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PASTEURIZATION OF LIPID EMULSIONS WITH SUPERCRITICAL CO2 
AND HIGH POWER ULTRASOUND 

 

Abstract 

Oil-in-water emulsions are widely used in the food, pharmaceutical and 

cosmetics industries. Specifically, lipid emulsions are produced for intravenous nutrition 

and, consequently, its microbial and physicochemical stability plays a key role. Thermal 

treatments, usually performed in steam autoclaves at 121ºC and 15-20 min, are 

generally used for the sterilization in lipid emulsions. However, heating has 

demonstrated its ability to induce the hydrolysis of lipids and lecithin, which lowers the 

pH and increases the droplet size. In this sense, non-thermal technologies are 

emerging in the industry with the aim of achieving microbial stability while avoiding the 

loss of quality related to heat in thermally treated products. Supercritical carbon dioxide 

(SC-CO2) and pulsed electric fields (PEF) are promising non-thermal processing 

technologies for microbial inactivation. However, these techniques have demonstrated 

to require high treatment intensities and/or long treatment times to guarantee the 

product’s safety, especially for the inactivation of highly resistant forms of 

microorganisms (such as spores), or for microorganisms located in complex protecting 

media (such as oil-based products), which could lead to changes in the 

physicochemical properties of the processed products, higher costs and greater 

environmental impact. Therefore, there is still room for the improvement in the use of 

these novel technologies, in terms of process intensification. Literature has illustrated 

the capacity of high power ultrasound (HPU) for the intensification of mass and/or heat 

transfer phenomena. Therefore, its application to non-thermal technologies could be 

an interesting approach to enhance the microbial inactivation effectiveness.  

In this context, the main objective of this PhD Thesis was to evaluate the effect 

of SC-CO2, PEF and HPU treatments, applied in individual and combined form, on the 

inactivation of different microorganisms in oil-in-water emulsions. In order to achieve 

this goal, on the one hand, the influence of the implementation of HPU to the SC-CO2 

treatments was studied on different types of microorganisms and on media with 
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different oil content. On the other hand, the effect of the individual and combined PEF 

and HPU treatments was assessed on different microorganisms.  

For that purpose, firstly, the effect of HPU application on SC-CO2 was studied 

for the inactivation of two vegetative bacteria (Escherichia coli and Brevundimonas 

diminuta) and one fungal spore (Aspergillus niger) in a simple medium (water). The SC-

CO2 + HPU treatments were performed at different pressures (100 and 350 bar) and 

temperatures (35, 50 and 60ºC). Moreover, the ultrastructure of the SC-CO2 + HPU-

inactivated cells was evaluated by microscopy techniques. Secondly, the SC-CO2 and 

SC-CO2 + HPU inactivation was also investigated in oil-in-water emulsions for different 

types of microorganisms, including vegetative bacteria (E. coli and B. diminuta), fungal 

spores (A. niger) and bacterial spores (Clostridium butyricum, Bacillus subtilis, Bacillus 

pumilus and Geobacillus stearothermophilus). The inactivation kinetics were obtained 

at different pressures (100, 350 and 550 bar) and temperatures (35, 50, 60, 70, 80, 85 

and 95ºC). In addition, the effect of the oil content (0, 10, 20 and 30%) in the treating 

media was investigated for the SC-CO2 and SC-CO2 + HPU inactivation of the 

vegetative bacteria (E. coli and B. diminuta). Finally, the effect of the SC-CO2 + HPU 

treatment conditions (temperature, pressure and time) on the physicochemical 

properties of the emulsions (appearance, pH, density, droplet size and ζ-potential) was 

explored using response surface methodology. Thereby, the process conditions that 

led to a satisfactory microbial inactivation while minimizing the physicochemical 

changes in the emulsions were sought. 

As for PEF and HPU treatments in the 20% oil-in-water emulsions, firstly, 

experiments for E.coli inactivation were performed. PEF treatments were carried out at 

different energies (from 41.5 to 176.3 kJ/kg) and input temperatures (15 and 25ºC). 

Moreover, HPU treatments were carried out at two processing times (2 and 3 min). The 

most effective conditions were selected to assess the effect of the individual and the 

combined treatments on the inactivation of E. coli, A. niger and B. pumilus spores. The 

effect of the sequence of application on the combined treatments (PEF-HPU or HPU-

PEF) was studied for the inactivation of the three types of microorganisms. 
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Experimental results showed that the application of HPU greatly intensified the 

inactivation capacity of SC-CO2, shortening the process time for almost all 

microorganisms and media. For example, for the vegetative bacteria in the 10, 20 and 

30% oil content emulsions, the time required for the complete inactivation was 

shortened by approximately 1 order of magnitude when HPU was applied. HPU 

probably enhanced the solubilization of CO2 into the medium and provoked damages 

in the cell wall, facilitating the penetration of SC-CO2 into the cells. In this regard, the 

microscopy analysis of the inactivated vegetative bacteria and fungal spores revealed 

important morphological changes in the cells, including damaged cell walls, and an 

important alteration and loss of the cytoplasmic content. Therefore, the combined SC-

CO2 + HPU treatment demonstrated to be effective for microbial inactivation, despite 

the complexity of the cell wall. Nevertheless, HPU did not improved the SC-CO2 

inactivation of A. niger spores in emulsion. For example, at 350 bar and 60ºC, the 

complete inactivation of the A.niger spores was achieved in 10 min, regardless of the 

use of HPU. 

The increase of the pressure in both, the SC-CO2 and SC-CO2 + HPU 

treatments, led to higher inactivation levels, except for E. coli in water, where no effect 

of pressure was found. However, pressures above 350 bar did not seem to exert any 

additional inactivation, probably because an increase in pressure barely improved the 

solubility of SC-CO2.The increase of the temperature had a significant (p<0.05) effect 

for all treatments (thermal, SC-CO2 and SC-CO2 + HPU) and microorganisms. For 

example, in 20 min of thermal, SC-CO2 and SC-CO2 + HPU treatments, the inactivation 

of B. subtilis spores increased from 0.1 to 2.7 log-cycles, from 3.1 to 6.2 log-cycles and 

from 5.4 to 6.7 log-cycles, respectively, from using 85 to 95ºC. 

The resistance of the microorganisms to the SC-CO2 and SC-CO2 + HPU 

inactivation treatments was, in order from the less to the most resistant: vegetative 

bacteria (E. coli and B. diminuta), fungal spores (A. niger), Clostridium spores 

(C. butyricum), Bacillus spores (B. subtilis and B. pumilus) and lastly, Geobacillus 

spores (G. stearothermophilus), being the inactivation of the latter unfeasible using the 

technologies proposed in this work. 
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Regarding the effect of the medium on microbial inactivation, the presence of 

oil is known to protect microorganisms and usually more intense treatments are 

needed, as was observed in the SC-CO2 inactivation of E. coli and B. diminuta in water 

and in emulsions with different oil content (10, 20 and 30 %). However, the application 

of HPU masked the protective effect exerted by the oil in the emulsions and minimized 

the differences in microbial inactivation. For example, in 50 min of a SC-CO2 treatment 

at 350 bar and 35ºC, an inactivation of 7.4 log-cycles of E. coli was achieved in water 

(0% oil content), while inactivations of 3.4, 4.3 and 5.2 log-cycles were obtained in the 

30, 20 and 10% oil content emulsions, respectively. However, in 5 min of SC-CO2 + 

HPU treatment at 350 bar and 35ºC, an inactivation of 6.2-7.0 log-cycles of E. coli was 

obtained, regardless of the oil content in the media. On the contrary, for A. niger spores 

no effect of the media (water or the 20% emulsion) on the effectiveness of both, the 

SC-CO2 and the SC-CO2 + HPU inactivation treatments was found and, on average, 

an inactivation of 4.4 and 4.3 log-cycles were obtained in water or in the emulsion, 

respectively.  

