
Escola Tècnica Superior d’Enginyeria Informàtica
Universitat Politècnica de València

Analysis of Deep Learning Inference Compute and
Energy Consumption Trends

MASTER’S DEGREE FINAL WORK

Master’s Degree in Informatics Engineering

Author: Radosvet Desislavov Georgiev

Tutors: José Hernández Orallo
Fernando Martínez Plumed

Academic Year 2020-2021

Resumen
En la última década, el aprendizaje profundo ha conseguido resultados espectaculares

en numerosas aplicaciones. El incremento del desempeño ha venido acompañado de un
importante incremento en el tamaño de estas redes, medido en número de parámetros.
Pero ¿cómo afecta este incremento del tamaño de las redes a la energía consumida por és-
tas? En este trabajo analizamos el cómputo (número de operaciones) y energía necesaria
para llevar a cabo una inferencia (o propagación hacia delante) con diferentes redes neu-
ronales. Elegimos inferencia ya que para las redes neuronales que se despliegan para uso
masivo, el cómputo necesario para realizar las inferencias acaba dominando al cómputo
necesario para entrenar la red, ya que se llegan a ejecutar una gran cantidad de inferen-
cias a lo largo del tiempo. Para llevar a cabo el estudio recogemos datos sobre una gran
cantidad de redes neuronales y sobre hardware, para poder así estimar el consumo y su
evolución. Centramos el análisis en el campo de la visión artificial y en el campo del pro-
cesamiento de lenguaje natural. Observamos que la evolución del consumo energético
crece exponencialmente para las redes que marcan un hito a nivel investigador, pero pa-
ra las redes que consolidan la innovación este crecimiento es mucho menor; mejoran sus
prestaciones significativamente a lo largo de los años, incluso con consumo de energía
constante.

Palabras clave: Inteligencia artificial, Análisis de datos, Aprendizaje profundo, Redes
neuronales

iii

iv

Resum
En l’última dècada, l’aprenentatge profund ha aconseguit resultats espectaculars en

nombroses aplicacions. L’increment de les prestacions ha vingut acompanyat d’un im-
portant increment en la grandària d’aquestes xarxes, mesurat en nombre de paràmetres.
Però com afecta aquest increment de la mida de les xarxes a l’energia consumida per
aquestes? En aquest treball analitzem el còmput (nombre d’operacions) i energia neces-
sària per dur a terme una inferència (o propagació cap endavant) amb diferents xarxes
neuronals. Triem inferència ja que per a les xarxes neuronals que es despleguen per a ús
massiu, el còmput necessari per realitzar les inferències acaba dominant el còmput ne-
cessari per entrenar la xarxa, ja que s’arriben a executar una gran quantitat d’inferències
al llarg del temps. Per dur a terme l’estudi recollim dades sobre una gran quantitat de
xarxes neuronals i sobre hardware, per poder així estimar el consum i la seua evolució.
Centrem l’anàlisi en el camp de la visió artificial i en el camp del processament de llen-
guatge natural. Observem que l’evolució del consum energètic creix exponencialment
per a les xarxes que marquen una fita a nivell investigador, però per a les xarxes que
consoliden la innovació aquest creixement és molt menor; milloren les seues prestacions
significativament al llarg dels anys, fins i tot amb consum d’energia constant.

Paraules clau: Intel·ligència artificial, Anàlisi de dades, Aprenentatge profund, Xarxes
neuronals

v

Abstract
In the last decade, deep learning has achieved spectacular results in numerous ap-

plications. The increase in performance has been accompanied by a significant increase
in the size of these networks, measured in number of parameters. But how does this
increase in the size of the networks affect the energy consumed by them? In this work
we analyze the computation (number of operations) and required energy to carry out an
inference (or forward propagation) with different neural networks. We chose inference
since for neural networks that are deployed for large scale use, the computation neces-
sary to make the inferences ends up dominating the computation necessary to train the
network, since a large number of inferences are executed over time. To carry out the
study we collected data on a large number of neural networks and hardware, in order to
estimate consumption and its evolution. We focus the analysis in the field of computer
vision and in the field of natural language processing. We observe that the evolution of
energy consumption grows exponentially for networks that mark a milestone at research
level, but for networks that consolidate innovation this growth is much lower; their per-
formance improves significantly over the years, even with constant energy consumption.

Key words: Artificial Intelligence, Data Analysis, Deep Learning, Neural Networks

Contents

Contents vii
List of Figures ix
List of Tables x

1 Introduction 1
1.1 Motivation . 2
1.2 Objectives . 4
1.3 Expected Impact . 4
1.4 Structure . 4

2 Background 7
2.1 Related Work . 7

2.1.1 FLOPS and FLOPs . 8
2.2 History of Neural Networks . 8
2.3 Deep Neural Networks Architectures . 9

2.3.1 Convolutional Neural Networks . 10
2.3.2 Transformer . 12

2.4 Hardware for Neural Networks . 12
2.5 Recent Achievements in DL . 14

2.5.1 AlphaFold . 14
2.5.2 GPT-3 . 15

3 Methodology 17
3.1 CV Models Data Compilation . 17
3.2 NLP Models Data Compilation . 18
3.3 Hardware Data Compilation . 19
3.4 Used tools . 20

4 Analysis of Inference Compute 23
4.1 Computer Vision . 23

4.1.1 Exploring the Relation between Number of Parameters and FLOPs 23
4.1.2 Performance and Compute . 24
4.1.3 Visual Transformers VS CNN . 27

4.2 Natural Language Models DNNs Analysis 28
4.2.1 Performance and Compute . 28
4.2.2 Compute Trend . 28

5 Analysis of Inference Energy Consumption 31
5.1 Hardware Progress Analysis . 31
5.2 Energy Consumption Analysis . 33
5.3 Energy Consumption in Context . 35

6 Conclusions 39
6.1 Future Work . 39
6.2 Relation to the Master’s Degree . 40

Bibliography 41

vii

viii CONTENTS

Appendices
A DNN Data Compilation 47

A.1 Computer Vision (CV) . 47
A.1.1 EfficientNet Based Models FLOPs Estimation 47
A.1.2 ViT-G/14 FLOPs Estimation . 48

A.2 Natural Language Processing (NLP) . 51
B GPUs Data Compilation 53

List of Figures

1.1 Evolution of compute usage in training AI systems. 3

2.1 Simple deep neural network architecture. 9
2.2 Illustration of how a convolution is performed. 10
2.3 Edge detection example with Laplacian filter. 11
2.4 Max pooling example. 11
2.5 CNN example. 12
2.6 Hardware products for AI deployment. 14
2.7 Hardware products for AI deployment. 15

3.1 Inference values example from Nvidia NGC Catalog for ResNeXt101-32x4d
for PyTorch. 20

4.1 Relation between the number of parameters and FLOPs (both axes are log-
arithmic). 24

4.2 Accuracy evolution over the years. The size of the balls represent the
GFLOPs of one forward pass. 25

4.3 GFLOPs evolution over the years. The dashed line is a linear model (note
the logarithmic y-axis) adjusted with the models with highest accuracy per
year. The solid line includes all points. 26

4.4 Relation between accuracy and GFLOPs. 26
4.5 Relation between Top-1 accuracy and GFLOPs for Visual Transformer and

CNN . 27
4.6 GFLOPs per token analysis for NLP models. 28
4.7 GFLOPs per token analysis for NLP models. 29
4.8 GFLOPs per token analysis for NLP models. 29

5.1 Nvidia GPUs theoretical GFLOPS per Watt. 32
5.2 Nvidia GPUs GFLOPS per Watt adapted for CNN and NLP models. . . . 32
5.3 Estimated Joules of a forward pass (e.g., one prediction) for CV. 33
5.4 Estimated Joules of a forward pass (e.g., one prediction) for NLP. 34
5.5 Relation between Joules and Top-1 Accuracy through the years for CV (Im-

ageNet). 34
5.6 Relation between Joules and GLUE score through the years for NLP (GLUE). 35
5.7 Estimated Joules per forward pass (e.g., one prediction) compared to hu-

man energy consumption in one second for CV models. 36
5.8 Estimated Joules per forward pass (e.g., one prediction) compared to hu-

man energy consumption in one second for NLP models. 37

List of Tables
ix

x LIST OF TABLES

3.1 Top-1 accuracy obtained on Imagenet with 1-crop and 10-crop 18

4.1 Results for several DNNs with similar number of FLOPs to AlexNet. . . . 25

5.1 Mixed precision speed ups from experimental results for inference. 31
5.2 Results for several DNNs with similar number of FLOPs to AlexNet. . . . 35
5.3 Results for several DNNs with similar energy consumption to AlexNet. . 35

A.1 EfficientNet models architecture specifications. 47
A.2 ViT-G/14 GFLOPs. 49
A.3 CV models data set. 50
A.4 NLP models data set. 51

B.1 GPUs specification compilation with GFLOPS per Watt calculation. 53
B.2 Throughput measures for V100, A100 and T4 GPUs on different models. . 54
B.3 GPUs throughput and power consumption data compilation. 55

CHAPTER 1

Introduction

The effect of computers on society has been constantly evaluated since the beginning of
the discipline. In particular, the balance between energy consumption and computing
performance has been discussed since the early computers, frequently of a size of a room
and with enormous energy consumption. Today, artificial intelligence (AI) is one of the
fastest-growing areas in computer science in terms of compute and usage. Many Deep
Learning (DL) models are becoming very complex and computationally heavy. Conse-
quently, it is important to analyse the trends in compute and energy consumption, in
order to determine the impact and its future sustainability.

In the last decade DNNs have become very accurate and have been replacing other
legacy AI systems. The term Deep Learning is applied to any machine learning algo-
rithms over Deep Neural Networks. A DNN is an artificial neural network with many
hidden layers, in comparison to more shallow networks, using only one or very few hid-
den layers. DNNs use multiple layers to progressively extract higher-level features from
the raw input. This kind of networks can perform an extensive amount of tasks, such
as image classification, object detection in images, text generation, etc. DNNs have sur-
passed humans in many tasks, for instance, in SuperGLUE benchmark [1]. SuperGLUE
benchmark is a set of language understanding tasks, with a public leaderboard1. In the
leaderboard there is a human performance baseline and some DNNs have surpassed it.
But at which cost comes this great performance of DNNs? In this work we explore the
evolution of different metrics of DNNs, paying particular attention to inference compu-
tational cost and inference energy consumption, which are associated with economical
costs and ultimately having its carbon footprint.

Nowadays, DNNs are almost everywhere, from smartphones to automobiles. In au-
tomobiles, inference speed is critical because real time response is required, so very big
models that are slow at performing inference are not suitable. In smartphones, model
size is critical too because these devices do not have as much computing power and
memory as a desktop computer or as a server. More importantly, they cannot consume
much energy because they have important power consumption limitations because they
are powered by batteries and do not have good heat dissipation (overheating occurs if
they consume a lot of energy). Despite these restrictions, DNNs are being used in these
and other situations. Precisely because of this, there has been a pressure to build DNNs
that are not so resource demanding, even if larger DNNs usually outperform smaller
ones. Alternatively to this in-device use, many DNNs run on the cloud, where DNNs
could be bigger. Many services that people use daily execute inference in data centres.
For instance, in social networks [2], users are not aware of this because the process is
transparent for them. The servers receive a huge amount of requests to be executed, the

1https://super.gluebenchmark.com/leaderboard

1

https://super.gluebenchmark.com/leaderboard

2 Introduction

burden and energy consumption on the server side grows significantly, especially if there
are millions of requests, implying millions of inferences over the same DNN.

In our study, we clearly differentiate between training and inference. Training con-
sists in “teaching” a DNN to perform a task. During training, data is provided to the
network, and it learns from that data. Learning consists in updating the strength of
the connections between the artificial neurons, connections are numeric values, called
network parameters. More specifically, a forward pass takes place first, a forward pass
refers to the propagation of the input data through all the layers, from the input layer
to the output layer, obtaining an output result from the output layer. Next, the differ-
ence between the result and the expected value is calculated, using a loss function, and
a backward pass is performed. The backward pass consists in calculating the gradient of
neural network parameters using the gradient descent algorithm and the backpropaga-
tion technique from the output to the input layer. Finally, the calculated gradient is used
to update the network parameters (i.e. learn). The learning process is compute intensive
because a large amount of data is used for training, and the data is fed into the network
many times until it achieves optimal performance.

Once the network is trained, it can be used to perform predictions about real world
data. This process is called inference, which is based in performing a forward-pass alone,
since there is no learning. At first look, it seems that the training cost is higher. However,
for successfully deployed systems, inference costs tend to exceed training costs, because
inference costs build up with time due to the usage of the system. Training is done once,
but inference is done repeatedly. It is estimated that inference accounts for up to 90% of
the costs in successfully deployed systems. 2

For conducting our analysis two representative domains have been chosen: Com-
puter Vision (CV) and Natural Language Processing (NLP). For CV we analyse image
classification models, because (1) there is a great quantity of historical data in this area
and (2) many advances in this domain are normally brought to other computer vision
tasks, such as object detection, semantic segmentation, action recognition, or video clas-
sification among others. More specifically, we analyse DNN approaches with published
results for the Imagenet dataset [3]. For NLP we will analyse results on General Lan-
guage Understanding Evaluation (GLUE) benchmark [4]. In both cases, we focused our
analysis on inference FLOPs (Floating Point Operations). This metric represents the num-
ber of operations that are required to process one input item (image for CV models and
text fragment for NLP models). We collect inference FLOPs for many different DNNs
architectures and implementations following a comprehensive literature review. Due to
the immense recent growth in the field of deep learning, hardware manufacturers have
been working on specific chips for DNN. Adapting the hardware to a specific case of use
leads to performance and efficiency improvements. We collect hardware data through
the years, and estimate how much FLOPs can be obtained with one Joule with each chip.
Having all this data we can finally estimate how much energy is needed to perform one
inference with a given DNN.

1.1 Motivation

There are many studies reporting that compute used for neural networks is growing at
a very fast pace the last decade [5, 6]. These studies will be discussed more extensively
in section 2.1. Figure 1.1 shows how the amount of compute needed to train AI systems
is increasing much faster in the last years than before. Due to this tendency we consider

2Percentage announced in a Amazon Web Services Online Tech Talk: https://www.youtube.com/watc
h?v=ET2KVe2du3Y.

https://www.youtube.com/watch?v=ET2KVe2du3Y
https://www.youtube.com/watch?v=ET2KVe2du3Y

1.1 Motivation 3

important to explore this growth deeper, specially in terms of energy consumption. We
have observed that there are many publications about training computation and its en-
vironmental impact but there are very few focused on inference costs and its associated
energy consumption. As discussed before, for successful deployed systems inference cost
is usually higher than training cost. All this motivates us to carry out an analysis about
inference compute usage and energy consumption.

Figure 1.1: Compute usage in training AI systems evolution. Image obtained from [5].

