_lvntb—n> et b1
+ (aom(“b =)t gy ((n = 1) — n)ttn DD
F agn((n—2)b—n)t=20-0tD) Loy g (b — n)tb_(”“))etb
= (ao,nbt(nﬂ)b*("ﬂ) + (@1,nb + agn(nb —n))t= 4

+ (aznb +ay,((n—1)b— n))t("_l)b_(”“) +Fan_1.(b— n)tb_(”“))etb.
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Chapter 3. Parametrices

We write

Aon41 ‘= aO,nb =b"b= bn+1a
At = b+ ap_1,,(n+1 - k)b —n), 1<k<n-—1,
Upns1 = An_1,(b—n)=bb—-1)---(b—n+1)(b—n).

Now, we estimate |agni1], 0 < k < n. If & = 0, formula (3.7) is true by
definition of ag 1. For 1 <k <mn —1, since b < 1/2, we have

Then, using the induction hypothesis, we have

n+1-—k

b—1| < 1.
n

lak ni1| < |agn|b+ lak—1.]/(n+1—k)b—n|
< b+ 1" b+ (b+1)"n* | (n+1—k)b—n]

= (b+ 1)k (b + |7n+;_k

b—1|) < (b+1)""(n+1)".
Finally, if K = n, as 0 < b < 1/2, we obtain

lan.nt1| = 10|16 —1]|b—2]---|b—n+1]

It is straightforward to check by induction that, for all n € N,
(n—=W<(b+1)"n"""
Indeed, if n = 1, the formula yields b < b+ 1. If n > 1, then
nb=n(n—-Db<(b+1)"n" < (b+1)""(n+1)"

This shows the estimates in (3.7).

Now, let
gty =em", 0<b<1/2, meR, t>1. (3.8)
For all n € N, we have that ¢(™(t) is equal to
aonm™ + ay ,m" T+ ag,m " oty ,mt (D0 Gt (3.9)

tn(1-b)

We also show -
2 ((b+1e) e imle

9™ @) < (1 )" S

(3.10)
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3.2 Example

Indeed, for b = 0, the function g(t) is reduced to a constant, and this case is
excluded from the general case. Moreover, as g(t) = f(m!/%t), formula (3.9)
is satisfied. To check (3.10), from the estimates of the coefficients of the
derivatives for f, we have, for ¢t > 1,

9™ ()] < (!ao,n\(l +m)" + lara| (1 + [m[)" ™" + az.a| (1 + [m])"~2

n(1-b) T
|@n—1n|(X+[m[)\ e
n(1=b) €
nl@on] lain] +lasnl + - 4 |an—10] e
< (1 +[m[)" (D) €
LSO+ A 4+n+ni+ 0 e
< (1+[m]) (D) e
b
< (1t LR

n(1-b)

Since n"™ < e™n! for every n € N we obtain (3.10) for all n € N, ¢ > 1 and
m € R.

Now, writing the function g in (3.8) as
g(t):emtaﬂ’ O§a<1, mE]R, tZ]_,

and setting
u(z) = (2)2 =1+ |2, z € R¥,

we define
p(2) == g(u(z)) = em™=", 0<a<l, meR, zeR* (3.11)

We investigate the behaviour of its derivatives. We again omit the case a = 0,
because it is trivial.

We use Faa di Bruno formula for several variables (see for example [52, Page

234]): L Dl
Dz = Y g®)arS ] ( u(z ), (3.12)

c
0<k<|a x |B]>0 5!

for all « € N2 and 2z € R*! where the sum Y. _ runs over all ¢5 € Ny such
that > 5.0cs =k and }_ 5.0 Bcs = a. The derivatives of u are always zero,

except when 8 = e; or 8 = 2¢;, where e; € N2? is the canonical basis for
1 < j < 2d. For these cases, we have
D u(z) = 2z;; D*u(z) =2, z=(z1,...,24) €R* j=1,...,2d.
(3.13)
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Chapter 3. Parametrices

Therefore, we obtain

1 | DPu(z)es
Hit B!

181>0 “8°

Moreover, we have

k= ch—Zce]Jche € No;

[8]>0

d
a=(ag,...,000) = Z Beg = (Coy + 2Ca0,s - -+ 5 Copy + 2Cac,,) € No©.
[B]>0

Thus, 22(1 ce, = 2k — |a| < |al, and therefore

2d

H ‘22’3

j=1
Then, by (3.10), we obtain, from (3.12),

D)l <2 3 <1+|mr>kW e

0<k<|al

X al(z)" ‘Q'ZH

*  g=1

ce < (2(2))lel < gled(z)2h=lel, (3.14)

CeJ' CQe]

a

< 2lol(1 + \m|)lal((a/2+1) lelal(z)=(A=lalgmz)*

<Y YTl

0<k<|] * j=1

CeJ' CZeJ

Finally we have, by Lemma 0.1(4),

1 k!
T C .! Colooice, e -
* eﬂ 267 CeqsenCengrC2eq re1C2eqy ENoO: €1 e2d*“2e1

Y72 (ceyte2e, )=k,
CejF2c00 =0, 1<j<2d

> i = (4d)* < ().

e eNo: Cel! . "Ce2d!C261!' © Coeyy-
Z?il(cel"!‘CZel):k

. CQezd ‘
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3.8 Global hypoellipticity

Since 3 gcpcin 1 < laf +1 < 2lel we obtain that there exists
C =16d(1+|m|)(a/2+ 1)e >0
such that for all « € N3* and z € R??,

[Dp(2)] < Cllal(z)~ =0 lp(z)]. (3.15)

Now, we want to show that p, similarly as in (3.11), that is,
p(x,€&) =M@ g <a<1, 2, R,

is a global symbol in GSIPml"“ for w(t) =t* and p := 1 — a, and it satisfies the
sufficient conditions imposed in Theorem 3.3. Indeed, it is trivial to check that
condition (¢) of Theorem 3.3 holds. On the other hand, by (3.15), we have

]D?D?p(x,f)\ < C1oHBlQ) B (z, €)) ~PlatBleImlw(@.) a,BENI z,6 R
Take o as in Theorem 3.3, and then use (0.12) to get that, for some D > 0,

alBl < Desllabggi 18D,

This shows that condition (i) is verified. To show that p is a global symbol
in GSlpm"‘” it is enough to use Lemma 0.9.

We observe that to use Lemma 0.9, we need to assume that, as a = 1 — p,
w(t!/r) =t1=r/r = o(t) as t — oco. So,

1_
TPy,
p

Hence, 1/2 < p < 1.

3.3 Global hypoellipticity

Definition 3.6. We say that p € GS;" is an w-hypoelliptic symbol in the
class HGSJ"™* if there exist R > 1 and a Gevrey weight function o (i.e.

o(t) =t for some 0 < a < 1) satisfying w(t'/?) = o(a(t)) ast — oo such that

(i) There exist ¢ > 0 such that ce™*@%) < |p(z,&)| for {(x,€)) > R.
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Chapter 3. Parametrices

(i1) There exist C > 0, n € N such that
]D?D?p(a:,g)\ < C|a+6\<(m7f)>*p\a+6\e%s@i(nla\)e%wé(nlﬁl)‘p(%5)‘7

for {(z,§)) = R, a,B € Ng.

It follows that if p € HGS]""**, then there exist ¢, C > 0 such that

ce™ @8 < p(x, £)| < Cem @) for |(x, )| large enough. (3.16)

Therefore, for such p, with my > —|m|, we obtain the thesis in Theorem 3.3.
Then, any pseudodifferential operator defined by an w-hypoelliptic symbol as
in Definition 3.6 (with my > —|m|) is also w-regular in the sense of Theo-
rem 3.3. On the other hand, the twisted Laplacian in R?

1 2 1 4\2
L=(D.- 5y) +(Dy - Ex)
is an example of an w-regular operator for every weight function w [13, Exam-

ple 5.4], but not w-hypoelliptic [13, Remark 5.5] since the symbol (¢ —y/2)? +
(n+x/2)? of L fails to satisfy condition (i) of Definition 3.6, as it vanishes for

§=y/2,n=—x/2.

In Theorem 3.14 below we show that Definition 3.6 is independent on the quan-
tization 7 for the case my = m. Hence, we extend [9, Proposition 8.4] showing
that w-hypoelliptic symbol classes are invariant by a change of quantization.

In Example 2.12, we have seen that the formal sum considered may change
the order m given by the amplitude a € GAJ". For this reason, here we
develop a symbolic calculus for global mixed classes very similar to the one in
Section 2.1, which keeps this order. The symbols are defined as:

Definition 3.7. We say that p € CA(SZW if p € C(R?*) and there erists a
Gevrey weight function o satisfying w(t*/?) = o(co(t)) as t — oo such that for
all X > 0 there is Cy > 0 with

D2 DPp(x, €)| < Crl(z, €))Plettleres (B8 gmoe) o geNE, 2,6 € R

We remark that Definitions 3.6 and 3.7 are independent of the weight o, since if
o, and oy are Gevrey weight functions satisfying w(t!/?) = o(o;(t)) as t — oo,
j =1,2, the Gevrey weight function

o(t) := max{o(t),o2(t)}, fort > 1
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3.8 Global hypoellipticity

(hence ¢: > max{y} , ;. }) satisfies w(t'/?) = o(o(t)) as t — oo. On the
other hand, by Lemma 0.10(1) it follows that (A}/S:L’w C GS;»“.

Lemma 3.8. Letp € (/}VSZMU. We have p € HGS""™ if and only if there exist
R >1 and ¢ > 0 such that |p(x,&)| > ce™ @9 for ((z,€)) > R.

Proof. 1t is enough to see that if p satisfies that estimate from below, then
p € HGS]"™™. Since p € GSp7 there exists C' > 0 such that, for some
Gevrey weight o with w(t'/?) = o(o(t)) as t — oo,

|D3D§p(az, )| < C{(x, §)>—p\a+ﬁ\esoi;(law\)emw(ryf)7 (3.17)
for all o, 8 € N¢ and xz, ¢ € R, which in particular yields
ce™ ") < p(a,€)| < Cem™ =S ((x,€)) > R. (3.18)

This shows condition (7) of Definition 3.6. To see that condition (i¢) of Defi-
nition 3.6 holds, we have from (3.17), using (3.18) and (0.11),

C L ”
D3 DEp(a, )] < —{(w,€))FloPlerenClelerec G (g, €)),
C

for all o, 8 € N¢, ((x,€)) > R. Since p € (TSZW C GS;" we get p € HGS""™*.
O

For the corresponding definitions of amplitude and formal sums, we consider
similar mixed conditions.

Definition 3.9. An amplitude a(z,y,&) € C(R3?) belongs to (TA:W if there

exists a Gevrey weight function o satisfying w(t'/?) = o(a(t)) as t — oo such
that for all A > 0 there is C) > 0 with

<q; — y> plat+y+B| Ao* (\a+'y+6|) N

D2 Dy Dae,y,€)] < Cr (A2 Y s (15552 gmaste)
v A<<(907y7§)>)

for all a,v, 3 € N&, and z,y,¢ € R

Definition 3.10. A formal sum )~ a; is in FAG/S;WJ if a; € C°°(R*®) and there

exist R > 1 and a Gevrey weight function o satisfying w(t*/?) = o(a(t)) as
t — oo such that for all n € N there exists C,, > 0 such that

\a+m+a‘)
n

DS Dfay(x,)| < Cﬂ((x’5)>—p<\a+m+j>ewz(

(@),
for cach J < Mo, 03 € N, log (“552) 2 31 (2)

J
n
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Chapter 3. Parametrices

Definition 3.11. We say that > a; and ) b; in FGSZM} are equivalent, de-
noted by > a; ~ Y b;, if there exist R > 1 and a Gevrey weight function o
satisfying w(t/?) = o(o(t)) ast — oo such that for alln € N there are C,, > 0
and N, € N such that

DD 3 (a; = by)] < G ) e oiimenes (S55) ot

<N

for al N > N, . € N Tow (452) > 3 (3).

Again by Lemma 0.10(1), we have that éAVA:W C GA"™ if m > 0, and
FAG/SZW C FGS)" for m € R. These new definitions permit to keep the
same order m > 0 for some results in Chapter 2. For instance, if a € EKZLM,

then the formal sum in Example 2.12 belongs to F/(TSZW, m > 0.

