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Abstract 

Population aging is a phenomenon unparalleled in human history. It is 

expected that people over 65 years, or the elderly, will double the child 

population for the first time by 2050.  Turning 65 implies a series of 

physiological changes that include, among others, a loss of functionality of 

the organs involved in the digestive process.  In this sense, the study of the 

digestibility of nutrients, mainly proteins, and the bioaccessibility of certain 

vitamins and minerals of interest for the health of the senior population, are 

of special interest. Only on the basis of scientific evidence will it be useful to 

establish nutritional recommendations at the clinical level, and to design 

functional foods oriented to the specific needs of this population group. 

Among the nutrients most affected by the common digestive disorders of 

the elderly, proteins represent the most important challenge. It is known 

that oral, gastric and intestinal disorders affect their digestion and 

absorption, contributing to the decline of general health status, resulting in 

a loss of muscle mass, increase and change of lipid mass distribution, weaker 

bones and joints, some metabolic and cardiovascular diseases, among other 

psychological and social changes. 

The main objective of this doctoral thesis has been to assess the impact of 

the different alterations appearing with age at oral, gastric and intestinal 

level on the digestibility of proteins, fats and carbohydrates, as well as on 

the bioaccessibility of micronutrients of interest, in protein-rich foods 

whose consumption is recommended for people over 65 years of age, and 

which differ from each other in the origin of this macronutrient (fish, dairy 

products, eggs, meat, legumes and cereals). To achieve this objective, in 

vitro static digestion models were used to simulate, under controlled 

laboratory conditions, the digestive process of different population groups 

and to sample in a non-invasive way.  

The most relevant results of this doctoral thesis are presented in five 

chapters, addressing in each food group, the digestive response derived 



 

both from physiological alterations in the senior population, as well as from 

certain factors inherent to the food.  

Regarding the digestive alterations associated with age, it is possible to 

affirm that pancreatic and biliary insufficiencies were the main responsible 

for the significant reduction in the proteolysis extent in almost all the 

studied foods. The results indicate a higher protein digestibility in lean fish, 

hard-boiled and poached eggs, cheeses, chicken and beef meats, as well as 

legumes in general. Fat digestibility, on the other hand, was not 

compromised. Moreover, cheeses, sardines, as well as some legume and 

cereal grains would contribute to a greater supply of bioaccessible calcium 

than other food matrices. For fat-soluble vitamins, the intake of salmon and 

cheeses resulted as excellent sources of both vitamin A and D3 in their 

bioabsorbable form, while the bioaccessibility of both vitamins in eggs 

depended on the cooking method. In addition, pork provided the greatest 

antihypertensive effect, while turkey meat exerted the greatest effect as 

antioxidant. Finally, the essential/non-essential amino acid ratio increased 

under altered conditions at the end of digestion, compared to standard 

healthy adult conditions. Thus, even with impaired protein digestibility, 

digests will have an effect against sarcopenia. 

  



 

 

Resumen 

El envejecimiento poblacional es un fenómeno sin parangón en la historia 

de la humanidad. Así, se espera que las personas mayores de 65 años, o 

población sénior, doblen por primera a la población infantil en 2050.  

Cumplir años implica una serie de cambios a nivel fisiológico que 

comprenden, entre otros, una pérdida de funcionalidad de los órganos 

implicados en el proceso digestivo. En este sentido, el estudio de la 

digestibilidad de nutrientes, principalmente proteínas, y la bioaccesibilidad 

de determinadas vitaminas y minerales de interés para la salud de la 

población sénior, son de especial interés. Solo a partir de evidencias 

científicas será posible establecer recomendaciones nutricionales de ámbito 

clínico, y diseñar alimentos funcionales orientados a las necesidades 

específicas de este grupo poblacional. Entre los nutrientes 

mayoritariamente afectados por las alteraciones digestivas típicas de 

personas sénior, las proteínas suponen el reto más importante. Se sabe que 

las alteraciones orales, gástricas e intestinales afectan su digestión y 

absorción, contribuyendo al declive del estado general de salud, dando 

lugar a una pérdida de masa muscular, incremento y cambio de distribución 

de masa lipídica, huesos y articulaciones más débiles, algunas 

enfermedades metabólicas y cardiovasculares, entre otros cambios de tipo 

psicológico y social. 

El objetivo principal de esta tesis doctoral ha sido evaluar el impacto de las 

diferentes alteraciones que aparecen con la edad a nivel oral, gástrico e 

intestinal en la digestibilidad de proteínas, grasas y carbohidratos, así como 

en la bioaccesibilidad de micronutrientes de interés.  Concretamente, se 

han analizado en alimentos ricos en proteína cuyo consumo está 

recomendado para mayores de 65 años, y que difieren entre sí en el origen 

de la proteína (pescados, lácteos, huevo, carne, legumbres y cereales). Para 

alcanzar este objetivo, se recurrió a modelos digestión in vitro en estático 

los cuales permiten simular, en condiciones controladas de laboratorio, el 



 

proceso digestivo de diferentes grupos de población y muestrear de forma 

no invasiva.  

Los resultados más relevantes de esta tesis doctoral se presentan en cinco 

capítulos, abordando en cada grupo alimenticio, la respuesta digestiva 

derivada tanto de las alteraciones fisiológicas dados en población sénior, 

como de ciertos factores inherentes al alimento.  

En cuanto a las alteraciones digestivas propias de la edad, es posible afirmar 

que las insuficiencias pancreática y biliar fueron las principales encargadas 

de reducir de forma significativa la extensión de la proteólisis en casi la 

totalidad de alimentos estudiados. Los resultados indican una mayor 

digestibilidad proteica en pescados magros, el huevo duro y escalfado, 

quesos, carnes de pollo y de vacuno, así como legumbres en general. La 

digestibilidad de las grasas, en cambio, no resultó negativamente afectada. 

Por otro lado, los quesos, sardina, así como algunos granos de legumbres y 

cereales contribuirían satisfactoriamente al aporte de calcio bioaccesible en 

mayor medida que otras matrices alimentarias. En cuanto a las vitaminas 

liposolubles, la ingesta de salmón y de quesos fueron una excelente fuente 

tanto de vitamina A como D3 en su forma bioabsorbible; mientras que la 

bioaccesibilidad de ambas vitaminas en huevo, dependió del método de 

cocinado. Además, la carne de cerdo brinda el mayor efecto 

antihipertensivo, mientras que la de pavo ejerce mayor efecto como 

antioxidante. Por último, la relación aminoácidos esenciales/ no esenciales 

aumentó en condiciones alteradas al final de la digestión, en comparación 

con las condiciones estándar de adulto sano. Por lo que, aun con una 

digestibilidad de proteínas afectada, los digeridos tendrán efecto contra la 

sarcopenia. 

  



 

 

Resum 

L'envelliment poblacional és un fenomen sense parangó en la història de la 

humanitat. Així, s'espera que les persones majors de 65 anys, o població 

sènior, dobleguen per primera a la població infantil en 2050. Complir anys 

implica una sèrie de canvis a nivell fisiològic que comprenen, entre altres, 

una pèrdua de funcionalitat dels òrgans implicats en el procés digestiu. En 

aquest sentit, l'estudi de la digestibilitat de nutrients, principalment 

proteïnes, i la bioaccesibilitat de determinades vitamines i minerals 

d’interès per a la salut de la població sènior, són d'especial interès. Només 

a partir d'evidències científiques serà útil establir recomanacions 

nutricionals d'àmbit clínic, i dissenyar aliments funcionals orientats a les 

necessitats específiques d'aquest grup poblacional. Entre els nutrients 

majoritàriament afectats per les alteracions digestives típiques de persones 

sènior, les proteïnes suposen el repte mes important. Se sap que les 

alteracions orals, gàstriques i intestinals afecten la seua digestió i absorció, 

contribuint al declivi de l'estat general de salut, donant lloc a una perduda 

de massa muscular, increment i canvi de distribució de massa lipídica, ossos 

i articulacions més febles, algunes malalties metabòliques i cardiovasculars, 

entre altres canvis de tipus psicològic i social. 

L'objectiu principal d'aquesta tesi doctoral ha sigut avaluar l'impacte de les 

diferents alteracions que apareixen amb l'edat a nivell oral, gàstric i 

intestinal en la digestibilitat de proteïnes, greixos i carbohidrats, així com en 

la bioccesbilitat de micronutrients d’interès, en aliments rics en proteïna el 

consum de la qual està recomanat per a majors de 65 anys, i que difereixen 

entre si en l'origen d'aquest macronutrient (peixos, lactis, ou, carn, llegums 

i cereals). Per a aconseguir aquest objectiu, es va recórrer a models digestió 

in vitro en estàtic els quals permeten simular, en condicions controlades de 

laboratori, el procés digestiu de diferents grups de població i mostrejar de 

forma no invasiva.  



 

Els resultats més rellevants d'aquesta tesi doctoral es presenten en cinc 

capítols, abordant en cada grup alimentós, la resposta digestiva derivada 

tant de les alteracions fisiològiques donats en població sènior, com d'uns 

certs factors inherents a l'aliment.  

Quant a les alteracions digestives pròpies de l'edat, és possible afirmar que 

les insuficiències pancreàtica i biliar van ser les principals encarregades de 

reduir de manera significativa l'extensió de la proteòlisien quasi la totalitat 

d'aliments estudiats. Els resultats indiquen una major digestibilitat proteica 

en peixos magres, l'ou dur i escalfat, formatges, carns de pollastre i de boví, 

així com llegums en general. La digestibilitat dels greixos, en canvi, no va 

resultar negativament afectada. D'altra banda, els formatges, sardina, així 

com alguns grans de llegums i cereals contribuirien satisfactòriament a 

l'aportació de calci bioaccesible en major mesura que altres matrius 

alimentàries. Quant a les vitamines liposolubles, la ingesta de salmó i de 

formatges van ser una excel·lent font tant de vitamina A com D3 en la seua 

forma bioabsorbible; mentre que la bioaccesibilitat de totes dues vitamines 

en ou, va dependre del mètode de cuinat. A més, la carn de porc brinda el 

major efecte antihipertensiu, mentre que la de polit exerceix major efecte 

com a antioxidant. Finalment, la relació aminoàcids essencials/ no 

essencials va augmentar en condicions alterades al final de la digestió, en 

comparació amb les condicions estàndard d'adult sa. Pel que, fins i tot amb 

una digestibilitat de proteïnes afectada, els digerits tindran efecte contra la 

sarcopènia. 
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PREFACE 

Justification of the study 

The world population is in continuous growth, albeit at a slower pace and 

the longevity is also increasing. It is expected that by 2050 will be more than 

twice as many persons above 65 as children under five. Being thus, the 

number of persons aged 65 years or over will surpass the number of 

adolescents and youth aged 15 to 24 years. For this reason, countries with 

aged populations should take measures to implement strategies and/or 

public programs to the growing proportion of older persons 1. The mortality 

risks, health status, type and level of activity, productivity and other 

socioeconomic issues have changed significantly in the last years for the 

elderly. However, the development of alternative concepts and measures 

to face aging have to be considered for their implications in the living 

conditions, productivity and other contributions to society and their needs 

for social protection and health care 2. Time of action must be now centered 

in preventive actions more than corrective ones and to prevent the 

collapsing of health systems 3. 

During aging, many changes occur including organs functions and their 

physiological response. First, body composition changes in the elderly, 

resulting in a loss of skeletal muscle tissue (sarcopenia) and an increase in 

fat mass and its distribution. Cognitive functions such as dementia and 

Alzheimer´s disease can also occur. Moreover, gastrointestinal (GI) tract 

function is also altered, with reductions in sensory perceptions, salivation, 

oral health, absorption of nutrients, lactose intolerance, among others. 

Also, fluid imbalance (mainly characterized by an exceedance of fluid 

output), bones and joints problems (osteoporosis and arthritis, leading to 

falls and fractures), metabolic changes (diabetes mellitus type 2, 

dyslipidemia), cell growth with cancer and alteration in the cardiovascular 
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system are included in the health problems that elderly people may present. 

Nonetheless, social, psychological and economic factors also impact the 

aging process 3. 

The problems presented during the GI tract lead to maldigestion and 

malabsorption of macro- and micronutrients, affecting their general health 

status. Despite the irreversible nature of these changes, there is a lack of 

studies which report the repercussions of GI alterations on macronutrients 

digestion and micronutrients bioaccessibility. In this context, the aim of this 

doctoral thesis was to assess the impact of the age-related GI alterations on 

the digestibility of proteins, lipids and carbohydrates and the 

bioaccessibility of micronutrients such as calcium and fat-soluble vitamins 

(A and D3) from a selection of foods recommended for the elderly. Twenty-

two foods from 6 groups (fishes, meats, dairy, egg, cereals and legumes). 

The in vitro simulation was employed as the main methodology to mimic 

some of the most common digestive conditions of this population group 

compared to that of healthy adults. The results will allow generating 

valuable information about the inherent properties of the foods and how 

these digestive issues impact the digestion of the foods. 

This doctoral thesis was developed in the frame of the project “Alteraciones 

digestivas en poblacion sénior y su influencia en la digestibilidad de 

nutrientes” (AICO/2018/289) granted by Generalitat Valenciana. Also, a 

predoctoral grant (no. 306682) from the Mexican National Council of 

Science and Technology (CONACyT) was given to the PhD student. Both 

funds allowed the completion of this project and the doctoral thesis. 
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INTRODUCTION 

1.1 Food digestion  

1.1.1 Digestion process 

Food digestion is a complex combination of multi-step physicochemical 

processes involving food intake, breakdown, absorption of essential units, 

transport to the related organs, and disposal of residual waste. The human 

digestive system comprises of the digestive tract and other organs, is mainly 

controlled by a neural network and hormonal responses. The multistage 

procedure goes from the oral cavity through the throat, esophagus, 

stomach, small and large intestines to the anus. The auxiliary organs are the 

teeth, tongue, salivary glands, liver, gallbladder and pancreas. Each of the 

above-mentioned accessories performs a specific function, and together, 

they extract the nutrients from the digested foods and remove unused 

material 4. The overall process of digestion mainly occurs in four steps as 

follows: 

1.1.1.1 Oral stage 

The oral stage is given throughout the mastication process which is 

controlled by the central nervous system and modulated by inputs from the 

mouth. Oral processing involves two functions: mastication and swallowing 
5. Some variations of the masticatory function could occur according to the 

intrinsic characteristics of the subject and the inherent properties of the 

chewed food. Within the most important subjects-related factors that 

modifies chewing includes age, gender and dental status. While hardness, 

rheological characteristics, food size, among others define the masticatory 

function 6. 
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During this stage, the saliva and teeth carry out the chewing process. For 

solid foods, a sequence of chewing is performed to achieve a reduction of 

the size of the food particles to generate a bolus safe to swallow 6. On the 

other hand, liquid foods experiment a more rapid oral stage and it is useful 

if the food contains starch 7. Saliva also initiates digestion by the action of 

salivary enzymes (alpha-amylase or lipase), helping to produce a breakdown 

of the chemical bonds of carbohydrates and lipids, leading into maltose and 

oligosaccharides and diglycerides and free fatty acids 3. Figure 1.1.1 shows 

a general digestion mechanism occurring in the mouth.  

The saliva components exert specific functions during the oral stage of the 

digestive system: electrolytes (e.g., bicarbonates, phosphates and urea) 

modulates the pH and the buffering capacity of saliva; macromolecule 

proteins and mucins serve to cleanse, aggregate and/or attach oral 

microorganisms and contribute to dental plaque metabolism; calcium, 

phosphate and proteins have a key role in the anti-solubility factor and 

modulate demineralization and remineralization; and immunoglobulins, 

proteins and enzymes provide antibacterial action 8. 

The average daily flow of the whole saliva varies between 1 and 1.5 L 8. 

However, the flow rate of saliva depends on the characteristics of the foods 

(type of food, moisture content, structure, composition) but also the 

interindividual variation might affect the saliva:food ratio 9. 
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Figure 1.1.1. Diagram of the mechanical, chemical and enzymatic actions 
taking place in the mouth. 

1.1.1.2 Gastric stage 

The second most important stage of the digestive process is found in the 

stomach, which is a major digestive organ of the human body that executes 

a complex process involving both physical and chemical food breakdown 10. 

Storing, mixing, emptying, reducing particles and breaking down the 

ingested foods are its main functions 11. The stomach is divided into two 

parts, the proximal stomach (fundus and the upper half part) and the distal 

stomach (includes the gastric antrum and the lower part). The first one 

regulates the pressure to store food and the peristaltic contraction activity 

of the latter functions as a pump. The motility occurs with movements and 

contractions, and at the same time mixing, directing the food from proximal 

to distal stomach. Propulsions, emptying, mixing, retropulsion and grinding 

are the main objectives of those peristaltic wave movements 12. 

Foods suffer dramatic changes in their structure, preparing them to be 

easier digested and absorbed in the small intestine 13. Some of the 

undergone changes that occur in the gastric environment are also given by 
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the hydrochloric acid, enzymes (pepsin and gastric lipase), various 

electrolytes, mucus, intrinsic factor and hormones. Around 2 L of gastric 

fluids are secreted per day, secreting around 0.7 L after each meal 14. The 

electrolytes that compose the gastric fluid are potassium, chloride, sodium, 

phosphate, carbonate, magnesium, calcium, thiocyanate, ammonium, urea, 

among others 7. They are associated with the control of pH and regulation 

of the buffering capacity 15,16. 

Hydrochloric acid causes the acidity of the gastric fluid (pH 1.5-3.5) which is 

controlled hormonally by the parietal cells in the stomach wall. Like manner, 

the release of HCl stimulates the release of pepsin, unfolding and cleaving 

proteins into polypeptides 12.  

Gastric conditions start at pH 2, turning into 6 due to the intrinsic properties 

of the oral bolus, being the buffering capacity the most impacting on this 

issue.  However, the composition of gastric fluid and the gastric emptying 

progressively change the pH around 3 after 120 minutes 17. 

Food characteristics (components, volume, caloric content, solid:liquid 

ratio, type of dietary fibers, among others) highly influence the rate of 

gastric emptying. However, foods with solid structure are the most difficult 

to be emptied. The chewing efficiency and the degree of disintegration of 

the oral bolus are also important factors that could modify the kinetic of 

digestion and absorption of nutrients 3 

Pepsinolysis is mainly given in proteins and peptides that contain 

hydrophobic aromatic amino acids such as phenylalanine, tyrosine, and 

tryptophan 18,19. Pepsin is capable of breakdown proteins into large chain 

peptides and fewer amino acids and short aminoacidic peptides 20,21. 

Pepsinogen turns to active pepsin at pH between 1 and 6 at 37°C, pH 2 being 

the optimal to achieve the maximum activity. However, at pH between 4.5 

and 5, the activity is still present (up to 70 and 40%, respectively) 22. 
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In physiological normal conditions, the time of gastric digestion could vary 

between 2 and 5 h. The composition of the meal, size of the piece, and 

physiological parameters are factors that may influence the digestion time. 

Gastric stage generates particles with a size lower than 1 to 2 mm with the 

capacity to pass through the pylorus and hence be emptied from the 

stomach into the duodenum 16. 

The secretion of hormones (secretin and ghrelin) and neural signals regulate 

the stomach distension, thus stimulating the secretion of acid. Likewise, the 

presence of peptides and buffering capacity of the food could be implied. 

However, if a too low pH is achieved in the antrum and duodenum, the 

release of hormones and neural signals can be inhibited 23 

Thus, an acidic environment as well as the enzymatic actions, but also 

gastric lipase (from triglycerides to diglycerides and fatty acids), achieves 

the conversion of the oral bolus into gastric chyme. An overall physical, 

chemical and enzymatic gastric mechanism are gathered in Figure 1.1.2. 

 

Figure 1.1.2. Overview of the mechanical, chemical and enzymatic 
mechanisms given in the stomach. 
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1.1.1.3 Small Intestinal stage 

The small intestine is 6-7 m long and goes from the pylorus to the ileocecal 

junction. During the small intestine digestion, chyle is formed when chyme 

is mixed with intestinal fluids. Chyle passes through three sections 

(duodenum, jejunum and ileum) at a rate of 2-25 cm/s. Peristaltic 

contractions also occur by the segmented action of the intestine, mixing and 

at the same time helping the nutrient absorption 10. The first 25 cm of the 

small intestine corresponds to the duodenum, connecting the intestine to 

the liver (throughout the gallbladder) and pancreas, for receiving the bile 

and the digestive enzymes, respectively 10. Also, a mucus-rich alkaline 

solution containing bicarbonate rises to near-neutral the pH of fluids 24. The 

duodenum is the most important fraction because the digestion of the 

nutrients is carried out there. The absorption and still the breakdown of the 

foods are performed during jejunum and ileum. Following, jejunum and 

ileum, the two distal parts of the small intestine, are found as 

intraperitoneal. Even if there is no clear demarcation between them, they 

are macroscopically different. The jejunum connects the duodenum to the 

ileum and is about 2.5 m long. Here it is where the end-digestion products 

are mainly absorbed into the bloodstream. The ileum is about 3 m long and 

is mainly responsible for the absorption of bile acids and the remaining non-

absorbed nutrients. However, the digestion and absorption processes could 

be still present. 

Throughout the three sections of the small intestine, physical and enzymatic 

reactions occur. Proteases (trypsin and chymotrypsin), lipases and amylases 

from the pancreas are the main responsible for the food nutrients 

hydrolysis. However, the peristaltic movements also help the enzymatic 

reactions by mixing and transport them towards the intestine 21. The 

enzymes released by the pancreas, are a response of the cholecystokinin 

and secretin hormones 25. The trypsin and chymotrypsin (considered as 
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endopeptidases) cleavage the internal peptides bonds or exopeptidases to 

split single amino acids from the carboxyl-terminal end of peptides 21. 

Having thus as end-digestion products smaller peptides (of mainly 3 amino 

acids) and free amino acids capable to be absorbed intact into the epithelial 

cells. Lipase breaks down triglycerides into free fatty acids, di- and 

monoglycerides. Bile salts play a key role in the emulsifying of fats, helping 

the lipase to cleavage sites 26. Carbohydrates go from complex structures to 

simple sugars or monosaccharides (i.e., glucose). Starch is the main 

carbohydrate affected by pancreatic amylase. The carbohydrate end-

digestion products are maltose, maltotriose and maltotetraose, but also 

some oligosaccharides of 5-9 glucose units 27. All the end-digestion products 

are absorbed after the action (where needed) of the brush border enzymes 

present in the intestinal epithelium. Amylolytic (dextrinase, glucoamylase, 

isomaltase, sucrase and lactase) and proteolytic (aminopeptidase and 

dipeptidases (dipeptidylcarboxypeptidase and dipeptidylamino- peptidase)) 

action are exerted by brush border enzymes 23,28. The amylolytic brush 

borders lead to glucose or other monosaccharides 21, while the proteolytic 

brush border ones lead to free amino acids. However, some dipeptides and 

tripeptides are absorbed into the blood intact 28. Complex carbohydrates 

that were not hydrolyzed pass to the large intestine to be fermented by the 

colonic microbiota 23. A general panorama of the mechanical, chemical and 

biochemical reactions given in the small intestine is shown in Figure 1.1.3. 
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Figure 1.1.3. Overview of the mechanical, chemical and enzymatic 
mechanisms given in the small intestine. 

1.1.1.4 Large Intestinal stage 

The large intestine or colon is the last part of the digestive system and is 

approximately 1.5 m long. It is the prolongation of the small intestine that 

starts in the ileocecal valve and ends in the anus. Three parts compose the 

colon: ascending, transverse and descending colon. Between 1.2 and 1.5 L 

of ileal fluids enter and only between 0.2 and 0.4 L are excreted, the water 

absorption being highly important during this process. The main functions 

of the colon are to storage and process the residual non-digested matter 

during long periods. However, mixing and absorption of water, salts and 

some of the products generated also occur during this time. 

The process is mainly given by the fermentative action of a consortium of 

microorganisms (microbiota) that take advantage of the non-digested 
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fractions of the foods (mainly fiber and some proteins). The microbial 

ecosystem is composed mainly of bacteria groups, but also some fungi can 

be found 29. Bacteroidetes, certain gram-negative bacteria, are in high 

amounts. However, Firmicutes, Proteobacteria and Actinobacteria could be 

also present. The phylogenetic composition of gut microbiota is highly 

variable according to the age of the humans (i.e., infants, adulthood, elderly) 
30. However, some other factors such as health status, diet and location 

cause variations in the gut microbiota 31. 

A saccharolytic process is one of the main activities of the gut microbiota by 

means of fermentation, being the undigested food the substrate. However, 

some bacteria are capable to ferment proteins, peptides and amino acids, 

giving some non-desirable putrefactive substances, such as ammonia, 

phenols, indoles, amines, and hydrogen sulfide, accumulate in gut contents 
29.  

The carbohydrate colonic fermentation mainly depends on the composition 

of the ingested foods, the host and some other dietary factors.  

Polysaccharides are the major form of carbohydrates that entering in the 

large intestine and the rate of depolymerization of these carbohydrates 

impacts the rate of de availability for bacterial assimilation 29. The main end-

fermentation products from the anaerobic environment in the colon are 

short-chain (C2-C6) fatty acids (SCFA). A large amount (80%) of the colonic 

anion concentration is composed of acetate, propionate and butyrate, 

produced in nearly constant molar ratio 60:25:15. The SCFA production 

exert physiological function against intestinal neoplasia, ulcerative colitis, 

among other illnesses 32. Specifically, the production of acetate enhances 

the ileal motility, increases the colonic blood flow, promotes better function 

in the immune system and increases blood antibody production against 

some type of cancer 33. Even though there is a lack of studies in this field, 

exists a lot of relationship between the colonic scenery and the health of 
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the hosts. An overview of the main mechanisms given in the colon are 

shown in Figure 1.1.4. 

 

Figure 1.1.4. Overview of the mechanical action and microbial process given 
in the large intestine. 

1.1.2 Nutrients: Digestion and absorption 

The macronutrients (proteins, lipids and carbohydrates) digestion, as well 

as the release of micronutrients or bioactive compounds, are conditioned 

by some physical (peristaltic movements), chemical (pH and digestion fluids) 

and biochemical factors (enzymes). The end-digestion products of the 

macromolecules result in simple units or small molecules capable to be 

absorbed throughout the intestine. Diffusion and transport allow the 

absorption of the digesta, water and bile (for recirculation). 

1.1.2.1 Proteins 

Proteins are polymers with a highly complex structure with functional 

diversity according to their chemical make-up. Their structure is composed 
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of 20 different monomers (amino acids) 34, which are composed by an amino 

group (NH2) and a carboxylic group (-COOH). They are covalently linked by 

peptide and disulfide bonds.  However, non-covalent interactions (hydrogen 

bonds, electrostatic interactions, hydrophobic interactions and weak 

nonspecific attractive and repulsive forces) may also define the composition 

and structure of proteins. Amino acids are grouped according to their 

characteristics, i.e., chemical structure. The sequence with a final three-

dimensional shape, defines the structure, origin and biological activity, 

according to environmental conditions (pH, temperature, salts, solvents) 35.  

In foods, the proteins determine texture, sensory and nutritional properties, 

as well as the sensibility to heat and other treatments. The proteins possess 

some functionality that are capable to impact the behavior during 

preparation, processing, storage and consumption 36. For the protein 

consumption, the main interest is the nutritional point of view, due to the 

importance in physiological processes, using protein end-digestion products 

in specific biological functions, i.e., building muscular mass, cognitive 

functions, motility, immunomodulators, detox, among others. The structure 

of the proteins must be enzymatically and chemically broken in the GI tract. 

Proteases (pepsin, trypsin and chymotrypsin) act on the protein bonds 

resulting absorbable short-chain peptides and free amino. Pepsin turns 

active when interacting with the acidic gastric pH (1.5-4) 37. The specificity 

of pepsin is directed to proteins containing aromatic or hydrophobic L-

amino acids 38. On the other hand, trypsin and chymotrypsin are secreted in 

an inactive form (trypsinogen and chymotrypsinogen) by the pancreas. 

Trypsin cleaves the peptide bonds in which basic amino acids (lysine and 

arginine) contribute the carboxyl group; chymotrypsin cleaves peptide 

amide bonds where the side chain of the amino acid N-terminal to the 

scissile amide bond is a large hydrophobic amino acid (tyrosine, tryptophan, 

and phenylalanine). The pancreatic proteolysis result in some free amino 

acids and a mixture of oligopeptides 28. Some of these amino acids and 
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peptides, could also exert some functional properties with benefits to the 

human body. The bioactivity associated with short-chain peptides is mainly 

metabolic regulation. Anti-hypertensive, opioid agonists or antagonists, 

immunomodulatory, antithrombotic, antioxidant, anti-cancer and 

antimicrobial activities have been reported 39. 

1.1.2.2 Lipids  

Lipids in animal and plant foods are mainly found as triglycerides and in 

lesser extent as  phospholipids and cholesterol 40. The triglyceride structure 

is composed of a glycerol backbone and three fatty acid chains. The degree 

of lipid´s unsaturation defines its nutritional value. The intake of saturated 

fatty acids is unneeded, while some of the unsaturated fatty acids (i.e., 

linolenic and linoleic) are key factors of a healthy diet 41. Dietary fatty acids 

differ between them in the length and the number of carbons. Those with 

more than 14 are considered as long-chain fatty acids, while short-chain 

fatty acids (SCFA) with up to 6 carbons. The number double bounds defines 

if the fatty acid is saturated (without double bonds, SFA), monounsaturated 

(having one, MUFA) or unsaturated (having more than one, PUFA). 

Triglycerides have to be broken in the GI tract, being this process highly 

efficient. In the oral phase, a salivary lipase is secreted which seems to not 

have a significant digestive role on human digestion, playing its role as fat 

taste and texture perception 42. Following, a gastric lipase is released in the 

stomach, which is stable in gastric conditions (pH between 2 and 7), being 

its optimal pH around 5 17. Gastric lipase mainly cleavages the sn-2 position 

in triglycerides 43 and is capable to hydrolyze 10–30% of ingested 

triacylglycerols, producing mainly free fatty acids and diacylglycerols 44. The 

intestinal digestion is favored by the gastric hydrolysis, facilitating the 

emulsification of fats and promoting pancreatic enzyme activity. In fact, the 

emulsification process could be started during the stomach because of 

peristaltic movements. However, the most important emulsification 
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process of fats is given during the small intestine. The bile acids generates a 

colloidal system that helps to solubilize the lipids in an aqueous media, 

enhancing the enzymatic action 28. Bile also acts on the hydrolyzed products, 

generating small micelles that allow the transport and a facilitated 

absorption 45. Pancreatic lipase mainly cleavages the sn-1 and sn-2 sites of 

triglycerides, but is capable to act on the sn-2  site to a lesser extent 46. The 

unfold of triglycerides could occur in different ways: resulting in total 

lipolysis, whereas three fatty acids are released and one glycerol molecule; 

partial lipolysis, in which only one fatty acid is released (generating apart a 

diglycerol) and two fatty acids released (generating apart a mono-glycerol). 

However, only the free fatty acids and the mono-glycerol molecules are 

absorbed by the intestinal epithelial cells 47. 

1.1.2.3 Carbohydrates 

Carbohydrates are considered as the main contributors of the daily caloric 

intake (almost a half part). Most of them come from plant foods but other 

types of foods such as milk and meats (lactose and glycogen, respectively) 

could contribute to a lesser extent. Saccharides are organic compounds 

formed by one or more molecules with a single aldehyde or ketone group 

(monosaccharides, i.e., glucose, galactose and fructose). Those containing 

two monosaccharides, e.g., sucrose, lactose or maltose, are named 

disaccharides. When a saccharide structure contains between 2 and 10 units 

are known oligosaccharides and when the chain is longer than 10, are 

classified as polysaccharides. Starch is the most common polysaccharide in 

foods (about 50%) 28. However, some polysaccharides are gastrointestinal 

digestion resistant, especially in humans, due to the absence of some 

enzymes that break down certain linkages, mainly β. Some other 

gastrointestinal systems (i.e., ruminants) are capable to hydrolyze through 

chemical and enzymatic processes. 
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Starches could vary as amylose and amylopectin, being the main difference 

their linear or branched structure, respectively. Amylose is composed of 

glucose units linked by α(1,4)-glycosidic bonds while amylopectin is 

structured by glucose units with α(1,6)-glycosidic linkages branched every 

15-20 glucose units 28. Both forms of starch are found naturally in foods, 

having variations between the amylose:amylopectin ratio. The changes in 

the ratio could influence and modify some important factors in foods 

(texture, stability, rheological and processing properties, oxygen 

permeability, water binding capacity and gel property) 48. In addition, the 

ratio could influence the degree of glycolysis during the GI tract, being 

greater when the food has more amylose than amylopectin 49. Alpha-

amylase, secreted by the salivary glands and pancreas, is the responsible of 

the breakdown of carbohydrates. The salivary amylase impacts the 

saccharides in a lesser extent, due to a shorter time of residence in the 

mouth and the inactivation in the gastric environment (acid pH).  

The starch is hydrolyzed to smaller molecules (oligomers) as maltose, 

maltotriose and α-limit dextrins. The later present branch points resistant 

to α-amylase. The amylolysis products are further hydrolyzed to glucose or 

other monosaccharides by the action of two brush border enzymes 

(maltase-glucoamylase and sucrase-isomaltase) 50. Once hydrolyzed and 

released, monomers are absorbed through the intestinal epithelial cells, 

generating an increase in the glucose in the bloodstream concentration, for 

their use as an energy source by the cell of tissues and organs. Nevertheless, 

undigested carbohydrates follow their digestion process in the large 

intestine, being fermented by  the colonic microbiota obtaining energy and 

producing short-chain fatty acids 50. 

1.1.2.4 Micronutrients and bioactive compounds 

In addition to the macronutrients, foods include other minor components 

such as vitamins (water-soluble and fat-soluble) and minerals. They 
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participate as constitutive elements of tissues and are implied in the activity 

of enzymes and hormones. The most common micronutrients in foods are 

water-soluble (C, B, biotin, pantothenic acid, and folic acid) and fat-soluble 

(A, D, E and K) vitamins and minerals (calcium, potassium, magnesium, 

phosphor, sodium, sulfur). Besides, bioactive compounds (carotenoids, 

polyphenols, terpenes, lignans, organosulfur compounds, glucosinolates 

and saponins) do not have contribution to the nutritional function but exert 

a beneficial effect on cell activities and physiological functions. Like manner, 

bioactive compounds are found in much lower amounts, compared to 

macronutrients. 

The bioavailability of these bioactive compounds depends on the food 

matrix and structure. The degree of deconstruction and hydrolysis during 

the digestive process, will determine the bioaccessibility of these 

substances. First, the chewing action broke down the food structure 

resulting in semi-solubilization of macro- and micronutrients in salivary 

fluids. Following, the physical, chemical and enzymatic actions may enhance 

the extraction, solubility and stability of micronutrients during gastric and 

intestinal stages. As the food matrix is missing, the micronutrients are 

released to the aqueous media. However, these substances absorption may 

be affected by interactions within the food structure and end-digestion 

products. Thus, considering the possible interactions, the intake of 

micronutrients and bioactive compounds is highly needed due to their 

implication in essential functions. Moreover, they enhance the health of the 

host by their antibacterial, anti-inflammatory, antioxidant, among others 

effects 51. 

1.1.3 Factors affecting food digestion 

There are two main types of factors that affect food digestion: food-related 

and host-related factors. 
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1.1.3.1 Food-related factors 

In complex systems such as food matrices, several factors could 

conditionate nutrients digestion. These factors include food-inherent 

properties and dietary patterns. The most significant food characteristics in 

the nutrient digestibility and bioaccessibility are the chemical composition, 

physical structure, processing and interactions of the nutrients before and 

after digestion 52–54. 

Food composition results into different enzyme:substrate ratios, even if the 

digestive fluids are secreted according to the composition by hormonal 

signals 55,56. Additionally, the food composition depends on the origin of 

foods (e.g., vegetal or animal) which directly impact on the response to the 

digestion process. For instance, digestibility of vegetal protein differs from 

animal ones, due that plant foods have cell walls, present some 

antinutritional factors and their amino acidic composition is different 57. 

Besides, food matrix could conditionate digestion process and kinetics 58. 

Harder and structured matrices are more difficult to be disrupted, being 

nutrients less available to the digestive factors (physical, chemical and 

biochemical) 59. Being thus, foods with a simple matrix (liquids and semi 

liquids) easier to digest 37. 

Some modifications in the food characteristics could occur during 

processing (composition, physical properties, stability of nutrients during 

storage, among others). Processes such as refrigeration, freezing, heating, 

curing or chemical treatments (i.e., ozonation) could play an important role 

in food digestion. Thus, freezing could modify the texture and other 

physicochemical parameters of fruits. In contrast,  phytochemicals 

(carotenoids and flavonoids) were similar in fresh and frozen vegetal foods 
60. On the other hand, heating seems to increase nutrients digestibility (i.e., 

denaturation of proteins, jellification of starches), but could lead to 
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degradation  at the same time (oxidation of vitamins or phytochemicals) 61. 

Other processes, such as milling, used to decrease the particle size, might 

enhance digestion because of an increase of the surface area and therefore 

promoting  enzyme and substrate interaction 62. Some other processing 

methods, such as sprouting 63, fermentation 64,65, curing 66, homogenization 
67 and emulsification 68  have been reported to impact on the digestibility 

and bioaccessibility of nutrients in a different extent depending on many 

process variables. 

On the other hand, physical and chemical interactions determine food 

digestibility, bioaccessibility, transport and absorption of nutrients. Three 

different interactions have been stated: interactions (i) between nutrients 

within the food matrix, (ii) between nutrients with other components during 

digestion and (iii) among end-digestion products (after the digestion and 

during the release and solubilization).  

The interactions before digestion occurring between nutrients are given in 

the food matrix structure 69. For example, lipolysis rate is dependent on the 

proteolysis or glycolysis extents if the matrix presents the lipids trapped. As 

long as the network breaks down, the lipids are released from the food 

matrix, becoming accessible to lipases 70. In emulsion food systems, the 

active or inactive lipids interactions determine the properties affecting 

digestibility 71. On the other hand, polyphenols may be found in a natural 

manner interacting with carbohydrates on the wall cells. The release 

depends on the rupture of the matrix, e.g., by grinding, pressing and 

chemical and enzymatic actions 72. 

Interactions that occur between nutrients and other components during the 

GI tract must be also considered. Once released, some nutrients interact 

with other physiologically released compounds to be absorbed. 

Cyanocobalamin (Vitamin B12) binds with a glycoprotein (intrinsic factor) 

secreted in the stomach to turn into an absorbable structure. Once bonded 
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to the intrinsic factor, vitamin B12 is capable to be absorbed and used in 

specific functions, one of them is oriented against pernicious anemia 73.  

Furthermore, after digestion and release of micronutrients and bioactive 

compounds, some of them could interact together. For example, the free 

calcium could interact with long-chain fatty acids, forming insoluble calcium 

soaps, removing them from the oil-water interface and worsening the lipid 

digestibility 74.  

1.1.3.2 Host-related factors 

There are numerous host-related factors that could condition the efficiency 

of digestion process, bioaccessibility and bioavailability of nutrients. The 

most common are sex, age, genotype, lifestyle, physiological state and 

general health status. 

Some diseases or conditions such as lactose intolerance, pancreatic 

insufficiency, gastric surgeries (intended to treat obesity), helicobacter 

pylori infection, allergies, autoimmune disorders (celiac sprue), Crohn's 

disease, atrophic gastritis, hyperthyroidism, cirrhosis, obesity and diabetes 

are linked to interferences with the absorption and/or metabolism of 

nutrients 14. 

Lactose intolerance is a response to a lack of one of the brush-border 

enzymes (lactase) that breaks down the dairy-origin saccharide. This 

intolerance has high prevalence in Asiatic populations 75. Endocrine 

Pancreatic Insufficiency (EPI) occurs in cystic fibrosis patients. In addition to 

the decreased pulmonary function, these patients present obstruction in 

the pancreas by a dense mucosa, affecting the release of sodium 

bicarbonate and pancreatic juice. This health condition highly impacts the 

health status of the patients due to their reduced intestinal capacity to 

digest and absorb nutrients, mainly lipids 76. Gastric surgeries (gastric by-

pass or sleeve gastrectomy) can also modify the way nutrients are digested. 
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The size and shape of the stomach are altered, modifying the gastric empty 

resulting in less time of digestion with an elevated pH (3.5-4) 14,77. Crohn's 

disease results from genetic susceptibility, environmental factors, and 

intestinal microbiota composition change, resulting in an abnormal mucosal 

immune response and a compromised epithelial barrier function 78. 

Atrophic gastritis, commonly developed together with Helicobacter pylori 

infection, lead to a reduced gastric acid secretion and hypochlorhydria, 

altering nutrients digestion 79. Therefore, certain diseases or physiological 

conditions can alter nutrients digestion. 

Furthermore, scientific literature reports that humans’ digestion changes 

along life. Infants, toddlers, adults and the elderly present different 

physiological paths to achieve nutritional requirements. New-born subjects 

present a lack of dental pieces, the digestive fluids with a gastric pH slightly 

elevated (3.5-6.5), a reduced pepsin release (10-20% less than for adults) 

and different type and concentration of enzymes (different lipase, less 

amylase and other brush border enzymes). The size of the stomach is 

smaller making the time between meals also shorter 14. Gut microbiota in 

infants is in constant change, acquiring some charge according to the mode 

of birth and the mother gut microbiota, turning different composition when 

a transition to a more solid and varied diet occur 30. However, the 

gastrointestinal conditions became to their optimum point in adulthood and 

get worse in the elderly. A deterioration in the oral health status, an 

imbalance in the saliva fluids, less peristaltic movements, a lower bile and 

enzymes concentrations, different pH, longer time of digestion and different 

gut microbiota composition are common in the elderly. Consequently, a 

worsened digestive process and health status. 
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1.2 Gastrointestinal alterations in elders and their impact on 

digestibility and bioaccessibility of nutrients 

Elders’ health is now a global concern and have been taken as a world 

challenge due the implications on pharmacology and overall health care 14. 

Consequently, elders will represent a huge part of the population. For this, 

economic, political and social changes are motivating to act in a preventive 

form to avoid the collapse of the implied systems (social, economic, of 

assistance, political and health) 2 and ensure a better quality of life. 

Therefore, understanding the physiological changes along ageing, including 

those affecting the gastrointestinal functions, plays a key role in this 

important and preoccupant topic. Thus, body composition undergoes 

changes due to a loss of skeletal muscle tissue (sarcopenia) and an increase 

in fat mass, among others. Changes in cognitive function like dementia and 

Alzheimer’s disease are also given. Elders also present alterations in the 

gastrointestinal tract consisting of an imbalance of fluids (greater fluid 

output), together with osteoporosis and arthritis (which may entail falls and 

fractures), diabetes mellitus type 2, dyslipidemia, altered cardiovascular 

system and cancer 3. On the other hand, elders represent a vulnerable 

collective in many countries, being specially affected by social, psychological 

and economic issues.  These above-mentioned aging problems can impact 

their quality of life in a simple or in a synergic way (Table 1.2.1). 
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Table 1.2.1. Social, psychological and physiological issues responsible of 
malnutrition in elders (Source: Rémond et al. (2015)) 3. 

 

 

•Lack of knowledge about food, cooking and nutrition

•Isolation/loneliness

•Poverty

•Inability to shop and/or prepare food

Social factors

•Dementia

•Depression

•Confusion

•Anxiety

Psychological factors

•Gastrointestinal dysfunction, e.g., malabsorption

•Poor appetite and poor diet

•Oral problems (teeth loos and dysphagia)

•Loss of taste and smell

•Respiratory disorders

•Endocrine disorders, e.g., diabetes mellitus type 2

•Neurological disorders, e.g., Parkinson disease

•Infections, e.g., urinary tract infections

•Physical disability to feed self

•Drug interactions

•Nausea and vomiting

•Altered/increased metabolic demands

•Other diseases, e.g., cancer

Physiological factors
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Gastrointestinal alterations are highly relevant because if malnutrition and 

malabsorption are given in the elderly, some other factors are triggered. The 

most common oral, gastric, small intestine and large intestine (colon) 

alterations appearing with ageing are presented in Figure 1.2.1. 