Determining energy consumption is very important for a sustainable development.
As seen in the last decades, a constant increment in CO2 emissions is unsustainable. Al-
though efforts are being made to reduce the utilization of polluting processes to obtain
energy, they are still being an important part of the electricity mix. In the European Union
in the year 2019, almost 40% of the consumed electricity came from power stations burn-
ing fossil fuels 3. This percentage is decreasing each year, but consuming more energy
still means more CO2 emissions. For this reason it is important to evaluate energy con-
sumption of computation systems since the use of computing devices is increasing (each
time we use more and more computers, smartphones, Internet of Things devices, etc.).

Our motivation is to provide an analysis that can help to a more sustainable use of the
AI. In particular, this project could help to the Sustainable Development Goals (SDGs)
proposed by The United Nations. Concretely it is perfectly aligned with Goal 11: Sus-
tainable Cities and Communities; Goal 12: Responsible Consumption and Production;
and Goal 13: Climate Action.

Regarding personal motivations, I am interested in focusing my career on AI. Car-
rying out this analysis will help me understand some AI concepts better, as well as be-

3https://ec.europa.eu/eurostat/cache/infographs/energy/bloc-3b.html?lang=en
3https://unfoundation.org/what-we-do/issues/sustainable-development-goals/

https://ec.europa.eu/eurostat/cache/infographs/energy/bloc-3b.html?lang=en
https://unfoundation.org/what-we-do/issues/sustainable-development-goals/

4 Introduction

coming more familiar with the trends in AI, its sustainability and its present and future
possibilities.

1.2 Objectives

As we have seen, the required compute to train a DNN grows exponentially. However,
this does not necessarily imply that the energy cost is also growing exponentially, as the
energy consumption per unit of compute is decreasing. Furthermore, many studies focus
on the state-of-the-art (SOTA) or the cutting-edge methods according to a given metric
of performance to declare this very fast growth, but many algorithmic improvements
usually come in the months or few years after a new technique has been introduced, hav-
ing similar results with much lower compute requirements. All of these elements have
been studied separately, but a more comprehensive analysis of all these factors together
is necessary to properly evaluate whether the impact of AI on energy consumption and
its carbon footprint is alarming or simply worrying.

Consequently, the objectives of this work are the following ones:

• To study the evolution of required FLOPs to perform an inference with a DNN and
analyse the relation between network performance and inference FLOPs through
the years.

• To study the evolution of the required energy for one inference through the years
and observe if hardware efficiency progress cancels out the increment observed in
FLOPs.

• To provide a comprehensive analysis based on the previous points that brings more
information about whether the growth of AI models will be unsustainable soon,
and discuss if this will mean the end of the progress in DL.

1.3 Expected Impact

We expect to provide a deeper analysis of DL progress. Usually in research papers or
data compilations about DNNs, the required compute and energy consumption for in-
ference is not taken into account. However, these metrics are usually more important
for the industry than the usually reported values about training effort of models in re-
search papers. The usually reported values are model’s performance, which many times
are only better by a tenth than the previous SOTA model, and the number of parameters.
These metrics are not very informative for real applications, so we provide a more helpful
analysis. Furthermore, in the analysis we include middle and small-sized models which
many times do not receive much attention but are very important in terms of efficiency.
We hope that this analysis could help to the adoption of efficient AI models in the indus-
try, and give an estimation of AI models energy costs to companies and governmental
organisations.

1.4 Structure

The organization of this work is as follows: first some background information is pre-
sented (chapter 2), which includes related work analysis and some background for DNNs

1.4 Structure 5

and hardware. After that, methodology is explained (chapter 3), in this chapter we ex-
pose the used methodology for carrying out the analysis. Next comes the analysis: we
present first inference compute analysis (chapter 4) and after that, energy consumption
analysis (chapter 5). Finally we draw the conclusions of the work in (chapter 6).

CHAPTER 2

Background

In this chapter, first are presented some related studies to this one, after that, the history
of neural networks is briefly explained. Once the history is explained, some modern
deep neural network architectures are presented. Next, an review of hardware for AI is
exposed, and the chapter finishes with some recent achievements performed with DL.

2.1 Related Work

In line with other areas of computer science, there is previous work that analyses com-
pute and its cost for AI, and DNNs more specifically. Still, with the rapid increase in
complexity of DNN, along with the volumes of data to be processed, there is a clear cor-
responding growth in demand for AI computing and numerous studies have addressed
this issue. [6] reports the computational demands of several Deep Learning applications
showing that progress in them is strongly reliant on increases in computing power. Cer-
tainly, this imposes a clear limit on how far we can improve performance in its current
form. The same author mentioned in [7] how companies such as Google and Facebook
build high-impact, cost-saving models, that go unused due to computational cost, which
makes the model not viable economically. In this regard, OpenAI researchers estimated
that the computing power needed to train AI models is now rising seven times faster
than ever before, and AI models have doubled the computational power used every 3.4
months since 2012 [5]. There is a study [8] that reports similar scaling rates for AI training
compute to [5] and they forecast that DNNs memory requirements will soon become the
main limiting factor. Recently, OpenAI carried out a detailed analysis about AI efficiency
[9], focusing on the compute used to train models with Imagenet dataset. Despite of their
previous estimation which shows that used compute for AI training is growing very fast,
their work proves that 44 times less compute was required in 2020 to train a network to
reach the performance AlexNet achieved seven years before.

Regarding inference compute, [10] studies accuracy, memory footprint, parameters,
operations count, inference time and power consumption of 14 Imagenet models. To
measure the power consumption they execute the DNNs on a NVIDIA Jetson TX1 board1.
A similar study [11] measures energy efficiency, Joules per image, for a single forward
and backward propagation iteration (a training step). This study benchmarks 4 Convo-
lutional Neural Networks (CNNs) on CPUs and GPUs on different frameworks. Their
work shows that GPUs are more efficient than CPUs for the CNNs analysed. Both publi-
cations analyse model efficiency, but they do this for very concrete cases. New algorithms
and architectures such as EfficientNet [12] and EfficientNetV2 [13] aimed at reduction in

1https://developer.nvidia.com/embedded/jetson-tx1-developer-kit

7

https://developer.nvidia.com/embedded/jetson-tx1-developer-kit

8 Background

compute. The papers include an extensive comparison of different DNNs, with particu-
lar emphasis on FLOPs and accuracy. In this work, we focus on exploring the trends over
the years, we analyse a greater number of DNNs and hardware components in a longer
time frame.

The accelerating growth in compute has been accompanied with increasing concern
about efficiency and energy consumption. [14] estimates the energy consumption, the
cost and CO2 emissions of training various of the most popular NLP models. [15] pro-
poses a systematic reporting of the energy and carbon footprints of machine learning,
they have developed a framework that tracks energy usage, carbon emissions, and com-
pute utilisation of a system2. [16] (section 5.3) seeks to identify assumptions that shape
the calculus of environmental impact for foundation models. [17] analyzes training costs
and proposes that researchers should put more attention on efficiency and they should
always report the number of FLOPs.

2.1.1. FLOPS and FLOPs

Terminology used to count the number of floating point operations is usually confusing.
We found out that the acronym FLOP may be misleading. By FLOP, we mean one float-
ing point operation, and we use FLOPs as the plural of FLOP, a measure of the amount
of compute (computing effort), and by FLOPS we mean floating point operations per sec-
ond, i.e. FLOPS = FLOP/s. However, many papers, especially CV papers, use the term
FLOPS to refer to the number of operations, but we will be just use FLOPs as the plural
of FLOP, never as FLOPS. There are some researchers proposing to use the term FPO [17]
as total number of floating point operations to avoid confusions. Furthermore, there is
the question of what is a FLOP. When dealing with DNN, this is usually associated with
the number of multiply-add operations, even there are other type of operations involved
when executing a DNN. This is done this way because for DNNs the predominant oper-
ations are of the type multiply-add, so counting only this operations is a good estimation
[18, 19]. More specifically, we will count one fused multiply-add operation as 2 FLOPs
(note the lowercase ‘s’). Hardware manufacturers count them in this manner [20], be-
cause in fact there are two mathematical operations. However, CV research papers count
a multiply-add operation as only one operation. In this case, we will multiply the num-
ber of operations reported by 2. In sum, the acronym FLOPS will be applied to measure
hardware performance, by referring to the number of floating point operations per second,
as standardised in the industry, while FLOPs will be applied to the amount of computa-
tion for a given task (e.g., a prediction or inference pass), by referring to the number of
operations, counting a multiply-add operation pair as two operations.

2.2 History of Neural Networks

Neural Networks (NN) could seem a new modern approach, but in fact NNs were pro-
posed long time ago. The idea of NNs appeared in 1943 as a model of how neurons
in the brain work proposed by Warren McCulloch and Walter Pitts [21]. This model
used connected circuits to simulate intelligent behaviour. In 1958 Rosenblatt created the
Perceptron, an algorithm which can learn to perform binary classification through su-
pervised learning, a perceptron operates in similar to modern NNs. But a perceptron
has a important drawback, it can only learn to separate linearly separable classes. In
1959 Bernard Widrow and Marcian Hoff developed two models called ADALINE and
MADALINE. ADALINE recognises binary patterns, it can predict the next bit of a bit

2https://github.com/Breakend/experiment-impact-tracker

https://github.com/Breakend/experiment-impact-tracker

2.3 Deep Neural Networks Architectures 9

stream. MADALINE, the multi-layer version of ADALINE, was the first NN to be ap-
plied to a real problem: it was used to eliminate echoes on phone lines.

These achievements promoted the optimism about the possibilities of NN, but re-
searchers faced many problems trying to improve and extend the networks. Finally, in
1969 the optimisms for NN came to its end with the publication of a book called "Per-
ceptrons" by Marvin Minsky. The book argued that the single perceptron approach to
neural networks could not be translated effectively into multi-layered neural networks. ,
The approach was said to be infeasible because the evaluation of the correct relative val-
ues of the weights of the neurons spread across layers based on the final output would
take a large number of iterations and would take a very long time to be computed. This
book had huge impact on the research community, and research about NNs stopped for
a decade. This period is known as "the AI winter".

In 1981 the research on neural networks started out again, with some conferences
about NNs being organised. In 1986 a technique called backpropagation was rediscov-
ered and popularised. This was a great advance in the field because backpropagation al-
lowed to train multi-layer networks more easily. Since then, backpropagation along with
gradient descent is being used to train NN. Nowadays, DNN are at the spotlight, and
this in part due to the advances in compute power (specially in GPUs) and distributed
computing of the last decade. This progress allowed to build more complex networks
and to process larger amounts of data for training.

2.3 Deep Neural Networks Architectures

Deep Neural Networks Architectures have evolved, from the basic network architecture
that can be observed in Figure 2.1 to more complex architectures, like Convolutional
Neural Networks (CNNs), Recurrent Neural Networks (RNNs), etc. These more com-
plex architectures are inspired on brain mechanisms, CNNs are inspired in visual cortex,
attention mechanisms (used in transformers and RNNs) are inspired in how the brain
put attention to some specific part of a sentence or image, etc.

Figure 2.1: Simple deep neural network architecture. 3

10 Background

In this section two of the most used architectures for DNNs nowadays are going to be
briefly explained. These are CNNs and Trasnformers. This section aims to give an idea
about how these networks operate because the majority of the analysed DNN are of one
of these two types. It is not pretended to give a full explanation with details, because
there are a lot of details, given that these are very complex networks.

2.3.1. Convolutional Neural Networks

A kernel or convolution matrix is a matrix which is used to perform a convolution be-
tween a kernel and an image fragment (set of pixels represented as a matrix). Convo-
lution in image processing is the process of adding each pixel of the image to its local
neighbours, weighted by the kernel. This can be seen clearly in an example, see Fig-
ure 2.2, the value of 31 is obtained as shown in Equation 2.1. Applying this operation
to all pixels of an image gives as a result a new image when each pixel is the result of
applying the kernel to a region of the original image.

Figure 2.2: Illustration of how a convolution is performed. 4

1 · 1 + 0 · 1 + 1 · 3 + 0 · 4 + 1 · 5 + 1 · 6 + 1 · 7 + 0 · 8 + 1 · 9 = 31 (2.1)

Choosing the right filter allows using the convolution operation for performing useful
transformations on the image. As blurring, sharpening or performing edges detection on
an image. Figure 2.3 shows a Laplacian filter(

-1 -1 -1
-1 8 -1
-1 -1 -1

)
applied to an image (this filter is used for edge detection). In this example the image is in
grey scale, but when working with RGB images there is one filter for each colour channel.

The idea beyond Convolutional Neural Networks (CNNs) is to learn these filters
training the network. The filters of the first layer usually extracts basic features, such
as edges. The output of the first layer is passed to the next layer which detects more com-
plex features. As deeper into the network more complex features are detected (objects,
faces, etc.).

The main layers of a CNN are:

3Image obtained from: https://www.ibm.com/cloud/blog/ai-vs-machine-learning-vs-deep-lear
ning-vs-neural-networks

4Image obtained from: https://anhreynolds.com/blogs/cnn.html

https://www.ibm.com/cloud/blog/ai-vs-machine-learning-vs-deep-learning-vs-neural-networks
https://www.ibm.com/cloud/blog/ai-vs-machine-learning-vs-deep-learning-vs-neural-networks
https://anhreynolds.com/blogs/cnn.html

2.3 Deep Neural Networks Architectures 11

Figure 2.3: Edge detection example with Laplacian filter.

• Convolution Layer: this layers perform the previously explained convolution op-
erations. Convolution Layers usually stack many filters, to extract many features.

• Pooling Layer: the pooling operation consists in sliding a filter over each channel
of feature map and summarising the features encompassed within the region cov-
ered by the filter. This reduces required computational power to process the image
because this reduces the dimensionality. Furthermore, this technique is useful for
extracting dominant features which are rotational and positional invariant. There
are two types pooling: max pooling (taking the max value) and average pooling
(taking as value the average). A visual example of max pooling can be observed in
Figure 2.4.

• Fully Connected Layers: these layers come after the block formed by the convolu-
tional and pooling layers, fully connected layers are used to learn non-linear com-
binations of the high-level features, usually used to classify the image.

Figure 2.4: Max pooling example. 5

Figure 2.5 shows a simple CNN sequence to classify an image.

5Image obtained from: https://computersciencewiki.org/index.php/Max-pooling_/_Pooling
6Image obtained from: https://towardsdatascience.com/a-comprehensive-guide-to-convolutio

nal-neural-networks-the-eli5-way-3bd2b1164a53

https://computersciencewiki.org/index.php/Max-pooling_/_Pooling
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

12 Background

Figure 2.5: CNN example. 6

2.3.2. Transformer

Recurrent Neural Networks (RNNs) were widely used for NLP before 2017. A RNN is
a neural network where connections between nodes form a directed graph along a tem-
poral sequence. This allows to store information of previous inputs. These networks can
use information from previous inputs to influence the current input and output. They can
process variable length sequences, so they are suitable for NLP, where there are variable
length sentences and the context is very important (when processing a word we have to
take into account the previously processed words). However this kind of networks are
very slow and inefficient, especially when the input length grows.

