UNIVERSITAT

POLITECNICA Dgﬁé

D E V/.\ l__ E N C I A DEPARTAMENT DE SISTEMES

INFORMATICS | COMPUTACIO

Departament de Sistemes Informatics i Computacié

Universitat Politécnica de Valéncia

Named Entity Recognition in multilingual

handwritten texts
MASTER’S THESIS

Master’s Degree in Artificial Intelligence, Pattern Recognition and Digital
Imaging

Author: David Villanova Aparisi
Director: Carlos David Martinez Hinarejos

External director: Verénica Romero Gomez

Year 2020-2021

Resum

En el nostre treball presentem un tinic model basat en aprenentatge profund per a la
transcripcié automatica i el reconeixement d’entitats nomenades a partir de textos ma-
nuscrits historics. Aquest model aprofita les capacitats de generalitzacié dels sistemes
de reconeixement, combinant xarxes neuronals artificials i n-grames de caracters. Es dis-
cuteix I'avaluacié d’aquest sistema i, com a conseqiiéncia, es proposa una nova metrica
d’avaluaci6 basada en el concepte de distancia d’edici6. Amb la finalitat de millorar els
resultats respecte a aquesta metrica, s’avalua l'aplicaci6é d’estrategies de correccié d’er-
rors i la descodificaci6 a partir de les n millors hipotesis per a I'obtenci6 de transcripcions
sintacticament correctes.

Paraules clau: Reconeixement de text manuscrit offline, reconeixement de entitats nome-
nades, sistema de reconeixement combinat, exploraci6 de les n millors hipotesis

Resumen

En nuestro trabajo presentamos un tinico modelo basado en aprendizaje profundo
para la transcripcién automatica y el reconocimiento de entidades nombradas a partir de
textos manuscritos histéricos. Este modelo aprovecha las capacidades de generalizaciéon
de los sistemas de reconocimiento, combinando redes neuronales artificiales y n-gramas
de caracteres. Se discute la evaluacion de dicho sistema y, como consecuencia, se propone
una nueva métrica de evaluacién basada en el concepto de distancia de edicién. Con el
fin de mejorar los resultados con respecto a dicha métrica, se evalta la aplicacién de
estrategias de correccion de errores y la decodificacién a partir de las n mejores hipétesis
para la obtencién de transcripciones sintdcticamente correctas.

Palabras clave: Reconocimiento de texto manuscrito offline, reconocimiento de entidades
nombradas, sistema de reconocimiento combinado, exploracién de las n mejores hipote-
sis

Abstract

In our work we present a single Deep Learning based model for the automatic tran-
scription and Named Entity Recognition in historical handwritten texts. Such model
leverages the generalization capabilities of recognition systems, combining Artificial Neu-
ral Networks and n-gram character models. The evaluation of that system is discussed
and, as a consequence, a novel evaluation metric, built upon the edit distance concept, is
proposed. As a means to improve the results in regards to such metric, the application of
error correction strategies is assessed, as well as the exploration of the n-best hypothesis
to obtain syntactically correct transcriptions.

Key words: Offline handwritten text recognition, named entity recognition, combined
recognition system, n-best hypothesis exploration

iii

Contents

Contents v
List of Figures vii
List of Tables vii
1 Introduction 1
1.1 Motivation e e 1

12 Objectives 2

1.3 Documentstructure e e 2

2 State of the art 5
2.1 Handwritten Text Recognition in historical documents 5
2.2 Named Entity Recognition 6
2.3 HTR and NERin historicaltexts. 7

3 Theoretical foundation 9
3.1 HTR and NER via end-to-end modelling 9
3.1.1 Problem formulation 9

3.1.2 Hybrid architecture 0L 10

313 Training process. i 11

3.14 Viterbidecoding L 12

3.2 Evaluation metrics e 13
3.2.1 Character and Word ErrorRates 13

3.2.2 Precision, Recalland F1-Score 13

323 Lenientand Strict 14

324 Entity CERand Entity WER 15

3.3 Errorcorrection e 18
331 Errortypes. 18

33.2 Heuristicapproach 19

3.3.3 Exploration of the n-best hypotheses 20

4 Experimental setup and obtained results 21
41 Experimentalsetup oL 21
41.1 Descriptionofthecorpus 21

41.2 Description of the chosenmodel 23

4.2 Obtainedresults e e 23

5 Discussion 27
Conclusions 33

6.1 Summarybychapters. L 33

6.2 Accomplished objectives 0oL 33

6.3 Futurework 34
Bibliography 35

List of Figures

3.1
3.2

3.3
34
3.5
3.6
3.7

4.1
4.2
4.3
44
4.5

5.1

Simplified representation of the CRNN architecture. 10
Simplified representation of a character 6-gram and its transition probabil-

itles. 11
Representation of the training process and its three parts. 12
Representation of the computation of the TP, FP and FN for a single line. . 14
Comparison between the Lenient and Strict metrics 15
An example on how the EWER is calculated. 17
An example on how the stack error correction operates, step by step. . . . 19
Scanned version of one of the available Czech charters. 21
A single extracted line and its reference tagged transcription. 22
Evolution of CER and WER with different valuesofn. 24
Evolution of Precision, Recall and F1-score with different valuesofn. . .. 24
Evolution of ECER and EWER with different valuesofn. 25
Differences between the most likely hypothesis and the 11-best hypothesis. 28

5.2 Frequency histograms of the indexes of the hypotheses with 1-best decoding. 29

5.3 Frequency histograms of the indexes of the hypotheses with 10-best de-
coding. 29

5.4 Frequency histograms of the indexes of the hypotheses with 100-best de-
coding. 30

5.5 Frequency histograms of the indexes of the hypotheses with 1000-best de-
coding. 30

5.6 Frequency histograms of the indexes of the hypotheses with 10000-best
decoding. 31
List of Tables
3.1 Types of errors to be expected in the produced output.. 18
4.1 Experimental datasetsplit. 0. 22

4.2 Reference results and evaluation scores of the best proposed models, with
95% confidenceintervals.. oo oL 0oL 23

vii

CHAPTER 1
Introduction

1.1 Motivation

There is a multitude of reasons for which to work with Handwritten Text Recognition
(HTR) [24]. Even with the appearance of new technologies, we still employ written text
as a means to communicate and interact. Being able to obtain automatic transcriptions
from such signal may be useful for a number of day-to-day tasks, and may be done via
online [34] or offline approaches [41].

Moreover, a large volume of historical archives are not digitized, which makes them
vulnerable to degradation as time goes on. In order to preserve such information, an
effort must be made to obtain digital versions of such documents. To expand on this
issue, it must be mentioned that the documents which were digitized are mostly available
as collections of scanned pages. Working with such format is a time consuming task, as
the writing of many of the titles is obfuscated; many times the services of a paleographer
are required to decipher the contents of the images, resulting in a significant monetary
expense.

The main objective of historical HTR [43] is to build robust systems which are capable
of obtaining accurate transcriptions from the scanned pages provided. Such task is an
open area of study, as the present technology is capable of giving good results but still
has to deal with the challenges that each corpus provides.

However, there are many collections of records in which obtaining a perfect transcrip-
tion is not necessarily the objective. In these cases, the goal is rather to perform some kind
of information retrieval from the images, targeting specific fields within the records. A
way to solve this problem is to rely on Named Entity Recognition (NER) [32], which is
a process that allows to identify parts of text based on their semantic meaning, such as
proper names or dates. The current NER technology employs Natural Language Pro-
cessing (NLP) models which are trained from clean text, making it susceptible to input
errors.

This work aims to not only obtain valid transcriptions, but also to perform NER in
such process. The result of this combined approach is the transcription of the text to-
gether with the tags that help identify and categorize the Named Entities. The addition
of such tags not only provides some semantic information, but is also a necessary step
towards the construction of a collection of linked documents.

To give an intuition on how such database would operate, each document would need
to be tagged with the Named Entities that appear in it. The users would then be able to
query through the entirety of the collection by providing Named Entities, obtaining a list

1

2 Introduction

of the documents related with such Entities. We must reiterate that the implementation of
such concept is not within the scope of this work, but rather a greater ambition to pursue.

Our work approaches the task of historical HTR and NER over a multilingual corpus.
Our choice for such a corpus is motivated by the expected application of this system. Ina
real case, the provided solution should be able to deal with the writing style of different
authors and different languages. The selected corpus can be seen as a valid sandbox on
which to build such system.

1.2 Objectives

The main objective of the proposed work is the study of a Machine Learning approach
that is capable of performing both HTR and NER over a multilingual corpus written
by several authors. To this end, the employed architecture will be a combined model
that employs character n-grams as language models and an Artificial Neural Network to
model the morphological knowledge.

To verify the behavior of the approach, a comparison with the state of the art for this
task will have to be done. The goal will be then to evaluate the quality of the hypotheses
of our system in terms of different well-established metrics such as: Character Error Rate
(CER), Word Error Rate (WER), Precision, Recall and F1 score.

Once the performance of our model is up to par, our next target will be the design and
implementation of a metric which evaluates the system with regards to its final applica-
tion. Before that, an exploration of different evaluation strategies will have to be done as
a means to obtain some insight into this matter.

Once such metric is well defined and developed, our final step will be to improve the
score that our model obtains with such evaluation. For this purpose, the usage of error
correction strategies will be assessed. Moreover, alternative decoding methods that rely
on the exploration of the n-best hypothesis will also be tested.

