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Abstract

Recommender systems have a strong presence in today’s web plat-
forms, e-commerce, media content, news, or any platform that aims to
boost user engagement through user personalized content offerings.
These systems collect user information and use it to deliver personal-
ized experiences, minimizing the overload of content while providing
the most relevant content for the user. The state-of-the-art models for
recommendation systems have varied during the last years. Models
have transitioned from matrix factorization methods to neural-based
models using large artificial neural networks.

This thesis aims to explore such neural-based models on a big fash-
ion retailer, H&M. As one of the biggest fashion retailers in the world,
we can benefit from user personalized recommendations to improve
sales and user engagement with the brand. H&M has been using ma-
trix factorization methods in the past. Still, these methods can not
catch temporal relations such as trends or seasons, neither the time
evolution in a customer fashion preferences. We will work with spe-
cific neural-based models that can capture such information.

The data comes from the Swedish market for H&M consists of web
interactions. We will evaluate models with both traditional and diver-
sity metrics. It is essential to H&M to assess elements such as user per-
sonalization, diversity and diversity metrics in the recommendations
offered. It is not always best to recommend the bestseller article, but
instead recommend articles that boost user engagement, which trans-
late into better selling.

Results indicate neural models capture such temporal relations and
benefit from them, performing better than the previous methods used
at H&M.

Keywords— Fashion; Recommender system; Collaborative filtering;
Neural Networks; Recurrent networks; Sequential Recommendation
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Resumen

Los sistemas de recomendación tienen una fuerte presencia en platafor-
mas web, el comercio electrónico, las plataformas de medios, las noti-
cias o cualquier plataforma que tenga como objetivo impulsar la par-
ticipación del usuario ofreciendo de contenido personalizado para el
usuario. Estos sistemas recopilan información del usuario y la utilizan
para ofrecer experiencias personalizadas, minimizando la sobrecarga
de contenido y proporcionando el contenido más relevante para el
usuario. Los modelos de estado del arte para los sistemas de recomen-
dación han variado durante los últimos años. Los modelos han pasado
de métodos de factorización matricial a grandes redes neuronales arti-
ficiales.

Esta tesis tiene como objetivo explorar estos modelos basados redes
neuronales aplicados en una empresa de moda, H&M. Siendo una de
las grandes marcas de moda, podemos beneficiarnos de las recomen-
daciones personalizadas de los usuarios para mejorar las ventas y el
compromiso del usuario con la marca. H&M ha estado utilizando
métodos de factorización matricial en el pasado. Estos métodos no
pueden captar relaciones temporales como tendencias o temporadas,
ni la evolución temporal en las preferencias de moda de un cliente.
Trabajaremos con modelos específicos basados en redes que pueden
capturar dicha información.

Los datos provienen del mercado sueco de H&M y consisten en
interacciones web. Evaluaremos nuestros modelos con métricas tradi-
cionales y de diversidad. Es fundamental para H&M evaluar elemen-
tos como la personalización del usuario y las métricas de diversidad
en las recomendaciones ofrecidas. No siempre es mejor recomendar
el artículo más vendido, sino recomendar artículos que aumenten la
participación del usuario, lo que se traduce en mejores ventas.

Los resultados indican que los modelos neuronales capturan es-
tas relaciones temporales y se benefician de ellas, con un rendimiento
mejor que los métodos anteriores utilizados en H&M.

Keywords— Moda; Sistema de recomendación; Filtrado colaborativo;
Redes neuronales; Redes recurrentes; Recomendación secuencial
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Resum

Els sistemes de recomanació tenen una forta presència a les plataformes
web, al comerç electrònic, a les plataformes multimèdia, a les notícies
o a qualsevol plataforma que tingui com a objectiu augmentar la inter-
acció dels usuaris mitjançant ofertes de contingut personalitzades pels
usuaris. Aquests sistemes recopilen informació de l’usuari i l’utilitzen
per oferir experiències personalitzades, minimitzant la sobrecàrrega
de contingut alhora que proporcionen el contingut més rellevant per
a l’usuari. Els models d’última generació dels sistemes de recomana-
cions han variat durant els darrers anys. Els models han passat de
mètodes de factorització de matrius a models basats en grans xarxes
neuronals artificials.

Aquesta tesi té com a objectiu explorar aquests models basats en
xarxes artificials en una empresa moda, H&M. Com una dels empreses
de moda més grans del món, podem beneficiar-nos de recomanacions
personalitzades per millorar les vendes i el compromís dels usuaris
amb la marca. H&M ha utilitzat mètodes de factorització de matrius
en el passat. Aquests mètodes no poden captar relacions temporals
com ara tendències o temporades, ni l’evolució temporal segons les
preferències de moda d’un client. Treballarem amb models neuronals
específics que puguin captar aquesta informació.

Les dades provenen del mercat suec de H&M i consisteixen en in-
teraccions web. Avaluarem models amb mètriques tradicionals i de
diversitat. A H&M és essencial avaluar elements com la personal-
ització de l’usuari i la diversitat a les recomanacions ofertes. No sem-
pre és millor recomanar l’article més venut, sinó recomanar articles
que augmentin la interacció dels usuaris, que es tradueixen en una
millor venda.

Els resultats indiquen que els models neuronals capturen aquestes
relacions temporals i se’n beneficien, funcionant millor que els mè-
todes anteriors utilitzats a H&M.

Keywords— Moda; Sistema de recomanació; Filtratge col·laboratiu;
Xarxes neuronals; Xarxes recurrents; Recomanació seqüencial
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Chapter 1

Introduction

Recommendation systems are a subset of information filtering systems
built to provide individualized and personalized recommendations to
users in an ample space of possible options. These recommendations
aim to deliver relevant offerings to the user. The systems are built with
information from both the user’s preferences and item space.

Thanks to the massive increase of both available data and tools to
process it, these recommendation systems have gained popularity for
the last few years. They saw a rise in popularity thanks to the Net-
flix price dataset [1] and have been used in many business use cases
such as Spotify, Youtube, Amazon, Google, or Airbnb. These use cases
work in a different business markets, yet they require a powerful rec-
ommender system; this is due to their large amount of offerings and
the need to filter them to the user. Recommender systems will use both
content and user data to filter the offerings and provide only the most
relevant offerings to the user. A personalized and relevant offering of
content to the user translates into more interactions.

Recommender systems can be used across different domains, but
is it one type of recommender system used across all domains? or is
it one type per domain? The answer to the question relies on what
available data the domain has. There are different approaches to rec-
ommender systems based on the data they used. The main two types
of recommendation system are Content-based, which examines the
user’s previous content interactions and the content attributes to rec-
ommend new content, and Collaborative filtering, which creates a
user profile based on their content interactions and recommends con-
tent that similar profiles have interacted with. Content interactions can

8
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be explicit or implicit and will determine the way we treat them.
At H&M, we have implicit data in the form of web-based article

interactions or purchases. Previous methods used at H&M went with
the collaborative filtering approach and created user profiles based on
their interactions to recommend items that neighbor profiles had inter-
acted with. With a new set of neural models, we will follow a content-
based approach. We will provide user features and user-item interac-
tion history to a model that will output a set of recommendations.