A transformer neural network architecture was proposed in 2017 in a paper titled "At-
tention Is All You Need" [22]. The idea is to use encoder-decoder architecture (already
used with RNN) with attention mechanism instead of using a recurrence structure. The
encoder-decoder mechanism works in the following way: the encoder takes the input
sequence and transforms it into a vector which represents an abstract representation of
the input. That abstract vector is fed into the decoder which maps the encoded state
to an output sequence. The novel part in the transformer is the implementation of the
self-attention mechanism. The self-attention mechanism calculates how important other
tokens of the input are for a given token. This provides context information for any po-
sition in the input sequence, and in the paper they demonstrate that with their approach
it is possible to achieve SOTA results on benchmarks without using recurrence structure
(so being computationally inefficient).

As transforms do not use recurrence, they do not have to process the data in order.
This allows parallelisation, therefore reducing training and inference times. Since 2017,
many transformer-based networks were developed for NLP, such as BERT [23] and GPT-
3 [24]. Nowadays, transformers are widely used for NLP. Furthermore, the transformer
architecture is being applied to more domains in the last years, such as computer vision.

2.4 Hardware for Neural Networks

Graphics Processing Units (GPUs) are the most popular DNN accelerators. A GPU is a
specialised processor designed to accelerate the creation of images for output to a display
device. Originally GPUs were designed to accelerate the rendering of 3D graphics. In
order to render 3D graphics in real time high parallelisation is required, and GPUs began
to integrate more and more cores. Note that these cores are much simpler than a CPU
core. GPU cores are specialised in matrix multiplications, because rendering 3D graphics
consists of matrix operations. DNNs operate with matrix too, so the GPUs, originally

2.4 Hardware for Neural Networks 13

designed for rendering 3D graphics started to be used for DNNs because they provide
higher performance and efficiency than CPUs for DNNs. Also GPUs are used for High
Performance Computing (HPC).

Nvidia is one of the biggest GPU manufacturers. Nvidia GPUs are the most used
GPUs for AI and HPC. They provide an API called CUDA that allows the creation of
massively parallel programs. At the end of 2017 Nvidia launched GPUs with new fea-
tures for AI acceleration (improved lower precision performance and tensor cores, which
can improve low-precision calculations) [25]. With the GPUs with tensor cores it is pos-
sible to accelerate FP16 format operations through tensor cores (DNN can operate at low
precision in many calculations without problems) and to combine them with FP32 pre-
cision operations if it is necessary. In this way we can benefit from higher performance,
maintaining calculation precision. With each new generation the GPU’s performance for
AI is getting improved.

As we mentioned in the previous paragraph, DNN can operate with precision for-
mats lower than FP32, specially for inference. Inference can be done with FP16 format in
the majority of networks without the network’s performance getting practically reduced
[26]. Regarding training, reducing precision is more difficult, but this mixed precision
could be used. This means that for the variables for which it is necessary, FP32 is used,
and for the rest FP16 is used. The precision reductions for inference can go further. Mak-
ing use of the quantisation technique (quantisation is the process of constraining an input
from a continuous set of values to a discrete set) it is possible to use 8-bit integers instead
of floating point numbers, and integer math instead of floating point math. This reduces
memory and computing requirements, and therefore, energy consumption. DNNs quan-
tisation is an efficient approach for deploying networks to embedded hardware, where
high efficiency is required.

Besides GPUs, there is more hardware for AI. In fact, GPUs are not very specialised
for AI, as they can perform many other HPC tasks (simulations, scientific calculations,
etc), real time 3D rendering, etc. In the last years there is a lot of research about new
specialiSed hardware for AI, and many application-specific integrated circuits (ASICs)
have been developed by companies as Google, Amazon, Intel, Qualcomm, Nvidia and
Tesla. Some examples are described below:

• Tensor Processing Unit (TPU): it is an AI accelerator ASIC developed by Google
specifically for DNNs. Google began using TPUs internally in 2015, and in 2018
made them available for third party use as part of its cloud infrastructure 7. They
also offer TPU based products for edge AI. Some products are shown in Figure 2.6
(images obtained form Coral products web page 8). As we can see there is a great
variety of accelerators for edge AI. These products are designed to work with Ten-
sorFlow, an open-source library for machine learning developed by Google.

• Qualcomm Cloud AI 100 9: processor designed for AI inference acceleration in the
cloud. The objective is to achieve high performance with low energy consumption.
Also, they introduced an edge device which integrates this processor (in conjunc-
tion with a CPU and communication chip).

• AWS Inferentia Machine Learning Processor 10: ASIC developed by Amazon Web
Services (AWS) for machine learning inference. This processor is only available in
AWS.

7https://cloud.google.com/tpu?hl=en
8https://coral.ai/products/
9https://www.qualcomm.com/products/cloud-artificial-intelligence/cloud-ai-100

10https://perspectives.mvdirona.com/2018/11/aws-inferentia-machine-learning-processor/

https://cloud.google.com/tpu?hl=en
https://coral.ai/products/
https://www.qualcomm.com/products/cloud-artificial-intelligence/cloud-ai-100
https://perspectives.mvdirona.com/2018/11/aws-inferentia-machine-learning-processor/

14 Background

Figure 2.6: Hardware products for AI deployment.

• Smartphone processors (as Qualcomm 865 and Apple A12 Bionic) integrate AI
acceleration hardware, this allows executing DNN on smartphones (usually int8
quantized networks) efficiently.

These are only a few examples, but there are many more chips for AI acceleration. These
specialised chips are providing a huge improvement in performance. Overall, all this
provides an improvement in hardware performance for AI much higher than the one
that could be expected from the improvement of traditional CPUs.

2.5 Recent Achievements in DL

In this section we present some recent significant achievements using DNNs.

2.5.1. AlphaFold

The “protein folding problem” consists in determining a protein’s 3D shape from its
amino-acid sequence [27]. The 3D structure of the protein determines its functionality.
That is the reason why many biology researchers are interested in studying the struc-
ture of proteins and the relationship between amino acids sequence in a protein and its
3D structure. There are experimental techniques that can show the protein 3D structure,
as X-ray crystallography, but performing this experiment take a long time and is very
expensive (specifically, it takes about a year and costs about $120,000 [28]). For this rea-
son, computational methods are being studied for solving this task. For measuring the
progress in this problem was created CASP [29] (Critical Assessment of Structure Pre-
diction). CASP is a biennial community experiment to determine the state of the art in
modeling protein structure. Participants are provided with amino acid sequences of tar-
get proteins, and build models of the corresponding 3D structures.

2.5 Recent Achievements in DL 15

In 2018, AlhpaFold [30], an AI system developed by DeepMind, achieved in CASP13
(the 13th edition of CASP) the highest accuracy among all participants, surpassing the
2nd best result by a large margin. AlphaFold is a DL system, the main component of
AlphaFold is a convolutional neural network (specifically, a ResNet based network).
As a curiosity, they used 128 TPUv3 cores to train the network. Two years latter, in
CASP14 DeepMind participated again with an improved version of their system, called
AlhpaFold 2 [31]. The metric used for evaluating the systems is the Global Distance Test
(GDT) which ranges from 0 to 100. This system achieved a median score of 92.4 GDT
overall across all targets. And for the hardest protein targets (those in the free-modelling
category), AlphaFold 2 achieves a median score of 87.0 GDT. A score of 90 GDT is con-
sidered to be similar to results obtained from experimental methods. The evolution of
the accuracy in free-modelling category (the most difficult one) in CASP can be observed
in Figure 2.7. It can be seen how AlphaFold networks represent a huge improvement.

Figure 2.7: Median accuracy of predictions in the free modelling category for the best team in
each CASP. 11

Great advances in the field of biology are expected from the discovery of this system.
Is expected that this approach could help to throw light on the function of the thousands
of unsolved proteins in the human genome, this would help to understand many diseases
and help in drug development.

2.5.2. GPT-3

GPT-3 [24] is a large transformer based DNN for NLP with 175 billion parameters. It
was released in 2020 and it was the biggest non-sparse language model when released.
This network does not focus on some specific NLP task (i.e., it was not fine-tuned on any
dataset). It is meant to be a general NLP model which can learn to perform new NLP
tasks with a few examples, which could be passed as input to the network. Humans,

11Extracted from: https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-
grand-challenge-in-biology

https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology
https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology

16 Background

having once acquired a general knowledge about some field, can perform a new similar
tasks of that field with only a few examples or with simple instructions. GPT-3 creators
try reproduce this capability for NLP, scaling up a transformed based language model.
They achieved a promising result, GPT-3 is able to achieve a good performance in many
different NLP tasks.

Some astonishing achievements of this model are:

• It can generate news articles which human evaluators can’t distinguish from human
written articles.

• Giving to GPT-3 simple instructions, it can generate code according to those in-
structions. We refer to giving it some simple instructions, not asking it to develop a
complex application.

• It can generate a response to an email if an email and some breve indications about
the response are passed as input.

CHAPTER 3

Methodology

We collect most of the information about DNNs directly from research papers that report
performance results, compute and other data for one or more newly introduced tech-
niques for the benchmarks and metrics we cover in this work. We manually read and
inspect the original paper and frequently explore the official GitHub repository, if exists.
However, often there is missing information in these sources, so we need to get the data
from other sources, namely:

• Other papers: usually the authors of a paper which introduces a new model com-
pare it with previously existing models, giving information about these models.

• Model implementations: PyTorch [32] has a package that contains the definitions
of many (pre-trained) models, and their accuracy is given. Also, there are many
other projects that collect model implementations, and the model characteristics
are usually reported [33] [34].

• Existing data compilations: there are some projects and public databases that collect
information about deep learning architectures and their benchmarks, such as [35],
[36] and [37].

• Measuring tools: if there is a public implementation of the model, we can use the
ptflops library [38] or other similar tools to calculate the model’s FLOPs and param-
eters. We use this for models for which we could not get the data, or had doubts
about the veracity of the data.

Given this general methodology, we now discuss in more detail how we made the selec-
tion of models for CV, NLP. After that we discuss in detail which hardware we analyse
and how we collect the data. Finally, used tools for this work are commented.

3.1 CV Models Data Compilation

There is a huge number of models for image classification, so we selected models based
on two criteria: popularity and accuracy. For popularity we looked at the times that the
paper presenting the model is cited and how many times the model appears mentioned
in other papers. We focused on model’s accuracy as well because having the best models
per year in terms of accuracy is necessary for analysing progress. We selected the models
with higher accuracy for each year. To achieve this we used existing compilations [37]
and filtered by year and accuracy. For our selection, accuracy was more important than
popularity for recent models, as they are less cited than the older ones because they have
been published for a shorter time. Once we selected the sources for image classification

17

18 Methodology

models, we collected the following information: Top-1 accuracy on Imagenet, number
of parameters, FLOPs per forward pass (forward pass of a network is equivalent to an
inference), release date and training dataset.

Accuracy and FLOPs metrics were collected carefully, taking into account that there
are different sampling techniques for measuring accuracy. For instance, in the AlexNet
paper [39], to classify a single image they make 10 predictions, they take 10 different
crops from the original image and average the 10 predictions to get the final prediction.
This is called 10-crop testing, and consists in extracting from a given image crops from
four corners and the central crop plus the horizontal flipped version of these, so there
are 10 crops total. The final prediction is obtained averaging the predictions made by the
network on the ten patches. In Table 3.1 is possible to see the difference in accuracy be-
tween 1-crop and 10-crop strategy. While this is a useful trick, it is not fair to compare an
accuracy result achieved with 10-crops with another achieved with 1-crop. Furthermore,
the use of several crops or other kinds of repetitions is problematic, as the papers usually
report the number of FLOPs for one forward pass (if 10 forward passes are needed to
make a single prediction, then the FLOPs should be multiplied per 10). For these reasons
we only report 1-crop accuracy for all models, to make a meaningful comparison.

Model Top-1 Acc 1-crop Top-1 Acc 10-crop

DenseNet-121 [40] 74.98 76.39
DenseNet-169 [40] 76.20 77.92
DenseNet-201 [40] 77.42 78.54
ResNet-50 [41, 42] 75.30 77.10
ResNet-101 [41, 42] 76.40 78.20
ResNet-152 [41, 42] 77.00 78.60

Table 3.1: Top-1 accuracy obtained on Imagenet with 1-crop and 10-crop

The FLOPs depend of the input image resolution: the higher the image resolution,
the more operations (FLOPs) are required to process it. Some researchers report results
with different image resolutions [43] [44], and sometimes it is not clear which resolution
is used for the reported result. In these cases, we need to investigate until we find that
information.

In sum, all the collected FLOPs in this work are for a forward pass with the resolution
used for inference (this allows to make a meaningful analysis of how FLOPs are related
to accuracy). More details about resolution are given in subsection 4.1.1.

3.2 NLP Models Data Compilation

For NLP models we noted that there is much less information about inference (infer-
ence FLOPs) and the number of models for which we can get the required information
is smaller than for CV models. We looked for one benchmark that could be sufficiently
representative and its value determined for a good number of architectures.

So in this case we did not make any selection of models: we just included all the
models since 2017 for which we find inference compute estimation. Papers usually do
not explain how they count FLOPs (as single mathematical operations or single hardware
instructions), but we ultimately found out this information explained in [19]. We compare
the presented numbers with estimations in other publications (we compare the numbers
for repeated and similar models) and we see that these numbers are very similar. We
assume that the other authors follow this as the standard procedure to count FLOPs. In
NLP, they count FLOPs as single mathematical operations and not as a single hardware

3.3 Hardware Data Compilation 19

instructions (like in CV). The important thing is that we use the same approach in all
the NLP models, as the comparison and analysis will be intra-domain and never inter-
domain. The selected models and their values are shown in Table A.4.

3.3 Hardware Data Compilation

Regarding hardware evolution, we collected data for Nvidia GPUs. We chose Nvidia
GPUs because they have been the most used GPUs for Deep Learning in the last 10 years,
so we have a good temporal window for exploration and they represent one of the most
efficient hardware platforms for DNN. We may have considered Google’s TPUs, AWS
Inferentia ASIC, and other recently developed AI accelerators for the analysis but usually
there is not enough public information about them (benchmarks, power consumption),
as the majority of this chips are not sold for personal use, as they are only available
on the cloud. Furthermore, comparing different kind of chips performance is a difficult
task, hence many accelerators are optimized for a given type of DNN or for a given
framework. Because of this we choose to analyse a more general purpose accelerators,
the GPUs, which still have an great efficiency for AI compared to other AI accelerators
due to the new introduced features (as tensor cores). Also Nvidia GPUs are available in
many cloud platforms, as in AWS 1, Microsoft Azure 2 and Google Cloud 3.

We collected GPU data for Nvidia GPUs from 2010 to 2021. The collected data is:
FLOPS, power consumption (reported as Thermal Design Power, TDP) and launch date.
As explained before, FLOPS is a measure of computer performance, useful in fields of sci-
entific computations that require floating point calculations. From the FLOPS and power
consumption we calculate the efficiency, dividing FLOPS by Watts, obtaining in this way
FLOPS per Watt. We use TDP and peak FLOPS (the manufacturers usually report the
peak FLOPS, but it is not guaranteed that in any moment these FLOPS can be achieved)
to calculate efficiency. This means we are considering the efficiency (GLOPS/Watt) when
the GPU is at full utilisation. In practice, the efficiency may vary depending on the work-
load, but we consider this estimate ("peak FLOPS"/TDP) accurate enough for analysing
the trends and for giving an approximation of energy consumption. In our compilation
there are desktop GPUs and server GPUs. We pay special attention to server GPUs re-
leased in the last years, because they are very common for working with DNNs.