To summarize, our goals in this work can be listed as:

1. Implement a combined model capable of performing HTR and NER over a multi-
lingual corpus.

2. Compare the performance of such model with the state of the art for the given task.

3. Design and develop a metric that takes into account the final application of the
system during its evaluation.

4. Improve the score of our model with such evaluation, exploring different alterna-
tives without modifying the structure nor the parameters of the system.

1.3 Document structure

This document is structured in six different chapters. In Chapter 2, we will present an
analysis on the recent contributions to both HTR and NER, as well as the technology be-
ing used to solve the combined task. In Chapter 3, the theoretical foundation on which
our work is based will be introduced. Following that, in Chapter 4 we will delve into the
experimental method employed and the results obtained with our approach. In Chapter
5, some insight will be given on the nature of such results as they are discussed. Chapter

1.3 Document structure

6 will conclude the presentation of our work, giving a brief summary on the main contri-
butions of our project. In this last chapter, we will also present different routes to expand

upon what has been developed.

CHAPTER 2
State of the art

In this chapter we give an overview of the current approaches being used on historical
HTR tasks, as well as the difficulties that are commonly faced in this matter. After that,
we present a brief description of the early approaches that were used in NER and how
the technology has evolved towards the current state-of-the-art. Finally, we introduce
the current methods employed in tasks which require both HTR and NER, as well as the
results previously obtained in our task.

2.1 Handwritten Text Recognition in historical documents

The goal of HTR is to extract the most likely transcription, @, from a source image of text,
x. The technology to solve this problem has evolved overtime similarly to that which has
been employed in Automatic Speech Recognition (ASR). The equation that defines the
HTR problem is, given the probability distribution p, as follows:

W = argmax p(w | x) (2.1)
w

There are many examples in which automatic transcription techniques have been ap-
plied to historical writings. In [9], the performance of different models was assessed on
the task of transcribing ancient scientific handwritten documents in Arabic. Such task
was split in a sequence of three sub-tasks: page segmentation, text line extraction and
optical character recognition. This pipeline of processes is commonly found when deal-
ing with conventional HTR tasks [42, 20].

One of the competitors in that task was based on Google Cloud Vision [50], which
employs Convolutional Neural Networks (CNN) [26, 1] to detect and extract the lines.
After that, some heuristics determine the direction of the writing and the writing style.
Such characteristics are then presented to the text recognition model, also based on CNN,
so that it can make better predictions.

However, recent research has shown that it is possible to obtain complete transcrip-
tions without resorting to document analysis and line extraction. In [46], new state-of-art
performance is obtained on paragraph level recognition on the IAM dataset [29]. On the
other hand, the performance on single-line recognition still falls short when compared to
the aforementioned approach.

Overall, we have seen how supervised Machine Learning is capable of obtaining ac-
curate transcription on corpora of varying complexity. Nevertheless, the commercial ap-
plication of these systems is subject to a number of difficulties to overcome. First of all,
the quality of the scanned images tends to be poor as the text is deteriorated with the

5

6 State of the art

passing of time. Moreover, there is a lack of labeled samples as the manual transcrip-
tion of these texts tends to be costly, since many times the services of a paleographer are
needed to decipher the writing. Such complications are detrimental to the performance
of supervised learning approaches.

In [7], the mentioned problems are faced by making use of transfer learning [35] on
a Generative Adversarial Network [16]. With this kind of approach, the starting point is
a pre-trained model on which a small number of learning iterations are made over the
available training samples of the target task. The correct initialization of the parameters
of the model via transfer learning alleviates the effect of having a reduced data set.

However, the usage of transfer learning is not the only way to tackle this issue. In [23],
a Convolutional Recurrent Neural Network is used for reading Tibetan manuscripts. This
network is trained from synthetic data, generated by performing data augmentation [12]
over the input samples by adding artificial noise. The model is then adapted to the real
samples by following a regularization process.

When evaluating this system, the original labeled samples are used. As the artificially
generated data consists of complete lines and the samples are pages with their transcrip-
tion, a line segmentation process is necessary. The model in charge of performing this
process learns its parameters using unsupervised learning methods.

Line segmentators usually learn their parameters from samples, either using super-
vised or unsupervised methods. In [22], the authors present a line extraction method that
does not learn its parameters, but uses a distance graph as a projection of the document
and works on this graph to achieve the segmentation. This is an example on how to deal
with the lack of samples, this time regarding the image segmentation task.

2.2 Named Entity Recognition

The goal of NER is to identify parts of text with specific semantic meaning, such as proper
names or dates. The input to this process is some sequence of text, w, and the output is
the same text with the most likely tags that identify the Named Entities, f. The equation
that defines the NER problem is, given the probability distribution p, as follows:

t = argmaxp(t | w) (2.2)
t

The evolution in NER technology is defined by the advances that have been made
in the world of Machine Learning. Early proposals for solving this problem were based
on the application of hand-crafted rule sets, which could arise from large collections of
names [44] or from patterns at the lexical or syntactic level. In any case, these proposals
required exhaustive data sets, because of their characteristic intolerance to words outside
the vocabulary or texts from a domain other than the one for which the systems were
designed.

Another classical approach is the application of methods in the framework of su-
pervised learning focused on feature extraction. In this way, the NER problem can be
transformed into a multi-class classification problem or a sequence annotation problem.
In either case, the starting point is a set of annotated samples from which feature extrac-
tion must be performed for the correct representation of the data. This process is of vital
importance for the construction of a good supervised NER system, which is why we can
find a multitude of alternatives for the representation of words in the form of a vector of
Boolean or numeric values.

2.3 HTR and NER in historical texts 7

The use of word-level features such as morphology or morphosyntactic tagging [57]
or document or corpus features [30] are examples that have been applied. From these fea-
ture vectors, a multitude of supervised Machine Learning algorithms have been applied,
including Hidden Markov Models [39], Decision Trees [38] and Support Vector Machines
[10].

Motivated by the scarcity of labeled samples, alternatives based on unsupervised
methods emerged. One of the most common technologies in this case is clustering, which
sees its application in NER systems that extract proper nouns from terms grouped by con-
textual similarity [33]. The fundamental idea behind these methods is the use of lexical
resources, lexical patterns and statistics extracted from large corpora for the inference
of proper noun mentions. An example of the use of this technology can be found in
[56], where an unsupervised approach is applied to the extraction of named entities in
biomedical text.

The state of the art in NER, as in multiple Machine Learning tasks, is dominated by
Deep Learning models [45]. Advances in computational power with the use of Graphical
Processing Units, together with the discovery of techniques that allow working with large
numbers of layers, have led to the creation of neural models capable of learning millions
of parameters to solve classification tasks of almost any nature; all this in the last 5 years
of research [18, 52, 51].

The solving of NER by Deep Learning techniques is based on representing the input
string as a sequence of embeddings obtained from a neural model. Although there are
many alternatives in this matter, the recent use of machine translation architectures such
as the Transformer [40] or the more recent BERT [11] stand out. This representation in
the form of a numerical vector, capable of accounting for semantic relations, is used as
an input for a network that generates a sequence of labels as output. These models can
make use of recurrent networks or pointer generation [27] to take advantage of contextual
information, although there are other more classical alternatives such as the use of a
multilayer perceptron [14] or conditional random fields [48].

Another component that is commonly used used alongside those already presented is
what are known as Language Models. These models allow the use of contextual informa-
tion during classification, forming a prediction about the next hypothesis from previous
hypotheses. Research on these models is linked to the world of Computational Linguis-
tics, although they have seen their application in a multitude of Machine Learning tasks.
Currently, one of the most widespread are the n-grams, whose operation is explained in
Chapter 3 of [21]. Neural approaches to Language Modelling have also been explored [4]
and have recently gained relevance [19, 25].

2.3 HTR and NER in historical texts

As we have seen, the goal of HTR is to obtain the transcription from scanned documents
while that of NER is to tag the Named Entities in digital text files. When trying to per-
form HTR and NER over scanned documents, the first approach that may come to mind
would be to first obtain the transcription and to then apply NER techniques over such
output to obtain the tagged digital text. The alternative to the sequential method is the
development of an end-to-end model that obtains the tagged output from the scanned
documents in one step.

Recent results indicate that the application of end-to-end models can improve the
performance on such task [8] by avoiding error propagation, which arises as a conse-
quence of the sequential approach. The cause for this type of error is the fact that the

8 State of the art

model which performs NER expects a clean input, similar to that with which it has been
trained. However, the output of the HTR process is not exempt from mistakes, hindering
the performance of the NER model. Such effect has also been seen in other tasks of similar
complexity. In [15], both speech recognition and NER are performed via an end-to-end
model, obtaining better results than those produced with a sequential implementation.

This trend also seems to manifest in the results previously obtained in the corpus
with which we are going to work. In [6], the "combined model" provides a stronger
performance than that of the sequential approach during the evaluation phase. Moreover,
the characteristics of the corpus are also thoroughly described there. This article is the
starting point for our work. Our first model will try to emulate the end-to-end approach
presented there. From then onwards, we will try to improve the obtained results.

CHAPTER 3
T heoretical foundation

In this chapter we will describe the theoretical foundation on which our work is based.
We will start by presenting the fundamentals of the employed architecture. Next, we
will go over the evaluation strategies that have been tried. Lastly, the error correction
strategies with which we have experimented will be explained.