1.1 Problem Statement

In this project, we implement a new neural-based recommender sys-
tem and compare its performance to the previous matrix factorization
model currently in use at H&M. Current implementations at H&M do
not capture time relations which are strongly present in the fashion do-
main, the new neural-based model will have a special architecture to
facilitate learning from these relations. In particular, we will examine
performance along the following points:

• Performance on next item to interact, traditional classification
metrics such as Hit Ratio at K (HR@K).

• Diversity metrics such as Coverage, Overlap, Personalization,
and novelty. These metrics allow us to evaluate recommenda-
tions from a closer perspective to the user to understand user
engagement better.

H&M has a fast phased business case where clothing assortment is
modified every season. The business at H&M focuses on fast fashion,
a section of the fashion industry, selling high frequency trends with af-
fordable clothes. A recommendation model capable of capturing such
trends and adapting quickly to changes could provide performance
gains.

1.2 Scope and objectives

This thesis scope is to compare different set of models for our recom-
mendation systems at H&M with an extensive evaluation for both per-
formance and diversity metrics. Our objective won’t be to fine-tune
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models to achieve their best performance, but rather provide an initial
performance measurement to showcase their potential.

Several metrics will evaluate each model’s performance to examine
both their accuracy and user engagement potential. We will provide
conclusions on the results from the H&M point of view. We will per-
form additional experiments to understand our model’s performance,
change embedding dimensions for both item and user, study length of
user history, and use randomized user histories.

1.3 Thesis outline

The rest of this report is organized as follows: In the second chap-
ter, the main background needed for understanding the report will be
given. This background comprehends from recommender systems ter-
minology to an overview of artificial neural networks and the specifics
of the models we used. The third chapter explains the specific archi-
tecture of the models tested. The fourth chapter gives an overview of
the training setup and data processing, with a presentation of experi-
ments results. The fifth section discusses the presented results and the
limitations of the project, finishing with future work and conclusions.

1.4 Sustainability and ethics

Recommendation systems are built to interact with users by nature,
learning from users interactions and providing them with content rec-
ommendations. Such nature raises concerns about their ethics and re-
sponsibilities. The initial problems starts with the data used to train
such models; did the users provide consent for the usage of their data
to train these models? Or consent for the usage of the required data to
offer recommendations?. Companies will often collect as much data as
possible and use them on their systems. Data collection policies have
raised concerns on the European Union, and regulations for users’ pri-
vacy have started to appear [2]. The company’s responsibility is to let
the user know what data is collected, how, for how long, and what
it will be used to. This data will have to be stored appropriately to
protect user privacy and follow necessary regulations.

The impact of the recommendation system can also raise concerns;
recommendation systems can produce negative effects on users’ life.
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After all, the objective is to make the user interact with the offered
content. We have seen this happening with social media, where com-
panies changed their chronologically ordered feed for user personal-
ized feeds. This change made it possible to improve user engagement
and retain them in their platform for as much as possible, increasing
chances for addiction or other unhealthy patterns.



Chapter 2

Background

2.1 Recommender Systems

This section will give an overview of what is needed to know about
recommender systems, what types exist, and how they are built. In
the introduction chapter, we mentioned how these systems can be ap-
plied to different use cases and how the data they are based on will
decide the type of system to implement, now we will define the vari-
ous taxonomies of recommender systems and what data they require.
This will allow us to identify a fitting solution to our problem.

2.1.1 Definition

Recommendation systems are a subset of information filtering systems
built to provide individualized and personalized recommendations to
users in an ample space of possible options. These recommendations
aim to provide a more relevant offering to the user.

To create personalized recommendations, the system needs to learn
the user preferences while having all the available information on the
items space. The system needs to anticipate the user’s needs and present
new and relevant items the user will find fitting but would not have
consumed without the system intervention.

2.1.2 Recommender system types

We now present several types of recommender systems.

12
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• Collaborative systems: One of the most common systems, these
systems create user profiles based on their interactions with the
content (ratings, purchases, clicks). The system will then use
similarity methods to find user neighborhoods and create rec-
ommendations based on the user neighborhood. These systems
perform at best when the user population is high as neighbor-
hoods will be much more populated, and the system can cover
all types of users. Collaborative filtering does not take time as
input and will assume people who agreed in the past will agree
in the future; users will like similar content as they liked before.

• Content-based systems: These systems focus on the attributes
of the content to create the recommendations. Content such as
a cloth garment would be tagged with different attributes such
as style, color, size, sex, category. The systems will learn a user
profile from the content the user has interacted with and pro-
vide recommendations based on it. Content labeling will play
a significant role in the model performance, as it will determine
its ability to capture inter-content relations. An example of this
could be Spotify recommendations, where it will recommend
songs within the same genre.

• Demographic-based systems: Demographic systems are very
close to collaborative approaches in the sense that they will try to
find similar users to find relevant recommendations. Still, now
user similarity will not be computed on their interaction his-
tory but rather on their demographic attributes. Demographic
attributes can include location, genre, profession, and other per-
sonal attributes. An example of these recommendations could
be AirBnB recommending group activities for vacations based
on the location and personal demographics of the group.

• Knowledge-based systems: Knowledge systems are based on
underlying information on the relation between user needs and
content. They use the explicit knowledge of the item space to-
gether with the user preferences to create recommendations. An
example of such systems could be a tourism recommender sys-
tem where there are no previous interactions of the user with the
visiting place, but the system matches certain activities with the
user thanks to its preferences and activities knowledge.
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• Utility-based systems: Utility systems try to calculate the useful-
ness of the content to a specific user. This can be done by learning
a user profile over time or based on user expressed preferences.
An example of this recommender would be a clothing size rec-
ommender; the user will input desired fit and needs, and the
system will find the fit with the most usefulness.

These are the main five types of recommender systems, each one
with its advantages and disadvantages. When deciding what type of
system we want to implement, we need to study the best fit. If we
take the Utility-based approach, we can see how useful it can be when
implemented in clothing companies. People have different clothing
needs depending on the weather, but weather conditions may not play
such a significant part if we use them in Spotify song recommender.

The available user data will play a huge role when deciding what
system to use. A famous recommendation problem is the cold start [3],
where a new user comes into the system with a blank profile. Systems
like collaborative or content-based will not have enough information
to provide relevant recommendations, but demographic will as long
as the user provides enough demographic attributes when signing in
the system.

The mentioned taxonomies are not exclusive; one could implement
a mix of collaborative and content-based approaches by implement-
ing content-based user-profiles and the collaborative approach to find
inter-user content relevant to the user. One could also implement dif-
ferent recommender systems and then join recommendations with an
ensemble approach. These join models are called hybrid systems.

2.1.3 Hybrid systems

We often see recommendation models made of joint systems that com-
plement each other in strengths and weaknesses; these models are re-
ferred to as hybrid systems. There are multiple taxonomies to join
recommender systems, but these are the most common [4].