In relation to the effect of the SC-CO2 + HPU treatments on the quality of the 

treated emulsions, in general terms, only a mild effect of the process conditions 

(temperature, pressure and time) was found on the physicochemical properties. 

Treated emulsions presented, in general, good appearance, minimal changes in 

density, a good electrostatic stability, a lower pH (from 8.4 to 5.1-5.6) and a larger 

average droplet size (D[4,3] from 0.365 to 0.338-7.996 µm; D[3,2]: from 0.343 to 0.320-

1.505 µm). Hence, by the selection of suitable SC-CO2 + HPU conditions (e.g. 95ºC, 

600 bar and 12.5 min), minimal changes on the physicochemical properties of the 

emulsions and a satisfactory inactivation for all the studied microorganisms, except for 

G. stearothermophilus spores, can be obtained. 

Therefore, SC-CO2 + HPU technology could be a promising alternative to 

thermal pasteurization of emulsions in order to better preserve heat sensitive 

compounds since lower temperatures can be used. However, the process variables of 

the treatment should be evaluated and selected in order to maintain the quality of the 

emulsions while inactivating target microorganisms.  
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Regarding microbial inactivation of emulsions with PEF and HPU treatments, 

results revealed that the maximum inactivation achieved by the individual PEF 

treatment, at the highest energy level and input temperature (152.3-176.3 kJ/kg and 

25ºC) was 2.6, 1.2 and 0.1 log-cycles for E.coli, A. niger and B. pumilus, respectively. 

In addition, the largest inactivation levels achieved by HPU for the longest treatment 

studied (3 min), were 5.4, 4.3 and 0.3 log-cycles for E.coli, A. niger and B. pumilus, 

respectively. Therefore, the complete microbial inactivation in the emulsions was not 

achieved with the individual treatments. However, when the PEF treatment (152.3-

176.3 kJ/kg) was followed by the HPU treatment (3 min), inactivation levels of 8.2, 6.6 

and 1.0 log-cycles were obtained for E. coli, A. niger and B. pumilus, respectively, 

corresponding to the complete E. coli and A. niger inactivation. Moreover, the 

combined PEF-HPU treatment presented a synergistic effect, since the inactivation 

reached was higher than the sum of the individual treatments for all microorganisms. 

Despite this fact, the inactivation achieved for the bacterial spore (B. pumilus) was very 

limited. On the contrary, the inactivation levels achieved by the reverse treatment (HPU 

followed by PEF) were lower than the sum of the individual treatments. Thus, the most 

effective sequence for the combined treatment was the one in which PEF was followed 

by HPU. In this regard, PEF treatment probably exerted sublethal effects on 

microorganisms, which made microbial cells more sensitive to the subsequent HPU 

treatment. Therefore, the combined PEF-HPU treatment demonstrated to be a 

promising hurdle technology to inactivate vegetative bacteria or fungal spores in 

emulsions. However, its use was not feasible for bacterial spores in the conditions 

tested in the present work.  

The resistance of the microorganisms to the PEF and HPU treatments, applied 

individually or in combination, followed the same order found for the SC-CO2 

treatments, being the vegetative bacteria the most sensitive, followed by the fungal 

spores and lastly, the bacterial spores. 

Finally, it can be concluded that, the combination of HPU with SC-CO2 or PEF 

generally improved the microbial inactivation. Moreover, in some cases, it was 

demonstrated that the combination of the treatments achieved synergistic effects. 

Consequently, reasonable industrial processing times and mild process conditions 
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could be selected by the use of the studied combined techniques, which could result 

into a reduction in the processing cost and a lower impact on the quality of the oil-in-

water emulsions. However, additional work should be addressed in order to better 

understanding the inactivation mechanisms exerted by combined SC-CO2 and HPU 

treatments and the combined PEF and HPU treatments, especially on fungal and 

bacterial spores. Moreover, additional research is recommended on the effect of these 

non-thermal combined technologies on the physicochemical properties of the treated 

products, in particular for the combined PEF and HPU treatments, which was not 

covered in the present study. 
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PASTEURIZACIÓN DE EMULSIONES LIPÍDICAS CON CO2 
SUPERCRÍTICO Y ULTRASONIDOS DE POTENCIA 

 

Resumen 

Las emulsiones aceite-en-agua son ampliamente utilizadas en la industria 

alimentaria, farmacéutica y cosmética. En particular, las emulsiones lipídicas se 

elaboran para nutrición intravenosa y, en consecuencia, su estabilidad microbiana y 

fisicoquímica desempeña un papel muy importante. En general, para la esterilización 

de emulsiones lipídicas se usan tratamientos térmicos, normalmente llevados a cabo 

en autoclaves de vapor a 121ºC y 15-20 min. Sin embargo, el calentamiento ha 

demostrado ser capaz de provocar la hidrólisis de lípidos y lecitina, dando lugar a una 

bajada del pH y a un aumento del tamaño de gota. En este sentido, están surgiendo 

tecnologías no térmicas en la industria, con el objetivo de llegar a la estabilidad 

microbiana evitando la pérdida de calidad relacionada con el calor de los productos 

tratados térmicamente. El dióxido de carbono supercrítico (SC-CO2) y los campos 

eléctricos pulsados (PEF) son tecnologías de procesado prometedoras para la 

inactivación microbiana. Sin embargo, se ha demostrado que estas técnicas requieren 

altas intensidades y/o largos tiempos de tratamiento para garantizar la seguridad del 

producto, especialmente para la inactivación de formas altamente resistentes de los 

microorganismos (como son las esporas), o para microorganismos presentes en 

medios complejos protectores (como los productos con aceite), lo que podría provocar 

cambios en las propiedades fisicoquímicas de los productos procesados, mayores 

costes y un mayor impacto medioambiental. Por lo tanto, todavía existe margen de 

mejora con respecto al uso de estas nuevas tecnologías en términos de intensificación 

del proceso. La bibliografía ha descrito la capacidad de los ultrasonidos de potencia 

(HPU) para intensificar los fenómenos de transferencia de masa y/o calor. Por lo tanto, 

su aplicación a tecnologías no térmicas podría ser un enfoque interesante para mejorar 

la eficacia de la inactivación microbiana.  

En este contexto, el objetivo principal de esta Tesis Doctoral fue evaluar el 

efecto de los tratamientos de SC-CO2, PEF y HPU, aplicados de forma individual y 
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combinada, sobre la inactivación de diferentes microorganismos en emulsiones aceite-

en-agua. Para lograr este objetivo, por una parte, se estudió la influencia de la 

implementación de HPU en los tratamientos de SC-CO2 sobre diferentes tipos de 

microorganismos y sobre medios con diferente contenido en aceite. Por otra parte, se 

evaluó el efecto de los tratamientos PEF y HPU individuales y combinados sobre 

diferentes microorganismos. 