3.1 HTR and NER via end-to-end modelling

3.1.1. Problem formulation

Before introducing the chosen approach to deal with the problem, it may be useful to
formalize its definition. First of all, it must be clarified that we are dealing with HTR at
line level: the input to our system is the image area corresponding to a line in the text.
The HTR problem may then be seen as the search for the most likely word sequence,
W = W1Ws...Wy, given the representation of the input line image: a feature vector sequence
X = X1X2...Xp,. This leads us to a search in the probability distribution p(w | x):

W = argmax p(w | x) (3.1)

If we consider the sequences of NE tags t = t1t;...t; related with the word sequence w
as a hidden variable in equation 3.1, we obtain the following equation:

W = argmax y_ p(w,t | x) (3.2)
w 7

By using Bayes’ rule to decompose the probability in terms of optical and syntactical
knowledge and approximating the sum to the maximal element, we get the following:

@ = argmax Y _p(x | w,t) - p(w,t) (3.3)
w f
A argmax max p(x|w,t)-p(w,t) (34)
w

From the equation 3.4 we can explicitly search for the most likely tagging sequence f
during the decoding process, resulting in:

(@,) ~ argmax p(x | w, t) - p(w, t) (3.5)

w,t

10 Theoretical foundation

If the information contained in t was added to the transcription, w, we would obtain
the tagged transcription h. The resulting equation 3.6 resembles that of the original HTR
problem, but taking into account that the hypothesis, &, to be generated is not only the
transcription, but also the best tagging:

h ~ argmax p(x | h) - p(h) (3.6)
h

3.1.2. Hybrid architecture

As we have mentioned in the previous formulation, we require a system that is capable
of estimating both the optical probability, p(x | 1), and the syntactical probability, p(h).
The chosen architecture employs a Convolutional Recurrent Neural Network (CRNN)
[54] to estimate the optical probability and a character n-gram to estimate the syntactical
one. Both models are combined following the approach presented in [5].

To give some insight on the behavior of the proposed model, we start by analyzing
the operation of the CRNN. The input to the optical model is a sequence of frames, x =
X1X2...X;, that is extracted from the text line to be transcribed. Each one of these frames,
x;, is processed sequentially by the convolutional part of the neural model, obtaining a
tensor, f(x;), of fixed dimensions. The operation of this convolutional block can be seen,
thus, as a data-driven feature extraction process.

This representation of the input frame, f(x;), is one of the two inputs to the succeed-
ing recurrent block, the other one being the output state from the previous frame, x;_;.
The recurrent block performs some linear operations with non-linear activation functions
to finally estimate the optical probability given the current frame. During the computa-
tion of the output for the following frame, x;, 1, the output state from the previous frame,
x;, will be used as an input, allowing the usage of past context in the computation of the
optical probability. To better visualize this concept, we show a graphical representation
in figure 3.1.

Input: text line (frames)

Output: probability vector sequence

Recurrent
block

Figure 3.1: Simplified representation of the CRNN architecture.

To further describe how the hybrid architecture works, we follow our explanation
with the analysis of the character n-gram language model. As we have mentioned, the
role that this component plays is the estimation of the syntactical probability p(h). This

3.1 HTR and NER via end-to-end modelling 11

syntactical probability can be decomposed by applying the chain rule, obtaining the fol-
lowing expression:

p(h) = p(h1) - p(ha | h1)..p(he | heq, .. 1) (3.7)
t
= [Tp(u | hix—1) (3.8)
k=1

However, the context that our model can handle is not infinite. To cope with this issue,
such probability estimate is approximated by considering the n — 1 previous characters
and tags. The resulting equation is:

t

p(h) ~ H P(hk ‘ hk—n+1:k—1) (39)
k=1

The previous equation is implemented via a Stochastic Finite State Automata (SFSA)
whose states are identified by the context being taken into account. The probability
to transit to different states from a given one corresponds with the probability p(hy |
hi_pi14-1). Figure 3.2 shows an example on how a 6-gram would operate on a HTR
problem.

p(< space >| hello)
hello

ello<space>

Figure 3.2: Simplified representation of a character 6-gram and its transition probabilities.

3.1.3. Training process

The training process of the presented architecture is structured in three parts which are
represented in figure 3.3. First of all, the CRNN is trained over the training samples using
the CTC loss function [17] and BackPropagation Through Time (BPTT) [53]. Then, the
transition probabilities for the character n-gram language model are estimated over the
transcriptions of the same training samples via Maximum Likelihood Estimation (MLE),
a process which is described in Chapter 3 of [21].

As both models are trained individually, additional parameters should be trained in
order to adjust the weight that we are giving to each classifier. To be more precise, we
will use two parameters: the Optical Scale Factor (OSF) and the Word Insertion Penalty
(WIP). The OSF serves the purpose of weighting the relevance of the optical model during

12 Theoretical foundation

the decoding. The WIP aims to ensure that the system is not biased towards shorter
hypotheses. This last parameter is required because the usage of a character model tends
to penalize longer hypotheses, as the probability of a given sequence of characters is
defined by the product of the probability of each of its elements, which are numbers
between zero and one. If we add those parameters to equation 3.6 and apply logarithmic
notation, the expression that we obtain is:

J ~ argmaxa -log p(x | h) 4 log p(h) —nQ (3.10)
h

Where 1 is the length of the output sequences, Q is the WIP and « is the OSE. Both
the OSF and WIP are estimated over the validation set, obtaining the combination that
delivers the best performance for such set. With the computation of those parameters,
the training process is concluded.

Validation set
Initial
CRAN C
model
Line
Training set images
/—\ \ 4
N Parameter Optimized Obtimized
L estimation (BPTT) CRNN Pamize
_ e 1) model OSF
'mages OSF and WIP
computation
/—\ Transition (3)
N~ probability Optimized
Line 7| | estimation (MLE) WIP
transcript. (2)
~— A Initial | | Initial
OSF WIP
Initial
character
n-gram

Figure 3.3: Representation of the training process and its three parts.

3.1.4. Viterbi decoding

When calculating the most probable transcription from the input signal, it is required to
perform a left-to-right analysis of that signal taking into account the different possible
outputs. However, when dealing with an exponentially growing number of hypotheses,
obtaining the output becomes an algorithmic problem that requires an efficient solution.
The solution to such problem is well known: the Viterbi algorithm [13].

The difficulty that arises from the usage of such algorithm is the memory consump-
tion, as we need to store partial results to recover the best output sequence. The solution
to this situation is a controlled sacrifice of the optimality by employing Beam Search [28].
The fundamental idea behind this decoding strategy is to periodically disregard those
partial hypotheses which are unlikely to be the optimal one by comparing them to the
current best partial hypothesis.

3.2 Evaluation metrics 13

3.2 Evaluation metrics

3.2.1. Character and Word Error Rates

The Character Error Rate (CER) and Word Error Rate (WER) are both based on the edit
distance concept and serve the purpose of measuring the similarity between two text se-
quences. More specifically, the CER is computed by calculating the Levenshtein distance
[55] between the hypothesis and the ground truth sequence at character level and di-
viding it by the length of the ground truth sequence, thus measuring the character-level
error. By considering i., sc and d. as the number of insertions, substitutions and deletions,
respectively, and n.(t) the length of the target sequence, the CER between the hypothesis,
h, and the target sequence, t, can be expressed as:

i.+s.,+d. _ D¢(h,t)
ne(t) ne(t)

The calculation of the WER is similar to that of the CER, the only difference being
that the minimal unit of information is the word in this case. Therefore, the Levenshtein
distance is calculated by considering the edit operations at word level and dividing it
by the number of words in the ground truth sequence. This metric is notoriously more
pessimistic than the CER, as a word with a single character error is considered a mistake
upon comparison with the target. If we consider iy, s, and dy, as the number of inser-
tions, substitutions and deletions, respectively, and 14(t) the number of words in the
target sequence, the WER between the hypothesis, /1, and the target sequence, t, can be
expressed as:

CER(h,t) = (3.11)

iw+5w+do Dy(ht)
1y (t) (b

The usefulness of these metrics on the evaluation of the combined HTR and NER
problem is debatable. It is clear that the edit distance can be used to compare two se-
quences of text. In our case, however, the focus does not rely on the quality of the tran-
scription as a whole. Rather, the target is to identify the Named Entities correctly. The
tags being employed are mere characters for the computation of the CER and the WER.
As such, both metrics cannot evaluate the syntactical correctness of the output, thus lim-
iting their usefulness on the evaluation of the proposed solution. Then again, we will still
use the aforementioned metrics to compare our work to that of [6].

WER(h,t) = (3.12)

3.2.2. Precision, Recall and F1-Score

As we have seen, we cannot fully evaluate the system in terms of CER and WER. The
next step in the evaluation process is, thus, to consider a more specific metric that can
take into account the syntactical correctness of the output. The approach that is followed
starts with the extraction of the Named Entities from each of the hypothesized tagged
transcriptions and the ground truth ones. The result is a collection of files with just the
detected Named Entities for each one of the lines, disregarding the rest of the transcrip-
tion. With such information we can compute the Precision, Recall and F1-Score for the
whole corpus. Such metrics require the computation of the number of True Positives
(TP), False Positives (FP) and False Negatives (FN).