Nvidia specifies different FLOPS for FP16 and for tensor cores. Nowadays, frame-
works as PyTorch and TensorFlow allow to train and infer with a DNN with mixed pre-
cision, i.e., taking advantage of the tensor cores, easily without practically any significant
reduction in accuracy. Because of all this, we consider necessary to include the perfor-
mance achieved with tensor cores in our analysis. Theoretical FLOPS using tensor cores
are very high, but this increase in FLOPS does not correspond with the gain seen in prac-
tice for deep learning applications. This is because it is not possible to use tensor cores
for all operations. To solve the discrepancy between tensor core FLOPS and the real util-
isation of these FLOPS, we calculate the speed up achieved for DNNs when inference is
done with mixed precision. We have looked for experimental results to adjust the tensor
FP16/FP32 FLOPS to real performance improvement, the inference experimental results
that we use are available in Nvidia NGC Catalog 4. An example of the data of this page
can be seen in Figure 3.1. We take the values of performance for the largest batch sizes,

1Deep Learning on GPU Instances in AWS: https://aws.amazon.com/es/machine-learning/acceler
ate-machine-learning-P3/

2Inference on NVIDIA GPUs in Azure: https://techcommunity.microsoft.com/t5/azure-ai/real-t
ime-inference-on-nvidia-gpus-in-azure-machine-learning/ba-p/1737522

3Google Cloud GPUs: https://cloud.google.com/gpu
4https://ngc.nvidia.com/catalog/resources

https://aws.amazon.com/es/machine-learning/accelerate-machine-learning-P3/
https://aws.amazon.com/es/machine-learning/accelerate-machine-learning-P3/
https://techcommunity.microsoft.com/t5/azure-ai/real-time-inference-on-nvidia-gpus-in-azure-machine-learning/ba-p/1737522
https://techcommunity.microsoft.com/t5/azure-ai/real-time-inference-on-nvidia-gpus-in-azure-machine-learning/ba-p/1737522
https://cloud.google.com/gpu
https://ngc.nvidia.com/catalog/resources

20 Methodology

since with small batches GPUs parallelization is not well exploited, as can be observed in
throughput column.

Figure 3.1: Inference values example from Nvidia NGC Catalog for ResNeXt101-32x4d for Py-
Torch. 5

We do not include estimated mixed precision performance for all GPUs that support
it because we have not found sufficient benchmarks for all GPUs to carry out an estima-
tion. We perform a different estimation for CV and for NLP networks because these two
kinds of networks operate in different ways and they take different advantage of mixed
precision. Experts allege that for training the speed-up from mixed precision in compar-
ison to FP32 is usually of 2x for image models, and up to 4x for language models [45].
There are more benchmarks about training performance with mixed precision, as the one
performed in [46] and the one available on Nvidia blogs [47]. These estimations are for
training, and for this reason we perform our own estimations.

3.4 Used tools

To carry out the analysis the following tools and programming languages have been
used:

5Extracted from: https://ngc.nvidia.com/catalog/resources/nvidia:resnext_for_pytorch/perfo
rmance

https://ngc.nvidia.com/catalog/resources/nvidia:resnext_for_pytorch/performance
https://ngc.nvidia.com/catalog/resources/nvidia:resnext_for_pytorch/performance

3.4 Used tools 21

• R 6: is a language and environment for statistical computing and graphics. R pro-
vides a wide variety of statistical and graphical techniques, and is highly extensible.
We use R with ggplot2 library to analyse and represent the collected data.

• RStudio 7: is an Integrated Development Environment (IDE) for R.

• Python 8: this programming language is used extensively for DL, we used it with
some libraries as ptflops to analyse DNN, due to implementations of the networks
are usually published for Python.

• Google Colab 9: is a Google Research product which allows to write and execute
Python code through the browser, more specifically, Colab is a hosted Jupyter note-
book service. It provides an environment with many installed frameworks and
packages, and we choose to execute the code there because it allows to execute the
code without install all the dependencies in our local machines.

6https://www.r-project.org/
7https://www.rstudio.com/
8https://www.python.org/
9https://colab.research.google.com/

https://www.r-project.org/
https://www.rstudio.com/
https://www.python.org/
https://colab.research.google.com/

CHAPTER 4

Analysis of Inference Compute

This chapter presents an analysis of required FLOPs to perform an inference (forward-
pass) for CV and NLP models.

4.1 Computer Vision

Imagenet is the most used dataset in the last decade for training and evaluating CV
models. The full dataset consists of 14,197,122 images distributed in 21,841 classes. Re-
searchers refer to this dataset as Imagenet21k or Imagenet22k. However, researchers
commonly use a subset of the full Imagenet dataset. This subset consists of 1.2 million im-
ages for training and 50,000 images for validation distributed in 1,000 classes. This subset
was released for ImageNet Large Scale Visual Recognition Challenge 2012 (ILSVRC2012)
and is usually referred as Imagenet1k or just as Imagenet. In 2012 the AlexNet model
[39] won the ILSVRC 2012 Image Classification with an impressive result, outperforming
the other models by large margin. AlexNet was the first DNN to win this competition.
Since then many other DNNs have been created for image classification. In this section,
we analyse the relation between number of parameters and FLOPs and the trend of Im-
agenet application results (one pass) according to performance and inference compute.
The collected data for the analysis presented in this section can be found in Table B.2 in
the Apendix.

4.1.1. Exploring the Relation between Number of Parameters and FLOPs

The number of parameters is the most reported aspect of neural networks in literature,
but in theory it is not directly proportional to the needed compute. In CNNs, convolution
operations dominate the computation cost [12]. Being d network depth, w network width
and r network’s input resolution, the FLOPs for a CNNs grow following the relation [12]:

FLOPs ∝ d + w2 + r2 (4.1)

This means that FLOPs do not depend directly on the number of parameters. Param-
eters can be used to increase network depth (d) or network width (w), so distributing the
same number of parameters in different ways will result in different number of FLOPs.
Moreover, the resolution (r) does not depend on the number of parameters directly, be-
cause it is possible to increase the input resolution without increasing network size. De-
spite this, Figure 4.1 shows a linear relation between FLOPs and parameters. We attribute
this to the balanced scaling of w, d and r. These dimensions are usually scaled altogether
and bigger CNNs use higher resolution. Note that recent visual transformer models [22],

23

24 Analysis of Inference Compute

and these do not follow the growth relation presented above. However, the correlation
between the number of parameters and FLOPs for CNNs is 0.772 and the correlation
for transformers is 0.995 (in Figure 4.1). This suggests that usually in both architectures
parameters and FLOPs scale in tandem.

Figure 4.1: Relation between the number of parameters and FLOPs (both axes are logarithmic).

Despite the fact that FLOPs and number of parameters are highly correlated, we con-
sider FLOPs a more useful metric for compute analysis, since FLOPs provides an estimate
to the amount of compute required and this allow estimating the required energy relating
hardware FLOPS with required FLOPs to perform an inference with a model.

4.1.2. Performance and Compute

Since 2012 there has been very significant progress in the accuracy achieved for Imagenet.
In 2012, the AlexNet model achieved 56% Top-1 accuracy (single model, one crop). In
2021, Meta Pseudo Labels (EfficientNet-L2) model achieved 90.2% Top-1 accuracy (single
model, one crop). However, this increase in accuracy comes with an increase in the re-
quired FLOPs for a forward pass. A forward pass for AlexNet model costs 1.42 GFLOPs
(calculated with ptflops) while for EfficientNet-L2 we estimate that a forward pass costs
1040 GFLOPs (see subsubsection A.1.1). In Figure 4.2 we can see the evolution from 2012
to 2021 in Imagenet accuracy (with the size of the bubbles representing the FLOPs of one
forward pass). We note that in recent papers some researchers began using more data
than those available in Imagenet1k for training the models. The most precise models in
the last years use extra data for training. Using extra data only affects training FLOPs, but
does not affect the computational cost for inferring each classification (forward pass). Ac-
cordingly, we will include all these models in our study (but different symbols or colours
will be used in the plots for them).

If we only look at models with the best accuracy for each year we can see an exponen-
tial growth in compute (measured in FLOPs). This can be observed clearly in Figure 4.3:
the dashed line represents an exponential growth (shown as a linear model since the y-
axis is logarithmic). The line is fitted with the models with highest accuracy for each
year. However not all models released in the latest years need so much compute. This
is reflected by the solid line in the figure, which includes all points. In the same figure
we see that for the same number of FLOPs we have models with increasing accuracy as
time goes by. In Table 4.1 there is a collection of models with similar number of FLOPs

4.1 Computer Vision 25

Figure 4.2: Accuracy evolution over the years. The size of the balls represent the GFLOPs of one
forward pass.

to AlexNet model. In 2019 we have a model (EfficientNet-B1) with the same number of
operations as AlexNet that achieves a Top-1 accuracy of 79.1% without using extra data,
and a model (NoisyStudent-B1) which achieves Top-1 accuracy of 81.5% using extra data.
So in a period of 7 years, we have models with similar computation with much higher
accuracy. We observe that when a SOTA model is released it usually has a huge number
of FLOPs, and therefore consumes a large amount of energy, but in a couple of years there
is a model with similar accuracy but with much lower number of FLOPs. These models
are usually those that become popular in many industry applications. This observation
confirms that better results for DNN models of general use are in part attributable to algo-
rithmic improvements and not only to the use of more computing power.

Model Top-1 Accuracy GFLOPs Extra Data Year

AlexNet 56.52 1.42 No 2012
ZFNet 60.21 2.34 No 2013
GoogleLeNet 69.77 3.00 No 2014
MobileNet 70.6 1.14 No 2017
MobileNetV2 1.4 74.7 1.18 No 2018
EfficientNet-B1 79.1 1.40 No 2019
NoisyStudent-B1 81.5 1.40 Yes 2019

Table 4.1: Results for several DNNs with similar number of FLOPs to AlexNet.

Figure 4.4 shows that the Pareto frontier (models with best trade-offs between high
accuracy and low GFLOPs) is composed of new models (in green), whereas old models
(in yellow and red) are relegated below the Pareto. As expected, the models which use
extra data are normally those forming the Pareto frontier. Let us note again that extra
training data does not affect inference GFLOPs.

26 Analysis of Inference Compute

Figure 4.3: GFLOPs evolution over the years. The dashed line is a linear model (note the loga-
rithmic y-axis) adjusted with the models with highest accuracy per year. The solid line includes

all points.

Figure 4.4: Relation between accuracy and GFLOPs.

4.1 Computer Vision 27

4.1.3. Visual Transformers VS CNN

Motivated by the success of transformer architecture in the field of NLP, researchers have
begun to apply transformer architectures to CV, the resultant networks are called Visual
Transformers. Competitive Visual Transformers started to appear in 2020. In this section
we will compare Visual Transformers and CNN in terms of accuracy and required com-
pute. We selected the models with transformer and CNN architecture from 2019, 2020
and 2021 and we obtained the plot shown in Figure 4.5. It can be observed that CNN
require less FLOPs for both datasets (Imagenet1k and Imagenet21k). However, visual
transformers are a novel approach, that could be better optimized in the future.

There is another architecture for CV DNNs, usually called hybrid architecture, which,
as it name suggest, is a hybrid architecture composed of both convolutional modules
and self-attention modules. This architecture is showing promising results in terms of
efficiency [48], it shows better efficiency than visual transformers.

Figure 4.5: Relation between Top-1 accuracy and GFLOPs for Visual Transformer and CNN .

28 Analysis of Inference Compute

4.2 Natural Language Models DNNs Analysis

In this section, we analyse the trends in performance and inference compute for NLP
models. There are many different tasks in NLP, such as text classification, question an-
swering, sentiment analysis, summarisation, etc. To analyse performance we use GLUE
score, which is a popular benchmark for natural language understanding, one key task in
NLP. The GLUE benchmark1 is composed of nine sentence understanding tasks, which
cover a broad range of domains. The description of each task can be found in GLUE
paper [4]. The collected data for the following analysis can be found in Table A.4 in the
Appendixes.

4.2.1. Performance and Compute

We represent the improvement on GLUE score through the years as well as models in-
ference GFLOPs (bubbles size) in Figure 4.6. GFLOPs are for single input of length 128,
which is a reasonable sequence length for many use cases, being able to fit text messages
or short emails. We can observe a very similar evolution to the evolution observed in
Imagenet: SOTA models require a large number of FLOPs, but in a short period of time
other models appear, which require much fewer FLOPs to reach the same score.

Figure 4.6: GFLOPs per token analysis for NLP models.

In Figure 4.7 we can see the GLUE score in relation to GFLOPs for an inference pass.
Again, the GFLOPs are for single input of length 128. There are many models that focus
on being efficient instead of reaching very high score, and this is reflected in their names
too (e.g. MobileBERT and SqueezeBERT). We note that the old models become inefficient
(they have lower score with higher number of GLOPs) compared to the new ones, as it
happens in CV models.

4.2.2. Compute Trend

In Figure 4.8 we represent more models than in the previous plots. Since we do not
show any benchmark punctuation, we include all models for which we found inference

1Many new models are evaluated on SUPERGLUE, but we choose GLUE because it allows us to have a
decent temporal window for our analysis.

4.2 Natural Language Models DNNs Analysis 29

Figure 4.7: GFLOPs per token analysis for NLP models.

FLOPs estimation. The dashed line represents a model adjusted to the models with
higher GFLOPs (models which when were released become the new most demanding
model) and the solid line is a model adjusted to all NLP models. In this plot we indicate
the input sequence length of the model, because unlike in the previous plots, in this one
we represent models with different input sequence lengths. We observe a similar trend as
in CV, GFLOPS of the most cutting-edge models have a clear exponential growth, while
the general trend, i.e. considering all models, does not scale so aggressively. Actually,
there is a good pocket of low-compute models in the last year.

Figure 4.8: GFLOPs per token analysis for NLP models.

CHAPTER 5

Analysis of Inference Energy
Consumption

In this chapter the energy consumption analysis is presented. First, hardware progress is
analysed, and hardware efficiency is calculated. In the next section, the energy consump-
tion is estimated, and the chapter finishes putting the energy consumption into context.

5.1 Hardware Progress Analysis

In this section hardware progress will be examined, we use FLOPS as a measure of hard-
ware performance and FLOPS/Watt as a measure of hardware efficiency. We collected
different precision formats performance and tensor core performance for a wide range of
GPUs. The results could be observed in Figure 5.1. Note that the y-axis is in logarithmic
scale. As we discussed before, theoretical FLOPS for tensor cores are very high, as can
be seen in the plot. However, the performance for inference using tensor cores is not so
high. For this reason we propose an estimation for three different server GPUs: V100,
A100 and T4 for CV models and for NLP models. For calculating the estimations we
collected inference data, the collected data can be found in the appendixes (Appendix B).
The estimations for A100 are in relation to V100 because there is no data about FP32 for
A100 (because FP32 is substituted by TF32, which is a precision format in between of
FP32 and FP16), so we estimated the speed up to V100 FP32 FLOPS. The results of our
estimation can be observed in Table 5.1.