Furthermore, it can be shown that the function U, defined in (2.15) (see

—~ O,w
also (2.4)) belongs to GS, . Hence, all the symbolic calculus studied in Sec-
tion 2.1 can be reproduced in the same way, with the difference that we now
preserve the order m. In fact, we have

Theorem 3.12. Let a(x,y,§) be an amplitude in GAZW with m > 0, and let
A be its associated pseudodifferential operator A. Then, for any 7 € R, we can
write A as

A=P+R,

where R is an w-regqularizing operator and P is the operator given by
o) = [[ (1= Dty Ou)dyds,  we SR,

being p € (/}VSZLM. Moreover,

p(z,€) ~ Z Z ﬁ' i 18l 1—7')”'864”7( )ﬁD; a(m,y,§)|yzw.

J=0|8+~|=j

In this case, we can also proceed as in [64] (see after Theorem 2.24), to obtain
p, such that its associated pseudodifferential operator P, is equal to A. It is
called the 7-symbol of the pseudodifferential operator associated to the ampli-

tude a € (A}jk;n’w. We also obtain the relation between two given 7-symbols (cf.
Theorem 2.27).
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3.8 Global hypoellipticity

Theorem 3.13. Ifa,, ,a,, € (ESZMJ are the T -symbol and the T5-symbol of a
pseudodifferential operator A, then, in PY}/SZLM,

am & g Z Z 7—1 _7_2 lalaaDaaﬁ(x g)

3=0 |a| = ¢

Now, we show that if a global symbol with mixed conditions satisfies (3.16)
for some quantization, then so any quantization.

Theorem 3.14. Let a,, € (/J:/S;n’w for some 7, € R. If a;, € HGS)"™ then
ar, € HGS)""™ for all 7, € R.

Proof. By Theorem 3.12 we have that a,, € (/}VSZWJ. Then, by Lemma 3.8, it
is enough to find R > 1 and ¢ > 0 such that

la.,(z,&)] > ce™ @) for ((z,£)) > R. (3.19)

From Lemma 3.8, we obtain by assumption that there are Ry > 1 and D; > 0
such that
|ar, (2,€)| > Dye™ @9, for ((x,&)) > Ry, (3.20)

From Theorem 3.13 we have (see Definition 3.11; by simplicity we assume
N, = 1, n € N) that there exist R, > 1 and a Gevrey weight function o,
satisfying w(t/*) = 0(01 (t)) for t — oo such that for some C; > 0, N; € N,

ar,(2,6)=) Z (11 —7)*9¢ D2a, (x, g)( < Oy ((w, &))"V e (N gmes(@),

J<N |a|= ]

for all N > N, and log ({222) > Lo (N). From Lemma 0.10(1), there exists
Ay > 0 so that ¢} (V) S A1 + pp’ (N) for all N € N. Therefore, for some
R3 > R, determined later,

ar,(x,§)— Z Z (11 —72) |a‘8°‘DaaTl($ f)‘ < Cre Ry "N eme (@9 (3.21)

J<N Jal= J

for all N > N, and log (1% 5)>) > Lor(N).
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Now, we fix N := N; € N. We have

N—
@8> |3 5( ) *l0g Dia (2,6)| -

3=0 |a|=j
aT2 Z Z 7'1 —T2 I |8”“D°‘an(m f)
i<N jal=; ¢ '
We show that
N—
1 D
‘ Z Z — (11 — 72) |0"8°“DO‘CLT1 (z, f)’ > ZLemw(@8), (3.22)
= oo 2
for ((z,&)) large enough. For N = 1, formula (3.22) holds by (3.20) for
((x,€)) > Ry. Hence, we assume N > 1. We first estimate
N-1 1
| B (z,€)].
J=1 |a|=j

As a,, (x,€) € GTSZW, there exists a Gevrey weight function o, satisfying
w(tY?) = o(0y(t)) for t — oo such that, for some Cy > 0 we have

|D§D?a71 (337 §)| < 02<(,1,‘, €)>7P(2‘a|)6¢;2(z‘o‘l)emw(fb,é)
= 02<(5L‘a€)>_p€¢;2(Q(N_l))emw(m,g)’

for all ,£ € R* and 1 < |a| < N — 1. Again by Lemma 0.10(1), there exists
Az > 0 such that ¢} (2(N — 1)) < Ay + ppl(2(N —1)). For Ry > 1 to be
determined, satisfying

S 2 gL 2N - 1)),
we have

|DEDgar, (w,€)] < Coe™{(x, €)) ~PersPiemed
< Coe(Ry)Femd),

for all ((z,£)) > R4e?>C™=1) and all 1 < |a| < N — 1. On the other hand,
by Lemma 0.1 we get
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and then we obtain

\Z Z (11— 7)1°102 D2a,, (2,6)| < Coe2(Ry) PetImmleme@) (3.23)

Jl\aly

for all ((x,€)) > Rye?~CWN=1) Hence, we take R, > 1 such that

2 2
(R4)" > FC2€A2€d Imi=ma|,
1

From formulas (3.23) and (3.20) we then obtain

)Z Z i (11— 72) |“‘0"‘D“aﬁ(m f)‘

j= 0|Q|J

)

> Dy — Cpeta(Ry) Pt Inrlenend) x> Dlometso

and we show (3.22) for {(z,£)) > max{R;, Rye?~CW™ =)} Finally, put Ry > 1
such that

4
RN > O e,
3 = p O

Thus, for
R := max{R;, Rye?~CWN-1) Rge%sai(N)}

we obtain by (3.22) and (3.21)

D D
’CLTQ ($ 5)‘ > 7167”“’(%75) _ CleA1R3_PN6mw(r,§) > Tlemw(m,g)

)

for ((z,€)) > R. Hence, we get, for ¢ := D;/4 > 0, the inequality in (3.19)
and the proof is complete. O
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Chapter 4

The Weyl wave front set

In the theory of partial differential equations, the wave front set locates the
singularities of a distribution and, at the same time, describes the directions
of the high frequencies (in terms of the Fourier transform) responsible for
those singularities. In the classical context of Schwartz distributions theory,
it was originally defined by Hormander [44]. There is a lot of literature on
wave front sets for the study of the regularity of linear partial differential
operators in spaces of distributions or ultradistributions in a local sense; see
for instance [1, 2, 10, 12, 34, 60, 61] and the references therein.

In global classes of functions and distributions (like the Schwartz class S(R?)
and its dual) the concept of singular support does not make sense, since we
require the information on the whole R?. However, we can still define a global
wave front set to describe the micro-regularity of a distribution. In fact,
Hormander [45] introduced two different types of global wave front set ad-
dressed to the study of quadratic hyperbolic operators: the C'° wave front
set, in the Beurling setting, for temperate distributions u € S'(R?) using Weyl
quantizations, and the analytic wave front set, in the Roumieu setting, for ul-
tradistributions of Gelfand-Shilov type. Unfortunately, these global versions
of wave front set have been almost ignored in the literature. Very recently,
Rodino and Wahlberg [61] recover the concept of C™ wave front set of [45]
and show that it can be reformulated in terms of the short-time Fourier trans-
form. Moreover, in [61] the authors also show that the original wave front set
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Chapter 4. The Weyl wave front set

coincides with the Beurling version of the analytic wave front set introduced
by Hérmander. On the other hand, Nakamura [54] introduced the homoge-
neous wave front set for the study of propagation of micro-singularities for
Schrodinger equations, and it turns out to be equal to the wave front set [63].
Cappiello and Schulz [26] recovered the analytic wave front set of [45] and stud-
ied some cases not treated by Hormander for Gelfand-Shilov ultradistributions
of Gevrey type.

In Boiti, Jornet, and Oliaro [14], the authors introduce the ultradifferentiable
version of the analytic wave front set found in [26, 39, 61] in the Beurling
setting for S’ (R¢)-ultradistributions and apply it to the study of the global
regularity of (pseudo)differential operators of infinite order (in [61] the authors
cannot treat operators of infinite order, since they consider symbols with poly-
nomial growth only). However, the question if the latter wave front set can
also be described in terms of Weyl quantizations, as in [45, 61], remained open
in the ultradifferentiable setting.

The purpose of this last chapter is twofold: on the one hand, to define the Weyl
wave front set, in accordance with the conditions in Theorem 3.3, and study
when it coincides with the continuous version of the wave front set defined
in [14] for the ultradifferentiable setting; on the other hand, to provide some
applications of this wave front set to the regularity of pseudodifferential oper-
ators of Chapter 1.

The chapter is organised as follows: In Section 4.1, we recover the definition
of wave front set of [14] (Definition 4.1) defined with the short-time Fourier
transform and extend the inclusion in [14, Theorem 4.13] to any differential
operator with variable coefficients for this wave front set. Later, we analyse
the kernel of some operators given by Weyl quantizations for symbols as in
Definition 1.1 to show that the wave front set of the action of the Weyl operator
on a distribution in S’ (R?) is in the conic support of the corresponding symbol.
In Section 4.2 we introduce a new wave front set called the Weyl wave front
set, and see that it can be characterized in terms of symbols of order zero.
Then, we compare the wave front set given in Definition 4.1 with the Weyl
wave front set. It is crucial the inclusion mentioned above about the conic
support. We need also here to impose that our weight functions be smaller
than some Gevrey weight (see Remark 4.20). Unfortunately, we could not
circumvent this restriction, since we use similar techniques as in [61]. Finally,
in Section 4.3 we study the regularity of Weyl quantizations with respect to
the Weyl wave front set. For instance, for a suitable weight function w, any
0 < p <1 and a symbol a(z, &) as in Definition 1.1, we are able to prove that,
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4.1 The w-wave front set

see Theorem 4.31,
WES (a" (2, D)u) C WE}(u) N conesupp(a)
C WF} (u) € WF} (a"(x, D)u) U char(a),

for all u € S (RY), where a”(z, D)u is the action of the Weyl quantization
for the symbol a on u, conesupp(a) is the conic support of a(x, &) (see Defini-
tion 4.2), char(a) is the characteristic set of a(x, &) (the set of points which are
characteristic for a(z,§); see Definition 4.11), and WF} (u) is the Weyl wave
front set of w.

This chapter is based on the preprint [5].

4.1 The w-wave front set

We first introduce the global wave front set defined in [14] for ultradistributions
in S’ (R?), given in terms of the decay of the short-time Fourier transform, in
conical sets.

Definition 4.1. Let u € S/ (RY) and ¢ € S,(R?) \ {0}. We say that z, €
R22\ {0} is not in the w-wave front set WF. (u) of u if there exists an open
conic set T C R?*?\ {0}, 2o € T, such that

sup |V, u(z)| < oo, A>0.
zel

The wave front set WF/ (u) is a closed set in R*¢\ {0}.
We recall the following definition from [61, Definition 2.1], introduced in [45].

Definition 4.2. Let u € S’ (R??). The conic support of u, conesupp (u), is the
set of all z € R?**\ {0} such that every conic open set T' C R?**\ {0} containing
z satisfies that

suppu N T is not a compact set in R*.
The conic support of u is also a closed set in R?\ {0}.
An elementary result is

Lemma 4.3. We have

WF! (u) = WF, (u + v), u € S, (RY), veS,(RY).
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Chapter 4. The Weyl wave front set

Proof. Fix 0 #v¢ € S,(R?). Let 0 # 2o ¢ WF, (u). Then there exists an open
conic set I' C R?*?\ {0} containing z, such that

sup |V, u(z)| < oo, A > 0.
zel

Since v € S, (R?), by Theorem 0.28 we obtain that for all A\ > 0 there exists
C'\ > 0 such that
O Vu(2)] < Cy, z € R*,

Therefore, as |V, (u+v)(z)| < |[Vyu(2)| + |Vyv(z)|, we have

sup ™|V, (u + v)(2)| < oo, A> 0.
zel

Hence 2y ¢ WF/, (u + v).
For the other inclusion, we have
WF! (u) = WF. (u+v—v) C WF/ (u+v).
O

In [14, Theorem 4.13], the authors show that a differential operator with poly-
nomial coefficients, namely, for some m € N, an operator of the form

A(z,D) = Z Capr®D?,
lo+B|<m

where c,5 € C, satisfies

WF' (A(x, D)u) € WF/ (u), u € S (RY).