To calculate the number of TP and FP, we can explore the hypothesized Named Entiti-
ties from each line and compare them to their ground truth counterpart. If a hypothesized
Named Entity is present on the ground truth file, then it is considered a TP. Otherwise,

14 Theoretical foundation

itis a FP. A different way to calculate the TP would be to inspect the Named Entities in
the ground truth lines and to check if they are present in the corresponding hypothesis.
A Named Entity which is present in a reference file and not in the output of the system is
considered a FN. To better visualize this computation, we propose the representation in
figure 3.4.

True Negatives

Hypothesized Reference
Named Entities = Named Entities

Figure 3.4: Representation of the computation of the TP, FP and FN for a single line.

Knowing the number of TP, FP and FN we can, then, calculate the Precision, Recall
and F1-Score with the following equations:

TP TP P-R
P=7pymp "T1preNn TP PR (3.13)
As we can see, these metrics evaluate the performance of the system based on the
detected Named Entities. However, their usage has some drawbacks worth mentioning.
Firstly, order constraints are not being considered. If a Named Entity appears originally at
the beggining of the sentence and, for some unknown reason, is hypothesized to appear
at the end of the sentence, it would be considered as a TP.

Secondly, the number of appearances of a Named Entity cannot be easily taken into
account with this computation. To give an example, consider that a proper name appears
originally one time in a line and that it is hypothesized that it appears a total of three
times. In such a case, we may decide to account for three TP or just one, depending on
the approach we follow to calculate them.

Lastly, there is also an issue regarding the strictness of the metric. A single character
error in the transcription of a Named Entity would lead to consider it as a FP. Even if it
is theoretically true that it is a mistake and that such Named Entity was not detected cor-
rectly, we may still be able to make use of those mistakes in the expected final application
of the system. By applying approximate search [2] in a document collection, we should
be able to retrieve those documents with small transcription mistakes.

3.2.3. Lenient and Strict

The drawbacks that arise with the evaluation of the system in terms of Precision and
Recall have motivated the research in alternative evaluation strategies. The considera-
tion of the Lenient and Strict [3] metrics, which were originally employed for Dialog Act
Segmentation evaluation, is the next step in our search for an adequate metric.

3.2 Evaluation metrics 15

In order to explain how both metrics work, we present figure 3.5. In this example we
see how the sequence is tagged in the reference and in the output of the system, resulting
in a sequence of dialog acts. The Lenient metric marks as correct the tags in the output
that match the reference, independently of how the boundaries for its Dialog Act were
set. The Strict metric, on the other hand, only marks as correct the tags in the output
that match the reference and that belong to Dialog Acts with the same boundaries as the
reference.

Reference: B|S S S|D D DI|IB|Q Q]
System: S|S S S S S|B BIQ QI
“Lenient’: E C CCEEECCC
“Strict’: E EEE E E E E C C

Metric |Errors Ref. Units |Error
“Lenient” |4 match errors | 10 words 40%
“Strict” |8 match errors |10 words 80%

Figure 3.5: Comparison between the Lenient and Strict metrics. Figure taken from [3].

The Strict metric takes into account the alignment of the output by considering the
boundaries, which is a desirable property in the evaluation of our system. The imple-
mentation of these metrics, however, is not exempt from difficulties given the structure
of the system output. First of all, the lengths of the reference and the system output do
not match. Secondly, the expected output can have nested Named Entities. This poses
an additional problem, as we would need to expand the number of possible categories to
accommodate for this.

Overall, the metrics seem to incorporate some of the semantics that we would like to
take into account. However, the translation of these metrics to our particular case is not
immediate. As such, we have chosen to discard the direct usage of these metrics and to
take inspiration from them to implement our own evaluation metric.

3.2.4. Entity CER and Entity WER

We have seen the advantadges that the Lenient and Strict metrics have, as well as the
difficulties that arise when trying to employ them in the evaluation of the combined task.
We have shown, as well, that the Precision and Recall are not exempt from drawbacks
when it comes to the evaluation of the combined task. In order to face the drawbacks
that were mentioned, a new evaluation metric is proposed. Such metric is based on the
edit distance concept and it will evaluate the performance of the system via an analysis
of the extracted Named Entities line by line, as it happened during the computation of
both Precision and Recall.

More specifically, for each line of the testing corpus we are going to calculate the
distance between the hypothesized Named Entities and the reference ones. This dis-
tance will be calculated similarly to how the CER and WER are calculated, except that in
this case the minimal unit of information is a Named Entity, not a character nor a word.
The edit operations that will be considered are the insertion, deletion and substitution of
Named Entities. The associated cost to each of the operations can be expressed as:

16 Theoretical foundation

1, j) (3.14)
D(i,) = -
. 2 if E; # E;
s = i] 3.16
CER(Z]) {2-CER(T1', T]-) otherwise ()
o 2 if E; # E;
S = i] 3.17
wer (i) {2 -WER(T;, T;) otherwise 17

The cost of both the insertion and deletion is set to one. The cost of the substitution,
however, depends on several factors. First of all, if the type of Named Entities being
compared do not match, E; # Ej, the cost is 2: an absolute error of equal cost to an
insertion and a deletion. Otherwise, the cost of the substitution depends on the similarity
of the transcriptions. Such similarity can be the saturated CER or the saturated WER,
depending on how strictly we want to evaluate the performance of the system. In any
case, the cost of the substitution will be a value contained in the range [0, 2].

If we consider a matrix of size (|t| + 1) x (|h]| + 1), the Entity CER (ECER) or Entity
WER (EWER) between two Named Entity lists is the cost of the best path that starts in
positioni = j = 0 and ends in i = |t|,j = ||, being |¢| the length of the reference Named
Entities’ list and |h| the length of the hypothesized one. The ECER is calculated according
to the following recursive equation:

ECER(h,t) = Ccer(|t], [1]) (3.18)
(iifj =0
jifi =0

Ccer(i,j) = D(i,j) +C(i,j—1) (3.19)

min ¢ I(i,j) +C(i —1,))
Scer(i,j)+C(i—1,j—1)

The EWER is calculated in a similar fashion, the difference being the consideration
of the WER for the cost of the substitution. Figure 3.6 shows how the EWER could be
calculated for an artificial sample. The recursive equation for the computation of the
EWER is as follows:

EWER(h,t) = Cwer(|t], |h]) (3.20)
iifj =0
jifi=0

Cwer(i,j) = D(i,)+ C(i,j—1) (3.21)

min ¢ I(i,j) + C(i — 1,7)
Swer(i,j)+C(i—1,j—1)

3.2 Evaluation metrics 17

<persName> . .
Antonio 4 45 3.5 25 Inssortsli)z \;VIth
</persName> T
<date> | I .
April 14th 3 35 25 15 Subitcl)t:ttf%wnh
</date>

<placeName>
Valencia 2 25 1.5 2.5
</placeName>

Substitution with
cost=0

<persName> Mario, born in
<placeName> Valencia 1 15 25 3.5
</placeName> </persName> /

Substitution with
cost=1,5

Ground

truth 0 1 2 3 Base case

<persName> <placeName> <date>
Mario, Valencia April 14th
</persName></placeName> </date>

System
output

Figure 3.6: An example on how the EWER is calculated. Note that the best sequence of edit
operations is indicated by arrows.

To better understand how the metric is computed in this particular case, we will an-
alyze each of the edit operations in the optimal sequence of operations. The first opera-
tion that is considered is the substitution of the first detected Named Entity for the first
Named Entity in the reference. As both of them have the same tags, the cost of the op-
eration is twice the WER, which is calculated by comparing the text contained in each
Named Entity. The following operations in the optimal path are substitutions without
cost, as both the tagging and the text of the Named Entities match. The final operation
is to insert the Named Entity "<persName> Antonio </persName>", which was not de-
tected by the system. This operation carries a cost of 1. As we can see, the best sequence
of edit operations leads us to an EWER of 2.5.

In order to evaluate the performance of the model with several samples, we need to
extend the definition of the metric. To tackle this issue, we perform a weighted average
over each of the lines, /, of the testing corpus, C, by considering the associated hypothesis,
h;, and the reference, ¢;:

~ Yec ECER(hy, ty)

ECER(C) = 3.22
(C) Yuec ||+ |t] 422

Yjec EWER(hy, t)
EWER(C) = 3.23
e S E ¢2)

By definition, the proposed metrics deal with some of the drawbacks that the F1-
Score presented. Firstly, these metrics consider the order in which the Named Entities
appear during the computation of the score for each hypothesized line. Secondly, the
number of appearances is also taken into account during the computation of said score,
as having more cases of a Named Entity in the output will result in a higher number of
deletion operations. Lastly, the strictness of the metric can be adjusted by considering
the CER or the WER for the cost of the substitutions. In case of using some kind of
approximate search technology for the document database, we may opt to employ ECER
for the evaluation of our system.

18 Theoretical foundation

3.3 Error correction

3.3.1. Error types

Before introducing the error correction strategies with which we have experimented, it
may be convenient to perform a slight analysis of the type of errors that the system can

produce. To this end, we present table 3.1.

Ground truth System output Type of error
Th i ifi
<placeName>Home e system identified
Home </placeNames> an entity when there
P should be none.
<persName>Asuncién . The system missed
Asuncién .
</persName> an entity.
. . Th t igned
<persName>Asuncion <placeName>Asuncién ¢ system assighe

a wrong label to an
</persName> </placeName> .

entity.