Para ello, en primer lugar, se estudió el efecto de la aplicación de HPU sobre 

la inactivación con SC-CO2 de dos bacterias vegetativas (Escherichia coli y 

Brevundimonas diminuta) y una espora fúngica (Aspergillus niger), en un medio simple 

(agua). Los tratamientos con SC-CO2 + HPU se realizaron a diferentes presiones (100 

y 350 bar) y temperaturas (35, 50 y 60ºC). Además, se evaluó la ultraestructura de las 

células inactivadas mediante SC-CO2 + HPU con técnicas de microscopía. En segundo 

lugar, también se investigó la inactivación con SC-CO2 y SC-CO2 + HPU en emulsiones 

aceite-en-agua para diferentes tipos de microorganismos, incluyendo bacterias 

vegetativas (E. coli y B. diminuta), esporas fúngicas (A. niger) y esporas bacterianas 

(Clostridium butyricum, Bacillus subtilis, Bacillus pumilus y Geobacillus 

stearothermophilus). Las cinéticas de inactivación se obtuvieron a diferentes presiones 

(100, 350 y 550 bar) y temperaturas (35, 50, 60, 70, 80, 85 y 95ºC). Además, se 

investigó el efecto del contenido en aceite (0, 10, 20 y 30%) en los medios de 

tratamiento sobre la inactivación con SC-CO2 y SC-CO2 + HPU de bacterias 

vegetativas (E. coli y B. diminuta). Finalmente, se exploró el efecto de las condiciones 

del tratamiento SC-CO2 + HPU (temperatura, presión y tiempo) sobre las propiedades 

fisicoquímicas de las emulsiones (apariencia, pH, densidad, tamaño de gota y 

potencial-ζ) utilizando la metodología de superficie de respuesta. De este modo, se 

buscaron las condiciones del proceso que condujeran a una inactivación microbiana 

satisfactoria y, al mismo tiempo, a los mínimos cambios fisicoquímicos en las 

emulsiones. 

En cuanto a los tratamientos de PEF y HPU en las emulsiones de aceite-en-

agua al 20%, en primer lugar, se realizaron ensayos para la inactivación de E. coli. Los 

tratamientos con PEF se llevaron a cabo a diferentes niveles de energía (de 41.5 a 

176.3 kJ/kg) y temperatura de entrada (15 y 25ºC). Además, los tratamientos con HPU 
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se realizaron a dos tiempos de procesado (2 y 3 min). Se seleccionaron las condiciones 

más efectivas para evaluar el efecto de los tratamientos individuales y combinados 

sobre la inactivación de E. coli y de esporas de A. niger y B. pumilus. También se 

estudió el efecto de la secuencia de aplicación en los tratamientos combinados (PEF-

HPU o HPU-PEF) sobre la inactivación de los tres tipos de microorganismos. 

Los resultados experimentales mostraron que la aplicación de HPU intensificó 

en gran medida la capacidad de inactivación del SC-CO2, acortando el tiempo del 

proceso para casi todos los microorganismos y medios. Por ejemplo, para las bacterias 

vegetativas, en las emulsiones con un contenido en aceite del 10, 20 y 30%, se acortó 

el tiempo requerido para la inactivación completa en aproximadamente 1 orden de 

magnitud al aplicar HPU. Probablemente, los HPU aumentaron la solubilización del 

CO2 en el medio y provocaron daños en la pared celular, facilitando la penetración del 

SC-CO2 en las células. En este sentido, el análisis de la microscopía de las bacterias 

vegetativas y las esporas fúngicas inactivadas reveló importantes cambios 

morfológicos en las células, incluyendo paredes celulares dañadas, y una importante 

alteración y pérdida del contenido citoplasmático. Por lo tanto, el tratamiento 

combinado SC-CO2 + HPU demostró ser eficaz para la inactivación microbiana, a 

pesar de la complejidad de la pared celular. Sin embargo, los HPU no mejoraron la 

inactivación con SC-CO2 de las esporas de A. niger en la emulsión. Por ejemplo, a 350 

bar y 60ºC, la inactivación completa de las esporas de A. niger se alcanzó en 10 min, 

independientemente del uso de HPU.  

El aumento de la presión, tanto en los tratamientos con SC-CO2 como con SC-

CO2 + HPU, dio lugar a mayores niveles de inactivación, a excepción de E. coli en 

agua, donde no se encontró efecto de la presión. Sin embargo, las presiones por 

encima de 350 bar no parecieron conllevar a una inactivación adicional, probablemente 

porque un aumento en la presión apenas mejoró la solubilidad del SC-CO2. El aumento 

de la temperatura tuvo un efecto significativo (p<0.05) para todos los tratamientos 

(térmicos, SC-CO2 y SC-CO2 + HPU) y microorganismos. Por ejemplo, en 20 min de 

tratamientos térmicos, SC-CO2 y SC-CO2 + HPU, la inactivación de las esporas de 

B. subtilis aumentó de 0.1 a 2.7 ciclos-log, de 3.1 a 6.2 ciclos-log y de 5.4 a 6.7 ciclos-

log, respectivamente, de usar 85 a 95ºC.  



A. Gomez-Gomez, 2021 

XII 

La resistencia de los microorganismos a los tratamientos de inactivación con 

SC-CO2 y SC-CO2 + HPU fue, en orden de menos a más resistente: bacterias 

vegetativas (E. coli y B. diminuta), esporas fúngicas (A. niger), esporas de Clostridium 

(C. butyricum), esporas de Bacillus (B. subtilis y B. pumilus) y por último, esporas de 

Geobacillus (G. stearothermophilus), siendo la inactivación de estas últimas inviable 

utilizando las tecnologías propuestas en el presente trabajo.  

En cuanto al efecto del medio sobre la inactivación microbiana, se sabe que la 

presencia de aceite protege a los microorganismos y, generalmente, se necesitan 

tratamientos más intensos, como se observó en la inactivación con SC-CO2 de E. coli 

y B. diminuta en agua y en las emulsiones con diferente contenido en aceite (10, 20 y 

30 %). Sin embargo, la aplicación de HPU enmascaró el efecto protector ejercido por 

el aceite de las emulsiones y minimizó las diferencias en la inactivación microbiana. 

Por ejemplo, en 50 min del tratamiento con SC-CO2 a 350 bar y 35ºC, se inactivaron 

7.4 ciclos-log de E. coli en agua (0% de contenido en aceite), mientras que se 

inactivaron 3.4, 4.3 y 5.2 ciclos-log en las emulsiones con un 30, 20 y 10% de contenido 

en aceite, respectivamente. Sin embargo, en 5 min de tratamiento con SC-CO2 + HPU 

a 350 bar y 35ºC, se obtuvo una inactivación de 6.2-7.0 ciclos-log para E. coli, 

independientemente del contenido en aceite en el medio. Por el contrario, para las 

esporas de A. niger no se encontró efecto del medio (agua o emulsión al 20%) sobre 

la efectividad de ambos tratamientos de inactivación, SC-CO2 y SC-CO2 + HPU, y, en 

promedio, se obtuvo una inactivación de 4.4 y 4.3 ciclos-log en agua o en la emulsión, 

respectivamente. 