Here, we extend this inclusion for linear partial differential operators of the

form
P(x,D) = Z a,(z)D", (4.1)

[v|<m

for some m € N, where a, € S,,(R?). We recall that, in general, a function in
S, (R??) might not be a global symbol in the class GS)"* for some 0 < p <1
and m € R. Hence, (4.1) is not necessarily an operator with symbol in GS;"“.
We have shown in Example 1.21(b) that for w(t) = log®(1 +1¢), s > 1,t >0,
the corresponding space S, (R*?) equals (), e GS;" (see (1.22)).
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4.1 The w-wave front set

The w-wave front set WF, (u) is independent of the window function 1. We
need the following lemma, which is a refinement of [14, Proposition 3.2] for
bounded sets. Throughout this chapter, let S,;_; denote the unit sphere in

R2d,

Lemma 4.4. Let u € 8 (R?), ¢ € S,(R?) \ {0}, and z, € R**\ {0}. If there

exists an open conic set T C R?*¥\ {0} containing zo such that

sup | V,u(z)| < oo, A >0,
zel

then, for any bounded set B of S,,(R%) \ {0} and for any open conic set T" C

R24\ {0} containing zy and such that TN Syy_y C T, we have

sup sup e |V,u(2)| < oo, A > 0.
¢€B z€T

Proof. By Proposition 0.27, for any v, ¢ € S,,(R?) \ {0}, we have
Vou(z)] < 2m)~ 19l gea (Voul * Vel)(2), 2 € R

By Lemma 0.30,

Vao ()| = Vb )| = Veb(—)l,  # € B
Then,
(Vo # [Vat(z) = [ Vol = )1V () |d=

= [ Woute = )lIVad(=2)1d="
For £ > 0, we denote for all z € R??,
D)= [ Wele = 2)|Vao(=2)lds
(#")<e(2)

)= [ Weule =) |Vas(—2)lds
(z')>e(z)

We take an open conic set IV such that zg € IV and I N S5;_; € I'. Choose

e > 0 sufficiently small (see, for instance, [14, (3.25)]) so that

zel') |z| > 1, (z) <e(z), then z—2"€T.
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Chapter 4. The Weyl wave front set

For a bounded set B in S,,(R%)\{0}, since V, : S, (R?) — S, (R?*®) is continuous
(by Lemma 0.26), the set V,(B) is bounded in S, (R?*). Thus for all u > 0
there exists C), > 0 such that

sup \Vw¢(—z’)|e“w(*2/) <C,, 2 e R*.
oeB

To estimate I;, we use the estimate for |V,u| in I' as follows: for all A > 0
there exists C > 0 such that, using (0.1),

LE SO [ ey
(z)<e(2)

< C}\e)\Lef)\w(z) / |V¢¢(_Z/)|€)\Lw(z’)dzl
R2d

— C)\e)\LC_)\w(Z) / (’Vw¢(_z/)’e()\L+1)w(—z/))e—w(z/)dzl
R2d

< C«;\ef)\w(z)7

for some constant C{ > 0, for all z € I, |z| > 1, and all ¢ € B. Note that
Il e dz converges by property (7) of the weight w.

On the other hand, by Lemma 0.26, V,u is continuous and there are constants
¢, i > 0 such that
[Vyu(z)| < cer@), z € R*,

Let ¢ € Ny be such that e~ < 29. Then, for (') > (z), as w is increasing, we
get by condition («) and (0.6),

w(z) <w(e () Sw(@U2)) < L™Mw(2) + L + - + L.
Then, we have

—Lw(2) < —w(z) + (LT 4+ 4+ L), for (2') > e(z).
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4.1 The w-wave front set

Therefore, for all A > 0 and all ¢ € B, we have (again by (0.1))
I(2) < c/ e““’(zfz/)\v,pgb(—z')\dz’
(2")>e(z)

< CeuLeuLw(z)/< - >€MLN(7Z/)‘Vw¢(—Z/)‘dZ/
z')>e(z

— CeuLeﬂLw(z) / e—(/\—‘,-uL)Lqulw(Z/) X
(z")>e(2)

X (‘ V¢¢(_Z/) ‘e((x\-‘ruL)L‘”l+ML+1)w(_Z/)) €_°J(z/)dz/

< CeuLe(,\JmL)(Lq+1+-..+L)e—/\w(z) >
% Vv — e(()\+/LL)Lq+1+/¢L+1)w(—z/) G_W(Zl)dzl.
[ (Vas=) )

Hence for all A > 0 there exists C{ > 0 such that

L(2) < Cjle™ ™), z € R*,
This finishes the proof. O
Theorem 4.5. If P(x, D) is as in (4.1), then

WF! (P(z, D)u) € WF.,(u), u € S (RY). (4.2)

Proof. Let 0 # ¢ € S,(R?) be a window function. From the linearity of the
short-time Fourier transform, by Lemmas 0.32 and 0.29, we have

Vy(P(z, D)u)(w,&) = Y Vila, - D'u)(x,€)

[v|<m
=20 Y (ar Do MD)(©)
[v]<m
DY ((a; % D) * M_ﬁ) (&)
ly|<m
— @0 Y (Dux @« M_D))© (43
[v|<m

141



Chapter 4. The Weyl wave front set

for all (z,&) € R*. We see that for all ¢ € R?,
(@ MD)(0) = [ @t = e G(s)ds
— ei(—x)'t/ iz (t— 9) (t _ S)i(S)dS

= M, (M, @ * ) (b).

Now, we define ¢, ., € S,(R?

)\ {0} depending on z € R? and v € NZ with
|7] < m such that

~

Gy 1= Moty * . (4.4)
Then, by (4.3) and using Lemmas 0.32 and 0.33, we have

Vo(P(z, Dyu)(,€) = (2m) 2 3 (Drusx M (M. %) ) (€)

[v[<m
= @0 Y (Dux M3, )(©)
[v]<m
NV, (DY) (@, €)
[v|<m
-y z( )@ Vg, (W)(:6). (45)
lyl<m B<~
We show that the set
Bi={M@+9 : z€R’, yeNL : |y| <m) (4.6)

is bounded in S,,(R?). For all A > 0, we have by (0.1) and the Young inequality,

~

0 (ML < D)) = | [ OME i — )i
= | [ e sty - s)as|

< et /e’\L“(S)!a (s )\eALw(y_s)@(y—sﬂds

50|

L1(R4)
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4.1 The w-wave front set

On the other hand, by Lemmas 0.31 and 0.29 we have
M@ 9 =T ha, + 9 = @n) (T oa, - D),
so its Fourier transform satisfies, from (0.34),

— —
j—

(M,ay = i) (n) = (27r)d(T—ﬂca'y )(n) = (27T>2d(T—xa'y “)(=n), n e R
Thus, for all A > 0,

|0 (M, + ) ()| = (20)2] DT a, (=) P(—n)|
= (2m)*|a, (z — n)e* VY (—n)|
< 2m* max [, () gy [OBO),_ - 48

Formulas (4.7) and (4.8) show that the set given in (4.6) is bounded in S,,(R?)
by [13, Theorem 4.8(3)].

Since the Fourier transform is an isomorphism in S,,(R?) (hence the inverse
Fourier transform is continuous), the set

F'B)={¢: ¢ =f, forsome f € B}
is bounded in S, (R?), and therefore

B ={¢ : g:f, for some f € B}

is also a bounded set in S,(R?). We observe that the function ¢, . taken
in (4.4) belongs to B’. We check that

B":={D’% : ¢ B, BN : |8 <m}

is bounded in S,(RY). Let ¢ € B’ and let A > 0. For |¢|, as in (0.14), we
obtain for all 8 € Ng with |3] < m, by (0.11),

DP6]y = sup sup D Pg(a)]e e (5) e

a€Ng zeR4

||

= ew*(‘%‘) sup sup |D°‘+5¢(m)\ef’\“”*(T)ef’\“”*(T)e’\“’(I)
aeNd zeR4

< 6>\<P*(L:‘) sup sup |Do¢+5¢(x)‘672hp*(*la;;m)e)\w(m)

aeNg zeR4

=

| [5]

) sup sup | DPg(a)le 2" () 2@ — et (8 g1,
5eNd zeRd

< e (

g
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« (181 ‘im
Since e*? (%) < e (R) and ¢ € B, we get

sup sup |D?¢|, < +oo
|Bl<m ¢eB

as we wanted.

We show (4.2). To this aim, we denote z = (z,£) € R?*® and we assume
that 0 # 2o ¢ WF,, (u). Then, there exists I' C R?>?\ {0} an open conic set
containing z, such that

sup ™3 [V, u(2)| < oo, A > 0.

zel
By Lemma 4.4, for any open conic set IV containing zy with IV N Sy;_1 C T,
we have

sup sup e Vi, (u)(2)] < oo, A>0. (4.9)
BYENG : B<y,ly|<m =€l
zeR®

By (4.5), for all A > 0,
DNV (P(x, D)u)(2)|

4.10
<0y Y (g) I et e | I (O [ (410)
lv|<m B<vy
Since |y — B| < |v| < m, we have, by (0.7) and (0.6), that
|§~/—B| < <z)m < e?" (M) pw((z)) < eso*(m)eLw(Z)JrL’ » = ($7§) c R,
Therefore
swp €l <o, B, hyl<m.
(z,£)ER24
Taking the supremum in (4.10) in z € IV, we obtain by (4.9)
sup e |V, (P(x, D)u)(z)| < oo, A>0.
zel”
Hence zy ¢ WF.,(P(z, D)u) and the proof is complete. O

Now, we deal with the Weyl quantization " (x, D) in (2.29). Since S, (R??) is
nuclear, there exists K € S’ (R*) such that the operator

Vyb® (2, D)V S.(R*) — S’ (R*)
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satisfies
V(b (2, D)V F)(y', ') = (2m)? /de K(y',n',y,m)F(y,n)dydn,
for all F € S, (R?*!), in the sense that

(Vob"(z, D)V F,G) = 2m) (K (y', 7', y,n), Gy, 1) F(y, m),

for all G € S,(R*). For u € S,(R?) and ¢ € S, (R?) with HwHLz(Rd) =1,

we have Vyu € S, (R*¥) by Theorem 0.28. For F = Vyu we have by (0.32)
(see [14)),

V(0¥ (x, D)u)(y',n') = /de Ky, n',y,n)Vyuly, n)dydn, (y',n') € R*.

(4.11)
We analyse the operator (4.11):

Theorem 4.6. Let b € GS)" and ¢ € S,(RY) such that ||| ey = 1. If
u € S,(R?) in (4.11), then we have

K(',n' y,m)

_ (27r)_2d/de (/Rd eiw‘(é—n’)eis‘(n—é)b(w ;_ S,£>,¢(:r — (s — y)ds) dédz,
(4.12)

for all (y',n',y,n) € R*, where K is as in (4.11).

Proof. We consider V; : S§,(R*) — S,(R?) as in (0.31). By the definition of
Vi F, F € 8,(R*), we have for all (y/,7') € R*,

Volb" . DV F)W )
: / e =y o, D)V F(o)de

(2m)" /R /R e~ Pz — )ele™ é>€b(x+s,g)vw (s)dsdedz

(27) /Rd/Rm/de e~ Pl = g)eilr=o) <x+87€)

x F(y,n)e"* (s — y)dydndsdéda.

We can assume without losing generality that m > 0. To show the result,
we need to apply Fubini’s theorem, first to the variables y,7,s. To this, we
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estimate the modulus of the integrand above: since ¢ € S,(R?), b € GS)"*,
and F € S,(R?*?), there are C,C,, > 0 and for all \;,\; > 0 there exist
Cy,, Cy, > 0 satisfying, from formulas (0.2), (0.3), and (0.1),

G =y () Pl mis — )

< Cc«memw(’%’s75)0)\1e—/\lw(ym)c&e—)\zw(s—y)
< Cyyng emlw(@) gmLw(s) gmLw(§) gmL o= (A1/2)(w(y)+w(n)) = A2/ L)w(s) gAzw(y) pAs

Y

for Cy, », = CC,,Cy,Cy, > 0, where the last function belongs to L'(R3? ) if

y7’r]7s
we choose Ay > mL? (then, the integral depending on s converges by property

(7) of the weight) and A; > 2X, (then, the integrals depending on y and n
converge by property (v)). Thus, by Fubini’s theorem,

V(" (z, D)V F)(y',n') = (2m) /R d /R d /R G F(y, m)d(@ — 5 )e " x

X (/Rd eis'("_g)b(x _2‘_ 8,5)11}(8 — y)ds) dydnd€dzx.
(4.13)

Now, we want to use Fubini’s theorem in dydndédzx. To that aim, we need
some preparation for

I(y,n, &, x) :Z/

Rd

eiS'(H)b(x ;L 8,§)¢(s —y)ds. (4.14)

As b e GS)"* and ¢ € S,(R?), there is C' > 0 and for all X > 0 there exists
Cy > 0 with (by (0.3), (0.2), and (0.1))

5200y e M)

p(52€)v(s —y)| < cem

< CC}\eme(w) eme(s) eme(g)emLef(A/L)w(s) e)\w(y)eA,

which belongs to L'(R?) if A\ > mL?.