Th t t th
<persName>Maria <persName>Maria 9: S},Is em g0 . ©

. entity’s boundaries
Asuncién </persName> | </persName>

wrong.

The system assigned
<persName>Maria <placeName>Maria a wrong label to an
Asuncién </persName> | </placeName> entity and missed its

boundaries.

Th t btained
<persName>Maria <persName>Maria ¢ system oblaine

Asuncién </persName>

Gonzélez </persName>

a transcription with
mistakes.

<persName>Maria,
born in <placeName>
Spain </placeName>

<persName>Maria,
born in <placeName>
Spain </persName>

The system did not
close correctly the
nested tags.

</persName> </placeName>
<persName>Marfa / The system did not
<persName>Maria. close an open tag
</persName>. . .
upon line ending.
. A tag was closed
<date>April 14th April 14th </date> without a matching

</date>

opening tag.

Table 3.1: Types of errors to be expected in the produced output.

The system must be able to tolerate nested Named Entities as well as avoiding in-
curring in several decoding mistakes. However, these errors are not the only ones to
account for. Via an analysis of the training and validation data, we observed that nested
Named Entities follow specific structures. What we found was that two tags of the same
type could not be nested one inside the other. As an example, a sequence that resem-
bled something like "<placeName> ... <placeName> ... </placeName> </placeName>"
would be impossible to find. Therefore, we decided to consider the production of these
type of structures as a mistake.

The error correcting strategies that we have designed and implemented try to amend
some of the errors that were listed. More specifically, we will try to identify sequences
that are syntactically wrong and correct them. As such, we will only deal with cases of

3.3 Error correction 19

incorrect closing of nested tags, tags that remain opened upon line ending, tags that were
closed without a matching opening tag and sequences of nested Named Entities of the
same type.

3.3.2. Heuristic approach

The first approach that may come to mind when trying to deal with syntactical errors
would be to use Regular Expressions to search for erroneous structures and substitute
them with the correct ones. Such approach may appear as valid as the language of the
expected output is regular, having all nested Named Entities following specific structures
that can be identified. However, the language of the actual output could be of greater
complexity. As such, we would require a sizeable collection of regular expressions to
identify each and every type of error; even in that case, the solution would be susceptible
to erroneous structures which were not identified during the implementation.

A slightly more elegant solution would be to have some kind of algorithmic method
that would be able to, by analyzing the output, identify the errors and apply corrections
where needed. In this work, we attempted to implement such method by doing a left-to-
right analysis on the output with an auxiliary stack to store state information.

To give an intuition on how the proposed method works, we give an example of its
operation in figure 3.7. Note that the errors are detected by inspecting the state of the
stack, and that the error correction strategy depends on the type of error being detected.
If no error was detected, the method would produce the same output as its input line.
Even if the proposed method is built to work with lines of text, it should be able to deal
with whole paragraphs by construction.

This </date> is an example. <persName> Jhon, born in
<placeName> Valencia </persName> </placeName> died <date> April 14th. \n

</date>
Stack
Correction strategy: ignore the closing of tags that are not opened
<placeName>
<persName>
</persName> Stack
Correction strategy: close the rest of the stack, in order, before closing the current one.
</placeName>
Stack
Correction strategy: ignore the closing of tags that are not opened
<date>
Stack
Correction strategy: close the remaining tags in the stack before a "." symbol.
Stack

Figure 3.7: An example on how the stack error correction operates, step by step.

However, this method is not exempt from errors. While its application appears promis-
ing, being theoretically able to amend some of the syntactical mistakes, the experimen-
tation has revealed a degradation in system performance with the usage of this method.
The possible reasons for this will be revealed in chapter 5.

20 Theoretical foundation

3.3.3. [Exploration of the n-best hypotheses

A different approach to try and improve the performance of the system would be to
forgo additional error correction over the output and, instead, to improve the decoding
process by including the restrictions of the desired output. The main idea here would be
to force the system to extract hypotheses which are syntactically sound via an analysis of
the output, operating with an auxiliary stack similarly as done before. However, in this
case we do not correct the wrongful hypotheses, we discard them instead and search for
correct hypotheses in their place.

The way in which such idea is implemented is simple. Instead of obtaining the best
hypothesis during the decoding phase, we obtain a graph containing a sizeable number
of hypotheses. This graph is called Lattice and it can be directly obtained with the usage
of Kaldi.! This graph can be pruned to obtain a smaller version containing only the n-best
solutions, n being a parameter which we can adjust. From this reduced Lattice we can
directly obtain the sequence of the n-best hypotheses for an input line.

The decoding process for a specific line, /, starts with an ordered exploration, from
the best hypothesis to the n-best. In such exploration, each hypothesis is evaluated in
a process similar to the stack error correction. More specifically, the strategy consists
of doing a left-to-right analysis with a stack that represents the state of the hypothesized
Named Entities to detect syntactical errors. In other words, a hypothesis is valid when the
output from the stack error correction matches the input. In case of finding an error, the
i-best hypothesis is disregarded and the exploration continues. This search for the best
valid hypothesis concludes when a hypothesis is found such that no error was detected
via the stack error detection.

It may also happen that, during the search, no valid hypothesis is found. This is an
exception that will happen less often as the parameter n increases, but it should still be
considered. In those cases, the applied policy will be to keep the 1-best hypothesis as
the selected output. Other policies, such as selecting the hypothesis which would require
the least amount of corrections via the stack error correction method, may be considered.
However, for consistency reasons, we are going to favor simplicity in the implementation.

The result of the customized decoding process will be the best valid hypothesis for
each of the lines or, in case of not having found any correct output, the one with the
most confidence. This error correction strategy differs from the previously mentioned
one because it includes the structural requirements during the decoding process, instead
of relying on the correction of the best hypothesis.

To give an intuition on how the syntactic requirements influence the decoding pro-
cess, the effect is similar to interpolating the probabilities of the hypotheses with a Stochas-
tic Context-Free Grammar (SCFG) learned from the training data. Such SCFG would give
better probabilities to valid hypotheses, while lowering the probabilities for syntactically
wrong outputs. This variation in probabilities would make the system prioritize valid
outputs while still taking into account the probability that was estimated by the com-
bined model, which is the same effect that the proposed n-best decoding has.

1Kaldi’s documentation is available at: http://kaldi-asr.org/doc/

http://kaldi-asr.org/doc/

CHAPTER 4

Experimental setup and obtained
results

4.1 Experimental setup

4.1.1. Description of the corpus

Our experiments have been carried out on a corpus of handwritten medieval charters,
which was presented and thoroughly described in [6]. This corpus consists of 499 letters
written by different authors in three different languages: Latin, Czech and German. Even
though the letters date from 1145 to 1491, their ink and paper are well preserved as we
can see in figure 4.1.

Figure 4.1: Scanned version of one of the available Czech charters.

21

22 Experimental setup and obtained results

As we have previously mentioned, the way in which the HTR and NER task is going
to be carried out is via a combined model which performs both processes in one step.
In order to train such model, we need data that contains both the transcriptions and its
associated tags that identify the present Named Entities. This corpus has such kind of
data available, as it can be seen in figure 4.2.

@-%&-_&mw ¥ omgetf 30 GoamSenBog— o . Ltmezpere G b 3 B ey et Brion B cqpmon
Wir <persName> Woldmar von Gots gnaden margraf ze <placeName> Brandenburg </placeName> und zu <placeName>
Lantzperch </placeName> </persName> enbiten allen herren, mannen, rytteren, knechten, steten, purgern,

Figure 4.2: A single extracted line and its reference tagged transcription.

In order to be able to compare our work to that of the state of the art, the experiments
should be carried out on even ground. For that reason, we are going to train and evaluate
our models with the same partition scheme that was presented in the original work.
Therefore, the available data is split into three parts: a training set containing 80% of
the charters, a validation set with a 10% of the letters and a testing set with the remaining
10% of the samples. The details on how the data is partitioned are shown in table 4.1.

Number Czech | German | Latin All
pages 161 138 99 398
Train lines 2,905 2,556 | 1,585 7,046
tokens 52,708 60,427 | 28,815 | 141,950
N. Entities | 4,973 6,024 | 2,809 | 13,806
pages 21 18 12 51
Validation lines 300 252 150 702
tokens 5,997 5841 | 2,467 | 14,305
N. Entities 440 461 188 1,089
pages 20 17 13 50
Test lines 381 388 229 998
tokens 6,891 9,843 | 3,995 | 20,729
N. Entities 467 744 295 1,506

Table 4.1: Experimental dataset split, equal to that proposed in [6].

Throughout the entirety of the corpus, we can only find three types of Named Entities:
the name of a person, the name of a place and a date. As such, the model must be able to
generate the corresponding opening and closing tags for each type of Named Entity. The
number of different syntactical structures that can be generated, however, is potentially
infinite due to the appearance of nested Named Entities.

During previous experimentation, the authors assumed two important simplifica-
tions over the original problem. First of all, Named Entities spanning over different lines
(continued Entities) were split so that their apparitions are always contained within sin-
gle lines. The other assumption regarded nested Named Entities. In this case, the authors
decided to remove the nested entity. As an example, a date contained within a proper
name would have its tag removed, so that there is no nesting.

Our work is based on a combined model that works at line level. Therefore, we are
going to maintain the simplification assumed in the original work which consisted of
splitting the continued Entities as not doing so would lead to a noticeable performance
decrease. However, we are going to forgo the other simplification and try to deal with
nested Named Entities. Our reasoning for this choice is that the combined model should

4.2 Obtained results 23

be capable of dealing with this kind of structural complexity without compromising the
performance.