 

 

Figure 1.2.1. Summary of the developing digestive physiology alterations 
elders (Source:  Shani-Levi et al., 2017)14. 
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1.2.1 Oral status in elderly 

Mastication is altered in the elderly with a bite force decreased and less 

mandibular reflexes, the oro-sensory receptors worsened, the muscles 

involved in chewing and the tongue activities decreased, tooth damage, 

malocclusion and less amount of saliva secretion 3,80. Thus, factors can be 

grouped into two types: the oral health status and the properties of saliva.  

Within the oral status, tooth loss (edentulism) affects more than one-third 

of the elderly population, affecting the dietary intake, leading to suboptimal 

absorption of nutrients 81. In addition, the diet is modified to compensate 

the impaired oral health and limited oral functional capacities. Hard-type 

foods consumption is reduced increasing the soft-type ones. Consequently, 

the protein intake decreases and the amount of fat and additives increase 
3.  

On the other hand, the altered salivation in the elderly is characterized by 

changes in the amount and composition. Less saliva is secreted with an 

imbalance of electrolytes and more salivary enzyme concentration 14.  

It has been reported that an oral status affected (e.g., with tooth loss and 

with less amount of saliva) do not cause severe problems because elderly 

people compensate with more chewing cycles. Although, even if the oral 

host-conditions can be compensated, the intrinsic characteristics of the 

food must be considered.  

1.2.2 Gastric alterations in elderly 

The elder´s stomach suffers some alterations that may impact the digestive 

function. Gastric atrophy is characterized by a decrease in fluid secretions, 

with higher pH gradient (between 6 and 2.2), pepsin (to 75%) and gastric 

lipase (to 15%) reduction, less peristaltic movements, as well as the changes 

in the mucus production and mucosal prostaglandin levels 14. Also, a slower 
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passage in higher residence time is produced by a reduction in the gastric 

emptying. It is thought that the supply of blood may be also reduced, which 

can be aggravated when the generalized atherosclerotic disease is present 
3,12. Furthermore, Helicobacter pylori infection, one of the most difficult to 

eradicate, is highly frequent among the elderly, generating weight loss and 

failure to thrive 12.  

1.2.3 Small intestine changes in elderly 

Even if scarce literature reports the evaluation of the aging changes, some 

intestinal alterations have been stated 3,82,83. First, the transit time seems to 

be longer than in young adults, oscillating between 2 and 6 h, due to lower 

peristaltic movements. Also, the intestinal secretions result in alterations 

(i.e., bile and pancreatic secretions), being lower the lipase and 

chymotrypsin concentrations (reduced by 15 and 23%, respectively) and the 

amount of bicarbonate and enzymes almost half reduced (45%) 84. Actually, 

the consensus methodology by the INFOGEST group establishes the 

conditions to perform an in vitro digestion model to elucidate the impact of 

these disorders on the elders’ nutrition 14. This model suggests lowered 

peristaltic movements, reduced proteolytic enzymes (to 50%), reduced 

lipase levels to higher pH (6.5), longer transit time (3 h) and lowered bile 

concentration (to 50%) 14. The GI conditions and their alterations in the 

elderly are shown in Figure 1.2.1. 

1.2.4 Colonic changes in elderly 

The large intestine (colon) is also affected by aging. A reduction in the 

peristaltic movements is triggered by less physical activity. Consequently, a 

tendency for a longer colonic transit time in older patients occur. Moreover, 

the composition of the colonic microbiota change. Less biodiversity and a 

compromised stability occur, being highly altered the ratio between 
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Firmicutes and Bacteroidetes (the two dominant divisions of the gut 

microbiota) 3,14. 

The differences in the gut microbiota composition are associated to the 

change in the diet. Having thus, a limited range of foods promoting colonic 

microbial growth. In addition, the accumulative disorders of the bowel 

functions give a digest with different characteristics, being this the substrate 

for the colonic microbiota. Changes in gut microbiota composition are 

indicators elements to understand and improve the health of the elders 31.  

1.3 In vitro digestion model for elderly  

To assess the effect of the gastrointestinal conditions on the digestion of 

proteins, lipids and carbohydrates, as well as the bioaccessibility of 

micronutrients and bioactive compounds, some gastrointestinal in vitro 

digestion models have been proposed by the INFOGEST group, simulating 

the conditions of healthy adults 7,85. Besides, in vitro digestion models have 

proposed for specific populations groups such as infants, elders and other 

abnormalities in the digestive system (pancreatic insufficiency, gastric 

surgeries) 14,86. Tables 1.3.1 and 1.3.2 gather the oral, gastric and intestinal 

conditions of healthy adults and elderly proposed by the INFOGEST 

consensus.  

In addition, some studies have been reported the importance of the oral 

status and the impact on the digestive system and in the general health 

status. These studies also highlight the different behavior of the foods 

according to their physicochemical and compositional characteristics. 

The use of the in vitro methodology allows studying a huge number of 

samples in parallel, with high reproducibility and with good correlation to in 

vivo studies. In addition, the in vitro studies allow to know the exact status 

of the nutrient at specific moments of the digestion. Thus, in vitro 
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methodologies can be useful first to study the phenomena occurring during 

the digestive system. Following, the information can be used for a posterior 

in vivo study. 

The generated information possesses high research value due to the 

nutritional importance to establish dietary recommendations or to the 

design of products according to the specific needs of certain population 

groups.  

Table 1.3.1. Summary of the oral, gastric and intestinal conditions to 
perform an in vitro digestion simulation with the healthy standard 
conditions established by the INFOGEST group 7,85. 

Parameter Oral stage Gastric stage Small intestine 

stage 

pH 7 3 7 

Time of residence  2 min 2 h 2 h 

Total volume ~10 mL of 

bolus 1:1 

(5g food + 5 

mL SSF) 

~20 mL of 

chyme 

1:1 

(10 mL bolus 

+ 10 mL SGF) 

~40 mL of chyle 

1:1 

(20 mL chyme + 

20 mL SIF) 

Enzymes and 

concentration 

Salivary 

amylase at 75 

U/mL 

Pepsin (2000 

U/mL) 

Pancreatin (100 

Utrypsin/mL) 

Bile salts - - 10 mM 
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Table 1.3.2. Summary of the oral, gastric and intestinal conditions to 
perform an in vitro digestion simulation with the elderly conditions 
suggested by the INFOGEST group 14. 

Parameter Oral stage Gastric stage Small intestine 

stage 

pH 7 6 7 

Time of residence  2 min 2 h 4 h 

Total volume ~10 mL of 

bolus 1:1 

(5g food + 5 

mL SSF) 

~20 mL of 

chyme 

1:1 

(10 mL bolus 

+ 10 mL SGF) 

~40 mL of chyle 

1:1 

(20 mL chyme + 

20 mL SIF) 

Enzymes and 

concentration 

Salivary 

amylase at 

112.5 U/mL 

Pepsin (1500 

U/mL) 

Pancreatin (50 

Utrypsin/mL) 

Bile salts - - 5 mM 

1.4 Changes in elder´s diet 

Because of the physiological changes in the elderly the variety of foods is 

highly reduced. In addition, the impossibility or independence to cook, some 

economic issues, the administration of medicines, a diminished appetite, 

loneliness and depression are other factors that must be considered. The 

type of foods in which the elder´s nutrition is based includes foods with less 

proteins and fiber and more fat, starch and additives. The physical 

characteristics of the foods present high relevance. In fact, smother foods 

can be easier chewed, swallowed and digested by elders. Consequently, 

elders can enter into a malnutrition status, defined as “a state of nutrition 

in which a deficiency of energy, protein and other nutrients causes 

measurable adverse effects on tissue and body form (body shape, size and 
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composition) and function and clinical outcome” 87. For this, considering the 

aging changes, the clinical recommendations suggest keeping the supply of 

proteins (i.e., for the preservation of muscle mass), vitamins and minerals 

(i.e., for bone health) at least the same or preferably slightly increased 

compared to the intakes of healthy persons 88. 

The protein-energy malnutrition is highly common in the elderly resulting in 

significant personal, social and economic problems 87. In addition to the 

physiological changes, the higher cost of rich-protein foods is an important 

factor. Within the aging changes, sarcopenia and frailty are considered as 

the most critical and adequate amounts of proteins and energy intake are 

considered against them. Sarcopenia is characterized by the progressive and 

generalized loss of skeletal muscle mass and muscular function leading to 

risks of physical disability, falls and frailty. Is highly associated with 

osteoporosis disease, both factors being determining the life quality of the 

elderly. In addition, asthenia is a symptom in which the physical condition 

of the person disables the capacity to walk, run or another physical effort 
3,89,90. 

The dietary recommendations for elders suggest reducing the food 

consumption that tends to increase the risk of obesity, hypertension and 

related chronic conditions. These recommendations advice to avoid 

saturated fats (i.e., meats and dairy products with high lipid content, 

processed meat), trans fat (i.e. hydrogenated oils, margarine, shortening, 

and those products containing them), refined carbohydrate foods (i.e. soft 

drinks, fruit juices, bread with low fiber content and products with white 

flour, white rice), sodium (salt and sodium compounds in canned and other 

processed foods, table salt), and phosphorus (cola, processed meats and 

commercially baked products) 91. In contrast, the recommendations also 

propose higher protein intake (1-1.5 g protein per kg body weight per day) 

than for younger adults (0.8 g protein per kg body weight per day), 
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representing the 15-20% of total energy intake 86. In addition, high amounts 

of vitamins and minerals (especially those involved in bone health, i.e., 

vitamin D and calcium) are recommended. Furthermore, it has been 

reported that other nutrients are found as non-adequate intakes, such as 

omega-3 fatty acids, dietary fiber, carotenoids (vitamin A precursors), 

magnesium, potassium and vitamins B6, B12 and E 92. Even if supplements 

may be usually needed (in case of nutrient deficiencies and/or and 

inefficient absorption and use of nutrients because of medications), elderly 

people must tend to dietary habits in which fruit, vegetables, legumes, 

whole grains, nuts or seeds, fish, lean meat, poultry, and low-fat fluid dairy 

products would be included 91. Those foods are considered a good source of 

nutrients according to elderly requirements. Foods such as soy, dairy 

products and meat have the highest levels of dietary proteins with good 

amounts of indispensable amino acids, and other micronutrients 86. They 

present good amounts of essential amino acids including leucine, isoleucine 

and valine. These amino acids, also known as branched-chain amino acids 

(BCAA), play a significant role as important substrates and regulators in 

protein synthesis with heavier anabolic effects 93. 

Considering the recommendations for the elders, dietary animal protein 

(meats, fish, dairy and egg) is the primary source of high biological value 

protein, iron, vitamin B12, folic acid, biotin and other essential nutrients. 

Egg protein, highlights for its advantages due to be less expensive, 

compared to other high-quality protein sources (meat, poultry and 

seafood). However, legumes (considered as rich-protein foods) can be 

useful to the protein dietary contribution, but also certain 

cereals/pseudocereals can present relatively large amounts of proteins (i.e., 

oats, quinoa, spelt), considering still their high contribution of dietary fiber, 

vitamin B, and numerous dietary minerals 94. 
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In this sense, some organisms such as the European Society for Clinical 

Nutrition and Metabolism and the Spanish Society of Geriatrics and 

Gerontology (SEGG for its acronym in Spanish) advise elders to increase the 

consumption of rich-protein foods 95, and especially those rich in essential 

amino acids such as leucine or tryptophan 90.  

Accordingly, twenty foods were selected to screen the impact of the elderly 

GI disorders on different food matrices of six different classifications: fishes, 

dairy, eggs, meat, cereals and legumes. In each group, the most consumed 

by Spanish elderly population were chosen (Table 1.3.1) according of 

questionnaire in which 50 Spanish elders were asked to indicate the foods 

consumed the most in six food categories contributing to the protein intake. 

Some of them require processing for its habitual consumption such as 

cooking (i.e., cereals and legumes) or steam cooking (meat and fish), before 

digestion. Likewise, the influence of the processing on the digestion of 

macro- and micronutrients of the egg was considered an interesting topic. 
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Table 1.4.1. Rich-protein foods selected to be digested according to the 
selection performed by Spanish elders throughout a questionnaire.   

Food category Food 

Fishes Salmon 

Sardine 

Sea bass 

Hake 

Milk and dairy products Milk 

Yogurt 

Fresh cheese 

Aged cheese 

Egg Hard-boiled 

Poached 

Omelet 

Meats Chicken 

Turkey 

Pork 

Beef 

Cereals Oats 

Quinoa 

Spelt 

Legumes Chickpea 

White bean 

Lentils 

Soya bean 
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OBJECTIVES 

The aim of this doctoral thesis is to gain knowledge about the contribution 

of main digestive alterations appearing along ageing on the hydrolysis and 

bioaccesibility of relevant macro and micronutrients for elders’ health, i.e., 

mainly proteins, liposoluble vitamins A and D3 and calcium mineral. 

Specifically, different dietary rich-protein sources (meats, milk and dairy 

products, egg, fish, legumes and cereals) were in vitro digested to also 

assess the role of some food-related factors on digestibility under elders’ 

gastrointestinal (GI) conditions. 

To reach this overall objective, the following specific objectives were stated: 

1. To assess the impact of older’s GI conditions at oral, gastric and 

intestinal level on protein digestion, but also on glycolysis and 

lipolysis in those food matrices with relevant content of these 

macronutrients, in 22 rich-protein dietary sources belonging to 

different food groups.   

2. To evaluate the contribution of food-related factors (source, matrix 

structure, composition and processing) on protein digestion, but 

also on glycolysis and lipolysis in those food matrices with relevant 

content of these macronutrients, in 22 rich-protein dietary sources 

belonging to different food groups.   

3. To address the impact of the above-mentioned factors on the 

bioaccessibility of relevant bioactive compounds (vitamins A, D3 

and calcium) for elders’ health and present in the foods under study. 

4. To establish dietary recommendations addressed to elders based 

on the evidence of this doctoral thesis about the food matrices 

supplying the greatest bioaccessible fraction of macro and 

micronutrients under elders’ GI conditions.  
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WORKING PLAN 

To achieve the planned objectives, the tasks were performed as follows: 

1. Literature revision: establishing the background of the state of the 

art for setting up the needed analytical methodologies and for the 

discussion of the results.  

a. Scientific literature related to gastrointestinal conditions of 

the elderly population, as well as for the healthy adults, was 

used to define the panorama and for understanding the 

digestive process that may be mimicked using static in vitro 

digestion models for the specific populations.  

b. Scientific literature related to the dietary 

recommendations, especially those related to protein 

intake, for people over 65 years according to their specific 

needs for promoting a good health status. 

2. Analysis of the impact of elderly gastrointestinal alterations on in 

vitro digestion of salmon, sardine, sea bass and hake: Proteolysis, 

lipolysis and bioaccessibility of calcium and vitamins. 

a. In vitro digestion assays under elderly and standard healthy 

adult gastrointestinal conditions. 

b. Analytical determinations of proteolysis and lipolysis 

extents, amino acidic and lipidic profiles, as well as the 

bioaccessibility of calcium and vitamins A and D3. 

3. Study of the understanding the role of food matrix on the 

digestibility of dairy products under elderly gastrointestinal 

conditions. 

a. In vitro digestion assays under elderly and standard healthy 

adult gastrointestinal conditions. 
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b. Analytical determinations of proteolysis and lipolysis 

extents, amino acidic and lipidic profiles, as well as the 

release of lactose, calcium and vitamins A and D3. 

4. Evaluation of the impact of cooking preparation on in vitro digestion 

of eggs simulating some gastrointestinal alterations in elders. 

a. In vitro digestion assays under elderly and standard healthy 

adult gastrointestinal conditions. 

b. Analytical determinations of proteolysis and lipolysis 

extents, amino acidic and lipidic profiles, as well as the 

bioaccessibility of vitamins A and D3. 

5. Study of the impact of common gastrointestinal disorders in elderly 

on in vitro meat protein digestibility and related properties. 

a. In vitro digestion assays under elderly and standard healthy 

adult gastrointestinal conditions  

b. Analytical determinations of total proteolysis extent, amino 

acidic profile, and the antioxidant and antihypertensive 

bioactivities of meat end-digestion products. 

6. Determination of the contribution of age-related gastrointestinal 

alterations on legumes and cereal grains digestibility. 

a. In vitro digestion assays under elderly and standard healthy 

adult gastrointestinal conditions  

b. Analytical determinations of proteolysis and glycolysis 

extents, aminoacidic profile and the bioaccessibility of 

calcium. 
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Table 1.4.1. In vitro methodology of dietary and host-related factors 
affecting digestion of protein-rich foods under elderly gastrointestinal 
disorders. 

Fish (Salmon, sardine, hake and sea bass)

•Objective 1: Influence of fish type

•Objective 2: Influence of elderly gastrointestinal disorders on macronutrients digestion 
(proteins and lipids)

•Objective 3: Influence of elderly gastrointestinal disorders on vitamins A and D3 and 
calcium release

•Objective 4: Dietary recommendation according to each macro- and micronutrient

Milk and dairy products (yogurt, fresh cheese and aged cheese)

•Objective 1: Influence of matrix structure of milk and dairy products 

•Objective 2: Influence of elderly gastrointestinal disorders on protein and lipid digestion

•Objective 3: Influence of elderly gastrointestinal disorders on vitamins A and D3, lactose 
and calcium release

•Objective 4: Dietary recommendation according to each macro- and micronutrient

Egg (Hard-boiled, poached and omelet)

•Objective 1: Impact of cooking method (hard-boiled, poached and omelet) 

•Objective 2: Influence of elderly gastrointestinal disorders on protein and lipid digestion

•Objective 3: Influence of elderly gastrointestinal disorders on vitamins A and D3 release

•Objective 4: Dietary recommendation according to each macro- and micronutrient

Meats (Chicken, turkey, pork and beef)

•Objective 1: Influence of type of meat

•Objective 2: Influence of elderly gastrointestinal disorders on protein digestion

•Objective 3: Influence of elderly gastrointestinal disorders on bioactive properties 
(antioxidant and Angiotensin Converting Enzyme inhibitory activities of protein end-
digestion products

•Objective 4: Dietary recommendation according to each macro- and micronutrient

Cereals (oats, spelt, quinoa) and legumes (chickpea, lentils, white bean, soya bean)

•Objective 1: Influence of the type of cereal/legume

•Objective 2: Influence of elderly gastrointestinal disorders on protein and starch digestion

•Objective 3: Influence of elderly gastrointestinal disorders on calcium bioaccessibility

•Objective 4: Dietary recommendation according to each macro- and micronutrient
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MATERIALS AND METHODS 

4.1 Sample preparation for digestion studies 

Twenty-two food products belonging to six different groups (fishes, milk and 

dairy products, egg products, meats, cereals and legumes) were selected 

according to their contribution to protein and relevant bioactive 

compounds recommendations supply for elders. Prior to digestion, foods, 

excepting milk and dairy products, were cooked. The detailed procedure for 

each food group is explained as follows:  

4.1.1 Fishes 

Four different fishes were selected for the study. On one hand, salmon and 

sardine were selected within the oily fish (blue fish) most consumed in 

Spain. On the other hand, lean fish (white fish) such as sea bass and hake 

are highly consumed in Spain and were also selected in this study.  

Fishes were purchased the same day and from the same lot to avoid 

differences in fishes of the same specie due to seasonality, diet or 

cultivation methods, at a local store in Valencia (Spain). Fishes were bought 

fresh, cleaned and eviscerated and were frozen at −20 °C until its posterior 

cooking and analysis. Prior the digestion and analysis, the fish were thawed 

at refrigeration temperature (5 °C) for 8 h. Subsequently each type of fish 

were cooked by microwave heating (SAMSUNG brand, model GW72N) at 

3.0 ± 0.3 W/g for 240 s (120 s each side) on an extended plate with a lid 

without additional fat. After cooking, fishes were cooled at room 

temperature and the greater amount of skin and bones were removed as 

possible. 

4.1.2 Milk and dairy products 

Four selected dairy products for this study (whole milk, natural yogurt, fresh 

cheese (Hacendado®, Valencia, Spain) and 12-month aged cheese (Sa 

Madona®, Menorca, Spain) were all exclusively of cow origin (100%) and 
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acquired in a local store of the city of Valencia (Spain). Products were 

purchased and kept at refrigeration temperature (5 °C) until its use for 

digestion and analysis. 

4.1.3 Egg products 

Standard eggs (Huevos Guillén®, Valencia (Spain)) were purchased at local 

stores in Valencia (Spain). Fresh hen eggs were cooked and immediately 

characterized or in vitro digested 1. For omelet, a white/yolk ratio of 70:30 

(w:w) was mixed and stirred for 1 min before microwave cooking at 12.5 

W/g for 80 s without oil addition. For hard-boiled, whole eggs including shell 

were boiled with water covering the eggs for 10 min at 95 ± 5 °C and cooled 

under running tap water for 5 min and immediately peeled. For poached, 

eggs were broken and wrapped into cling-film, boiled for 4 min (95 ± 5 °C) 

and cooled under running tap water for 5 min. The egg white and yolks 

resulted from hard-boiling and poaching were separated to be added to the 

digestion tubes in the same white:yolk ratio as in omelet. 

4.1.4 Meats 

Raw meats (chicken breast, turkey breast, pork loin and beef entrecote) 

were purchased at a local store in Valencia (Spain). Samples were kept 

under freezing conditions until its use for digestion and analysis. 

Sliced meats (50 ± 0.5 g) were microwave cooked in a household microwave 

oven (model GW72N, Samsung) at 12 ± 1 W/g for 120 s for chicken, turkey, 

pork and 75 s for beef. The cooking time was established in preliminary 

experiments based on obtaining a cooking point similar to that of cooked 

meats by measuring the internal temperature (70 °C) 2. Cooked meats were 

tempered at room temperature and immediately in vitro digested and 

analyzed. 

4.1.5 Cereals and legumes 

Legumes (chickpea, pardina lentils, white beans (Hacendado®, Valencia, 

Spain) and soya bean (Biográ®, Barcelona, Spain)) and cereal/pseudocereal 
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grains (whole oats, spelt (Biográ®) and quinoa (Hacendado®) were 

purchased at local stores in Valencia, Spain. 

Chickpea, white beans, soya beans, oats and spelt were soaked and boiled 

before in vitro digestion studies. Soaking was overnight with deionized 

water (Barnstead Mega-Pure deionizer, Thermo-Fisher Scientific, Waltham, 

MA, USA) at a ratio of 1:3 (w:w) grain:water at 20 ± 1 °C.  

Subsequently, soaked samples were boiled at 95 ± 5 °C with deionized water 

with a ratio of 1:3 (w:w) grain:water for 60, 45, 30, 60 and 25 min for soya 

bean, chickpea, white bean, whole spelt and whole oats, respectively. 

According to label specifications, lentils and quinoa do not need soaking 

process and were directly boiled at the same grain:water ratio for 20 and 10 

min, respectively. Cooking time was determined and adjusted for each 

variety in preliminary analyses considering label recommendation, i.e., until 

legumes could be crushed with fingers and reached a moisture content of 

60 ± 6% (on a wet basis). All cooked samples were drained in a kitchen sieve 

for 2 min and kept cool at 20 ± 2 °C until they reached this temperature. 

Cooked samples were then immediately used for composition analysis and 

in vitro digestion. 

4.2 Physico-chemical characterization of food products prior to 

digestion 

4.2.1 Proximal composition analysis 

Water, protein, fat and ashes contents were determined in cooked samples 

(fishes, eggs, meats, legumes and cereals) and cheeses according to the 

official methods 934.01, 942.05, 920.39 and 960.52 of the Association of 

Official Analytical Chemist (AOAC, 2000)3, respectively. For dairy fluid 

matrices (milk and yogurt), the above methodologies were carried out, 

excepting for the fat analysis that followed the methodology of the 

International Standard ISO 1211 | IDF 001: 2010, 4. These methodologies are 

included in Chapters 1 to 5. 
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Furthermore, in cereals , legumes (Chapter 5) and dairy (Chapter 2), the 

sugars/lactose content (as glucose equivalent) was determined by the 

colorimetric method of dinitrosalicylic acid (DNS) 5. Additionally, in cereals 

and legumes (Chapter 5) the starch content was determined according to 

the enzymatic and colorimetric method (DNS) suggested by Armellini et al. 

(2019)5. In eggs (Chapter 3), carbohydrates were calculated by difference 

(100 g minus the sum of grams of water, ashes, lipids, and protein, in wet 

basis). 

4.2.2 Calcium content 

Moreover, calcium content in cooked (fishes, cereals and legumes, Chapters 

1 and 5, respectively) and non-cooked samples (dairy products, Chapter 2) 

was determined. Ashes samples were used to determine total calcium 

content using a flame atomic absorption spectrometer (Thermo Scientific, 

iCE 3000 Series) and calcium was detected at 422.7 nm 6. 

4.2.3 Fat-soluble vitamins 

Samples (fish, dairy and eggs, Chapters 1, 2 and 3, respectively) were 

subjected to saponification and extraction of vitamins A (retinol) and D3 

(cholecalciferol) according to the protocol of Castaneda and Lee (2019)7. To 

quantify the liposoluble vitamins, a RP-HPLC (Waters e2695 Separation 

Module, Waters, Milford, MA, USA) with a Kinetex™C18 column 5 µm, 100 

Å, 150 × 4.6 mm (Phenomenex, Torrance, CA, USA) was used. Vitamins were 

detected using a photo diode array detector (Waters PDA 2996) at 265 and 

325 nm for vitamin D3 and vitamin A, respectively. An isocratic separation 

was performed with 15% acetonitrile, 7% water and 78% 

methanol:tetrahydrofuran (90:10 v/v) during 10 min using a flow rate of 1 

mL/min and an injection volume of 20 µL. Retinol (99%, 3100 U/mg), and 

cholecalciferol (≥98%) were used as standards for vitamin A and D3, 

respectively. 
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4.2.4 Lipidic profile 

Additionally, samples with high-fat content (salmon, sea bass, fresh cheese, 

aged cheese, beef and the three types of eggs) were subjected to a cold lipid 

extraction to study the lipid profile using Proton Nuclear Magnetic 

Resonance (1H NMR) (Bruker, model 400 / R) 8. This methodology is included 

in Chapters 1, 2 and 3. 

4.2.5 Mechanical properties 

In meats, cooked samples (0.015 m cubes) were analyzed through a texture 

profile analysis (TPA) using a TA.XT (Stable Micro System Ltd., Godalming, 

Surrey, UK) with a 50 kg load cell and an SMS P/75 probe by compressing 80 

%. Hardness, cohesiveness, springiness, adhesiveness and chewiness were 

calculated based on the force-time deformation curves 9. This methodology 

is only included in Chapter 4. 

4.3 Simulation of in vitro gastrointestinal digestion in elderly 

The most critical elderly disorders given at oral, gastric and intestinal level 

and affecting luminal digestion were simulating considering the studies 

evaluating oral behavior (chewing cycles needed to achieve boluses with 

smaller particle size distribution and safe to swallow according to the 

structure of foods) 10 as well as the review published by Shani-Levi et al. 

(2017) in the frame of INFOGEST international network about the simulation 

of GI conditions in specific population groups, and among them in elders.. 

Moreover, the standardized GI conditions of healthy adults were taken as 

control model 12,13. 

As shown in Table 4.3.2 elderly models were established to understand the 

contribution of oral, gastric and intestinal alterations in an accumulative 

way. Elderly 1 (E1, including oral alterations), Elderly 2 (E2, including oral + 

gastric alterations) and Elderly 3 (E3, including oral + gastric + intestinal 
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alterations). In addition, the control model (C) corresponded to standard  

healthy adult GI conditions according to Minekus et al. (2014).  

Table 4.3.1. Specific oral, gastric and intestinal conditions of the four in vitro 
digestion models established in this study: control (C) and elderly (E1, E2 and 
E3) GI conditions. 

Digestive 
stage 

Model 

Control (C) Elderly 1 (E1) Elderly 2 (E2) Elderly 3 (E3) 

Oral stage 
 

5 g of food 

sample + 5 g 

human 

salivary fluid 

Chewing until 
a consistency 
like a tomato 
or mustard 
paste  

50% of 
reduction 
with respect 
to Control 
chewing  

50% of 
reduction 
with respect 
to Control 
chewing  

50% of 
reduction 
with respect 
to Control 
chewing  

Gastric 
stage 

pH 3 
Pepsin (2000 
U/mL) 
2 h 
55 rpm 

37 °C 

pH 3 
Pepsin (2000 
U/mL) 
2 h 
55 rpm 

37 °C 

pH 6 
Pepsin (1500 
U/mL) 
2 h 
55 rpm 

37 °C 

pH 6 
Pepsin (1500 
U/mL) 
2 h 
55 rpm 

37 °C 

Intestinal 
stage 

pH 7 
Bile(10mM) 
+ Pancreatin 
(100 U/mL) 
2 h 
55 rpm 

37 °C 

pH 7 
Bile (10mM) 
+ Pancreatin 
(100 U/mL) 
2 h 
55 rpm 

37 °C 

pH 7 
Bile (10 mM) 
+ Pancreatin  
(100 U/mL) 
2 h 
55 rpm 

37 °C 
 

pH 7 
Bile (5 mM) 
+ Pancreatin 
(50 U/mL) 
4 h 
55 rpm 

37 °C 

Adjustments included in the in vitro digestion models for elderlies, with respect to 

the control model (C), are highlighted in bold. E1 (alterations at oral stage); E2 

(alterations at oral and gastric stages); E3 (alterations at oral, gastric and intestinal 

stages). 
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The in vitro static digestion was performed as follows: 

Oral stage: The number of mastication cycles were previously standardized. 

Briefly, food sample was placed in the mouth by the subject, followed to 

insert the food among teeth and began to chew until the bolus can be easily 

swallowed. The bolus was expectorated after completing the mastication 

just before the subject felt the need to swallow. Having thus, the swallowing 

threshold at the point in which can be expectorated easily can be identified 
10. The oral experiment has to be in vivo performed using a healthy volunteer 

with good dentition. The bolus characteristics are considered performed 

correctly if a bolus consistency similar to a tomato or mustard paste is 

achieved 12. For the elderly, the number of chewing cycles are reduced to 

50% by the same volunteer to mimic one of the most critical oral changes 

with the elderly, i.e., edentulism, generating a bolus with a larger particle 

size and more difficult to swallow (Lee et al., 2004; O'Keeffe et al., 2019). 

Generally, the physical characteristics of some foods define the number of 

chewing cycles (i.e., harder food would generally require more chewing 

cycles) (Chen, 2009). 

Gastric stage: After the oral stage, simulated gastric fluid (SGF) adjusted to 

pH 3 was added to each tube containing the oral bolus (1:1 v/v). Pepsin 

contained in the SGF was added to reach a concentration in the gastric 

mixture of (2000 and 1500 U/mL, respectively for control and elderly 

models). The pH of the mixtures was adjusted with HCl (1N) to pH 3.0 ± 0.1 

for the control model and 6.0 ± 0.1 for the elderly models and samples were 

flipped from top to bottom at 55 rpm for 2 h at 37 °C using an Intell-Mixer 

RM-2 (Elmi Ltd, Riga, LV-1006, Latvia) and incubated in a chamber Selecta 

(JP Selecta SA, Barcelona).  

Intestinal stage: After the gastric stage, the simulated intestinal fluid (SIF) 

was incorporated in a proportion 1:1 (v/w) to each tube containing the 

gastric chime depending on the conditions of the models (E1, E2 or E3). SIF 
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in the control model contains bile and pancreatin at 10 mM and 100 trypsin 

units/mL, respectively, while for the elderly models the concentrations were 

reduced to 50%.  Samples were then being flipped from top to bottom at 55 

rpm for another 2 or 4 h, depending on the model tested, at 37 °C. pH was 

monitored during the digestion process and readjusted, if necessary, to 

keep it constant. 

Gastric (SGS) and intestinal (SIS) digestion fluids were prepared fresh daily 

from stock solutions and the digestive enzymatic activity of the enzymes 

were tested before each experiment 12. Briefly, the trypsin activity of 

pancreatin was measured using a continuous spectrophotometric rate 

determination (using Helios Zeta UV-VIS Spectrophotometer, Thermo Fisher 

Scientific) using p-toluene-sulfonyl-L-arginine methyl ester (TAME) as the 

substrate at different concentrations to obtain the rate at 247 nm. One 

trypsin unit hydrolyses 1 μmol of TAME/min at 25 °C, pH 8.1. Likewise, the 

enzymatic activity of pepsin was measured at 280 nm using the 

spectrophotometric stop rate determination using different concentrations 

of hemoglobin as substrate. One pepsin unit will produce a ΔA280 of 

0.001/min at pH 2.0 and 37 °C, measured as TCA-soluble products. 

After digestion, the pH of digests was adjusted to 5 and kept in an ice bath 

for 10 min to inhibit the enzymatic reactions before fraction separation and 

analytical determinations. The separation of the liquid fraction from the 

undigested remaining solids was done using a centrifuge at 4000×g (5810R, 

Eppendorf, Hamburg, Germany) for 5 min at 10 °C. The supernatant was 

used to perform all the analytical determinations in digesta, excepting for 

the NMR determination where the whole of the digested tube was used. 

Both in vitro digestion process and analytical determinations were 

performed by triplicate for each food. 
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4.4 Analytical determinations in digesta 

4.4.1 Proteins 

4.4.1.1 Free amino acids (GC-MS) 

Free amino acids from protein digestion were determined using the 

protocol by Peinado et al. (2016) with some modifications. Briefly, the 

amine and carboxyl groups of the FAA contained in 100 μL of the 

bioaccessible fraction were derivatized at room temperature in aqueous 

solution using the EZ-Faast amino acid kit. Derivatized samples were 

measured using a GC-MS (Injector 7683B series, Network GC System 6890N 

series, Inert Mass Selective Detector 5975 series, MSD ChemStation 

software) (Agilent Technologies, Palo Alto, CA, USA) using norvaline as an 

internal standard. A calibration of the peak area was prepared for each 

amino acid using the amino acids standard solution included in the kit. The 

extent of proteolysis was estimated considering the sum of the FAA in the 

bioaccessible fraction with respect to the amount of crude protein in 

undigested cooked food (equation 4.1). 

𝐸𝑥𝑡𝑒𝑛𝑡 𝑜𝑓 𝑝𝑟𝑜𝑡𝑒𝑜𝑙𝑦𝑠𝑖𝑠 (%) =
(𝑔 𝐹𝐴𝐴 𝑖𝑛 𝑏𝑖𝑜𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑙𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛)

(𝑔 𝑐𝑟𝑢𝑑𝑒 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 𝑖𝑛 𝑢𝑛𝑑𝑖𝑔𝑒𝑠𝑡𝑒𝑑 𝑓𝑜𝑜𝑑)
× 100              (4.1) 

This methodology is found in the Chapters 1 – 5. 

4.4.1.2 Trichloroacetic acid (TCA) soluble protein 

Protein hydrolysis was evaluated by measuring the protein soluble fraction 

(peptides and amino acids) in trichloroacetic acid (TCA) according to 

Lamothe et al., (2014) 15. Briefly, 500 μL of 36% TCA was added to 1000 μL 

of the bioaccessible fraction to reach a final concentration of 12 % (w/w). 

The protein extract was prepared by mixing, incubating at 25 ºC for 15 min 

on an Eppendorf Thermomixer Comfort (Eppendorf AG 22331, Hamburg, 

Germany), and centrifuging at 1200 g-force for 10 min. The supernatant was 
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collected and diluted in 50 mM EDTA, 8 M urea, pH 10 buffer. The ratio 

supernatant: buffer (v:v) was 1:9 and 1:99 extract for gastric and intestinal 

samples, respectively. Soluble protein in TCA was determined by measuring 

absorbance at 280 nm against a blank prepared with appropriate digestion 

fluids of each digestion model. TCA soluble protein (g/100 g of crude protein 

in cooked meat) was calculated by means of a calibration line of bovine 

serum albumin (BSA) as standard and agreed to eq. 4.2. 

𝑇𝐶𝐴 𝑠𝑜𝑙𝑢𝑏𝑙𝑒 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 (%)

=
(𝑔 𝑇𝐶𝐴 𝑠𝑜𝑙𝑢𝑏𝑙𝑒 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 𝑖𝑛 𝑏𝑖𝑜𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑙𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛)

(𝑔 𝑐𝑟𝑢𝑑𝑒 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 𝑖𝑛 𝑢𝑛𝑑𝑖𝑔𝑒𝑠𝑡𝑒𝑑 𝑓𝑜𝑜𝑑)
× 100 

(4.2) 

This methodology is found only in the Chapter 4. 

4.4.2 Lipids (1H-NMR ) 

Digesta samples were subjected to cold liquid-liquid extraction and the 

composition of the lipid phase, including cholesterol (only in Chapter 3), 

determined by 1H-NMR following the same procedure explained in the 

compositional analysis section. Thus, absorbable and non-absorbable lipid 

fractions, as well as the lipolysis extent, were calculated according to 

equations 4.3, 4.4 and 4.5: 

Absorbable lipid fraction =  𝐴𝐺2−MG% +  𝐴𝐺1−𝑀𝐺% +  FFA%                          (4.3) 

Non-absorbable lipid fraction =  𝐴𝐺1,2−𝐷𝐺% +  𝐴𝐺1,3−𝐷𝐺%                               (4.4)  

Lipolysis extent (%) = Absorbable lipid fraction + Non-absorbable lipid fraction  

(4.5) 
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Where: 1,2-DG and 1,3-DG correspond to diglycerides; 1-MG and 2-MG to 

monoglycerides; and FFA to free fatty acids obtained in the digested 

samples. 

This methodology can be found in the Chapters 1,2 and 3. 

4.4.3 Carbohydrates (DNS) 

Reducing sugars released during digestion (monosaccharides) were 

determined in the bioaccessible fraction with a colorimetric method using 

dinitrosalicylic acid (DNS) after an invertase and amyloglucosidase 

secondary digestion 5. An aliquot of 1 mL of the bioaccessible fraction was 

mixed with 4 mL of absolute ethanol to prepare an extract. The ethanolic 

extract (50 µL) were added to 250 µL of the enzymatic solution (1% 

amyloglucosidase + 1% invertase in acetate buffer, pH 5.2) and incubated at 

37ºC for 10 min. The DNS mixture (750 µL containing a 1:1:5 mixture of 0.5 

mg/mL glucose:4 M NaOH:DNS reagent (10 g/L of 3,5-dinitrosalicylic acid, 

containing 300 g potassium sodium tartrate and 16 g NaOH)) were added 

and heated for 15 min at 100ºC. Then, 4 mL of cold deionized water were 

added and absorbances measured at 530 nm (using a Helios Zeta UV-VIS 

Spectrophotometer, Thermo Fisher Scientific). Glucose was used to obtain 

a calibration curve (from 0 to 10 mg/L). The extent of glycolysis was 

calculated using equation 4.6: 

𝐸𝑥𝑡𝑒𝑛𝑡 𝑜𝑓 𝑔𝑙𝑦𝑐𝑜𝑙𝑦𝑠𝑖𝑠 (%) =
(𝑔 𝑓𝑟𝑒𝑒 𝑔𝑙𝑢𝑐𝑜𝑠𝑒 𝐸𝑞.  𝑖𝑛 𝑏𝑖𝑜𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑙𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛)

(𝑔 𝑠𝑡𝑎𝑟𝑐ℎ (𝑔𝑙𝑢𝑐𝑜𝑠𝑒 𝐸𝑞.)  𝑖𝑛 𝑢𝑛𝑑𝑖𝑔𝑒𝑠𝑡𝑒𝑑 𝑓𝑜𝑜𝑑)
× 100   (4.6) 

This technique can be found in Chapters 2 (for quantify lactose release in dairy 

products) and 5 (for quantify starch hydrolysis into monosaccharides). 
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4.4.4 Micronutrients and bioactive compounds 

4.4.4.1 Fat-soluble vitamins (HPLC) 

20 mL of the bioaccessible fraction were subjected to saponification and 

extraction to determine the bioaccessibility of vitamin A and D3 following 

the same protocol as for total vitamin content in undigested foods. Vitamin 

bioaccessibility was calculated according to equation 4.7: 

Vitamin bioaccessibility (%) =
(µ𝑔 𝑜𝑓 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑 𝑣𝑖𝑡𝑎𝑚𝑖𝑛)

(µ𝑔 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑣𝑖𝑡𝑎𝑚𝑖𝑛)
× 100                                   (4.7) 

Where: the amount of released vitamin represents the recovered part in the 

bioaccessible fraction after in vitro digestion and the total amount of 

vitamin found in the cooked eggs before in vitro digestion. 

4.4.4.2 Calcium (FAAS) 

An aliquot of 4 mL of the bioaccessible fraction was used for free calcium 

determination using flame atomic absorption spectroscopy (FAAS) using the 

same protocol used to determine the total amount of calcium in undigested 

samples. The bioaccessibility of calcium was estimated using equation 4.8: 

𝐶𝑎𝑙𝑐𝑖𝑢𝑚 𝑏𝑖𝑜𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 (%) =
(𝑚𝑔 𝐶𝑎2+𝑓𝑟𝑒𝑒 𝑖𝑛 𝑏𝑖𝑜𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑙𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛)

(𝑚𝑔 𝐶𝑎2+𝑡𝑜𝑡𝑎𝑙 𝑖𝑛 𝑢𝑛𝑑𝑖𝑔𝑒𝑠𝑡𝑒𝑑 𝑓𝑜𝑜𝑑)
× 100   (4.8)  

4.4.4.3 Functional properties of end-digestion products from meats 

Antioxidant activity (DPPH) 

The antioxidant activity was measured in digesta according to Calvo-Lerma 

et al. (2020)16 with slight modifications to study the functional properties 

that some peptides and amino acids from the digesta can exert. Briefly, 200 

and 400 µL of gastric and intestinal bioaccessible fractions, respectively, 

were mixed with 1000 µL of 80:20 methanol:deionized water and shaked at 

800 rpm on an Eppendorf Thermomixer Comfort (Eppendorf AG 22331, 

Hamburg, Germany) for 60 min at 25 ºC. After that, the methanolic extract 
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was centrifugated at 1200 x g for 10 min. Parallelly, 2,2-diphenyl-1-

pricrilhidayil (DPPH) solution was prepared at a concentration of 35 mg/L to 

reach an absorbance of 1.1 ± 0.02. Following, 500 µL of methanolic extracts 

were added to 1500 µL of DPPH solution and allowed to react for 60 min 

with light absence. Finally, the absorbance was measured at 515 nm and 

antioxidant activity expressed as mg Trolox eq/g TCA soluble protein with 

the aid of a calibration curve of Trolox. Distilled water was used as the 

negative control and BHT as a positive control 17. 

This methodology is found only in the Chapter 4. 

Angiotensin Converting Enzyme inhibitory activity (ACE ia (%)) 

ACE ia (%) after gastric and intestinal digestion were measured according to 

Akillioǧlu & Karakaya (2009)18 with slight modifications. ACE reactive (25 

mU/mL) and Hip-His-Leu (5 mM) as substrate were used for such purpose. 

Both solutions were prepared in 0.15 M Tris base buffer, containing 0.3 M 

NaCl and a pH adjusted at 8.3. Digested samples (40 µL) and ACE reactive 

(100 µL)    were incubated at 37 °C for 5 min and 100 µL substrate was added. 

Incubation was continued for 30 min at the same temperature. Three 

controls (100 µL ACE + 40 µL water; 140 µL water; 40 µL digesta + 100 µL 

water) were also incubated as the digested samples. To stop the reaction, 

150 µL of 1 M HCl was added and mixed vigorously for 5 min. 1000 µL ethyl 

acetate was added into tubes, and tubes were vortexed and centrifuged at 

1200 g-force for 10 min, then 750 µL of the supernatant were collected and 

put into clean tubes. Tubes were slowly shaken at 80 °C to evaporate ethyl 

acetate (approximately 20 min). Solid hippuric acid remained in tubes was 

dissolved in 1 mL deionized water, and absorbance was measured at 228 

nm. 

This methodology is found only in the Chapter 4. 
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4.5 Statistical analysis 

4.5.1 Multifactorial analysis of variance (ANOVA) 

Results by group food were subjected to an analysis of variance (ANOVA) 

and the homogeneous groups were identified between in vitro models and 

type of meat by the LSD (Less Significant Difference) Fisher test. Statgraphics 

Centurion XVII was the software used with a confidence level of 95% (p 

<0.05). This statistical analysis was performed in the results of the Chapters 

1- 5. 