We assume | — €| := maxi<p<a [hn — &l = |1 — &| > 1, for some 1 < j < d.
Let s = (s1,...,84) € R% For any N € Ny, we integrate by parts in (4.14)
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with the variable s; as follows:

‘/ DN i (=0}, (:1:+sj§>w( y)ds‘
= ’/Rd ﬁei&(nfﬁ)Dg (b(%_”,g)w(s — y))ds‘

@\NZ( )/ DY b (L2 €)|1D8 (s — y)lds.

We observe that |n — & < Vd|n — €l = Vd|n;, — &]. We put p € N so
that 2v/d < e?, and since b € GS)" and ¢ € S,(R?), we obtain that for
all n € N there exist C,,C/, > 0 such that, by (0.11), (0.2), and (0.1) (since

ZQ:O (J]Z) = 2N)a

e (1) Loy

D L700 (Air ) eme T O gt LT () e~ mL*+ Lyw(s—v) g

N N
< C,C (\/8) WA o (o) $° (jll]) / e D (mi el g
Rd

/ (2\f) n+1 LPy (L)
<C,C mTuEr ) %
"y — N ¢

% / eme(m)+me(s)+me(§) emLef((mL2+L)/L)w(s)+(mL2+L)w(y)emL2+LdS'
Rd

By the choice of p € N, we have by (0.10),

p

1] < C,ClemEemt + e+ Zis Ly 5\71\[6("“)“"*(%1) X
% eme(m) eme(g)e(mL2+L)w(y) / 67“)(5)(15.
R4
The last integral is convergent by property () of Definition 0.3. Take the

infimum on N € Ny, and then use (0.8) to obtain that for each n € N there
exists C! > 0 such that, by (0.7) and (0.1),

|I] < e (mHDe(n=8)log In—€l gmLe(z) gmLe(©) (mL* +L)o(v)
< (V" (D) g=nw(n=8) gmLe(w) gmLe(€) o (mL*+L)w(y)

< OV (D gn L=/ L)(€) gnis(n) gmLe (@) oI+ L)e(y)

147



Chapter 4. The Weyl wave front set

Thus, since F' € S,(R?*?) and ¢ € S,(R?), for all z,y,y',n,& € R? satisfying
|n — &|ee > 1, we have that for all A\, A;, Ay > 0 there are C,C),,C), > 0 with

(by (0.1)),
|F(y, )¢ (x —y' )|
< Oy e MO Oy o= Aala—) 0 (ML= A D) (O) M) mLa®) (mE*+ L (y)
< Oy e~ P/De) o= /2e) 0y o=/ Dsta) rawlv) ha
¢ Oy eMmL=A D)) Aw(n) mLis(a) o (mL>+ L) (y)
(L2 +L=X1 /2(y) g (A= /20 () mL=X/ L) (6) g(mL—da/ Lys(s) gAaso(y).

(4.15)

= Cx 006

where Cy 5, 5, = Cy,C,,Cre*? > 0. We observe that (4.15) is estimated by a

function in Ll(R‘;dn o) if A > mL? (the integral in d§ converges), Ay > mL?

(the integral in dz converges), and A\; > max{2(mL? + L),2)\} (the integrals
in dy and dn converge).

On the other hand, if |n —&|o < 1, then || — || < |n—¢&| < Vd|n— €| < VA,
so |€| < |n| + V/d. Hence by (0.1),

w(€) < w(|n| +Vd) < Lw(n) + Lw(Vd) + L. (4.16)

Then, as F € S,(R*?), ¢ € S,(R?) and b € GS}"*, there exists C' > 0 and for
all A, Ay, Ay > 0 there exist C), Cy,, C), > 0 satisfying

Fly,nyle —y)b( 22, €) s — )

< C}\e—/\w(ym)cA e~ Mw(z—y )Cemw($,5)0)\ e~ Aaw(s—y)
—_ 1 2

< Cre MW=/ 0, o= Oa/Dw(@ ) i

% Ceme(m) 6me(s)6(mL+1)w(§)e—w(§)6mLc)\ 6—()\2/L)w(s)€)\2w(y)6A2
5 .

Then, for all z,y,y',n,& € R? satisfying |n — €| < 1, by (4.16), we get for
CA A1, e — CC)\C)\lc,\2€>\1€>\2GML€(mL+1)(Lw(\/E)+L) > O,

——, (T + S
F(y,n)(z—y')b ( ,f)w( y)
< Cha, A2e(mL Az/L)w( )e(P2=A/2)w(y) o (4.17)

e(mLQ—i-L—)\/Q)w(n)e—w(f)e(mL—)\l/L)w(x)ez\lw(y')’

which is estimated by a function in L'(R3¢ fﬁ) if Ay > mL? (the integral
depending on s converges), A > max{2X\,, 2mL +2L} (the integrals depending
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4.1 The w-wave front set

on y and 7 converge), and A; > mL? (the integral depending on z converges).
From (4.15) and (4.17), we can use Fubini’s theorem in (4.13) in dydndédx:

V(0" (z, D)V F)(y', 1)
_ (271_)—(1 /R% (/de eixv(ﬁ—n/)eis-(n—ﬁ)b<x —2i_ S,é“)w(x _ y/)w(s _ y)dsdfdm) %
x F(y,n)dydn.

For u € S,(R?), put F' = Vyu. From (0.32), since [[¢|| ;2 gy = 1,

Vi F =V Vyu = (2m)"u.
Hence

Vo (b"(z, Dyu)(y/', ') = /R Ky, 0 y.n)Vpuly, n)dydn,

for all (y',n') € R*, where the kernel K(y',7/,y,n) is as in (4.12). O

Under the assumptions in Theorem 4.6, we estimate the kernel (4.12) as in [14,
Proposition 4.4], for our classes of global symbols.

Theorem 4.7. Let b € GSJ"* and ¢ € Sy(R?) with [[Y[| 2gey = 1. Ifu €

So(RY) and K (y',n',y,n) is as in (4.12), then for all X\ > 0 there exist C, juy >
0 such that

’K(y/, ,'7/’ v, 77)’ S C}\ef)\w(yfy')ef/\w(nfn')eu;w(n')emax{O,mLQ}(w(y')er(y)) (418)
for all (y',n',y,m) € RY.
Moreover, if b(z) =0 for z € T'\ B(0, R) for an open conic set T' C R*!\ {0}
and for some R > 0, then for every open conic set I' C R*!\ {0} such that

"N Saq_1 CT (where Syy_y denotes the unit sphere in R*?) we have that for
all A > 0 there exists Cy > 0 such that

Ky, 1, y,1)| < Che W=y g=dw(n=n") g =22w(y’) o =22 (n) (4.19)

for all (y',n') € T, (y,n) € R*.

Proof. We assume without losing generality that m > 0. We make the change
of variables in the kernel (4.12)

¥ =x—1, s'=s5—uy.
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Chapter 4. The Weyl wave front set

By abuse of notation, we write x and s for ' and s’. By Theorem 4.6, we have

KW',n' y,n) = (27r)—2d/ i@ty (E=n")Fi(s+y)- (1-€)
R3d

cb(TEY TN Yy (s)dsdade

= (27-r)*2d67iy’.77’+iy.77 / eis'("*@eifﬂ‘(ffn')eiﬁ-(y'—y) »

) e (4.20)
Xb(m—l—y ;—s%—y?g)

Y(x)(s)dsdzrdE.

Take ¢,h € N, k € Ny. For the powers of the ultradifferential operator G(D),
GY(D) and G"(D), we use (1.7), and we obtain

ei(s: (=8 +z-(§=n")+&(v'—v))

1 : ’ ’
=~ GY—D,) etz E=n)+e(y —y)
e P )
1 . . ’ ’
= GY(—D,)e* 1= OGh(—D,)[e!® E=n)+E —y)
e ot -g° P =Dl }

1
= X
GHUE=n)GM (' = &)y — ')
x GH(—D,)e> =GN (—D,)e €1 (1 — Ag)kei&(y’—y)7

where A, denotes the Laplacian in the variable £&. We use this formula
into (4.20) and then integrate by parts to write

Ky 0, y.n)| = (gw)—2d<y—y’>—2’f‘/weif“"yue,h,k(y’,n’,y,n,s,:r,«f)dsdxdg‘

(4.21)
with

My sy, 8,2,6) = (1= Ag)F[GH(E = )G — €)™ E e (O

x G DG D {p(TTY Y o)

Bla)(s)}].

Since 1 € S,(R?) and b € GS7", it clearly follows that we can integrate by
parts in ds and dx. To check if we can integrate by parts in d§, we estimate
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4.1 The w-wave front set

|Aeni| by a function in L'(R2%). Indeed, for £ = (&,...,&) € RY,
Nenrl = |1+ D + -+ D2)F[GTH(E— )G (i) — E)er el =8 x
x G (DG (D) b ) gms) |

2
< Z k!

P AR ) |
Jite+iatiar1=k J1: Ja‘Jd+1:

% eiz-(ﬁ—n’)eiS'(n—S)Gh(Dm)GZ(DS){b(w, §)W¢(3) H ‘

- k (k_j/)' 2j1 2ja 1 —2L —h(
=2\ X S IPE e DEIGTE =G = ©)x
§'=0 :

i1
dittda=h—gr I T4

D DPHGE — )G () — &) x

y eim.(gfn’)eis-(nfg)Gh(Dx>GZ(DS){b(w7g)mw(s)}} ‘

Then, for j = (ji,...,Js) € NI, we have Dgfl : --Dggd = ng. So, by Leibniz
rule,

k . 1
k (k—Jj)! (25)!
LAEDY <]> 2 ST 2 e
=0 il =k’ I 4 5t Fos=2j 71 5
X D G(E = mIDZG (o — ©)|IDgret= €[ Dg e 79| x

r+yY +s5+y \N—

L @) )|

~ [k (2(k — )" @)l ()t
- J/Z_:O <‘7I> |j=zk:—j’ (2']1)' o (2jd)' 0’1+~--z+;f52j ol 05!