En relación al efecto de los tratamientos con SC-CO2 + HPU sobre la calidad 

de las emulsiones tratadas, en términos generales, solo se encontró un efecto leve de 

las condiciones del proceso (temperatura, presión y tiempo) sobre las propiedades 

fisicoquímicas. Las emulsiones tratadas presentaron, en general, buen aspecto, 

cambios mínimos en la densidad, buena estabilidad electrostática, un pH más bajo (de 

8.4 a 5.1-5.6) y un mayor tamaño medio de gota (D[4,3] de 0.365 a 0.338-7.996 μm; 

D[3.2]: de 0.343 a 0.320-1.505 μm). Por lo tanto, mediante la selección de condiciones 

de SC-CO2 + HPU adecuadas (por ejemplo, 95ºC, 600 bar y 12.5 min), se pueden 

obtener cambios mínimos en las propiedades fisicoquímicas de las emulsiones y una 
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inactivación satisfactoria para todos los microorganismos estudiados, excepto para las 

esporas de G. stearothermophilus.  

Por lo tanto, la tecnología SC-CO2 + HPU podría ser una alternativa 

prometedora a la pasteurización térmica de emulsiones que permitiría preservar mejor 

los compuestos sensibles al calor, ya que se pueden utilizar temperaturas más bajas. 

Sin embargo, las variables de proceso del tratamiento deben evaluarse y seleccionarse 

para mantener la calidad de las emulsiones al tiempo que se inactivan los 

microorganismos diana.  

En cuanto a la inactivación microbiana de emulsiones con tratamientos de PEF 

y HPU, los resultados revelaron que la inactivación máxima alcanzada por el 

tratamiento individual de PEF, al mayor nivel de energía y temperatura de entrada 

(152.3-176.3 kJ/kg y 25ºC) fue de 2.6, 1.2 y 0.1 ciclos-log para E. coli, A. niger y 

B. pumilus, respectivamente. Además, los mayores niveles de inactivación alcanzados 

por HPU para el tratamiento más largo estudiado (3 min), fueron 5.4, 4.3 y 0.3 ciclos-

log para E. coli, A. niger y B. pumilus, respectivamente. Por lo tanto, la inactivación 

microbiana completa en las emulsiones no se logró con los tratamientos individuales. 

Sin embargo, cuando el tratamiento de PEF (152.3-176.3 kJ/kg) fue seguido por el 

tratamiento de HPU (3 min), los niveles de inactivación obtenidos fueron de 8.2, 6.6 y 

1.0 ciclos-log para E. coli, A. niger y B. pumilus, respectivamente, correspondiendo a 

la inactivación completa de E. coli y A. niger. Además, el tratamiento combinado PEF-

HPU presentó un efecto sinérgico, ya que la inactivación alcanzada fue mayor que la 

suma de los tratamientos individuales para todos los microorganismos. A pesar de este 

hecho, la inactivación lograda para la espora bacteriana (B. pumilus) fue muy limitada. 

Por el contrario, los niveles de inactivación alcanzados por el tratamiento inverso (HPU 

seguido de PEF) fueron inferiores a la suma de los tratamientos individuales. Por lo 

tanto, la secuencia más eficaz para el tratamiento combinado fue aquella en la cual los 

PEF fueron seguidos de los HPU. En este sentido, el tratamiento PEF probablemente 

ejerció efectos subletales sobre los microorganismos, haciendo que las células 

microbianas estuvieran más sensibles al tratamiento posterior de HPU. Por lo tanto, el 

tratamiento combinado PEF-HPU demostró ser una tecnología prometedora para 

inactivar bacterias vegetativas o esporas fúngicas en emulsiones. No obstante, su uso 
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no fue efectivo para las esporas bacterianas en las condiciones probadas en el 

presente trabajo. 

La resistencia de los microorganismos a los tratamientos de PEF y HPU, 

aplicados individualmente o en combinación, siguió el mismo orden que el encontrado 

para los tratamientos de SC-CO2, siendo las bacterias vegetativas las más sensibles, 

seguidas de las esporas fúngicas y por último, de las esporas bacterianas.  

Finalmente, se puede concluir que, la combinación de HPU con SC-CO2 o PEF 

generalmente mejoró la inactivación microbiana. Además, en algunos casos, se 

demostró que la combinación de los tratamientos logró efectos sinérgicos. En 

consecuencia, mediante el uso de las técnicas combinadas estudiadas, se podrían 

seleccionar tiempos de procesamiento industriales razonables y condiciones de 

proceso suaves, que podría resultar en una reducción en el coste de procesamiento y 

un menor impacto en la calidad de las emulsiones aceite-en-agua. Sin embargo, para 

comprender mejor los mecanismos de inactivación ejercidos por los tratamientos 

combinados de SC-CO2 y HPU y los tratamientos combinados de PEF y HPU, es 

necesario realizar un trabajo en mayor profundidad, especialmente en el caso de 

esporas fúngicas y bacterianas. Además, se recomienda investigar más acerca del 

efecto de estas tecnologías no térmicas combinadas sobre las propiedades 

fisicoquímicas de los productos tratados, en particular para los tratamientos 

combinados de PEF y HPU, aspecto que no ha sido abordado en el presente estudio.
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PASTEURITZACIÓ D'EMULSIONS LIPÍDIQUES AMB CO2 SUPERCRÍTIC I 
ULTRASONS DE POTÈNCIA 

 

Resum 

Les emulsions oli-en-aigua són àmpliament utilitzades en la indústria 

alimentària, farmacèutica i cosmètica. Concretament, les emulsions lipídiques es 

produeixen per a nutrició intravenosa i, en conseqüència, la seua estabilitat microbiana 

i fisicoquímica exerceix un paper important. En general, per a l'esterilització 

d'emulsions lipídiques s'usen tractaments tèrmics, normalment duts a terme en 

autoclaus de vapor a 121°C i 15-20 min. No obstant això, el calfament ha demostrat 

ser capaç de provocar la hidròlisi de lípids i lecitina, donant lloc a una baixada del pH i 

a un augment de la grandària de gota. En aquest sentit, estan sorgint tecnologies no 

tèrmiques en la indústria, amb l'objectiu d'arribar a l'estabilitat microbiana mentre 

s'evita la pèrdua de qualitat dels productes tractats tèrmicament relacionada amb la 

calor. El diòxid de carboni supercrític (SC-CO₂) i els camps elèctrics polsats (PEF) són 

tecnologies de processament prometedores per a la inactivació microbiana. No obstant 

això, s'ha demostrat que aquestes tècniques requereixen altes intensitats i/o llargs 

temps de tractament per a garantir la seguretat del producte, especialment per a la 

inactivació de formes altament resistents de microorganismes (com són les espores), 

o per a microorganismes presents en medis complexos protectors (com els productes 

amb oli), que podria provocar canvis en les propietats fisicoquímiques dels productes 

processats, majors costos i un major impacte mediambiental. Per tant, encara hi ha 

marge de millora respecte a l'ús d'aquestes noves tecnologies en termes 

d'intensificació del procés. La bibliografia ha il·lustrat la capacitat dels ultrasons de 

potència (HPU) per a intensificar els fenòmens de transferència de massa i/o calor. Per 

tant, la seua aplicació a tecnologies no tèrmiques podria ser un enfocament interessant 

per a millorar l'eficàcia de la inactivació microbiana.  

En aquest context, l'objectiu principal d'aquesta Tesi Doctoral va ser avaluar 

l'efecte dels tractaments de SC-CO₂, PEF i HPU, aplicats de manera individual i 

combinada, sobre la inactivació de diferents microorganismes en emulsions oli-en-
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aigua. Per a aconseguir aquest objectiu, d'una banda, es va estudiar la influència de 

la implementació d'HPU en els tractaments de SC-CO2 sobre diferents tipus de 

microorganismes i sobre medis amb diferent contingut en oli. D'altra banda, es va 

avaluar l'efecte dels tractaments PEF i HPU individuals i combinats sobre diferents 

microorganismes. 