The result of this estimations are close

GPU Precision speed up CV models NLP models

V100 Mixed speed up ratio to V100 FP32 2.27 2.64

A100
TF32 speed up ratio to V100 FP32 1.75 3.56
Mixed speed up ratio to V100 FP32 3.33 4.67

T4 Mixed speed up ratio to T4 FP32 2.7 3.16

Table 5.1: Mixed precision speed ups from experimental results for inference.

Having these estimations we fitted a linear model (with the y-axis in logarithmic
scale) to each data set, one for CV and another for NLP, and we obtain good fits as shown
by the solid lines in Figure 5.2. The data used for these plots can be seen in the appendixes
(Table B.3). There is a point in Figure 5.2 for the year 2018 that stands out among the oth-
ers by a large margin, it corresponds to the GPU T4 using mixed precision. The T4 is a

31

32 Analysis of Inference Energy Consumption

Figure 5.1: Nvidia GPUs theoretical GFLOPS per Watt.

GPU designed specially for inference, and this is the reason why it is so efficient for this
task.

Figure 5.2: Nvidia GPUs GFLOPS per Watt adapted for CNN and NLP models.

5.2 Energy Consumption Analysis 33

5.2 Energy Consumption Analysis

Once we have estimated the inference FLOPs for a range of models and the GFLOPS per
Watt for different GPUs, it is finally possible to estimate the energy (in Joules) consumed
in one inference. To calculate this we divide the FLOPs for the model by FLOPS per Watt
for the GPU. But how can we choose the FLOPS per Watt that correspond to the DNN
date? In order to do this we use the models fitted to the data presented in Figure 5.2
to obtain an estimation of GLOPS per Watt for a given date. Namely, we use the DNN’s
release date to estimate the efficiency for the date when the model was released.

Knowing that 1 Watt is equal to 1 Joule per second, we can express the efficiency met-
ric FLOPS per Watt as FLOPs per Joule, as shown in Equation 5.1. Having this equiva-
lence we can use it to divide the FLOPs needed for a forward pass and obtain the required
Joules, see Equation 5.2. Doing this operation we obtain the consumed energy in Joules.

Efficiency =
HW Perf.

Power
with units:

FLOPS
Watt

=

FLOPs
Second
Joules
Second

=
FLOPs
Joule

(5.1)

Energy =
Fwd. Pass
Efficiency

with units:
FLOPs
FLOPs
Joule

= Joule (5.2)

Applying this calculation to all collected models we obtain Figure 5.3 for CV models,
the dashed line represents an exponential model (a linear fit as the axis is logarithmic),
adjusted to the models with highest accuracy for each year, the solid line represents the
same but for all data, and the dotted line represent the average Joules for each year, like
in Figure 4.2. By comparing both plots we can see that hardware progress softens the
growth observed for FLOPs in comparison with the growth for Joules, but the growth is
still exponential for the models with higher accuracy. The solid line is almost horizontal,
but in a logarithmic scale this may be interpreted as having an exponential growth with
a small base or a linear fit on the semi log plot that is affected by the extreme points. In
Figure 5.4 we do the same for NLP models and we see a similar picture.

Figure 5.3: Estimated Joules of a forward pass (e.g., one prediction) for CV.

34 Analysis of Inference Energy Consumption

Figure 5.4: Estimated Joules of a forward pass (e.g., one prediction) for NLP.

Figure 5.5 shows the relation between Top-1 Accuracy and Joules. Joules are calcu-
lated in the same way as in Figure 5.3. The relation is similar as the observed in Figure 4.4,
but in Figure 5.5 the older models are not only positioned further down in the y-axis (per-
formance) but they tend to cluster on the bottom right part of the plot (high Joules), so
their positio on the y-axis is worse than for Figure 4.4 due to the evolution in hardware.
This is even more clear when we look at the corresponding plot for NLP in Figure 5.6.

Figure 5.5: Relation between Joules and Top-1 Accuracy through the years for CV (ImageNet).

The result of adding Joules to Table 4.1 presented previously, is Table 5.2. In this ta-
ble it can be observe that models with similar FLOPs to AlexNet released in 2018 and
2019 consume approximately 10 times less energy, having similar number of FLOPs.
Hence, this improvement is due to hardware progress. In Table 5.3 are shown models
with similar energy consumption to AlexNet, it can be observed that in 2020 and 2021
there are models with very similar energy consumption with Top-1 Accuracy above 80%.
If we compare the accuracy of AlexNet with EfficientNetV2-S (note that both models are
trained only with Imagenet1k, i.e., they have been trained with same amount of data),

5.3 Energy Consumption in Context 35

Figure 5.6: Relation between Joules and GLUE score through the years for NLP (GLUE).

we can observe an improvement of 48% in accuracy while consuming the same amount
of energy.

Model Top-1 Accuracy GFLOPs Joules Extra Data Year

AlexNet 56.52 1.42 0.100 No 2012
ZFNet 60.21 2.34 0.112 No 2013
GoogleLeNet 69.77 3.00 0.115 No 2014
MobileNet 70.6 1.14 0.022 No 2017
MobileNetV2 1.4 74.7 1.18 0.010 No 2018
EfficientNet-B1 79.1 1.40 0.016 No 2019
NoisyStudent-B1 81.5 1.40 0.014 Yes 2019

Table 5.2: Results for several DNNs with similar number of FLOPs to AlexNet.

Model Top-1 Accuracy Joules Extra Data Year

AlexNet 56.52 0.100 No 2012
ResNeXt-50 32x4d 82.20 0.092 Yes 2019
EfficientNet-B4 82.90 0.094 No 2019
NoisyStudent-B4 85.30 0.084 Yes 2019
ResNeSt-50 81.13 0.096 No 2020
T2T-ViTt-14 81.70 0.088 No 2021
CrossViT-15 81.50 0.081 No 2021
EfficientNetV2-S 83.90 0.122 No 2021

Table 5.3: Results for several DNNs with similar energy consumption to AlexNet.

5.3 Energy Consumption in Context

Since we are focusing on inference costs, we need to consider the multiplicative factor.
How many inferences are performed per capita? This has definitely increased very signif-
icantly with the use of smart devices, Internet of things and many other devices around
us, which are incorporating DNN-based services. However, how many inference passes

36 Analysis of Inference Energy Consumption

per capita do we have at this moment, and how is this growing? This is very difficult to
estimate, and we leave for future work. However, it is interesting to make an assumption
and see how this would help to see the comparison. As an assumption, imagine that
there is one inference pass of a neural network application per second per capita. What
would this imply in terms of energy consumption?

In order to put this inference energy consumption in context we calculate the value
of average human body energy consumption (we will refer to it as somatic or internal
consumption) in one second and the average energy that a human being consumes in
one second with all their commodities (we will refer to it as external consumption). The
internal consumption is calculated assuming 2000 KCal per person day, and converting
this to Joules/s, giving approximately 100 Joules/s. The external consumption is the
sum of total energy consumption, including electricity, transport and heating, taking this
study about the USA as a reference [49]. This suggests 79,897 Kwh/year in 2019, which is
approximately 10,000 Joules every second. The comparison of these two references with
the trends can be seen in Figure 5.7. As we see, the energy consumed for one inference of
the best models approaches the energy consumed by the human body in one second but
stills far from the external energy consumed in one second. Of course, this comparison
is somewhat assuming that if each human did an AI-based decision implying a forward
pass every second during the whole day (and night), this would be still well below their
internal consumption. However, AI-based decisions are becoming more ubiquitous. For
instance, a self-driving car or surveillance camera may be making many forward passes
per second. For NLP, the trends are similar but the best models are growing much faster,
as we see in Figure 5.7, while the regular models may even decrease. Here, the interpre-
tation in terms of how many decisions are made in a second is also hard to determine.
For instance, a language model interface by human is not going to require more than the
basic 128-token windows. However, many applications of language models can process
data without interacting with humans as a much higher speed.

Figure 5.7: Estimated Joules per forward pass (e.g., one prediction) compared to human energy
consumption in one second for CV models.

5.3 Energy Consumption in Context 37

Figure 5.8: Estimated Joules per forward pass (e.g., one prediction) compared to human energy
consumption in one second for NLP models.

CHAPTER 6

Conclusions

In this work we have combined the analysis of several elements about AI, compute and
energy consumption that allow us to have a different and more comprehensive perspec-
tive about the energy impact of AI. The most distinctive element of our analysis is that
we focus on inference cost, which is usually lower than the training cost when both are
reported in research papers, but because of multiplicative factors, it is much higher than
the training cost. Many DNN models are trained once and applied millions of times
(forward passes).

In our study we showed that inference FLOPs can be maintained constant thought the
years increasing at the same time the performance, this demonstrates that better results
of DNNs are in part attributable to algorithmic improvements and not only to the use
of more computing power. Our main question was: “Does hardware efficiency progress
cancel out the increase in inference FLOPs?”. Our conclusion is that it does not can-
cel it out for the cutting-edge research models of each moment (which are consuming
more and more energy) but this is less clear for the regular models that can be used by
companies and individuals. We observe through the years that many efficient models
are developed and they are much less compute and energy demanding than the cutting-
edge models. As shown, DNNs as well as hardware are improving their efficiency and
do not show symptoms of standstill. Consequently, despite that very large DNNs which
consume a large amount of energy are build for exploring the limits of AI, the "normal
sized" networks are not so energy consuming.

Finally, this work has some limitations that originate from the limited information re-
ported in scientific papers. Many papers report the number of hyperparameters, but it is
less common to have complete information about FLOPs and finding information about
energy consumption is almost impossible, specially for inference. This information is not
only necessary for the transparency of the field but it is of utmost relevance for producing
studies such as the one we have presented here, with a larger number of benchmarks and
models. Also, it is important that new techniques are reported with old and new bench-
marks, so that we can have larger windows where we can analyse the evolution of the
field. We hope that future studies can build on this one and better publishing practices.

6.1 Future Work

As discussed before, although the energy consumption of DNNs could be maintained
constant and still improving its performance, the total energy consumption which comes
from DNNs is probably raising because of the multiplicative factor. As more and more
devices use AI (locally or remotely) the energy consumption can escalate, just by means
of penetration, in the same way that cars have become more efficient in the past two

39

40 Conclusions

decades, but there are many more cars in the world today. We leave as future work the
analysis of the increase of DNNs usage, more concretely the performed inferences with
DNNs.

Also, it would be interesting to perform a wider analysis for NLP models. As we dis-
cussed, doing a comparison of NLP models is hard because NLP benchmarks are chang-
ing fast and inference FLOPs are usually not reported. We leave a deeper investigation
about inference FLOPs for NLP DNNs as future work.

6.2 Relation to the Master’s Degree

This project is related to several subjects of the Master’s Degree. The most related subject
is the one called "Data Science", in which we studied about AI and how to make use
of the data to extract useful knowledge. Many concepts of data science are applied in
this work (fitting models to data, representing the data, etc.). In the subject "Sistemas
Inteligentes", which is translated as "Intelligent Systems" we have studied too some AI
techniques. Also, the subject "Computación de Altas Prestaciones" (CAP) which can be
translated as "High Performance Computing" is related to this final project. In CAP we
have studied about high performance hardware and GPUs programming.

Bibliography

[1] A. Wang, Y. Pruksachatkun, N. Nangia, A. Singh, J. Michael, F. Hill, O. Levy, and
S. R. Bowman, “Superglue: A stickier benchmark for general-purpose language un-
derstanding systems,” arXiv preprint arXiv:1905.00537, 2019.

[2] J. Park, M. Naumov, P. Basu, S. Deng, A. Kalaiah, D. Khudia, J. Law, P. Malani,
A. Malevich, S. Nadathur, et al., “Deep learning inference in facebook data centers:
Characterization, performance optimizations and hardware implications,” arXiv
preprint arXiv:1811.09886, 2018.

[3] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, et al., “Imagenet large scale visual recognition challenge,”
International journal of computer vision, vol. 115, no. 3, pp. 211–252, 2015.

[4] A. Wang, A. Singh, J. Michael, F. Hill, O. Levy, and S. R. Bowman, “GLUE: A multi-
task benchmark and analysis platform for natural language understanding,” 2019.
In the Proceedings of ICLR.

[5] D. Amodei and D. Hernandez, “Ai and compute..” https://openai.com/blog/ai
-and-compute/, 2018.

[6] N. C. Thompson, K. Greenewald, K. Lee, and G. F. Manso, “The computational limits
of deep learning,” arXiv preprint arXiv:2007.05558, 2020.

[7] W. Knight, “Prepare for artificial intelligence to produce less wizardry.” https://ww
w.wired.com/story/prepare-artificial-intelligence-produce-less-wizardr
y/, 2020.

[8] A. Gholami, Z. Yao, S. Kim, M. W. Mahoney, and K. Keutzer, “Ai and memory wall,”
RiseLab Medium Post, 2021.

[9] D. Hernandez and T. B. Brown, “Measuring the algorithmic efficiency of neural net-
works,” arXiv preprint arXiv:2005.04305, 2020.

[10] A. Canziani, A. Paszke, and E. Culurciello, “An analysis of deep neural network
models for practical applications,” arXiv preprint arXiv:1605.07678, 2016.

[11] D. Li, X. Chen, M. Becchi, and Z. Zong, “Evaluating the energy efficiency of deep
convolutional neural networks on cpus and gpus,” in 2016 IEEE International Con-
ferences on Big Data and Cloud Computing (BDCloud), Social Computing and Network-
ing (SocialCom), Sustainable Computing and Communications (SustainCom) (BDCloud-
SocialCom-SustainCom), pp. 477–484, 2016.

[12] M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling for convolutional neu-
ral networks,” 2020.

41

https://openai.com/blog/ai-and-compute/
https://openai.com/blog/ai-and-compute/
https://www.wired.com/story/prepare-artificial-intelligence-produce-less-wizardry/
https://www.wired.com/story/prepare-artificial-intelligence-produce-less-wizardry/
https://www.wired.com/story/prepare-artificial-intelligence-produce-less-wizardry/

42 BIBLIOGRAPHY

[13] M. Tan and Q. V. Le, “Efficientnetv2: Smaller models and faster training.” arXiv,
2104.00298, 2021.

[14] E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy considerations for
deep learning in nlp.” arXiv, 1906.02243, 2019.

[15] P. Henderson, J. Hu, J. Romoff, E. Brunskill, D. Jurafsky, and J. Pineau, “Towards
the systematic reporting of the energy and carbon footprints of machine learning,”
Journal of Machine Learning Research, vol. 21, no. 248, pp. 1–43, 2020.

[16] R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx, M. S. Bern-
stein, J. Bohg, A. Bosselut, E. Brunskill, et al., “On the opportunities and risks of
foundation models.” arXiv, 2108.07258, 2021.