< |DZ'GTHE = mIIDEG" (0 = ©)l|z[7*l]s[17+x

x ‘Dgsch(pz)cﬂ(ps){b(w,ﬁ)mw(ﬂ})

k .
k 20k — 5))!
<> () > MX
T O]

X |D21G—£(€ - n)HDng—h(n/ . 6)”93||03‘|8||04| "

< |pgrer e D) (LY )it )

X ‘DgSGh(Dx)G‘(Ds){b(
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Chapter 4. The Weyl wave front set

We take M € N; to be determined later. By Corollary 0.20 and (0.12), we
deduce that there exist C;, Cs, Cy; > 0 such that

o1

D@ GT(& —n)| < Oy M () st
DG — £)] < Ch O™ (aiihizs) g-nswin -0

By (0.7), we have

M+1)L2p" (—L2al 2
jgflosl < MH0E () caren o),

2 * loal 2
|S||U4‘ < e(M+1)L ¥ ((M+1)L2)6(M+1)L W(S)‘

Now, by Corollary 0.23, there exists Cy > 0 such that

D6 (D)6 (D) (P EEY a@s) )

2
«( 18] w17l 0! 7!
S § ehC4e—hC4g0 (@)65046—50480 (m) E 5 '5 ‘ i %
5,reNd 514 05=0 01702 T1T2:
T1+To=T

1 )71 )95 :r—l—y’—i—s—i—y 200 (1) T2
< [D2 D7 Db () | DR @) [ D7 ()
As b € GS)"*, there exists C},; > 0 such that

/ T1+05 ’
‘D&Dans)b(x +y +s+ ng)‘ < C;V[ezl(MJrl)LQpr*(%)emw(w)g)
x S 2 —_—

From (0.3) and property (o) we have

mw(%@) < eme(%ﬂ)eme(Q mL

e (&

< mbe@max{lzl,ly'L,|s| [yl gmLo(€) gml

< emsz(m)emLQW(y')emsz(s) emL2w(y)eme(§) emL2+mL‘

By (0.11) we deduce (since ¢*(z)/x is increasing)

2w 181+71405] 2w 1511 2 s 171l 2 % los |
64(M+1)L PP (4(M+1)L2 ) < eML ¥ (M£2)6ML ¥ (Mii?)e(JV[-&-l)L ® ((M+1)L2)

Then, as |0y + -+ + 05| = 2(k — j') < 2k,

2, * loq| 2 x los| 2 2k
e(M+1)L ¥ ((M+1)L2) . ..e(M+1)L ¥ ((NI+;)L2) < €(M+1)L ¥ ((M+1)L2)
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4.1 The w-wave front set

Since ¢ € S, (R?), for all > 0 there exists Cy,, > 0 such that

162] IT2]

IDEBYIDT(s)| < Cyge™e (1) ot 29" (372) -t

Therefore, by Lemma 0.8,

ol 7l 2« (191 2« (192 2w ( 171l 2 «( I7al
g 51501 T ML (MiQ)eML ¥ (MEQ)QML ¥ (MiQ)e]VIL ¥ (MIQJQ)
51+02=0 1:02: T1:T2.
T1+To=T

< 2‘6+T|6A{L2¢* ( 1\‘4(22 ) eML?L'D* ( Z\‘l‘;‘2)

< eML¢*(%)€ML¢*(%)€2ML2.
On the other hand, by Lemma 0.1,

ok 2(k — §)!
(), 2,

lo1+-+os|=2(k—3")
k k 1 k
=Y |, |57t =5 (1 + ) = (26)" < (¢*)*",
= ]I 52

so by (0.10),

(62)21@6(M+1)L2sa* (W) < oM+ L +(M+1)L (M+1)p" (Mzi'l) .

For any ¢, h € N, take M € N such that
M > Cymax{l,h}.
Then, the series
S ot () e (d2) e () e (22
§,T€Ng

converges (see (1.14)). Thus, for all 4 > 0, there exists C; , > 0 such that
(for M > Cymax{/¢,h})

M (2K _0C. _ —hC- [
Aokl < wa,ue( e (M“)(CIEQ)H% (e Ol (4.22)

o (MDA 4L =) (w(@)+w(s)) gmL2w(y’) gmL2w(y) gmLw(€)

We choose
pu> (M +1)L* + mL>.
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Chapter 4. The Weyl wave front set

Therefore |\, | is estimated by a function in L'(R2%) for all k € No. Fur-
thermore, since by (0.1),

e—ec3w(§—n)e—h03w(n',§) < e—[C’g,/Lr,u('r])e(ZC'g,7hC3/L)<.«)(£)ehOg‘w(n’)e(£+h)C'37 (423)
given ¢ € N, we take
h> (L +mL?/Cs.

Hence, the estimate of |Ay .| in (4.22) is in L'(R3% ), and therefore we can
integrate by parts in d€.
From (4.23), again by (0.1) we have

e—{Cs/Lw(n) ;hCsw(n’) < effcs/LQul(n*ﬂ/)e(ecs/LJrhCS)w(ﬂ/)esz/L.

Then, from (4.21), there exists Chsp,, > 0 such that, by the estimates (4.22)
and (4.23),

‘K(yl7 77/7 Y, n)‘ S CA/Ivéah»ll« <y _ y/>*2ke(M+1)<p* (%) %

% e @) tw(y) o—LCs /L2 w(n=n") ,((Cs/L+hCs)w(n’) o

% / e((]VI+1)L2+mL2—u)(w(w)+w(s))e(mL-i—ZCg—th/L)w(S)dsdxdf
R3d
for all k£ € Ng. Now, we take the infimum on k, and by (0.9) we obtain, for
some Cj;,, , > 0, that |K(y',n',y,1)| is less than or equal to

€ MY D) IR )+ ) =t (=) (£ L hC)en)

« / e((M+1)L2+mL27u)(w(z)+w(s))€(mL+ZC37h03/L)w(§)dexd§' (424)
R3d

Given ¢ € N, by the same selection as before (h > (L + mL*/C3 and p >
(M + 1)L3 + mL?), the integrals are convergent. Therefore, for every A > 0
there exist Cy, uy > 0 such that

Ky, 1, y,n)| < Cre g wln=n) graw(n’) gmL* (w(y)+e(y)

for all (y/,7n',y,n) € R*. This shows formula (4.18). Notice that if in (4.24),
we additionally take M > Cy max{/¢, h} satisfying M > £+mL3, then by (0.1),

e~ Mell=y") < g=tw(y—y) g-mLPw(y)+mLiw(y)+mL?
Hence, for all A > 0, there exist Cy, i) > 0 such that

Ky, 1, y,m)| < Che ¥ wlnn) guaw(n) o(mL24mIDe(y) (4 95)
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4.1 The w-wave front set

For the second part, we follow closely the proof of [61, Proposition 3.7].
By (4.22), taking the infimum on k& € Ny and using (0.9) and (0.1), we find
Mo > 0such that |K(y',n',y,m)| is estimated by

1" —Mw((y—y")) ;mLPw(y—y") ,(mL*+mL*)w(y)
M,0,h,u© € € X

x‘/" e~ {Os(&=m) o =hCsw(n' =€) o(MA) L*4mLE —pu) (w()+e(s) emLe() g g gy g
R3d

(4.26)

for all (v',n,y,n) € R*. Now, assume b(z) =0, z € '\ B(0, R). We set

r+y +s+y YR
D, = {(ﬂc,s,f) R . (fg) e (R*\ I') U B(0, R)}.
Let I be an open conic subset of I" such that IV N Sy;_; € I'. We want to
estimate |K(y',n',y,n)| for all (v',n') € T, (y,n) € R?*’. Similarly as in [61,
(3.19)], there exists € > 0 such that
| (. n) (””*y/jS*y,f)‘
172570 R/

forall (y',n") €I, |(v',n)| > 2R, (z,s,€) € Dy, (y,n) € R*%. Then, by (0.3)
and (0.1),

W M) < (I =)
< ewmax{ly—y'l|z+s|}n' &)

eLwmax{ly—y'|,Jz+s[}) g Lw(n' =€) L

IN

< LU=y )+ L) +L2u(s) g Leo(n' &) g L*+ L

Thus, for that € > 0, there exist C., L, > 0 such that

1

39 3 < ') < (O ple(@y—y) (@) twls) tun ~6).

Hence there are C7, L. > 0 such that

e~ =8) < O gmLLwy)=Liw(n) gly=y)+w(@)+uls), (4.27)

Now, we put
h=Hh =(H—-1)h + 1,
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Chapter 4. The Weyl wave front set

for some H > 1 and A’ > 0 to be determined later. Therefore, by (4.27)
and (0.1),

o~ hCsw(n' &) _ = (H=1)W Cuo(n' ~) o —h Caon’ —€)
< (C/)(H—l)h'Cg,e—(H—l)h/CgL/Ew(y')e—(H—l)h’CgL’Ew(n’) >
= €
w eH=DN Ca(wy—y' ) Fw(@)tw(s) o —(h Cs/L)w (&) h' Caw(n’) oh'Cs
Again by (0.1),
e tCsw(é—n) < e*(sz/L)w(nfn')eéCsw(n'76)eZCs

< e*(ng/L)w(T]*’I],)eZCng(nI)eZC3Lw(§) eéCngéCgL

Hence, by (4.26) there exists C}7,, , > 0 such that |K(y',7’,y,n)| is less than
or equal to

_ i _ ’ 3 o L (H_ ’ ’ 2 3 i
C;\l/;e N ue Mw((y—y >)€((H 1)h'C3+mL”)w(y—y )e( (H=1)h'C3L.4+mL*4+mL")w(y )><

o o~ (EC3/L)w(n=1") o(~(H=1)h' C3 L+ Ca+LC3L)w(n’) o

></ e((M+1)L2+mL2+(H71)h'C’37p)(w(z)er(s))e(fh’Cs/L+fC3L+mL)w(£)dsdxdé-_
R34

Given /¢ € N arbitrary, we denote A = ¢C5/L > 0. We take h' > 0 such that
(=h'C3/L +0C3L 4+ mL)w(§) < —w(§),
and then H > 1 with

(—(H —1D)WC3L. + mL?* + mL*w(y') < -2 w(y');
(—(H — 1R C3LL + W' C3 + LC5L)w(n') < =2 w(n).

Now, for M € N (which satisfies M > Cy max{¢, Hh'}) satisfying
—Mw((y =)+ (H = DH'Cs + mL*)w(y —y') < —dw(y —y),
and finally for u > 0 large enough so that
(M +1)L* +mL? + (H = )W Cs — p)(w(z) + w(s)) < —(w(z) +w(s)),

then the integrals are convergent by property (v) of the weight function, and
hence (4.19) is satisfied for all (v/,n') € I”, |(v',n')| > 2R and (y,n) € R?*?. The
proof for |(v/,n)| < 2R is immediate by (4.25). This completes the proof. [

We now show, as in [14, Corollary 4.9], the corresponding extension of (4.11)
for ultradistributions.
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4.1 The w-wave front set

Corollary 4.8. Let b € GS]", ¢ € S,(R?) with |[¢| 2ge) = 1, and K as
in (4.12). If u € S, (RY), then

V(0¥ (z, D)u)(y',n') = /RM K\ n',y,n)Vyuly, n)dydn, (y,n') € R*.

Proof. Since V, operates on S (R?), by Lemma 2.8 and Proposition 1.18,
Vyb*(x, D) can be extended continuously to S’ (R?). Since S,,(R?) is dense in
S/ (RY), for u € S’ (RY) we can take a sequence {u,, } in S, (R?) such that u,, —
u in the topology of S’ (R?) (see for example [30, Lemma 14.7, Page 189]).
By (4.11) and by the continuity of V,,b* : S’ (R?) — S’ (R?*?) (Lemma 0.26),

» KW' n', gy, m)Vypu, (y, n)dydn — Vi (b (2, D)u)(y',n'),

in the topology of S/ (R?*?).

We claim

- KW' n',y,n)Vyu,(y, n)dydn%/RwK(y’,n’,y,n)VW(y,n)dydn (4.28)

in S’ (R??). First, it follows from [39, Theorem 2.4] that Vyu,(y,n) converges
pointwise to Vyu(y,n) for all (y,n) € R**. As {u,} is bounded in &/ (R?), we
have that {u, },en is equicontinuous in &/ (R%). Then, there exists C' > 0 and
a seminorm ¢ on S, (R%) such that

(I < Calf), ] € Su®.

Hence, from [39, Theorem 2.4], by (0.33) there exist C', A > 0 independent of
z € R* and n € N such that (fixing f € S,,(R?))

IV, (2)] < Ce@).

Therefore, by (4.18), we have that for all A > 0 there exist Cy, uy > 0 such
that

KW'y, M| Vipun(y,m)]
< C/\e—ALw(y—y’)6—ALw(n—n’)6uw(n/)€max{07mL2}(w(y)+W(y’))C~f€5\w(ym).

By (0.1) and (0.3), there exists C§ > 0 such that, for each n € N,

(B 1y, m)[Viun (y,m)]
< Cg\e(f)ntmax{(),mLQ}+5\L)w(y)e(f)\+5\L)w(n)e()\Lerax{(],mLQ})w(y/)e()\Lqﬁuk)w(n')‘
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Chapter 4. The Weyl wave front set

Taking A > max{0,mL?} + AL, we have that |K (3,7, y,n)||Vyun(y,n)| is
dominated by a function in Ll(Rf}fln) and therefore by the Lebesgue theorem
we obtain (4.28) pointwise. This clearly implies, again by Lebesgue theorem,
the convergence in (4.28) in S’ (R?*?). By the uniqueness of the limit the result

follows. O

We prove [14, Proposition 4.11] for the Weyl quantization. In that result, w
was assumed to be subadditive.