Per a això, en primer lloc, es va estudiar l'efecte de l'aplicació d'HPU sobre la 

inactivació amb SC-CO₂ de dos bacteris vegetatius (Escherichia coli i Brevundimonas 

diminuta) i una espora fúngica (Aspergillus niger) en un medi simple (aigua). Els 

tractaments amb SC-CO2 + HPU es van realitzar a diferents pressions (100 i 350 bar) 

i temperatures (35, 50 i 60°C). A més, la ultraestructura de les cèl·lules inactivades 

mitjançant SC-CO2 + HPU va ser avaluada amb tècniques de microscòpia. En segon 

lloc, la inactivació amb SC-CO₂ i SC-CO2 + HPU també es va investigar en emulsions 

oli-en-aigua per a diferents tipus de microorganismes, incloent bacteris vegetatius 

(E. coli i B. diminuta), espores fúngiques (A. niger) i espores bacterianes (Clostridium 

butyricum, Bacillus subtilis, Bacillus pumilus i Geobacillus stearothermophilus). Les 

cinètiques d'inactivació es van obtindre a diferents pressions (100, 350 i 550 bar) i 

temperatures (35, 50, 60, 70, 80, 85 i 95°C). A més, es va investigar l'efecte del 

contingut en oli (0, 10, 20 i 30%) en els medis de tractament sobre la inactivació amb 

SC-CO₂ i SC-CO2 + HPU de bacteris vegetatius (E. coli i B. diminuta). Finalment, es 

va explorar l'efecte de les condicions del tractament SC-CO2 + HPU (temperatura, 

pressió i temps) sobre les propietats fisicoquímiques de les emulsions (aparença, pH, 

densitat, grandària de gota i potencial-ζ) utilitzant la metodologia de superfície de 

resposta. D'aquesta manera, es van buscar les condicions del procés que conduïren a 

una inactivació microbiana satisfactòria i, al mateix temps, a mínims canvis 

fisicoquímics en les emulsions. 

Quant als tractaments de PEF i HPU en les emulsions d'oli-en-aigua al 20%, 

en primer lloc, es van realitzar experiments per a la inactivació d'E. coli. Els tractaments 

amb PEF es van realitzar a diferents energies (de 41.5 a 176.3 kJ/kg) i temperatures 

d'entrada (15 i 25 °C). A més, els tractaments amb HPU es van realitzar a dos temps 

de processament (2 i 3 min). Les condicions més efectives es van seleccionar per a 

avaluar l'efecte dels tractaments individuals i combinats sobre la inactivació d'E. coli i 
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d'espores de A. niger i B. pumilus. L'efecte de la seqüència d'aplicació en els 

tractaments combinats (PEF-HPU o HPU-PEF) es va estudiar per a la inactivació dels 

tres tipus de microorganismes. 

Els resultats experimentals van mostrar que l'aplicació d'HPU va intensificar 

en gran manera la capacitat d'inactivació del SC-CO₂, acurtant el temps del procés per 

a quasi tots els microorganismes i medis. Per exemple, per als bacteris vegetatius en 

les emulsions amb un contingut en oli del 10, 20 i 30% es va acurtar el temps requerit 

per a la inactivació completa en aproximadament 1 ordre de magnitud en aplicar HPU. 

Probablement, els HPU van augmentar la solubilització del CO₂ en el medi i van 

provocar danys en la paret cel·lular, facilitant la penetració del SC-CO₂ en les cèl·lules. 

En aquest sentit, l'anàlisi de la microscòpia dels bacteris vegetatius i les espores 

fúngiques inactivades va revelar importants canvis morfològics en les cèl·lules, incloent 

parets cel·lulars danyades, i una important alteració i pèrdua del contingut 

citoplasmàtic. Per tant, el tractament combinat SC-CO2 + HPU va demostrar ser eficaç 

per a la inactivació microbiana, malgrat la complexitat de la paret cel·lular. No obstant 

això, els HPU no van millorar la inactivació amb SC-CO₂ de les espores de A. niger en 

una emulsió. Per exemple, a 350 bar i 60 °C, la inactivació completa de les espores de 

A. niger es va aconseguir en 10 min, independentment de l'ús d'HPU.  

L'augment de la pressió, tant en els tractaments amb SC-CO2 com amb SC-

CO2 + HPU, va donar lloc a majors nivells d'inactivació, a excepció d'E. coli en aigua, 

on no es va trobar efecte de la pressió. No obstant això, les pressions per damunt de 

350 bar no van semblar comportar a una inactivació addicional, probablement perquè 

un augment en la pressió a penes va millorar la solubilitat del SC-CO2. L'augment de 

la temperatura va tindre un efecte significatiu (p<0.05) per a tots els tractaments 

(tèrmics, SC-CO₂ i SC-CO2 + HPU) i microorganismes. Per exemple, en 20 min de 

tractaments tèrmics, SC-CO₂ i SC-CO2 + HPU, la inactivació de les espores de 

B. subtilis va augmentar de 0.1 a 2.7 cicles-log, de 3.1 a 6.2 cicles-log i de 5.4 a 6.7 

cicles-log, respectivament, d'usar 85 a 95 °C.  

La resistència dels microorganismes als tractaments d'inactivació amb SC-

CO₂ i SC-CO2 + HPU va ser, en ordre de menys a més resistent: bacteris vegetatius 
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(E. coli i B. diminuta), espores fúngiques (A. niger), espores de Clostridium 

(C. butyricum), espores de Bacillus (B. subtilis i B. pumilus) i finalment, espores de 

Geobacillus (G. stearothermophilus), sent la inactivació d'aquestes últimes inviable 

utilitzant les tecnologies proposades en aquest treball.  

Quant a l'efecte del medi sobre la inactivació microbiana, se sap que la 

presència d'oli protegeix els microorganismes i, generalment, es necessiten 

tractaments més intensos, com es va observar en la inactivació amb SC-CO₂ d'E. coli 

i B. diminuta en aigua i en les emulsions amb diferent contingut en oli (10, 20 i 30%). 

No obstant això, l'aplicació d'HPU va emmascarar l'efecte protector exercit per l'oli de 

les emulsions i va minimitzar les diferències en la inactivació microbiana. Per exemple, 

en 50 min del tractament amb SC-CO₂ a 350 bar i 35°C, es van inactivar 7.4 cicles-log 

d'E. coli en aigua (0% de contingut en oli), mentre que es van inactivar 3.4, 4.3 i 5.2 

cicles-log en les emulsions amb un 30, 20 i 10% de contingut en oli, respectivament. 

No obstant això, en 5 min de tractament amb SC-CO2 + HPU a 350 bar i 35 °C, es va 

obtindre una inactivació de 6.2-7.0 cicles-log per a E. coli, independentment del 

contingut en oli en el medi. Per contra, per a les espores de A. niger no es va trobar 

efecte del medi (aigua o emulsió al 20%) sobre l'efectivitat de tots dos tractaments 

d'inactivació, SC-CO₂ i SC-CO2 + HPU, i, en mitjana, es va obtindre una inactivació de 

4.4 i 4.3 cicles-log en aigua o en l'emulsió, respectivament. 