• Weighted recommender Multiple recommender systems are im-
plemented and joint with an assigned weight. This is the sim-
plest hybrid system and reminds us of traditional machine learn-
ing ensemble techniques.
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• Switching recommender Multiple systems are implemented and
used at the same time; the master recommender will decide if to
present all recommendations to the user or choose which system
to display depending on user features. If the master presents all
systems recommendations at the same time, it will be called a
mixed recommender, but if it chooses one system to display, it will
be a switching recommender.

• Cascade recommender Different systems are combined in a cas-
cade architecture where the output of a system as input for the
next system and so on. This system aims to optimize results by
using multiple approaches.

2.1.4 Data sources

We have mentioned how the selection of the recommender system
is highly affected by the available data sources. In this section, the
most common data sources used across recommender systems are pre-
sented.

• User-Content interactions: Data for all content interactions the
user has made. These interactions could be purchasing an item,
listening to a song, or rating a film. There are many types of in-
teractions, but they are usually divided into two groups: Implicit
and Explicit. For example, purchasing an item will let us know
the user’s interest in the item. Still, we do not have any mea-
sure of user satisfaction with the item - implicit interaction. If
the user rates a film within a scale, we have a metric to capture
the user satisfaction with the film - explicit interaction. Often ex-
plicit interactions hold more value than implicit as they represent
a more real metric of user satisfaction; there are data enrichment
techniques for implicit interactions to come close to an explicit
interaction, let’s say you listen to a song in Spotify, you are not
providing any rating, but the system could capture if you listen
to the full song or if you listen to it multiple times to differentiate
from other interactions.

• Content attributes: Contains all data attributes related to the
content the system works on. In a Spotify recommender system
those could be song genre, artist, publish date, and many more.
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• User attributes: All user data from demographic attributes to
preferences. This data will play a significant role in systems that
try to model the users.

• Functional data: Data that could provide the system with func-
tional requirements or information that escapes the rest of data
sources. An example could be the weather forecast; a clothing
recommendation system could boost waterproof items if the fore-
cast is rainy.

2.2 Recommendation techniques

In this section, we describe the most common techniques used to create
recommendation systems.

2.2.1 Collaborative filtering

Collaborative filtering approaches have been the most popular choice
of recommender systems in the last decade. Thanks to the massive
amount of data platforms started collecting; they found techniques
to model the user and find similarities in a vector space. Traditional
methods use factorization to create a latent space that captures inter-
actions between users and items.

These systems require a historical list of content interactions per
user to create a user-profile that will later be used to compute distances
between users. The historical list of interactions is not required to be
chronologically ordered as the order does not affect the model. The
system is highly sensitive to the number of interactions and can be
extremely affected by the cold-star problem with new users. Another
caveat of these systems is the high sparsity in the user-item matrices.

Nearest neighbors

A technique used both on user-based and item-based neighborhood
methods. The system creates a similarity between users and finds the
nearest neighbors to the current user to find content neighbors inter-
acted with. The utility of an item s for a user c in can be estimated as
[5]:
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ûc,s =
ūc +

∑
c′∈Nc

(uc′,s − ū′c)× sim (c, c′)∑
c′∈Nc

sim (c, c′)
(2.1)

Where we have K nearest neighbors of user c in Nc, ūc the mean
utility of previous items the user has interacted with and sim(c1, c2)

being a similarity measure between users such as cosine similarity,
Pearson correlation or any dimensional similarity measure.

Matrix Factorization techniques

Techniques that become popular after the Netflix Price [1]. A com-
petition on collaborative filtering methods won with such techniques
[6]. Matrix factorization techniques present a new approach to solve
the high sparsity in traditional collaborative methods. These methods
split the user-item matrices into multiple smaller matrices. The user-
item interaction matrix is split into two lower dimensional matrices,
the first one has a row for each user, and the second has a column for
each item. Each row or column corresponding to a user or item will be
referred to as latent factors [7] that will create a latent space.

Figure 2.1: Matrix factorization example for a movie ratings dataset.

In the first implementation applied to the Netflix Price [8] we find
the predicted rating per each user u for a given item i is defined as
follows:

r̃ui =
n factors∑

f=0

Hu,fWf,i (2.2)
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Ratings can be computed as:

R̃ = HW (2.3)

Where R̃ is the user-item matrix, H contains user latent factors,
and W is the item latent factors. Such logic is referred to as the origi-
nal matrix factorization method, but several other optimizations have
been raised since then with SVD [9], and ALS [10]. Alternating Least
Square (ALS) has been a dominant approach thanks to its parallel com-
putation approach.

Neural based

With the rise of neural networks in different fields, they also reached
recommendation systems [11]. Deep learning methods have been de-
veloped to tackle the collaborative filtering approach. There have been
proposed methods based on denoising autoencoder networks [12]. Still,
it was not until Deep Item-based Collaborative filtering [13] that deep
learning methods beat traditional techniques. DeepICF made use of
attention layers which already revolutionized the natural language
field [14].

Deep learning methods performed well in recommendations be-
cause of their power to find good items and user representations in
an embedding space. Embedding layers have been used previously
in natural language processing and revolutionized the field due to the
dramatic decrease in sparsity to represent words and their accurate
representation.

2.2.2 Content based

Content-based recommender systems are built around item attributes
and user profile preferences. The basic idea is to recommend items that
are similar to what the user liked before [15]. These methods are suit-
able for situations with extensive data about the items and do not re-
quire user attributes such as demographic data. The model will build
a user preference profile based on the history of its interactions and
use it to recommend items the user will like.
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Vector Space Model

The Vector Space Model [16] is the most famous method for content-
based recommenders. The model inspires information retrieving sys-
tems to implement an item scorer. It treats item attributes as key-
words and uses the TF-IDF [17] to calculate weights based on those
keywords. Given an item, dj , its content is defined by a set of weights
wij where each weight corresponds to the ith keyword of the item dj .

Content (dj) = {w1j, w2j, . . .} (2.4)

Content-based systems will recommend items similar to what the
user previously liked. To do so, it will create a user profile based on
the history of items [18].

ContentBasedProfile (u) =
1

|N(u)|
sumd∈N(u) Content (d) (2.5)

Where N(u) is what the user u previously liked. Once we calculate
the ContentBasedProfile for all users, we can create a score p(u, d) to
predict what a user u will give to the item d.

p(u, d) = sim( ContentBased Profile (u),Content(d)) (2.6)

Where sim is a similarity measure like Pearson correlation or cosine
distance. These systems will be highly dependent on the keywords
(item attributes) available for the items. The more accurate attributes
to describe the item space, the better the models will perform.

Neural based

Neural-based models bring a new approach to item representations
[19] thanks to their embedding layers. Item representations can be
learned without specific attributes. In [20] Spotify learns songs em-
beddings from the sequence they are present without the need for song
attributes such as genre or artist.

Neural-based approaches treat the problem as a regular classifica-
tion situation and use artificial networks to predict the next item the
user will like based on both user and item embeddings. In [21] we
see a basic RNN approach to the YouTube recommendation system;
the system receives the user video history as an ordered sequence and
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predicts the next video to watch. Posterior improvements with addi-
tional context features were made [22]. Other approaches for click rate
prediction with attention encoders have been implemented by Alibaba
[23].