Proposition 4.9. Let w be a weight function and b € GS;** for some m € R,
0<p<1. Then,

WEF. (b*(z, D)u) C conesupp (b), u € S (RY).

Proof. Let ¢ € S,(R?) with [[¢[| 2gay = 1 and let 0 # z, ¢ conesupp (b).
Then, there exists an open conic set I' C R?¢\ {0}, 2o € T, such that b(z) =0
for all z € T'\ B(0, R) for some R > 0. Thus, from Theorem 4.7, for all open
conic set IV C R*!\ {0} such that I N Sy, C T, we have that K(y',7,y,n)
as in (4.12) satisfies (4.19) for all (y/,n') € I” and (y,n) € R*¢. Moreover, by
Lemma 0.26 there are ¢, 4 > 0 such that for all A > 0 there exists Cy > 0 with

Voo . DY) /)| < [ 1K ol Vil )y

< C}\e—(z\+uL)Lw(y—y')e—(/\+uL)Lw(n—17’) >
R2d
% 6—2(/\+ML)Lw(y’)6—2(/\+ALL)Lw(77’)Cew(ym)dyd77

for all (y',n') € I''. From (0.1), it follows

e~ (L) Lw(y—y") =2\ +pl)Lw(y’) < e—(/\+uL)w(y)e—/\Lw(y’)e(/\+uL)L’

and respectively for n,n'. From (0.3),

el (yn) < pnlw(y) gplw(n) oul

Therefore, again by (0.3),
Vo (b (z, D)u)(y', ')

< Oy 2OHDIL gL = AL(y') o~ ALi() / =) =20 gy i
R2d

< CCA€2()\+ML)Le;ALeALe—)\w(y’,n’) / e—)\w(y)e—)\w(n)dydn’
R2d
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4.2 The Weyl wave front set

for all (y',n') € I'. As the integral converges, we have that for all A > 0, there
exists C§ > 0 such that

sup e’\‘”(z)|V¢(bw($, Du)(z)| < C4.

zel”
Hence, 2o ¢ WF. (b¥(z, D)u) by Definition 4.1 as we wanted. O

Corollary 4.10. Let b be a global symbol in GS;"* with compact support.
Then, its Weyl quantization b*(x, D) is w-regularizing (in the sense of Defi-
nition 1.20).

Proof. Since the support of b is compact, it follows that conesupp (b) = 0,
hence by Proposition 4.9 we have WF. (b (x, D)u) = (), u € S/ (R?). From [14,
Proposition 3.18] we obtain that b*(x, D)u € S,(R?) for all u € S/ (R%). [

4.2 The Weyl wave front set

In this section we introduce a new global wave front set given in terms of
the Weyl quantization in the ultradifferentiable setting, similarly to the one
introduced by Hormander [45, Definition 2.1] in the classical setting. Some
restrictions on the weight functions will be necessary, since the definition of
wave front set is based on the construction of the parametrix of Chapter 3.
Definition 4.11. Let a € GS)". We say that z, € R* \ {0} is non-
characteristic for a if there exist a Gevrey weight function o with w(t'/?) =
o(o(t)) ast — oo, C1,Cy > 0, n € N, R > 1, and an open conic set
I c R*\ {0} with zo € T such that

la(z)| > Cre™ @), and (4.29)
[D%a(2)] < Oyl (z)#eleneatrlol]a(z), (4.30)

for alla € N2 and z € T, |z| > R.

Given a € GS)"* we define the characteristic set of a, denoted by char(a), to

be the complement in R?¢ of the set of non-characteristic points for a in the
sense of Definition 4.11. We have, for all a € GS}"*,

conesupp(a) U char(a) = R**\ {0}.

In fact, we take 0 # zg ¢ conesupp(a) U char(a). Then, there exist open conic
sets T, TV C R??\ {0}, 2o € T NT’, such that a(z) =0 for all z € T, |2| > R for
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Chapter 4. The Weyl wave front set

some R > 0, and |a(z)| > Cie™®) for all z € IV, |z| > R’ for some C1, R’ > 0.
Therefore, there exists A > 0 large enough such that

0= |a()\z0)| 2 Olemw()\zo) > 0,
which is a contradiction.

Definition 4.12. Let w be a weight function, 0 < p < 1 and u € S/ (R?).
We say that z € R* \ {0} is not in the Weyl wave front set WF; (u) of u

if there exist m € R and a € GS)"* such that a”(x,D)u € S,(R?) and z is
non-characteristic for a.

We show that the global symbol in Definition 4.12, similarly as in [61, Propo-
sition 2.7], can be taken without loss of generality of order zero. To this, we
notice that there exist weight functions as in Definition 0.3 that cannot be
dominated by any subadditive function that satisfies property (3) ([35]). This
motivates the following definition.

Definition 4.13. Fiz 0 < p < 1. A weight function w is called p-regular if for
all m € R there exists a € GS)"* such that for some Gevrey weight function

o with w(t'/?) = o(c(t)) as t — oo, the inequalities (4.29) and (4.30) hold for
all z € R* with |z| > R, for some R > 1.

Example 4.14. The Gevrey weight functions w(t) = t*, 0 < a < 1/2, are

(1 — a)-regular.

Proof. For m € R, let p be as in (3.11). Clearly, p satisfies (4.29) for all
z € R?**. By (3.15), using Lemma 0.9 (as w(t) = o(t'~*) as t — 00) we have
that p € GS;" for p = 1 — a. Again by (3.15), using formula (0.12) for some

Gevrey weight function o such that w(t'/?) = o(o(t)) as t — oo, we find C > 0
such that for all o € N2, 2z € R??,

[Dp(2)] < Cllal(z)~=lp(2)] < Ol (z)~Flele?= (2D]p(z)),
and this shows (4.30). O
Example 4.15. The weight w(t) = log(1 +t) is p-regular, for all 0 < p < 1.

Proof. Fix 0 < p < 1. For m € R, let p(z) := (2)™, 2z € R*. Tt satisfies (4.29):
we have log(1 + |z|) > log((z)) > log(1 + |z|) — 1 for all z € R?**. Thus,

’p(z)\ — emlog((z)) > emin{O,—m}emw(z)'
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4.2 The Weyl wave front set

Now, we write p as the composition p(z) = g(u(z)), z € R*, where

g(t) =tm/?, meR, t>1;
u(z) = () =1+2] +--+ 23, z=(21,...,2) € R

We want to use Faa di Bruno formula (3.12). First, we observe that
(k) magme M m/2—k
90O < |2 1] 2 ke,
for all k£ € Ny. Therefore,
9P @@ < G115 15— k1l
S TR I —2k
—|2||2 1| }2 k+1|(z)"**p(2).

On the other hand, the derivatives of u are given in (3.13). Hence, using (3.14),
we get, by (3.12),

D)< X |GG 1 g — ke p()alx

0<k<]|a

2d 1 1
% 2\04 2k—|a|
; <Z> ]1_[ Ce].! 6261‘!

P

for all @ € N2%, 2z € R?! where ), is the sum of all ¢4 € Ny such that
2ips0¢s =k and 375 Bcg = a. Proceeding as in Section 3.2 there exists

C > 0 such that for all @ € N2?, 2 € R*? we have
ID%p(2)] < Cal(z) lp(z) < Celal(z)*Ip().

Since w(t) = log(l +t) = o(t’) as t — oo, we use Lemma 0.9 to obtain
p € GS;". By (0.12), choosing any Gevrey weight function o we obtain (4.30)

since w(t'/?) = o(co(t)) as t — oc. O

We observe that, for w(t) = log(1 + t), the class of symbols GS"* coincides
with [61, Definition 2.2]. However, Definition 4.11 might not be [61, Definition
2.4], as condition (4.30) is not required in the latter definition.

The following lemma is taken from [34, Lemma 4]. The weight function must
satisfy property (3).
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Chapter 4. The Weyl wave front set

Lemma 4.16. Given a weight function o and two cones I') T’ C R\ {0}
such that T"N Syy_y C T, there erists x € C®(R*!) such that 0 < x < 1,
suppx C T, x(2) =1 for z € IV with |z| > 1 and for every k € N there is
C}. > 0 such that

IDx(2)] < Culz)eleres (B) | q ez, 2 e R

Moreover, if w satisfies w(tY/?) = o(co(t)) as t — oo, for some 0 < p < 1, then
X € GS)¥.

Proof. To see the last assertion, it is enough to use Lemma 0.10(1). O

Proposition 4.17. Let w be a p-reqular weight function, for some 0 < p <1,
u € S,(RY), and 0 # z ¢ WF; (u). There exist b € ng’w and an open conic
set T' C R*\ {0} such that 2o €T, 0<b<1,b(z) =1 for z€T with |z| > 1
and b*(z, D)u € S, (R?).

Proof. Since 0 # 2y ¢ WEF (u), there exist m € R and a € GS"* such that
a®(z, D)u € S,(R?), a Gevrey weight function o such that w(t'/?) = o(o(t))
ast — 00, C;,Cy > 0,n €N, R > 1, and an open conic set I' C R?*!\ {0} such
that zp € I', and a satisfies (4.29) and (4.30) for all z € T, |z2| > R. We can
take Cy > 1.

We have, by (3.5),

@)@~ Y=Y Y S e rintat, 0 Da,o),

J=0 [B+v[=j
By Proposition 2.15, it follows that ) a; € FGSim’w. We use formula (2.14)
(with N = 1) to obtain that, for some C > 0,
|(@#a)(2)] = la(2)]* = [(a — ag)(2)| = CFe*™*) — C(z) re*™®),  (4.31)
for all z € T, |z| > R. Thus, for z € T, {2) > max{R, (2C/C?)/*}, we have

2

(@a) (=) = Percs.

On the other hand, by (2.12),

oo Jrk+1—1

(@a)(x,&) = la(x, P + ) D (e, Ea;(z,9),

k=1 j=jx
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4.2 The Weyl wave front set

where (¥} ;) is defined in (2.4) (see the proof of Theorem 2.6 for the conditions
on the sequence (j;)). For all j € N, we have by Leibniz rule

| D3 Dga(z,€))|

Z '5'2 |B+I Z ( ) <§> \D;‘*MBDE‘@F”E(&?, f)HDgJ”D?ﬂa(x, 5)‘

[B4+~]=4 a<a
e<e
1 AN [ €) ~latet2y+28| - 2y 42
2 (a) <z>02“ (g ail
[B+~1=3 ala
e<e

x e s (nlo—dteEtfial) gn e (a+E41 g (2 €)||a(z, £

for all a,e € NZ, (z,€) € T, |(x,£)| > R. Then, proceeding as in Example 2.12,
the derivatives of a; are estimated, for all j € N, by

2 (30 o1 (LY (0, )l s o, oo, ),

for all a,e € N¢, (x,€) € T, |(z,€)] > R. We have that, by (0.11) and
Lemma 0.10(1), for all £ € N there exists Cj, > 0 such that

eres(mllatel+2)) < el nlatel) ool (n(2) < gres @nlate) o, kool (%),

Therefore, when estimating

oo Jrk+1—1

ID2Dg(a — ao)(z, )| <Y Y DD, pa;) (2, &),

k=1 j=jk

we can obtain by the definition of ¥, in (2.4) (see also (2.7)) and taking
by induction the sequence (j;) as in the proof of Theorem 2.6 the following
estimate: there exist C’ > 0 and C3 > 0 (which depends on Cy > 0) such that
for all o,e € Nd and (z,€) €T, |(z,€)| > R,

D2 D — ag)(,€)| < OO (2, €))7+l Crlot Dz, €)laa, €.