[17] R. Schwartz, J. Dodge, N. A. Smith, and O. Etzioni, “Green ai.” arXiv, 1907.10597,
2019.

[18] M. Hollemans, “How fast is my model?,” 2018. https://machinethink.net/blog/
how-fast-is-my-model/.

[19] K. Clark, M.-T. Luong, Q. V. Le, and C. D. Manning, “Electra: Pre-training text en-
coders as discriminators rather than generators.” arXiv, 2003.10555, 2020.

[20] C. NVIDIA, Achieved FLOPs, 2015. https://docs.nvidia.com/gameworks/conten
t/developertools/desktop/analysis/report/cudaexperiments/kernellevel/a
chievedflops.htm.

[21] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent in nervous
activity,” The bulletin of mathematical biophysics, vol. 5, no. 4, pp. 115–133, 1943.

[22] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
and I. Polosukhin, “Attention is all you need,” in Advances in neural information pro-
cessing systems, pp. 5998–6008, 2017.

[23] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidi-
rectional transformers for language understanding.” arXiv, 1810.04805, 2019.

[24] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Nee-
lakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger,
T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen,
E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Rad-
ford, I. Sutskever, and D. Amodei, “Language models are few-shot learners.” arXiv,
2005.14165, 2020.

[25] C. NVIDIA, “Nvidia tesla v100 gpu architectur,” 2017. https://images.nvidia.co
m/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf.

[26] Tianzhong, “Keras float16 vs float32,” 2018. https://github.com/TianzhongSong
/keras-FP16-test.

[27] K. A. Dill, S. B. Ozkan, M. S. Shell, and T. R. Weikl, “The protein folding problem,”
Annu. Rev. Biophys., vol. 37, pp. 289–316, 2008.

[28] J. Kahn, “In a major scientific breakthrough, a.i. predicts the exact shape of proteins,”
2020. https://fortune.com/2020/11/30/deepmind-protein-folding-breakthr
ough/.

https://machinethink.net/blog/how-fast-is-my-model/
https://machinethink.net/blog/how-fast-is-my-model/
https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/achievedflops.htm
https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/achievedflops.htm
https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/kernellevel/achievedflops.htm
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://github.com/TianzhongSong/keras-FP16-test
https://github.com/TianzhongSong/keras-FP16-test
https://fortune.com/2020/11/30/deepmind-protein-folding-breakthrough/
https://fortune.com/2020/11/30/deepmind-protein-folding-breakthrough/

BIBLIOGRAPHY 43

[29] A. Kryshtafovych, T. Schwede, M. Topf, K. Fidelis, and J. Moult, “Critical assessment
of methods of protein structure prediction (casp)—round xiii,” Proteins: Structure,
Function, and Bioinformatics, vol. 87, no. 12, pp. 1011–1020, 2019.

[30] A. W. Senior, R. Evans, J. Jumper, J. Kirkpatrick, L. Sifre, T. Green, C. Qin, A. Žídek,
A. W. Nelson, A. Bridgland, et al., “Improved protein structure prediction using
potentials from deep learning,” Nature, vol. 577, no. 7792, pp. 706–710, 2020.

[31] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger, K. Tunyasu-
vunakool, R. Bates, A. Žídek, A. Potapenko, et al., “Highly accurate protein structure
prediction with alphafold,” Nature, vol. 596, no. 7873, pp. 583–589, 2021.

[32] A. Paszke, S. Gross, S. Chintala, and G. Chanan, “Torchvision models,” 2016. https:
//pytorch.org/vision/stable/models.html.

[33] O. Sémery, “Computer vision models on pytorch,” 2019. https://pypi.org/proje
ct/pytorchcv/.

[34] R. Cadene, Pretrained models for Pytorch, 2016. https://github.com/Cadene/pretra
ined-models.pytorch#torchvision.

[35] S. Albanie, “Convnet burden: Estimates of memory consumption and flop counts
for various convolutional neural networks.,” 2016. https://github.com/albanie
/convnet-burden.

[36] A. Gholami, Z. Yao, S. Kim, M. W. Mahoney, and K. Keutzer, “Ai and memory wall,”
RiseLab Medium Post, 2021.

[37] R. Stojnic and R. Taylor, “Papers with code imagenet benchmark (image classifica-
tion),” 2021. https://paperswithcode.com/sota/image-classification-on-imag
enet.

[38] V. Sovrasov, Flops counter for convolutional networks in pytorch framework, 2020. https:
//github.com/sovrasov/flops-counter.pytorch.

[39] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” Advances in neural information processing systems,
vol. 25, pp. 1097–1105, 2012.

[40] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger, “Densely connected
convolutional networks.” arXiv, 1608.06993, 2018.

[41] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition.”
arXiv, 1512.03385, 2015.

[42] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual networks github,” 2015. https:
//github.com/KaimingHe/deep-residual-networks.

[43] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition.” arXiv, 1409.1556, 2015.

[44] X. Zhai, A. Kolesnikov, N. Houlsby, and L. Beyer, “Scaling vision transformers.”
arXiv, 2106.04560, 2021.

[45] C. Li, “Openai’s gpt-3 language model: A technical overview.” https://lambdala
bs.com/blog/demystifying-gpt-3, 2020.

[46] M. Balaban, “A100 vs v100 deep learning benchmarks.” https://lambdalabs.com
/blog/nvidia-a100-vs-v100-benchmarks/, 2021.

https://pytorch.org/vision/stable/models.html
https://pytorch.org/vision/stable/models.html
https://pypi.org/project/pytorchcv/
https://pypi.org/project/pytorchcv/
https://github.com/Cadene/pretrained-models.pytorch#torchvision
https://github.com/Cadene/pretrained-models.pytorch#torchvision
https://github.com/albanie/convnet-burden
https://github.com/albanie/convnet-burden
https://paperswithcode.com/sota/image-classification-on-imagenet
https://paperswithcode.com/sota/image-classification-on-imagenet
https://github.com/sovrasov/flops-counter.pytorch
https://github.com/sovrasov/flops-counter.pytorch
https://github.com/KaimingHe/deep-residual-networks
https://github.com/KaimingHe/deep-residual-networks
https://lambdalabs.com/blog/demystifying-gpt-3
https://lambdalabs.com/blog/demystifying-gpt-3
https://lambdalabs.com/blog/nvidia-a100-vs-v100-benchmarks/
https://lambdalabs.com/blog/nvidia-a100-vs-v100-benchmarks/

44 BIBLIOGRAPHY

[47] C. NVIDIA, “Training with mixed precision,” 2018. https://docs.nvidia.com/de
eplearning/performance/mixed-precision-training/index.html.

[48] K. Han, Y. Wang, H. Chen, X. Chen, J. Guo, Z. Liu, Y. Tang, A. Xiao, C. Xu, Y. Xu,
et al., “A survey on visual transformer,” arXiv preprint arXiv:2012.12556, 2020.

[49] H. Ritchie and M. Roser, “Energy,” Our World in Data, 2020. https://ourworldinda
ta.org/energy.

[50] Q. Xie, M.-T. Luong, E. Hovy, and Q. V. Le, “Self-training with noisy student im-
proves imagenet classification,” in Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 10687–10698, 2020.

[51] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional net-
works.” arXiv, 1311.2901, 2013.

[52] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich, “Going deeper with convolutions.” arXiv, 1409.4842, 2014.

[53] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training
by reducing internal covariate shift.” arXiv, 1502.03167, 2015.

[54] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception
architecture for computer vision.” arXiv, 1512.00567, 2015.

[55] F. Chollet, “Keras applications,” 2015. https://keras.io/api/applications/.

[56] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4, inception-resnet
and the impact of residual connections on learning.” arXiv, 1602.07261, 2016.

[57] F. Chollet, “Xception: Deep learning with depthwise separable convolutions.” arXiv,
1610.02357, 2017.

[58] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual transformations
for deep neural networks.” arXiv, 1611.05431, 2017.

[59] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. An-
dreetto, and H. Adam, “Mobilenets: Efficient convolutional neural networks for
mobile vision applications.” arXiv, 1704.04861, 2017.

[60] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely efficient convolu-
tional neural network for mobile devices.” arXiv, 1707.01083, 2017.

[61] Y. Chen, J. Li, H. Xiao, X. Jin, S. Yan, and J. Feng, “Dual path networks.” arXiv,
1707.01629, 2017.

[62] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable architectures
for scalable image recognition.” arXiv, 1707.07012, 2018.

[63] J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wu, “Squeeze-and-excitation networks.”
arXiv, 1709.01507, 2019.

[64] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei, A. Yuille,
J. Huang, and K. Murphy, “Progressive neural architecture search.” arXiv,
1712.00559, 2018.

[65] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mobilenetv2: In-
verted residuals and linear bottlenecks.” arXiv, 1801.04381, 2019.

https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html
https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html
https://ourworldindata.org/energy
https://ourworldindata.org/energy
https://keras.io/api/applications/

BIBLIOGRAPHY 45

[66] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolution for image
classifier architecture search.” arXiv, 1802.01548, 2019.

[67] D. Mahajan, R. Girshick, V. Ramanathan, K. He, M. Paluri, Y. Li, A. Bharambe, and
L. van der Maaten, “Exploring the limits of weakly supervised pretraining.” arXiv,
1805.00932, 2018.

[68] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “Shufflenet v2: Practical guidelines for
efficient cnn architecture design.” arXiv, 1807.11164, 2018.

[69] I. Z. Yalniz, H. Jégou, K. Chen, M. Paluri, and D. Mahajan, “Billion-scale semi-
supervised learning for image classification.” arXiv, 1905.00546, 2019.

[70] I. Z. Yalniz, H. Jégou, K. Chen, M. Paluri, and D. Mahajan, “Semi-supervised and
semi-weakly supervised imagenet models github,” 2019. https://github.com/fac
ebookresearch/semi-supervised-ImageNet1K-models.

[71] H. Touvron, A. Vedaldi, M. Douze, and H. Jégou, “Fixing the train-test resolution
discrepancy: Fixefficientnet.” arXiv, 2003.08237, 2020.

[72] H. Pham, Z. Dai, Q. Xie, and Q. V. Le, “Meta pseudo labels,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11557–11568,
2021.

[73] H. Zhang, C. Wu, Z. Zhang, Y. Zhu, H. Lin, Z. Zhang, Y. Sun, T. He, J. Mueller,
R. Manmatha, M. Li, and A. Smola, “Resnest: Split-attention networks.” arXiv,
2004.08955, 2020.

[74] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,
M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit, and N. Houlsby, “An
image is worth 16x16 words: Transformers for image recognition at scale.” arXiv,
2010.11929, 2021.

[75] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. Jégou, “Train-
ing data-efficient image transformers & distillation through attention.” arXiv,
2012.12877, 2021.

[76] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and H. Jégou, “Deit:
Data-efficient image transformers github,” 2021. https://github.com/facebookr
esearch/deit.

[77] L. Yuan, Y. Chen, T. Wang, W. Yu, Y. Shi, Z. Jiang, F. E. Tay, J. Feng, and S. Yan,
“Tokens-to-token vit: Training vision transformers from scratch on imagenet.” arXiv,
2101.11986, 2021.

[78] A. Srinivas, T.-Y. Lin, N. Parmar, J. Shlens, P. Abbeel, and A. Vaswani, “Bottleneck
transformers for visual recognition.” arXiv, 2101.11605, 2021.

[79] A. Brock, S. De, S. L. Smith, and K. Simonyan, “High-performance large-scale image
recognition without normalization.” arXiv, 2102.06171, 2021.

[80] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, “Swin transformer:
Hierarchical vision transformer using shifted windows.” arXiv, 2103.14030, 2021.

[81] C.-F. Chen, Q. Fan, and R. Panda, “Crossvit: Cross-attention multi-scale vision trans-
former for image classification.” arXiv, 2103.14899, 2021.

https://github.com/facebookresearch/semi-supervised-ImageNet1K-models
https://github.com/facebookresearch/semi-supervised-ImageNet1K-models
https://github.com/facebookresearch/deit
https://github.com/facebookresearch/deit

46 BIBLIOGRAPHY

[82] H. Touvron, M. Cord, A. Sablayrolles, G. Synnaeve, and H. Jégou, “Going deeper
with image transformers.” arXiv, 2103.17239, 2021.

[83] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettle-
moyer, “Deep contextualized word representations.” arXiv, 1802.05365, 2018.

[84] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever, “Improving language
understanding by generative pre-training,” 2018.

[85] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever, “Language mod-
els are unsupervised multitask learners,” 2019.

[86] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catanzaro,
“Megatron-lm: Training multi-billion parameter language models using model par-
allelism,” 2020.

[87] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut, “Albert: A lite
bert for self-supervised learning of language representations,” 2020.

[88] F. N. Iandola, A. E. Shaw, R. Krishna, and K. W. Keutzer, “Squeezebert: What can
computer vision teach nlp about efficient neural networks?.” arXiv, 2006.11316, 2020.

[89] C. Xu, W. Zhou, T. Ge, F. Wei, and M. Zhou, “Bert-of-theseus: Compressing bert by
progressive module replacing.” arXiv, 2002.02925, 2020.

[90] C. Rosset, “Turing-nlg: A 17-billion-parameter language model by microsoft,” 2020.
https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-
parameter-language-model-by-microsoft/.

[91] Z. Sun, H. Yu, X. Song, R. Liu, Y. Yang, and D. Zhou, “Mobilebert: a compact task-
agnostic bert for resource-limited devices.” arXiv, 2004.02984, 2020.

https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/
https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/

APPENDIX A

DNN Data Compilation

A.1 Computer Vision (CV)

A.1.1. EfficientNet Based Models FLOPs Estimation

There are many EfficientNet variations: using different input resolution or scaling fur-
ther more EfficientNets. For this modifications, FLOPs many times are not reported, we
estimate them following the relation presented in Equation 4.1.

NoisyStudent-L2

Having the scale factors of the networks, shown in Table A.1, we estimate NoisyStudent-
L2 FLOPs as shown in Equation A.1.

Model w d test res

EfficientNet-B7 2 3.1 600
EfficientNet-L2 4.3 5.3 800

Table A.1: EfficientNet models architecture specifications, obtained from [50].

NoisyStudent-L2 FLOPs = EfficientNet-B7 FLOPs · d scaling ·w scaling2 · r scaling2

(A.1)

d scaling =
5.3
3.1

= 1.7097 w scaling =
4.3
2

= 2.15 r scaling =
800
600

= 1.3334 (A.2)

Substituting the results of Equation A.2 in Equation A.1 we obtain the estimation, as
shown in Equation A.3.

NoisyStudent-L2 GFLOPs = 74 GFLOPs · 1.7097 · 2.152 · 1.33342 =

= 1039.7991 GFLOPs ≈ 1040 GFLOPs
(A.3)

Meta Pseudo Labels L2

We use the estimation of NoisyStudent-L2 FLOPs for Meta Pseudo Labels L2, because it
is the same model, only changes the training strategy.