4.5.2 Principal Components Analysis (PCA) and Pearson Correlations 

Besides, data were subjected to a Pearson correlation analysis to find the 

linear relationship between variables. A principal component analysis (PCA) 

was also performed to understand the descriptive relationship among 

digestion-end-parameters, the foods between groups and host GI 

conditions (those of standard healthy adult (C) and of elderlies (E1, E2 and 

E3). A confidence level of 95% (p <0.05) was used in Statgraphics Centurion 

XVII.  
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5.1 Chapter 1: Impact of elderly gastrointestinal alterations on in vitro 

digestion of salmon, sardine, sea bass and hake: Proteolysis, 

lipolysis and bioaccessibility of calcium and vitamins. 
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Abstract 

This study aimed to analyze the effect of elderly gastrointestinal (GI) 

conditions on proteolysis, lipolysis and calcium and vitamins A and D3 

bioaccessibility in salmon, sardine, sea bass and hake. For this purpose, 

cooked fishes were in vitro subjected to three elderly in vitro digestion 

models: E1 (oral elderly conditions), E2 (oral and gastric elderly conditions) 

and E3 (oral, gastric and intestinal elderly conditions)). In parallel, samples 

were digested under standardized GI conditions of a healthy adult as a 

control. Proteolysis was highly affected by elderly GI alterations (p<0.05) 

(50% of reduction compared to control), being salmon and sea bass 

proteolysis extent (40 and 33%, respectively) the most affected with an 

important descend in leucine release. Calcium and vitamins bioaccessibility 

seemed to be also compromised for elders; however, the extent of the 

reduction highly depends on the fish type. Finally, these GI disorders did not 

negatively influence the bioabsorbable lipids of the fishes. 

Keywords: elderly; in vitro digestion; fish; macronutrients, micronutrients 
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INTRODUCTION 

The world population is aging rapidly, considering that the population of 

“advanced age” is over 65 years old in developed countries 1. It is expected 

that in the first five decades of the 21st century, the proportion of the 

world's population over 65 will double from 11 to 22%. In addition, the 

population aged 80 or older will be the fastest growing and expected to 

triple by 2060 2. This is why the life quality while aging is a growing global 

concern, identified as one of humanity's next challenges 3. Life quality and 

the prevalence of chronic diseases depend on diet, among other factors. 

Nevertheless, a deterioration of certain gastrointestinal (GI) functions (i.e., 

reduction or alteration of enzyme secretions, luminal electrolyte 

composition, motility and bile secretion, among others)  could lead to 

macronutrient maldigestion and malabsorption, among which sarcopenia 

or protein deficit, stands out 4. Similarly, the bioaccessibility of certain 

micronutrients, such as vitamins and/or minerals, could also be 

compromised in the elderly 5,6. Thus, a state of malnutrition can trigger a 

progressive worsening of health status, increasing the risk of falls, anemia, 

immune dysregulation, deterioration of cognitive status or reduction of 

muscle function, among others 7. From a sensorial point of view, studies also 

indicate that elderly people experience food in a different way, due to the 

reduction of sensory perceptions, changes in salivation and poor oral health 
4. In order to minimize nutritional deficiencies in senior population, the 

European Society for Clinical Nutrition and Metabolism (ESPEN) 

recommends rich-protein foods with a daily protein intake of 1.0–1.2 g 

protein per kg body weight and healthy lipids to individuals over 65 years 8. 

Preferably, this protein should be leucine-enriched essential amino acid 

based 9. Meat and fish meet these characteristics due to their biological 

value of proteins, but also legumes, dairy or eggs. Thus, fish consumption 

for elderly is advisable due to its high nutritional quality given by the 

appropriate balance of amino acids and healthy unsaturated fatty acids. 
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However, these recommendations consider neither that dietary proteins 

may be digestible differently depending on their origin, chemical properties 

or their interactions with other macronutrients into the food matrix (food-

inherent factors) nor the influence of the different elderly GI alterations 

(host-related factors) on protein digestibility. The study of the influence of 

food-inherent and host-related factors on protein digestibility in different 

food matrices might generate useful scientific knowledge for health 

professionals in order to provide accurate dietetic recommendations for 

elderly, as well as for the food industry in charge of supplying functional 

products addressed to elderly. In this sense, in vitro digestion models could 

be considered a useful tool to screen food matrices behavior along digestion 

under specific and controlled GI conditions of elderly, since they are faster, 

less expensive and laborious and with significantly lower bioethical 

restrictions than in vivo studies. In addition to their easy reproducibility, the 

possibility of easily sampling, make in vitro models very suitable for 

digestibility studies. Thus, host-related factors such as number of chewing 

cycles to achieve the physical characteristics of bolus in oral stage, pH and 

pepsin concentration in gastric stage, and transit time, bile and pancreatic 

enzymes concentrations in intestinal stages can be in vitro modulated to 

mimic luminal digestion of different population targets such as elderly 

people.  

In this context, the objective of the present study is to evaluate, using a 

static in vitro digestion system based on Shani-Levi et al. (2017)4, the impact 

of the GI alterations commonly observed in the elderly, on the luminal 

digestion of macronutrients (proteins and lipids) and the bioaccessibility of 

micronutrients (calcium and vitamins A and D3) in four different fishes 

(Hake, Sea bass, Salmon and Sardine). 

MATERIAL AND METHODS 

Chemicals 
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Pepsin from the porcine gastric mucosa (3200–4500 U/mg), porcine 

pancreatin (8 x USP), bovine bile (dried and unfractionated), analytical grade 

salts (potassium chloride, potassium dihydrogen phosphate, sodium 

bicarbonate, magnesium chloride, ammonium carbonate, calcium chloride 

and potassium sulfate), boric acid (4%), hydrochloric acid (ACS reagent 

grade, 37%), sulfuric acid (ACS reagent grade, 95-97%), sodium hydroxide 

(ACS reagent grade, ≥97.0%), methanol (HPLC grade, ≥99.9%), 

tetrahydrofuran (HPLC grade, ≥99.9%) and retinol (99%, 3100U/mg) and 

cholecalciferol (≥98%) as vitamin A  and D3 HPLC analytical standards. All 

reagents were obtained from Sigma-Aldrich. 

Also, nitric acid (70%), lanthanum (III) chloride heptahydrate (analytical 

grade) and dichloromethane (HPLC grade >99.8%) were purchased from 

Honeywell Fluka; petroleum ether (40-60°C, VWR CHEMICALS), sodium 

chloride (PanReac AppliChem), anhydrous sodium sulfate (PanReac 

AppliChem), EZ-Faast amino acid kit (Phenomenex) and acetonitrile (HPLC 

grade, JT-Baker) were used. 

Fishes (salmon, sardine, sea bass and hake) were purchased the same day 

and from the same lot in order to avoid differences in fishes of the same 

specie due to seasonality, diet or cultivation methods, at a local store in 

Valencia (Spain). Fishes were bought fresh, cleaned and eviscerated and 

were frozen at -20 ºC until its posterior cooking and analysis. 

Sample Preparation 

High-consumed species in Spain were selected. Salmon and sardine are 

commonly considered as oily fish, and sea bass and hake as white fish. The 

fish were thawed at refrigeration temperature (5 °C) for 8 hours. 

Subsequently, 400 g of each type of fish were cooked in batches of 200 g by 

microwave heating (SAMSUNG brand, model GW72N) at 600 W for 4 min (2 

min each side) on an extended plate with a lid without additional fat. After 
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cooking, fishes were cooled at room temperature and the skin and bones 

were removed. 

Compositional analysis   

After cooking, moisture, ashes, fat and protein contents were determined 

according to the official methods 934.01, 942.05, 920.39 and 960.52 10, 

respectively. Moreover, calcium content in cooked samples of the four types 

of fish was determined. Ashed samples were used to determine the free 

calcium using a flame atomic absorption spectrometer (Thermo Scientific, 

iCE 3000 Series) and calcium was detected at 422.7 nm 11. 

Samples were subjected to saponification and extraction of vitamins A 

(retinol)  and D3 (cholecalciferol) according to the protocol of Castaneda & 

Lee, (2019)12. To quantify the liposoluble vitamins, aRP-HPLC (Waters e2695 

Separation Module, Waters, Milford, MA, USA) with a Kinetex™C18 column 

5µm, 100 Å, 150 x 4.6 mm (Phenomenex, Torrance, CA, USA) was used. 

Vitamins were detected using a photo diode array detector (Waters PDA 

2996) at 265 and 325 nm for vitamin D3 and vitamin A, respectively. An 

isocratic separation was performed with 15% acetonitrile, 7% water and 

78% methanol:tetrahydrofuran (90:10 v/v) during 10 min using a flow rate 

of 1 mL/min and an injection volume of 20 µL. Retinol (99%, 3100U/mg), 

and cholecalciferol (≥98%) were used as standards for vitamin A and D3, 

respectively. 

Additionally, in salmon and sea bass (samples with the highest lipidic 

concentration), a cold lipid extraction was performed in order to study the 

lipid profile using Proton Nuclear Magnetic Resonance (1H NMR) (Bruker, 

model 400 / R), according to the published protocol by 13.  

Static in vitro simulation of GI digestion 
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Four in vitro models were defined to evaluate the contribution of the 

different GI alterations appearing with ageing on the digestibility and 

bioaccessibility on nutrients present in fish meat. Concretely, the control 

model (C) corresponding to the standard GI conditions of a healthy adult 

(Minekus et al., 2014) 14, and three Elderly models mimicking the 

accumulative alterations possibly given in elderly (Elderly 1 (oral stage 

altered (E1), Elderly 2 (oral and gastric stages altered (E2)) and Elderly 3 

(oral, gastric and intestinal stages altered (E3)) (Table 5.1). Specific digestion 

conditions of elderly (>65 years old)  were established according to Shani-

Levi et al. (2017)4, with except of transit time of gastric and intestinal stages 
15. Chewing (number of mastication cycles) was established according to 

Jalabert-Malbos et al. (2007) 16 and to reach a bolus consistency similar to a 

tomato or mustard paste 14. Of note, all cooked fish samples required a 

similar number of mastication cycles of 20.  For elderly mastication, chewing 

cycles number were reduced at 50%, i.e. 10, in order to achieve the most 

critical oral elderly scenery, generating a bolus with larger particle size and 

difficult to swallow 17,18. Oral stage was in vivo performed by a healthy 

volunteer with normal dentition under informed consent. Specific 

conditions of each model are summarized in Table 5.1. Stock solutions of 

simulated digestive fluids of gastric and intestinal stages were weekly 

formulated according to Minekus et al. (2014) 14 and stored at 4 ºC. 

Simulated gastric and simulated intestinal fluids (SGF and SIS, respectively) 

were daily prepared from the respective stock solutions and taking into 

account the pH value, digestive enzymes and bile salts concentrations of 

each model. 

In vitro digestion was performed as follows: 

Oral stage: 5 g of cooked fish were subjected to in vivo chewing by the 

volunteer with normal dentition. 20 and 10 chewing cycles for healthy adult 
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and elderly were performed, respectively. After chewing, food boluses were 

transferred to the falcon tubes to continue gastrointestinal digestion. 

Gastric stage: Simulated was added to food boluses, adjusting the pH and 

the pepsin concentration, depending on the conditions to be tested (Table 

5.1). Subsequently, the samples were flipped from top to bottom at 55 rpm 

at 37 °C using an Intelli-Mixer RM-2 (Elmi Ltd, Riga, LV-1006, Latvia) and 

incubated for 2 h in a chamber Selecta (JP Selecta SA, Barcelona). 

Intestinal stage: After the gastric stage, SIF was incorporated in a 

proportion 1:1 (v/w) to each tube containing the gastric chime depending 

on the conditions of the models (Table 5.1.1). Samples were then being 

flipped from top to bottom at 55 rpm for another 2 or 4 h, depending on the 

model tested, at 37 °C. pH was monitored during the digestion process and 

readjusted if necessary to keep it constant. 
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Table 5.1.1. Specific gastrointestinal conditions of the four in vitro 
digestion models of this study: control and eldely GI conditions. 

Digestive 
stage 

Model 

Control (C) Elderly 1 (E1) Elderly 2 (E2) Elderly 3 (E3) 

Oral stage 
 

Chewing until 
a consistency 
like a tomato 
or mustard 
paste (20 

cycles) 

50% of 
reduction 

with respect 
to Control 

chewing (10 
cycles) 

50% of 
reduction 

with respect 
to Control 
chewing 

(10 cycles) 

50% of 
reduction 

with respect 
to Control 
chewing 

(10 cycles) 

Gastric 
stage 

pH 3 
Pepsin (2000 

U/mL) 
2 h 

pH 3 
Pepsin (2000 

U/mL) 
2 h 

pH 6 
Pepsin (1500 

U/mL) 
2 h 

pH 6 
Pepsin (1500 

U/mL) 
2 h 

Intestinal 
stage 

pH 7 
Bile(10mM) 
+ Pancreatin 
(100 U/mL) 

2 h 

pH 7 
Bile (10mM) 
+ Pancreatin 
(100 U/mL) 

2 h 

pH 7 
Bile (10 mM) 
+ Pancreatin 
(100 U/mL) 

2 h 
 

pH 7 
Bile (5 mM) 
+ Pancreatin 

(50 U/mL) 
4 h 

Digested samples were kept in ice bath for 10 min to lessen the enzymatic 

reactions before phase separation and analytical determinations. Where 

needed, separation of the liquid phase (referred as “micellar phase”) of solid 

phase resulting from the digestion process was performed by centrifuging 

at 4000 g-force during 5 min at 10 °C and the supernatant was collected. 
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Analytical determinations in the digesta 

Free amino acids profile 

Free amino acids resulting of proteins digestion were determined following 

the protocol published by Peinado et al. (2016) 19with some amendments. 

Briefly, 100 μL of micellar phase were derivatized using the EZ-Faast amino 

acid kit and analyzed using a GC-MS (Agilent Technologies, Injector 7683B 

series, Network GC System 6890N series, Inert Mass Selective Detector 5975 

series). The chromatograms obtained were analyzed by integrating the 

areas under the curve (MSDChemStation software), according to the 

retention times given by the kit standards and Norvaline as internal 

standard. The extent of proteolysis was calculated according to the equation 

5.1: 

𝑃𝑟𝑜𝑡𝑒𝑜𝑙𝑦𝑠𝑖𝑠 𝑒𝑥𝑡𝑒𝑛𝑡(%)

=
(𝑔 𝛴 𝑓𝑟𝑒𝑒 𝑎𝑚𝑖𝑛𝑜 𝑎𝑐𝑖𝑑𝑠 𝑖𝑛 𝑚𝑖𝑐𝑒𝑙𝑙𝑎𝑟 𝑝ℎ𝑎𝑠𝑒)

(𝑔 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑟𝑜𝑡𝑒𝑖𝑛)
× 100                    

(5.1) 

Lipid extraction and 1H NMR analysis 

Digesta were subjected to a liquid-liquid extraction using dichloromethane 

according to Nieva-Echevarría et al. (2016) 13. Subsequently, the lipid profile 

of the fat extracted from the digested was analyzed by Proton Nuclear 

Magnetic Resonance (1H NMR) using a BRUKER 400/R operating at 400 

MHz. The lipid profile obtained reveals the proportion of 1-monoglycerides 

(1-MG), 1, 2-diglycerides (1,2-DG), 1,3-diglycerides (1,3-DG), 2-

monoglycerides (2-MG), glycerol and fatty acids (FA) of the samples. 

Calcium bioaccessibility 
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4 mL of the micellar phase were used free calcium determination by flame 

atomic absorption spectroscopy following the same protocol as for total 

calcium determination in undigested samples. The bioaccessibility of 

calcium was estimated based on the equation 5.2: 

𝐶𝑎𝑙𝑐𝑖𝑢𝑚 𝑏𝑖𝑜𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 (%) =
(𝑚𝑔 𝐶𝑎2+𝑓𝑟𝑒𝑒 𝑖𝑛 𝑚𝑖𝑐𝑒𝑙𝑙𝑎𝑟 𝑝ℎ𝑎𝑠𝑒)

(𝑚𝑔 𝐶𝑎2+𝑡𝑜𝑡𝑎𝑙 𝑖𝑛 𝑢𝑛𝑑𝑖𝑔𝑒𝑠𝑡𝑒𝑑 𝑓𝑜𝑜𝑑)
× 100 

(5.2) 

Where the free calcium was estimated in the micellar phase of the digested 

and the total calcium estimated in the cooked samples before digestion. 

Vitamin A and D3 bioaccessibility 

The micellar phase was used to determine the bioaccessibility of vitamin A 

and D3 following the same protocol as for total vitamin content in 

undigested cooked fish. The bioaccessibility of vitamins was calculated 

according to equation 5.3: 

𝑉𝑖𝑡𝑎𝑚𝑖𝑛 𝑏𝑖𝑜𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 (%) =
(µ𝑔 𝑜𝑓 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑 𝑣𝑖𝑡𝑎𝑚𝑖𝑛)

(µ𝑔 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑣𝑖𝑡𝑎𝑚𝑖𝑛)
× 100 

(5.3) 

Where the amount of released vitamin represents the recovered part in the 

micellar phase after in vitro digestion and the total amount of vitamin found 

in the cooked fish before in vitro digestion. 

Statistical analysis 

The results obtained were evaluated by means of an analysis of Variance 

(one-way ANOVA). In addition, Multiple Range Tests was determined by the 

LSD (Less Significant Difference) of Fisher test were applied to identify 

homogeneous groups between models and fish species. Statgraphics 
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Centurion XVII software was used with a confidence level of 95% (p-value 

<0.05). 

RESULTS AND DISCUSSION 

Nutritional composition of the samples 

The nutritional characterization of the four cooked fish species is gathered 

in Table 5.1.2. In general, protein, total fat and ashes contents were similar 

to those reported in literature for the same food matrices 20. As expected, 

all fishes presented high protein content, between 22.74 and 27.1%, salmon 

being the most and hake the least. The seasonality and the type of 

production influence the lipid content in fishes. Of note, the total fat 

content of sardine (12 ± 1%) was lower than expected according to scientific 

literature. In fact, sardines used were wildlife and caught in winter, 

explaining the lower fat content than those that are bred in captivity 21. With 

regard to calcium content of the different fishes, results were consistent 

with those reported in the literature 20,22, being the calcium content of 

sardine much more higher than in the other fishes, because bones were not 

totally removed in this fish specie remaining as part of the edible part of the 

sample. Vitamins A and D3 contents were also in agreement with data 

reported 20, with exception of sardine. Thus, sea bass presents remarkable 

high vitamin D3 content; while salmon has the highest content in vitamin 

D3. Vitamins A and D3 were, however, not detected by chromatography in 

hake. According to these results, sea bass can be considered as the major 

source of vitamin A and salmon of vitamin D3 among the studied fishes.  
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Table 5.1.2. Total contents of moisture, protein, fat, ashes, calcium and 
vitamins A and D3 in the four types of microwaved cooked fish (salmon, sea 
bass, sardine and hake). 

Nutrient Salmon Sea Bass Sardine Hake 

Moisture (g/100 g) 58.15 ± 0.10a 67.57 ± 0.06b 69.20 ± 0.15c 76.059 ± 0.119d 

Protein (g/100 g) 27.1 ± 0.3c 23.8 ± 0.9ab 24.1± 0.4b 22.74 ± 0.09a 

Fat (g/100 g) 14.0 ± 0.6d 6.7 ± 0.3c 3.6 ± 0.2b 0.34 ± 0.05a 

Ashes (g/100 g) 1.33 ± 0.07a 1.252 ± 0.017a 2.22 ± 0.04c 1.70 ± 0.12b 

Calcium (mg/100 g) 25 ± 4ab 20.7 ± 0.8ab 315 ± 36c 50 ± 11b 

Vitamin A (µg/100 g) 14.6 ± 0.8b 30 ± 1c 9.7 ± 0.6a - 

Vitamin D3 (µg/100 g) 14.3 ± 0.8c 5.50 ± 0.08a 7.6 ± 0.9b - 

Data shown are mean values from triplicates and the standard deviation. 

Influence of Elderly GI conditions and fish species on protein digestibility 

Figure 5.1.1A shows proteolysis extent (g of free amino acids/ 100 g of initial 

protein) at the end of intestinal stage in the different fish species (sea bass, 

hake, salmon and sardine) digested under standardized (C) and elderly GI 

conditions (E1, E2 and E3). Firstly, it can be noted that the extent of fish 

protein hydrolysis to amino acids under standardized GI conditions (C) 

ranged from 50 to 70% depending of the fish species, hake proteins being 

less digestible than the other fish protein. Dielectric properties are 

dependent on polar molecules in the food matrix, and mainly of water 

content. An increase in water content results in higher values of dielectric 

constant and dielectric loss factors, and therefore a higher depth 

penetration of microwave energy. Regularly, low fat content is coupled with 

high moisture content in fishes. Therefore, it could be expected a higher 

microwave energy penetration, and microwave heating, into leans fishes, 

e.g., hake, than in oily ones. This fact has been also associated to a greater 
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level of protein denaturalization than by other cooking techniques 23. On the 

other hand, it is important to point out that the fish species were frozen 

since their acquisition and until their posterior cooked. Changes in protein 

muscle have been reported during storage because of the lipid oxidation 

during frozen storage. Consequently, the resulted free radicals can react 

with protein side chains and the carbonyl groups of the oxidized lipids, 

participating in more form stable protein-lipid aggregates by means of 

covalent bonding, and thus reducing protein digestibility 24,25. Paradoxally, 

the effect of lipid oxidation on protein changes is most significant in lean 

species, such as hake, than in oily ones. In the lean fish muscle, the lipids are 

limited to the physiologically necessary membrane lipids, that is, they are 

comprised of phospholipids almost solely and a little amount of sterol 

esters. Hydrolysis and oxidation of these lipids may result in membrane 

damage and increased membrane permeability. This, in consequence, may 

lead to increased activity enzymes directly or indirectly, such as those 

responsible of oxidative reactions, involved in protein changes 26.  

Concerning the effect of elderly GI conditions on proteolysis, protein 

hydrolysis was negatively affected under any of the simulated elderly 

alterations (E1, E2 or E3 models). An exception to this event was found in 

hake for which neither oral (E1) or gastric (E2) alterations affected its 

protein digestibility. Thus, a reduction of proteolysis extent of 42 ± 4, 40 ± 

1, 33 ± 2, 39 ± 2 % for hake, sea bass, salmon and sardine were registered 

under the worst scenario of digestion for elderly people (E3). Salmon and 

sea bass presented the highest protein digestibility under standard 

conditions and the lowest under the most affected elderly conditions (E3), 

being these species of higher fat content than the others. 

The presence of high fat content in these fishes, and the interactions 

between proteins and lipids or proteins and lipid oxidation derivatives may 
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occur, limiting or impeding the hydrolytic action of proteases, being this fact 

more relevant under suboptimal conditions 27. 

Therefore, the impact level of elderly GI conditions on protein digestibility 

might depend on fish matrix-inherent properties. C and E1 models differ in 

oral stage conditions, pretending that the breakdown of the food structure 

is superior in C than E1. The main objective of chewing is to reduce the 

particle size of ingested food particle and mix them with saliva to form a 

bolus with optimal characteristics to swallow. In this way, smaller particles 

maximize the protein surface exposure, facilitating better the accessibility 

of enzymes to cleavage sites 28. Figure 5.1.1A shows proteolysis achieved at 

the end of digestion depends on the level of mastication of fish matrix, 

excepting in hake. The moisture content defines texture of fish meat, 

resulting in a softer matrix when the moisture is higher. Hake presented the 

greater moisture content of four cooked fishes. Beside this, hake is well-

known to be poor to keep the quality in fresh and frozen storage. The flesh 

is characteristically soft and, that quality attribute get worse with time life 
29. 

On the other hand, the comparison between models E1 and E2 aimed to 

find out the contribution of gastric stage alteration to proteolysis. However, 

it is necessary to point out that proteolysis is estimated by means of free 

amino acids quantification at the end of luminal digestion, i.e., after 

intestinal stage. Consequently, the products of gastric proteolysis are 

peptides of low molecular weight that cannot be seen by the used method. 

Hence, the results show that an increase the pH to 6 and pepsin 

concentration reduction to 75% (1500 U/mL) during gastric stage would not 

affect protein digestibility measured after luminal simulation. Thus, if a 

decrease of protein hydrolysis into peptides during gastric stage due to a 

lower pepsin activity and higher pH in stomach would occur, the analytical 

method will not register it. Moreover, taking in account that close to pH 6 
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protein aggregates could be generated due to the isoelectric point of some 

proteins (4.5 < pH < 5.5)  and, hindering hydrolysis could occur 30. 

In any case, the similar proteolysis extent achieved E1 and E2 indicates that 

the activity of pancreatic proteases might compensate the suboptimal 

conditions of the gastric stage (E2) with the hydrolysis of proteins into 

peptides and free amino acids. Finally, a decrease in the pancreatin 

concentration can lead to poor digestion and therefore to protein 

malabsorption causing nutritional deficiencies 31. This fact is in concordance 

to proteolysis extent obtained under suboptimal intestinal conditions (E3) 

compared with optimal ones (E2). Statistical significant differences (p<0.05) 

exist between results obtained for all cooked fishes digested under E2 and 

E3 GI conditions, even when the transit time is longer. 
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Figure 5.1.1. A) Proteolysis extent (g free amino acid (AA)/100 g total 
protein) of hake, sea bass, salmon and sardine under different in vitro 
digestion models (control (C), Elderly 1 (E1), Elderly 2 (E2), Elderly 3 (E3) 
models) B) Molar percentage (%) of the absorbable and non-absorbable lipid 
fractions of sea bass and salmon under the different in vitro digestion 
models. Absorbable fraction includes to AG2-MG% + AG1-MG% + FA%, non-
absorbable fraction to AG1,2-DG% + AG1,3-DG% and lipolysis extent 
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represent the summarize. a-c: different letters indicate significant 
differences of proteolysis/lipolysis extent between models. A-C: different 
letters indicate significant differences between foods (p <0.05). 

Tables 5.1.3 and 5.1.4 show free amino acids profile resulting of the 

proteolysis occurring under the four in vitro digestion models (C, E1, E2 and 

E3) and are consistent with that reported 20,32,33 for the same fish species. As 

it can be observed, major free amino acids correspond to leucine, lysine, 

phenylalanine and valine, all of them essential ones. Specifically, leucine is 

an amino acid of interest in the elderly, since it is a key-nutrient for the 

stimulation of muscle protein synthesis 31. However, free leucine content 

decreased in the digesta under altered GI conditions, and significantly 

(p<0.05) under Elderly model 3 (E3). Of note, free leucine was reduced 

closed to 40% in salmon, sardine and sea bass digested under E3, while the 

release of this amino acid from hake proteins does not seem to be affected.  

Influence of GI conditions in elderly on the lipid digestibility of salmon and 

sea bass 

Fat digestibility was evaluated in salmon and sea bass, two species with high 

fat content, after in vitro digestion under control and altered conditions. 

This analysis was carried out through the evaluation of the spectral data 

obtained from 1 H NMR. The spectra obtained were analyzed according to  

Nieva-Echevarría et al. (2016)13 for the quantification of the main products 

derived from triglyceride hydrolysis (TG) after digestion. Table 5.1.5 gathers 

molar percentages of acyl groups (AG) supported on the different glyceryl 

backbone structures (TG, 1,2-DG, 1,3-DG, 2-MG, 1-MG) and fatty acids (FA), 

present in the non-digested (ND) and digesta (C, E1, E2, E3) of salmon and 

sea bass. As expected, almost all fat was present as TG, with 99.3% in salmon 

and 98.6% in sea bass before digestion. These results are consistent with 

those obtained by Nieva-Echevarría et al. (2015)34 in fish oil samples. After 

digestion under healthy standard GI conditions (C), a total lipolysis extent of 
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76% in salmon and 84.6% in sea bass occur because of the hydrolytic action 

of pancreatic lipase, with a conversion of TG mainly into FA (55 and 70% for 

salmon and sea bass, respectively), followed by 1,2-DG, 2-MG 1,3-DG and 1-

MG. Considering that fat content in salmon is higher than in sea bass (33 

and 21 g fat/ g dry matter, respectively, the amount of hydrolyzed fat at the 

end of the digestion is higher in salmon than in sea bass. Both FA and MG 

structures could be absorbed by the intestinal epithelium, after undergoing 

a micellization process thanks to the presence of bile salts 35. Thus, the 

absorbable fraction was slightly superior as FA molar percentage, in sea bass 

than in digested salmon.  

Figure 5.1.1B shows the lipolysis extent, the absorbable (bioaccessible) and 

non-absorbable fractions generated after in-vitro digestion. With respect to 

the elderly GI conditions and their effect on fat digestibility, similar total 

lipolysis extent (around 80%) were obtained regardless the GI models under 

both fishes were digested. Therefore, there would not be a significant 

(p<0.05) negative effect of elderly GI conditions on fish fat digestion. Since 

fat digestion seems not to be affected by elderly gastrointestinal conditions, 

health problems like dyslipidemia could be associated to an imbalance 

between the recruitment of lipid substrates and the capacity of their 

subsequent oxidation by lipid metabolism 36. This condition is well common 

in older individuals and is characterized by increased triglyceride levels, 

small high dense LDL, and a low concentration of HDL is being noted in older 

adults 37. 

Moreover, the lower pancreatic enzymes and bile concentration, and 

alterations in the oral and gastric phase, may not be sufficient to cause an 

alteration over the extent of lipolysis. Calvo-Lerma et al. (2019) 38 reports 

that a gastric pH variation from 3 to 5 does not modify lipid digestibility. In 

fact, they found that the maximum lipolysis extent occurs at gastric pH 5 

and intestinal pH 7. These conditions are quite similar to those simulated in  



 

96 
 

 

Table 5.1.3. Amino acids profile (mg free amino acid / 100 g fish protein) of hake and sea bass achieved 
under different GI conditions (control (C), Elderly 1 (E1), Elderly 2 (E2), Elderly 3 (E3) models). 

Amino acid 

Hake  Sea bass 

C E1 E2 E3 C E1 E2 E3 

Alanine 27.1 ± 0.6b 26 ± 2b 28 ± 1b 18.9 ± 0.8a 37 ± 3c 28 ± 1b 28 ± 1b 20 ± 2a 

Glycine 8 ± 1ab 9 ± 2b 8.1 ± 0.4ab 4 ± 1a 18 ± 2c 13 ± 1b 11.9 ± 0.7b 8 ± 1a 

Valine 39 ± 1b 40.0 ± 0.4b 45.2 ± 0.9c 35 ± 1a 51 ± 3c 42 ± 2b 41.1 ± 0.8b 33.6 ± 0.4a 

Leucine 78 ± 4b 78 ± 4b 88 ± 2c 70 ± 3a 105 ± 7c 81 ± 5b 76 ± 1b 63.7 ± 0.3a 

Isoleucine 29 ± 1a 29 ± 1a 34.6 ± 0.4b 27 ± 1a 37 ± 2b 32 ± 3a 31.5 ± 0.8a 27.29 ± 0.09a 

Threonine 21.0 ± 0.9b 20.5 ± 0.5b 24.0 ± 0.6c 16.6 ± 0.5a 27 ± 1b 20.9 ± 0.7a 21.9 ± 0.4a  

Serine 18.2 ± 0.4b 16.6 ± 0.5b 18 ± 2b 10.0 ± 0.6a 20.3 ± 0.8c 17.6 ± 0.6b 17.9 ± 0.9b 9.7 ± 0.2a 

Proline 4.7 ± 0.1b 5.9 ± 0.4c 5.5 ± 0.2bc 2.8 ± 0.3a 7.3 ± 0.4c 4.7 ± 0.7b 4.6 ± 0.1b 2.61 ± 0.12a 

Asparagine 14.3 ± 0.8b 13.9 ± 0.3b 14.4 ± 0.5b 5.5 ± 0.3a 14.1 ± 0.1c 14.5 ± 1.0bc 12.8 ± 0.7b 4.9 ± 0.2a 

Aspartic acid 14.0 ± 0.4c 10.7 ± 0.5b 13.8 ± 0.5c 7 ± 1a 16.1 ± 0.4c 13 ± 1b 13.3 ± 0.9b 8.59 ± 0.04a 
Methionine 25 ± 1ab 26 ± 2ab 29 ± 1b 22.5 ± 0.9a 35 ± 2b 24 ± 2a 23.3 ± 0.2a 20.0 ± 0.2a 
Glutamic acid 21.10 ± 

0.10b 
19 ± 2b 22.3 ± 0.6b 14 ± 1a 22 ± 1c 20 ± 1 bc 19.6 ± 1.0b 14.19 ± 0.02a 

Phenylalanine 38 ± 1ab 39 ± 4ab 46 ± 5b 34 ± 2a 67 ± 6b 45 ± 4a 42 ± 1a 35.9 ± 0.5a 
Glutamine 44 ± 3a 42.6 ± 0.9a 31 ± 9ab 30 ± 3a 36 ± 4c 41 ± 2bc 42.5 ± 1.0b 25 ± 2a 
Lysine 83 ± 4ab 76 ± 5ab 73 ± 7b 71 ± 11a 79 ± 3b 84 ± 8b 81 ± 4ab 65.5 ± 0.9a 
Histidine 15.1 ± 0.8a 16 ± 1ab 19.4 ± 0.5b 13 ± 1a 22.0 ± 0.3c 19 ± 1b 18.9 ± 0.4b 15.49 ± 0.19a 
Tyrosine 20.9 ± 0.5a 24.1 ± 0.2ab 39 ± 4b 23 ± 6a 43 ± 2a 29 ± 2a 41 ± 10a 30 ± 2a 
Tryptophan 16.70 ± 

0.18a 
18 ± 2ab 22 ± 2b 14 ± 1a 25 ± 2b 19 ± 2a 18.8 ± 0.7a 14.8 ± 0.5a 

Cystine 8 ± 2a 9.89 ± 0.03a - - 11.8 ± 0.4b 8.8 ± 0.9a - - 

Data shown are mean values from triplicates and the standard deviation. abc Different lowercase letters indicate significant 

differences between models, with a significance level of 95% (p<0.05).
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Table 5.1.4. Amino acids profile (mg free amino acid / 100 g fish protein) and proteolysis extent of salmon and 

sardine achieved under different GI conditions (control (C), Elderly 1 (E1), Elderly 2 (E2), Elderly 3 (E3) models). 

Amino acid 

Salmon  Sardine  

C E1 E2 E3 C E1 E2 E3 

Alanine 34 ± 4c 22 ± 2b 25 ± 2b 15.8 ± 0.8a 31 ± 4c 25 ± 2b 24 ± 4b 17.9 ± 0.7a 
Glycine 12 ± 1b 9 ± 2b 8 ± 2b 3.4 ± 0.9a 10 ± 2b 11 ± 5b 9 ± 2ab 3.4 ± 0.2a 
Valine 46 ±5c 37 ± 4b 33 ± 2ab 26.7 ± 0.6a 46 ± 5c 35.6 ± 0.5b 37 ± 2b 31.24 ± 0.06a 
Leucine 96 ± 12b 71 ± 9a 69 ± 2a 54 ± 1a 93 ± 12c 69.7 ± 0.9ab 78.7 ± 0.9b 62 ± 2a 
Isoleucine 34 ± 4c 25.4 ± 0.6b 25 ± 1ab 21.1 ± 0.5a 32 ± 4c 26.3 ± 0.5ab 28.5 ± 0.2b 24.4 ± 0.5a 
Threonine 25 ± 3c 17 ± 3b 15.1 ± 0.3ab 10.9 ± 0.7a 22 ± 4c 17.6 ± 0.4b 17 ± 1ab 13.6 ± 0.7a 
Serine 21 ± 4b 14 ± 3a 11.5 ± 0.3a - 14 ± 2b 13.8 ± 0.8b 12 ± 3b 7 ± 0.8a 
Proline 10 ± 1c 6.8 ± 0.7b 5.33 ± 

0.15b 
3.1 ± 0.15a 

6 ± 1c 4.2 ± 0.2b 4.69 ± 0.03a -     
Asparagine 15 ± 2c 10.2 ± 0.7b 6.9 ± 0.3a - 9 ± 2a 11 ± 1a 8 ± 3a  -    
Aspartic acid 14 ± 2b 11.5 ± 0.7b 7.8 ± 0.7a - 12 ± 2a 9.7 ± 0.8a 16 ± 8a 6.2 ± 0.2a 
Methionine 31 ± 5b 20 ± 2a 19 ± 1a 16 ± 1a 30 ± 4c 19.7 ± 0.3a 23.5 ± 0.02b 19.2 ± 0.7a 
Glutamic acid 17.6 ± 

0.7b 
16 ± 2b 17 ± 2b 11.0 ± 0.6a 

20 ± 2c 18.3 ± 0.6b 20.4 ± 0.7c 13.5 ± 0.3a 
Phenylalanine 55 ± 11b 44 ± 8a 40 ± 2a 32 ± 2a 54 ± 8c 35.8 ± 0.9ab 43 ± 3b 32 ± 2a 
Glutamine 45 ± 6c 29 ± 4ab 33.5 ± 0.2b 23 ± 2a 20 ± 5a 27 ± 8a 34.1 ± 0.7a 30 ± 2a 
Lysine 72 ± 3b 58 ± 8ab 45 ± 11a 57 ± 6ab 73 ± 9b 72 ± 5b 40 ± 4a 76 ± 5b 
Histidine 22 ± 2c 17 ± 2b 15 ± 1ab 12.2 ± 0.3a 25 ± 4b 23 ± 1a 21.2 ± 0.8a 21.3 ± 0.7a 
Tyrosine 52 ± 5c 29.7 ± 0.3ab 35 ± 1b 25.7 ± 0.7a 38 ± 2b 24 ± 1a 35 ± 4b 23 ± 2a 
Tryptophan 24 ± 2c 17 ± 2b 17.6 ± 0.7b 12.9 ± 0.8a 23 ± 3c 15.8 ± 0.1ab 19 ± 2b 13.1 ± 0.2a 
Cystine 34 ± 4c 22 ± 2b 25 ± 2b 15.8 ± 0.8a 10.4 ± 0.6  - - - 

Data shown are mean values from triplicates and the standard deviation. abc Different lowercase letters indicate significant differences 

between models, with a significance level of 95% (p<0.05). 
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Table 5.1.5. Molar percentages of acyl groups (AG) supported on the different glyceryl backbone structures 
(TG, 1,2-DG, 1,3-DG, 2-MG, 1-MG) and fatty acids (FA), present in the lipidic phase of sea bass and salmon 
non-digested (ND) and digested samples under different GI conditions (control (C), Elderly 1 (E1), Elderly 2 
(E2), Elderly 3 (E3) models). 

Cooked 
Fish 

In vitro digestion model AGTG% AG1,2-DG% AG1,3-DG% AG2-MG% AG1-MG% FA% 

Salmon Non-digested 99.3 ± 0.7 - 0.43 ± 0.19 - - 0.2 ± 0.9 
C 23.9 ± 0.5b 14.91 ± 0.18d 1.5 ± 0.2a 3.495 ± 0.004b 1.12 ± 0.14ab 55.1 ± 0.4ab 
E1 28.75 ± 0.08c 13.8 ± 0.3c 1.21 ± 0.13a 3.6 ± 0.15b 1.22 ± 0.15ab 53 ± 2a 
E2 23.14 ± 0.09b 12.68 ± 0.03b 1.38 ± 0.04a 3.53 ± 0.19b 1.4 ± 0.4b 57 ± 1b 
E3 17.1 ± 0.4a 9.3 ± 0.6a 1.2 ± 0.1a 1.8 ± 0.1a 0.73 ± 0.02a 69.79 ± 1.16c 

Sea bass Non-digested 98.7 ± 0.9 - 0.08 ± 0.40 - - 1.24 ± 0.5 
C 15.4 ± 0.9ab 9.3 ± 1.3a 0.95 ± 0.09a 3.2 ± 0.4b 0.5 ± 0.3a 70.6 ± 0.5b 
E1 14.8 ± 0.2a 10.6 ± 0.2ab 1.02 ± 0.05a 3.24 ± 0.14b 8 ± 10a 69.7 ± 0.3b 
E2 24.18 ± 1.18c 11.8 ± 0.3b 1.1± 0.3a 3.6 ± 0.2b 0.55 ± 0.03a 59 ± 2a 
E3 18.3 ± 0.6b 9.6 ± 0.2a 1.61 ± 0.06b 2.1 ± 0.2a 0.8 ± 0.6a 67.6 ± 0.4b 

Data shown are mean values from triplicates and the standard deviation. *AG: acyl groups. a-d: different letters means significant 

difference between models (p<0.05). 
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E2 model (gastric pH 6 and intestinal pH 7). Thus, comparing E1 and E2, it 

could be suggested that the gastric pH, together with the altered 

concentration of pepsin (1500 U/mL), only affect the lipid digestibility in sea 

bass but not in salmon. 

Finally, and related to the intestinal alterations represented by model E3, 

the longer intestinal transit time with respect to control conditions (4 h 

instead of 2h) turns out to be a favorable factor for the digestion of lipids. 

In fact, lipolysis extent under E3 conditions was similar in salmon, and even 

higher in sea bass, than under C conditions. The bioaccessible fraction was, 

however, slightly lower than under control conditions even if sea bass 

digested under E3 model presented the greatest percentage of FA. 

Differences found in fat digestibility between the two fish species at the 

same GI conditions are attributed to the inherent-food characteristics (the 

structural matrix, the type of fat, nutrients, among others)  39, being similar 

the ratio of monounsaturated fatty acids, polyunsaturated fatty acids and 

saturated fatty acids 20,40,41, but the different composition (moisture and fat) 

defines the texture and structure and so, the degree of enzymatic 

breakdown. 

Influence of elderly GI conditions and fish species on calcium mineral, 

vitamins A, D2 and D3 bioaccessibility 

A reduced digestion of macronutrients, such as proteins and lipids, could be 

coupled to a deficient release and solubilization of micronutrients leading 

to a decrease of the bioabsorbable fraction.  Table 5.1.6 presents the 

bioaccessibility (%) of calcium, vitamin A and D3 for the four fish species 

digested under the different in vitro models. Vitamin D2 was not found in 

samples due that it is found only in vegetables 42. Calcium bioaccessibility 

values ranged from 94% in sea bass to 20% in sardine under standard 

conditions of digestion (C). Despite having sardine the highest calcium 

content, this mineral was less bioaccessible in this fish than in others, due 
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to a bone matrix non-broken by the chewing process. Within the remaining 

three, the protein content could have a negative effect on the calcium 

bioaccessibility, due to the salting-out effect that exert the free amino acids 

when are present in salt form with a negative or positive charge promoting 

less solubility of calcium species 43. In the opposite, sea bass can be 

considered a good source of bioaccessible calcium despite its low calcium 

content. The results obtained in sardine agree with that published by 

Titchenal & Dobbs (2007) 44, which analyzed calcium bioaccessibility in 

canned sardines in oil and concluded that this mineral is mainly found in the 

fish bones, which are ingested but not entirely digested. The obtained 

results showed that the suboptimal intestinal conditions given in elderly (E3) 

lead to a statistical significant (p<0.05) reduction of calcium bioaccessibility 

in all fishes (values from 66 to 8 % in sea bass and sardines, respectively). 

However, alterations occurring at oral and gastric stages (E1 and E2) did not 

seem to affect the release and solubilization of this mineral, excepting from 

sardines. Diet recommendations addressed to elderly advice an increase of 

calcium intake, since bone density decreases with ageing, which can lead to 

osteopenia and, in extreme cases, osteoporosis, which is partly related to 

the consumption of dietary calcium. The latter is a significant health 

problem that contributes to disability and premature mortality among 

women and older men. Although genetic factors influence maximum bone 

mass, diet together with an active life style are clearly two of the modifiable 

risk factors for osteoporosis 31. In addition, vitamins A and D3 

bioaccessibility were analyzed as the percentage of vitamin recovered in the 

micellar phase after in vitro digestion compared to the amount of vitamin 

found in the cooked samples before digestion. As it can be observed (Table 

5.1.6), vitamin A bioaccessibility ranged from 14 to 50% under control GI 

conditions (C); while vitamin D3 bioaccessibility did from 19 and 66% under 

the same GI model. The differences in terms of release, solubilization and 

micellar incorporation of these vitamins among fish species could be 

attributed to the lipid content. Thus, it is found the higher the fat content 
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the greater the fat-soluble vitamins bioaccessibility 42. In fact, vitamins A and 

D3 exhibited the highest bioaccessibility in salmon that has the highest fat 

and achieved the highest lipolysis extent.  