Hence, we can assume that a € GS)"* can be written as a' + a”, where
a’ € GS;", a’ > 0 and satisfies, for probably another R > 1,

d(z) > Cre™ ), zel, |z]| >R, (4.32)
and (4.30), and a” satisfies (see (4.31))
la"(2)] < C{z) Pem<)] zeTl, |z| > R. (4.33)
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Chapter 4. The Weyl wave front set

Since w is a p-regular weight function, there exist a global symbol a, in GS;**
and a Gevrey weight function ¢’ such that formulas (4.29) and (4.30) are
satisfied for ag, for some C1,C5 > 0, n’ € N, for all z € R* with |2| > R/, for
some R’ > 1. Then, for the Gevrey weight function

min{o(t),o'(t)}, t>1,

the global symbols a and ao in GS;** satisfy (4.29), (4.30) for min{C, C{} > 0,
max{C>, Cy} > 1, max{n,n'} € N, and max{R, R'} > 1. By abuse of notation,
we denote this Gevrey weight function by o, and the constants by Cy,Cy > 0,
n € N, and R > 1. Proceeding as before, we can decompose ay = a; + ag,
where a; € GS"*, ag > 0, satisfying for R > 1 large enough,

ap(z) > Crem™), |z| > R, (4.34)
and ag satisfies, for some C' > 0,

lal(2)| < C'{(z)~Pem™ ) |z| > R. (4.35)

Let IV, T” C R?¥\ {0} be open conic sets such that zy € I, T N Syq_; C I and
IV N Syq—1 C I'. For the weight function o, let x and b be as in Lemma 4.16 for
I', IV, and IV, I'". Therefore b € GSS’“J, 0<b<1, suppb C I and b(z) =
for z € I' with |z| > 1.

Now, we set
bo(z) := x(2)a(z) + (1 = x(2))ao(2).

Since x € GS/O)’“ and a,ag € GS]", we have by € GS]"*. As x(z) = 0 for all
z ¢ T', we obtain (since a, satisfies (4.29) for all |z| > R),

[bo(2)] = lao(2)] = Cre™®, 2 ¢T, 2| > R.
On the other hand, since a’,aj > 0 and 0 < x < 1, we have from (4.32)
and (4.34), where C' > 0 is as in (4.33) and C’ > 0 is as in (4.35),

\bo(Z)! = |x(2)a(2) + x(2)a" (2) + (1 = x(2))ag(2) + (1 = x(2))ag(2)|
x(z)d'(z) + (1 - (Z))%(Z) —x(2)la"(2)] = (1 = x)(2)]ag (2)]
(

>cemw> (C + C')(z)remet
> %emw<z>, 2 €T, () > max{R, (2(C + C")/Cy)/7}.
Hence, we obtain
boz)] = T > Tl () > max( R, (2(C + 0')/C1)7},

(4.36)
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4.2 The Weyl wave front set

and we have condition (7) of Theorem 3.3 for b.

Since x is as in Lemma 4.16, there exists C' > 0 such that, for the previous
n €N,

|Dx(2)] < C<Z>f\a|e«>2(\al) < C<Z>*p|a\e%w§(nlal)7
for all « € N2?, z € R?*?. The same estimate is also valid for 1 — x (probably
with a change of the constant C' > 0) for all & € N2¢ and z € R?*?. Therefore,
since a, ay satisfy (4.30) for the same Cy > 1, n € N and in ' \ B(0, R), by
Leibniz rule we have for all « € N2¢ and 2z € T, |2| > R,

[Dbo(2)] < ) (g) (ID7x(2)|D*Pa(z)| + |D?(1 = x)(2)[ID*Pao(2)])

BLa

<3 (g) C(z) P18l ex s Il

B<a
x Oy~ Pl(z) i Plener (=Bl ja(z)| + Jag(2)])-

Since a,a, € GS;", there exists C' > 0 such that, using (0.11), (since

Zﬂga (Z) = 2‘(1')7
| Dby (2)| < C(ch)la\<Z>—p|a\B%wZ(nIa\)QC/emw(z)_
Take D = 2Cy; max{1,4CC"/C:} > 0. Then, from (4.36) we obtain

|D%bo(2)| < D'a‘<Z>—p|a\6%w:<n|an%emw(z)
< Dla‘<z>_P|a\€%@Z(nla|)’bo(z)|

for all @ € N2? and z € I with |z| large enough. On the other hand, if z ¢ T,
then by construction bg(z) = ag(2), thus, since aq satisfies (4.30) for Cy > 0
and n € N,

[Dbo(2)] = | D*ao(2)| < Cy(z)~P1lemerrloD]q, (z)]

< D'“'(z}""“'e?“":("w)\bo(z)|,

for all @« € N2? and z ¢ T, |z] > R. Hence, b, satisfies condition (ii) of
Theorem 3.3 for all z € R*® with |z| large enough.

We deduce from Corollary 3.5 (see also Theorem 3.3) that there exists ¢ €
GSL’""” such that
C#bo =1 -+ S,
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Chapter 4. The Weyl wave front set

for some s € S, (R?*?). Therefore,

b = bcHby — biks
= b#cH#(by — a) + b#cHa — b#s.

So, we obtain

b (x, D)u = b"(x, D)c"(z, D)(by — a)”(x, D)u+
+ b (x, D)c*(x, D)a" (z, D)u — " (z, D)s"(x, D)u.

(4.37)
We claim that b“(z, D)u € S,,(R?). Since b(z) = 0 for all 2z ¢ I and
bo—a=xa+ (1—x)ag—a=(1—-x)(ap—a)
vanishes for z € I, |z| > 1 (because x(z) = 1) we deduce that
E :=supp (b) Nsupp (by — a)
is a compact set. This implies
bi#tc#(by — a) € S, (R*),

Indeed, let X € Dy,)(R**), with ¥ =1 on E. Then, b#c#(by — a) has the same
asymptotic expansion of b#c#(x(by — a)). Then, by Proposition 2.3,

b (x, D)c* (x, D)(byg — a)¥(x, D) = b (x, D)c"(z, D)(X(bo — a))“(z, D) + R,

(4.38)
for an w-regularizing operator R. Since by —a € GS;"“, we use Lemma 2.8,

and then, as ¥ € D(,)(R*?), we can reproduce Lemma 1.11(a). Therefore by
Proposition 1.19,

(X(by — a))“(z, D)u € S, (RY), u € S/ (RY).
The continuity of the Weyl operator yields
¢ (@, D)(X (b — 0))"(z, D)u € Su(RY),  u e S,(RY),
and
b (x, D)c”(z, D)(X(by — a))"(z, D)u € S, (RY), u € S (RY).
Hence, by (4.38)

b (x, D)c"(z, D)(bo — a)"(z, D)u € S, (RY), u € S/ (RY).
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4.2 The Weyl wave front set

By assumption, a*(z, D)u € S,,(R?), so as before we deduce
v (z, D)c”(x, D)a" (x, D)u € S,(R?), u € S/ (RY).
Furthermore, since s € S, (R??), we have
b (x, D)s" (z, D)u € S, (R?), u € S/ (RY).

Hence, by (4.37) we obtain that b*(z, D)u € S, (R?) for all u € S/ (R?) and
the proof is complete. O

Now, for certain weight functions w, we want to compare the global wave
front sets appearing in Definitions 4.1 and 4.12 for every ultradistribution u
in S’ (R?). In fact, for weight functions as in Definition 4.13 we have

Theorem 4.18. Let w be a p-reqular weight function, for some 0 < p < 1.
Then,
WF,,(u) C WF (u), u € S/ (RY).

Proof. Let 0 # zy ¢ WF(u). By Proposition 4.17, there exist b € GS(p]’w and
an open conic set I' C R??\ {0} such that 2o € T, 0<b < 1,b(2) =1forz €T
with |z| > 1 and b¥(z, D)u € S,(R?). Put b :=1—0b. We have b € GS(;’“,

b(z) = 0 for z € T with |z| > 1, so in particular z, & conesupp (b). Since
b¥(z, D)u € S,,(R?) we obtain, by Lemma 4.3 and Proposition 4.9,

WEF’ (1) = WF. (b” (2, D)u 4 b* (z, D)u) = WF.,(b" (z, D)u) C conesupp (b).
Hence 2y ¢ WF/, (u). O
Theorem 4.19. Let w be a weight function. If for some 0 < p <1,
w(t'?) = o(a(t)) and o(t'°?) =O(y(t)) ast — oo, (4.39)
for some Gevrey weight function o and some weight function vy, then
WF (u) € WF,(u), u € S/ (RY).
Remark 4.20. The assumption (4.39) in Theorem 4.19 implies
@) o(3(1)), ¢ oc,

for some weight function . For w(t) =t*, a = 1 — p, this condition implies
(as v(t) = o(t) ast — o0)
2+p 3—a
“o0 T "1 —a)

<1,
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Chapter 4. The Weyl wave front set

or, equivalently,

0<a< , < 1.

2

5— 17 —3+V17
g =F

Proof of Theorem 4.19. Take
Y(z)=e 2 s erY,

which belongs to S,,(R??), for all weight function w (by the estimates in Defini-
tion 0.13). Asin [61, Theorem 4.2], the Wigner transform of ¢ (Definition 0.34)
is

Wig (¢)(z) = (4m)¥2e 1 2 e R*,

Let 0 # 29 ¢ WF,,(u). Then, there exists an open conic set I' C R?\ {0} such
that zp € I' and
sup | V,u(z)| < oo, A>0. (4.40)
zell
Take I C R?¢\ {0} an open conic set such that zp € I” and IV N Syq_; C T
For the weight function v, by Lemma 4.16 there exists b € GS}” such that
0<b<1,supp(b) CT,and b(z) =1 for z €TV, |z| > 1.

We define
a = bx*x Wig ().

To estimate the derivatives of a, we use the fact that b € GS)”7, Lemma 0.2
and (0.10) to obtain that for all A > 0 there exists C > 0 such that

Dra(z)| < [ | ID2H: - w) | Wig(w)(w)du

< Cy(z — w)"a‘eu“’i(@)(47r)d/26_‘w|2dw
R24d

< Cy\(z — w)‘p‘ale’\L‘pi(%)(47r)d/26_|“"2dw
R2d

< C)\(47r)d/2<z>pla(\/ipaleALSo:(l;"))/ <w>p|a\€7\w|2dw
RZd
< CA(47r)d/2<z>—f"“‘eALewi(‘%') / (w)2)1 e/ =1l gy (4.41)
R2d
for all & € N2¢ and 2 € R?*?. Then, by (0.7),

/ (<w>2)|a<p/2>€—w|2dwSeA(p/?)w:(i')/ Alo/27()?) gl gy
R2d R2d
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4.2 The Weyl wave front set

In particular, as v(t) = o(t), t — oo, there exists D, > 0 such that
1
Mp/2y((w)?) < Slwl*+ Dy, weR™,

and then the integral is convergent. So, from (4.41), using Lemma 0.10(1) (see
Remark 4.20) we obtain that for all A > 0 there exists C§ > 0 such that

L]

|D%a(z)| < G4 (z) Pl X (5) (4.42)
< Oy (z)rleleec (),
for some constant C'{ > 0 depending on A > 0. This shows a € GS%“’.

Let I’ C I be another open conic set such that zo € I and I'" N Syy_; CIV.
Then, there exists 0 > 0 (see [14, (3.25)]) such that z — w/t € I for z € I'”
with |z| =1, |w| <6, and ¢t > 1. Since |z —w| > |z| —J > 1 holds if |w| < ¢
and |z| > 149, we have for z € I |2| > 146, (asb(z) = 1 forz € IV, |2| > 1)

a(2)] = [ | bz = w) Wig) (w)du
= [ (e ) W)

= / Wig(y)(w)dw =: C* > 0.
{lw|<é}

Hence (4.29) is satisfied for m = 0. Moreover, as o(t'77/2) = O(y(t)), t — oo,
we use Lemma 0.10(2) to obtain, by (4.42), that there exist C’ > 0 and n € N
such that for « € N2? and z € T, |2| > 1+ 4,

/
|D%a(2)| < C/<Z>fp|a\€%¢§(nlal) < %(zypla\e%wz(nla\)’a(z)|7

so (4.30) is satisfied, too. Thus z, is non-characteristic for a.

It only remains to show that a“(z, D)u € S,(R?). We recall that the Weyl
operator a(z, D) can be written as (see for instance [29, (6), (3)])

a“(xz,D)u(z) = b(2)Vyu(z)I(2)y(x)dz, z € R (4.43)

R2d
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Since supp (b)) C I' and 0 < b < 1, given o € N we have by (4.43), for
z = (t,&) € R*,

[D%a" (z, D)u(z)| < /F Vyu(t, O11Dg (e 4 (x — t))|dtd€

<> (g) /FIVw(t,&)IIS\B'IDg%(x — t)|dtde.