47

48 DNN Data Compilation

FixEfficientNet-L2

In FixEfficientNet-L2 they use a resolution of 600 x 600 for testing, so the estimation is the
same as for NoisyStudent-L2 but without taking into account the resolution scaling. This
is represented in Equation A.4.

FixEfficientNet-L2 GFLOPs = 74 GFLOPs · 1.7097 · 2.152 = 584.8285 GFLOPs ≈ 585 GFLOPs

(A.4)

FixEfficientNet-B7

This model is the same as EfficientNet-B7 but using a slightly different resolution (632 x
632), the estimation for r scaling is calculated in Equation A.5 and the FLOPs estimation
in Equation A.6.

r scaling =
632
600

= 1.0534 (A.5)

FixEfficientNet-B7 GFLOPs = 74 GFLOPs · 1.05342 = 82.1142 GFLOPs ≈ 82 GFLOPs
(A.6)

FixEfficientNet-B0

This model is the same as EfficientNet-B0 but using a higher resolution (320 x 320), the
estimation for r scaling is calculated in Equation A.7 and the FLOPs estimation in Equa-
tion A.8.

r scaling =
320
224

= 1.4286 (A.7)

FixEfficientNet-B0 GFLOPs = 0.78 GFLOPs · 1.42862 = 1.5919 GFLOPs ≈ 1.6 GFLOPs
(A.8)

A.1.2. ViT-G/14 FLOPs Estimation

In the paper [44] which introduces the model, are given the GFLOPs for 224 x 224 and
384 x 384 resolutions, see Table A.2, but they comment that they use 518 × 518 resolution
for ViT-G finetuning, so we suppose that they use this resolution for testing too. This
is an vision transformer model, and the scale relation presented in Equation 4.1 do not
apply for this kind of models, but having the GFLOPs for 224 x 224 and 384 x 384 we can
calculate how GFLOPs scale with resolution, see Equation A.9. We calculate the GFLOPs
ratio in Equation A.10 and we observe that GFLOPs scale quadratically with respect to
resolution. Note, in this paper they report "real" FLOPs and not mult-add operations.

r scaling =
384
224

= 1.7143 r scaling2 = 1.71432 = 2.9388 (A.9)

A.1 Computer Vision (CV) 49

Model
GFLOPs

224 x 224 384 x 384

ViT-G/14 965.3 2859.9

Table A.2: ViT-G/14 GFLOPs.

r scaling =
2859.9
965.3

= 2.9627 (A.10)

So we calculate the r scaling in Equation A.11 and multiply the GFLOPs for 384 x 384
resolution by this scale factor (Equation A.12).

r scaling =
518
384

= 1.3490 (A.11)

ViT-G/14 GFLOPs = 2859.9 GFLOPs · 1.34902 = 5269.9617 GFLOPs ≈ 5270 GFLOPs
(A.12)

50 DNN Data Compilation

Model Top-1 Acc. Params (M) GFLOPs Extra Data Date Architecture

AlexNet [39] 56.52 [32] 61.00 † 1.42 † No 01/06/2012 CNN
ZFNet-b [51] 63.63 [33] 107.63 [33] 4.96 [33] No 11/11/2013 CNN
ZFNet [51] 60.21 [33] 62.36 [33] 2.34 [33] No 12/11/2013 CNN
VGG-19 [43] 72.37 [32] 144.00 39.34 † No 04/09/2014 CNN
VGG-16 [43] 71.59 [32] 138.00 31.00 † No 04/09/2014 CNN
Inception V1/GoogleLeNet [52] 69.77 [32] 6.80 3.00 No 17/09/2014 CNN
Inception V2/Incepton BN [53] 74.80 11.29 [33] 4.10 [33] No 11/02/2015 CNN
Inception V3 [54] 78.80 23.83 11.48 No 02/12/2015 CNN
ResNet-50 [41] 75.30 [42] 26.00 [55] 7.60 No 10/12/2015 CNN
ResNet-101 [41] 76.40 [42] 45.00 [55] 15.20 No 10/12/2015 CNN
ResNet-152 [41] 77.00 [42] 60.00 [55] 22.60 No 10/12/2015 CNN
Inception V4 [56] 80.00 42.68 [33] 24.60 [33] No 23/02/2016 CNN
Inception ResNet V2 [56] 80.10 55.84 [33] 26.38 [33] No 23/02/2016 CNN
Densenet-121 [40] 74.98 7.98 [33] 5.74 [33] No 25/08/2016 CNN
Densenet-169 [40] 76.20 14.15 [33] 6.80 [33] No 25/08/2016 CNN
Densenet-201 [40] 77.42 20.01 [33] 8.68 [33] No 25/08/2016 CNN
Xception [57] 79.00 22.86 16.80 [33] No 07/10/2016 CNN
ResNeXt-50 (32x4d) [58] 77.80 25.00 8.40 No 16/11/2016 CNN
ResNeXt-101 (64x4d) [58] 79.60 83.46 31.20 † No 16/11/2016 CNN
MobileNet [59] 70.60 4.20 1.14 No 17/04/2017 CNN
ShuffleNet x1.0 (g=8) [60] 67.60 2.43 [33] 0.28 No 04/07/2017 CNN
DPN-131 (40 × 4d) [61] 80.07 79.50 32.00 No 06/07/2017 CNN
DPN-98 (40 × 4d) [61] 79.80 61.70 23.40 No 06/07/2017 CNN
DPN-92 (32 × 3d) [61] 79.30 37.80 13.00 No 06/07/2017 CNN
NASNet-A (6 @ 4032) [62] 82.70 88.90 47.60 No 21/07/2017 CNN
NASNet-A (7 @ 1920) [62] 80.80 22.60 9.86 No 21/07/2017 CNN
SENet-154 [63] 81.32 115.09 [33] 41.50 [33] No 05/09/2017 CNN
PNASNet-5 (N = 4, F = 216) [64] 82.90 86.10 50.00 No 02/12/2017 CNN
PNASNet-5 (N = 3, F = 54) [63] 74.20 5.10 1.18 No 02/12/2017 CNN
MobileNetV2 [65] 72.00 3.40 0.60 No 13/01/2018 CNN
MobileNetV2 1.4 [65] 74.70 6.90 1.18 No 13/01/2018 CNN
AmoebaNet-A (N=6, F=190) [66] 82.80 86.70 46.20 No 05/02/2018 CNN
AmoebaNet-A (N=6, F=448) [66] 83.90 469.00 208.00 No 05/02/2018 CNN
ResNeXt-101 32×32d [67] 85.10 466.00 174.00 Instagram 940M 02/05/2018 CNN
ResNeXt-101 32×48d [67] 85.40 829.00 306.00 Instagram 940M 02/05/2018 CNN
ShuffleNetV2 x1.0 [68] 69.40 2.28 [33] 0.30 No 30/07/2018 CNN
ResNeXt-101 32x16d [69, 70] 84.80 193.00 72.00 Custom 940M 02/05/2019 CNN
ResNeXt-101 32x8d [69, 70] 84.30 88.00 32.00 Custom 940M 02/05/2019 CNN
ResNeXt-50 32x4d [69, 70] 82.20 25.00 8.00 Custom 940M 02/05/2019 CNN
EfficientNet-B0 [12] 77.10 5.30 0.78 No 28/05/2019 CNN
EfficientNet-B1 [12] 79.10 7.80 1.40 No 28/05/2019 CNN
EfficientNet-B2 [12] 80.10 9.20 2.00 No 28/05/2019 CNN
EfficientNet-B3 [12] 81.60 12.00 3.60 No 28/05/2019 CNN
EfficientNet-B4 [12] 82.90 19.00 8.40 No 28/05/2019 CNN
EfficientNet-B5 [12] 83.60 30.00 19.80 No 28/05/2019 CNN
EfficientNet-B6 [12] 84.00 43.00 38.00 No 28/05/2019 CNN
EfficientNet-B7 [12] 84.30 66.00 74.00 No 28/05/2019 CNN
NoisyStudent-B0 [50] 78.80 5.30 0.78 JFT 300M 11/11/2019 CNN
NoisyStudent-B1 [50] 81.50 7.80 1.40 JFT 300M 11/11/2019 CNN
NoisyStudent-B2 [50] 82.40 9.20 2.00 JFT 300M 11/11/2019 CNN
NoisyStudent-B3 [50] 84.10 12.00 3.60 JFT 300M 11/11/2019 CNN
NoisyStudent-B4 [50] 85.30 19.00 8.40 JFT 300M 11/11/2019 CNN
NoisyStudent-B5 [50] 86.10 30.00 19.80 JFT 300M 11/11/2019 CNN
NoisyStudent-B6 [50] 86.40 43.00 38.00 JFT 300M 11/11/2019 CNN
NoisyStudent-B7 [50] 86.90 66.00 74.00 JFT 300M 11/11/2019 CNN
NoisyStudent-L2 [50] 88.40 480.00 1040.00 ∗ JFT 300M 11/11/2019 CNN
FixEfficientNet-L2 [71] 88.50 480.00 585.00 ∗ JFT 300M 18/03/2020 CNN
FixEfficientNet-B7 [71] 85.30 66.00 82.00 ∗ No 18/03/2020 CNN
FixEfficientNet-B0 [71] 79.30 5.30 1.60 ∗ No 18/03/2020 CNN
Meta Pseudo Labels L2 [72] 90.20 480.00 1040.00 ∗ JFT 300M 23/03/2020 CNN
ResNeSt-269 [73] 84.50 111.00 155.8 † No 19/04/2020 CNN
ResNeSt-200 [73] 83.90 70.00 71.56 † No 19/04/2020 CNN
ResNeSt-50 [73] 81.13 27.50 10.78 No 19/04/2020 CNN
ViT-L/16 [74] 85.30 304.00 [13] 384.00 [13] Imagenet 21k 22/10/2020 Transformer
ViT-L/16 [74] 87.12 304.00 [13] 384.00 [13] JFT 300M 22/10/2020 Transformer
ViT-B/16 [74] 84.60 [13] 87.00 [13] 112.00 [13] Imagenet 21k 22/10/2020 Transformer
DeiT-small [75, 76] 79.90 22.00 9.20 [77] No 23/12/2020 Transformer
DeiT-small-Distilled [75, 76] 81.20 22.00 9.40 [77] No 23/12/2020 Transformer
DeiT-base [75, 76] 81.80 86.00 36.00 [13] No 23/12/2020 Transformer
DeiT-base-384 [75, 76] 82.90 86.00 112.00 [13] No 23/12/2020 Transformer
BotNet-T7 [78] 84.70 75.00 92.00 No 27/01/2021 Hybrid
BotNet-T5 [78] 83.50 75.10 38.60 No 27/01/2021 Hybrid
T2T-ViTt-14 [77] 81.70 21.50 12.20 No 28/01/2021 Transformer
T2T-ViTt-19 [77] 82.20 39.20 19.60 No 28/01/2021 Transformer
T2T-ViTt-24 [77] 82.60 64.10 30.00 No 28/01/2021 Transformer
NFNet-F4+ [79] 89.20 527.00 734.00 JFT 300M 11/02/2021 CNN
NFNet-F0 [79] 83.60 71.50 24.76 No 11/02/2021 CNN
NFNet-F6+SAM [79] 86.50 438.40 754.56 No 11/02/2021 CNN
Swin-B 224 [80] 85.20 88.00 30.80 Imagenet 21k 25/03/2021 Transformer
Swin-B 384 [80] 86.00 88.00 94.00 Imagenet 21k 25/03/2021 Transformer
Swin-L [80] 86.40 197.00 207.80 Imagenet 21k 25/03/2021 Transformer
CrossViT-15 [81] 81.50 27.40 11.60 No 27/03/2021 Transformer
CrossViT-18 [81] 82.50 43.30 18.06 No 27/03/2021 Transformer
CaiT-S36 [82] 83.30 68.00 27.80 No 31/03/2021 Transformer
CaiT-S36 dist [82] 84.00 68.00 27.80 No 31/03/2021 Transformer
CaiT-S24-384 dist [82] 85.10 46.90 64.40 No 31/03/2021 Transformer
CaiT-M48-448 dist [82] 86.50 356.00 659.20 No 31/03/2021 Transformer
EfficientNetV2-S [13] 83.90 24.00 17.60 No 01/04/2021 CNN
EfficientNetV2-M [13] 85.10 55.00 48.00 No 01/04/2021 CNN
EfficientNetV2-L [13] 85.70 121.00 106.00 No 01/04/2021 CNN
EfficientNetV2-S [13] 85.00 24.00 17.60 Imagenet 21k 01/04/2021 CNN
EfficientNetV2-M [13] 86.10 55.00 48.00 Imagenet 21k 01/04/2021 CNN
EfficientNetV2-L [13] 86.80 121.00 106.00 Imagenet 21k 01/04/2021 CNN
ViT-G/14 [44] 90.45 1843.00 5270.00 ∗ JFT 3B 08/06/2021 Transformer

Table A.3: CV models data set. If there is a citation next to a given value means that this value
is extracted from that source, otherwise the values are from the paper (cited in model column).
The symbol † means that this value was obtained or checked from a model implementation using

model analysis tools, and the symbol ∗means that we estimated the value.

A.2 Natural Language Processing (NLP) 51

A.2 Natural Language Processing (NLP)

Many times researchers report GLUE score without the punctuation on WNLI task, be-
cause this task is problematic, we have marked which scores are reported without this
task, due to there are 9 tasks in total, we consider that excluding one of them is not prob-
lematic for our analysis.

We do not found BERT Large inference GFLOPs, but we have ELECTRA Large GFLOPs
and this is the same model but trained with another strategy, so we use ELECTRA Large
GFLOPs as BERT Large GFLOPs. For ELMo we take GLUE dev set score because we do
not found the score on test set, but this score should be close to the score with test set.

Model Input Tokens GFLOPs Params (M) Date GLUE test set

Transformer [22] 512 54 [36] 65 12/06/2017 -
ELMo [83] 128 26 [19] 96 15/02/2018 71.2 [19] ♣
GPT-1 [84] 128 30 [19] 117 11/06/2018 75.1 [23] ♠
BERT Large [23] 128 79 335 ∗ 11/10/2018 82.1 ♠
BERT-Small [23] 128 3.7 [19] 14 11/10/2018 -
BERT-Base [23] 128 29 [19] 110 11/10/2018 79.6 ♠
GPT-2 [85] 1024 3400 [36] 1500 14/02/2019 -
Megatron [86] 1024 18000 [36] 8300 17/09/2019 -
ALBERT-xxl [87] 512 2500 [36] 235 26/09/2019 -
ALBERT-base [87] 128 22.5 [88] 12 26/09/2019 -
Theseus 6/768 [89] 128 11.3 [88] 66 07/02/2020 77.1 [88]
Microsoft T-NLG [90] 1024 36000 [36] 17000 13/02/2020 -
ELECTRA Large [19] 128 79 [36] 335 23/03/2020 88.6 ♠
ELECTRA-Small [19] 128 3.7 14 23/03/2020 78 ♠
ELECTRA-Base [19] 128 29 110 23/03/2020 83.5 ♠
MobileBERT [91] 128 5.36 25.3 06/04/2020 78.5 ♠
MobileBERT tiny [91] 128 3.1 15.1 06/04/2020 75.8 ♠
GPT-3 [24] 2048 740000 [36] 175000 28/05/2020 -
SqueezeBERT [88] 128 7.42 51.1 19/06/2020 78.1

Table A.4: NLP models data set. If there is a citation next to GFLOPs value means that GFLOPs
and Input Tokens values are extracted from that source, otherwise the values are from the paper
(cited in model column). The symbol ♠means that GLUE score was calculated without punctua-
tion on the WNLI task; the symbol ∗means that we estimated the value and ♣means that GLUE

score is for GLUE dev set instead of test set.