Table 5.1.6. Micronutrients (Calcium and vitamins A and D3) bioaccessibility 
in sea bass, salmon, sardine and hake under different GI conditions (control 
(C), Elderly 1 (E1), Elderly 2 (E2), Elderly 3 (E3) models). 

Fish In vitro digestion model 

Bioaccessibility (%) 

Calcium Vitamin A Vitamin D3 

Sea bass C 94.3 ± 13.2bB 21 ± 2bA 34 ± 3aB 
 E1 81 ± 3bC 19.0 ± 0.3bB 28 ± 1aB 
 E2 99 ± 4bD 12.6 ± 0.7aA 26 ± 5aA 
 E3 66 ± 3aC 13 ± 1aA 25 ± 1aB 

Salmon C 86 ± 8bB 48 ± 4bB 66 ± 2cC 
 E1 73 ± 7abC 48 ± 1bC 57 ± 2bcC 
 E2 68 ± 7aC 51 ± 4bB 50 ± 5abB 
 E3 60 ± 4aB 30 ± 2aB 42.5 ± 0.4aC 

Sardine C 20.3 ± 0.8bA 14 ± 2aA 19 ± 3bA 
 E1 20 ± 1bA 13.2 ± 0.5aA 14.37 ± 0.17abA 
 E2 8 ± 1aA 13.3 ± 0.2aA 13.2 ± 0.3abA 
 E3 8 ± 1aA 14.0 ± 0.4aA 12.23 ± 0.04aA 

Hake  C 40 ± 4aA - - 
 E1 40 ± 10aB - - 
 E2 33.70 ± 0.10aB - - 
 E3 30 ± 2aA - - 

a-c: different letters indicate significant differences between models (p<0.05). A-C: different 

letters indicate significant differences between foods (p<0.05). Data shown are mean values 

from triplicates and the standard deviation. 

The digestion and absorption of the fat-soluble vitamins basically follow the 

same path as lipids 31. This behavior is shown when no statistical differences 

(p<0.05) were found among values of bioaccessibility achieved under 

Elderly models of digestion (E1, E2 and E3) in sea bass and sardines. 

Moreover, in salmon does not occur of this way, and the vitamins 

bioaccessibility was strongly reduced when intestinal conditions were 

altered in the Elderly model (E3), even when the fat digestibility presented 

a contrary behavior. Liposoluble vitamins are dependent on solubilization 
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by bile acids, and an alteration in bile flow results in malabsorption 45.  Thus, 

the vitamin bioaccessibility decreased when the lipid content is greater, 

even that lipid bioaccessibility do not show alterations. This result indicates 

the importance of lipid concentration, showing low vitamins bioaccessibility 

when the lipid content is higher.  

Therefore, the elders are advised to strengthen their skeletal health by 

following a diet rich in nutrients with adequate amounts of protein, vitamins 

and minerals. This is why the consumption of salmon could be 

recommended to this population group, since this fish is characterized by 

unsaturated fatty acids along with its high calcium content that is easily 

assimilated, due to the parallel supply of vitamin D offered by this food, 

which would favor intestinal absorption of this mineral 46. 

CONCLUSIONS 

Results from this study evidenced that elderly GI conditions differently 

affected fish macronutrients and micronutrients depending on fish type. 

Thus, proteins fish-proteolysis extent ranged from 50 and 70% under 

healthy gastrointestinal conditions (control), being hake proteins the least 

digested. Elderly GI conditions highly affected proteolysis extent with an 

accumulative decreasing of extent as long as alterations in digestion stages 

were incorporated to the in vitro simulation. Thus, a 50% of reduction was 

reported for salmon and sea bass when oral, gastric and intestinal stages 

conditions mimicked elderly ones (proteolysis extent of 40 and 33% for 

salmon and sea bass, respectively). To note, leucine was among the amino 

acids whom release was affected the most under a total digestive disorder 

(E3) in all type of fish. 

With respect of lipolysis, elderly GI alterations do not statistical significantly 

(p<0.05) affected the absorbable and non-absorbable fractions of lipids of 

salmon and sea bass. In fact, the longer intestinal transit time characteristic 

of elderly seems to be favorable to fat digestion. Finally, calcium and 



 

103 

 

liposoluble vitamins A and D3 release were compromised under elderly GI 

conditions, however the extent of reduction seems to be very dependent of 

the fish type.  

Thus, host-individual gastrointestinal conditions together with fish matrix 

and its inherent characteristics, influence macronutrients digestibility and 

micronutrients bioaccessibility. Therefore, this study provides relevant 

information to understand fish digestibility under altered gastrointestinal 

conditions on specific population-groups as elderly and depending on fish 

origin.  
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5.2 Chapter 2: Understanding the role of food matrix on the digestibility 

of dairy products under elderly gastrointestinal conditions.  
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Abstract 

This study aimed to evaluate the effect of some elderly in vitro 

gastrointestinal (GI) conditions on proteolysis and lipolysis extent, calcium, 

vitamins A and D bioaccessibility and lactose release in milk, yogurt, fresh 

and aged cheeses. To evaluate the impact of the some oral, gastric and 

intestinal disorders appearing with ageing on dairy digestion, three in vitro 

elderly models were applied (E1 (oral altered conditions), E2 (oral and 

gastric altered conditions) and E3 (oral, gastric and intestinal altered 

conditions)) plus a healthy adult one as control. Proteolysis extent was 

significantly affected by elderly GI alterations (p<0.05) (around 40% of 

reduction compared to control), being fresh and aged cheese proteolysis 

the most affected with an important decrease in leucine release (18 and 

25%, respectively). Calcium, vitamins A and D3bioaccesibility and lactose 

release seemed not to be highly compromised in these models of elderly 

conditions; however, the micronutrients bioaccessibility was very 

dependent on dairy matrix’s structure. Finally, the amount of the lipid 

hydrolyzed fraction of cheeses is not influenced in the investigated models. 

Keywords: Dairy products; Elderly in vitro digestion models; Protein 

digestibility; Fat digestibility; Micronutrients bioaccessibility; Lactose 

release 
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INTRODUCTION 

Population group above 65 years old is growing, expecting to be in Europe 

more than one-quarter (27%) by 2050 1. Worldwide, it is expected that the 

number of people over 65 will exceed the number of children for the first 

time in 2045. Both lifestyle and diet present an impact on elderly wellness 

and therefore, on the prevalence of chronical diseases in this population 

group. Therefore, specific nutrition for elderly has been identified as one of 

the rising world's challenges 2. Among the dietary recommendations 

addressed to individuals over 65 years by European Society for Clinical 

Nutrition and Metabolism (ESPEN), an intake of rich-protein foods is highly 

advisable 3, and preferably with a protein profile rich in leucine 4. Among 

food categories contributing the most to protein intake through the diet, 

dairy products are highly consumed by elderly and more specifically, yogurt 

and cheese 1. These products present a positive impact on cardiovascular 

health 5 and especially have shown to contribute to bone health in 

individuals over 65 years 6, because of their protein, calcium and liposoluble 

vitamins content. A protein deficit in elderly has been associated with a loss 

of muscle mass (sarcopenia), asthenia, depression and weakness of the 

immune system7. Gastrointestinal disorders appearing along ageing could 

be partially responsible of this protein deficit because they frequently lead 

to less hydrolysis and absorption of macronutrients, especially of proteins. 

Among them, secretion of digestive fluids and enzymes, peristaltic 

contractions and chyme passage rates could be suboptimal 8,9. Besides, 

micronutrients bioaccessibility is often compromised, as it is the case of 

calcium and zinc, and/or some vitamins such as B12, B6, A and D.  

Besides to the host-related factors, it is expected that the characteristics 

inherent to the food matrix (composition, structure, physicochemical 

properties or interactions between macro and micronutrients within the 

same matrix, ...) also modulate digestibility, resulting in different extents of 

hydrolysis under similar digestive conditions. Nevertheless, these food-
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inherent and host-related factors are barely considered when addressing 

dietetic recommendations to elderly. 

Given this scenario, it was considered of interest to carry out an in vitro 

digestion study to assess the contributions of food-inherent and host-

related factors to different dairy products digestibility under altered 

digestion conditions frequently given in senior population. The results might 

generate accurate dietetic recommendations for elderly and open the door 

to the design of new functional products addressed to senior. In vitro 

digestion models allow simulating the digestion processes with a series of 

advantages compared to in vivo ones.  They are highly reproducible, easy to 

sampling in the different stages of the digestive process and allow 

modifications of the controlled digestion conditions, among others.  

Thus, the aim of the present work is to assess, by means of a static in vitro 

digestion methodology, the influence of the most frequent elderly GI 

alterations according to the model published by Shani-Levi et al. (2017)10 

onto the digestibility of macronutrients (proteins, fats and carbohydrates) 

and the bioaccessibility of micronutrients (calcium and vitamin A and D3) in  

four different dairy products (whole milk, yogurt, fresh and aged cheeses). 

MATERIAL AND METHODS 

Chemicals 

Reagents for the in vitro simulation of digestion fluids were pepsin from the 

porcine gastric mucosa (P6887), porcine pancreatin (P7545), bovine bile 

(B3883), potassium chloride, potassium dihydrogen phosphate, sodium 

bicarbonate, sodium chloride, magnesium chloride, ammonium carbonate, 

calcium chloride, hydrochloric acid, sodium hydroxide and potassium 

sulphate, all of them from Sigma-Aldrich (Sigma-Aldrich, USA). 

For the analytical determinations, boric acid, tetrahydrofuran (HPLC grade), 

methanol (HPLC grade), retinol ≥99% (HPLC grade), cholecalciferol ≥98% 

(HPLC grade), sulfuric acid, glucose standard solution (1 mg/mL), potassium 
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sodium tartrate tetrahydrate (ACS reagent, 99%) and 3,5-dinitrosalicylic 

acid were also provided by Sigma-Aldrich (Sigma-Aldrich, USA). Nitric acid 

(70%), lanthanum chloride heptahydrate and dichloromethane (HPLC grade 

> 99.8%) were acquired from Honeywell Fluka (Buchs, Switzerland) and 

petroleum ether from VWR International (VWR International, France). 

Sodium chloride and anhydrous sodium sulfate were supplied by Panreac 

(Panreac AppliChem, Barcelona, Spain). The EZ-Faast amino acid analysis kit 

for the analysis of amino acids by GC–MS was provided by Phenomenex 

(Torrance, CA, USA) and acetonitrile HPLC grade was acquired from JT Baker 

(Phillipsburg, NJ, USA) 

The four selected dairy products for this study (whole milk, natural yogurt, 

12-monthaged cheese and fresh cheese) were all exclusively of cow origin 

(100%) and acquired in a local store of the city of Valencia, Spain. 

Compositional analysis of dairy products 

Moisture, ashes, fat and protein contents were determined according to the 

official methods 934.01, 942.05, 920.39 and 960.52 of the Association of 

Official Analytical Chemist 11, respectively. For fluid matrices (milk and 

yogurt), the above- methodologies were carried out, excepting for the fat 

analysis that followed the methodology of the International Standard ISO 

1211 | IDF 001: 2010, 12. Furthermore, lactose content(as glucose 

equivalent) was determined by the colorimetric method of dinitrosalicylic 

acid (DNS) 13.  

Calcium content was determined according to the methodology proposed 

by 14 using a flame atomic absorption spectrometer at 422.7 nm (Thermo 

Scientific, iCE 3000 Series), previous calcination of the sample.  

Samples were also subjected to saponification and extraction of both 

vitamin A (retinol) and D3 (cholecalciferol) according to the protocol of 

Castaneda & Lee, (2019)15. Vitamins were first separated using a RP-HPLC 
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(Waters e2695 Separation Module, Waters, Milford, MA, USA) with a 

Kinetex™C18 column 5µm, 100 Å, 150 x 4.6 mm (Phenomenex, Torrance, 

CA, USA). An isocratic separation was performed with 15% acetonitrile, 7% 

water and 78% methanol:tetrahydrofurane (90:10 v/v) during 10 min using 

a flow rate of 1 mL/min and an injection volume of 20 µL. Then, they were 

detected and quantified using a photo diode array detector (Waters PDA 

2996) at 265 nm (vitamin D3) and 325 nm (vitamin A).  

All above-mentioned macro and micronutrients were expressed per g of 

dairy product. 

Finally, fresh and aged cheeses were subjected to cold liquid-liquid 

extraction to determine their lipidic profile by Proton Nuclear Magnetic 

Resonance (1H NMR) using a BRUKER 400/R at 400 MHz 16. The lipidic profile 

provides information about the molar percentage of triglycerides (TG), 

diglycerides (1,2-DG and 1,3-DG), monoglycerides (1-MG and 2-MG) and 

free fatty acids (FFA) in the samples.   

Static in vitro simulation of the digestive process 

The simulation of gastrointestinal digestion was carried out following the 

standardized method of static in vitro digestion for a healthy adult, 

internationally agreed and published by Minekus et al. (2014)17. On the 

other hand, the specific gastrointestinal conditions of the elderly were 

established according to Shani-Levi et al. (2017)10. For the first step of the 

digestion, oral stage, it was decided to perform an in vivo simulation realized 

by a healthy subject, only in the case of solid food since in the case of milk 

and yogurt this stage was suppressed. As chewing is a complex process 

where parameters such as the number of cycles, chewing frequency and 

speeds depend on the food characteristics 18–20, it is difficult to establish a 

chewing standard. Therefore, taken this into account and based on the 

publications of other authors, the number of chewing cycles needed to 

reach a bolus with similar physical characteristics to that of a tomato or 
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mustard paste were determined for each solid product and considered the 

standard conditions of a volunteer  adult with healthy dentition 17,21,22, and 

then to simulate the altered chewing conditions of a most critical oral 

elderly scenery the number of cycles was reduced by 50% in order to 

generate boluses with larger particle size and difficult to swallow 23–25. 

Four in vitro models were designed to study the impact of different 

gastrointestinal alterations on the elderly population on the digestibility and 

bioaccessibility of dairy products: first one representing the standard GI 

conditions of a healthy adult (control (C)) and three models mimicking the 

accumulative alterations commonly observed with ageing (Elderly 1 (oral 

stage altered (E1), Elderly 2 (oral and gastric stages altered (E2)) and Elderly 

3 (oral, gastric and intestinal stages altered) (E3))) (Figure 5.2.1).  

In vitro digestion was performed as follows: 

Oral stage: in the case of fresh and aged cheese, 5 g of sample were chewed 

in vivo by the volunteer with normal dentition during 20 cycles simulating a 

healthy adult. In contrast, 10 cycles were performed to simulate an elderly. 

After chewing, food boluses were transferred to the falcon tubes to 

continue gastrointestinal digestion. 

Gastric stage: food boluses of fresh and aged cheeses, or a direct aliquot of 

yogurt and milk, were mixed in a ratio 1:1 with SGF (v/v) and the pH and the 

pepsin concentration was adjusted according to the conditions to be tested 

(Figure 5.2.1). Subsequently, the samples were flipped from top to bottom 

at 55 rpm using an Intell-Mixer RM-2 (Elmi Ltd, Riga, LV-1006, Latvia) for 2 h 

at 37 °C in a chamber Selecta (JP Selecta SA, Barcelona). 

Intestinal stage: After the gastric stage, SIF was incorporated in a proportion 

1:1 (v/v) to each tube containing the gastric chime according to the 

conditions of the models (Figure 5.2.1). Samples were then being flipped 

from top to bottom at 55 rpm for another 2 or 4 h, depending on the model 
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tested, at 37 °C. pH was monitored during the digestion process and 

readjusted if necessary, to keep it constant.  

 

Figure 5.2.1. Specific gastrointestinal conditions of the four in vitro digestion 
models applied to mimic healthy adult standardized conditions (C: control)) 
and elderly GI alterations (E1: Elderly 1; E2: Elderly 2; E3: Elderly 3). 

At the end of the digestion, samples were cooled down in ice bath during 10 

min to reduce the digestion before phase separation and analytical 

determinations. Where needed, separation of the liquid phase from the 

solid phase resulting from the digestion process was performed by 

centrifuging at 4000 g-force during 20 minutes at 10 °C and the supernatant, 

considered as bioaccessible fraction, was collected for analytical 

determinations. 

Analytical determinations in the digesta 

Free amino acids 
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The determination of free amino acids resulting of protein digestion was 

performed using the EZ-Faast amino acid kit following the procedure 

proposed by Peinado et al. (2016)26. First, aliquots of bioaccesible fraction 

(100 μL) were taken to be derivatized using EZ-Faast amino acid kit and then 

analyzed by gas chromatography-mass spectrometry (GC-MS) (Agilent 

Technologies, Injector 7683B series, Network GC System 6890N series, Inert 

Mass Selective Detector 5975 series. Data from both the calibration curve 

and the samples were analyzed using the MSD ChemStation software. The 

amino acid profile after digestion was expressed as mg free amino acid/ g 

product and proteolysis extent (%), with respect to the initial protein 

content, according to Eq 5.4: 

𝑃𝑟𝑜𝑡𝑒𝑜𝑙𝑦𝑠𝑖𝑠 𝑒𝑥𝑡𝑒𝑛𝑡 (%) =
(𝑡𝑜𝑡𝑎𝑙 𝑔 𝑜𝑓 𝑓𝑟𝑒𝑒 𝑎𝑚𝑖𝑛𝑜 𝑎𝑐𝑖𝑑𝑠)

(𝑔 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑟𝑜𝑡𝑒𝑖𝑛)
× 100 

(5.4) 

Lipidic profile determination 

Digesta from both fresh and aged cheeses were subjected to same protocol 

for lipidic profile determination and described in section of compositional 

analysis for undigested cheeses.  

Lactose released 

Lactose content, expressed as mg glucose eq/ g of initial product, was 

determined in 0.5 mL  of the bioaccessible fraction by the colorimetric 

method of Dinitrosalicylic Acid (DNS)13. Lactose released (%), with respect 

to the initial content, was estimated according to Eq.5.5. 

𝐿𝑎𝑐𝑡𝑜𝑠𝑒 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑 (%)

=
(𝑚𝑔 𝑔𝑙𝑢𝑐𝑜𝑠𝑒 𝑒𝑞.  𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑)

(𝑚𝑔 𝑔𝑙𝑢𝑐𝑜𝑠𝑒 𝑒𝑞.  𝑡𝑜𝑡𝑎𝑙 𝑖𝑛 𝑢𝑛𝑑𝑖𝑔𝑒𝑠𝑡𝑒𝑑 𝑓𝑜𝑜𝑑)
× 100    

(5.5) 
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Calcium bioaccessibility  

An aliquot of 4 mL was taken from the bioaccessible fraction and subjected 

to the same protocol explained in the section of compositional analysis. 

Calcium content in the bioaccessible fraction was expressed as mg of Ca 2+ / 

g of initial product and its bioaccessibility (%) calculated according to Eq. 

5.6; where “free Ca2+ released” refers to the calcium content in the 

bioaccessible fraction and “Ca2+ in undigested food” to the total calcium 

content in the dairy product before digestion. 

𝐶𝑎𝑙𝑐𝑖𝑢𝑚 𝑏𝑖𝑜𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 (%)

=
(𝑚𝑔 𝐶𝑎2+𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑)

(𝑚𝑔 𝐶𝑎2+ 𝑖𝑛 𝑢𝑛𝑑𝑖𝑔𝑒𝑠𝑡𝑒𝑑 𝑓𝑜𝑜𝑑)
× 100       

(5.6)  

Vitamin A and D3 bioaccessibility 

Vitamins A and D3 were determined in 20 mL of bioaccessible fraction 

according to the protocol described in the section of compositional analysis 

and expressed as µg/ g of initial product. Subsequently, their bioaccessibility 

was calculated according to Eq. 5.7 in which “vitamin released” refers to the 

vitamin content in the bioaccessible fraction, and “vitamin in the undigested 

food” to the vitamin content in dairy product before digestion.  

𝑉𝑖𝑡𝑎𝑚𝑖𝑛 𝑏𝑖𝑜𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 (%)

=
(µ𝑔 𝑜𝑓 𝑣𝑖𝑡𝑎𝑚𝑖𝑛 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑)

(µ𝑔 𝑜𝑓 𝑣𝑖𝑡𝑎𝑚𝑖𝑛 𝑖𝑛 𝑢𝑛𝑑𝑖𝑔𝑒𝑠𝑡𝑒𝑑 𝑓𝑜𝑜𝑑)
× 100 

(5.7) 

Statistical analysis 

Data are reported as mean ± standard deviation (three replicates). The 

results obtained were statistically analyzed using Statgraphics Centurion 
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XVII program with a 95% confidence level (p <0.05) using a simple analysis 

of variance (one-way ANOVA) followed by the multiple range test LSD (Less 

Significant Difference) of Fisher test in order to identify homogeneous 

groups between models and dairy products. PCA was used an orthogonal 

transformation to convert the obtained data (proteolysis, lipolysis, lactose 

release and bioaccessibilities of calcium, vitamin A and D3) of possibly 

correlated variables into a set of values of linearly uncorrelated variables 

(called principal components). This transformation is defined in such a way 

that the first principal component has the largest possible variance (that is, 

accounts for as much of the variability in the data as possible), and each 

succeeding component in turn has the highest variance possible under the 

constraint that it is orthogonal to the preceding components. 

RESULTS AND DISCUSSION  

Nutritional composition of the samples 

The nutritional contents of milk, yogurt, fresh and aged cheeses, expressed 

per 1 g of product, are gathered in Table 5.2.1 In general, protein, total fat 

and ashes contents were similar to those reported in literature for the same 

food matrices 27–29 and correspond to label declarations. As expected, both 

cheeses (0.16 and 0.29 g/g product, for fresh an aged cheese) presented 

higher protein content than yogurt and milk (around 0.03 g/g product). In 

terms of lipid content, dairy products ranged from 0.0287 to 0.288 g/g 

product, corresponding to yogurt the least content and to aged cheese the 

most. Thus, the processing (coagulation, pressing, salting and/or curing) 

resulting in different composition of matrices 30. With regard to calcium 

content of the different dairy products, results were consistent with those 

reported in the literature 31,32, reporting 1 g of cheeses provides more 

calcium mineral than the same amount of liquid or semi-liquid dairy 

products. Vitamins A and D3 contents were also in agreement with data 

found in the literature 31,32. According to these results, the studied dairy 
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products can be considered as an important source of liposoluble vitamins, 

and especially of retinol. However, differences in terms of vitamins 

concentration were also noticed. Aged cheese presented notable higher 

content of both vitamins, A and D3, compared to the other dairy products. 

With respect to lactose content, milk presented the highest sugar content 

compared to the other products. As it is well-known, lactose consumption 

by lactic acid bacteria during fermentation results in lower lactose content 

in yogurt than milk. During cheese production, the whey removal (in which 

lactose is solubilized) after acidic or enzymatic coagulation, gives as a result 
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Table 5.2.1. Macro and micronutrients contents in dairy products (milk, yogurt, fresh cheese and aged 
cheese) expressed per g of product. 

Nutrient Milk Yogurt Fresh cheese Aged cheese 

Moisture (g/g product) 0.882 ± 0.002d 0.895 ± 0.0009c 0.618 ± 0.009b 0.362 ± 0.012a 

Protein (g/g product) 0.0303 ± 0.0012a 0.0319 ± 0.0019a 0.163 ± 0.008b 0.29 ± 0.007c 

Fat (g/g product) 0.035 ± 0.001b 0.0287 ± 0.0012a 0.202 ± 0.015c 0.288 ± 0.012d 

Ashes (g/g product) 0.0053 ± 0.0003a 0.0073 ± 0.0006b 0.0092 ± 0.0002c 0.03 ± 0.003d 

Lactose (mg glucose eq./g 
product) 

57 ± 4d 25.3 ± 1.5c 20.7 ± 1.2b 4 ± 0.6a 

Calcium (mg/g product) 1.47 ± 0.09b 1.19 ± 0.02a 12.6 ± 0.5c 14.1 ± 0.5d 

Vitamin A (µg/g product) 0.55 ± 0.02b 0.45 ± 0.04a 1.03 ± 0.07c 3.4 ± 0.2d 

Vitamin D3 (µg/g product) 0.0397 ± 0.0013b 0.031 ± 0.0013a 0.138 ± 0.005c 0.216 ± 0.014d 

Data shown are mean values from triplicates and the standard deviation. a-d Different lowercase letters indicate 

significant differences between foods (p <0.05). 
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low lactose content in fresh cheese; while lactose conversion to lactate 

during the two weeks of ripening additionally decrease the residual lactose 

present in aged cheeses 33. Of note, important differences exist among 

products in terms of protein and micronutrients contributions per serving 

to the daily diet. In fact, a serving of milk (averaged serving of 200 mL) or 

aged cheese (40 g) puts up to the diet with higher protein and liposoluble 

vitamins contents, than the intake of a serving of yogurt (125 g) or fresh 

cheese (40g); while the consumption of whatever of the cheeses is 

interesting in order to insure high calcium intake. Nevertheless, the 

affection of gastrointestinal alterations of elderly on macro and 

micronutrients digestibility and availability might be consider to address 

dietary recommendations.  

Protein digestibility of dairy products under elderly GI conditions 

Figure 5.2.2 shows the digested protein (mg of free amino acids/ g of 

product) and the proteolysis extent (%) of dairy products (milk, yogurt, fresh 

cheese and aged cheese) digested under standard (C) and elderly scenarios 

(E1, E2 and E3). Firstly, it can be noted that the amount of digested protein 

under standardized GI conditions (C) ranged between 31.3 to 131 mg free 

amino acids/g product (for yogurt and aged cheese, respectively) and 

proteolysis extent from 50 to 100 %, depending on the food matrix. 

Nevertheless, higher values of proteolysis extent do not necessarily 

correspond to higher supplies of free amino acids per gram of product.  

Dairy structure plays a key role on the solubilization, release and/or 

hydrolysis of caseins during the GI digestion 27, being caseins taking part of 

solid structures (fresh and aged cheeses) less digestible than those present 

in liquids and semi-liquids products. Similar results were reported by 

Asensio-Grau et al. (2019) 34 and Rinaldi et al. (2014) 27. Besides, it is 

important to remark that ripened cheese often contains free amino acids 

and small peptides due to proteases activity during ripening 35. Proteolysis 
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extent in 12-month ripened cheeses has been reported to range from 2 to 

8 %, when no fungal microorganism are involved 36,37. Therefore, proteolysis 

resulting from digestion in cheeses could be slightly lower than showed in 

Figure 5.2.2 Some studies have reported that the presence of products of 

hydrolysis such as free amino acids in ripened cheeses could enhance the 

breakdown of caseins during the posterior GI digestion because of their 

emulsifying capacity 34,38. However, no differences were found in terms of 

proteolysis extent among fresh, without ripening, and aged cheese in this 

study.  

 

Figure 5.2.2. Digested protein (mg free amino acids/g product) of milk, 
yogurt, fresh cheese and aged cheese under different in vitro digestion 
models (C: control; E1: Elderly 1; E2: Elderly 2; E3: Elderly 3). Values at the 
bottom of the bars represent the proteolysis extent (%) achieved after in 
vitro digestion. Oral alterations (E1) in milk and yogurt were not evaluated 
because of the absence of mastication, and therefore the low saliva 
secretion in the oral cavity. a-d different lowercase letters indicate 
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significant differences between models (p <0.05). A-D different capital 
letters indicate significant differences between products (p <0.05). 

Regarding the effect of altered GI conditions of elderly on proteolysis, 

protein hydrolysis experimented an accumulative reduction as long as the 

GI conditions were altered from the oral to the intestinal stage in fresh and 

aged cheese and from the gastric to the intestinal stage in milk and yogurt. 

Hence, a proteolysis extent of 32 ± 3, 33 ± 3, 53 ± 7, 65 ± 8 % for aged cheese, 

fresh cheese, milk and yogurt were registered under the worst scenario of 

digestion for elderly E3). From standard (C) to elderly GI conditions, 65% of 

reduction was observed for solid and semi-solid dairy products and 50% for 

milk. Yogurt and milk presented the highest protein digestibility under all GI 

conditions, but lower amount of free amino acid supply than both cheeses. 

Therefore, the impact level of elderly GI conditions on the protein in vitro 

digestion is dependent on the matrix-inherent properties. To deeper, C and 

E1 models differ in oral stage conditions (being major the breakdown in C 

than E1). Thus, the reduction of the food particle size and a mixing with 

saliva is aimed in optimal conditions to swallow. In this way, smaller 

particles maximize the protein surface contact, enabling better the 

accessibility of enzymes to cleavage sites 39. This fact could explain the 

impact of mastication level on proteolysis achieved at the end of digestion 

in fresh cheese and aged cheese (Figure 5.2.2). The comparison of the 

proteolysis achieved under E1 and E2 models for both cheeses, and 

between C and E2 in milk and yogurt was aimed at evidencing the impact of 

gastric alteration in proteolysis extent. However, it is necessary to point out 

that proteolysis is estimated by free amino acids quantification at the end 

of luminal digestion, i.e., after intestinal stage. Consequently, the products 

of gastric proteolysis are mainly peptides of low molecular weight that 

cannot be detected by the analytical method. The results show that gastric 

stage change would reduce protein digestibility measured after luminal 

simulation in all the analyzed foods, but without significant difference in 
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fresh cheese. The isoelectric point of caseins is close to pH 6 (4.5 < pH < 5.5), 

and aggregates could hinder the hydrolysis 40. Thus, if protein hydrolysis into 

peptides decreases under E2 conditions, the analytical method was not able 

to register completely that fact. In any case, the similar proteolysis extent 

achieved E1 and E2 in cheeses, and C and E2 in milk and yogurt, indicates 

that the activity of pancreatic proteases might compensate the suboptimal 

conditions of the gastric stage (E2) with the hydrolysis of proteins into 

peptides and free amino acids.  

Finally, a reduction in the pancreatic enzymes lead to maldigestion and 

malabsorption of proteins causing nutritional deficiencies 41. This fact agrees 

to proteolysis extent resulted under suboptimal intestinal conditions (E3) 

compared with the proteolysis extent achieved under non-altered intestinal 

conditions (E2). 

Tables 5.2.2 and 5.2.3 gather the free amino acid profile (mg of free amino 

acid/ g of product) resulting of proteolysis under standard healthy adult (C) 

and are consistent with that reported by other authors 30,42,43. As it can be 

observed, major free amino acids values correspond to lysine, leucine, 

tyrosine, valine and phenylalanine, all of them essential ones. In Particular, 

leucine, together with isoleucine and valine, is an amino acid of concern in 

the elderly, because its participation in muscle protein synthesis 41. Besides, 

Tables 5.2.2 and 5.2.3 show the free amino acid profiles obtained after 

digestion under elderly conditions (E1, E2 and E3) and the reduction of each 

amino acid release, with respect to the control (C), occurring as 

consequence of elderly GI alterations (E1, E2 and E3). Thus, amino acids 

reduction ranged from 20 to 100 % under the worst digestion conditions 

(E3), being glycine, cystine, asparagine, aspartic acid, threonine and alanine 

the free amino acids experimenting the highest reductions. Among the 

essential amino acids (valine, isoleucine, leucine, phenylalanine, 

tryptophan, histidine, lysine, threonine and methionine), the reduction 

ranged from 20-60%, being the percentage of reduction very dependent on 
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the dairy matrix. Of note, a reduction of 18, 25, 25 and 44 % of leucine were 

found in aged cheese, fresh cheese, yogurt and milk digested under E3, 

respectively. Similarly, the release of tryptophan, which is linked to 

serotonin production and better sleeping, providing relief from anxiety and 

depression reduction, was also compromised in elders with a higher 

reduction in digested milk (52%), than in yogurt (25%), fresh (35%) and aged 

cheese (39%). 

Cheese-lipolysis under elderly GI conditions 

Fat digestibility was evaluated in fresh and aged cheeses, because of their 

considerable fat content, after the in vitro digestion under control and 

elderly altered conditions. This analysis was carried out through the 

evaluation of the spectral data obtained from 1H NMR. The spectra obtained 

were analyzed according to Nieva-Echevarría et al. (2016)16 for the 

quantification of the main products derived from triglyceride hydrolysis (TG) 

after digestion. Table 5.2.4 shows molar percentages of acyl groups (AG) 

supported on the different glyceryl backbone structures (TG, 1,2-DG, 1,3-

DG, 2-MG, 1-MG) and free fatty acids (FFA), present in the non-digested and 

digested (C, E1, E2, E3) of fresh and aged cheese. Thus, absorbable fraction 

by the intestinal epithelium consists of the molar percentage of FFA, 2-MG 

and 1-MG, after undergoing a micellization process thanks to the presence 

of bile salts 44; while the non-absorbable fraction would be the sum of the 

remaining TG, 1,2-DG and 1,3-DG. The lipolysis extent corresponds to the 

sum of the molar percentage of 1,2-DG, 1,3-DG, 2-MG, 1-MG and FFA. As 

expected, almost all fat was present as TG (around 98%), in both cheeses 

before digestion. After digestion under healthy standard GI conditions (C), 

a lipolysis extent of 89% in fresh cheese and 82% in aged cheese occur 

because of the hydrolytic action of pancreatic lipase, with a conversion of 

TG mainly into FFA (70 and 63% for fresh cheese and aged cheese, 

respectively), followed by 1,2-DG, 2-MG 1,3-DG and 1-MG.  
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With respect to the elderly GI conditions and their effect on fat digestibility, 

the absorbable fraction of fresh cheese was higher under intestinal altered 
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Table 5.2.2. Amino acids profile (mg free amino acid/ g protein) of milk and yogurt digested under control (C) 
and Elderly (E1, E2 and E3) GI conditions and reduction (%) of amino acid released with respect to the control. 

Amino acid 

mg free amino acid / g product 
(Reduction with respect to the control (%)) 

Milk Yogurt 

C E1 E2 E3 C E1 E2 E3 

Alanine 1.566 ± 0.014c - 1.29 ± 0.02b (17) 0.91 ± 0.12a (42) 1.5 ± 0.2 b - 1.40 ± 0.14b (12) 0.93 ± 0.09a (39) 
Glycine 0.98 ± 0.14b - 0.559 ± 0.006a (43) 0.27 ± 0.08a (72) 0.80 ± 0.13b - 0.787 ± 0.003b (2) 0.31 ± 0.07a (61) 
Valine 2.20 ± 0.03c - 1.67 ± 0.04b (24) 1.26 ± 0.15a (43) 2.12 ± 0.09b - 2.004 ± 0.012b (6) 1.72 ± 0.10a (19) 
Leucine 3.65 ± 0.18c - 2.537 ± 0.006b (31) 2.1 ± 0.2a (44) 3.4 ± 0.2b - 3.09 ± 0.03b (8) 2.5 ± 0.2a (25) 
Isoleucine 1.40 ± 0.07c - 1.02 ± 0.04b (27) 0.756 ± 0.113a (46) 1.362 ± 0.110b - 1.400 ± 0.007b (0.4) 1.18 ± 0.04a (16) 
Threonine 1.36 ± 0.08c - 0.89 ± 0.06b (34) 0.54 ± 0.13a (60) 1.20 ± 0.08b - 1.028 ± 0.014b (15) 0.75 ± 0.06a (37) 
Serine 1.69 ± 0.06c - 1.27 ± 0.05b (25) 0.75 ± 0.17a (56) 1.73 ± 0.10b - 1.44 ± 0.04b (17) 0.945 ± 0.114a (45) 
Proline 0.76 ± 0.03c - 0.476 ± 0.007b (38) 0.34 ± 0.06a (56) 0.95 ± 0.02b - 0.895 ± 0.013b (6) 0.80 ± 0.06a (16) 
Asparagine 0.97 ± 0.05c - 0.62 ± 0.09b (36) 0.35 ± 0.13a (64) 1.04 ± 0.14b - 0.95 ± 0.04b (11) 0.26 ± 0.08a (75) 
Aspartic acid 1.14 ± 0.05c - 0.81 ± 0.06b (29) 0.34 ± 0.03a (70) 1.17 ± 0.09b - 1.114 ± 0.006b (5) 0.70 ± 0.10a (40) 
Methionine 0.79 ± 0.05b - 0.47 ± 0.02ª (40) 0.36 ± 0.06a (54) 0.63 ± 0.05b - 0.6175 ± 0.0010b (2) 0.50 ± 0.06a (27) 
Glutamic acid 1.77 ± 0.10b - 1.640 ± 0.009b (7) 1.20 ± 0.02a (33) 1.99 ± 0.13b - 1.83 ± 0.03b (8) 1.49 ± 0.08a (25) 
Phenylalanine 2.17 ± 0.06c - 1.30 ± 0.02b (40) 0.92 ± 0.12a (58) 1.63 ± 0.12b - 1.51 ± 0.03b (7) 1.147 ± 0.108a (30) 
Glutamine 2.06 ± 0.19b - 1.56 ± 0.18ª (24) 1.37 ± 0.19a (34) 2.4 ± 0.2b - 1.79 ± 0.04b (25) 1.6 ± 0.3a (41) 
Ornithine  - -  - - - - 
Lysine 2.50 ± 0.19b - 2.568 ± 0.003b (7) 1.9 ± 0.2a (31) 4.0 ± 0.4b - 3.96 ± 0.02b (2) 2.4 ± 0.5a (42) 
Histidine 1.09 ± 0.05c - 0.75 ± 0.05b (31) 0.56 ± 0.05a (48) 1.05 ± 0.06b - 0.76 ± 0.09b (28) 0.77 ± 0.10a (27) 
Tyrosine 3.8 ± 0.2c - 2.65 ± 0.03b (31) 1.62 ± 0.15a (58) 3.4 ± 0.2b - 3.059 ± 0.005b (10) 1.9 ± 0.3a (43) 
Tryptophan 1.56 ± 0.05c - 0.99 ± 0.03b (36) 0.75 ± 0.03a (52) 1.20 ± 0.07b - 1.08 ± 0.04b (10) 0.90 ± 0.08a (25) 
Cystine - - - - - - - - 

Data shown are mean values from triplicates and the standard deviation. Values in parentheses represent the percentage (%) of 
reduction of elderly GI conditions (E1, E2 and E3) with respect to the control (C). a-c Different lowercase letters indicate significant 
differences between models, with a significance level of 95% (p <0.05). 
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Table 5.2.3. Amino acids profile (mg free amino acid / g product) of fresh and aged cheese digested under 
different in vitro digestion models (C: control; E1: Elderly 1; E2: Elderly 2; E3: Elderly 3) and reduction (%) of 
amino acid released with respect to the control. 

mg free amino acid / g product 
(Reduction with respect to the control (%)) 

Amino acid 
Fresh cheese Aged cheese 

C E1 E2 E3 C E1 E2 E3 

Alanine 
3.5 ± 0.4c 2.8 ± 0.2bc (20) 2.3 ± 0.6b (42) 1.5 ± 0.3a (55) 4.391 ± 0.106c  3.7 ± 0.2b (16) 3.2 ± 0.2b (27) 

2.538 ± 0.006a 

(42) 
Glycine 1.7 ± 0.2c 1.5 ± 0.2bc (12) 1.25 ± 0.17b (28) 0.51 ± 0.10a (72) 2.6 ± 0.6b 2.623 ± 0.106b (12) 2.33 ± 0.06b (22) 0.96 ± 0.07a (68) 
Valine 4.5 ± 0.3b 4.2 ± 0.3b (3) 3.234 ± 0.007a (28) 2.96 ± 0.10a (34) 7.9 ± 0.5b 7.08 ± 0.07ab (10) 6.24 ± 0.05a (21) 6.3 ± 0.4a (19) 
Leucine 11.6 ± 0.9b 10.96 ± 0.10b (6) 8.9 ± 0.2a (24) 9.0 ± 0.3a (25) 16.765 ± 1.108b 14.1 ± 0.2a (16) 14.79 ± 0.12a (12) 13.8 ± 0.5a (18) 
Isoleucine 2.55 ± 0.18c 2.16 ± 0.18b (19) 1.722 ± 0.106a (33) 1.58 ± 0.09a (38) 4.78 ± 0.12c 4.1 ± 0.2ab (14) 4.19 ± 0.03b (12) 3.83 ± 0.17a (20) 
Threonine 2.45 ± 0.18b 1.5 ± 0.4a (30) 1.31 ± 0.03a (46) 1.18 ± 0.06a (52) 3.5 ± 0.3b 2.8 ± 0.2a (19) 2.78 ± 0.16a (20) 2.33 ± 0.17a (33) 
Serine 3.2 ± 0.5c 2.09 ± 0.09b (35) 1.77 ± 0.17ab (45) 1.59 ± 0.15a (53) 4.584 ± 0.017c 3.9 ± 0.2bc (14) 3.3 ± 0.3ab (27) 3.1 ± 0.4a (33) 
Proline 1.06 ± 0.17c 0.85 ± 0.06b (23) 0.68 ± 0.05ab (29) 0.51 ± 0.03a (52) 3.47 ± 0.09c 2.96 ± 0.17b (15) 2.3 ± 0.2a (34) 2.41 ± 0.13a (34) 
Asparagine 1.67 ± 0.03b 1.53 ± 0.03b (9) 0.61 ± 0.17a (59) 0.597 ± 0.008a (64) 3.6 ± 0.6c 2.77 ± 0.14b (22) 1.97 ± 0.06a (45) 1.82 ± 0.17a (19) 
Aspartic acid 1.9 ± 0.2c 1.87 ± 0.09c (6) 1.26 ± 0.14b (38) 0.815 ± 0.004a (58) 3.6 ± 0.3b 3.16 ± 0.04b (13) 2.24 ± 0.04a (38) 2.0 ± 0.2a (45) 
Methionine 2.35 ± 0.19c 1.93 ± 0.10b (18) 1.47 ± 0.02a (38) 1.45 ± 0.06a (38) 3.69 ± 0.07c 3.24 ± 0.13b (12) 3.07 ± 0.09ab (17) 2.94 ± 0.07a (20) 
Glutamic acid 3.8 ± 0.2b 3.47 ± 0.13b (6) 3.49 ± 0.18b (10) 2.85 ± 0.13a (24) 5.9 ± 0.2c 4.78 ± 0.06b (19) 5.22 ±  0.01ab (11) 4.2 ± 0.4a (28)  
Phenylalanine 7.9 ± 0.5c 6.2 ± 0.4b (23) 5.38 ± 0.17a (32) 5.00 ± 0.15a (36) 14.15 ± 0.06d 11.52 ± 0.09c (19) 9.7 ± 0.2b (32) 7.6 ± 0.2a (46) 
Glutamine 6.2 ± 1.4a 5.0 ± 0.5a (15) 4.8 ± 0.7a (28) 5.0 ± 0.3a (22)  10.5 ± 0.7b 8.0 ± 0.8a (24) 7.1 ± 0.2a (32) 6.9 ± 1.0a (34) 
Ornithine - - - - 0.970 ± 0.008c 0.85 ± 0.03b (13) 0.51 ± 0.04a (47) - (100) 
Lysine 10.7 ± 0.3a 9 ± 2a (4) 9.5 ± 0.7a (15) 9.2 ± 0.9a (19) 17.9 ± 0.4b 13.85 ± 0.14a (23) 13.7 ± 1.0a (21) 12.8 ± 1.0a 
Histidine 2.1 ± 0.3b 1.68 ± 0.15a (15) 1.74 ± 0.15ab (20) 1.57 ± 0.14a (24) 3.29 ± 0.03c 2.72 ± 0.02ab (17) 2.91 ± 0.13bc (11) 2.4 ± 0.3a 
Tyrosine 9.19 ± 0.04b 8.5 ± 0.3b (8) 7.2 ± 0.6a (25) 6.4 ± 1.0a (36) 11.1 ± 0.7d 9.2 ± 0.3c (17) 8.0 ± 0.3b (28) 5.2 ± 0.4a 
Tryptophan 4.5 ± 0.6b 3.5 ± 0.3a (25) 3.30 ± 0.07a (26) 2.90 ± 0.14a (35) 5.62 ± 0.07d 4.7 ± 0.3b (16) 4.70 ± 0.02b (16) 3.45 ± 0.10a  
Cystine 2.42 ± 0.08b 2.12 ± 0.04a (12) 2.13 ± 0.06a (12) - (100) 2.8 ± 0.3c 2.16 ± 0.06b (23) 1.54 ± 0.05a (45) - (100) 

Data shown are mean values from triplicates and the standard deviation. Values in parentheses represent the percentage (%) of 
reduction of elderly GI conditions (E1, E2 and E3) with respect to the control (C). a-c Different lowercase letters indicate significant 
differences between models, with a significance level of 95% (p <0.05). 
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Table 5.2.4. Molar percentages of acyl groups (AG) supported on the different glyceryl backbone structures 
(TG, 1,2-DG, 1,3-DG, 2-MG, 1-MG) and free fatty acids (FFA), present in the non-digested (ND) and in vitro 
digested samples (C: Control; E1: Elderly 1; E2: Elderly 2; E3: Elderly 3) of fresh and aged cheese. 