2.3 Artificial Neural Networks

Artificial Neural Networks (ANN) are computing models inspired by
the biological neural network in animal brains. An ANN is based on
a group of compute units called neurons, similarly to neurons in the
biological brain. These systems are often applied in pattern recogni-
tion [24] problems such as data analysis, information retrieval, clas-
sification, regression, or computer vision. ANNs mimic the animal
brain and learn from examples and do not need specific task program-
ming, which is why they have seen a rise in popularity and the massive
amount of data in the digital world. Here is an example of an ANN
diagram

Figure 2.2: Example of a simple ANN.

The neurons building an ANN are compute units that receive one
or more inputs, weightily sums them, and apply an activation function
dependent on the sum to produce an output that other units can use.
These units are connected in levels (layers) to form an ANN, also called
fully connected networks.
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Figure 2.3: Artificial neuron diagram [25].

When creating an ANN, the activation functions of the neurons will
play an important role, many mathematical functions have been used
in the field, but not all will fit the requirements for each use-case. The
most common activation functions are RELU, Leaky-RELU, Identity
or Sigmoid [26] but there are others such as Gaussian, Hyperbolic tan-
gent, Binary, or GELU. Here are the most common functions

f(x) =

{
0 if x ≤ 0

x if x > 0

(a) Rectified linear unit (ReLU)[27]

{
0.01x if x < 0

x if x ≥ 0

(b) Leaky RELU [28]

f(x) = x

(c) Identity

f(x) =
ex

ex + 1

(d) Sigmoid function

Figure 2.4: Most common neuron activation functions

Every set of weights in a neuron layer are learnable during train-
ing. Weight learning is the foundation of neural networks training,
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and while there are multiple mathematical techniques to learn them,
the most common one is Backpropagation [29]. In Backpropagation
we need an error function to evaluate how well the current weights
are performing, for example, the RMSE error for a regression prob-
lem. We will derive our learnable weights against that error func-
tion to travel within the hyperplane of weight values, finding the ones
with the lower error function. This algorithm is computed inversely;
the output layer errors are calculated first and then propagated to the
previous layer to compute their errors. The process is repeated until
reaching the first layer.

2.3.1 Feedforward Neural Network

Feedforward neural networks (FFNN) are the basic iteration of ANN
where neurons can only be connected forward, not establishing a con-
nection with themselves or previous neurons. Information will only
move forward, starting from the input layer to the hidden layers and
finally the output layer. A diagram of FFNN can be seen here:

Figure 2.5: Example of a FFNN [30].

These networks are often referred to as multi-layer perceptrons and
created the foundation of neural networks today.

2.3.2 Recurrent Neural Networks

Recurrent Neural Networks (RNN) are a class of ANN where connec-
tions between neurons can form a directed graph. Cycles are formed
in the neuron connections, where a neuron receives its own output.
RNNs are commonly used to process sequences of inputs with vari-
able length, as they create an internal state(memory) and process each
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input sequentially, capturing sequence relations. This makes them
specially useful for task as handwriting recognition [31] and speech
recognition [32]. Here we can see a diagram of an RNN cell.

Figure 2.6: RNN cell [33]

The cell receives both the input vector xt and the previous hidden
layer vector ht−1 : and behaves as a standard neuron.

2.3.3 Long short-term memory - LSTM

Long short term memory(LSTM) ANN are a special RNN architecture
[34]. LSTMs replace RNN neurons by LSTM cells where that are is
composed of three gates:

• Input gate

• Output gate

• Forget gate

Each of the gates can be treated as a single neuron. Thanks to the
more elaborate architecture, LSTM cells can learn time dependencies
and makes them especially useful for time series, machine translation,
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or any use case where time plays a role. Generally, RNNs are outper-
formed by LSTMs. Here we can see a diagram of an LSTM cell.

Figure 2.7: LSTM cell diagram [33].

The cell receives the input vector xt, previous hidden layer vector
ht−1 : and the previous cell state ct−1. From left to right, forget gate ft,
input gate it, cell state candidate values C̄(t) and output gate ot. All
the elements will control the flow of the input data through the cell by
adding or removing information from the cell stateC(t).

2.3.4 Gated recurrent unit - GRU

A Gated recurrent unit (GRU) [35] is another type of RNN architecture
similar to LSTMs. GRU cells have two gates, a reset gate [36] and an
update gate. The reset gate determines how to combine the new input
with the previous memory, and the update gate defines how much of
the previous memory to maintain. If the reset gate is set to 1 and the
update gate to 0, it will be equivalent to a plain RNN.

GRUs have seen better performance than LSTMs in speech recog-
nition task [37], but it is still unclear which cell performs best. Here we
can see a diagram of an LSTM cell.
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Figure 2.8: GRU cell diagram [33].

The cell receives the input vector xt and previous hidden layer vec-
tor ht−1 :. Reset gate rt and update gate zt will determine the flow of
input data that the cell receives.

2.3.5 Encoder-decoder architectures

The encoder-decoder (enc-dec) architecture is an ANN architecture
widely used for tasks where sequences are mapped to another se-
quence, such as machine translation or speech recognition [38]. The
network is composed of one encoder and one decoder. The encoder
transforms each item into a corresponding hidden vector containing
the item and its context. The decoder reverses the process, turning
the vector into an output item, using the previous output as the input
context.
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Figure 2.9: Encoder-decoder diagram [39].

These architectures have received many optimizations such as at-
tention layers, beam search for decoders. They were the bases for
transformers models, the current state of the art for deep learning ma-
chine translation and speech recognition models.

2.3.6 Attention

The attention mechanism was introduced in machine translation by
[14] and iterates on the encoder-decoder architecture. While in the
original enc-dec implementation, the decoder will transform the en-
tire input sequence into one fixed vector, which is then passed to the
decoder. The attention architecture allows the model to store all hid-
den states of the decoder that are then passed to the decoder. The
decoder will use all previous hidden state vectors in the form of a
weighted sum that passes into each decoder step. The weights of each
decoder step are decided by a trainable layer referred to as the align-
ment model. Other suggestions to modify the alignment model have
been made, with the dot product attention of the decoder hidden states
and decoder states being the most popular.
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Figure 2.10: Encoder-decoder with attention diagram [39].

2.3.7 Transformers

Transformer models are based on the encoder-decoder architecture
and add multi-head attention mechanisms in both encoder and de-
coder. With transformers, both encoder and decoder can consist of
multiple sequentially connected blocks. Transformer models are the
current state of the art in natural language processing.
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Figure 2.11: Transformer model architecture [40].

The encoder has N sequentially connected blocks. The first block
receives an input vector along with its positional encoding to form the
encoder input. The encoder input goes through multi head attention
and a feed forward layer. Output will be sent to the next encoder block
or decoder if it’s the last encoder block.