B<a

From (4.40), (0.7) and since ¢ € S, (R?), for all A > 0 there exist Cy,C} > 0
(different from the previous ones) such that (assuming [£] > 1)

|Dozaw(x7 D)’LL(.CL’)| < Z a / C}\e—2()\L+1)w(t,§)6)\Lap:(%)GALUJ(&) >
B<a /3 T
|a—5B]

x O (527) g Akta=0 gy e

By (0.1),

—2(AL + 1w(t, &) (AL 4+ 1)(w(t) + w(§))

g —
< —(w(t) +w(§)) — ALw(§) + Aw(x —t) — Aw(z) + AL.

So, we have

—2(AL 4+ 1w(t,€) + ALw(§) — AMw(x —1t) < —(w(t) + w(€)) — Aw(z) + AL,

and therefore

D" (2, D)u(x)] < CrCheMe @ S <Z> et (8) el (1572) o
BLla

X / e MO qpde.
R2d

By Lemma 0.8, 3 ,_, (g)e/\L“’i(yj)e)‘L@i(laﬁm) < e“":(l%‘)e”, and we get

a*(x, D)u € §,(R?). Then, zy ¢ WF; (u). O

Corollary 4.21. Let w be a p-reqular weight function for some 0 < p <1 that
satisfies (4.39) for two weight functions o and «y as in Theorem 4.19. Then,

WF (u) = WF,(u), u € S (RY).

Proposition 4.22. Let w € R??. Under the hypotheses of Corollary 4.21, we
have
w _ w d
WE (I(w)u) = WF} (u), u € S, (RY).
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4.3 Regularity of Weyl quantizations

Proof. 1t follows from [14, Proposition 3.19]. O

Example 4.23. Let (—3++/17)/2 < p < 1 and let a = 1 — p. Then, for every
b,c > 0 such that

1-— 2 2
7p<b< and bﬁ<c<1,
p 2+0p 2

the weight functions w(t) = t¢, o(t) = t* and ~(t) = t° satisfy the hypotheses
of Corollary 4.21 (see Remark 4.20).

4.3 Regularity of Weyl quantizations

In this section we study the regularity of Weyl quantizations with the Weyl
wave front set with symbols in the class GS;"“.

Lemma 4.24. Let w be a p-reqular weight function for some 0 < p <1 and
u € S,(R?). Then WF (u) is empty if and only if u € S,(R?).

Proof. Let us first assume that u € S, (R?). Taking a =1 € GS?,’“ we have

that z is non-characteristic for a for every z € R?¢\ {0}, and a*(z, D)u = u €
S, (R?), so WF (u) is empty.

On the other hand, if WF} (u) is empty, then from Theorem 4.18 we have

that WF/,(u) is empty, and then from [14, Proposition 3.18] we obtain u €
S.(R). O

Proposition 4.25. Let w be a p-reqular weight function for some 0 < p <1
and let m € R. For a global symbol a € GS;", we have

WF (u) € WF} (a"(z, D)u) U char(a), u € S (RY).

Proof. Let 0 # 2, ¢ WF} (a*(z, D)u) U char(a). By Proposition 4.17 we have
that there exist b € GSS’“ and an open conic set I' C R?*?\ {0} containing zg
such that 0 <b<1,b(z) =1for z €T, |z] > 1, and

b (z, D)a" (z,D)u € S, (RY), u € S, (RY). (4.44)

The Weyl product b#a of the composition b* (z, D)a™ (z, D) has an asymptotic
expansion Y ¢;(x,&) as in formula (3.5). Then, by Theorem 2.6 there exists
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c € GS;" such that ¢ ~ ) ¢; and, from (2.12),

0o Jnt1—1

o(z,8) =b(x,alx, &) + D> > Ua(x,)c;(x,€), (4.45)

n=1 j=jn

where (¥, ,,) is defined in (2.4) (see the proof of Theorem 2.6 for the conditions
on the sequence (j,)). From the properties of b, we have

o(z) =a(z) zel, |z >1. (4.46)

Now, since zq ¢ char(a) there exists an open conic set I" C R??\ {0} such that
a satisfies (4.29) and (4.30) for all o € N4, z € I, |2| > 1. Thus, from (4.46)
we have that zy is non-characteristic for ¢ (in probably another open conic set
I satisfying I N Syq—1 C I'NTY). Finally, by construction we have

b (x, D)a"(x, D)u = ¢ (x, D)u + Ru, u € S (RY), (4.47)

where R is an w-regularizing operator. Then, using (4.44) we obtain that
c“(x, D)u € S,(R?) and therefore zo ¢ WF (u). O

Lemma 4.26. Let w be a p-regular weight function for some 0 < p < 1. We
have
w o w d d
WE (u) = WF (u + v), ue S (RY), veS,(RY.

Proof. Let 0 # zy ¢ WF,(u). Then there exists a symbol a € GS]"* for some
m € R such that z, is non-characteristic for @ and a*(x, D)u € S, (R?). Since
v € 8, (R?) we have by Lemma 2.8 and Theorem 1.15 that a*(z, D)(u + v) €
S.,(R?), and therefore zy ¢ WF; (u + v). We then obtain

WE (u+v) C WF (u).
Proceeding in the same way, we get
WEFY (u) = WF) (u+ v —v) C WF} (u+v),
and the proof is complete. O

Proposition 4.27. Let w be a p-regular weight function for some 0 < p < 1.
Let m € R and a € GS;"*. Then

WEY (a" (2, D)u) C conesupp(a), u € S/ (RY).
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4.3 Regularity of Weyl quantizations

Proof. Let 0 # zg ¢ conesupp(a). Then, there exists an open conic set I' C
R24\ {0} containing z, such that a(z) = 0 for every z € T with |z| > R, for
some R > 0. We take an open conic set IV C R??\ {0} such that [V N Syy_; C T
and zo € I”, and then consider b € GS”* the function in Lemma 4.16. Since
b(z) =1 for z € I, |z| > 1, it is clear that b(z) satisfies (4.29) and (4.30), so
zo is non-characteristic for . As in the proof of Proposition 4.25, the Weyl
product of the composition b*(x, D)a”(x, D) has an asymptotic expansion
>.c; asin (3.5). By Theorem 2.6 there exists ¢ € GS)" such that ¢ ~ 3 ¢;
satisfying (4.47) for some w-regularizing operator R. Since supp (b) C I' and
a(z) = 0 for all z € I with |2| > R, we have that supp (a) N supp (b) is
compact. Therefore supp (c¢) is also compact and by Corollary 4.10, ¢*(z, D)
is w-regularizing. Then, for every u € S’ (R?) we have

b (x, D)a" (z, D)u € S, (RY),
and hence zy ¢ WF} (a" (2, D)u). O

Remark 4.28. We observe that, under the hypotheses in Corollary 4.21, we
obtain Lemmas 4.24, 4.26 and Proposition 4.27 as an immediate application
of [14, Proposition 3.18], Lemma 4.3, and Proposition 4.9.

Howewver, in the proofs above the hypotheses in Corollary 4.21 were not neces-
sary.

Proposition 4.29. Let w be a p-regular weight function for some 0 < p < 1.
Let m € R and a € GS]"*. Then,

WE (a" (2, D)u) C WF} (u), u € S/ (RY).

Proof. Take 0 # 2o ¢ WF, (u). By Proposition 4.17, there exist b € GS%“ and
an open conic set I' containing z, such that b(z) =1for z €T, |z] > 1 and
b¥(z, D)u € S,,(R%). Set b=1-b¢ GS%“. We have

a®(z, D)u = a*(x, D)b*(z, D)u+a®(z, D)b* (z, D)u, u € S (RY). (4.48)

By the continuity of the Weyl operator, a*(x, D)b*(x, D)u € S,(R?). On the
other hand, proceeding as in the proof of Proposition 4.25 for the operator
a*(z, D)b*(z, D), there exists ¢ € GS;" satisfying (4.45) (replacing b by b),
where Y ¢; is as in (3.5) (replacing b by b). Since b(z) = 0 for every z € T,
|z| > 1, we have that ¢(z) vanishes for all z € T', |z| > 1, and the Weyl symbol
of a®(x, D)b* (z, D) satisfies, similarly as (4.47),

a®(x, D)b"(x, D)u = ¢“(x, D)u + Ru,
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for some w-regularizing operator R. Therefore, from (4.48), we obtain by
Lemma 4.26 and Proposition 4.27,

WEF (a" (2, D)u) = WF (c*(x, D)u) C conesupp (c).

Since zy € I' we have that z, ¢ conesupp(c) and then zy ¢ WF (a*(z, D)u).
O

We have the following result as in [61, Proposition 2.11].

Corollary 4.30. Let w be a p-regular weight function for some 0 < p < 1.
Let m € R and a € GS;". If

conesupp (a) N WE} (u) = 0, u € S/ (RY),

then a*(z, D)u € S, (R?).

Proof. By Propositions 4.27 and 4.29 we obtain WF} (a*(x, D)u) = (. The
result then follows by Lemma 4.24. O

By Propositions 4.25, 4.27, and 4.29 we have

Theorem 4.31. Let w be a p-regular weight function for some 0 < p < 1. Let
m € R and a € GS;"*. Then

WEY (a (2, D)u) C WEF} (u) N conesupp(a)
- WF:’(u) - WF}“;(aw(x, D)u) U char(a)

for all u € 8 (RY).

Furthermore, by Corollary 4.21,

Corollary 4.32. Let w be a p-regular weight function for some 0 < p < 1
which satisfies (4.39) for two weight functions o and ~ as in Theorem 4.19.
Let m € R and a € GS}". Then

WF! (a*(z, D)u) C WF/,(u) N conesupp(a)
C WF, (u) € WF! (a®(z, D)u) U char(a)

for allu € S (RY).
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4.3 Regularity of Weyl quantizations

Remark 4.33. Let w be a p-reqular weight function for some 0 < p < 1.
Then, for all m € R there exists p € GS;"* such that z is non-characteristic

for p for all z € R?**\ {0}. Hence char (p) = () and by Theorem 4.31,
WEF (p* (z, D)u) = WF% (u), u € S (RY). (4.49)

Example 4.34. Let w(t) = t* be a Gevrey weight function, 0 < a < 1/2.
From Example 4.14, w is (1 — a)-regular. Take p as in (3.11). From (3.15) we
deduce that every z € R??\ {0} is non-characteristic for p, and therefore the
associated Weyl operator satisfies (4.49). Furthermore, if 0 < a < (5—+/17)/2,
then by Corollary 4.21,

WE(p" (2, D)u) = WF(u),  u€S,(RY).
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G(D), see ultradifferential operator
GAJ"™, see amplitude

—m,w

. 129
GSJ"*, see symbol

-~ m,w

S, 128
S, see symbol

FGS™, 60

FGS, ", 129
HGS™ "0 127
A,, 80

P(z,¢), 11
OP(z,¢), 11

Index

v, 24

V7, 25

T,, 24

My, 24

II(z), 24

Tq, 16

Soq—1, 139

w, see weight function
b (x, D), 106
Wig, 27

©*, see Young conjugate
<.’ .>7 24

char(a), 159
conesupp (u), 137
P., 106, 130

#, 122

| : ’)\7 15

| ’ ’K7x\7 12

I llos.x5 26
supp(7), 13

p-, 105, 130

Py 105

WEF/, (u), 137
WE* (), 160

amplitude
global, 31
mixed, 129
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formal sum, 60
composition, 79
equivalent, 60
mixed, 129

equivalent, 130
transpose, 78

function
global ultradifferentiable, 13
test

of Beurling type, 12

of Roumieu type, 12
ultradifferentiable

of Beurling type, 12

of Roumieu type, 12
weight, 7

p-regular, 160

operator

global pseudodifferential, 35
w-regular, 116
kernel of, 43

modulation, 24

phase-shift, 24

regularizing, 52

translation, 24

ultradifferential, 16

Weyl, 106

parametrix, 116

point
characteristic, 159
non-characteristic, 159

quantization
7, 106, 130
composition, 108
transpose, 108

support
conic, 137
distributions, 13
symbol
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w-hypoelliptic, 127
7, 105, 130
global, 31

mixed, 128

of finite order, 31
Weyl, 105

transform
Fourier, 13
short-time Fourier, 24
Wigner, 27

ultradistribution
w-temperate, 16
of Beurling type, 12
of Roumieu type, 12
with compact support
of Beurling type, 13
of Roumieu type, 13

wave front set
w, 137
Weyl, 160

Young conjugate, 9
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