4.1.2. Description of the chosen model

The employed architecture is based on the combined approach that was used in [6].
Therefore, we scale the line images to a height of 64 pixels and apply contrast enhance-
ment and noise removal as described in [49]. No additional preprocessing is applied to
the input.

The optical model consists of a CRNN with four convolutional layers, where the n-th
layer has 16n 3 x 3 filters, and a LSTM unit of three layers of size 256 plus the final layer
with a Softmax activation function. The values for the rest of the hyperparameters are
the same that were used in [37]. Such model is implemented and trained with the PyLaia
Toolkit [31].

The employed language model is a character 8-gram with Kneser-Ney back-off smooth-
ing. The estimation of its probabilities is done with the SRILM Toolkit [47] by considering
the tagged transcriptions in the training partition.

Both the CRNN and the character 8-gram are combined into a Stochastic Finite State
Automata (SFSA) with the Kaldi Toolkit [36]. The OSF and WIP are, then, adjusted over
the validation partition with the usage of the Simplex algorithm provided by the SciPy li-
brary.! Finally, the resulting SFSA is used to obtain the hypothesized tagged transcription
for each line in the test partition.

4.2 Obtained results

Table 4.2 shows the best results obtained with each approach. Note that the first column
corresponds to the previous results, which were taken as a reference for the implementa-
tion of our model. Therefore, it is impossible to evaluate the system with the proposed
ECER and EWER metrics. The second column reports the results obtained with our ver-
sion of the combined approach. The third and fourth column show the results obtained
with the application of the error correcting strategies.

. Combined Combined
Boros, Combined
. model model
Metric Emanuela model
+ stack error | + 2500-best
etal. [6] (nested NEs) . .
correction decoding
CER (%) 8.00 +1.68 9.23 +1.80 10.38 £1.89 9.24 +1.80
WER (%) 26.80 +2.75 | 28.20 £2.79 3294 +2.92 | 28.14 £2.79
Precision (%) | 49.25 +3.10 | 43.14 +3.07 31.48 +2.88 | 40.05 +3.04
Recall (%) 37.08 £3.00 | 37.58 +3.00 31.54 +2.88 | 39.97 £3.04
F1 (%) 42.30 +£3.07 | 40.17 £3.04 31.51 +2.88 | 40.01 £3.04
ECER (%) - 31.94 +2.89 34.70 £2.95 | 28.69 +2.81
EWER (%) - 46.62 £3.10 56.46 +3.08 | 44.42 +3.08

Table 4.2:

dence intervals.

Reference results and evaluation scores of the best proposed models, with 95% confi-

IThe documentation for the employed Simplex implementation is available at: https://docs.scipy.
org/doc/scipy/reference/optimize.linprog-simplex.html

https://docs.scipy.org/doc/scipy/reference/optimize.linprog-simplex.html
https://docs.scipy.org/doc/scipy/reference/optimize.linprog-simplex.html

24 Experimental setup and obtained results

As we mentioned earlier, the exploration of the n-best hypotheses introduces a new
parameter to adjust. In our experimentation, we have evaluated the effect that this pa-
rameter has by giving it different values and testing the performance of the resulting
system. Such performance has been tested with each metric that has been presented,
even though our focus is to optimize the proposed ECER and EWER metrics. Figures 4.3,
4.4 and 4.5 show the evolution of the different metrics with respect to the value of n.

Evolution of WER / CER with n
35.00

30.00 T

)—T—

25.00

20.00

—o— WER
15.00 CER

o

5.00 : : :
1 10 50 100 500 1000 2500 5000 10000
Number of considered hypotheses (n)

Score (%)

Figure 4.3: Evolution of CER and WER with different values of n. For each point in the plot the
95% confidence interval is shown.

Evolution of Prec. / Rec. / F1 withn
44.00

43.00 %

42.00 \

3 41.00 \\‘N

o —o— Prec.

3 40.00 = —

2 ——F1
39.00

/I/ —m— Rec.
38.00

37.00

1 10 50 100 500 1000 2500 5000 10000
Number of considered hypotheses (n)

Figure 4.4: Evolution of Precision, Recall and F1-score with different values of n.

4.2 Obtained results 25

Evolution of EWER / ECER with n

55.00
50.00
4500 -
S
¢ 40.00
5 —+—EWER
% 35.00 ECER

30.00 - I % % %TT

1 10 50 100 500 1000 2500 5000 10000
Number of considered hypotheses (n)

N
&
o
S

Figure 4.5: Evolution of ECER and EWER with different values of n. For each point in the plot
the 95% confidence interval is shown.

CHAPTER 5
Discussion

During the design and implementation of the proposed solution, the possible effects of
the proposed strategies were mere hypotheses. After the experimentation phase, some of
those hypotheses have been discarded while others have been verified. In this chapter,
we present the main ideas that can be deduced from the obtained results.

While we initially thought that the combined model would be able to deal with the
increase in complexity due to the consideration of nested Named Entities, the results that
were presented in table 4.2 show the contrary. There has been an important drop in per-
formance in almost every metric which was considered in the previous work, although
not a statistically significant one.

Our first attempt at improving the performance of the combined model has been to
perform heuristic error correction. The idea behind this error correcting strategy is sim-
ple and seemingly well reasoned. However, the strategy fails at improving any of the
proposed evaluation metrics.

The increase in both CER and WER with the usage of this correction strategy is due
to the fact that we are adding additional symbols to the output of the system. While such
symbols help guarantee the syntactical correctness of the output, the best hypothesis of
the system did not have them for a reason. By adding those symbols, we are generating
a much less likely output or, rather, a more error-prone one.

The decrease in Precision, Recall and F1 score is related to the mentioned fact, as
well as to the process in which the Named Entities are extracted from the output. In such
process, the Named Entities which were not properly opened or closed were disregarded,
serving as some kind of error correction strategy. The results reveal, then, that ignoring
the erroneous tagging in the output leads to better results than those obtained with active
correction. The increase in the proposed ECER and EWER metrics is related to the same
fact: the consideration of supposed Named Entities which the system could not properly
tag.

The other strategy that we implemented is to consider the syntactical constraints dur-
ing the decoding phase by obtaining the best valid transcription from a list containing
the n-best hypotheses for each line. Our initial thought was that, by design, choosing
less likely hypotheses would compromise the quality of the transcriptions in exchange
for better ECER and EWER.

The obtained results show that that is not the case. In figure 4.3, we saw how there
were slight variations in CER and WER with the increasing of #, but nothing significant.
It turns out that the differences between the hypotheses are minor, as we can see in figure
5.1, and the transcription errors that may happen due to the consideration of a less likely
hypothesis end up being offset by the imposition of correct tagging.

27

28 Discussion

<persName>Woita otewec Ugolt, Ruda<placeName>Pocimus</persName>. Si qua in futurum
ecclesiastica sclarisue persona in factum irritum facere temptaverit, vinculo

<persName>Woita otewec Ugolt, Ruda Pocimus</persName>. Si qua in futurum ecclesiastica
sclarisue persona in factum irritum facere temptaverit, vinculo

Figure 5.1: Differences between the most likely hypothesis and the 11-best hypothesis, which is
syntactically correct, in one of the test lines.

It is worth mentioning that, in figure 4.4, we saw how, with the increasing of n, the
Precision worsened while the Recall kept increasing, both in a logarithmic fashion. Even
if such difference is not statistically significant given the confidence interval that is being
considered, it may be interesting to identify the cause for such trend.

The reason behind this trade-off is that the increase in the number of considered hy-
potheses, 1, results in a noticeable increase of the number of Named Entities tagged by
the system. With such increase, both the number of True Positives (TP) and False Posi-
tives (FP) rise, the second one at a faster rate than the first. As a consequence, Precision
drops and Recall rises. The F1 score, however, does not vary significantly.

This evolution in the number of tagged Named Entities has its repercussion when we
consider the proposed ECER and EWER metrics. In figure 4.5 we can see how there is an
improvement in the performance of the system with both metrics. It must be mentioned,
however, that such improvement is not statistically significant considering a 95% confi-
dence interval. The usage of a bigger test partition may reveal the significance of such
improvement.

There are two reasons for this increase in performance in both metrics. Firstly, we
have seen an increase in the number of TP. Perfectly recognized Named Entities are
greatly rewarded in the proposed metric by being substitutions with no cost. Moreover,
the increase that we saw in FP may not be harmful to the quality of the hypotheses. Some
of the Named Entities considered as FP may be correctly tagged and have small character
errors. Such cases qualify as beneficial for the performance of the system as long as the
CER or WER of the transcription is lower than 0.5, depending on the metric being used.

The decrease in ECER and EWER is logarithmic with respect to the increase of 7, as
we can see in figure 4.5. Logarithmic increases in performance were also spotted in the
evolution of the Recall. To understand the reason behind this trend, we performed an
analysis of the behavior of the system as the parameter 7 is increased.

The way in which such analysis was conducted is by recording, for each of the test
lines, the index of the hypothesis which was selected as the output of the system. If the
most likely hypothesis was the one being chosen because no valid hypothesis was found,
the recorded index would be a 0, in contrast with the 1 that would be recorded if the
1-best hypothesis was valid. Having such data available, we calculated the frequency for
each of the indexes and generated the histograms which can be seen in figures 5.2 to 5.6.