Each transformer encoder consists of two parts: multi-head atten-
tion and a feed-forward layer. The attention mechanism receives in-
puts from the previous encoder and processes them in a feed-forward
layer to create the output encodings. Each output is individually pro-
cessed by the feed forward layer and is sent to the next encoder and
all decoders. The first encoder also receives positional encodings to
respect each input position in the sequence; this is necessary as there
is no other information about the sequence order.

The transformer decoders have three main parts: masked multi-
head attention, multi-head attention, and a feed-forward layer. The
masked attention will process the decoder inputs and send them to the
next multi-head attention with all encodings. Last attention outputs



CHAPTER 2. BACKGROUND 29

will be processed by a feed-forward layer similarly to the encoder. The
first decoder will also receive positional encoding to respect each input
in the sequence.

After the last decoder block, the original transformer implementa-
tion had a set of linear layers and a softmax layer to produce output
probabilities over the vocabulary.

2.4 Natural language processing

We have provided an overview of neural-based models used in Nat-
ural Language Processing (NLP), in which we will base our experi-
mentation to create recommender systems. These models also used
techniques from traditional NLP that allow them to generate word
representations, embeddings. This technique is especially important
as reducing input sparsity will generally improve the model’s perfor-
mance or ability to learn from such input. For our proposed models,
we will also use such techniques to learn item representations. Better
content representations will come in handy for content base models,
highly dependent on content attributes.

2.4.1 Word Embeddings

Traditional methods to represent words such as one-hot encoding suf-
fered from high dimensionality and sparsity problems. Word embed-
dings arrive to solve those problems in the form of a dense real-valued
vector to represent words. Embeddings should encode the meaning of
the word based on their meaning, words with similar meanings should
be closer in space.

Word embeddings were originated before neural networks [41]–
[43]. Still, it was not until Word2vec [44] that they become popular
as they enabled neural networks to process natural language datasets
and exploded their potential. Word embeddings can be learned in two
different ways, both based on context information.
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Figure 2.12: CBOW and Skip-gram diagrams [44].

The first model, continuous bag of words (CBOW) receives a win-
dow of the surrounding context’s word to predict the current word.
Skip-gram in the other hand uses the current word to predict the sur-
rounding window of context words.

2.5 Evaluation

This section provides a brief overview of what metrics are commonly
used when evaluating recommender systems. We provide two sets
of metrics to evaluate both the performance and diversity rate of a
recommendation system.

2.5.1 Performance metrics

Performance metrics measure how good our recommender system is
at predicting the content the user will consume. They provide an ob-
jective measurement of how accurate offering the recommendations
are against the test data. We will be using precision at K for our evalu-
ation, but there are other relevant metrics as NDCG, also known to be
used in recommendation systems evaluation.

Hit Ratio at K

Hit Ratio at K measures the precision of the recommendation up to
K recommendations. Hit Ratio is defined as the number of correctly
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predicted items divided by the number of predicted items, which is K.
It’s calculated as follows

Hit Ratio@k =
true positives @k

( true positives @k) + ( false positives @k)
(2.7)

This metric does not measure how accurate recommendations are
ranked; it will not matter whether a recommendation is ranked first
or third as long as it is within the top K. This measure is commonly
referred to as precision at K (P@K)

2.5.2 Diversity metrics

Recommendation systems have been traditionally evaluated with per-
formance metrics as the ones explained previously. Still, there is an in-
creasing realization that accuracy alone might be a suboptimal strategy
for a successful user experience [45]. Diversity metrics complement
performance metrics and provide a deeper view of how recommenda-
tions distribute. A recommendation model could achieve good per-
formance by simply recommending the top consumed content, drift-
ing away from tailored user experiences. In the case of H&M, rec-
ommending top-selling articles such as white shirts, white socks may
show good performance metrics on paper, but it won’t translate into
greater user engagement. Was the user going to buy white shirts any-
way, as they are the most popular item? How does the user feel when
receiving non-personalized recommendations? These metrics allow us
to evaluate closer to the user perspective and achieve a better user ex-
perience.

Overlap at K

Measures the percentage of unique recommendation sets in the full
recommendation list. If we had a thousand users with their own rec-
ommendation set, the value would be one if all users got a distinct
recommendation set and zero if they all received the same recommen-
dation set. We will use 1−Overlap@k, and it’s calculated as follows.

Overlap@K = 1− N◦ of distinct of recommendation sets
N◦ of recommendation sets

(2.8)
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This metric is crucial to measure how personalized our recommender
is and detect when it is overfitting to a particular set of recommenda-
tions.

Personalization at K

Personalization at K measures uniqueness from all recommendations
sets the system creates. While Overlap@K measures uniqueness in
binary (unique or not unique) Personalization@K measures a more
complex similarity, we calculate the dissimilarity (1- cosine similar-
ity) across all user’s recommendations. User recommendations are en-
coded in a vector to help measure the distance between two recom-
mendation sets. We calculate the Personalization@K as follows:

Personalization@K = 1−mean cosine similarity

= 1−mean(
∑
i∈U

∑
j∈U

c(i, j)) (2.9)

Being U the full set of users recommendations and c(i, j) the cosine
similarity between vectors i and j. This metric provides a view of how
distant are the unique sets of recommendations between them.

Novelty at K

Novel recommendations are referred to as content the user did not
know about [45],Novelty at K aims to measure the novelty score of a
recommendation list. Recommender systems can not accurately know
if the content was unknown to the user, so they assume the less pop-
ular an item is, the more novel to the user it will be [46]. We can cal-
culate novelty at top-K recommendations by summing the novelty of
each recommendation based on its popularity.

Novelty@K =
1

|R|
∑
i∈R

POPi =
1

|R|
∑
i∈R

− log(p(i)) (2.10)

With R being the set of top-K recommendations and p(i) a function
to determine the popularity of a recommendation item. at H&M we
calculate popularity as the number of sales the item has.
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Coverage at K

Coverage at K measures the percentage of items that the model covers
in its recommendations. It’s often measured across all user recommen-
dations the model can create, as measuring it in a single user recom-
mendation result would not have much sense. We can calculate it as
follows:

Coverage@K =
N◦ of distinct content in recommendation

Total N◦ of distinct content
(2.11)

All these metrics can also be calculated on content attribute level
for more detailed analysis. At H&M we often calculate these metrics
on a category level to understand what categories our customers are
receiving in their recommendations and intervene if they have non-
desirable results, for example, only home items.
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Models

In this section, we will go over the different model architectures eval-
uated. We start with the current model at H&M and add new neural
architectures based on NLP models. NLP Neural-based architectures
do a fantastic job capturing time and order relations within a sequence.
We expect the same when moving them in the recommendation sys-
tem usage.

3.1 Baseline - AALS

AnnoyAlternatingLeastSquares (AALS) is a matrix factorization method.
Following the algorithm described at 2.2.1 we will build matrices for
both user and items containing the latent factors. We will use Approx-
imate Nearest Neighbour Search [47] (ANNOY) within the matrices
to find the approximate closest neighbors to create recommendations.
We use ANNOY and not the correct Neighbours to save computational
cost, these models are trained daily, and computational time plays a
significant role.