En relació a aquest efecte dels tractaments amb SC-CO2 + HPU sobre la 

qualitat de les emulsions tractades, en termes generals, només es va trobar un efecte 

lleu de les condicions del procés (temperatura, pressió i temps) sobre les propietats 

fisicoquímiques. Les emulsions tractades van presentar, en general, bon aspecte, 

canvis mínims en la densitat, bona estabilitat electroestàtica, un pH més baix (de 8.4 

a 5.1-5.6) i una major grandària mitjana de gota (D[4,3] de 0.365 a 0.338-7.996 μm; 

D[3.2]: de 0.343 a 0.320-1.505 μm). Per tant, mitjançant la selecció de condicions de 

SC-CO2 + HPU adequades (per exemple, 95 °C, 600 bar i 12.5 min), es poden obtindre 

canvis mínims en les propietats fisicoquímiques de les emulsions i una inactivació 

satisfactòria per a tots els microorganismes estudiats, excepte per a les espores de 

G. stearothermophilus.  
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Per tant, la tecnologia SC-CO2 + HPU podria ser una alternativa prometedora 

a la pasteurització tèrmica d'emulsions per a preservar millor els compostos sensibles 

a la calor, ja que es poden utilitzar temperatures més baixes. No obstant això, les 

variables de procés del tractament han d'avaluar-se i seleccionar-se per a mantindre 

la qualitat de les emulsions mentre s'inactiven els microorganismes diana.  

Quant a la inactivació microbiana d'emulsions amb tractaments de PEF i HPU, 

els resultats van revelar que la inactivació màxima aconseguida pel tractament 

individual de PEF, al major nivell d'energia i temperatura d'entrada (152.3-176.3 kJ/kg 

i 25°C) va ser de 2.6, 1.2 i 0.1 cicles-log per a E. coli, A. niger i B. pumilus, 

respectivament. A més, els majors nivells d'inactivació aconseguits per HPU per al 

tractament més llarg estudiat (3 min), van ser de 5.4, 4.3 i 0.3 cicles-log per a E. coli, 

A. niger i B. pumilus, respectivament. Per tant, la inactivació microbiana completa en 

les emulsions no es va aconseguir amb els tractaments individuals. No obstant això, 

quan el tractament de PEF (152.3-176.3 kJ/kg) va ser seguit pel tractament d'HPU (3 

min), els nivells d'inactivació obtinguts van ser de 8.2, 6.6 i 1.0 cicles-log, per a E. coli, 

A. niger i B. pumilus, respectivament, corresponent a la inactivació completa d'E. coli i 

A. niger. A més, el tractament combinat PEF-HPU va presentar un efecte sinèrgic, ja 

que la inactivació aconseguida va ser major que la suma dels tractaments individuals 

per a tots els microorganismes. Malgrat aquest fet, la inactivació assolida per a l'espora 

bacteriana (B. pumilus) va ser molt limitada. Per contra, els nivells d'inactivació 

aconseguits pel tractament invers (HPU seguit de PEF) van ser inferiors a la suma dels 

tractaments individuals. Per tant, la seqüència més eficaç per al tractament combinat 

va ser aquella en la qual els PEF van ser seguits dels HPU. En aquest sentit, el 

tractament PEF probablement va exercir efectes subletales sobre els 

microorganismes, fent que les cèl·lules microbianes estigueren més sensibles al 

tractament posterior d'HPU. Per tant, el tractament combinat PEF-HPU va demostrar 

ser una tecnologia prometedora per a inactivar bacteris vegetatius o espores fúngiques 

en emulsions. No obstant això, el seu ús no va ser factible per a les espores 

bacterianes en les condicions provades en el present treball. 

La resistència dels microorganismes als tractaments de PEF i HPU, aplicats 

individualment o en combinació, va seguir el mateix ordre que el trobat per als 
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tractaments de SC-CO₂, sent els bacteris vegetatius els més sensibles, seguides de 

les espores fúngiques i finalment, de les espores bacterianes.  

Finalment, es pot concloure que, la combinació d'HPU amb SC-CO₂ o PEF 

generalment va millorar la inactivació microbiana. A més, en alguns casos, es va 

demostrar que la combinació dels tractaments va aconseguir efectes sinèrgics. En 

conseqüència, mitjançant l'ús de les tècniques combinades estudiades es podrien 

seleccionar temps de processament industrials raonables i condicions de procés 

suaus, que podrien resultar en una reducció en el cost de processament i un menor 

impacte en la qualitat de les emulsions oli-en-aigua. No obstant això, per a comprendre 

millor els mecanismes d'inactivació exercits pels tractaments combinats de SC-CO₂ i 

HPU i els tractaments combinats de PEF i HPU, és necessari fer un treball en major 

profunditat, especialment en espores fúngiques i bacterianes. A més, es recomana 

investigar més sobre l'efecte d'aquestes tecnologies no tèrmiques combinades sobre 

les propietats fisicoquímiques dels productes tractats, en particular per als tractaments 

combinats de PEF i HPU, aspecte que no es van tractar en el present estudi 
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1.1. Microbial inactivation in the food and pharmaceutical industry 

The preservation processes in the food and pharmaceutical industry are 

essential since microbial growth is common and has an effect not only on the product 

quality but also on the consumer’s health. The most widespread preservation method 

is the thermal treatment. However, the so-called non-thermal technologies, in which its 

primary effect on microbial inactivation is not caused by the heat, are emerging. 

 

1.1.1. Thermal treatments 

Nowadays, thermal sterilization and pasteurization are the most common 

methods to inactivate microorganisms and enzymes in food and pharmaceutical 

products. The methods to achieve the complete inactivation of microorganisms, 

including spores require temperatures higher than 100ºC. Therefore, these treatments 

have some disadvantages related with the heat damage, such as nutritional loss (e.g. 

degradation of vitamins), undesirable sensorial changes (e.g. degradation of volatile 

aroma compounds) and formation of unwanted compounds (e.g. acrolein) (van Boekel 

et al., 2010). 

 

1.1.2. Non-thermal preservation technologies  

In addition to microbial stability, consumers demand high-quality fresh products 

free of preservatives, with an extended shelf life and at a reasonable cost. Therefore, 

alternative processing technologies to assure microbiologically stable products, 

preserving the sensory and nutritional quality, are growing interest. Non-thermal 

preservation technologies are defined as processes where the application of heat is 

not the main factor of microbial inactivation. The advantage of these technologies, 

compared to thermal ones, is potentially a lower impact caused on the physicochemical 

and nutritional properties of the treated product (Van Impe et al., 2018). 

Some of the emerging non-thermal technologies are high pressure processing 

(HPP), irradiation, pulsed electric fields (PEF), pulsed light, ozonization, high power 

ultrasound (HPU) and supercritical carbon dioxide (SC-CO2), among others. 
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1.1.2.1. High pressure processing  

General aspects 

High pressure processing (HPP) consists on the application of very high 

pressure (100 to 600 MPa) on a liquid medium; normally water, which transmits the 

pressure homogeneously to the treated product. Thus, HPP effectiveness is not 

affected by the size or shape of the product (Huang et al., 2014). The product is 

normally contained in a flexible package, which avoids further recontamination.  