 In vitro digestion 
model 

AGTG (%) AG1,2-DG(%) AG1,3-DG(%) AG2-MG(%) AG1-MG (%) FFA (%) 

Fresh 
cheese 

Non digested 97.84 ± 0.12c 1.3 ± 0.3a 1.16 ± 0.14c 0 ± 0a 0 ± 0a 0.4 ± 0.3a 
C 11.09 ± 

1.14ab 10.0 ± 0.8b 0.96 ± 0.02d 6.36 ± 0.15d 1.85 ± 0.06b 69.8 ± 0.6b 
E1 12 ± 3ab 8.2 ± 0.7b 0.30 ± 0.10b 6.9 ± 0.6c 2.1 ± 0.3b 71 ± 3b 
E2 13.3 ± 0.9b 8.3 ± 1.5b 0.10 ± 0.19a 6.7 ± 0.2c 2.1 ± 0.4b 69.7 ± 0.7b 
E3 8.40 ± 0.10a 8.65 ± 0.16b 0.62 ± 0.04b 4.29 ± 0.05b 1.84 ± 0.01b 76.2 ± 0.3c 

Aged 
cheese 

Non digested 98.1 ± 0.7c 1.3 ± 0.4a 1.15 ± 0.12b 0 ± 0a 0 ± 0a 0.5 ± 0.2a 
C 18 ± 4b 8 ± 2b 0.3 ± 0.3a 7.8 ± 0.9d 3.1 ± 0.3b 62.8 ± 0.5b 
E1 10 ± 2a 8 ± 3b 0.4 ± 0.7ab 9.8 ± 0.4e 3.5 ± 0.9b 67.99 ± 0.19c 
E2 6.7 ± 1.4a 6.9 ± 0.9b 1.1 ± 0.5ab 6.2 ± 0.3c 2.8 ± 0.7b 76 ± 4d 
E3 7.06 ± 0.19a 5.3 ± 0.2b 1.14 ± 0.04ab 3.35 ± 0.13b 2.43 ± 0.16b 80.7 ± 0.8e 

Data shown are mean values from triplicates and the standard deviation. *AG: acyl groups. a-d different lowercase letters means 

significant difference between models (p<0.05). 
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conditions (E3) than under control ones. The decreased pancreatic lipases 

and biliar concentration in this model compared to control one, would not 

negatively affect the lipid digestibility because it is compensates by the 

longer intestinal time 45. Therefore, the increase of intestinal residence time 

under model E3 would be the responsible of the greater lipid hydrolysis 

achieved under these digestive conditions 46.  

Lactose release, calcium, vitamins A and D3 bioaccessibility under elderly 

GI conditions 

A reduced digestion of macronutrients, such as proteins and lipids, could be 

coupled to a deficient release and solubilization of micronutrients and/or 

lactose. Figure 5.2.3 shows lactose (mg glucose eq./g product), calcium (mg 

Ca/g product), vitamin A (µg retinol/g product) and D3 (µg cholecalciferol/g 

product) contents in the bioaccessible fraction as well as their 

bioaccessibility (%) (at the bottom of the bars) with respect of the initial 

content of each nutrient. Lactose content in the bioaccessible fraction 

ranged from 4 to 20 mg glucose eq./ g product for milk and aged cheese, 

respectively under the C digestive conditions. In terms of bioaccesibility (%), 

lactose from yogurt and aged cheese, compared to milk and fresh cheese, 

presented the highest values regardless the GI conditions. Regarding the 

effect of elderly GI conditions on lactose released, no statistically significant 

differences were found in the digesta of yogurt, fresh and aged cheeses, 

even if the oral, gastric and intestinal were altered. Only elderly GI 

conditions seemed to negatively the lactose release from milk, which 

possess the highest lactose content among the studied dairy products. In 

fact, it exists a lack of data related to the lactose release during luminal 

digestion process to support this behavior, even if it seems to be related to 

structural matrix of the product. Wang et al. (2018) 47 reported that casein 

coagulation in dairy matrices might generate a complex matrix that affect 
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the enzyme cleavage site and nutrients releasing, such as lactose. However, 

Figure 5.2.3 shows higher bioaccessibility from certain solid matrices such 

as aged cheese than from liquid matrices as milk. This fact could be related 

to the acidic coagulation experimented by milk at stomach and thus, 

resulting also in a semi-solid matrix.  

 
Figure 5.2.3. A) Lactose (mg glucose eq./g product) and B) calcium (mg Ca/g 
product), C) vitamin A (µg retinol/g product) and D) vitamin D3 (µg 
cholecalciferol/g product) content in the bioaccessible fraction from milk, 
yogurt, fresh cheese and aged cheese digested under different in vitro 
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digestion models (C: Control; E1: Elderly 1; E2: Elderly 2; E3: Elderly 3).Values 
at the bottom of the bars represents bioaccessibility (%) with respect to the 
nutrient content in the product before in vitro digestion. a-c different 
lowercase letters indicate significant differences between models (p <0.05). 
A-D different capital letters indicate significant differences between 
products (p <0.05). 

Calcium content in the bioaccessible fraction ranged from 0.6 to 2.1 mg Ca/g 

product in milk and aged cheese, respectively, under standard conditions of 

digestion (C). The bioaccessibility (%), however, was much higher in milk 

(43%), and especially in yogurt (67%), than in cheeses (11 and 16% for fresh 

and aged). In fact, Lorieau et al. (2018)48 reports greater calcium 

bioaccessibility in liquid matrices than in gel structured matrices. The higher 

bioaccessibility of calcium in yogurt than milk could be attributed to some 

dietary factors related to casein phosphopeptides (CPP), carbohydrates, 

Maillard reaction products, among others. Casein phosphopetides resulting 

from the enzymatic hydrolysis of caseins, can effectively bind calcium and 

inhibit formation of insoluble calcium phosphates 49. Yogurt present more 

CPP than milk due to the alteration in their micelle structure obtained during 

processing 50. Even if cheeses present lower bioaccessibility, aged cheese 

remains the highest supplier of bioaccessible calcium.  On the other hand, 

no elderly GI alterations seem to highly compromise the release and 

solubilization of this mineral from dairy products, with the exception of from 

aged cheese. Even though, both cheeses remain an excellent source of 

bioaccessible calcium for lactase-deficient subjects such as most of elderly 

people, considering the calcium content (mg of Ca/ g of product) reported 

even under the worst GI conditions (E3). Diet recommendations addressed 

to elderly advice an increase of calcium intake, since bone density decreases 

with ageing, which can lead to osteopenia and, in extreme cases, 

osteoporosis, which is partly related to the consumption of dietary calcium 
6. The latter is a significant health problem that contributes to disability and 
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premature mortality among women and older men. Although genetic 

factors influence maximum bone mass, diet together with an active life style 

are clearly two of the modifiable risk factors for osteoporosis 41.  

Besides, vitamin A bioaccessibility (%) varied between 17 and 45 % under 

control GI conditions (C); while vitamin D3 bioaccessibility did from 24 and 

39 % under the same GI model (Figure 5.2.3), milk being the most 

advantageous matrix for vitamins release and cheeses the least. However, 

the liposoluble vitamins content in the bioaccessible fraction of digested 

aged cheese is noticeable superior to other matrices. The differences in 

terms of release, solubilization and micellar incorporation of these vitamins 

among milk and dairy products could be attributed to the food matrix. Thus, 

it is found that when structured food matrices are more complex the minor 

the fat-soluble vitamins bioaccessibility 51. In fact, vitamins A and D3 

exhibited the highest bioaccessibility in yogurt and milk, but lower net 

supply of these nutrients in their bioaccessible form, compared to cheeses, 

and specially aged one. 

It is reported that digestion and absorption of the fat-soluble vitamins 

basically follow the same path as lipids 41. However, it was observed in none 

of the cheeses. In these cases, vitamins A and D· experimented a significant 

reduction under E3; while fat digestibility was not affected. The suboptimal 

bile salts concentration given in E3 model could be, however, responsible of 

vitamins bioaccessibility detriment.  Liposoluble vitamins are dependent on 

solubilization by bile acids, and an alteration in bile flow results in 

maldigestion and malabsorption 52. 

Descriptive relationship among the digestion end-products 

A PCA was conducted to evaluate the global relationship between products 

of digestion in the dairy products from a descriptive point of view. Figure 

5.2.4 illustrates the loadings for the different products of the digestion 
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(proteolysis, lipolysis, lactose release, calcium, vitamin D3 and A 

bioaccessibilities) as well as the scores of the different dairy products (milk, 

yogurt, fresh and aged cheese) under the different simulated GI conditions 

(C, E1, E2 and E3). The first two principal components of the analyses explain 

77.264 % of the total variance of the percentage of macronutrient extents 

and percentage of micronutrients bioaccessibility of the samples (PC1: 

58.813 % and PC2: 18.451%). In the score plot, proximity between samples 

indicates similar behavior in terms of digestibility. PC1 (59%) clearly 

differentiates between liquid and semi-liquid products (milk and yogurt), 

located at the right side of the plot, and solids ones (cheeses), located at the 

left side of the plot. Besides, PCA shows the narrow relationship between 

proteolysis, bioaccessibility of calcium and vitamin D3; while PC2 seems to 

distinguish yogurt and aged cheese from milk and fresh cheese in terms of 

vitamin A bioaccessibility (higher in milk than in the other matrices) and 

lactose release (higher in yogurt and aged cheese than in milk or fresh 

cheese).  
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Figure 5.2.4. Biplot of the different end-product resulting from digestion and 
their relationship with the binomial dairy product (milk, yogurt, fresh or aged 
cheese)-GI conditions (C: Control; E1: Elderly 1; E2: Elderly 2; E3: Elderly 3) 
obtained by means of the principal components analysis (PCA). 

CONCLUSIONS 

This study contributes to a better understanding of dairy products (milk, 

yogurt, fresh and aged cheese) digestibility under elderly gastrointestinal 

conditions and depending on food matrix characteristics. The results report 

that proteolysis extent highly depends on the structural matrix of dairy 

products, ranging from 50 to 100 % under healthy gastrointestinal 

conditions (control) for cheeses and milk and yogurt, respectively. GI 

alterations appearing with ageing negatively affect the digestibility of dairy 

proteins with a reduction around 50 %, compared proteolysis extent 

obtained under control conditions. A notable decrease of some essential 
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amino acids release such as leucine, isoleucine, valine and tryptophan was 

also noticed under elderly GI conditions. Nevertheless, absorbable fraction 

and lipolysis extent of cheeses seems to be enhanced by the longer 

duodenal transit time given of elderly digestion. Finally, calcium, vitamin D3 

and proteolysis extent seems to be positively associated, especially in milk 

and yogurt matrices. Liquid and semi-liquid matrices favor micronutrients 

release in a greater extent to solid-matrices; however, the net supply of 

calcium, vitamins A and D3 in their bioaccessible form (per g of product) is 

greater in cheeses than milk or yogurt.  

Therefore, the obtained results could be useful to establish accurate dietetic 

recommendations addressed to elderly with regards to dairy products 

consumption for elderly. 
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eggs simulating some gastrointestinal alterations in elders.  
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Abstract 

This study aimed to in vitro assess the impact of cooking process of eggs 

(hard-boiled, poached and omelet) on nutrients digestibility and vitamins A 

and D3 bioaccessibility under elderly gastrointestinal (GI) conditions. Three 

elderly digestion models were mimicked: oral (E1), oral and gastric (E2) and 

oral, gastric and intestinal (E3), and a healthy adult model (C). Proteolysis 

extent reduced after digestion of omelet under E3 model (p<0.05) (up to 

37% of reduction). Thus, hard-boiled and poached were more 

recommendable to enhance protein digestibility in elders. Altered GI 

conditions negatively influence neither the absorbable lipid fraction nor the 

cholesterol stability. Finally, vitamin A bioaccessibility was not affected but 

D3 slightly decreased with the elderly (E3). Hence, the digestion of nutrients 

was dependent on the resulting matrix, poached being the greater supplier 

of protein and lipid end-digestion products. Poached and omelet, however, 

offer high net supply of bioaccessible vitamin D3 for elders.  

Keywords: aging; egg; cooking methods; macronutrients digestibility; 

vitamins bioaccessibility. 
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INTRODUCTION 

Current prospects confirm that the population continues to considerably 

grow because of both high fertility and life expectancy. At the same time, it 

is expected that people aged 65 years, or over, surpasses infants and youth 

in number by 2050 1. Consequently, elders wellness is a global concern that 

involves lifestyle and nutritional issues 2. The European Society for Clinical 

Nutrition and Metabolism recommends the elders to increase the 

consumption of rich-protein foods with high amounts of micronutrients 3, 

and especially those rich in essential amino acids such as leucine or 

tryptophan 4. Besides, healthy lipids, minerals and vitamins contents are 

also important due to their relevance as immune-modulators and their 

contribution to the bone health of these subjects 5. Physiological functions 

declining with ageing include body composition, brain function, 

gastrointestinal (GI) tract function, fluid balance, bones and joints or 

cardiovascular system, among others 6. Sarcopenia, loss of muscle mass 

associated with a protein deficit, asthenia, depression or weakness of the 

immune system often occur in the elderly 7,8. The masticatory deficiency in 

elderly, i.e., leading into food boluses with larger particle size distribution 

and more difficult to swallow, has been reported to influence the nutrients 

digestibility 9. Also, a decline in the GI tract function has been reported to 

be partially responsible for the protein deficit. The secretion of digestive 

fluids and enzymes, saliva, peristaltic contractions and chyme passage rates 

could be suboptimal resulting in mal-digestion and mal-absorption of 

nutrients, and among them of proteins and vitamins 10–12. 

Among the dietary protein and micronutrients sources, egg is considered as 

a moderate calorie source (about 140 kcal/100 g) and the lowest-cost 

animal source of proteins, vitamin A, iron, vitamin B12, riboflavin, choline, 

and the second lowest-cost source for zinc and calcium. Egg proteins are 
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distributed equally between egg white and egg yolk, while lipids, vitamins, 

and minerals are essentially concentrated in egg yolk 13. Raw egg yolk 

contains high amount of vitamin A and D3 (371 and 5.4 µg/100 g, 

respectively), among others 13. Proteins provide a reasonable supply of 

amino acids of biological value 14, with a digestible indispensable amino acid 

score (DIAAS) value of 1.13 in the same high level of the whole milk with 

1.14 score 15. The relative amount of mono and poly unsaturated to 

saturated fatty acids in yolk is particularly higher than other animal-derived 

foods. Besides, even though egg cholesterol content is high, it has been 

reported to not negatively contribute to the increase in plasma total-

cholesterol 13. Therefore, a regular egg consumption of about 6 per week is 

advisable 16. Thus, egg is one of the most eaten food over the world and is 

served in such a variety of ways and recipes 17.  

Egg meal preparation often involves a heating treatment resulting in protein 

denaturation, greater vitamins and minerals availability 18, but also loss, 

anti‐nutritional factors decrease, among others. The extent of these 

changes will depend on the way of cooking and the intensity of the heating 
14. Additionally, cooking implies a serial of structural changes, which could 

modulate digestion and absorption rates (i.e. amino acid isomerization and 

desulfurization, reactions with sugars and lipids, etc.); therefore, having an 

impact on health benefits coming from egg consumption 19. Among the 

most common ways of cooking eggs, it can be cited hard and soft boiled, 

hard and soft scrambled, omelet or sunny side up, among others. Literature 

reports the impact of the egg protein structure on proteolysis in model 

systems consisting in white gels. Studies performed at static 19–21 but also at 

dynamic in vitro systems 21,22 clearly evidencing the role of the matrix 

structure. However, information related to the modulation of egg protein 

digestibility neither by cooking nor under elderly GI conditions has been 

previously reported in real foods. 
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In this context, this study aims at in vitro analyzing the impact of elderly 

gastrointestinal conditions and egg cooking (hard-boiled, poached and 

omelet) on proteolysis, lipolysis, and vitamins A and D3 bioaccessibility.  

MATERIAL AND METHODS 

Chemicals 

Pepsin from the porcine gastric mucosa (3200–4500 U/mg), pancreatin (8 x 

USP) from porcine pancreas, bile bovine (dried, unfractionated), analytical 

grade salts (potassium chloride, potassium dihydrogen phosphate, sodium 

bicarbonate, sodium chloride, magnesium chloride, ammonium carbonate, 

calcium chloride and potassium sulfate), boric acid, hydrochloric acid (37%), 

sulfuric acid (95-97%), tetrahydrofuran (HPLC grade), methanol (HPLC 

grade), retinol (≥ 99%, HPLC grade), cholecalciferol (≥ 98%, HPLC grade), 

sodium hydroxide, were obtained from Sigma-Aldrich (Deisenhofen, 

Germany). Also, petroleum ether (VWR Chemicals), acetonitrile HPLC grade 

(JT Baker), and EZ-Faast amino acid kit (Phenomenex) were used. 

Standard eggs were purchased at local stores in Valencia (Spain). 

Sample preparation  

Fresh hen eggs were cooked according to Asensio-Grau et al. (2018) 23 and 

immediately characterized or in vitro digested. For the hard-boiled whole 

shell, eggs were boiled with water covering the eggs for 10 min (95 ± 5 °C) 

and cooled under running tap water for 5 min, and they were peeled right 

after. For poached preparation, eggs were broken and wrapped into cling-

film before boiling them with boiling water for 4 min (95 ± 5 °C) and cooled 

under running tap water for 5 min. For omelet, a white:yolk ratio of 70:30 

(w:w) was mixed and stirred for 1 min before microwave-cooking at 12.5 

W/g for 80 s without oil addition. The egg white and yolks resulted from 
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hard-boiling and poaching were separated to be added to the digestion 

tubes in the same white:yolk ratio as in omelet.  

 

Compositional analysis  

After cooking, moisture, ashes, fat and protein contents were determined 

according to the official methods 934.01, 942.05, 920.39 and 960.52 24, 

respectively. Carbohydrates were calculated by difference (100 g minus the 

sum of grams of water, ashes, lipids and protein, in wet basis) 25. Besides, 5 

g of samples were subjected to saponification and extraction of vitamins A 

(retinol) and D3 (cholecalciferol) according to the protocol published by 

Castaneda and Lee (2019) 26. Both liposoluble vitamins were separated by 

chromatography (RP-HPLC) and detected at 265 and 325 nm for vitamin D3 

and vitamin A, respectively 27. Additionally, cold lipid extraction was 

performed to analyze the egg lipid profile by means of Proton Nuclear 

Magnetic Resonance (1H-NMR) (Bruker, model 400/R), according to Nieva-

Echevarría et al. (2018) 28. The molar percentage of triglycerides (TG), 

diglycerides (1,2-DG and 1,3-DG), monoglycerides (1-MG and 2-MG) and 

free fatty acids (FFA) were determined in the samples. In order to assess its 

stability after the egg cooking and digestion, the cholesterol content was 

also quantified by 1H-RNM, as a minor lipidic component.  

Determinations were performed by triplicate in at least 3 independent eggs 

for each cooking method. 

Static in vitro simulation of GI digestion 

Four in vitro models were stated according to Hernández-Olivas et al. (2020) 
27 to determine the contribution of the different alterations and 

deterioration occurring with aging (i.e., mastication deficiency, secretion of 

digestive fluids and enzymes, saliva, GI tract contractions and chyme 

passage rates) 9,12 on the macronutrients digestibility and micronutrients 
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bioaccessibility in the cooked eggs. Figure 5.3.1 gathers the specific 

conditions of each simulation model (Elderly 1 (E1), Elderly 2 (E2), Elderly 3 

(E3), and control (C)). GI altered conditions of elderly models E1, E2 and E3 

were based on Shani-Levi et al. (2017) 12, while C model corresponded to 

Minekus et al. (2014) 29. Three independent digestion assays were carried 

out for each C, E1, E2 and E3 GI conditions. 5 g of cooked eggs (hard-boiled, 

poached and omelet) ensuring a 70:30 white:yolk ratio were digested by 

triplicate under each GI model (C, E1, E2 and E3). Gastric and intestinal 

stages were in vitro simulated while oral stage was in vivo performed by a 

volunteer with healthy dentition. The number of mastication cycles to reach 

a bolus with similar physical characteristics to that of a tomato or mustard 

paste was established at 16 30. Once this parameter was established, 

chewing cycles were reduced to 50% to mimic suboptimal oral conditions 

given in elders 27. Before digestion experiments, gastric (SGF) and intestinal 

(SIF) digestion fluids were prepared fresh daily from stock solutions and the 

enzymatic activity of digestive enzymes was tested following the protocol 

proposed by Minekus et al. (2014) 29. 

After in vitro digestion, sample pH was adjusted to 5 and kept in an ice bath 

for 10 min to inhibit the enzymatic reactions before fraction separation. 

Separation of the bioaccessible fraction (liquid phase) from the remaining 

solid phase was performed by centrifuging at 4,000 x g during 5 min at 10 °C 

and the supernatant collected as bioaccessible fraction. Aliquots of the 

bioaccessible fraction were immediately frozen and stored until their use 

for the analytical determinations. 
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Figure 5.3.1. Specific gastrointestinal conditions set for the four in vitro 

digestion models of this study. 

Analytical determinations in digesta 

Free amino acids 

Free amino acids (essential and non-essential amino acids (EAA and NEAA)) 

resulting from protein digestion were determined through the protocol 

published by Peinado et al. (2016) 31 with some amendments. The resulted 

amino acids were classified into groups according to their chemical 

structure (Hydrophobic amino acids (HAA = Ala, Val, Ile, Leu, Tyr, Phe, Trp, 

Pro, Met, Cys); Positively charged amino acids (PCAA = Lys, His); Negatively 

charged amino acids (NCAA = Asp, Asn, Glu, Gln); Aromatic amino acids 

(AAA = Phe, Trp, Tyr); Sulfur containing amino acids (SCAA = Cys, Met)) 32. 

Briefly, 100 μL of bioaccessible fraction were derivatized using the EZ-Faast 

amino acid kit, analyzed using a GC-MS (Agilent Technologies, Injector 

7683B series, Network GC System 6890N series, Inert Mass Selective 

Detector 5975 series, MSD ChemStation software). Norvaline was used as 
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internal standard. The extent of proteolysis based in free amino acids was 

calculated according to equation 1: 

Proteolysis extent (%)

=
(𝑔 𝐹𝐴𝐴´𝑆 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑 𝑖𝑛 𝑏𝑖𝑜𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑙𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛)

(𝑔 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 𝑖𝑛 𝑢𝑛𝑑𝑖𝑔𝑒𝑠𝑡𝑒𝑑 𝑓𝑜𝑜𝑑)
× 100 

(5.8) 

Where: the FAA released corresponds to the sum of the free amino acids in 

the bioaccessible fraction. 

Lipidic end-digestion products  

Digesta samples were subjected to cold liquid-liquid extraction and the 

composition of the lipid phase, including cholesterol, determined by 1H-

NMR following the same procedure explained in the compositional analysis 

section. Thus, absorbable and non-absorbable lipid fractions, as well as the 

lipolysis extent, were calculated according to equations 5.9, 5.10 and 5.11: 

Absorbable lipid fraction =  𝐴𝐺2−MG% +  𝐴𝐺1−𝑀𝐺% +  FFA% 

(5.9) 

Non-absorbable lipid fraction =  𝐴𝐺1,2−𝐷𝐺% +  𝐴𝐺1,3−𝐷𝐺% 

(5.10)  

Lipolysis extent (%)

= Absorbable lipid fraction 

+ Non-absorbable lipid fraction 

(5.11) 
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Where: 1,2-DG and 1,3-DG correspond to diglycerides; 1-MG and 2-MG to 

monoglycerides; and FFA to free fatty acids obtained in the digested 

samples. 

Vitamin A and D3 bioaccessibility  

20 mL of the bioaccessible fraction were subjected to saponification and 

extraction to determine the bioaccessibility of vitamin A and D3 following 

the same protocol as for total vitamin content in undigested cooked eggs 

(compositional analysis section). Vitamin bioaccessibility was calculated 

according to equation 5.12: 

Vitamin bioaccessibility (%) =
(µ𝑔 𝑜𝑓 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝑑 𝑣𝑖𝑡𝑎𝑚𝑖𝑛)

(µ𝑔 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑣𝑖𝑡𝑎𝑚𝑖𝑛)
× 100 

 (5.12) 

Where: the amount of released vitamin represents the recovered part in the 

bioaccessible fraction after in vitro digestion and the total amount of 

vitamin found in the cooked eggs before in vitro digestion. 

Statistical analysis  

An analysis of variance (Multivariate ANOVA) was performed and multiple 

range test was determined by the LSD (Less Significant Difference) of Fisher 

test to identify homogeneous groups between models and cooked eggs 

using Statgraphics Centurion XVII software with a confidence level of 95% 

(p <0.05). Also, a Principal Component Analysis (PCA) was applied to find out 

the relationship among the experimental data (EAA/NEAA ratio, total, HAA, 

PCAA, NCAA, AAA and SCAA proteolysis extents, absorbable and non-

absorbable lipid fractions, lipolysis extent, cholesterol content and vitamin 

A and D3 bioaccessibility) obtained from in vitro digestion studies carried 
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out in cooked eggs under elderly (E1, E2 and E3) or standard (C) GI 

conditions.  

RESULTS AND DISCUSSION  

Effect of cooking on egg composition  

The nutritional composition of eggs was evaluated immediately after 

being cooked and the values are gathered in Table 5.3.1. Even though 

the egg nutritional contents are highly dependent on the hen feed 

composition 33, macronutrients content (protein and fat) were closed 

to those reported for non-cooked egg 34–37. Therefore, no losses of 

protein or fat were observed during cooking. Regarding the water 

content, the shell (in hard-boiled egg) and the plastic film used during 

poached avoided the sample dehydration compared with the omelet 

in the open-air preparation. Concerning the analyzed vitamins, 

cooked eggs presented lower values of vitamin A but similar to D3 

compared to the contents reported in fresh egg 34,35,37. A decrease of 

yolk hydrophobic micronutrients has been previously reported after 

cooking 38, vitamin A being more sensitive to light, oxygen and 

temperature than other liposoluble vitamins 39. In addition, Hemery 

et al. (2015) 40 report a greater effect of photolysis than oxidation on 

vitamin A. Reasonably, the lower vitamin A content found in omelet, 

compared to hard-boiled and poached egg, can be due to a greater 

yolk exposure to light and oxygen than during the other cooking ways. 

In omelet preparation, the shell is removed, yolk and egg white 

mixed, stirred and placed in a plate resulting in a larger interphase 

surface to thermal heating than in boiled or poached. With respect to 

vitamin D3, omelet presented higher content than hard-boiled or 
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poached eggs. Hemery et al. (2015) 40 report that the impact of light 

or oxygen exposure on vitamin D3 is not as severe as for vitamin A. 

Vitamin D3 seems to be sensible to heat and decrease as long as the 

processing time increases 41,42. Thus, the lower cooking time involved 

in the microwave preparation of omelet (80 s compared to 4 and 10 

min, respectively) could be associated to the better preservation of 

vitamin D3 compared to boiling and poaching.
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Table 5.3.1. Total Contents (per 100 g Dry Basis) of Water, Protein, Fat, Ashes, Carbohydrates, Vitamin A 
and Vitamin D3 of Hard-boiled, Poached and Omelet Eggs e 

Nutrient content  Rawd Hard-boiled Poached Omelet 

Water (g) 292 - 308 310 ± 3b 319 ± 3c 154 ± 2a 

Protein (g) 47 – 52 51.6 ± 0.2b 49.5 ± 0.6a 51.8 ± 0.3b 

Fat (g) 35 – 48 35.4 ± 0.6a 35.0 ± 1.0a 33.4 ± 1.7a 

Ashes (g) 3.4 - 3.6 5.9 ± 0.1a 5.9 ± 0.1a 5.8 ± 0.1a 

Carbohydrates (g) 0.7 - 3.8 4.9 ± 0.1b 4.6 ± 0.1a 5.1 ± 0.1c 

Vitamin A (µg) 560 - 1112 690 ± 30b 700 ± 30b 376 ± 18a 

Vitamin D3 (µg) 5 - 12 6.3 ± 0.3a 6.5 ± 0.3a 11.2 ± 0.4b 

a, b, c Different lowercase letters indicate significant differences between foods, with a significance 

level of 95% (p<0.05). d Intervals based on literature 34–37. e Data shown are mean values and 

standard deviation from three independent eggs. 
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Effect of egg cooking on gastrointestinal proteolysis in elders  

Figure 5.3.2A shows the proteolysis extent (%) obtained from the free 

amino acids profile (Tables 5.3.2, 5.3.3 and 5.3.4) achieved after in 

vitro gastrointestinal digestion of boiled, poached and omelet eggs 

simulating different models (standardized (C) and elderly (E1, E2 and 

E3)). It can be noted that proteolysis extent was much higher in boiled 

eggs (79 %) than in poached and omelet ones (60 and 56 %, 

respectively) under control GI conditions. Apparently, trypsin 

inhibitors present in white eggs seem to be inactivated as long as the 

food is exposed to 100 °C as well as a greater protein denaturation 
13,14, leading to a greater extent in hard-boiled than in poached and 

omelet. It is well known that the different ways of egg cooking lead to 

different matrix structures, physical behavior, sensorial quality and 

composition of eggs 43. Therefore, an impact of cooking eggs on 

digestibility was expected. In the case of omelet, the mixing and 

stirring of yolk with white egg seem to generate new protein-lipid 

organization that, together with the solid structure resulting from the 

heat treatment, would hinder the access of gastric and pancreatic 

proteases to the substrate and result in lower protein digestion 23. It 

is important to highlight that the extent of proteolysis achieved by the 

samples, could be even higher than reported because of the extent of 

proteolysis calculation has been just based on FAA without 

considering the possible short-chain peptides which are also 

bioabsorbable. 

Concerning the effect of GI alterations of elders in egg digestion, 

results also show that neither oral nor gastric alterations (E1 and E2) 

negatively impacted in vitro proteolysis extent (sum of the FAA 
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Table 5.3.2. Amino Acids Profile (g /100 g Initial Protein) Resulting from In 
Vitro Digestion of Hard-boiled Egg under Different Simulated GI Conditions 
(Control (C), Elderly 1 (E1), Elderly 2 (E2), Elderly 3 (E3) Models) d 

Amino acid 
Hard-boiled 

C E1 E2 E3 

Alanine (Ala) 4.39 ± 0.15cB 3.68 ± 0.28bC 3.67 ± 0.37bB 2.50 ± 0.12aB 

Glycine (Gly) 1.48 ± 0.25bB 1.50 ± 0.24bB 1.53 ± 0.16bC 0.48 ± 0.12aAB 

Valine (Val) 5.77 ± 0.01bB 5.77 ± 0.64bB 6.07 ± 0.58bC 4.18 ± 0.34aB 

Leucine (Leu) 10.37 ± 0.26bB 10.08 ± 1.28bB 10.86 ± 1.08bB 7.49 ± 0.58aAB 

Isoleucine (Ile) 4.29 ± 0.07bB 4.24 ± 0.28abB 4.01 ± 0.92abA 3.12 ± 0.22aAB 

Threonine (Thr) 3.25 ± 0.26bB 2.96 ± 0.20bC 3.12 ± 0.34bC 1.77 ± 0.15aB 

Serine (Ser) 3.71 ± 0.18bB 3.43 ± 0.33bB 3.65 ± 0.38bC 1.40 ± 0.10aB 

Proline (Pro) 1.24 ± 0.05bC 1.15 ± 0.15bB 1.27 ± 0.16bC 0.67 ± 0.06aB 

Asparagine (Asn) 2.73 ± 0.56aB 2.48 ± 0.23aB 2.65 ± 0.28aB - 

Aspartic acid (Asp) 2.40 ± 0.10bB 2.31 ± 0.32bB 2.32 ± 0.28bB 0.19 ± 0.06aA 

Methionine (Met) 3.24 ± 0.12abB 3.06 ± 0.53abAB 3.39 ± 0.39bB 2.57 ± 0.11aA 

Glutamic acid (Glu) 3.20 ± 0.42bB 3.10 ± 0.18abB 3.12 ± 0.15abB 2.54 ± 0.18aB 

Phenylalanine (Phe) 6.56 ± 0.15bB 6.66 ± 1.10bB 7.35 ± 0.77bB 4.91 ± 0.27aA 

Glutamine (Gln) 6.60 ± 0.11bC 5.85 ± 0.93bC 6.49 ± 0.77bC 4.20 ± 0.24aB 

Lysine (Lys) 7.87 ± 1.18bB 7.36 ± 0.26bB 8.52 ± 0.31bC 4.33 ± 0.71aB 

Histidine (His) 2.32 ± 0.14bB 2.60 ± 0.43bB 2.85 ± 0.31bC 1.60 ± 0.09aB 

Tyrosine (Tyr) 6.96 ± 0.25bC 7.14 ± 0.72bB 7.62 ± 0.95bC 4.88 ± 0.16aC 

Tryptophan (Trp) 2.75 ± 0.06abA 3.01 ± 0.34bcB 3.53 ± 0.36cB 2.18 ± 0.12aB 

Cystine (Cys) - - - - 
a,b,c Different lowercase letters indicate significant differences between models, with a 

significance level of 95% (p<0.05). A,B,C Different capital letters indicate significant differences 

between cooking methods (Tables 5.3.2, 5.3.3 and 5.3.4), with a significance level of 95% 

(p<0.05). d Data shown are mean values from triplicates and the standard deviation. 
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Table 5.3.3. Amino Acids Profile (g /100 g Initial Protein) Resulting from In 
Vitro Digestion of Poached Egg under Different Simulated GI Conditions 
(Control (C), Elderly 1 (E1), Elderly 2 (E2), Elderly 3 (E3) Models) d 

Amino acid 
Poached 

C E1 E2 E3 

Alanine (Ala) 3.05 ± 0.42aA 3.21 ± 0.09aB 3.00 ± 0.34aB 2.63 ± 0.18aB 

Glycine (Gly) 1.24 ± 0.26bB 1.16 ± 0.10bB 1.14 ± 0.04bB 0.51 ± 0.02aB 

Valine (Val) 4.78 ± 0.38aA 5.20 ± 0.09aB 4.52 ± 0.25aB 4.72 ± 0.38aB 

Leucine (Leu) 8.72 ± 0.47aA 8.65 ± 0.26aB 7.88 ± 0.12aA 8.13 ± 0.46aB 

Isoleucine (Ile) 3.63 ± 0.32aA 3.87 ± 0.12aB 3.10 ± 0.51aA 3.45 ± 0.40aB 

Threonine (Thr) 2.22 ±0.28abA 2.61 ± 0.06cB 2.19 ± 0.13bcB 1.88 ± 0.20aB 

Serine (Ser) 2.29 ± 0.21abA 2.96 ± 0.30bB 2.62 ± 0.19abB 1.87 ± 0.28aC 

Proline (Pro) 1.01 ± 0.10abB 1.15 ± 0.01bB 0.98 ± 0.11abB 0.76 ± 0.12aC 

Asparagine (Asn) 2.00 ± 0.40aAB 2.74 ± 0.24aB 2.11 ± 0.38aAB - 

Aspartic acid (Asp) 1.83 ± 0.13bA 2.27 ± 0.08bB 2.10 ± 0.16bB 1.17 ± 0.26aC 

Methionine (Met) 2.80 ± 0.24aA 3.00 ± 0.03aB 2.60 ± 0.10aA 2.58 ± 0.46aA 

Glutamic acid (Glu) 3.02 ± 0.10bB 3.32 ± 0.10cB 2.97 ± 0.10bB 2.66 ± 0.07aB 

Phenylalanine (Phe) 5.90 ± 0.21cA 5.63 ± 0.30bcAB 4.84 ± 0.09aA 5.01 ± 0.44abA 

Glutamine (Gln) 4.58 ± 0.41aB 4.48 ± 0.43aB 4.97 ± 0.84aB 4.22 ± 0.36aB 

Lysine (Lys) 4.43 ± 0.43aA 6.37 ± 0.75bB 5.97 ± 0.21bB 5.17 ± 0.05aC 

Histidine (His) 2.19 ± 0.08bB 1.99 ± 0.20abB 2.03 ± 0.08abB 1.92 ± 0.11aC 

Tyrosine (Tyr) 3.48 ± 0.09abA 3.56 ± 0.06abA 3.12 ± 0.01aA 3.81 ± 0.41bB 

Tryptophan (Trp) 2.65 ± 0.18bA 2.37 ± 0.27abA 2.18 ± 0.18aA 2.29 ± 0.06abB 

Cystine (Cys) - - - - 
a,b,c Different lowercase letters indicate significant differences between models, with a 

significance level of 95% (p<0.05). A,B,C Different capital letters indicate significant differences 

between cooking methods (Tables 5.3.2, 5.3.3 and 5.3.4), with a significance level of 95% 

(p<0.05). d Data shown are mean values from triplicates and the standard deviation. 
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Table 5.3.4. Amino Acids Profile (g /100 g Initial Protein) Resulting from In 
Vitro Digestion of Omelet Egg under Different Simulated GI Conditions 
(Control (C), Elderly 1 (E1), Elderly 2 (E2), Elderly 3 (E3) Models) d 

Amino acid 
Omelet 

C E1 E2 E3 

Alanine (Ala) 2.65 ± 0.34bA 2.23 ± 0.09bA 2.42 ± 0.13bA 1.76 ± 0.12aA 

Glycine (Gly) 0.83 ± 0.12bA 0.66 ± 0.02bA 0.70 ± 0.08bA 0.33 ± 0.07aA 

Valine (Val) 4.49 ± 0.52bA 3.77 ± 0.10abA 3.94 ± 0.19abA 3.15 ± 0.49aA 

Leucine (Leu) 8.91 ± 0.88bA 7.46 ± 0.37aA 7.60 ± 0.40aA 6.81 ± 0.30aA 

Isoleucine (Ile) 3.51 ± 0.32bA 2.92 ± 0.17aA 3.01 ± 0.19abA 2.78 ± 0.18aA 

Threonine (Thr) 2.02 ± 0.33bA 1.79 ± 0.04bA 1.91 ± 0.05bA 1.39 ± 0.08aA 

Serine (Ser) 2.21 ± 0.39bA 1.97 ± 0.14bA 2.15 ± 0.12bA 1.13 ± 0.07aA 

Proline (Pro) 0.77 ± 0.06bA 0.67 ± 0.04bA 0.72 ± 0.05bA 0.46 ± 0.06aA 

Asparagine (Asn) 1.68 ± 0.22bA 1.42 ± 0.02bA 1.60 ± 0.19bA 0.40 ± 0.18a 

Aspartic acid (Asp) 1.55 ± 0.20bA 1.38 ± 0.09bA 1.38 ± 0.09bA 0.72 ± 0.03aB 

Methionine (Met) 2.95 ± 0.27bAB 2.58 ± 0.17abA 2.56 ± 0.19abA 2.40 ± 0.17aA 

Glutamic acid (Glu) 2.20 ± 0.20bA 1.98 ± 0.05bA 1.99 ± 0.05bA 1.56 ± 0.05aA 

Phenylalanine (Phe) 6.27 ± 0.49bAB 5.18 ± 0.31aA 5.10 ± 0.27aA 4.64 ± 0.34aA 

Glutamine (Gln) 3.61 ± 0.22cA 3.42 ± 0.20bcA 3.10 ± 0.10bA 2.18 ± 0.12aA 

Lysine (Lys) 5.05 ± 0.84bA 4.36 ± 0.13bA 5.12 ± 0.60bA 3.08 ± 0.10aA 

Histidine (His) 1.76 ± 0.19bA 1.60 ± 0.07abA 1.71 ± 0.06bA 1.36 ± 0.07aA 

Tyrosine (Tyr) 4.77 ± 0.40cB 3.88 ± 0.22bA 3.64 ± 0.14abB 3.10 ± 0.25aA 

Tryptophan (Trp) 2.66 ± 0.27bA 2.21 ± 0.17aA 2.18 ± 0.12aA 1.90 ± 0.14aA 

Cystine (Cys) 0.97 ± 0.26a 1.01 ± 0.02a 1.02 ± 0.12a 0.82 ± 0.05a 
a,b,c Different lowercase letters indicate significant differences between models, with a 

significance level of 95% (p<0.05). A,B,C Different capital letters indicate significant differences 

between cooking methods (Tables 5.3.2, 5.3.3 and 5.3.4), with a significance level of 95% 

(p<0.05). d Data shown are mean values from triplicates and the standard deviation. 
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released). Nevertheless, suboptimal intestinal conditions with 

reduced pancreatic and bile salts concentration coupled with an 

increase of residence time (E3) significantly reduced protein 

digestibility in both hard-boiled and omelet. Proteolysis 

experimented a reduction of 38 and 32% of the FAA released in hard-

boiled and omelet, respectively, under E3 GI conditions and 

compared to C. This result evidences the role of matrix organization, 

the proteins from solid matrices (hard-boiled and omelet) hinder to a 

greater extent than semi-liquid matrices, the release and hydrolysis 

of proteins under suboptimal intestinal conditions 44. Poached egg 

resulted in a liquid yolk and semi-solid white, which can be easily 

mixed with digestive fluids. In hard-boiled egg, both white and yolk 

acquired a solid structure, making the matrix degradation harder for 

its consequent hydrolyzation. In turn, omelet presents an emulsion-

like structure of medium moisture in which protein network embeds 

lipids molecules and proteolysis has to occur before lipids can be 

made accessible to lipases 45. The intrinsic molecular properties of the 

egg-proteins might determine enzyme accessibility, these properties 

being modified according to processing such as heat gelation. In fact, 

products with the same composition but different matrix structure 

can lead to different digestion patterns 20. In turn, Asensio-Grau et al. 

(2018) 23 reported a higher impact of egg cooking methods on the 

digestibility of proteins, lipids and xanthophylls bioaccessibility under 

exocrine pancreatic insufficiency (EPI) conditions than under healthy 

ones. Thus, poached favored egg protein digestion under EPI 

conditions compared to other methods, mainly due to its semi-liquid 

structure and lower degree of protein denaturation. 
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The essential amino acids (EAA)/ non-essential amino acids (NEAA) 

ratio is also shown in Figure 5.3.2B. The EAA/NEAA ratio of cooked 

eggs digested under C model ranged from 1.78 to 2.14, this value 

being significantly lower in hard-boiled than in poached egg and 

omelet. Similar EAA/NEAA ratio was obtained from egg samples 

digested under E1 (oral alteration) and E2 (oral and gastric 

alterations) GI conditions. However, a considerable increase was 

found in samples digested mimicking the most suboptimal GI 

conditions given in elders (E3 model). According to this result, elderly 

intestinal conditions might favor the essential amino acids release to 

a greater extent than the non-essential ones, even if the total 

proteolysis extent was reduced under E3 model. The predominant 

release of EAA than NEAA might be due to pancreatic enzymes 

specificity for certain peptide bonds 46 this effect being more relevant 

under low enzymatic concentration (E3 model). The importance of 

EAA lies in muscle protein synthesis, as they are highly involved in this 

process 47. Therefore, even if the total FAA achieved under the most 

critical scenery resulted in reductions, this result would be especially 

relevant for elders suffering from sarcopenia, especially for the 

qualitative (referred to more EAA than NEAA) more than quantitative 

(total FAA extent) protein consumption point of view.  

Complementarily, Figure 5.3.2 shows the amino acidic contents (g 

amino acids/ 100 g of initial protein) of hydrophobic amino acids 

(HAA), positively charged amino acids (PCAA), negatively charged 

amino acids (NCAA), aromatic amino acids (AAA) and sulfur 

containing amino acids (SCAA)). The presence of HAA and PCAA in the 

samples, especially Tyr, Met, His and Lys have been found to improve 
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the antioxidant properties of peptides. In turn, amino acids with a 

large side group such as tryptophan (AAA with an indolic group) and 

histidine (PCAA with an imidazole group), contribute to the 

antioxidant potential of peptides but in the case as hydrogen donors.  