3.2 Neural Sequencer RNN

Basing on Google’s work with Youtube recommendations [21] we im-
plemented a similar model adapted to H&M use case. This Neural
Sequencer RNN (N.S RNN) model consists of two embedding layers,
a multi-layer RNN, and a final classification linear layer. The model
takes user id and user web browsing history as a sequence to predict

34
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the next item the user will interact with. Embeddings have a 256 size,
RNN layers have 512 neurons and the final linear layer has 512 (twice
the embedding size due to the concat layer).

Figure 3.1: Neural sequencer RNN schema.

The user id and user sequence of item interactions will pass through
their respective embedding layers. The sequence of item representa-
tions will then pass through a three-layer LSTM which latest state will
be concatenated to the user id representation and finally sent to a final
classification layer predicting the next item the user will interact with.
RNN gates are known not to be the most efficient gate for recurrent
networks. We will also try another two variations with both LSTM
and GRU cells.

3.3 Neural sequencer with attention

Following NLP research, our next experiment consists of the addition
of an encoder-decoder architecture with attention. The attention layer
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was a breakthrough on machine translation [14]. Schema of the model.

Figure 3.2: Neural sequencer Transformer schema.

In the attention model, we expand upon the N.S RNN. We use the
three initial layers as an encoder that passes its hidden states to an
attention layer connected to a three-layer LSTM decoder which is con-
nected to the initial concat layer. All LSTM layers have 512 neurons

3.4 Neural Sequencer with transformers

Transformers have been state of the art in NLP during the last years
since [40] and will be evaluated for our use case as well. We will im-
plement a transformer recommendation architecture similar to how
Alibaba created the Behavior-Sequence-Transformer model [23] based
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on user history sequences. The implementation only uses transformer
multi-head attention encoders and replaces the transformer decoders
with feed-forward layers without attention.

Figure 3.3: Neural sequencer RNN schema.

The transformer encoder block consists of 8 attention heads with
2048 neurons on feed-forward layers (Alibaba implementation). Fol-
lowing leaky Relu feed-forward layers also follow Alibaba implemen-
tation with a 1024-512-256 neuron setup.
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Experimentation and results

This section will go over multiple experiments to understand each rec-
ommendation model performance and how learned representations,
user history length, and sequence order play a role in the model’s per-
formance.

4.1 Training setup

The main objective for the thesis has been evaluating different neural-
based models. To keep a consistent training environment, we decided
on some common training practices across all experiments. Batch size
has been set for 2048, Adam [48] as an optimizer and OneCycle learn-
ing rate for fast convergence [49]. Such settings can play a significant
role in model performance and are often a full research subject. To
avoid going in an extensive singular model study, we went with the
most common practices. We trained all experiments for an unlimited
number of epochs with a patient policy of three, meaning that we will
stop training when three consecutive epochs show decreasing model
performance. Reported results are on the best performing epoch at test
set, looking at the top fourteen recommendations.

4.2 Data

4.2.1 Source

Models have been trained with web interaction data from the H&M
Swedish website for one month. We used web interactions data and

38
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not other sources such as transactions because of the higher popula-
tion on web interactions. Customers browse the website much more
often than they buy items. A populated data source will help our mod-
els generalize better, learn better representations, and increase perfor-
mance overall. Deep Learning models are known to be highly depen-
dent on the number of data being trained on.

Web interactions collect the history of items the user has seen on
H&M website. Building a recommender capable of predicting the next
item to browse will help users find valuable items based on their his-
tory, increasing user satisfaction and sales.

4.2.2 Preprocessing

Neural models will be trained to predict the next user interaction based
on past user history. A user history of interactions can be used to create
multiple samples that train the network. Given a user history H con-
taining h1, h2, ..hn interactions, a training sample can be created from
each interaction, ht where the past interactions h1, .., ht − 1 are used as
past history to predict interaction ht. A representation of how prepro-
cessing would affect a user history is shown in the following figures.

Figure 4.1: User interaction history.
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Figure 4.2: User interaction samples.

When a user interacts with an item consecutively, ht− 1 will be the
same as ht. Consecutive duplicates interactions have been removed to
prevent models from falling in local minimum scenarios where they
predict the next interaction’s latest known interaction.

4.2.3 Split

The training set contains all samples created from users’ web history
up to the second latest known interaction hn − 1. A test set for web
history is created, where the latest interaction hn is predicted based on
the previous history. We limited the test set to the latest interaction to
evaluate the model at the current time and not when the model will
not ever be used on. Following the preprocessing example, we can
see a schema on which samples will go to training or test for the user
history.
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Figure 4.3: User interaction training-test split.

4.3 Results

The result of the different experiments of this project are reported be-
low.

4.3.1 Model comparisons

Best results achieved with each of the models can be found in the fol-
lowing table.

Experiments
HR
@14

Coverage
@14

Overlap
@14

Personalization
@14

Novelty
@14

AALS 4.42% 0.24% 14.45% 56.81% 7.6
N.S LSTM 50.32% 8.75% 21.54% 90.57% 9.88
N.S RNN 43.94% 7.68% 19.84% 89.87% 9.51
N.S GRU 49.00% 8.04% 25.94% 88.03% 9.45
N.S Attention 47.46% 7.61% 19.84% 89.55% 9.44
N.S Transformer 44.33% 7.67% 21.97% 86.98% 9.36

Table 4.1: Model results overview
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The neural sequencer models obtain a much better result than the
baseline model AALS in traditional metrics, around ten times the per-
formance. An improvement was expected, but not so high. In terms of
diversity metrics, neural-based models do come ahead in three out of
four. They all have much higher Coverage and personalization with
a slight improvement in novelty. In the overlap metric, the baseline
beats the neural-based models. Overlap measures the raw uniqueness
of recommendation sets, while personalization captures the distance
between sets. If AALS has a lower overlap and lower personalization
than neural based models, this means the users have higher number of
unique recommendation sets with AALS than any neural-based model
but that the unique sets are not as different between them as they are
in neural-based models.

When it comes to neural-based models, the Neural Sequencer with
LSTM cells pulls ahead in HR with the GRU cell version being very
close. More sophisticated NLP models such as attention and trans-
formers present lower results, but this could be due to their higher
complexity and need for extensive fine-tuning. As expected, the orig-
inal N.S with RNN has the worst performance. RNN was a major
improvement in NLP but has been replaced for more complex cells
like LSTM or GRU for some years now. Regarding diversity metrics,
the N.S with LSTM cells pulls ahead again but not with a big margin,
metrics within neural-based models stay fairly consistent, and we be-
lieve it is the change to neural architecture that is responsible for the
improvements, not the specific tweaking to the neural architectures.

4.3.2 Impact of user and item embedding sizes

To further extend our analysis in model performance and result ex-
plainability, we will create several experiments where embedding size
for both items and users is modified. We have been training with an
embedding size of 256 for both. When reducing the embedding size,
we reduce the model’s ability to learn representations and stop us-
ing them as before. The experiment will provide us insights into how
dependent the model is on those representations, helping with the ex-
plainability of the results. We will use the Neural Sequencer LSTM
architecture across all tests.