 

Inactivation mechanisms  

HPP affects noncovalent bonds, producing changes in large molecules such 

as proteins, polysaccharides, lipids and nucleic acids. Therefore, most of the 

constituents of the cell are affected, including the cell membrane components, and the 

metabolic reactions, which are essential for the cell maintenance, are inhibited. 

 

Influence on the product quality  

HPP has demonstrated to minimally impact on the physicochemical and 

sensory properties of the treated products (Li & Farid, 2016). As an example, HPP 

treatment at ambient temperature had only an slight effect on the anthocyanins content 

of various fruits and vegetables (Tiwari et al., 2009). However, HPP treatment affects 

the structure of macromolecules, such as proteins and polysaccharides, which could 

modify the textural properties of the products or produce loss in nutritional and 

functional food constituents (Huang et al., 2014). For instance, Monfort et al. (2012) 

found protein denaturation and coagulation in HPP-treated egg products and Oliveira 

et al. (2017) found loss of color, increase in hardness and lipid and protein oxidation in 

fish meat. Nevertheless, the changes in the protein structure could be also beneficial 

for some foods, such as novel meat products since the gelation properties are 

enhanced and better texture of the final product is obtained (Rahman et al., 2018).  
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Limitations 

• The structure of proteins and polysaccharides can be altered affecting the quality 

of the product. 

• Lipid oxidation could be accelerated.  

• The inactivation of bacterial spores by pressure alone is limited.  

• Vegetative bacteria can create resistance to treatments due to long exposition to 

pressure.  

• Since very high pressures are involved, a high investment cost is required. 

 

Applications 

HPP technology is widely used in the industry for two main purposes: to provide 

safe products with an extended shelf life and/or to enhance the physical properties of 

the treated products. Microbial inactivation has been accomplished in different 

products, such as meat, dairy products, seafood, fruits, vegetables, and beverages, 

such as beer or wine (Bermúdez-Aguirre & Barbosa-Cánovas, 2011; Buzrul, 2012; 

Rahman et al., 2018). HPP has also been used to enhance the texture, color and water 

holding capacity of meat (Rahman et al., 2018), as a fast deboning process in bivalves 

and crustaceans (Oliveira et al., 2017) as a cold gelatinizing technology resulting in 

new product properties (Balakrishna et al., 2020; Larrea-Wachtendorff et al., 2020) and 

to enhance the coagulation of milk for the preparation of dairy products, such as 

cheese, yogurt and milky sauces with better technological properties (e.g. lower degree 

of syneresis, lower titrable acidity and higher firmness) (Bermúdez-Aguirre & Barbosa-

Cánovas, 2011; Trujillo, 2002).  

 

1.1.2.2. Irradiation 

General aspects 

Irradiation is based on the exposure of products to a certain amount of ionizing 

radiation, which is able to trigger an electron release, producing an electron-deficient 
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particle (Brewer, 2009). In order to generate irradiation, the most frequent methods are 

electron beam (e-beam) and X-ray, which are generated by linear accelerators, and 

gamma-ray, whose source is radionuclides (Co60 or Cs137). Irradiation allows the 

treatment of packaged products avoiding further recontamination. According to the 

World Health Organization (WHO), International Atomic Energy Agency (IAEA) and 

Food and Agriculture Organization (FAO), doses lower than 10 kGy are used to obtain 

safe irradiated food (World Health Organization, 1994). However, high-dose treatments 

(10-60 kGy) are used for special purposes, such as the irradiation of food for patients 

with a low level or lack of immunity and astronauts (Lung et al., 2015).  

 

Inactivation mechanisms  

Irradiation action is linked to direct and indirect effects. Direct irradiation causes 

the microbial DNA, RNA, enzymes and membrane proteins damage and the cell 

division inhibition. The indirect effects are related to the formation of free radicals 

generated during the interaction of irradiation with water molecules. The free radicals 

will combine with each other or with oxygen producing oxidizing agents (Tahergorabi 

et al., 2012). 

 

Influence on the product quality 

Overall, irradiation induces minimal changes on the physicochemical and 

organoleptic properties and nutrient content compared to conventional thermal 

processing (Tiwari et al., 2009). However, some reactions between components could 

trigger lipid oxidation, breakdown of proteins, reduction in vitamin content or changes 

in color, odor, and flavor in the product (Brewer, 2009; Lewis et al., 2002; Tiwari et al., 

2009). As an example, Mendes et al. (2020) irradiated tomatoes with gamma rays 

(1 kGy) and no changes in attributes, such as pH and peel color were found. However, 

irradiated tomatoes were softer than the fresh ones. Moreover, Elias et al. (2020) 

irradiated raspberries (E-beam at 3 kGy) and, although the content of vitamin C was 

reduced, no changes in the phenolic content and antioxidant activity were found. 
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Limitations  

• Consumers reject irradiation since, misguidedly, irradiated products are 

considered as non-safe. 

• The doses of irradiation able to inactivate spores are not permitted in the food 

industry (Li & Farid, 2016). 

• Irradiation technology can be only used in authorized facilities and in some 

products.  

• The use of radionuclides requires protection facilities and the treatment of 

radioactive waste, which increase the cost of the technology. In addition, there 

is a potential health issue for the individuals exposed to the irradiation source (Li 

& Farid, 2016). 

• E-beam has a relatively low penetration capacity (<10 cm), compared to X-ray 

(20 cm) and gamma-ray (40 cm) (Li & Farid, 2016; Tahergorabi et al., 2012). 

 

Applications 

Irradiation has been used for the microbial and enzyme inactivation of food 

products such as spices, meat, cereals, fruits, and vegetables (Brewer, 2009; Lung et 

al., 2015; Pan et al., 2020), air and surfaces (Li & Farid, 2016) and medicinal devices 

(European Medicines Agency, 2016). In addition, low doses of irradiation have been 

used to inhibit the germination of potato, onion and garlic, delay the ripening rate of 

fruits and vegetables or for insect disinfestation in products such as spices or cereals 

(Lung et al., 2015). 

 

1.1.2.3. Supercritical fluids 

General aspects  

A fluid is under supercritical conditions when it is at a pressure and temperature 

above its critical point. In supercritical conditions, there is no distinction between the 

liquid and the gas phase (Fig.1). Supercritical fluids (SCF) have a lower viscosity and 
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a higher diffusion capacity than a liquid fluid, which leads to higher mass transfer 

(Sihvonen et al., 1999). In addition, the dissolving power depends on the density which, 

unlike in the liquid phase, can be easily adjusted by changing the temperature or 

pressure. Those properties make SCF a favorable medium for extraction and 

separation techniques, which has been the main application of this technology. In 

addition, SCF could be more effective than in the gaseous or liquid state for penetrating 

inside the microbial cells, extracting vital components and provoking their inactivation 

(Garcia-Gonzalez et al., 2007). The most widely used fluid in SCF is CO2 due to its 

advantageous characteristics: non-toxic, non-flammable, non-corrosive, colorless, 

inexpensive and leaves no residues. In addition, the critical values of pressure and 

temperature are relatively low (72.8 bar and 31.1ºC, respectively) and therefore, 

industrially easy to reach.  