APPENDIX B

GPUs Data Compilation

GPU Precision TFLOPS Watts Launch date Type GFLOPS/Watt

GeForce GTX 580 FP32 1.58 244 09/11/2010 Desktop 6.48
GeForce GTX 590 FP32 2.49 365 24/03/2011 Desktop 6.82
GeForce GTX 680 FP32 3.09 195 22/03/2012 Desktop 15.85
GeForce GTX 690 FP32 5.62 300 29/04/2012 Desktop 18.73
GeForce GTX 780 FP32 4.16 250 23/04/2013 Desktop 16.62
GeForce GTX 780 TI FP32 5.35 250 07/11/2013 Desktop 21.38
GeForce GTX Titan Black FP32 5.65 250 18/02/2014 Desktop 22.58
GeForce GTX Titan Z FP32 8.12 375 28/05/2014 Desktop 21.66
GeForce GTX 980 FP32 4.98 165 18/09/2014 Desktop 30.19
GeForce GTX 980 Ti FP32 6.06 250 02/06/2015 Desktop 24.24
GeForce GTX TITAN X FP32 6.69 250 17/03/2015 Desktop 26.76
GeForce GTX 1080 FP32 8.87 180 26/05/2016 Desktop 49.29
GeForce GTX 1080 Ti FP32 11.34 250 10/03/2017 Desktop 45.36
TITAN X Pascal FP32 10.97 250 02/08/2016 Desktop 43.88
TITAN XP FP32 12.15 250 06/04/2017 Desktop 48.60
GeForce RTX 2080 FP32 10.07 215 20/09/2018 Desktop 46.84
GeForce RTX 2080 Ti FP32 13.45 250 20/09/2018 Desktop 53.80
Nvidia Titan RTX FP32 16.31 280 18/12/2018 Desktop 58.26
GeForce RTX 3080 FP32 29.80 320 01/09/2020 Desktop 93.13
GeForce RTX 3090 FP32 35.60 350 01/09/2020 Desktop 101.71
GeForce RTX 2080 FP16 20.14 215 20/09/2018 Desktop 93.67
GeForce RTX 2080 Ti FP16 26.90 250 20/09/2018 Desktop 107.60
Nvidia Titan RTX FP16 32.62 280 18/12/2018 Desktop 116.50
GeForce RTX 3080 FP16 29.80 320 01/09/2020 Desktop 93.13
GeForce RTX 3090 FP16 35.60 350 01/09/2020 Desktop 101.71
GeForce RTX 2080 FP16/FP32 Tensor 40.30 215 20/09/2018 Desktop 187.44
GeForce RTX 2080 Ti FP16/FP32 Tensor 56.90 250 20/09/2018 Desktop 227.60
Nvidia Titan RTX FP16/FP32 Tensor 130.50 280 18/12/2018 Desktop 466.07
GeForce RTX 3080 FP16/FP32 Tensor 59.50 320 01/09/2020 Desktop 185.94
GeForce RTX 3090 FP16/FP32 Tensor 71.00 350 01/09/2020 Desktop 202.86
Tesla K10 FP32 4.58 225 01/05/2012 Server 20.36
Tesla K20x FP32 3.94 235 12/11/2012 Server 16.74
Tesla K40 FP32 5.04 235 08/10/2013 Server 21.45
Tesla K80 FP32 8.22 300 17/10/2014 Server 27.40
Tesla M40 FP32 6.84 250 10/10/2015 Server 27.36
Tesla M60 FP32 9.65 300 30/08/2015 Server 32.17
Tesla P100 FP16 21.20 300 20/05/2016 Server 70.67
Tesla V100 FP16 31.40 300 27/03/2018 Server 104.67
A100 FP16 78.00 400 14/04/2020 Server 195.00
Tesla P100 FP32 10.60 300 20/05/2016 Server 35.33
Tesla V100 FP32 15.70 300 27/03/2018 Server 52.33
A100 FP32 19.50 400 14/04/2020 Server 48.75
A30 FP32 10.30 165 12/04/2021 Server 62.42
Tesla V100 FP16/FP32 Tensor 125.00 300 27/03/2018 Server 416.67
A100 FP16/FP32 Tensor 312.00 400 14/04/2020 Server 780.00
A30 FP16/FP32 Tensor 165.00 165 12/04/2021 Server 1000.00
T4 FP32 8.10 70 13/09/2018 Server 115.71
T4 FP16/FP32 Tensor 65.00 70 13/09/2018 Server 928.57

Table B.1: GPUs specification compilation with GFLOPS per Watt calculation.

The data in Table B.2 is obtained from NVIDIA NGC catalog 1, the data can be found
in this web page searching for models name.

1https://ngc.nvidia.com/catalog/resources

53

https://ngc.nvidia.com/catalog/resources

54 GPUs Data Compilation

Task Model Framework Batch size GPU Presicion Throughput Speed-up

CV

efficientnet-b0 PyTorch 256 V100 16GB FP32 2968 1.00
efficientnet-b0 PyTorch 256 V100 16GB Mixed 6176 2.08
efficientnet-b0 PyTorch 256 A100 80GB TF32 5154 1.74
efficientnet-b0 PyTorch 256 A100 80GB Mixed 10239 3.45
efficientnet-b4 PyTorch 128 V100 16GB FP32 376 1.00
efficientnet-b4 PyTorch 128 V100 16GB Mixed 843 2.24
efficientnet-b4 PyTorch 128 A100 80GB TF32 700 1.86
efficientnet-b4 PyTorch 128 A100 80GB Mixed 1418 3.77
ResNeXt101-32x4d PyTorch 256 V100 16GB FP32 533 1.00
ResNeXt101-32x4d PyTorch 256 V100 16GB Mixed 1746 3.28
ResNeXt101-32x4d PyTorch 256 T4 16GB FP32 161 1.00
ResNeXt101-32x4d PyTorch 256 T4 16GB Mixed 598 3.71
ResNet v1.5 PyTorch 256 V100 16GB FP32 1261 1.00
ResNet v1.5 PyTorch 256 V100 16GB Mixed 3382 2.68
ResNet v1.5 PyTorch 256 T4 16GB FP32 415 1.00
ResNet v1.5 PyTorch 256 T4 16GB Mixed 1198 2.89
ResNet v1.5 TensorFlow 256 V100 16GB FP32 1348.52 1.00
ResNet v1.5 TensorFlow 256 V100 16GB Mixed 2742.14 2.03
ResNet v1.5 TensorFlow 256 A100 40GB TF32 1911.96 1.42
ResNet v1.5 TensorFlow 256 A100 40GB Mixed 3229.32 2.39
ResNet v1.5 TensorFlow 256 T4 16GB FP32 425.72 1.00
ResNet v1.5 TensorFlow 256 T4 16GB Mixed 993.39 2.33
SSD v1.1 PyTorch 32 V100 16GB FP32 271.73 1.00
SSD v1.1 PyTorch 32 V100 16GB Mixed 438.85 1.62
SSD v1.1 PyTorch 32 A100 40GB TF32 548.75 2.02
SSD v1.1 PyTorch 32 A100 40GB Mixed 910.17 3.35
UNet Industrial TensorFlow 16 V100 16GB FP32 250.23 1.00
UNet Industrial TensorFlow 16 V100 16GB Mixed 469.27 1.88
UNet Industrial TensorFlow 16 A100 40GB TF32 424.57 1.70
UNet Industrial TensorFlow 16 A100 40GB Mixed 823.46 3.29
SE-ResNeXt101-32x4d TensorFlow 128 V100 16GB FP32 460.82 1.00
SE-ResNeXt101-32x4d TensorFlow 128 V100 16GB Mixed 1102 2.39
SE-ResNeXt101-32x4d TensorFlow 128 A100 40GB TF32 802.64 1.74
SE-ResNeXt101-32x4d TensorFlow 128 A100 40GB Mixed 1728.27 3.75
SE-ResNeXt101-32x4d TensorFlow 128 T4 16GB FP32 105.16 1.00
SE-ResNeXt101-32x4d TensorFlow 128 T4 16GB Mixed 195.17 1.86

NLP

BERT-LARGE TensorFlow 8 V100 16GB FP32 44.03 1.00
BERT-LARGE TensorFlow 8 V100 16GB Mixed 168.34 3.82
BERT-LARGE TensorFlow 8 A100 80GB TF32 241.68 5.49
BERT-LARGE TensorFlow 8 A100 80GB Mixed 342.22 7.77
BERT-LARGE TensorFlow 8 T4 16GB FP32 16.04 1.00
BERT-LARGE TensorFlow 8 T4 16GB Mixed 62.99 3.93
BERT-Base TensorFlow 8 V100 16GB FP32 146.15 1.00
BERT-Base TensorFlow 8 V100 16GB Mixed 504.24 3.45
BERT-Base TensorFlow 8 A100 80GB TF32 645.88 4.42
BERT-Base TensorFlow 8 A100 80GB Mixed 846.81 5.79
BERT-Base TensorFlow 8 T4 16GB FP32 51.33 1.00
BERT-Base TensorFlow 8 T4 16GB Mixed 192.61 3.75
Transformer-XL TensorFlow 32 V100 16GB FP32 8555.6 1.00
Transformer-XL TensorFlow 32 V100 16GB Mixed 11215.5 1.31
Transformer-XL TensorFlow 32 A100 40GB TF32 19434.5 2.27
Transformer-XL TensorFlow 32 A100 40GB Mixed 21854.7 2.55
Transformer-XL TensorFlow 32 T4 16GB FP32 3439.1 1.00
Transformer-XL TensorFlow 32 T4 16GB Mixed 6174.3 1.80
Transformer PyTorch 10240 V100 16GB FP32 3782 1.00
Transformer PyTorch 10240 V100 16GB Mixed 7464 1.97
Transformer PyTorch 10240 A100 40GB TF32 7755 2.05
Transformer PyTorch 10240 A100 40GB Mixed 9653 2.55

Table B.2: Throughput measures for V100, A100 and T4 GPUs on different models. Speed-up col-
umn is the speed-up achieved with respect to FP32 throughput using different precision formats.

A100 speed-up is calculated with respect to V100 FP32 throughput.

55

Adapted GPU Precision TFLOPS Watts Launch date Type GFLOPS/Watt

No

GeForce GTX 580 FP32 1.58 244 09/11/2010 Desktop 6.48
GeForce GTX 590 FP32 2.49 365 24/03/2011 Desktop 6.82
GeForce GTX 680 FP32 3.09 195 22/03/2012 Desktop 15.85
GeForce GTX 690 FP32 5.62 300 29/04/2012 Desktop 18.73
Tesla K10 FP32 4.58 225 01/05/2012 Server 20.36
Tesla K20x FP32 3.94 235 12/11/2012 Server 16.77
GeForce GTX 780 FP32 4.16 250 23/04/2013 Desktop 16.64
Tesla K40 FP32 5.04 235 08/10/2013 Server 21.45
GeForce GTX 780 TI FP32 5.35 250 07/11/2013 Desktop 21.40
GeForce GTX Titan Black FP32 5.65 250 18/02/2014 Desktop 22.60
GeForce GTX Titan Z FP32 8.12 375 28/05/2014 Desktop 21.65
GeForce GTX 980 FP32 4.98 165 18/09/2014 Desktop 30.18
Tesla K80 FP32 8.22 300 17/10/2014 Server 27.40
GeForce GTX TITAN X FP32 6.69 250 17/03/2015 Desktop 26.76
GeForce GTX 980 Ti FP32 6.06 250 02/06/2015 Desktop 24.24
Tesla M60 FP32 9.65 300 30/08/2015 Server 32.17
Tesla M40 FP32 6.84 250 10/10/2015 Server 27.36
GeForce GTX 1080 FP32 8.87 180 26/05/2016 Desktop 49.28
TITAN X Pascal FP32 10.97 250 02/08/2016 Desktop 43.88
GeForce GTX 1080 Ti FP32 11.34 250 10/03/2017 Desktop 45.36
TITAN XP FP32 12.15 250 06/04/2017 Desktop 48.60
Tesla V100 FP32 15.70 300 27/03/2018 Server 52.33
Tesla T4 FP32 8.10 70 13/09/2018 Server 115.71
GeForce RTX 2080 FP32 10.07 215 20/09/2018 Desktop 46.84
GeForce RTX 2080 Ti FP32 13.45 250 20/09/2018 Desktop 53.80
Nvidia Titan RTX FP32 16.31 280 18/12/2018 Desktop 58.25
GeForce RTX 3080 FP32 29.80 320 01/09/2020 Desktop 93.13
GeForce RTX 3090 FP32 35.60 350 01/09/2020 Desktop 101.71

For CNN

Tesla V100 Mixed 35.71 300 27/03/2018 Server 119.03
Tesla T4 Mixed 21.85 70 13/09/2018 Server 312.15
A100 TF32 27.41 400 14/04/2020 Server 68.52
A100 Mixed 52.35 400 14/04/2020 Server 130.88

For NLP

Tesla V100 Mixed 41.44 300 27/03/2018 Server 138.13
Tesla T4 Mixed 25.58 70 13/09/2018 Server 365.46
A100 TF32 55.85 400 14/04/2020 Server 139.64
A100 Mixed 73.29 400 14/04/2020 Server 183.23

Table B.3: GPUs throughput and power consumption data compilation.

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Objectives
	Expected Impact
	Structure

	Background
	Related Work
	FLOPS and FLOPs

	History of Neural Networks
	Deep Neural Networks Architectures
	Convolutional Neural Networks
	Transformer

	Hardware for Neural Networks
	Recent Achievements in DL
	AlphaFold
	GPT-3

	Methodology
	CV Models Data Compilation
	NLP Models Data Compilation
	Hardware Data Compilation
	Used tools

	Analysis of Inference Compute
	Computer Vision
	Exploring the Relation between Number of Parameters and FLOPs
	Performance and Compute
	Visual Transformers VS CNN

	Natural Language Models DNNs Analysis
	Performance and Compute
	Compute Trend

	Analysis of Inference Energy Consumption
	Hardware Progress Analysis
	Energy Consumption Analysis
	Energy Consumption in Context

	Conclusions
	Future Work
	Relation to the Master's Degree

	Bibliography
	DNN Data Compilation
	Computer Vision (CV)
	EfficientNet Based Models FLOPs Estimation
	ViT-G/14 FLOPs Estimation

	Natural Language Processing (NLP)

	GPUs Data Compilation