As we can see, by relying on the classical 1-best decoding, the system produces 248
syntactically incorrect outputs. With the usage of bigger values of 1, the number of incor-
rect outputs decreases at a logarithmic rate. This trend justifies the logarithmic evolution
that we have seen on the different evaluation metrics.

29

Index frequencies (1-best)

1000

300

600

e
o
o

Number of cases

o
o
(e

0 1

Index of the chosen hypothesis

Figure 5.2: Frequency histograms of the indexes of the hypotheses with 1-best decoding.

Index Frequencies (10-best)
1000

800

600

Number of cases
e
)
S

Lo
o
o

3429 6 20 6 8 3 6 3

o 1 2 3 4 H 6 T 8 9 10
Index of the chosen hypothesis

Figure 5.3: Frequency histograms of the indexes of the hypotheses with 10-best decoding.

30 Discussion

Index frequencies (100-best)
1000

800

600

100

Number of cases

200

3 8 3 3 3 3 5 2

QD .0 N N O 0 O 0 NN 0 D
DD DS R D DS
NIRRT Y T W

Index of the chosen hypothesis

Figure 5.4: Frequency histograms of the indexes of the hypotheses with 100-best decoding.

Index Frequencies (1000-best)

1000

800

600

100

Number of cases

200

32 3 5 3 4+ 2 0 3 1 0

R P PP DO E®
NS SO HSHSS

VA P VI8N
A S N
Index of the chosen hypothesis

Figure 5.5: Frequency histograms of the indexes of the hypotheses with 1000-best decoding.

31

1000

800

600

100

Number of cases

200

Index Frequencies (10000-best)

Index of the chosen hypothesis

Figure 5.6: Frequency histograms of the indexes of the hypotheses with 10000-best decoding.

CHAPTER 6

Conclusions

In this chapter we summarize the information contained in each of the previous chapters
of this document. We also perform a revision on the objectives that we listed, judging
if they have been met and to which degree. Lastly, we propose some possible ways to
expand the presented work.

6.1 Summary by chapters

In the first chapter we have presented the reasons that have prompted us to develop a
combined system for the simultaneous HTR and NER task. Morever, we have motivated
the choice for the corpus with which we have worked. In this chapter we have also listed
the different objectives that we wanted to accomplish.

Afterwards, we have contextualized our work by presenting the current approaches
being used in HTR and NER, as well as the previous work done in the combined HTR
and NER task with the chosen corpus. With this chapter we have given some reasoning
as to why we have chosen the combined model as the starting approach.

In the third chapter, we have briefly described the theoretical foundation on which
the proposed solution is built. In this chapter we have also presented some of our contri-
butions: the ECER and EWER metrics and two simple correction strategies.

In the fourth chapter we have presented with more detail the chosen corpus and de-
scribed the experimental setup with which we have worked. Following such description,
we have shown the results that were obtained with the experimentation.

Finally, in the fifth chapter we have analyzed the results and presented some of the
main takeaways that arise from such discussion. We also mentioned how the error correc-
tion strategies could be seen as a real improvement over the performance of the combined
model alone.

6.2 Accomplished objectives

We consider that we have successfully developed a combined model that is capable of
performing HTR and NER over the chosen corpus, which was one of the objectives that
we wanted to meet. The combined model obtains acceptable results by itself and repli-
cates the architecture employed in previous experimentation.

The performance of such model has been adequately compared with that of the state
of the art for the given corpus. Our experimentation shows that the performance of our

33

34 Conclusions

implementation is slightly worse than the reference model. Then again, we are working
on a slightly more complex task by not considering one of the simplifications that was
made, as we already mentioned.

Another goal that we set was the design and implementation of a new metric that
took into consideration the characteristics of the task. We believe that the proposed ECER
and EWER metrics are valuable metrics to be employed in the evaluation of combined
HTR and NER tasks, given their definition. Thus, we believe that this objective has been
completed as well.

The last objective that we set was the improvement of the initial model with regard
to the proposed metrics by using additional techniques which did not alter the structure
of the system. The proposed stack error correction strategy proved to be unsuccessful
for the reasons that we mentioned in chapter 5. The n-best decoding, on the other hand,
improved the performance of the system by adding syntactical constraints in the decod-
ing process. We, however, cannot state that the mentioned objective has been met as the
usage of the n-best decoding technique introduces additional processes to the pipeline
that is used to produce the system output.

6.3 Future work

There are many ways in which to expand the presented work. One of them would be to
perform a more exhaustive experimentation, trying out additional configurations of the
system in order to improve the results. The number of layers in the convolutional part of
the neural network, as well as the number of filters in each layer, are different parameters
of the optical model that could be varied. For the language model, we could increment
the number of symbols that are considered as part of the context. Regarding the n-best
decoding technique, a more exhaustive search for the local optimum may be conducted
with values of n ranging from 1000 to 2500.

Another possible approach to improve the presented work is to forgo the simplifica-
tion that was assumed regarding continued Named Entities. In short, the simplification
consisted of splitting the Named Entities which spanned over different lines. If we opted
to, instead, keep the tagging as in the original problem, we may need to switch the focus
from line-level decoding to paragraph-level to obtain acceptable results. To this end, we
could consider the technique presented in [46], which was mentioned in Chapter 2.

Another extension of the work would be to employ the presented architecture in other
corpora to measure the robustness of the system. This could add the problem of having
additional types of Entities for which we would have to train the combined model. In
any case, it could be useful to test the performance of the n-best decoding in similar tasks
to see if the results match the tendencies that we spotted during our experimentation.

The application of the combined model as the automatic transcriber and tagger in the
construction of a linked collection of documents would be a far more ambitious project.
However, before being able to utilize the combined model, it would be necessary to for-
mally describe how such collection would operate and to implement such concept.

Bibliography

[1] Albawi, S., T.A. Mohammed, and S. Al-Zawi: Understanding of a convolutional neural
network. In 2017 International Conference on Engineering and Technology (ICET), pp.
1-6,2017.

[2] Andrés Moreno, J.: Approximate search for textual information in images of historical
manuscripts using simple reqular expression queries. Degree’s thesis, Universitat Politec-
nica de Valéncia, 2020.

[3] Ang, J., Y. Liu, and E. Shriberg: Automatic dialog act segmentation and classification
in multiparty meetings. In Proceedings.(ICASSP’05). IEEE International Conference on
Acoustics, Speech, and Signal Processing, 2005., vol. 1, pp. I-1061. IEEE, 2005.

[4] Bengio, Y., R. Ducharme, P. Vincent, and C. Janvin: A neural probabilistic language
model. The journal of machine learning research, 3:1137-1155, 2003.

[5] Bluche, T.: Deep Neural Networks for Large Vocabulary Handwritten Text Recognition.
PhD thesis, Université Paris Sud-Paris XI, 2015.

[6] Boros, E., V. Romero, M. Maarand, K. Zenklov4,]. Kfeckov4, E. Vidal, D. Stutzmann,
and C. Kermorvant: A comparison of sequential and combined approaches for named en-
tity recognition in a corpus of handwritten medieval charters. In 2020 17th International
Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 79-84. IEEE, 2020.

[7] Cai,]., L. Peng, Y. Tang, C. Liu, and P. Li: Th-gan: Generative adversarial network based
transfer learning for historical chinese character recognition. In 2019 International Confer-
ence on Document Analysis and Recognition (ICDAR), pp. 178-183. IEEE, 2019.

[8] Carbonell, M., M. Villegas, A. Fornés, and J. Lladéds: Joint recognition of handwritten
text and named entities with a neural end-to-end model. In 2018 13th IAPR International
Workshop on Document Analysis Systems (DAS), pp. 399-404. IEEE, 2018.

[9] Clausner, C., A. Antonacopoulos, N. Mcgregor, and D. Wilson-Nunn: Icfhr 2018 com-
petition on recognition of historical arabic scientific manuscripts — rasm2018. In 2018 16th
International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 471-476,
2018.

[10] Cortes, C. and V. Vapnik: Support vector machine. Machine learning, 20(3):273-297,
1995.

[11] Devlin, J., M.W. Chang, K. Lee, and K. Toutanova: Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[12] Dyk, D.A. van and X.L. Meng: The art of data augmentation. Journal of Com-
putational and Graphical Statistics, 10(1):1-50, 2001. https://doi.org/10.1198/
10618600152418584.

35

https://doi.org/10.1198/10618600152418584
https://doi.org/10.1198/10618600152418584

36 BIBLIOGRAPHY

[13] Forney, G.: The viterbi algorithm. Proceedings of the IEEE, 61(3):268-278, 1973.

[14] Gardner, M. and S. Dorling: Artificial neural networks (the multilayer percep-
tron)—a review of applications in the atmospheric sciences. Atmospheric Environ-
ment, 32(14):2627-2636, 1998, ISSN 1352-2310. https://www.sciencedirect.com/
science/article/pii/S1352231097004470.

[15] Ghannay, S., A. Caubriere, Y. Esteve, N. Camelin, E. Simonnet, A. Laurent, and
E. Morin: End-to-end named entity and semantic concept extraction from speech. In 2018
IEEE Spoken Language Technology Workshop (SLT), pp. 692-699, 2018.

[16] Goodfellow, 1., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio: Generative adversarial networks. Communications of the
ACM, 63(11):139-144, 2020.