Additionally, peptides-lipid interactions can promote, or even 

improve, the antioxidant effects of peptides as a consequence of their 

hydrophobic properties 46. Moreover, some of the PCAA are involved 

in up-regulation of genes involved in mitochondrial biogenesis, 

offering another mechanism for increased oxidation of long-chain 

fatty acids and glucose in insulin-sensitive tissues 48. Likewise, 

methionine (with a SCAA character) besides histidine, serine and 

glycine are the major donors of 1-carbon groups 48. In fact, diet 

supplementation with some NCAA, PCAA and SCAA (e.g., glutamine, 

arginine, and N-acetyl-cysteine, respectively) are proposed for 

contributing to oxidative defense and immune function 48. After 

digestion in C conditions, it is noticeable the higher presence of amino 

acids with hydrophobic character (HAA) (sum of alanine, valine, 

isoleucine, leucine, tyrosine, phenylalanine, tryptophan, proline, 

methionine and cysteine) in the amino acid profile (between 36 and 

45.6 g HAA/100 g protein, corresponding to hard-boiled the greatest 

content compared to the other chemical groups. HAA content 

experimented, however, a notable decrease under E3 GI conditions 

in hard-boiled and omelet. In the opposite, sulfur containing amino 

acids (SCAA) (sum of cysteine and methionine) was the chemical 

group the least present (between 3.2 to 3.9 g/100 g protein under C 

model), regardless the cooking methods or GI conditions. Slightly 

reductions on SCAA content in the three cooking methods were 



 

170 

 

 

shown but only statistical effect of elderly GI conditions was found in 

poached and omelet. Regarding the positively (PCAA) and negatively 

(NCAA) charged as well as the aromatic (AAA) amino acids contents, 

values obtained under E3 model were significantly lower than those 

found in the amino acidic profile under C model in hard-boiled and 

omelet. However, the hard-boiled egg seems to provide greater 

amounts of almost all the chemical groups (excepting of SCAA), but 

also was the most affected sample by elderly alterations, with 

reductions up to 53% for NCAA under E3 GI conditions. 

Besides the nutritional point of view, protein hydrolysates exert a 

positive impact on human health such as radical scavenging and 

reducing potential when large amounts of hydrophobic sulfur 

containing amino acids such as cysteine, histidine, tryptophan, 

tyrosine and phenylalanine are released 32,49. The contribution of 

scavenging free radicals to human health promotion has been stated 

as delayers of associated oxidative damage to the physiological 

macromolecules. They play, therefore, a crucial role against 

cardiovascular, inflammatory and aging-induced degenerative 

diseases as well as cancers 50.  

Effect of egg cooking on lipid digestibility in elders  

The molar percentages of acyl groups (AG) of the products derived 

from triglyceride hydrolysis (TG) after digestion are presented in 

Table 5.3.5 As expected, 90% of the total fat in cooked eggs was 

present as TG before digestion. After GI digestion under C conditions, 

lipolysis extent achieves values of 99.7, 95.6 and 94.9 % for hard-

boiled, poached and omelet, respectively. The conversion due to the 
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hydrolytic action of pancreatic lipase of TG was mainly into FFA with 

values of 77.23, 80.92 and 71.18 % in hard-boiled, poached and 

omelet, respectively; followed by 1,2-DG, 2-MG, 1-MG and 1,3-DG. In 

omelet samples, fat globules could be trapped in a well-stable protein 

network resulting from mixing and the posterior thermal treatment. 

Thus, the protein enzymatic breakdown occur before lipids can be 

made accessible to lipases 45. These lipid-protein interactions slow 

down the accessibility of enzymes to the substrate leading to lower 

conversion of TG into FFA together with lower matrix degradation 

compared to other methods 23.   

Regarding the elderly GI conditions and their effect on lipid digestion, 

nor oral, gastric and intestinal alterations negatively impact the 

absorbable fraction of hard-boiled, poached and omelet eggs. In fact, 

a significant increase (p<0.05) was noted in E3 with respect C in 

poached egg. Nevertheless, the non-absorbable fraction was slightly, 

but significantly, reduced in hard-boiled and poached eggs, and 

therefore the total lipolysis extent. Therefore, a longer intestinal 

transit time would be responsible for exerting a positive effect on lipid 

digestion 51, even under reduced pancreatic lipase and bile 

concentrations (E3 model). 
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 Figure 5.3.2. Proteolysis extent (%) (g FAA´s released/ 100 g protein) (A), 

essential and non-essential amino acids ratio (EAA/NEAA ratio) (B) and 

amino acids quantities (g/100g of protein) classified by chemical structure 

(HHA (C), PCAA (D), NCAA (E), AAA (F) and SCAA (G)) found in hard-boiled, 
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poached and omelet egg in vitro digested under C (control), E1 (Elderly 1), 

E2 (Elderly 2) and E3 (Elderly 3)) GI conditions. EAA = (Val, Leu, Ile, Thr, Met, 

Phe, Lys, His, Trp); NEAA = (Ala, Gly, Ser, Pro, Asn, Asp, Glu, Tyr, Cys). 

Hydrophobic amino acids (HAA = Ala, Val, Ile, Leu, Tyr, Phe, Trp, Pro, Met, 

Cys); Positively charged amino acids (PCAA = Lys, His); Negatively charged 

amino acids (NCAA = Asp, Asn, Glu, Gln); Aromatic amino acids (AAA = Phe, 

Trp, Tyr); Sulfur containing amino acids (SCAA = Cys, Met). Data shown are 

mean values from triplicates and the standard deviation. Different 

lowercase letters indicate significant differences between models and 

different capital letters indicate significant differences between cooking 

methods, with a significance level of 95% (p<0.05). 
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Table 5.3.5. Molar Percentages of Acyl Groups (AG) Supported on the Different Glyceryl Backbone Structures (TG, 1,2-
DG, 1,3-DG, 2-MG, 1-MG) and Free Fatty Acids (FFA) and Cholesterol Content (mg/g Fat), Present in Non-digested (ND) 
and Digested Hard-boiled, Poached and Omelet Eggs. In Vitro GI Models: Control (C), Elderly 1 (E1), Elderly 2 (E2), 
Elderly 3 (E3) e 

Cooking 
method 

GI 
cond. 

AGTg(%) AG1,2DG(%) AG1,3-DG (%) AG2-MG(%) AG1-MG(%) FFA (%) 
Absorbable 
fraction (%)f 

Non-absorbable 
fraction (%)g 

Lipolysis 
extent (%)h 

Cholesterol 
(mg/g fat) 

Hard-
boiled 

ND 89.57 ± 2.10 - - - 10.42 ± 2.08 - 10.43 ± 2.10 - 10.43 ± 2.10 54.14 ± 2.92bA 
C 0.32 ± 0.26aA 12.84 ± 0.44cA 1.021 ± 0.002cB 5.61 ± 0.18bB 3.00 ± 0.31aB 77.23 ± 0.06aB 85.83 ± 0.18aC 13.86 ± 0.44cB 99.68 ± 0.27bC 50.91 ± 4.91abAB 
E1 0.30 ± 0.07aA 11.81 ± 0.06bA 0.84 ± 0.09bB 5.70 ± 0.10bB 2.87 ± 0.20aB 78.97 ± 1.04aB 87.55 ± 0.74aC 12.66 ± 0.03bA 100.20 ± 0.78bC 47.82 ± 4.22abA 
E2 0.96 ± 0.22aA 11.88 ± 0.23bcB 0.53 ± 0.06aB 6.15 ± 0.27bB 3.12 ± 0.02aB 78.09 ± 1.16aB 87.36 ± 1.41aB 12.41 ± 0.17bA 99.77 ± 1.24bB 46.65 ± 7.18abA 
E3 4.73 ± 2.69bAB 6.53 ± 0.49aA 2.63 ± 0.04dB 1.35 ± 0.21aA 3.68 ± 0.05bB 81.09 ± 3.41aB 86.12 ± 3.14aAB 9.15 ± 0.45aA 95.27 ± 2.69aAB 51.19 ± 5.68aA 

Poached 

ND 89.98 ± 0.29 - - - 9.99 ± 0.30 - 10.02 ± 0.29 - 10.02 ± 0.29 56.39 ± 2.81aA 
C 4.41 ± 0.42bB 11.16 ± 0.44bcB 0.91 ± 0.13aB 1.82 ± 0.02bA 0.79 ± 0.07bA 80.92 ± 1.09aC 83.53 ± 0.99aB 12.06 ± 0.57bcA 95.59 ± 0.42aB 60.31 ± 4.06aB 
E1 2.40 ± 0.19aB 12.46 ± 0.27cB 1.00 ± 0.03aC 1.46 ± 0.06aA 0.49 ± 0.09aA 82.19 ± 0.20aC 84.14 ± 0.05aB 13.46 ± 0.24cB 97.60 ± 0.19bB 63.08 ± 4.48aB 
E2 2.01 ± 0.88aAB 10.83 ± 0.86bA 0.81 ± 0.07aC 1.33 ± 0.20aA 0.46 ± 0.04aA 84.56 ± 0.17bC 86.34 ± 0.06bB 11.65 ± 0.94bA 97.99 ± 0.88bAB 58.69 ± 8.46aA 
E3 2.32 ± 0.39aA 8.99 ± 0.04aB 0.82 ± 0.02aA 1.78 ± 0.04bB 0.61 ± 0.07abA 85.47 ± 0.48bC 87.86 ± 0.37cB 9.81 ± 0.02aA 97.68 ± 0.39bB 56.65 ± 7.39aA 

Omelet 

ND 90.86± 1.01 - - - 9.63 ± 1.09 - 9.64 ± 1.11 - 9.64 ± 1.11 52.27 ± 1.58bA 
C 5.11 ± 0.24abB 13.06 ± 0.02abA 0.30 ± 0.10aA 7.22 ± 0.13cC 3.11 ± 0.59aB 71.18 ± 0.09aA 81.51 ± 0.37abA 13.37 ± 0.13aB 94.89 ± 0.24aA 45.29 ± 0.86abA 
E1 5.49 ± 0.08bC 13.61 ± 0.38bC 0.68 ± 0.02abA 6.22 ± 0.07bC 3.10 ± 0.04aB 71.67 ± 0.50abA 80.98 ± 0.61aA 14.29 ± 0.39aC 95.28 ± 1.00aA 47.33 ± 1.72abA 
E2 3.90 ± 1.10aB 11.97 ± 0.37aB 0.29 ± 0.12aA 7.03 ± 0.28cC 3.64 ± 0.12aC 73.21 ± 1.02abA 83.87 ± 0.62bA 12.26 ± 0.49aA 96.12 ± 1.10aA 49.83 ± 5.58abA 
E3 4.28 ± 0.09abB 13.03 ± 1.02abC 0.93 ± 0.39bA 4.11 ± 0.38aC 3.38 ± 0.61aB 74.27 ± 1.74bA 81.76 ± 1.50abA 13.96 ± 1.41aB 95.72 ± 0.09aA 47.18 ± 2.25aA 

a, b, c, d Different lowercase letters indicate significant differences between models, with a significance level of 95% (p<0.05). A, B, C Different capital 

letters indicate significant differences between cooking methods, with a significance level of 95% (p<0.05). e Data shown are mean values from 
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triplicates and the standard deviation. f Absorbable fraction includes to AG2-MG% + AG1-MG% + FFA%, g non-absorbable fraction to AG1,2-DG% + 

AG1,3-DG% and h lipolysis extent represent the summarize. 
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Finally, cholesterol content (Table 5.3.5) of hard-boiled, poached and 

omelet eggs before digestion was similar. These results are in 

agreement with those reported by Hur et al. (2014) 52, where the 

cholesterol content in pork patties was not affected by different 

cooking methods. However, cholesterol stability was slightly reduced 

in hard-boiled and omelet after in vitro digestion. The decreasing of 

cholesterol could be attributed to higher formation of cholesterol 

oxidation products during in vitro digestion 53, being both 

physicochemical and enzymatic conditions, the oxidation promoters 
54. Also, microwave cooking 52 might be co-responsible of higher 

oxidative damage of cholesterol during the posterior GI digestion.  

Vitamins A and D3 bioaccessibility in eggs: impact of cooking and GI 

alterations in elders  

Figure 5.3.3 shows the Vitamin A and D3 bioaccessibility (%) of hard-

boiled, poached and omelet eggs. Similarly to macronutrient 

digestibility, the structure matrix seems to be responsible, in a certain 

extent, to the differences found in terms of solubilization and micellar 

incorporation of the micronutrients. Hence, it was found the higher 

the complexity of structured food matrices (i.e., omelet), the minor 

the fat-soluble vitamins bioaccessibility present in the yolk 23,55. 

Vitamin D3 bioaccessibility values under standardized GI conditions 

(C) agree with this behavior. Nevertheless, vitamin A bioaccessibility 

was higher in omelet than hard-boiled or poached eggs. Vitamin A has 

been reported to experiment oxidation along digestion leading to a 

reduced final concentration but increasing the presence of other 

compounds such as β-ionone, 2,2,6-trimethylcyclohexanone,β-
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cyclocitral,(E)-5,6-epoxy-β-ionone, ionene, β-homocyclocytral and 

dihydroactinidiolide 56. Hence, omelet structure could exert a 

protective effect on vitamin A against oxidation reactions and explain 

a higher vitamin A bioaccessibility in omelet than in hard-boiled and 

poached eggs.  

 
Figure 5.3.3. Vitamin A and D3 bioaccessibility achieved in hard-boiled, 

poached and omelet eggs in vitro digested under different GI conditions 

(control (C), Elderly 1 (E1), Elderly 2 (E2), Elderly 3 (E3) models). Different 

lowercase letters indicate significant differences between models and 

different capital letters indicate significant differences between cooking 

methods, with a significance level of 95% (p<0.05). 

With respect to vitamins bioaccessibility under GI conditions of elders 

(E1, E2 and E3), vitamin D3 release from all egg products was 

significantly reduced under E3 model conditions. However, no 

statistically significant differences were found in vitamin A 
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bioaccessibility values achieved under C and E3 digestion conditions. 

Only vitamin A release from poached eggs seems to be negatively 

affected when oral and gastric conditions were suboptimal as in E1 

and E2 simulations. 

Liposoluble compounds release is dependent on their solubilization 

favored by bile acids presence. Thus, it was expected to obtain lower 

bioaccessibility values of both vitamins under reduced bile salts 

concentration occurring in E3 model. Nevertheless, only vitamin D3 

was affected by this suboptimal intestinal condition 57.  

Descriptive relationship among digestibility, egg cooking methods 

and elderly GI conditions  

A PCA was performed to assess the relationship between digestion-

end products from a descriptive point of view (Figure 5.3.4). Also, the 

component weights and the scores of hard-boiled, poached and 

omelet digested under the simulated GI conditions (C, E1, E2 and E3) 

are included. The first two principal components of the analysis 

explain 79.179 % of the total variance of the digestibility in the 

samples (PC1: 57.105% and PC2: 22.074 %). By using the number of 

factor loads for two main components, it was identified which 

variables significantly affect the components C1 and C2. The vitamins 

bioaccessibility, lipolysis extent as well as the HHA, PCAA, NCAA and 

total (sum of the FAA released) proteolysis extents have the most 

significant impact on the value of the PC1. On the other hand, 

absorbable and non-absorbable lipid fractions, SCAA and EAA/NEAA 

ratio presented the most significant impact on the PC2 value. As a 

result, this procedure allows the analysis of the two-dimensional 
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Figure 5.3.4. Biplot and 

component weights of the 

different end-digestion products 

of proteins (proteolysis extent, 

EAA/NEAA ratio, HAA, PCAA, 

 NCAA, AAA and SCAA contents), 

lipids (cholesterol content, 

absorbable, non-absorbable and 

total lipolysis extents) and 

micronutrients (vitamin A and D3 

bioaccessibility) and their 

association with the binomial 

cooked eggs (hard-boiled, 

poached and omelet)-GI 

conditions (C, E1, E2 and E3) 

obtained by means of a principal 

components analysis (PCA). 
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space that was created based on the main components. In the score 

plot, the proximity between samples indicates similar behavior in 

terms of digestibility. In PC1, it is noted that omelet, located at the 

upper right side of the plot, exhibits different digestion pattern than 

hard-boiled and poached eggs, located at the left side of the plot. PC2 

seems to distinguish vitamin A bioaccessibility (higher in omelet) and 

samples with a higher EAA/NEAA ratio after digestion. Overall, PCA 

shows the narrow relationship between: proteolysis and lipolysis 

extents; the amino acids chemical classifications (excepting SCAA) 

with the proteolysis extent as well as the vitamin D3 bioaccessibility; 

and the absorbable lipid fraction and the cholesterol content with the 

lipolysis extent. 

 

CONCLUSIONS 

In sum, GI alterations appearing with aging negatively affect the ovo-

proteins digestibility with a reduction of up to 37 % in the FAA 

released, compared with total FAA extents obtained under control 

conditions. Hard-boiled or poached method was more advisable than 

omelet preparation to maximize the proteolysis extent (sum of the 

FAA released) under elderly conditions. A notable increase in the 

release of essential amino acids, compared with the non-essential 

ones, was also noticed under simulated elderly GI conditions. Neither 

total lipolysis extent nor lipidic absorbable fraction is compromised 

with aging. Nevertheless, omelet preparation plays a significant role 

against the absorbable lipid fraction, mainly in free fatty acids release. 

Lastly, vitamin D3, lipolysis and proteolysis extents seem to be 

positively linked, especially in hard-boiled and poached eggs under 
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elderly GI conditions. It could be stated that poached and omelet 

preparations might be more advisable, than hard-boiled, in terms of 

net supply of bioaccessible vitamin A for elders; while similar 

bioaccessible vitamin D3 content provided is very similar whatever 

the cooking method. Therefore, this study provides a better 

understanding of egg protein and lipids hydrolysis, together with 

liposoluble vitamins bioaccessibility, under GI conditions of elderlies 

and as a function on cooking method. This information tries to 

contribute to establishing accurate dietary recommendations 

addressed to this population group.  
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Abstract 

This study aimed to in vitro evaluate the impact of common gastrointestinal 

(GI) alterations appearing with ageing on protein digestibility, and 

functional related-properties, in four different meats (chicken, turkey, pork 

and beef). Thus, three elderly digestion models were stated as long as 

altered GI conditions affected at oral (E1), oral and gastric (E3) and oral, 

gastric and intestinal stages (E3). Healthy adult GI conditions were also 

mimicked as standard control model (C). A notable TCA soluble protein and 

the FAA release reduction were found under intestinal suboptimal 

conditions (E3 model (p<0.05)), being more accuse in beef than in other 

meats. Thus, chicken intake would more advisable, than other meats, in 

terms of protein digestibility; while beef would provide a greater net supply 

of FAA under E3 model conditions. Gastric altered conditions, for its part, 

seems to favor protein solubility. Finally, while gastric and intestinal 

suboptimal conditions diminish the antihypertensive capacity of meat 

digesta, their antioxidant capacity was only negatively affected by intestinal 

altered conditions.  

Keywords: aging; chicken; turkey; pork; beef; proteolysis; antihypertensive 

activity; antioxidant properties. 
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INTRODUCTION 

It is estimated that by 2050 a huge amount of the global population (2.1 

billion) will be > 60 years old 1. Also, an increased life span implies a 

corresponding increase in aging-related disorders such as cardiovascular 

associated-diseases, cancer, obesity or diabetes. The increased oxidative 

stress as well as abnormalities in inflammatory responses, seem to drive the 

main etiologies of these aging-related diseases 2. Thus, not only increasing 

life expectancy but also healthy aging are of growing global concern. Several 

factors affect how people get older, the role of diet being widely stated. The 

European Society for Clinical Nutrition and Metabolism advises elders to 

increase the consumption of rich-protein foods, and especially those rich in 

essential amino acids such as leucine or tryptophan 3. Meat is one of the 

major protein sources providing all the body’s essential amino acids, but it 

is also rich in some relevant micronutrients such as iron, zinc, selenium, and 

vitamins B6 and B12. Meat and its derivates generally provide high-quality 

protein with digestible indispensable amino acid scores (DIAAS) >100 

regardless of processing 4.  

Nevertheless, the nutritional quality of proteins is also determined by its 

digestibility in the gastrointestinal tract, i.e., its protein digestion rate, short-

chain peptides and amino acids bioavailability and functionality 5. However, 

a decline of certain gastrointestinal (GI) functions (i.e. reduction or 

alteration of enzyme secretions, luminal electrolyte composition, motility 

and bile secretion, among others) could lead to macronutrient maldigestion 

and malabsorption, among which sarcopenia or protein deficit, stands out 
6. Besides, the poor oral health of elderlies can lead to inefficient 

mastication and the formation of oral boluses with bigger particles, which 

in the worst case can difficult swallowing and further digestion. End-

digestion products of proteolysis, most of these peptides, may exert 
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antihypertensive, antioxidant, antimicrobial, opioid, immunomodulation 

and antithrombotic activities. However, peptides bioactive effect keeps 

latent until they would be motivated by the GI digestion or food processing, 

.i.e., drying, curing, fermentation and enzymatic hydrolysis 7. Within the 

functional properties of bioactive peptides, the antihypertensive activity is 

assessed by the Angiotensin I-converting enzyme (ACE), a trans membrane 

peptidase, which is a key enzyme influencing the regulation of blood 

pressure. The antioxidant potential of peptides is dependent on their size as 

well as on the amino acidic composition 7. These compounds would help to 

avoid the problems caused by oxidation and inflammation such as the 

developing of chronic diseases including cardiovascular disease, type II 

diabetes, hypertension and obesity. 

In this context, this study aims at assessing proteolysis, the antihypertensive 

and antioxidant properties of peptides and free amino acids released after 

in vitro digestion of different types of meat (chicken, turkey, pork and beef) 

mimicking the most common gastrointestinal disorders appearing with 

aging.  

MATERIAL AND METHODS 

Materials 

Raw meats (chicken breast, turkey breast, pork loin and beef entrecote) 

were purchased at a local store in Valencia (Spain). Pepsin from the porcine 

gastric mucosa (3200-4500 U/mg, 3602 U/mg), pancreatin (8 x USP, 5.4 

TAME U/mg) from porcine pancreas, bile bovine (dried, unfractionated), 

analytical grade salts (potassium chloride, potassium dihydrogen 

phosphate, sodium bicarbonate, sodium chloride, magnesium chloride, 

ammonium carbonate, calcium chloride and potassium sulfate), boric acid, 

hydrochloric acid (37%), sulfuric acid (95-97%), sodium hydroxide, 
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Angiotensin Converting Enzyme (ACE) from rabbit lung (≥2.0 units/mg 

protein), N-Hippuric-His-Leu hydrate (HHL), ethyl acetate, 1,1-diphenyl-2-

picrylhydrazyl (DPPH) and (±)-6-Hydroxy-2,5,7,8-tetramethylchromane-2-

carboxylic acid (Trolox) were obtained from Sigma-Aldrich Co. (St. Louis, 

MO, USA). Also, petroleum ether (VWR Chemicals, VWR International Pty. 

Ltd., Murarrie, Queensland, Australia), dichloromethane (HPLC grade > 

99.8%, Honeywell Fluka, Morris Plains, NJ, USA) and EZ-Faast amino acid kit 

(Phenomenex, Torrance, CA, USA) were used. 

Sample preparation 

Sliced meat (50 ± 0.5 g) were microwave cooked in a household microwave 

oven (model GW72N, Samsung Electronics Co. Ltd., Seoul, Korea) at 12 ± 1 

W/g for 120 s for chicken, turkey, pork and 75 s for beef.  

Physicochemical characterization of cooked meats 

Moisture, ash, fat and protein contents were determined in cooked meats 

according to the official methods 934.01, 942.05, 920.39 and 960.52 8, 

respectively. In addition, cooked samples (0.015 m cubes, 3.375 x106 m3) 

were analyzed through a texture profile analysis (TPA) using a TA.XT (Stable 

Micro System Ltd., God-alming, Surrey, UK) with a 50 kg load cell and an 

SMS P/75 probe by compressing 80 %. Hardness, cohesiveness, springiness, 

adhesiveness and chewiness were calculated based on the force-time 

deformation curves 9.  

In vitro digestion simulation 

Cooked meats were in vitro digested under four GI conditions (Table 5.4.1). 

Three digestion models were defined to mimic the GI alterations in elderlies 

at oral (E1), oral and gastric (E2), and oral, gastric and intestinal stages (E3) 
10. Besides, healthy adult GI conditions were also simulated as control (C) 
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Table 5.4.1. GI parameters established at oral, gastric and intestinal stages for the control (C) and elderly models (E1, 
E2 and E3). 

Digestion 
model 

Oral Gastric Intestinal 

Control (C) 

5 g of food sample + 5 g human salivary 
fluid 

Chewing until a consistency like a tomato 
or mustard paste (30 for all samples). 

 

Oral bolus + 10 mL SGF 
pH 3 

Pepsin (2000 U/mL) 
2 h 

55 rpm 
37 °C 

 

Gastric chime + 20 mL SIF 
pH 7 

Bile (10 mM) 
Pancreatin (100 U/mL) 

2 h 
55 rpm 
37 °C 

Elderly 
(E1, E2 and E3) 

5 g of food sample + 5 g human salivary 
fluid 

50% of the Control chewing cycles 
 

Oral bolus + 10 mL SGF 
pH 6 

Pepsin (1500 U/mL) 
2 h 

55 rpm 
37 °C 

 

Gastric chime + 20 mL SIF 
pH 7 

Bile salts (5 mM) 
Pancreatin (50 U/mL) 

4 h 
55 rpm 
37 °C 

Amendments included in the in vitro digestion models for elderlies, with respect to the control model (C), are highlighted in bold. 

E1 (alterations at oral stage); E2 (alterations at oral and gastric stages); E3 (alterations at oral, gastric and intestinal stages). 
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model 11. Concretely, altered gastric and intestinal conditions in elderlies 

were stated according to Shani-Levi et al. (2017) 6. Oral stage was, however, 

in vivo performed by a volunteer with healthy dentition. Mastication cycles 

(30) were established to reach a bolus with similar consistency to that of a 

tomato or mustard paste. Once established, this parameter was reduced to 

50 % to mimic the most suboptimal oral conditions given in elderlies which 

results in large particle size of the bolus and making food digestion more 

difficult 12.  

Just before digestion experiments, gastric (SGF) and intestinal (SIF) digestion 

fluids were prepared from stock solutions and the enzymatic activity of 

pepsin and pancreatin previously tested according to Minekus et al. (2014) 
11. Aliquots were taken, if needed, after gastric digestion. After intestinal 

digestion, digesta was kept in an ice bath for 10 min to slow down the 

enzymatic activity before bioaccessible fraction separation (liquid phase) 

from the remaining solids by centrifugation at 4000 g-force for 5 min at 10 

°C. 

Analytical determinations in meat digesta 

TCA soluble protein 

Protein hydrolysis was evaluated by measuring the protein soluble fraction 

in trichloroacetic acid (TCA) according to Lamothe et al. (2014) 13. Briefly, 

500 μL of 36% TCA was added to 1000 μL of the bioaccessible fraction to 

reach a final concentration of 12 % (w/w). The protein extract was prepared 

by mixing, incubating at 25 ºC for 15 min on an Eppendorf Thermomixer 

Comfort (Eppendorf AG 22331, Hamburg, Germany), and centrifuging at 

1200 g-force for 10 min. The supernatant was collected and diluted in 50 

mM EDTA, 8 M urea, pH 10 buffer. The ratio supernatant: buffer (v:v) was 

1:9 and 1:99 extract for gastric and intestinal samples, respectively. Soluble 
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protein in TCA was determined by measuring absorbance at 280 nm against 

a blank prepared with appropriate digestion fluids of each digestion model. 

TCA soluble protein (g/100 g of crude protein in cooked meat) was 

calculated by means of a calibration line of bovine serum albumin (BSA) as 

standard and agreed to eq. 5.13. 

𝑇𝐶𝐴 𝑠𝑜𝑙𝑢𝑏𝑙𝑒 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 (%)

=
(𝑔 𝑇𝐶𝐴 𝑠𝑜𝑙𝑢𝑏𝑙𝑒 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 𝑖𝑛 𝑏𝑖𝑜𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑙𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛)

(𝑔 𝑐𝑟𝑢𝑑𝑒 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 𝑖𝑛 𝑢𝑛𝑑𝑖𝑔𝑒𝑠𝑡𝑒𝑑 𝑐𝑜𝑜𝑘𝑒𝑑 𝑚𝑒𝑎𝑡)
× 100    

(5.13) 

Free amino acids released 

Free amino acids (essential and non-essential amino acids (EAA and NEAA)) 

resulting from protein digestion were determined through the protocol 

published by Hernández-Olivas et al. (2020) 10. Thus, 100 μL of post-

intestinal bioaccessible fraction were derivatized using the EZ-Faast amino 

acid kit and analyzed by GC-MS (Agilent Technologies, Injector 7683B series, 

Network GC System 6890N series, Inert Mass Selective Detector 5975 series, 

MSD ChemStation software). Norvaline was used as internal standard and 

the free amino acids (FAA) released (%) during digestion calculated 

according to eq. 5.14: 

FAA´s released (%) =
(g FAA in bioaccessible fraction)

(g crude protein in undigested cooked meat)
× 100 

(5.14) 

Where: FAA´s corresponds to the sum of the free amino acids in the 

bioaccessible fraction. 

Angiotensin Converting Enzyme Inhibitory activity (ACE ia (%)) 
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ACE ia (%) after gastric and intestinal digestion were measured according to 

Akillioǧlu & Karakaya (2009) 14 with slight modifications. ACE reactive (25 

mU/mL) and Hip-His-Leu (5 mM) as substrate were used for such purpose. 

Both solutions were prepared in 0.15 M Tris base buffer, containing 0.3 M 

NaCl and a pH adjusted at 8.3. Both digested samples (40 µL) and ACE 

reactive (100 µL) were incubated at 37 °C for 5 min and 100 µL substrate 

was added. Incubation was continued for 30 min at the same temperature. 

Three controls (100 µL ACE + 40 µL water; 140 µL water; 40 µL digesta + 100 

µL water) were also incubated as the digested samples. To stop the reaction, 

150 µL of 1 M HCl was added and mixed vigorously for 5 min. Ethyl acetate 

(1000 µL) was added into tubes, and tubes were vortexed and centrifuged 

at 1200 g-force for 10 min, then 750 µL of the supernatant were collected 

and put into clean tubes. Tubes were slowly shaken at 80 °C to evaporate 

ethyl acetate (approximately 20 min). Solid hippuric acid remained in tubes 

was dissolved in 1 mL deionized water, and absorbance was measured at 

228 nm. 

Antioxidant activity (2,2-diphenyl-1-pricrilhidayil (DPPH)) 

The antioxidant activity was measured in digesta according to Lamothe et 

al. (2014) 13 with slight modifications. Briefly, 200 and 400 µL of gastric and 

intestinal bioaccessible fractions, respectively, were mixed with 1000 µL of 

80:20 methanol:deionized water and shaked at 800 rpm on an Eppendorf 

Thermomixer Comfort (Eppendorf AG 22331, Hamburg, Germany) for 60 

min at 25 ºC. After that, the methanolic extract was centrifugated at 1200 

g-force for 10 min. Parallelly, 2,2-diphenyl-1-pricrilhidayil (DPPH) solution 

was prepared at a concentration of 35 mg/L to reach an absorbance of 1.1 

± 0.02. Following, 500 µL of methanolic extracts were added to 1500 µL of 

DPPH solution and allowed to react for 60 min with light absence. Finally, 

the absorbance was measured at 515 nm and antioxidant activity expressed 
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as mg TE/g meat on a dry basis with the aid of a calibration curve of Trolox. 

Distilled water was used as the negative control and BHT as a positive 

control. 

Statistics 

Data were subjected to an analysis of variance (ANOVA) and the 

homogeneous groups were identified between in vitro models and type of 

meat by the LSD (Less Significant Difference) Fisher test. A principal 

component analysis (PCA) was also performed to understand the 

descriptive relationship among digestion-end-parameters (TCA soluble 

protein, data related to free amino acids released, ACE inhibitory activity 

and antioxidant capacity), meat origin (chicken and turkey, pork and beef) 

and host GI conditions (those of standard healthy adult (C) and of elderlies 

(E1, E2 and E3). Statgraphics Centurion XVII was used with a confidence level 

of 95% (p <0.05) 

RESULTS AND DISCUSSION  

Proximal composition and mechanical parameters of cooked meats  

The proximal composition of cooked meats in terms of water, protein, fat 

and ash contents (g/ 100 g) is shown in Table 5.4.2. In general, values of 

proximal composition agreed with those reported in literature 15. Higher 

water content was found in poultry meats as compared to pork and beef; as 

refers to ash content, pork, which has been reported to be a good source of 

iron, zinc and potassium, among others minerals presented the highest 

value (1.9 g/100 g). Besides ash content, the major differences in terms of 

composition were related to fat contents. Beef entrecote was richer in fat 

content (10%) compared to the other studied cut of meats. Concretely, 

turkey breast has been stated as very low-fat meat. The protein/fat ratio is 



 

203 

 

 

also found in Table 5.4.2, resulting much greater for turkey, without 

differences between the medium values of chicken and pork and the least 

value for beef. 

The values  of hardness, cohesiveness, springiness, adhesiveness and 

chewiness of the cooked meats are similar to those reported by Pematilleke 

et al. (2020) 9 (Table 5.4.2). Meat composition (water, protein and fat) along 

with some cooking events such as water loss and fat drainage, muscle fiber 

shrinkage and protein coagulation 9, could impact on textural properties in 

different extent. In this study, the greater protein along with the low water 

contents of turkey could be responsible of its higher cohesiveness.  Actually, 

the protein/fat ratio resulted much greater in turkey than for the other type 

of meats, having thus, a correlation with the adhesiveness. Besides, 

Pematilleke et al. (2020) 9 reports a lineal correlation between hardness and 

chewiness, suggesting that the number of chewing cycles required during 

mastication increases as long as the hardness does. Accordingly, the same 

number of cycles were stated for in vivo oral stage as statistical differences 

were found on neither the hardness nor the chewing as function on meat 

origin. Changes undergone by meat muscle during mastication such as 

particle size reduction pattern and saliva secretion, among others, are 

critical for protein digestibility.  
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Table 5.4.2. Proximal composition (g /100 g of wet basis) and mechanical parameters of microwave-cooked 
chicken, turkey, pork and beef entrecote obtained from Textural Profile Analysis (TPA). 

 Chicken  Turkey  Pork  Beef 

Nutrient content     
Water (g/100 g) 64 ± 2b 66.9 ± 1.3b 60.0 ± 0.6a 58 ± 4a 
Protein (g/100 g) 28.5 ± 0.3a 31.6 ± 0.6a 34.3 ± 0.7b 30 ± 3a 
Fat (g/100 g) 3.6 ± 0.9b 0.61 ± 0.15a 3.0 ± 0.4b 10 ± 2c 
Ash (g/100 g) 1.10 ± 0.09b 0.83 ± 0.10a 1.90 ± 0.09c 1.26 ± 0.12b 
Protein/fat ratio 8 ± 2b 52 ± 14c 11.4 ± 1.8b 3.0 ± 0.9a 

Mechanical parameter     
Hardness (N) 237 ± 51a 213 ± 23a 239 ± 31a 279 ± 36a 
Cohesiveness 0.61 ± 0.04a 0.69 ± 0.04b 0.728 ± 0.019b 0.65 ± 0.03ab 
Springiness 0.53 ± 0.08a 0.71 ± 0.07b 0.70 ± 0.05b 0.58 ± 0.05a 
Adhesiveness (Ns-1) -0.075 ± 0.020a -0.047 ± 0.013a -0.069 ± 0.018a -0.08 ± 0.03a 
Chewiness (N) 78 ± 25a 105 ± 18a 122 ± 21a 107 ± 22a 

The data shown are mean values from triplicates and the standard deviation. abc Different lowercase letters indicate 
significant differences between meats, with a significance level of 95% (p<0.05). 
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Digestive alterations in elders and meat protein digestibility  

The hydrolysis of meat proteins by gastro-intestinal enzymes was assessed 

after gastric and intestinal stages by measuring TCA soluble protein (mainly, 

smaller peptides and free amino acids) (Figure 5.4.1A). Additionally, as the 

post-intestinal aminoacidic profile was determined by GC-MS (Tables 5.4.3, 

5.4.4, 5.4.5 and 5.4.6), the percentage of amino acids released after the 

gastrointestinal digestion is also presented in Figure 5.4.1B. Data reported 

in Figure 5.4.1 were normalized with respect to the protein content of the 

undigested cooked meats. As shown in Figure 5.4.1A, proteolysis mostly 

occurred at intestinal stage. After gastric digestion under C model, values 

ranged from 12 to 17 g TCA soluble protein/100 g protein for chicken and 

turkey, respectively. These values correspond to 16-29 % of the total 

proteolysis achieved at the end of the GI digestion. Martini et al. (2019) 16 

found similar values in post-gastric digesta for the same type of meat. Partly, 

the low efficiency of pepsin could be consequence of the effect of cooking 

on meat muscle, since higher values of proteolysis in stomach has been 

found in raw meat. Thus, high cooking temperatures may promote protein 

aggregation and decrease protein hydrolysis by pepsin 5. Indeed, in vitro 

static model can be also responsible of the poor gastric proteolysis, since 

gastric proteolysis extent achieved in vivo studies have been reported to be 

higher than in vitro ones 17. Solubility of proteins highly depends on meat 

origin; while some proteins are highly soluble at normal gastric pH, others 

could interact with other macromolecules, forming aggregates and 

becoming insoluble, slowing the protein breakdown and release 18. 

Moreover, it has been reported that at normal gastric pH the acid present 

some ineffectiveness to open the structure to solubilization and enzyme 

action 19. Remarkable high protein digestibility was achieved in chicken and 

beef (76 g of TCA soluble protein/ 100 g of protein) at the end of digestion, 
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while pork protein seems to be less digestible (45 g of TCA soluble protein/ 

100 g of protein) under C conditions. Rates of meat protein digestibility up 

to 95% have been reported in previous studies 5. However, the hydrolysis of 

proteins depends on many meat factors such as matrix structure, the 

secondary structure of proteins resulting after processing (more β-sheet 

structure lead into lower digestibility), hydrophobicity (given by protein 

aggregation) or the possible disrupted cleavage sites of digestive enzymes 

(because lysine and arginine oxidation) which can enhance or limit 

proteolysis 20. Also, lipid oxidation products (i.e. aldehydes), or reducing 

sugars could interact with proteins by means of Schiff bases 5. The 

differences of protein solubility between meat types are coherent with FAAs 

values (g/ 100 g of protein) (Figure 5.4.2B) and agree with those  previously 

reported by Martini et al. (2019) 16. Thus, beef exhibited a significantly 

higher amount of FFAs released (66 g FAA/ 100 g protein) compared to pork, 

turkey and chicken (40.3, 53 and 43 g FAA/ 100 g protein, respectively) 

under C conditions. Gastric and duodenal enzymes degraded beef proteins 

more efficiently than proteins from pork, chicken and turkey. From Figures 

5.4.1 A and B, it is possible to affirm that beef and pork end-digestion 

products were totally found as free amino acids, while smaller peptides (30-

35% of total proteolysis) would found in chicken and turkey intestinal 

digesta, together with free amino acids, regardless the GI conditions. 

Previous studies found that myofibrillar proteins (55-60%), particularly 

actin, titin and myosin, are hydrolysed more easily than sarcoplasmic (25-

30%) or stromal (10-15%) proteins during in vitro digestion 21. According to 

literature 22, pork has less myofibrillar proteins (44%, compared to 51-63% 

in other meats). Therefore, the protein composition of meat 

(myofibrillar:sarcoplasmic:stromal ratio) could be related to the lower 

protein digestibility in pork. 
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In vitro simulation of altered GI conditions of elderlies discloses interesting 

information of protein hydrolysis of meats under this physiological scenario. 

Unexpectedly, 50% of chewing cycles reduction did not exert a statistically 

significant effect on protein digestion (comparison of C and E1). Apparently, 

particle size distribution decreases along digestion, digesta reaching a very 

similar particle size in stomach regardless the differences of the bolus in 

particle size. In this sense, Zou et al. (2018) 23 report similar particle size 

distribution after in vitro gastric and intestinal digestion of different bolus 

with different particle size distribution from three types of pig muscles with 

different composition. With regards to the impact of gastric alterations on 

gastric proteolysis, it was also expected that a pH increasing from 3 to 6 

together with a pepsin concentration reduction to 75% (1500 U/mL), 

lessened the protein breakdown into smaller peptides and free amino acids. 

However, gastric alterations of elderlies mimicked in this study (model E2 

and E3) resulted in an increase of gastric proteolysis in poultry meats, and 

especially in chicken. These results were not expected since pepsin has 

maximal hydrolytic activity between pH 1.5 and 2.5 and activity is below 5% 

of the maximum above pH 5.  Isoelectric point of proteins might be also 

considered and is maybe the key factor behind these results. As long as the 

digesta pH approaches the isoelectric point of proteins, aggregation and 

precipitation occur, hindering the access and efficiency of pepsin to the 

substrate and declining both protein solubility and hydrolysis during 

digestion 24. The solubility of proteins increased as far as pH values moves 

from their isoelectric point 21. At more alkaline pH, for example at 6 (gastric 

pH in models E2 and E3) or 7 (intestinal pH), proteins are increasingly 

negatively charged due to ionization of the carboxyl groups and 

deprotonation of the amine groups. As a result, electrostatic repulsion is 

enhanced, increasing protein-water interactions, and thereby protein 

solubility. Even though the minimum solubility of proteins occur at the 

isoelectric point of proteins, it has been reported that the solubility of 
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myofibrillar proteins in chicken breast (the most abundant type) experiment 

a remarkable increase (from 10 to 80%) when the pH rise from 5.5 to 6 21. 

Reasonably, the variation in the amount of myofibrillar proteins among the 

types of meats (greater being for poultry meats) could be responsible for 

the greater gastric protein digestibility in chicken and turkey, than beef and 

pork. On the other hand, at pH values lower than 4.5, and therefore at 3, 

proteins are positively charged and electrostatic repulsion increased as well. 

pH buffering capacity of meats which is highly determined by food intrinsic 

factors (consistency, particle size, origin, protein and amino acid content 

and acid and base groups (such as salts and organic acids)) has also to be 

accounted. Like manner, food composition also impacts buffering capacity 

(i.e. foods with high fat and low protein contents lead to lower buffering 

capacity) 25. Reasonably, beef highly differs from the other studied meats at 

fat content. This difference in composition could impair differences in terms 

of buffer capacity. It was noted that pH was more stable along digestion 

time in beef than in the other meats. The contribution of fat to buffering 

capacity of meats has been previously reported 26. The higher lipidic content 

also could determine the action of micellization and emulsification 

promoting greater digestion of nutrients, not only of lipids but also of 

proteins.  
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Figure 5.4.1. TCA soluble protein (g/100 g protein) of the bioaccessible 
fractions of gastric and intestinal digesta (A) and the FAA´s of bioaccessible 
fraction of intestinal digesta (g/ 100 g protein) (B) found in chicken, turkey, 
pork and beef in vitro digested under C (control), E1 (Elderly 1), E2 (Elderly 2) 
and E3 (Elderly 3)) GI conditions.  The data shown are mean values from 
triplicates and the standard deviation. Different lowercase letters indicate 
significant differences between digestion models and different capital letters 
indicate significant differences between meat origin, with a significance level 
of 95% (p < 0.05). 

Regarding the proteolysis occurring later in the intestinal stage, the altered 

gastric model (E2) did not have a negative impact (Figure 5.4.1 A and B). 

Denis et al. (2016) 27 found a delay of protein digestion kinetics but not on 

its extent, being even higher under in vitro senior GI conditions. The activity 

of pancreatic proteases might compensate the gastric suboptimal 

conditions (E2) with the proteins conversion into peptides and free amino 

acids 10.  



 

210 

 

 

 

Figure 5.4.2. ACE inhibitory activity (%) (A) and DPPH antioxidant activity 
(mg TE/ g meat d.b.) (B) of the bioaccessible fractions of gastric and 
intestinal in vitro digesta of chicken and turkey, pork and beef under the 
elderly (E1, E2 and E3) and the standard GI conditions. The data shown are 
mean values from triplicates and the standard deviation. Different 
lowercase letters indicate significant differences between digestion models 
and different capital letters indicate significant differences between meat 
origin, with a significance level of 95% (p<0.05). 