We first evaluate how reducing the user embedding dimensions
will affect the model. We reduced up to one dimension to push the
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limit on how it affects the model.

User Size Item Size
HR
@14

Coverage
@14

Overlap
@14

Personalization
@14

Novelty
@14

1 256 49.35% 8.67% 23.88% 89.84% 9.87
10 256 49.92% 8.72% 23.62% 90.32% 9.88
20 256 50.28% 8.74% 22.53% 89.92% 9.88
128 256 50.38% 8.79% 21.58% 90.44% 9.87
256 256 50.32% 8.75% 21.54% 90.57% 9.88

Table 4.2: User embedding size study on N.S LSTM

User embedding dimension affects does not affect performance met-
ric HR as different neural-based architectures did, but it does play a
significant role in the Overlap diversity metric where we see a direct
correlation when increase from 1 to 128 dimensions with 256 being
similar to 128. Such behavior is understandable as overlap measures
user’s unique set of recommendations. With worse user representa-
tions, the model will not produce the same number of unique sets per
user.

1 10 20 128 256
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O
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Figure 4.4: User embedding size length against Overlap@14
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Overlap measures unique user recommendation sets, so the more
information the model has about distinct users, the more unique the
produced sets would be. For a second test, we changed the item em-
bedding dimension:

User Size Item Size
HR
@14

Coverage
@14

Overlap
@14

Personalization
@14

Novelty
@14

256 1 35.54% 6.20% 22.80% 89.40% 9.8
256 10 44.32% 7.80% 22.52% 90.53% 9.82
256 20 46.75% 8.12% 22.34% 90.76% 9.91
256 128 50.87% 8.34% 21.32% 90.32% 9.8
256 256 50.32% 8.75% 21.54% 90.57% 9.88

Table 4.3: Item embedding size study on N.S LSTM

We now find a significant impact on the HR metric; there is a di-
rect correlation between item embedding dimension HR. Performance
drops to two-thirds when items have one dimension only. Diversity
metrics do see a change as well, but now in Coverage, the metric mea-
suring the percentage of items covered in the recommendations. This
drop in Coverage performance can be explained as we are making it
harder to learn item representations to the model, making it harder to
distinguish them.

4.3.3 Impact of sequence order

One of the main hypotheses for this thesis has been to transition our
recommendation model at H&M to one that can capture time relations.
After seeing an improvement in results, it is clear that the new neural-
based models translate in better performance, but is it because of their
ability to capture time and order relations? In this experiment, we
will randomize the order of the training sequences and keep a consis-
tent test set with the other experiments. Suppose model performance
would stay similar to the original experiments. In that case, this means
it is not the time and order relations but the raw neural-based model’s
performance responsible for the increase in performance.

To study it, we tried three different orders within the user history
on the N.S LSTM.
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• Correct order: The original order in which interactions were made.

• Day level order: Randomize interactions within the same day,
meaning that two interactions will only be correctly ordered in
the user history sequence if they happened in different days.

• Random: User history order is completely randomized.

User history
Sequence order

HR
@14

Coverage
@14

Overlap
@14

Personalization
@14

Novelty
@14

Correct order 50.32% 8.75% 21.54% 90.57% 9.88
Day level order 49.37% 8.04% 23.39% 90.46% 9.55

Random 43.37% 7.73% 22.89% 85.41% 8.89

Table 4.4: User history sequence order study on N.S LSTM

User history sequence order does play an essential role in our rec-
ommendation model, affecting HR performance when having a total
randomized order and with almost similar performance with a half
randomize logic as the day level ordering. We also see a correlation
between order and diversity metrics, with the correct order obtaining
the best diversity metrics and dropping as we increase randomness in
the history order.

4.3.4 Impact of user history length

How far back should we look in a user history is a big question when
offering recommendations. Pasts experiments have been done with a
max length of user history of twenty interactions. In this experiment,
we evaluate different history lengths and how they affect our model’s
performance. We tried different values on the N.S LSTM and obtained
the following results.
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User history
Sequence order

HR
@14

Coverage
@14

Overlap
@14

Personalization
@14

Novelty
@14

5 45.00% 8.77% 25.19% 92.05% 9.41
10 48.00% 8.61% 26.60% 89.50% 9.25

Default value - 20 50.32% 8.75% 21.54% 90.57% 9.88
50 50.35% 7.78% 16.76% 94.60% 9.69

Table 4.5: User history sequence length study on N.S LSTM

We see a direct correlation between the max user history length and
HR, the more we look back in the user history, the better our perfor-
mance. We also see a major diversity impact over history length, espe-
cially on the overlap metric; reaching AALS performance levels. The
model can capture a more personalized representation of the history
and offer a unique set of recommendations.

4.3.5 Recommended items features study

With performance or diversity metrics, we get a generalist performance
evaluation, which is good enough for most of the use cases. Studying
our model recommended items features provides us with a use case-
specific analysis on what we recommend. For H&M we have different
item attributes we look at. The first analysis is how popular are the
items our models recommend. We picked our baseline model and the
best performing Neural Sequencer and evaluated their popularity on
the top fourteen recommended items.



CHAPTER 4. EXPERIMENTATION AND RESULTS 47

Figure 4.5: Average item popularity in top 14 recommendations.

Both models recommend significantly higher popular items than
the average item popularity. Our baseline model is highly skewed to-
wards high popularity items and decreases popularity as the item rec-
ommendation rank increases. The neural Sequencer model popularity
stays consistent over the fourteen recommendations and stays lower
than the baseline across all ranks.

Achieving good performance metrics should be tied to recommend-
ing more popular items, after all, the higher popularity, the higher
chance of being sold. With this analysis we see that it is not a direct
correlation and in fact the new neural-based models achieve better per-
formance while recommending less popular items than the baseline.
New models learn a better representation of the user and given their
history can provide popular items suited for their profile.

Secondly, we analyze the average price on recommended items,
same models, and top fourteen recommended items.
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Figure 4.6: Average item price in top 14 recommendations.

Our model’s performance have opposite behaviors when compar-
ing with the average item price. The baseline model recommends
lower price items, while the Neural Sequencer recommends higher
price items. Neural sequencer produces almost twice the price rec-
ommendations while having a better hit ratio, potentially providing
higher revenue. We can connect the findings with the past analysis
on item popularity. Here at H&M, the best-selling products are basic
clothing items such as white t-shirts or white packs of socks, aggres-
sively priced items at shallow margins. For our last analysis, we de-
cided to evaluate the item age of the top fourteen recommended items.
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Figure 4.7: Average item ages in top 14 recommendations.

Both models present a skew towards older items as the higher the
rank they give an item, but in totally different scales. The baseline
model presents its top tanked item with twice the age as the average
item age, while the top ranked Neural Sequencer item only has an 10%

increase in age. The more basic and popular items with aggressive
prices are usually sold across all seasons, making them older than the
on-season products.