[17] Graves, A., S. Ferndndez, F. Gomez, and J. Schmidhuber: Connectionist temporal clas-
sification: labelling unsegmented sequence data with recurrent neural networks. In Proceed-
ings of the 23rd international conference on Machine learning, pp. 369-376, 2006.

[18] He, K., X. Zhang, S. Ren, and]. Sun: Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770-
778, 2016.

[19] Hu,], J. Gauthier, P. Qian, E. Wilcox, and R.P. Levy: A systematic assessment of syntac-
tic generalization in neural language models. arXiv preprint arXiv:2005.03692, 2020.

[20] Ingle, R.R., Y. Fujii, T. Deselaers, J. Baccash, and A.C. Popat: A scalable handwrit-
ten text recognition system. In 2019 International Conference on Document Analysis and
Recognition (ICDAR), pp. 17-24, 2019.

[21] Jurafsky, D. and J.H. Martin: Speech and Language Processing (Draft). Available at:
https://web.stanford.edu/~jurafsky/slp3/, 2020.

[22] Kassis, M. and J. El-Sana: Learning free line detection in manuscripts using distance trans-
form graph. In 2019 International Conference on Document Analysis and Recognition (IC-
DAR), pp. 222-227. TEEE, 2019.

[23] Keret,S., L. Wolf, N. Dershowitz, E. Werner, O. Almogi, and D. Wangchuk: Transduc-
tive learning for reading handwritten tibetan manuscripts. In 2019 International Conference
on Document Analysis and Recognition (ICDAR), pp. 214-221. IEEE, 2019.

[24] Kim, G., V. Govindaraju, and S.N. Srihari: An architecture for handwritten text recogni-
tion systems. International Journal on Document Analysis and Recognition, 2(1):37-
44,1999.

[25] Kiros, R., R. Salakhutdinov, and R. Zemel: Multimodal neural language models. In
International conference on machine learning, pp. 595-603. PMLR, 2014.

[26] LeCun, Y., B. Boser, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard, and L.D.
Jackel: Backpropagation applied to handwritten zip code recognition. Neural Computa-
tion, 1(4):541-551, 1989.

[27] Li,J., A.Sun, and S.R. Joty: Segbot: A generic neural text segmentation model with pointer
network. In IJCAI, pp. 4166—4172, 2018.

[28] Lowerre, B.T.: The harpy speech recognition system. Carnegie Mellon University, 1976.

https://www.sciencedirect.com/science/article/pii/S1352231097004470
https://www.sciencedirect.com/science/article/pii/S1352231097004470
https://web.stanford.edu/~jurafsky/slp3/

BIBLIOGRAPHY 37

[29] Marti, U.V. and H. Bunke: The iam-database: an english sentence database for offline hand-
writing recognition. International Journal on Document Analysis and Recognition,
5(1):39-46, 2002.

[30] Mikheev, A.: A knowledge-free method for capitalized word disambiguation. In Proceedings
of the 37th Annual Meeting of the Association for Computational Linguistics, pp. 159-166,
1999.

[31] Mocholi Calvo, C.: Development and experimentation of a deep learning system for con-
volutional and recurrent neural networks. Degree’s thesis, Universitat Politecnica de
Valencia, 2018.

[32] Mohit, B.: Named entity recognition. In Natural language processing of semitic languages,
pp- 221-245. Springer, 2014.

[33] Nadeau, D. and S. Sekine: A survey of named entity recognition and classification.
Lingvisticae Investigationes, 30(1):3-26, 2007.

[34] Namboodiri, A.M. and A K. Jain: Online handwritten script recognition. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 26(1):124-130, 2004.

[35] Pan,S.J. and Q. Yang: A survey on transfer learning. IEEE Transactions on Knowledge
and Data Engineering, 22(10):1345-1359, 2010.

[36] Povey, D., A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel, M. Hanne-
mann, P. Motlicek, Y. Qian, P. Schwarz, et al.: The kaldi speech recognition toolkit. In
IEEE 2011 workshop on automatic speech recognition and understanding, no. CFP11SRW-
USB. IEEE Signal Processing Society, 2011.

[37] Puigcerver, J.: Are multidimensional recurrent layers really necessary for handwritten text
recognition? In 2017 14th IAPR International Conference on Document Analysis and
Recognition (ICDAR), vol. 1, pp. 67-72. IEEE, 2017.

[38] Quinlan, J.: Decision trees and decision-making. IEEE Transactions on Systems, Man,
and Cybernetics, 20(2):339-346, 1990.

[39] Rabiner, L. and B. Juang: An introduction to hidden markov models. IEEE ASSP Maga-
zine, 3(1):4-16, 1986.

[40] Radford, A., K. Narasimhan, T. Salimans, and I. Sutskever: Improving language un-
derstanding by generative pre-training. Open Al, 2018.

[41] Rajnoha, M., R. Burget, and M.K. Dutta: Offline handwritten text recognition using sup-
port vector machines. In 2017 4th International Conference on Signal Processing and Inte-
grated Networks (SPIN), pp. 132-136. IEEE, 2017.

[42] Romero, V., J.A. Sdnchez, V. Bosch, K. Depuydt, and J. de Does: Influence of text line
segmentation in handwritten text recognition. In 2015 13th International Conference on
Document Analysis and Recognition (ICDAR), pp. 536-540, 2015.

[43] Sanchez, J.A., V. Bosch, V. Romero, K. Depuydt, and J. De Does: Handwritten text
recognition for historical documents in the transcriptorium project. In Proceedings of the
first international conference on digital access to textual cultural heritage, pp. 111-117,
2014.

[44] Sekine, S. and C. Nobata: Definition, dictionaries and tagger for extended named entity
hierarchy. In LREC, pp. 1977-1980. Lisbon, Portugal, 2004.

38 BIBLIOGRAPHY

[45] Shen, Y., H. Yun, Z. Lipton, Y. Kronrod, and A. Anandkumar: Deep active learning for
named entity recognition. In Proceedings of the 2nd Workshop on Representation Learning
for NLP, pp. 252-256, Vancouver, Canada, Aug. 2017. Association for Computational
Linguistics. https://aclanthology.org/W17-2630.

[46] Singh, S.S. and S. Karayev: Full page handwriting recognition via image to sequence ex-
traction. arXiv preprint arXiv:2103.06450, 2021.

[47] Stolcke, A.: Srilm - an extensible language modeling toolkit. In Proc. 7th International
Conference on Spoken Language Processing (ICSLP 2002), pp. 901-904, 2002.

[48] Sutton, C. and A. McCallum: An introduction to conditional random fields. Foundations
and Trends® in Machine Learning, 4(4):267-373, 2012, ISSN 1935-8237. http://dx.
doi.org/10.1561/2200000013.

[49] Villegas, M., V. Romero, and].A. Sanchez: On the modification of binarization algorithms
to retain grayscale information for handwritten text recognition. In Iberian conference on
pattern recognition and image analysis, pp. 208-215. Springer, 2015.

[50] Walker, J., Y. Fujii, and A.C. Popat: A web-based ocr service for documents. In Proceedings
of the 13th IAPR International Workshop on Document Analysis Systems (DAS), Vienna,
Austria, vol. 1, pp. 21-22, 2018.

[51] Wang, D., X. Wang, and S. Lv: An overview of end-to-end automatic speech recognition.
Symmetry, 11(8):1018, 2019.

[62] Wang, Q., B. Li, T. Xiao, J. Zhu, C. Li, D.F. Wong, and L.S. Chao: Learning deep trans-
former models for machine translation. arXiv preprint arXiv:1906.01787, 2019.

[563] Werbos, P.: Backpropagation through time: what it does and how to do it. Proceedings of
the IEEE, 78(10):1550-1560, 1990.

[54] Xingjian, S., Z. Chen, H. Wang, D.Y. Yeung, W.K. Wong, and W.c. Woo: Convolutional
Istm network: A machine learning approach for precipitation nowcasting. In Advances in
neural information processing systems, pp. 802-810, 2015.

[55] Yujian, L. and L. Bo: A normalized levenshtein distance metric. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 29(6):1091-1095, 2007.

[56] Zhang, S. and N. Elhadad: Unsupervised biomedical named entity recognition: Experi-
ments with clinical and biological texts. Journal of biomedical informatics, 46(6):1088—
1098, 2013.

[57] Zhou, G. and]. Su: Named entity recognition using an hmm-based chunk tagger. In
Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics,
pp. 473-480, 2002.

https://aclanthology.org/W17-2630
http://dx.doi.org/10.1561/2200000013
http://dx.doi.org/10.1561/2200000013

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Objectives
	Document structure

	State of the art
	Handwritten Text Recognition in historical documents
	Named Entity Recognition
	HTR and NER in historical texts

	Theoretical foundation
	HTR and NER via end-to-end modelling
	Problem formulation
	Hybrid architecture
	Training process
	Viterbi decoding

	Evaluation metrics
	Character and Word Error Rates
	Precision, Recall and F1-Score
	Lenient and Strict
	Entity CER and Entity WER

	Error correction
	Error types
	Heuristic approach
	Exploration of the n-best hypotheses

	Experimental setup and obtained results
	Experimental setup
	Description of the corpus
	Description of the chosen model

	Obtained results

	Discussion
	Conclusions
	Summary by chapters
	Accomplished objectives
	Future work

	Bibliography