Finally, reduction of both pancreatic (50 U/mL) and bile salts (5 mM) 

concentration, together with an extended duration (4h) of intestinal stage 

(model E3), significantly dropped proteolysis in all meats. However, 

digestibility was reduced in a variable extent depending on the type of meat. 

TCA soluble protein in intestinal digesta that informs about short-chain 

peptides and free amino acids with potential functional activities, 

experimented a reduction of 26, 26, 15 and 28 % in chicken, turkey, pork 

and beef, respectively. If only FAAs released are considered, reduction of up 

to 16, 10, 5 and 27% in chicken, turkey and beef, was found respectively. 

Thus, the altered intestinal conditions have a higher impact on short-chain 
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peptides than on free amino acids released of chicken, turkey and pork 

meats.   

A decrease in pancreatic enzymes secretion have been stated to lead with 

poor digestion and consequently to protein malabsorption causing 

nutritional deficiencies 6. Again, it is important to note that in vivo 

proteolysis extent could be higher than in vitro static models, because of 

end-digestion products, not only from proteins but also from lipids, are not 

removed from the system. This effect being more noticeable as long as the 

intestinal time increases, and therefore in E3 model than in the others.  

The individual amino acidic contents (g amino acids/ 100 g protein) as well 

as the essential amino acids (EAA)/non-essential amino acids (NEAA) ratio 

in the post-intestinal digesta are gathered in Tables 5.4.3, 5.4.4, 5.4.5 and 

5.4.6. It is remarkable the great contents of free lysine, leucine and tyrosine, 

in the meat post-intestinal digesta (beef and chicken > turkey and pork). 

Leucine serves as substrate for the synthesis of new muscle proteins and as 

a signal to initiate the rate-limiting translation initiation step of MPS 3. Lysine 

participates building muscle tissue but also collagen (an important 

constituent of cartilage, connective tissue and skin). Moreover, it is involved 

in the production of carnitine, which help to burn long-chain fatty acids 

producing energy 28. Tyrosine has numerous functional roles such as the  

synthesis of neurotransmitters (catecholamines), alleviation of mental 

anxiety and depression and neutralization of free radicals 29. 
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Table 5.4.3. Amino acids profile (g/100 g protein) of intestinal digesta of chicken obtained under in vitro simulation of control (C) and elderly GI 
conditions (E1, E2 and E3). 

Amino acid 
Chicken 

C E1 E2 E3 

Alanine (Ala) 1.87 ± 0.09bC 1.84 ± 0.08bC 2.15 ± 0.08cC 1.61 ± 0.02aC 
Glycine (Gly) 0.679 ± 0.014bC 0.704 ± 0.009bC 0.817 ± 0.007cC 0.5028 ± 0.0004aC 
α-Aminobutyric acid (ABA) - - - - 
Valine (Val) 2.99 ± 0.14abB 3.046 ± 0.112bC 3.45 ± 0.03cC 2.872 ± 0.010aD 
Leucine (Leu) 7.0 ± 0.2abB 7.18 ± 0.12bB 7.9 ± 0.3cB 6.77 ± 0.14aB 
Isoleucine (Ile) 2.700 ± 0.113abB 2.81 ± 0.07bC 3.15 ± 0.10cB 2.64 ± 0.06aC 
Threonine (Thr) 1.48 ± 0.05bC 1.48 ± 0.05bC 1.692 ± 0.012cC 1.249 ± 0.004aC 
Serine (Ser) 1.22 ± 0.04aC 1.18 ± 0.05aC 1.34 ± 0.02bB - 
Proline (Pro) 0.3992 ± 0.0114aC 0.416 ± 0.009aC 0.504 ± 0.008bC 0.39 ± 0.05aC 
Asparagine (Asn) 1.10 ± 0.07aB 1.05 ± 0.07aB 1.10 ± 0.04aB - 
Aspartic acid (Asp) 0.92 ± 0.03bC 0.91 ± 0.05bC 1.0279 ± 0.0108cC 0.043 ± 0.009aA 
Methionine (Met) 1.80 ± 0.06bB 1.86 ± 0.04bB 2.05 ± 0.03cB 1.71 ± 0.04aB 
Glutamic acid (Glu) 3.6 ± 0.3bB 3.1 ± 0.2bB 3.4 ± 0.5bC 2.2 ± 0.3aC 
Phenylalanine (Phe) 3.65 ± 0.06bBC 3.82 ± 0.06cC 4.1 ± 0.2cB 3.4091 ± 0.0011aB 
Glutamine (Gln) - - - - 
Ornithine (Orn) 0.506 ± 0.012bcD 0.502 ± 0.003bC 0.512 ± 0.002cC 0.439 ± 0.002aD 
Lysine (Lys) 11.2 ± 0.6cB 8.6 ± 0.2aB 9.9 ± 1.3abcA 9.19 ± 0.06bC 
Histidine (His) 2.54 ± 0.04bC 2.68 ± 0.06cC 3.01 ± 0.12dC 2.36 ± 0.06aC 
Tyrosine (Tyr) 4.71 ± 0.10bC 4.6 ± 0.2bC 4.58 ± 0.13bC 3.7 ± 0.2aAB 
Tryptophan (Trp) 2.76 ± 0.07aC 2.99 ± 0.03bC 3.17 ± 0.07dC 2.595 ± 0.114aB 
Cystine (C-C) 1.63 ± 0.04bC 1.87 ± 0.03cB 2.02 ± 0.12dC 1.20 ± 0.06aB 
EAA/NEAA ratio 2.24 ± 0.03aB 2.22 ± 0.02aC 2.3 ± 0.2aB 3.5 ± 0.2bB 
Hydrophobic amino acids (HAA) 27.9 ± 0.8abB 28.5 ± 0.5bC (0) 31.1 ± 0.9cC (0) 26.4 ± 1.2aB (5) 
Positively charged amino acids (PCAA) 13.7 ± 0.8bC 11.5 ± 0.4aB (16) 13.0 ± 1.6abB (5) 11.9 ± 0.5aC (14) 
Negatively charged amino acids (NCAA) 5.6 ± 0.5bAB 5.0 ± 0.4bA (10) 5.5 ± 0.7bAB (1) 2.1 ± 0.4aA (63) 
Aromatic amino acids (AAA) 11.12 ± 0.02bC 11.4 ± 0.3bcC (0) 11.9 ± 0.5cC (0) 10.0 ± 0.5aB (10) 
Sulfur-containing amino acids (SCAA) 3.43 ± 0.10bC 3.73 ± 0.05cC (0) 4.074 ± 0.112dC (0) 3.0 ± 0.2aC (12) 

Data shown are mean values from triplicates and the standard deviation. Values in parentheses represent the percentage (%) of reduction of elderly GI 

conditions (E1, E2 and E3) with respect to the control (C). Different lowercase letters indicate significant differences between digestion models and 

different capital letters indicate significant differences between meat origin in Tables 5.4.3. 5.4.4, 5.4.5 and 5.4.6, with a significance level of 95% 

(p<0.05). HAA = Ala, Val, Ile, Leu, Tyr, Phe, Trp, Pro, Met, Cys; PCAA = Arg, Lys, His; NCAA = Asp, Asn, Glu, Gln; AAA = Phe, Trp, Tyr; SCAA = Cys, Met. 



 

213 

 

 

Table 5.4.4. Amino acids profile (g/100 g protein) of intestinal digesta of turkey obtained under in vitro simulation of control (C) and elderly GI 
conditions (E1, E2 and E3). 

Amino acid 
Turkey 

C E1 E2 E3 

Alanine (Ala) 1.45 ± 0.08bB 1.468 ± 0.008bB 1.90 ± 0.10cB 1.31 ± 0.02aB 
Glycine (Gly) 0.530 ± 0.003bB 0.572 ± 0.006bB 0.69 ± 0.02cB 0.408 ± 0.014aB 
α-Aminobutyric acid (ABA) 0.113 ± 0.010aB 0.122 ± 0.008aB - - 
Valine (Val) 2.28 ± 0.10aA 2.35 ± 0.03aB 2.95 ± 0.10bB 2.43 ± 0.06aB 
Leucine (Leu) 5.39 ± 0.19aA 5.583 ± 0.107aA 6.70 ± 0.14cA 6.19 ± 0.18bA 
Isoleucine (Ile) 2.02 ± 0.09aA 2.09 ± 0.04aB 2.586 ± 0.112bA 2.25 ± 0.13aA 
Threonine (Thr) 1.20 ± 0.05bB 1.23 ± 0.02bB 1.54 ± 0.05cB 1.03 ± 0.02aB 
Serine (Ser) 1.07 ± 0.05bB 1.06 ± 0.03bB 1.33 ± 0.06cB 0.443 ± 0.09aA 
Proline (Pro) 0.324 ± 0.003bB 0.341 ± 0.002cB 0.44 ± 0.02dB 0.30 ± 0.02aB 
Asparagine (Asn) 1.06 ± 0.08aB 1.06 ± 0.04aB 1.31 ± 0.08bC - 
Aspartic acid (Asp) 0.79 ± 0.02bB 0.76 ± 0.02bB 0.93 ± 0.07cB 0.27 ± 0.05aB 
Methionine (Met) 1.34 ± 0.15aA 1.46 ± 0.02aA 1.76 ± 0.04bA 1.2 ± 0.4aA 
Glutamic acid (Glu) 2.2 ± 0.3bA 2.00 ± 0.12bA 2.4 ± 0.3bB 1.6 ± 0.2aB 
Phenylalanine (Phe) 2.87 ± 0.05aA 3.08 ± 0.10aA 3.48 ± 0.05bA 3.4 ± 0.2bAB 
Glutamine (Gln) 2.31 ± 0.08aA 2.38 ± 0.12aB - - 
Ornithine (Orn) 0.430 ± 0.002bB 0.432 ± 0.010bcB 0.447 ± 0.006cA 0.402 ± 0.002aC 
Lysine (Lys) 8.0 ± 1.0bcA 7.60 ± 0.03bA 8.6 ± 0.6cA 7.1 ± 0.2aA 
Histidine (His) 2.00 ± 0.04aB 2.15 ± 0.07aB 2.53 ± 0.19bB 2.4 ± 0.2abC 
Tyrosine (Tyr) 3.8 ± 0.2aB 4.1 ± 0.4abBC 4.2 ± 0.5abC 4.59 ± 0.03bC 
Tryptophan (Trp) 2.22 ± 0.10aB 2.43 ± 0.08aB 2.71 ± 0.04bB 2.6 ± 0.2abB 
Cystine (C-C) 1.66 ± 0.03bC 1.83 ± 0.08cB 1.90 ± 0.02cC 1.05 ± 0.03aA 
EAA/NEAA ratio 2.13 ± 0.02aB 2.09 ± 0.08aB 2.18 ± 0.03aB 2.8 ± 0.3bA 
Hydrophobic amino acids (HAA) 21.64 ± 1.12aA 22.9 ± 0.9abB (0) 26.7 ± 0.9cB (0) 24.50 ± 1.09bB (0) 
Positively charged amino acids (PCAA) 10.0 ± 1.2abA 9.3 ± 0.8aA (7) 11.2 ± 0.9bAB (0) 9.2 ± 0.5aA (8) 
Negatively charged amino acids (NCAA) 6.3 ± 0.6cB 6.2 ± 0.3cB (2) 4.7 ± 0.6bA (26) 2.05 ± 1.10aA (68) 
Aromatic amino acids (AAA) 8.9 ± 0.4aB 9.6 ± 0.8abB (0) 10.4 ± 0.8bB (0) 10.9 ± 0.7bB (0) 
Sulfur-containing amino acids (SCAA) 3.0 ± 0.2bB 3.29 ± 0.12bB (0) 3.66 ± 0.07cB (0) 2.2 ± 0.4aB (25) 

Data shown are mean values from triplicates and the standard deviation. Values in parentheses represent the percentage (%) of reduction of elderly 

GI conditions (E1, E2 and E3) with respect to the control (C). Different lowercase letters indicate significant differences between digestion models and 

different capital letters indicate significant differences between meat origin in Tables 5.4.3. 5.4.4, 5.4.5 and 5.4.6, with a significance level of 95% 

(p<0.05). HAA = Ala, Val, Ile, Leu, Tyr, Phe, Trp, Pro, Met, Cys; PCAA = Arg, Lys, His; NCAA = Asp, Asn, Glu, Gln; AAA = Phe, Trp, Tyr; SCAA = Cys, Met. 
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Table 5.4.5. Amino acids profile (g/100 g protein) of intestinal digesta of pork obtained under in vitro simulation of control (C) and elderly GI 
conditions (E1, E2 and E3). 

Amino acid 
Pork 

C E1 E2 E3 

Alanine (Ala) 1.21 ± 0.03cA 1.13 ± 0.02bA 1.36 ± 0.07dA 1.04 ± 0.03aA 
Glycine (Gly) 0.404 ± 0.012bA 0.418 ± 0.008bA 0.494 ± 0.016cA 0.309 ± 0.005aA 
α-Aminobutyric acid (ABA) 0.082 ± 0.005aA 0.097 ± 0.005bA 0.129 ± 0.012cA 0.125 ± 0.004cA 
Valine (Val) 2.19 ± 0.09aA 2.06 ± 0.07aA 2.49 ± 0.15bA 2.10 ± 0.12aA 
Leucine (Leu) 5.5 ± 0.2abA 5.38 ± 0.10aA 6.4 ± 0.5cA 5.9 ± 0.2bcA 
Isoleucine (Ile) 2.076 ± 0.110abA 1.96 ± 0.08aA 2.35 ± 0.15bA 2.04 ± 0.14abA 
Threonine (Thr) 1.07 ± 0.03bA 1.02 ± 0.05bA 1.21 ± 0.06cA 0.93 ± 0.03aA 
Serine (Ser) 0.750 ± 0.008cA 0.70 ± 0.02bA 0.84 ± 0.02dA 0.515 ± 0.016aA 
Proline (Pro) 0.226 ± 0.015bA 0.2253 ± 0.0108bA 0.285 ± 0.010cA 0.1819 ± 0.0006aA 
Asparagine (Asn) 0.81 ± 0.03cA 0.72 ± 0.03bA 0.82 ± 0.03cA 0.40 ± 0.03aA 
Aspartic acid (Asp) 0.607 ± 0.008bA 0.6609 ± 0.0013cA 0.73 ± 0.04dA 0.469 ± 0.004aC 
Methionine (Met) 1.47 ± 0.07abA 1.42 ± 0.03aA 1.70 ± 0.13bA 1.49 ± 0.07abA 
Glutamic acid (Glu) 1.90 ± 0.06bA 1.73 ± 0.15bA 1.8 ± 0.2bA 1.14 ± 0.02aA 
Phenylalanine (Phe) 2.90 ± 0.10aA 3.00 ± 0.05aA 3.5 ± 0.2bA 3.26 ± 0.13bA 
Glutamine (Gln) 2.23 ± 0.02cA 2.07 ± 0.06bA 2.31 ± 0.14cA 1.924 ± 0.013aA 
Ornithine (Orn) 0.382 ± 0.013bA 0.381 ± 0.006bA 0.411 ± 0.013cA 0.3678 ± 0.0005aB 
Lysine (Lys) 9.1 ± 0.2bA 7.7 ± 0.7aAB 8.6 ± 0.3bA 8.96 ± 0.14bB 
Histidine (His) 1.62 ± 0.10aA 1.61 ± 0.03aA 2.05 ± 0.09cA 1.81 ± 0.06bB 
Tyrosine (Tyr) 3.0 ± 0.2aA 3.09 ± 0.06aA 3.41 ± 0.12bB 3.77 ± 0.09cB 
Tryptophan (Trp) 1.893 ± 0.105aA 1.99 ± 0.05aA 2.38 ± 0.16cA 2.15 ± 0.07bA 
Cystine (C-C) 0.76 ± 0.05aA 0.87 ± 0.04aA 1.04 ± 0.03bA - 
EAA/NEAA ratio 2.87 ± 0.10aD 2.69 ± 0.07aD 2.84 ± 0.09aC 3.64 ± 0.04bB 
Hydrophobic amino acids (HAA) 20.53 ± 1.09aA 20.3 ± 0.5aA (1) 23.8 ± 1.7bA (0) 21.6 ± 1.0abA (0) 
Positively charged amino acids (PCAA) 10.7 ± 0.3bA 8.82 ± 1.12aA (18) 10.7 ± 0.4bA (0) 10.6 ± 0.3bB (1) 
Negatively charged amino acids (NCAA) 5.54 ± 0.02cA 5.18 ± 0.12bA (6) 5.7 ± 0.4bcB (0) 3.91 ± 0.07aB (29) 
Aromatic amino acids (AAA) 7.8 ± 0.5aA 8.1 ± 0.2aA (0) 9.3 ± 0.5bB (0) 9.1 ± 0.3bA (0) 
Sulfur-containing amino acids (SCAA) 2.23 ± 0.13bA 2.30 ± 0.09bA (0) 2.7 ± 0.2cA (0) 1.47 ± 0.07aA (34) 

Data shown are mean values from triplicates and the standard deviation. Values in parentheses represent the percentage (%) of reduction of elderly 

GI conditions (E1, E2 and E3) with respect to the control (C). Different lowercase letters indicate significant differences between digestion models 

and different capital letters indicate significant differences between meat origin in Tables 5.4.3. 5.4.4, 5.4.5 and 5.4.6, with a significance level of 95% 

(p<0.05). HAA = Ala, Val, Ile, Leu, Tyr, Phe, Trp, Pro, Met, Cys; PCAA = Arg, Lys, His; NCAA = Asp, Asn, Glu, Gln; AAA = Phe, Trp, Tyr; SCAA = Cys, Met. 
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Table 5.4.6. Amino acids profile (g/100 g protein) of intestinal digesta of beef obtained under in vitro simulation of control (C) and elderly GI 
conditions (E1, E2 and E3). 

Amino acid 
Beef 

C E1 E2 E3 

Alanine (Ala) 3.4 ± 0.2cD 3.00 ± 0.06bD 3.1 ± 0.3bcD 2.17 ± 0.03aD 
Glycine (Gly) 0.97 ± 0.09bD 0.9040 ± 0.0010bD 0.92 ± 0.06bD 0.60 ± 0.08aD 

α-Aminobutyric acid (ABA) 0.18 ± 0.02bcC 0.176 ± 0.002bC 0.195 ± 0.008cB 0.130 ± 0.009aA 
Valine (Val) 4.2 ± 0.3cD 3.90 ± 0.05bD 3.9 ± 0.3bcD 2.68 ± 0.12aC 
Leucine (Leu) 8.3 ± 0.4cC 7.6 ± 0.2bC 7.9 ± 0.7bcB 6.1 ± 0.5aA 
Isoleucine (Ile) 3.6 ± 0.2bC 3.26 ± 0.08bD 3.3 ± 0.3bB 2.43 ± 0.06aB 
Threonine (Thr) 2.6 ± 0.3bD 2.38 ± 0.03bD 2.4 ± 0.2bD 1.7 ± 0.2aD 
Serine (Ser) 2.3 ± 0.2cD 2.083 ± 0.014bD 2.1 ± 0.2bcC 0.58 ± 0.02aB 
Proline (Pro) 0.60 ± 0.10bcD 0.54 ± 0.02bD 0.69 ± 0.03cD 0.41 ± 0.09aC 
Asparagine (Asn) 2.3 ± 0.2bC 2.071 ± 0.010bC 2.0 ± 0.2bD 0.58 ± 0.12aB 
Aspartic acid (Asp) 1.91 ± 0.14bD 1.92 ± 0.02bD 1.77 ± 0.10bD 0.54 ± 0.06aD 
Methionine (Met) 2.26 ± 0.10cC 2.06 ± 0.07bC 2.2 ± 0.2bcB 1.84 ± 0.14aB 
Glutamic acid (Glu) 8.0 ± 0.7cC 6.8 ± 0.2bC 6.8 ± 0.6bcD 5.1 ± 0.3aD 
Phenylalanine (Phe) 3.5 ± 0.2bB 3.32 ± 0.07abB 3.4 ± 0.2abA 3.1 ± 0.2aA 
Glutamine (Gln) 4.0 ± 0.3aB 3.7 ± 1.4aB 3.6 ± 0.3Ab 3.6 ± 0.9aB 
Ornithine (Orn) 0.37 ± 0.02bA 0.36 ± 0.09abAB 0.37 ± 0.03abA 0.33 ± 0.02aA 
Lysine (Lys) 10.4 ± 1.2aB 9.74 ± 0.02aC 10.1 ± 0.9aB 10.6 ± 0.9aD 
Histidine (His) 1.9 ± 0.2Bab 2.1 ± 0.6abABC 2.11 ± 0.10bA 1.4 ± 0.3aA 
Tyrosine (Tyr) 2.3 ± 0.6aA 2.3 ± 0.8aA 2.311 ± 0.114aA 3.1 ± 0.5aA 
Tryptophan (Trp) 2.32 ± 0.05aB 2.4 ± 0.8aABC 2.5 ± 0.2aAB 2.3 ± 0.3aAB 
Cystine (C-C) 1.0 ± 0.2aA 1.3 ± 0.6abAB 1.492 ± 0.009bB - 
EAA/NEAA ratio 1.724 ± 0.004aA 1.75 ± 0.09aA 1.78 ± 0.03aA 2.5 ± 0.3bA 
Hydrophobic amino acids (HAA) 30.5 ± 0.8cC 28.5 ± 0.4bC (7) 29.3 ± 0.2bC (4) 24.1 ± 0.9aB (21) 
Positively charged amino acids (PCAA) 12.3 ± 0.4bB 11.81 ± 0.07aB (4) 12.2 ± 0.2bB (0) 12.0 ± 0.8abC (2) 
Negatively charged amino acids (NCAA) 16.2 ± 0.8cC 14.5 ± 0.7bC (11) 14.19 ± 0.02bC (13) 10 ± 2aC (40) 
Aromatic amino acids (AAA) 8.13 ± 0.07aA 8.09 ± 0.06aA (0) 8.22 ± 0.02aA (0) 8.5 ± 1.4aA (0) 
Sulfur-containing amino acids (SCAA) 3.214 ± 0.008bB 3.35 ± 0.02bB (0) 3.66 ± 0.04cB (0) 1.8 ± 0.2aB (43) 

Data shown are mean values from triplicates and the standard deviation. Values in parentheses represent the percentage (%) of reduction of elderly GI 

conditions (E1, E2 and E3) with respect to the control (C). Different lowercase letters indicate significant differences between digestion models and different 

capital letters indicate significant differences between meat origin in Tables 5.4.3. 5.4.4, 5.4.5 and 5.4.6, with a significance level of 95% (p<0.05). HAA = Ala, 

Val, Ile, Leu, Tyr, Phe, Trp, Pro, Met, Cys; PCAA = Arg, Lys, His; NCAA = Asp, Asn, Glu, Gln; AAA = Phe, Trp, Tyr; SCAA = Cys, Met. 
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Literature reports EAA/NEAA ratios between 0.6 and 0.9 depending on the 

type of meat and processing 30,31. However, no values of this ratio after 

digestion were found in the literature. The EAA/NEAA ratio of cooked meats 

digested under C GI conditions were 1.68, 2.13, 2.24 and 2.87 for beef, 

turkey, chicken and pork, respectively, with EAA release being much more 

favored than NEAA release.  The ratio EAA versus NEAA kept similar under 

E1 (oral alteration) and E2 (oral and gastric alterations) GI conditions. 

Nevertheless, a considerable rise in the EAA/NEAA ratio value was found in 

samples digested mimicking the most suboptimal GI conditions given in 

elderlies (E3 model). So, even when the extent of proteolysis (for both TCA 

soluble protein and for the sum of the FAA) was limited under the E3 model, 

elderly GI conditions might enhance the EAA release in a greater extent than 

the NEAA. The specificity of pancreatic enzymes for certain peptide bonds 
32 could be responsible of these results, being this chemical preference more 

noticed under suboptimal pancreatic concentrations. Most of amino acids 

involved in muscle synthesis are essential ones 3, making these results of 

great interest to dietitians when addressing recommendations to elderlies 

and other individuals susceptible to suffer of sarcopenia. 

Besides, amino acids have been chemically classified as hydrophobic amino 

acids (HAA= Ala, Val, Ile, Leu, Tyr, Phe, Trp, Pro, Met, Cys), positively charged 

amino acids (PCAA = Lys, His), negatively charged amino acids (NCAA = Asp, 

Asn, Glu, Gln), aromatic amino acids (AAA = Phe, Trp, Tyr) and sulfur-

containing amino acids (SCAA = Cys, Met) and their values reported as well. 

According to the obtained results, meat digesta were found to be richer in 

HAA than PCAA, AAA, NCAA and finally SCAA. The highest amount of HAA, 

PCAA and NCAA (mg/ 100 g of protein) was reported in digested chicken and 

beef, regardless the GI conditions; while very similar values of AAA and SCAA 

were found for all meat digesta.  
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With regards to the effect of GI conditions on the different amino acid 

chemical groups, significant reduction was found under E3 GI conditions in 

chicken and beef compared to the C model. Concretely, the release of amino 

acids belonging to HAA, NCAA and SCAA were highly compromised by the 

suboptimal conditions at intestinal stage. Concretely, a decrease up to 21, 

40 and 43% (respectively for HAA, NCAA and SCAA) was noticed in beef 

under E3 with respect to those values achieved under C. On the other hand, 

the concentration of the different amino acidic groups, excepting NCAA, 

were similar in turkey and pork digesta in the C and E3.  The beneficial effect 

of amino acids, peptic fractions built-up of them, on consumer’s health have 

been stated to be dependent on amino acids chemical classification. 

Concretely, end-digestion protein products can exert as hypertensive 

inhibitor, antioxidative, glucose uptake stimulating peptide, antithrombotic, 

anti-amnestic, dipeptidyl peptidase IV inhibitor, stomach mucosal 

membrane activity, regulators, dipeptidyl carboxypeptidase inhibitor. Both 

antihypertensive and antioxidant activities have been analyzed in this study 

and are discussed henceforth. 

Antioxidant and antihypertensive properties of meat bioaccessible 

fractions obtained under control and elderly GI conditions  

Bioaccessible fractions of post-gastric and post-pancreatic meat digesta 

were analyzed for their ACE-inhibitory (%) and DPPH antioxidant (mg TE/g 

meat dry basis) capacities (Figure 5.4.2). According to the obtained results 

under C GI conditions, only turkey digesta, both gastric and intestinal, would 

exert lower Angiotensin Converting Enzyme (ACE) inhibitory activity, 

compared to the other meats.  The correlation between the release of 

health-promoting peptides and amino acids and antihypertensive activity 33. 

In this sense, it has been reported that ACE-inhibitory activity increases as 

long as proteolysis progresses being higher at the end of digestion 
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compared to post- gastric digesta. Nevertheless, the enzymatic action of 

pepsin, together with the optimal pH, can be considered the key-

mechanism for bioactive peptides release along digestion as it can be 

deduced from the drastic reduction of ACE inhibitory capacity of gastric 

digesta in all meats when gastric conditions were suboptimal.  Even if TCA 

soluble protein values after gastric digestion were similar in all meats, with 

the exception of chicken (Figure 5.4.1A), regardless the simulated GI 

conditions, the peptide profile and their molecular weight, both parameters 

involved in the biological activities, seems to be different under healthy and 

suboptimal GI conditions. At this point, the determination of peptidic 

fractions would be interesting as a reduction of molecular mass distribution 

of peptides from 5 kDa to 1 kDa, or lower, has been reported to increase the 

ACE inhibitory activity 33. Most blood pressure-lowering peptides have been 

found to be short sequences of 2–12 amino acids with Pro, Lys, Leu or 

aromatic residues preferably in any of the three positions close to the C-

terminal site 34. In contrast, larger peptides have been shown to exhibit 

difficulties in binding to the ACE active site, resulting in decreased inhibitory 

capacity 35. The ACE inhibitory peptides contain hydrophobic amino acid at 

the N-terminal, as well as Trp at the C-terminal tripeptide sequence, which 

may contribute to ACE inhibitory activity. The hydrophobicity of peptides is 

assumed to contribute to their ACE-inhibitory activity and, furthermore, to 

their bioavailability 36. On the other hand, only ACE inhibitory (%) of 

intestinal digesta of beef experimented an additional significant reduction 

under E3 model compared to values achieved under E2 model. Therefore, 

the positive health-related benefits obtained from meat intake, excepting 

from beef, would be more compromised in elderlies with gastric suboptimal 

conditions compared to those elders suffering from intestinal insufficiency.  

Concerning the antioxidant activity of digesta (Figure 5.4.2B) turkey, 

followed by pork, achieved the highest values (mg of TE/ g dry matter) at 
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the end of digestion standard under healthy GI conditions (C). Protein 

hydrolysates might present different affinities for radicals resulting leading 

to synergistic and antagonistic effects at antioxidant level depending on 

meat origin 37. Thus, Martini et al. (2019) 16 reported the highest anti-

peroxidative activity against linoleic acid auto-oxidation, ABTS and hydroxyl 

radical scavenging for turkey and pork post-intestinal digesta; while beef 

digesta presented the least values. Moreover, it has been reported that in 

fatty-meats, such as beef, some peptides can be involved in the prevention 

of essential fatty acids peroxidation resulting in a reduced total antioxidant 

activity 38. 

The relevance of the digestion events occurring at gastric stage is also 

notable on the antioxidant capacity of post-gastric digesta which underwent 

a drastic decrease under suboptimal gastric conditions, compared to under 

standard conditions.   

As explained for the ACE-inhibitory capacity, gastric digesta obtained under 

C and E1 GI conditions would present peptides with improved inhibitory 

potentials against the DPPH radicals compared to those obtained from E2 

and E3 models. Bioactive peptides displaying antioxidant properties contain 

HAA and PCAA (notably, Tyr, Met, His and Lys). Also, aromatic amino acids 

(AAA) such as tryptophan, as well as those with positively charged character 

(PCAA) like histidine, exhibit high antioxidant capacity as hydrogen donors 

due to the presence of indolic and imidazole groups in AAA and PCAA, 

respectively. Since pepsin presents high preference for the N-terminal of 

AAA, it is expected that this chemical group were hydrolysed at gastric level 

being available for bioabsorption before others. Certain PCAA seem to 

enhance the up-regulation of genes involved in the mitochondrial 

biogenesis, as an alternative pathway for long-chain fatty acids oxidation 

and glucose metabolism in insulin-sensitive tissues 39. Similarly, methionine 
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(belonging to SCAA) besides histidine, serine and glycine are the main 

contributors of 1-carbon groups. Actually, NCAA, PCAA and SCAA (e.g. 

glutamine, arginine and N-acetyl-cysteine, respectively) are known to 

significantly contribute to the oxidative defense and immune function 39.   

Besides, gastric digesta from chicken exerted the highest antioxidant 

capacity. In this sense, chicken meat has been reported to be higher in 

bioactive imidazole dipeptides anserine (β-alanyl-L-histidine) and carnosine 

(N-β-alanyl-1-methyl-L-histidine) which display high antioxidant capacity. 

Sarmadi & Ismail (2010) 40 have been reported to display high antioxidant 

activity. Even though the effect of gastric suboptimal conditions on gastric 

digesta’s antioxidant capacity, only when alterations are also mimicked at 

intestinal level, a reduction of this property is found at the end of digestion. 

Therefore, the antioxidant capacity of the potential bioabsorbable fraction 

would decline when disfunctions appeared at both gastric and intestinal 

stages, their effect being more acute in poultry than mammals’ meat. The 

hydrophobic properties of some amino acids can improve, or decrease, the 

antioxidant effect of peptides because of their interactions with lipids 

among others 32. An increase of the digestion time could be responsible of 

a promotion of greater number of these reactions.  

Principal Component Analysis (PCA) applied to the obtained data 

Figure 5.4.3 shows the biplot coming from PCA and applied to the data 

obtained after gastric and intestinal digestion of the four meats under the 

different GI conditions (C, E1, E2 and E3). As it can be seen in Figure 5.4.3A, 

the two main components explain 88.930 % of the variance of data at gastric 

stage (PC1: 58.227% and PC2: 30.703%). PC1 clearly distinguishes between  
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Figure 5.4.3. Biplot obtained by means of a principal component analysis 
(PCA) of the different gastric (A) and intestinal (B) end-digestion protein 
products and properties (FAA, EAA/NEAA ratio, HAA, PCAA, NCAA, AAA, 
SCAA, TCA soluble protein as well as ACE inhibition and DPPH antioxidant 
activities), and their association with the binomial meat type (chicken and 
turkey, beef and pork)-GI host conditions (C, E1, E2 and E3). 
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GI conditions, showing digesta of meat obtained under C and E1 GI 

conditions presented both higher ACE ia and antioxidant activity than 

digested obtained under E2 and E3, with the exception of turkey samples. 

Likewise, PC2 distinguishes among meats, being greater the TCA soluble 

protein and DPPH antioxidant activity in poultry than in pork or beef digesta. 

On the other hand, Figure 5.4.3B explains the 73.756% of the variance of 

data obtained at the end of intestinal digestion. PC1 (50.995%) highlights 

the closed relationship and higher values of TCA soluble protein, free amino 

acids and ACE ia (%) found for chicken and beef when intestinal conditions 

remain standard. Besides, DPPH antioxidant activity seems to be positively 

linked to the EAA/NEAA ratio. PC2 only represent the 22.801 % of the 

variance of data, but evidences different among poultry and mamals’ meat 

intestinal digesta as for gastric digesta.   

CONCLUSIONS 

Among the simulated gastrointestinal alterations appearing with aging, 

intestinal GI conditions were the only having a statistically significant 

negative effect on meat protein digestibility. Their effect was dependent on 

meat type. Contrarily to the expected, a 50% of chewing cycles reduction 

did not negative impact meat digestion. Reductions of up to 28 and 27% of 

TCA soluble protein and free amino acid released, respectively, were found 

in beef compared with total extents achieved under standard intestinal 

digestion conditions. Besides and unexpectedly a 50% reduction of chewing 

cycles did not hinder meat digestibility. Gastric alterations neither affected 

the protein breakdown, even being favored, mainly in chicken meat. 

According to that, chicken meat consumption would be more advisable than 

other meats to maximize the TCA soluble protein; while beef intake would 

result in more FAA release under elderly GI conditions. 
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A notable increase in the release of essential amino acids, compared with 

the non-essential ones, was also noticed under simulated elderly GI 

conditions. Regarding the functional properties related to the protein end-

digestion products, meats are highly recommended for their antioxidant 

and antihypertensive capacities. Both the gastric elderly alterations and the 

intestinal ones resulted in high reductions of meat digesta functionalities. 

Pork was more recommended to ensure maximum ACE inhibition against 

hypertension diseases in elders. Nevertheless, turkey meat digesta could 

exert more antioxidant benefits to people over 65 years. Therefore, this 

study provides a better understanding of protein digestion according to the 

type of meat, together with the functional properties related to the 

hydrolysis of proteins, under oral, gastric and intestinal suboptimal 

conditions of elderlies. This data may contribute to the establishment of 

more accurate dietary recommendations concerning meat consumption 

and addressed to this population group.  
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5.5 Chapter 5: Age-related gastrointestinal alterations of legumes and 

cereal grains digestibility.  
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Abstract 

Aging is accompanied by changes in gastrointestinal functions. The impact 

of the gastrointestinal (GI) conditions of the elderly on the extent of 

proteolysis and glycolysis as well as calcium bioaccessibility in some cooked 

legumes (chickpea, lentils, soya bean and white bean) and 

cereals/pseudocereals (oats, spelt and quinoa) were studied. Samples were 

digested in vitro using three GI models specifically focused on the elderly in 

which oral, gastric and intestinal conditions were altered (E1: altered oral 

conditions, E2: altered oral and gastric conditions and E3: altered oral, 

gastric and intestinal conditions). Samples were also subjected to a 

standardized GI digestion as a control (C). The extent of proteolysis was only 

significantly affected with suboptimal intestinal conditions (p<0.05). Protein 

digestibility of cereal grains decreased to a greater extent than for legumes. 

The release of non-essential amino acids was more affected than that of 

essential ones, mainly in legumes such as soya bean, lentils and white bean. 

The extent of glycolysis was much higher in cereal grains than legumes 

regardless of GI digestion conditions. Glycolysis declined with altered 

intestinal conditions (E3) compared to the C, in all legumes and spelt. 

Calcium bioaccessibility was much higher in cereal/pseudocereals than in 

legumes. However, calcium bioaccessibility seems to be highly limited in 

elderly people suffering from oral, gastric or intestinal alterations (up to 53% 

reduction compared to C). Such data might be helpful to develop dietary 

strategies based on protein-rich vegetal foods, including alternative crops 

such as oats, quinoa and spelt, specifically used to mitigate sarcopenia and 

osteoporosis in elderly people.  

Key words: ageing; legumes; grains; digestibility; calcium bioaccessibility. 
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INTRODUCTION 

The world population has been predicted to exceed 9.7 billion by 2050. In 

addition, people above age 65 are expected to considerably increase, 

exceeding the number of children by 2045 1. The nutrition of the elderly is a 

global concern since health conditions and body composition change with 

age. Protein intake has an important role as its deficit is associated with 

muscle mass loss (sarcopenia) or physical weakness (asthenia) amongst 

other conditions. Moreover, calcium and vitamin D deficiencies have been 

associated with osteoporosis which increases the risk of fractures 2,3. Meat, 

fish and dairy products, which are important sources of high biological value 

proteins, are often unaffordable for those with low incomes. Therefore, the 

Food and Agriculture Organization of the United Nations (FAO) has 

recommended an increase of legume consumption because of their high 

protein content, their affordability, and their contribution to food security 

and environmental sustainability 4. Legumes are good sources of vegetable 

protein and minerals, especially iron, zinc, and calcium as well as relevant 

quantities of phenolic compounds 5–7. Additionally, they also have complex 

carbohydrates and dietary fiber which makes their glycemic-index low 8. 

Studies associate their consumption with a lower prevalence and incidence 

of illness (obesity, cardiovascular disease, type 2 diabetes, and some types 

of cancers) 9,10. Thus, to supply the nutritional needs of the elderly, the 

World Health Organization (WHO) has recommended the intake of healthy 

legume-based dishes 11. However, some minor grains such as quinoa, oats 

or spelt, have also gained interest due to their higher content of nutrients 

not found in relevant amounts in the major cereal crops such as wheat, rice 

or corn (maize). In addition, they contribute to the diversification of food 

crops which can help stabilize global food production 12. Therefore, they 

should be considered as future alternative sources of protein for the elderly, 

and for the human population in general. Minor crops such as oats and spelt 
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are also a good source of dietary fiber, vitamin B, and numerous dietary 

minerals. Additionally, oats contain legume-like protein and their quality is 

nearly equivalent to soy protein, hence the World Health Organization study 

has shown they are the closest vegetable proteins to meat, milk, and egg 

protein 13. Quinoa, considered as a pseudo-cereal in the botanic 

classification, is characterized by its large amount of essential amino acids 

(EAA), especially Lys, which is close to the standards set by FAO for human 

nutrition 14. Thus, FAO has recommended quinoa intake due to its well-

balanced proteic profile similar to that of milk 15. Compared to most cereals, 

quinoa has higher amounts of vitamins and minerals such as calcium, iron 

and copper, as well as a lower carbohydrate content (than wheat, barley, 

corn and rice) 16. However, these benefits can be limited in the elderly due 

to poor mastication, reduced digestive enzymes and bile salts secretion, 

suboptimal pH or longer transit time through the gastrointestinal (GI) tract, 

amongst others 17. The structural matrix, chemical properties or the 

interactions among macro- and micronutrients can also modulate 

digestibility altering hydrolysis with similar digestive conditions. However, 

studies aiming to elucidate the contribution of food-inherent factors from 

other crops on digestibility and the different GI alterations in the elderly are 

limited.  

Therefore, this study aimed to analyze the impact of GI alterations, 

frequently found in the elderly, on protein and carbohydrate digestibility 

and calcium bioaccessibility in 4 legumes (chickpea, lentils, white bean and 

soya bean) and three alternative grains (oats, spelt and quinoa) using a static 

in vitro digestion system. 

MATERIAL AND METHODS 

Chemicals 
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Pepsin from porcine gastric mucosa (3200–4500 U/mg, P6887), pancreatin 

(8 x USP, P7545) from porcine pancreas, p-toluene-sulfonyl-L-arginine 

methyl ester (TAME, T4626), bovine bile (dried, unfractionated, B3883), 

analytical grade salts (potassium chloride, potassium dihydrogen 

phosphate, sodium bicarbonate, sodium chloride, magnesium chloride, 

ammonium carbonate, calcium chloride, potassium sulfate and potassium 

sodium tartrate tetrahydrate), boric acid, hydrochloric acid (37%), sulfuric 

acid (95-97%), sodium hydroxide, DNS (3-5′ dinitrosalicylic acid) reagent, D-

+-glucose (≥99.5%), ethanol (96%) and invertase from baker´s yeast (Grade 

VII, ≥300 units/mg solid, I4504) were obtained from Sigma-Aldrich Co. (St. 

Louis, MO, USA). Nitric acid (70%) and lanthanum (III) chloride heptahydrate 

(analytical grade) were purchased from Honeywell Fluka (Morris Plains, NJ, 

USA); petroleum ether (VWR Chemicals, VWR International Pty. Ltd., 

Murarrie, Queensland, Australia), amyloglucosidase (Aspergillus niger) (E-

AMGDF, Megazyme, Bray, Ireland) and EZ-Faast amino acid kit 

(Phenomenex, Torrance, CA, USA) were also used. 

Legumes (chickpea (Cicer arietinum, Hacendado®, Valencia, Spain), pardina 

lentils (Lens culinaris var. Variabilis, Hacendado®), white bean (Phaseolus 

vulgaris, Hacendado®) and soya bean (Glycine max, Biográ®, Barcelona, 

Spain)) and cereal grains (whole oats (Avena sativa, Biográ®), whole spelt 

(Triticum spelta, Biográ®) and quinoa (Chenopodium quinoa, Hacendado®)) 

were purchased previously dried for retail sales at local stores in Valencia 

(Spain). 

Sample preparation 

Legumes and cereal grains were soaked (excepting lentils and quinoa) and 

boiled before in vitro digestion studies. Soaking was overnight with 

deionized water (Barnstead Mega-Pure deionizer, Thermo-Fisher Scientific, 

Waltham, MA, USA) at a ratio of 1:3 (w:w) grain:water at 20 ± 1 °C. 
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Subsequently, soaked grains were boiled at 95 ± 5 °C with deionized water 

with a ratio of 1:3 (w:w) grain:water for 60, 45, 30, 60 and 25 min for soya 

bean, chickpea, white bean, whole spelt and whole oats, respectively. 

Pardina lentils and quinoa were directly boiled at the same grain:water ratio 

for 20 and 10 min, respectively. Cooking time was determined and adjusted 

for each variety in preliminary analyses considering label recommendation, 

i.e., until legumes could be crushed with fingers and reached a moisture 

content of 60 ± 6% (on a wet basis). All cooked samples were drained in a 

kitchen sieve for 2 min and kept cool at 20 ± 2 °C until they reached this 

temperature. Cooked samples were then immediately used for composition 

analysis and in vitro digestion. 

Compositional analysis   

After cooking and cooling, moisture, ash, fat, fiber and crude protein (using 

a Kjeldahl factor of 5.70) contents were characterized in the samples 

according to the AOAC official methods 934.01, 942.05, 920.39, 962.09 and 

960.52 18, respectively. Initial sugars and total starch content were also 

determined quantifying glucose using the DNS colorimetric method 

according to Armellini et al. (2019) 19. Before the measurement of total 

starch, samples were freeze-dried, mill, gelatinized and digested (using 

amyloglucosidase). In addition, ash was dissolved in a 20% nitric acid 

solution and La (III) was added to 0.1% (w/v) to determine calcium content 

using an iCE 3000 Series flame atomic absorption spectrometer (Thermo 

Scientific, Waltham, MA, USA). Air:acetylene (11.5:1.5 L min-1) were used in 

the flame and samples were measured at 422.7 nm. CaCO3 was used to 

obtain a calibration curve (from 0 to 10 mg/L of Ca) 20. 