All three analyses have confirmed our initial findings with the di-
versity metrics evaluation. The baseline model has a reduced set of
recommended items and provides a less personalized set of recom-
mendations than the Neural Sequencer, proved by its skew towards
low-priced and popular items. We now have a business explanation
on how those differences in diversity metrics are translated in offered
recommendations.



Chapter 5

Conclusion

5.1 Discussion

The initial objective for this thesis was to explore new models that
could capture and exploit the time relations of H&M use case to pro-
vide better recommendations than the current collaborative filtering
methods. Results have shown that neural-based methods can increase
both performance metrics and diversity metrics compared to our AALS
methods.

We have proved the neural-based models benefit from ordering
user-item interactions with our ordering experiment, with improve-
ments in performance metrics and diversity metrics as the model will
have a more accurate representation of the user. Experiments with the
max user history length fed to the model supported those findings and
proved the importance of a good user profile representation through
its history.

We also found explainability results for our model when stress test-
ing neural-based models with their embeddings sizes. We learned
how user and item embeddings play different roles in the performance
of the recommendations and can be subject to multiple optimizations.
User embeddings play a bigger role in diversity metrics and do not
help with performance metrics. Item embeddings are the main driver
for performance metrics, and the diversity metric is more tied to items,
Coverage.

Moreover, we failed to follow the path of NLP and Deep Learn-
ing improvements. We obtained our best performing models with re-
current networks with LSTM and GRU cells. We were unsuccessful

50
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in following the improvement’s path with the usage of transformers
methods as Alibaba did [23], [50].

The thesis has served to initialize exploration of neural-based mod-
els at H&M, providing an initial overview of how NLP methodologies
can be translated to recommendations while evaluating important fac-
tors to user engagement as diversity metrics that are extremely impor-
tant from the business perspective.

There are multiple open paths to continue this work which will be
treated in the future work section.

5.2 Limitations

The first limitation we found was to follow improvements in NLP
models for our neural-based recommendation models. Transformers
are known for requiring more fine-tuning than the methods which
proved more success in our experiments. We are not sure if our re-
sults could not follow the NLP path due to our implementation or
the change of use case. While both cases have a vocabulary (words
or items) NLP has much harder interrelation between the words than
clothes do at H&M. It is the addition of the user profile that makes our
case drift to a new scenario where item relations take meaning inside
a user context.

We mentioned how we choose approximate neighbor methods for
ALS to reduce computational time. Neural-based models achieved
training within one day with enough GPUs but presented a new paradigm
for industrializing the models. Moving to GPU-based environments
needs work, and finding people with experience on them is not as easy
as with the CPU environment needed for AALS. We were surprised
that GPU cloud computing costs for our models were lower than the
CPU ones. We needed fewer (yet more powerful) GPU machines than
CPU machines.

5.3 Future work

We opened multiple work paths with this thesis, we now list what we
see as the most relevant ways to continue the work at H&M both from
the academic and industrial perspectives.
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• Recommendations longevity: how our model’s performance de-
grades over time and how it plays a role in such a fast phase in-
dustry. H&M is a fast-fashion company, meaning that the items
in stock are often replaced between seasons and do not conserve
their value as they would do in other companies that aim for
timeless trends or quality over looks. It is commonly known
that reputable mountaineering brand’s items would last and stay
relevant for years, but that is the opposite of what customers at
H&M look for. There is a lot of research on recommendation use
cases where items have long longevity, for example, the movie
recommendations at Netflix. There is a clear research line on how
the longevity of recommended items plays a role in recommen-
dation systems.

• Transfer learning: Transfer learning has played an important
role for NLP in recent years [51]. The increase in available train-
ing data and the search for reducing computational time have
driven transfer learning research to a point where a lot of times,
big models as BERT or ROBERTA only required little fine-tuning
to specific use cases to achieve good performance. This is some-
thing to explore at H&M as we have most of the world markets
data available. The thesis project was only focused on a small
market as Sweden. Can we use cross-market data to train gen-
eralist models and fine-tune them to specific markets? Can we
reuse trained models within a season with little fine-tuning in-
stead of starting from scratch every time we update the mod-
els? There could be a lot of work on finding the correct setup to
use cross-market data and improve model reusability to increase
both the model’s performance and reduce computational cost.

• Split representation learning and recommendation model: Right
now, the explored neural-based models optimize two problems
simultaneously. They learn user and item representations while
optimizing neural layer weights. Splitting these two optimiza-
tions problems could translate into better performance for both
scenarios and provide a warm start for a final joint model. Such
behavior has been seen with pre-trained word embeddings for
machine translation models [52]. We have previous work at H&M
[53] where we learn items representations from their images and
context to find items to compose an outfit. Can such representa-
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tions be used as a warm start for the recommendation models?

• Join collaborative methods with deep learning learned repre-
sentations: Neural-based models have shown to improve our
performance, but it is not clear whether the benefits come from
the improved representations or the raw power of neural net-
works to learn distributions from data patterns. It would be
interesting to explore if we can translate the learned represen-
tations to the latent space used for collaborative filtering and
known neighbor methods.

• Deep interactions between features: Current models use the
ID from user and items to learn their representation. Work at
Microsoft [54] and Alibaba [23] have shown how interactions
from user and items to features can result in improved perfor-
mance. Replacing ID embeddings for item/user feature embed-
dings such as age, region, category, and color could benefit us
with better performance and solve cold start problems where
we could represent new items/users with only their attributes.
Learning cross-feature relations such as user location and cloth-
ing colors can report benefits for the model.

The thesis has only been the beginning for H&M on exploring deep
learning methods applied to recommendation models. We want to
continue working along with the mentioned points and provide a new
perspective on how these methods can be applied for the fashion in-
dustry.
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5.4 Conclusion

This thesis shows how NLP Deep Learning methods, trained on user
interactions sequences at H&M website, can be used to model user
behavior and create personalized recommendations. We performed
multiple experiments to prove how an ordered user history helps the
model learn. Both item and user representations proved themselves
to play an important role in our model’s performance. New models
won at performance but also saw different patterns on recommended
items, recommending less popular items, and more expensive than
our baseline model.

We believe it is the powerful representation learning and the ability
to capture order within sequences that are responsible for the perfor-
mance improvements. Multiple lines of work have been opened, the
usage of cross market data could increase the learned representations
as well as helping the model generalize. The removal of user identi-
fiers is an interesting work as well, replacing them with user features
instead could remove the cold-start problem and add more informa-
tion to the model.

The fashion industry presents a new paradigm for recommender
systems, high fast-phased trends and user-brand engagement. Com-
panies in fashion do not only have the objective to recommend items
users will buy, but also promote a trendy-fashion image of themselves
to engage with the user and project the image of fashion leading com-
pany. Fashion companies often compete between themselves to cre-
ate new trends and increase their customer group, metrics promoting
diversity and better user engagement like the ones presented in this
thesis will help compete in the market.

To sum up, our work has taken the research of companies like Al-
ibaba, Amazon, and Google to the second-biggest worldwide fashion
retailer and proved it useful. We have a new niche were our item’s life
frequency is much lower than theirs, and it is our duty to continue the
work on researching recommender systems capable of learning high
fast-phased trends.
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