Static in vitro simulation of GI digestion 
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The control model (C) corresponded to the standard GI conditions of a 

healthy adult as often defined in these types of experiments 21. Particularly 

controversial is the gastric pH. Reports show pH values between 1.5 and 4.0 

(Biehler et al., 2011; Oomen et al., 2003; Reboul et al., 2006). The elderly 

models simulating the accumulative alterations that appear as a 

consequence of ageing (Elderly 1 (oral stage altered (E1), Elderly 2 (oral and 

gastric stages altered (E2)) and Elderly 3 (oral, gastric and intestinal stages 

altered (E3)) (Table 5.5.1). Specific digestive conditions in the elderly were 

established according to Shani-Levi et al. (2017)22, except for the transit time 

of the gastric and intestinal stages 23. Chewing (number of mastication 

cycles) was standardized 24 and done in vivo using a healthy volunteer (male 

student, 30 years old) with good dentition until reaching a bolus consistency 

similar to a tomato or mustard paste 21.  For the elderly, the number of 

chewing cycles were reduced to 50% by the same volunteer to mimic one of 

the most critical oral changes with the elderly, i.e., edentulism, generating 

a bolus with a larger particle size and more difficult to swallow 25,26. Thus, 20 

and 10 chewing cycles for a healthy adult and the elderly, respectively, were 

done for all the cooked foods (except for soya bean). Harder food would 

generally require more chewing cycles (Chen, 2009), i.e., soya bean, where 

30 and 15 chewing cycles were needed.  

All materials were digested at least three times using each GI conditions (C, 

E1, E2 and E3). Table 5.5.1 shows the specific conditions of each digestion 

model. Gastric (SGS) and intestinal (SIS) digestion fluids were prepared fresh 

daily from stock solutions and the digestive enzymatic activity of the 

enzymes were tested before each experiment according to Minekus et al. 

(2014)21. Briefly, the trypsin activity of pancreatin was measured using a 

continuous spectrophotometric rate determination (using Helios Zeta UV-

VIS Spectrophotometer, Thermo Fisher Scientific) using p-toluene-sulfonyl-

L-arginine methyl ester (TAME) as the substrate at different concentrations
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Table 5.5.1. Specific GI conditions set for the 4 in vitro digestion models of this study. 

Digestive stage 
In vitro digestion model 

Control (C) Elderly 1 (E1) Elderly 2 (E2) Elderly 3 (E3) 

Oral stage 
 

5 g of food sample + 
human salivary fluid  
Chewing until a 
consistency like a 
tomato or mustard paste 
is obtained (20 and 30 
cycles for other and soya 
bean, respectively) 

5 g of food sample + 
human salivary fluid  
50% of the Control 
chewing cycles 
55 rpm at 37 °C 

5 g of food sample + human 
salivary fluid  
50% of the Control chewing 
cycles 
55 rpm at 37 °C 

5 g of food sample + human 
salivary fluid  
50% of the Control chewing 
cycles 
55 rpm at 37 °C 

Gastric stage 

Oral bolus + 10 mL SGF 
pH 3 
Pepsin (2000 U/mL) 
2 h 

Oral bolus + 10 mL SGF 
pH 3 
Pepsin (2000 U/mL) 
2 h 
55 rpm at 37 °C 

Oral bolus + 10 mL SGF 
pH 6 
Pepsin (1500 U/mL) 
2 h 
55 rpm at 37 °C 

Oral bolus + 10 mL SGF 
pH 6 
Pepsin (1500 U/mL) 
2 h 
55 rpm at 37 °C 

Intestinal stage 

Gastric chime + 20 mL SIF  
pH 7 
Bile (10 mM) 
+ Pancreatin 
(100 U/mL) 
2 h 

Gastric chime + 20 mL SIF  
pH 7 
Bile (10 mM) 
+ Pancreatin 
(100 U/mL) 
2 h 
55 rpm at 37 °C 

Gastric chime + 20 mL SIF  
pH 7 
Bile (10 mM) 
+ Pancreatin 
(100 U/mL) 
2 h 
55 rpm at 37 °C 

Gastric chime + 20 mL SIF  
pH 7 
Bile (5 mM) 
+ Pancreatin 
(50 U/mL) 
4 h 
55 rpm at 37 °C 
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to obtain the rate at 247 nm. One trypsin unit hydrolyses 1 µmole of 

TAME/min at 25°C, pH 8.1. Likewise, the enzymatic activity of pepsin was 

measured at 280 nm using the spectrophotometric stop rate determination 

using different concentrations of hemoglobin as substrate. One pepsin unit 

will produce a ΔA280 of 0.001/min at pH 2.0 and 37°C, measured as TCA-

soluble products. 

After digestion, the pH of digests was adjusted to 5 and kept in an ice bath 

for 10 min to inhibit the enzymatic reactions before fraction separation and 

analytical determinations. The separation of the liquid fraction from the 

undigested remaining solids was done using a centrifuge at 4000 x g (5810R, 

Eppendorf, Hamburg, Germany) for 5 min at 10 °C to obtain the 

supernatant. 

Analytical determinations 

Free amino acids (FAA) 

Essential (EAA) and non-essential (NEAA) amino acids from protein 

digestion were determined using the protocol by Peinado et al. (2016) 27 

with some modifications. Briefly, the amine and carboxyl groups of the FAA 

contained in 100 μL of the bioaccessible fraction were derivatized at room 

temperature in aqueous solution using the EZ-Faast amino acid kit. 

Derivatized samples were measured using a GC-MS (Injector 7683B series, 

Network GC System 6890N series, Inert Mass Selective Detector 5975 series, 

MSD ChemStation software) (Agilent Technologies, Palo Alto, CA, USA) using 

norvaline as an internal standard. A calibration of the peak area was 

prepared for each amino acid using the amino acids standard solution 

included in the kit. The extent of proteolysis was estimated considering the 

sum of the FAA in the bioaccessible fraction with respect to the amount of 

crude protein in undigested cooked food (equation 5.15). 
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𝐸𝑥𝑡𝑒𝑛𝑡 𝑜𝑓 𝑝𝑟𝑜𝑡𝑒𝑜𝑙𝑦𝑠𝑖𝑠 (%)

=
(𝑔 𝐹𝐴𝐴 𝑖𝑛 𝑏𝑖𝑜𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑙𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛)

(𝑔 𝑐𝑟𝑢𝑑𝑒 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 𝑖𝑛 𝑢𝑛𝑑𝑖𝑔𝑒𝑠𝑡𝑒𝑑 𝑐𝑜𝑜𝑘𝑒𝑑 𝑓𝑜𝑜𝑑)
× 100 

(5.15) 

Digestible starch  

Reducing sugars released during digestion (monosaccharides) were 

determined in the bioaccessible fraction with a colorimetric method using 

dinitrosalicylic acid (DNS) after an invertase and amyloglucosidase 

secondary digestion 19. An aliquot of 1 mL of the bioaccessible fraction was 

mixed with 4 mL of absolute ethanol to prepare an extract. The ethanolic 

extract (50 µL) were added to 250 µL of the enzymatic solution (1% 

amyloglucosidase + 1% invertase in acetate buffer, pH 5.2) and incubated at 

37ºC for 10 min. The DNS mixture (750 µL containing a 1:1:5 mixture of 0.5 

mg/mL glucose:4 M NaOH:DNS reagent (10 g/L of 3,5-dinitrosalicylic acid, 

containing 300 g potassium sodium tartrate and 16 g NaOH)) were added 

and heated for 15 min at 100ºC. Then, 4 mL of cold deionized water were 

added and absorbances measured at 530 nm (using a Helios Zeta UV-VIS 

Spectrophotometer, Thermo Fisher Scientific). Glucose was used to obtain 

a calibration curve (from 0 to 10 mg/L). The extent of glycolysis was 

calculated using equation 5.16: 

𝐸𝑥𝑡𝑒𝑛𝑡 𝑜𝑓 𝑔𝑙𝑦𝑐𝑜𝑙𝑦𝑠𝑖𝑠 (%)

=
(𝑔 𝑓𝑟𝑒𝑒 𝑔𝑙𝑢𝑐𝑜𝑠𝑒 𝐸𝑞.  𝑖𝑛 𝑏𝑖𝑜𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑙𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛)

(𝑔 𝑠𝑡𝑎𝑟𝑐ℎ (𝑔𝑙𝑢𝑐𝑜𝑠𝑒 𝐸𝑞. ) 𝑖𝑛 𝑢𝑛𝑑𝑖𝑔𝑒𝑠𝑡𝑒𝑑 𝑓𝑜𝑜𝑑)
× 100 

(5.16) 

Calcium bioaccessibility 

An aliquot of 4 mL of the bioaccessible fraction was used for free calcium 

determination using flame atomic absorption spectroscopy (FAAS) using the 
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same protocol used to determine the total amount of calcium in undigested 

samples. The bioaccessibility of calcium was estimated using equation 5.17: 

𝐶𝑎𝑙𝑐𝑖𝑢𝑚 𝑏𝑖𝑜𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 (%)

=
(𝑚𝑔 𝐶𝑎2+𝑓𝑟𝑒𝑒 𝑖𝑛 𝑏𝑖𝑜𝑎𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑙𝑒 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛)

(𝑚𝑔 𝐶𝑎2+𝑡𝑜𝑡𝑎𝑙 𝑖𝑛 𝑢𝑛𝑑𝑖𝑔𝑒𝑠𝑡𝑒𝑑 𝑓𝑜𝑜𝑑)
× 100 

(5.17) 

Statistical analysis 

Results were evaluated using an analysis of variance (multivariate ANOVA). 

In addition, multiple range tests were obtained using the LSD (least 

significant difference) of the Fisher test to identify homogeneous groups 

between models and foods. For these analyses, Statgraphics Centurion XVII 

software (Statgraphics Technologies Inc, The Plains, VA, USA) was used with 

a confidence level of 95% (p<0.05). Principal component analysis (PCA) was 

also used to determine the relationship among the experimental data (total, 

EAA and NEAA extents of proteolysis, the extent of glycolysis and calcium 

bioaccessibility).  

RESULTS AND DISCUSSION  

Nutritional composition of legumes and cereal/pseudocereal grains 

Results from the compositional analysis in terms of the crude protein, total 

fat, ash, fiber, sugars and starch contents (Table 5.5.2) were comparable to 

those previously reported 28–30. As expected, legumes showed higher 

protein content than grains, soya bean being the highest, and oats the 

lowest. In addition to the nutritional value, soya bean consumption has 

gained considerable attention given its beneficial effects on cardiovascular 

health by improving the lipid profile, glycaemia and insulin homeostasis, 

blood pressure and aiding weight control 31. Grains ranged from 1% (spelt 
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and white bean) to 10% (soya bean) of lipids on a dry basis. Moreover, fiber 

content was higher in legumes than in alternative crops. On the other hand, 

alternative crops showed greater starch content than legumes. Chickpea 

and oats were higher in calcium than other legume and grains while lentils 

and spelt had the lowest content of this mineral. These results were lower 

than those previously reported 30,32–34 for the raw counterparts. Apparently, 

calcium lixiviation has been reported during soaking and/or cooking in some 

vegetal materials 35.
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Table 5.5.2. Total contents of water, crude protein, fat, ash, reducing sugars, fiber, starch and calcium in 
cooked legumes (chickpea, lentils, soya bean and white bean) and grains (whole oats, whole spelt and 
quinoa). 

Nutrient content /100 g 
dry basis Chickpea Lentils Soya bean White bean Oats Spelt Quinoa 

Moisture (g) 157 ± 0.5d 123 ± 0.2a 175 ± 1e 183 ± 2f 136 ± 3b 145 ± 1c 259 ± 4g 

Crude protein (g) 17.8 ± 0.3e 17.1 ± 0.2d 41 ± 1f 18.2 ± 0.5e 11.3 ± 0.2a 14.1 ± 0.1c 12.4 ± 0.1b 

Fat (g) 5.7 ± 0.1e 1.7 ± 0.5ab 10 ± 1f 1.1 ± 0.4a 2 ± 0.2bc 0.8 ± 0.1a 2.8 ± 0.4d 

Ash (g) 2.2 ± 0.2c 1.91 ± 0.05b 2.9 ± 0.2e 3.17 ± 0.05f 1.62 ± 0.04a 2.1 ± 0.1c 2.61 ± 0.04d 

Reducing sugars (g) 0.09 ± 0.02a 0.16 ± 0.01b 0.28 ± 0.02c 0.11 ± 0.002a 0.30 ± 0.01c 0.42 ± 0.04d 0.46 ± 0.05d 

Fiber (g) 20 ± 2d 18 ± 2d 17 ± 1d 29 ± 3e 4.0 ± 0.4a 10 ± 1c 7 ± 1b 

Starch (g) 55 ± 1c 62 ± 1d 30 ± 3a 48 ± 3b 81 ± 3fg 74 ± 1e 75 ± 4ef 

Calcium (mg) 130 ± 20e 13 ± 1a 88 ± 6d 85 ± 4d 120 ± 10e 30 ± 3b 48 ± 5c 

Data shown are mean values from triplicates and the standard deviation. abc Different lowercase letters indicate significant differences 

between foods, with a significance level of 95% (p<0.05). 
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Protein digestibility of legumes and grains simulating the elderly GI 

conditions 

The biological value of dietary proteins is given by the amino acid profile and 

its GI digestion. Within the amino acids resulting from the protein enzymatic 

hydrolysis, the EAA have an important role in muscle protein synthesis 36. 

Specifically, sarcopenia, the loss of muscle mass as a result of aging, causes 

functional decline and loss of independence in older adults 37. Figure 5.5.1 

shows the extent of proteolysis of the EAA and NEAA fractions found in 

legumes and grains digested with standard (C) and the elderly (E1, E2 and 

E3) GI conditions. The extent of proteolysis with standardized GI conditions 

(C) ranged from 56 to 100%, depending on the food matrix. FAA digestibility 

extents in vegetal foods were similar to those achieved in digested high-

protein foods such as meat or egg (60-90 and 40-80%, respectively) 23,38. 

However, protein in grains was slightly better digested than legumes. 

Similar results were reported in the literature for proteolysis with values 

ranging between 80-95% for oats, spelt and quinoa 39–41, 70–80% for 

legumes 42, and 60% for soya bean 43. The extent of proteolysis achieved by 

the samples, could be even higher than reported because of the extent of 

proteolysis calculation has been just based on FAA without taking into 

account the possible short-chain peptides which are also bioabsorbable. 

Among the legumes, higher proteolysis was obtained with chickpea and 

white bean compared to lentil and soya bean. The low protein hydrolysis 

obtained with soya bean could be due, apart from the presence of 

antinutritional factors, to the low porosity of the matrix. Even if a thermal 

process was used, remaining intact cells could occur and decrease 

considerably the cell wall permeability to proteolytic enzymes 43. Soya bean 

has been associated with low digestibility due that possess a complex matrix 

mostly composed of protein bodies immersed in a lipid matrix of individual 
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bodies and its cell wall is composed of pectins, being less degradable upon 

cooking 44. 

 

Figure 5.5.1. Extent of proteolysis (%) of the EAA and NEAA fractions of A: 
Legumes (chickpea, lentils, soya bean and white bean) and B: Grains (oats, 
spelt and quinoa) obtained with different in vitro digestion models (C, E1, E2 
and E3). abc Different lowercase letters indicate significant differences of EAA 
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and the total extent of proteolysis between digestion models in each 
legume/grain (p<0.05). 

Only the intestinal alteration mimicked in the E3 model had a significant 

impact on protein hydrolysis. A significant decrease in proteolysis was 

observed in these GI conditions compared to values obtained in C. Thus, the 

extent of proteolysis achieved with E3 conditions ranged from 69 to 40% for 

white and soya beans, respectively. The decrease depended on the food 

type, being grain protein (~40% of hydrolysis reduction) the most affected 

with these alterations than legumes. Reasonably, a decrease in the 

pancreatic enzyme and bile concentrations lead to maldigestion and 

malabsorption causing nutritional deficiencies 2. Therefore, protein 

digestion would only be compromised in people suffering from pancreatic 

and/or biliar insufficiency.  

EAA fraction increased from 30 to 69% in soya beans and from 27 to 41% in 

chickpeas in C conditions. Moreover, NEAA fraction ranged between 23 and 

53% (soya bean being the lowest and chickpea the highest) in C conditions 

and fell from 13 to 30% (being chickpea/soya bean the lowest, and white 

bean and grains the highest values) in E3. In like manner, differences in the 

extent of proteolysis were only observed in suboptimal intestinal conditions 

(E3) compared to non-altered intestinal conditions (E2). Regarding the 

EAA:NEAA ratio (Figure 5.5.1), a 1:1 ratio was observed for all samples 

excepting chickpea (3:1 EAA:NEAA ratio) in C conditions. Chickpea protein 

has been reported as a good source of EAA such as isoleucine, lysine, 

tryptophan and aromatic amino acids 45. EAA:NEAA ratio increased to 3:1 in 

soya bean (being 70 and 30% of the extent of proteolysis, respectively for 

EAA and NEAA) subjected to in vitro digestion using altered conditions (E3). 

Thus, the elderly GI alterations seem to limit to a greater extent the release 

of NEAA than EAA in this legume.  
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Tables 5.5.3 and 5.5.4 gather the EAA and NEAA profiles after GI in vitro 

simulation. These results were consistent with those reported by other 

authors 30,32,39,46. Lys, Leu, Trp and Phe were present as the major amino 

acids in all cooked grains, whereas Met was determined to be a deficient 

amino acid. On the other hand, all grains showed low concentrations of Pro 

while Gln was not found. Pro and Gln are the amino acids present in 

prolamin and its presence can cause health issues such as celiac disease 47.  

In some foods, higher surface area in small particles allows higher enzyme 

access 48. However, there were no differences in the results using altered 

oral stage (E1) compared to standard oral conditions (C) since products from 

protein hydrolysis were only quantified at the end of the intestinal stage, 

and therefore, the gastric and intestinal factors (pH, enzymes, surface active 

materials and other biological components) could mask the effect of 

differences in particle size. In the same way, the gastric stage did not show 

differences when E1 was compared to E2, showing that the activity of 

pancreatic proteases might compensate for the suboptimal conditions in 

the gastric stage (E2). Therefore, EAA such as Leu, Ile and Val, also known as 

branched-chain amino acids (BCAA), are EAA that act as important 

substrates and important regulators in protein synthesis with heavier 

anabolic effects not just in healthy subjects, but also in the elderly 49. 

Extent of glycolysis of legumes and grains using the GI elderly conditions 

Legume and grain starch digestibility was evaluated quantifying the amount 

of glucose released at the end of standardized (C) and the elderly (E1, E2 

and E3) in vitro digestion. Figure 5.5.2 shows significant differences among 

legumes and grains in terms of starch hydrolysis, or the extent of glycolysis 

(%) regardless of the GI digestion conditions. Thus, the extent of glycolysis 

varied from 22-35% for legumes and from 65 to 90% (average values) for 

grains when C conditions were simulated. Other studies 28,50–55 report a high
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Table 5.5.3. EAA profile (mg FAA/g protein) of chickpea, lentils, soya bean, white bean, oats, spelt and quinoa after in vitro 
digestion using different elderly digestion models. 

Vegetal food GI conditions 
EAA (mg free amino acid/ g protein) 

Histidine Isoleucine Leucine Lysine Methionine Phenylalanine Threonine Tryptophan Valine 

Chickpea 

C 48 ± 7b 40 ± 4b 90 ± 10c 140 ± 20b 19 ± 2c 67 ± 5c 30 ± 3c 53 ± 5c 51 ± 5b 
E1 46 ± 2b 35 ± 1b 76 ± 1b 130 ± 10b 16.3 ± 0.3b 55 ± 2ab 26 ± 1b 44 ± 2b 44 ± 2b 
E2 48 ± 4b 37 ± 4b 80 ± 10b 130 ± 20b 17 ± 1bc 58 ± 7b 27 ± 2bc 46 ± 3b 46 ± 5b 
E3 36.0 ± 0.4a 26.9 ± 0.1a 59 ± 1a 70 ± 10a 12.8 ± 0.3a 50 ± 1a 16.6 ± 0.3a 35.0 ± 0.4a 33.4 ± 0.4a 

Lentils 

C 40 ± 3b 36 ± 4b 80 ± 10b 120 ± 20b 13 ± 1b 54 ± 7b 23 ± 2b 39 ± 3b 42 ± 5b 
E1 40 ± 1b 33 ± 2b 70 ± 10ab 110 ± 10b 12 ± 1b 48 ± 3ab 23 ± 1b 37 ± 2b 39 ± 3b 
E2 41 ± 2b 34 ± 1b 73 ± 3b 100 ± 10ab 12.1 ± 0.5b 49 ± 2ab 23 ± 1b 35 ± 1b 40 ± 2b 
E3 32 ± 0.4a 28 ± 1a 61 ± 3a 80 ± 10a 9.2 ± 0.3a 44 ± 1a 15 ± 1a 30 ± 1a 33 ± 2a 

Soya bean 

C 32 ± 1b 26.3 ± 0.3a 62 ± 1a 80 ± 10b 12.2 ± 0.4c 41 ± 1a 18 ± 1b 34 ± 1ab 31 ± 1a 
E1 32 ± 4b 25 ± 4a 60 ± 10a 90 ± 10b 12 ± 1bc 38 ± 7a 18 ± 2b 35 ± 5b 30 ± 5a 
E2 31 ± 1ab 24 ± 1a 53 ± 1a 80 ± 10b 11 ± 0.1b 35 ± 1a 17.4 ± 0.2b 32 ± 1ab 29 ± 1a 
E3 27 ± 1a 23 ± 1a 51 ± 3a 57 ± 4a 9.4 ± 0.4a 36 ± 2a 13 ± 1a 28 ± 0.1a 26 ± 1a 

White bean 

C 52 ± 1b 40 ± 2b 100 ± 10b 140 ± 30b 17 ± 1c 64 ± 4b 29 ± 2c 50 ± 1c 48 ± 3b 
E1 49 ± 3ab 37 ± 2ab 84 ± 2ab 130 ± 10b 15.9 ± 0.3b 58 ± 1ab 27 ± 1bc 48 ± 2c 44 ± 2ab 
E2 49 ± 1ab 36 ± 2a 81 ± 5a 140 ± 10b 15.2 ± 0.5b 56 ± 3a 26 ± 1b 44 ± 2b 42 ± 2a 
E3 46 ± 2a 35 ± 2a 80 ± 10a 100 ± 10a 13.3 ± 0.4a 61 ± 6ab 21 ± 1a 41 ± 1a 40 ± 2a 

Oats 

C 53 ± 2b 39 ± 1bc 80 ± 1ab 120 ± 10b 19.3 ± 0.3b 52 ± 1b 30 ± 2b 59 ± 2b 54 ± 1b 
E1 56 ± 3b 48 ± 7c 100 ± 30b 130 ± 20b 20 ± 1b 55 ± 3b 33 ± 3b 65 ± 1b 58 ± 4a 
E2 53 ± 6b 36 ± 5b 80 ± 10b 100 ± 20b 18 ± 2b 50 ± 6b 29 ± 4b 59 ± 8b 51 ± 8b 
E3 39 ± 2a 26 ± 3a 60 ± 10a 70 ± 10a 14 ± 1a 39 ± 4a 19 ± 2a 46 ± 3a 39 ± 5a 

Spelt 

C 58 ± 4b 43 ± 1b 87 ± 2b 110 ± 10b 21.3 ± 0.3c 55 ± 2b 32 ± 2b 60 ± 4b 57 ± 2b 
E1 60 ± 1b 43 ± 1b 87 ± 2b 117 ± 3b 21 ± 1bc 56 ± 2b 33 ± 1b 61 ± 1b 58 ± 1 b 
E2 60 ± 2b 42 ± 2b 86 ± 4b 100 ± 20b 20 ± 1b 56 ± 2b 31 ± 3b 57 ± 3b 55 ± 3 b 
E3 42 ± 1a 30 ± 1a 60 ± 2a 67 ± 4a 15.5 ± 0.2a 42 ± 1a 19 ± 1a 42 ± 2a 39 ± 2 a 

Quinoa 

C 60 ± 1b 43 ± 3c 84 ± 3c 130 ± 10b 22.6 ± 0.5c 54 ± 1c 34 ± 2c 62 ± 1c 58 ± 3c 
E1 57 ± 4b 37 ± 3b 80 ± 10b 120 ± 20b 21 ± 1b 51 ± 3bc 30 ± 2b 61 ± 2c 50 ± 2b 
E2 56 ± 3b 35 ± 2b 72 ± 4b 122 ± 14b 20 ± 1b 48 ± 3b 30 ± 2b 56 ± 3b 48 ± 2b 
E3 42 ± 2a 25 ± 2a 50 ± 4a 79 ± 10a 16 ± 1a 36 ± 3a 19 ± 2a 43 ± 2a 34 ± 3a 

Data shown are mean values from triplicates and the standard deviation. abc Different lowercase letters indicate significant differences 

between digestion models, with a significance level of 95% (p<0.05). 
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Table 5.5.4. NEAA profile (mg FAA/g protein) of oats, spelt, quinoa, chickpea, lentils, soya bean and white bean after 
in vitro digestion using different elderly digestion models. 

Vegetal 
food 

GI conditions 
Non-essential amino acids (mg amino acid/ g protein) 

Alanine Asparagine Aspartic acid Cystine Glutamic acid Glycine Proline Serine Tyrosine 

Chickpea 

C 34 ± 4b 35 ± 4a 22 ± 3a 65 ± 7b 50 ± 10b 18 ± 2b 13 ± 1b 36 ± 4b 120 ± 10b 
E1 29 ± 1b 30 ± 2a 19 ± 1a 59 ± 5b 42 ± 8b 16 ± 1b 11 ± 1ab 32 ± 1b 101 ± 4a 
E2 31 ± 4b 29 ± 6a 22 ± 1a 63 ± 5b 47 ± 9b 17 ± 1b 12 ± 1b 34 ± 4b 100 ± 10a 
E3 18.8 ± 0.3a - - 35 ± 1a 16 ± 1a 10.0 ± 0.2a 10.3 ± 0.3a 9.1 ± 0.5a 104 ± 4a 

Lentils 

C 27 ± 2b 31 ± 3a 20 ± 1a 48 ± 3b 41 ± 5b 15 ± 1b 9 ± 1b 27 ± 2a 100 ± 30b 
E1 26 ± 2b 30 ± 2a 20 ± 1a 48 ± 2b 44 ± 5b 14 ± 1b 9.3 ± 0.4b 26 ± 2a 87 ± 2ab 
E2 26 ± 2b 26 ± 3a 20 ± 1a 4.3 ± 0a 40 ± 8b 15 ± 1b 9.9 ± 0.3b 26 ± 2a 83 ± 3a 
E3 18 ± 1a - - - 21 ± 2a 8.9 ± 0.4a 8.2 ± 0.2a - 99 ± 3ab 

Soya bean 

C 18.9 ± 0.2b 20 ± 1a 12 ± 1a 35 ± 2b 25 ± 3b 9.9 ± 0.2b 6.9 ± 0.3ab 20 ± 1a 82 ± 7b 
E1 19 ± 2b 20 ± 3a 13 ± 2a 36 ± 5b 30 ± 3c 10 ± 1b 7 ± 1ab 20 ± 2a 66 ± 9a 
E2 19 ± 1b 18.8 ± 0.4a 12.2 ± 0.5a 35.9 ± 0.3b 30 ± 2bc 10.2 ± 0.2b 7.5 ± 0.1b 20.3 ± 0.3a 59 ± 2a 
E3 13 ± 1a - - 20.6 ± 0.02a 12 ± 2a 6.3 ± 0.2a 6.4 ± 0.5a - 63.8 ± 0.2a 

White bean 

C 31 ± 2c 31 ± 4b 20 ± 1b 55 ± 2b 47 ± 2b 16.5 ± 0.5c 10.2 ± 0.1b 34 ± 3b 130 ± 10c 
E1 28 ± 1bc 29 ± 2b 19 ± 1b 53 ± 3b 45 ± 5b 15.5 ± 0.4bc 10 ± 0.4b 31 ± 1b 100 ± 10a 
E2 27 ± 2b 27 ± 2b 19 ± 1b 52 ± 2b 48 ± 7b 15 ± 1b 10.1 ± 0.3b 31 ± 2b 109 ± 2ab 
E3 21 ± 1a 8 ± 2a 2 ± 0.4a 34 ± 2a 27 ± 2a 10.4 ± 0.3a 8.6 ± 0.03a 13 ± 3a 130 ± 10bc 

Oats 

C 35 ± 2b 30 ± 4a 23 ± 1b 82 ± 3b 55 ± 1b 21 ± 1b 16 ± 1ab 37 ± 3b 160 ± 10b 
E1 38 ± 4a 34 ± 5a 27 ± 3b 90 ± 6b 58 ± 4b 24 ± 2b 18 ± 1b 40 ± 5b 170 ± 20b 
E2 33 ± 5b 27 ± 3a 24 ± 3b 86 ± 11b 50 ± 10b 22 ± 3b 17 ± 2b 36 ± 5b 160 ± 20b 
E3 22 ± 3 a - 6 ± 5a 56 ± 3a 18 ± 5a 14 ± 1a 14 ± 1a 17 ± 4a 120 ± 10a 

Spelt 

C 35 ± 1b 28 ± 4ab 23 ± 3a 97 ± 7b 50 ± 10b 20 ± 1b 19 ± 1a 40 ± 4a 160 ± 10b 
E1 34.9 ± 0.5b 30 ± 2b 25 ± 1a 102 ± 2b 63 ± 6b 21.0 ± 0.5b 19.7 ± 0.5ab 41 ± 2a 150 ± 10b 
E2 34 ± 3b 22 ± 5a 23 ± 3a 99 ± 5b 60 ± 10b 21 ± 1b 21 ± 1b 39 ± 4a 152 ± 4b 
E3 22 ± 1a - - 64 ± 1a 30 ± 2a 12 ± 1a 20 ± 1ab - 122 ± 3a 

Quinoa 

C 38 ± 2c 32 ± 3b 27 ± 3a 92 ± 5b 61 ± 6c 22 ± 1c 16 ± 1b 39 ± 3b 154 ± 4b 
E1 33 ± 2b 28 ± 2ab 23 ± 2a 89 ± 5b 47 ± 7b 20 ± 1bc 15 ± 1b 34 ± 2a 150 ± 10b 
E2 32 ± 1b 25 ± 2a 25 ± 2a 83 ± 5b 49 ± 2b 20 ± 1b 15 ± 1b 34 ± 1a 150 ± 10b 
E3 20 ± 2a - - 55 ± 5a 19 ± 5a 13 ± 1a 12 ± 1a - 110 ± 10a 

Data shown are mean values from triplicates and the standard deviation. abc Different lowercase letters indicate significant differences 

between digestion models in each grain, with a significance level of 95% (p<0.05). 
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Figure 5.5.2. Extent of glycolysis (%) in cooked legumes (chickpea, lentil, 
soya bean and white bean) and grains (oats, spelt and quinoa) obtained with 
different in vitro digestion models (C, E1, E2 and E3). Data presented as g of 
free glucose E/100 g initial starch. abc Different lowercase letters indicate 
significant differences among digestion models with a significance level of 
95% (p<0.05). 

variability of starch digestibility in legumes and grains, it has been consistent 

that legume starch is hydrolyzed to a much lesser extent than starch in oats, 

spelt or quinoa. The starch digestibility increases when subjected to thermal 
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processes 56 and depends on the severity of the process, i.e., the damage 

done to the starch granules could vary 57. Hence, the starch thermal 

behavior differs between legumes and cereals 58. The intrinsic 

characteristics of the plant source could make a difference in terms of starch 

digestibility. Consequently, the lower digestibility of legume starch, 

compared to cereal starches, could be attributed to the higher amylose 

content, existence of intact tissue/cell structures enclosing starch granules, 

higher content of viscous soluble dietary fiber components, the incidence of 

a larger number of antinutrients which would affect starch digestion, ‘B’-

type crystallites and stronger interactions between amylose chains 56,59. 

On the other hand, the elderly oral alterations (C compared to E1) had a 

statistically significant (p<0.05) negative impact on starch hydrolysis in 

lentils only; even when a declining trend was observed in other legumes and 

cereal/pseudocereal grains such as chickpea, soya bean, white bean and 

spelt. Higher protein content has been associated with strong molecular 

interactions 51, and the decrease in chewing cycles can impact digestion 

differently depending on the intrinsic properties of each food (particle size, 

hardness and other physical properties) 60. Likewise, the gastric alterations 

seem to decrease starch digestibility in all legumes and grains, only being 

statistically significant for lentil and white bean. Proteins can decrease the 

enzymatic digestion of starch due to the three-dimensional network they 

form 61. Subsequently, if the gastric proteolytic enzyme concentration is 

reduced (E2), food matrix degradation throughout digestion is expected to 

fall along with the conversion of starch into sugars. Finally, the elderly 

intestinal disorders (E3) highly contributed to a remarkable reduction of 

glycolysis for all legumes and grains, except for soya bean, oats and quinoa 

in which sugar content resulting from starch hydrolysis was similar to the 

obtained with healthy GI conditions (C). Carbohydrate digestibility of spelt, 

chickpea, lentils and white bean was more affected by bile and pancreatic 

enzyme concentrations than by the time of digestion. On the other hand, it 
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is important to point out that oats and quinoa glycolysis seems to increase 

when E3 conditions were simulated. Lower fiber and protein contents in 

cooked oats and quinoa grains promote lower viscosity, leading to easier 

and more digestible matrices in a shorter time 61,62, especially when they are 

subjected to the most disadvantageous GI scenery (E3). The legumes could 

have a greater contribution to hypoglycemia than oats, quinoa and spelt 63. 

Calcium bioaccessibility of legumes and grains using the elderly GI 

conditions 

A diminished digestion of macronutrients, such as proteins and 

carbohydrates, could lead to a deficient release and solubilization of 

micronutrients. Results showed that calcium bioaccessibility (%) was much 

higher in cereals/pseudocereals (from 82 to 103%) than in legumes (from 34 

to 65%) in C conditions (Figure 5.5.3). There are very few studies on calcium 

bioaccessibility in legumes and grains and none simulating the elderly GI 

conditions. Ramírez-Ojeda et al. (2018) 6 reported similar values of calcium 

bioaccessibility for lentil, chickpea and white bean. Legumes are specially 

high in antinutrients such as phytates, oxalates and tannins that can form 

insoluble complexes with calcium 64. Phytates, are directly related to fiber 64 

and protein 35 contents exerting an adverse effect on calcium absorption. 

Additionally, some believe that lipids produce insoluble soaps with calcium, 

lowering its bioavailability 64. The higher the protein, fiber and fat contents 

in legumes, the lower the calcium bioaccessibility. High phytates amounts 

present in both food groups 65 could be affected during processing and 

cooking. Moreover, phytase is an enzyme found in cereal and legumes 

which has optimal enzymatic activity in an acidic pH (4.5-5.6) in cereal, and 

in a neutral or an alkaline pH in legumes 33. Consequently, the lower 

enzymatic activity at gastric pH can affect calcium’s GI pathway. Therefore, 

calcium bioaccessibility was affected with oral alterations for lentil and 

white bean, gastric alterations for white bean and oats, and intestinal 

changes for all. Intestinal suboptimal conditions drastically decreased 
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calcium release in all samples except chickpea. A reduction of up to 53% was 

observed in some cases. Despite the reduction in calcium release from 

legumes and grains using the elderly conditions, chickpea, soya bean, white 

bean and oats are still good sources of this mineral in its bioaccessible form. 

The elderly are recommended to increase calcium intake since bone density 

tends to decrease with age leading to osteopenia and osteoporosis 66. The 

latter is a significant health problem that contributes to disability and 

premature mortality amongst women and older men. Although genetic 

factors influence maximum bone mass, diet and exercise are modifiable risk 

factors that can be targeted to prevent osteoporosis 2. 

 

Figure 5.5.3. Calcium bioaccessibility (%) of cooked legumes (chickpea, 
lentils, soya bean and white bean) and grains (oats, spelt, quinoa) digested 
with different in vitro digestion models (C, E1, E2 and E3). abc Different 
lowercase letters indicate significant differences among digestion models 
with a significance level of 95% (p<0.05). 

Descriptive relationship among digestion-end-parameters and the elderly 

GI conditions 
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Figure 5.5.4 shows the amount of EAA and NEAA (%), and the extents of 

proteolysis (%), glycolysis (%) and calcium bioaccessibility (%), as well as the 

scores for the different legumes and grains with the different simulated GI 

conditions. The first two main components explain 92.1% of the total 

variance in macronutrients and calcium bioaccessibility percentages in the 

samples (PC1: 69.9% and PC2: 22.2%). In the score plot, the proximity 

between samples indicates similar behavior in terms of digestibility. PC1 

distinguishes among grains (oats, spelt and quinoa), located at the upper 

right quadrant of the plot, and legumes (chickpea, lentils, soya bean and 

white bean) located at the left lower quadrant of the plot. Besides, PCA 

showed the narrow relationship between the extent of glycolysis, NEAA and 

calcium bioaccessibility; while PC2 seems to distinguish between chickpea 

Figure 5.5.4. Biplot of the different end-products resulting from digestion 
and their relationship with the legume/grain samples (chickpea, lentils, soya 
bean, white bean, oats, spelt and quinoa) and the GI conditions (C, E1, E2 
and E3) using principal components analysis (PCA). 
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and soya bean from other legumes and cereals in terms of the amount of 

EAA and the total extent of proteolysis (higher in chickpea and lower in soya 

bean, than in the other matrices). Finally, PCA showed that as the digestive 

GI conditions were altered according to the elderly disorders (from the C to 

E3 models), samples tended to move towards the left side of the graph.  

CONCLUSIONS 

The influence of oral, gastric and/or intestinal alterations appearing with 

ageing on the luminal digestion of different legumes (chickpea, lentils, soya 

bean and white bean) and cereal/pseudocereal (oats, spelt and quinoa) 

grains were analyzed. According to the main results, it can be concluded 

that oats, spelt and quinoa proteins are more digestible than legumes with 

healthy GI conditions. Using the elderly GI alterations, and especially when 

intestinal conditions are suboptimal, proteolysis in grains seems to be, 

however, more compromised than in legumes. In addition, a preferential 

release of EAA compared to that of NEAA has been observed when the 

elderly GI conditions were simulated.  

With respect to glycolysis and calcium bioaccessibility, the elderly intestinal 

alterations reduced the extent of glycolysis in legumes and spelt compared 

to the hydrolysis of starch achieved with healthy GI conditions. 

Cereal/pseudocereal grains have been shown to be a greater source of its 

bioaccessible form than legumes regardless the GI conditions. Although a 

notable bioaccessibility reduction was found in some foods such as 

chickpea, oats, soya and white beans as a consequence of the elderly GI 

alterations, they can still be considered good sources of bioaccessible 

calcium compared to other vegetal foods.  

To conclude, these results support the idea that diet recommendations 

concerning the consumption of legumes and cereal/pseudocereal grains 

need to consider the impact of GI conditions of the populations of concern 

(e.g., the elderly) on their digestibility. 
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Concluding remarks 

The population aged 65 or over can present deficiencies in the digestion and 

absorption of macro and micronutrients - mainly proteins, calcium and 

liposoluble vitamins - that frequently lead to sarcopenia and other related 

health issues.  

The main results obtained in this doctoral thesis allow concluding that in 

elderly subjects presenting oral/dental altered conditions, the consumption 

of lean fish, egg (regardless the cooking method), poultry and pork meats as 

well as legumes are more advisable to ensure protein digestibility than 

other foods. By their hand, if gastric conditions are suboptimal (elevated pH 

and reduced pepsin concentration), hydrolysis of dairy proteins would be 

diminished. Besides, results stated that pancreatic and biliary insufficiencies 

together with slower transit time are the main responsible of maldigestion 

in elders. Under these alterations, the consumption of lean fish, hard-boiled 

and poached eggs, cheeses, poultry and beef meats, as well as all the 

studied legumes should be chosen in elders’ diet. From a qualitative point 

of view, it is important to point out that altered gastrointestinal conditions, 

and specifically those given at intestinal stage, seem to increase the 

essential/non-essential amino acids ratio. This fact can be considered 

positive because of a higher amount of essential amino acids release, 

including those involved in the synthesis of muscle mass, contribute against 

sarcopenia in elders. Lastly, end-digestion products of proteolysis, mainly 

bioactive peptides and free amino acids, from turkey meat provides the 

greatest antihypertensive activity; while those from pork meat exert the 

highest  antioxidant activity under altered gastrointestinal conditions of 

elders.  

Regarding to other relevant nutrients such as lipids, carbohydrates, 

liposoluble vitamins (A and D3) and calcium, oral, gastric and/or intestinal 

disorders differently affect these nutrients. Lipolysis extent is not limited by 

u elders’ gastrointestinal conditions. Glycolysis was reduced under 

suboptimal conditions, thus positively contributing to the glycemic index in 
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legumes and pseudocereals. Concretely, digested lentils, chickpea and spelt 

under altered conditions resulted in a more hypoglycemic food than under 

optimal standard conditions. In addition, the consumption of aged cheese 

would be more recommendable that other dairy products because its low 

lactose content together with the excellent protein and lipid digestibility, 

even under altered digestive conditions. 

Considering the net bioaccessible fraction of calcium under elders’ digestive 

conditions, sardines would be considered a good option when alterations 

are given in the whole digestive system. However, if gastric conditions are 

suboptimal, fresh cheese, chickpeas and soybeans will also contribute 

positively to achieve the daily recommendation of calcium in its released 

form. Likewise, people suffering only of intestinal disorders would benefit 

from prioritizing the consumption of cheese and some grains (chickpeas and 

soybeans). Regarding to the effect of altered digestive conditions on 

liposoluble vitamins, results show a progressive reduction in their 

bioaccessibility as long as digestive alterations appeared from oral to 

intestinal stage.  Even though and considering the net supply of those 

vitamins in their bioaccessible form, the best sources for elders would be 

salmon, sea bass, fresh and aged cheeses, and eggs. 
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Future perspectives 

So far in this thesis, the results have already contributed to generate 

knowledge about how the most frequent gastrointestinal alterations in 

senior population impact on proteolysis, glycolysis and lipolysis extents as 

well as fat-soluble vitamins, calcium and bioactive compounds 

bioaccessibilities of different food groups. Although recommendations 

based on scientific evidence established the foods that could help to fight 

against malnutrition and sarcopenia, more research is needed. In vitro 

digestion model that allowed to simulate in an accumulative form the 

alterations in the mouth, stomach and intestine implied in the luminal 

digestion in elders is a powerful tool to continue exploring other foods and 

their combinations. Moreover, dynamic in vitro systems can be also used to 

study the foods' digestion fate with more realistic and closer conditions to 

the physiological.  Additionally, the colonic fermentation, not studied in the 

frame of this doctoral thesis, is a topic of great interest and the most 

recommended foods of this study should be studied from this perspective. 

Colonic studies allow to understand the fate digestion of non-digestible 

carbohydrates or non-absorbed proteins, as well as the impact of food 

composition on the metabolites produced by the microbiota. Besides, 

information about the effect of type of diet or food intake on colonic 

microbiota populations can be generated with the adequate systems. In 

fact, a new infrastructure acquired by the research group (a Simulator of 

Human Intestinal Microbial Ecosystem (SHIME®)) has been recently 

installed and set up, representing a great opportunity to expand the 

objectives of this doctoral thesis.  

Finally, the ultimate goal of these type of studies would be the development 

of new foods with specific characteristics to enhance the health status of 

aged people. Foods aimed at the senior population are an important market 

niche for the industry, as long as the developments are made under a 

comprehensive approach that assesses not only the sensory quality of the 
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new foods but also considering their health benefits. Plant-protein-rich 

foods such as legumes and some cereals/pseudocereals can be used to 

generate new foods with good eat quality, affordable, sustainable and with 

high digestible rates. These products are excellent options to achieve the 

demand of food products easy to chew and swallow attending to the 

physiological, nutritional and specific needs of the elderly. Specific 

characteristics of these foods can be improved by exploring new processing 

strategies such as solid-state fermentation using several microorganisms. 

Solid-state fermentation has been reported to increase nutrients 

digestibility and decrease the adverse effects of antinutrients. 

Finally, in spite of the demonstrated utility of in vitro tools for screening 

purposes and for food development, a final step must be considered. 

Validating the results in vivo will be always required allowing even to take 

into account individual factors and to move forward a personalized nutrition 

strategies. 

 

 