 

 

 

 
Fig. 1. Temperature-pressure diagram of carbon dioxide. 
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Inactivation mechanisms 

Inactivation mechanisms for vegetative cells 

CO2 dissolves in the aqueous medium and transforms into carbonic acid 

(H2CO3), which dissociates into bicarbonate (HCO3 - ), carbonate (CO3 2-) and hydrogen 

(H +) ions. The release of hydrogen ions lowers the pH of the medium, which may 

provoke the inhibition of the microbial growth and a high energy consumption of the 

microbial cells to maintain the pH homeostasis, which decreases its resistance to 

inactivation. In addition, the decrease of the extracellular pH could damage the 

structure of the cells membrane increasing its permeability, which facilitates the 

penetration of CO2 into the microbial cells. In turn, CO2, due to its hydrophobic and fat-

soluble nature, can diffuse, accumulate and extract lipids from the cellular membrane 

increasing its fluidity, which also enhances the permeability of the cells membrane 

(Ribeiro et al., 2020). Once inside the microbial cells, CO2 accumulates in the 

cytoplasm, lowering the internal pH and causing a collapse in the buffering system of 

the microbial cells, and the denaturation of enzymes, which are vital for metabolic and 

regulatory routes of the microbial cells. The accumulation of CO2 and HCO3- inside the 

cells could directly affect the cells metabolism by affecting the anion-sensitive sites of 

key enzymes, displacing equilibriums and inhibiting the carboxylation and 

decarboxylation metabolic reactions, which are essential for the glucogenesis and the 

synthesis of amino acids and nucleic acids. Moreover, CO3 2– inside the cell could 

precipitate together with inorganic electrolytes (such as Ca2+ or Mg2+), which are 

essential for the regulation of cellular activities such as the maintenance of the osmotic 

balance. The increase of the membrane fluidity along with the high solvating power of 

SC-CO2 allows the extraction of vital cellular constituents. Finally, microbial death can 

also occur by the burst of the cells due to the abrupt depressurization of the supercritical 

CO2 system (Ribeiro et al., 2020). It must be mentioned that the described inactivation 

mechanisms may be interrelated and not occur consecutively.  
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Inactivation mechanisms for fungal and bacterial spores 

The complex, highly dehydrated and robust structure of spores provide them a 

strong resistance to SC-CO2 treatments since the penetration and dissolution of CO2 

into the cell could be restrained. There is not a clear explanation for the inactivation of 

spores by SC-CO2. However, there are two main hypotheses, one being related to the 

germination of spores, which makes cells more sensitive (Spilimbergo et al., 2003) and 

the other, related with the direct damage on the spore structure initially exerted by the 

high temperature usually applied (normally, higher than 60ºC), which makes the spore 

more permeable to SC-CO2 (Rao et al., 2015; Soares et al., 2019).  

 

Influence on the product quality 

In general terms, it could be considered that SC-CO2 treated liquid products 

retain the sensory, nutritional, and physical properties from the fresh product (Damar & 

Balaban, 2006). For fruit juices, one of the most studied product, negligible changes on 

the physicochemical properties were found after the SC-CO2 treatment (Ferrentino et 

al., 2009). In addition, sensory evaluation showed that juices treated with SC-CO2 were 

preferred than pasteurized ones and were indistinguishable from untreated juices 

(Gasperi et al., 2009). In some studies, treated juices were even improved in terms of 

colour, formation and stability of cloud and retention of antioxidants (Arreola et al., 

1991; Kincal et al., 2006). On the contrary, physicochemical changes were found in 

more complex medium, such as milk (Watanabe et al., 2003). As for solid products, 

longer processing times are usually required to obtain an acceptable microbial 

reduction due to the more difficult diffusion of CO2 though the product. Therefore, solid 

products can be more adversely affected by SC-CO2 treatments compared to liquid 

ones. In this regard, the treatment of whole fruits and vegetables to inhibit mould growth 

caused severe tissue damage even at low pressures (Haas et al., 1989). 
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Limitations 

• Sometimes, long processing times or high temperatures and pressures are 

required to achieve a satisfactory level of microbial inactivation, which leads to 

an increase in process cost and a decrease in product quality (Ortuño et al., 

2012).  

• SC-CO2 under mild temperatures and pressures does not inactivate bacterial 

spores (Ribeiro et al., 2020).  

• In solid products, the treatment only can be performed in a batch system. In 

addition, CO2 diffusivity through the product is complicated.  

• High cost of the equipment and requirement of security measures are demanded 

for operating at high pressures.  

 

Applications 

The most studied application of SC-CO2 has been the extraction and 

fractionation. Thus, high added value components, such as essential oils, can be 

extracted; or unwanted compounds, such as caffeine of coffee and tea, flavor, 

cholesterol or alcohol, can be removed (Sihvonen et al., 1999). Regarding the 

inactivation of microorganisms and  enzymes, SC-CO2 has been used in different types 

of food media such as juices, fruits, vegetables and rice (Ferrentino & Spilimbergo, 

2017; Gasperi et al., 2009; Ribeiro et al., 2020). Moreover, it has also been used for 

the sterilization of biomedical materials, such as implantable devices and allograft 

tissues (Ribeiro et al., 2020). Other applications that should be mentioned include the 

microencapsulation of molecules for the development of pharmaceutical formulations 

(Sahena et al., 2009), the supercritical fluids chromatography for the quantification of 

heat-labile non-volatile components (Sihvonen et al., 1999) or the destruction of insect 

eggs, larva or beetles (Perrut, 2012). 
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1.1.2.4. High power ultrasound 

General aspects 

Ultrasound is mechanical waves with frequencies that exceed the limit of 

human hearing (>20 kHz) which require an elastic medium to propagate through it. An 

ultrasound system is composed of a power generator, which produce the electrical 

signal that is converted into vibration by a transducer. In high intensity (>1 W/cm2) or 

low frequency (20- 100 kHz) ultrasound, also called high power ultrasound (HPU), the 

vibration is transmitted to the medium exerting an effect on it. HPU is used for the 

improvement of heat and/or mass transfer processes and can be used for microbial 

inactivation purposes.  

 

Inactivation mechanisms 

HPU waves produce alternating compression and decompression of the 

media. When ultrasonic power reaches a threshold in the decompression cycles, air 

bubbles may cavitate. During cavitation, these bubbles could maintain a stable 

increasing and decreasing size generating microagitation of the medium (stable 

cavitation, Fig. 2) or could grow and collapse generating very high local temperatures 

(5000 K) and pressures (up to 100 MPa), high energy shear waves and turbulence 

(unstable cavitation, Fig. 2). Consequently, HPU has demonstrated its capacity to 

intensify mass and/or heat transfer phenomena. In addition, the implosion of the 

bubbles creates microjets towards the solid surfaces. All this phenomena could cause 

damage and/ or cracks on the microbial cell membranes (Cárcel et al., 2012). 
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Fig. 2. Stable and unstable cavitation. 

 

 

Influence on the product quality 

Overall, the organoleptic and nutritional properties of products treated with 

HPU are not different to the ones thermally treated (Sulaiman et al., 2017). In addition, 

HPU may induce beneficial effects, such as degassing the medium, which could have 

some advantages related with the presence of oxygen and the degradation of 

antioxidants. Thus, Sulaiman et al. (2017) and Knorr et al. (2004) found higher retention 

of the antioxidant activity in apple and orange juice, respectively. Other beneficial 

effects in fruit juices are the improved cloud stability due to a reduced activity of 

enzymes or preferred taste (Knorr et al., 2004; Paniwnyk, 2017; Walkling-Ribeiro, Noci, 

Cronin, et al., 2009). However, some authors affirmed that free radicals produced 

during HPU processing could react with other constituents of the product and lead to 

the degradation of components, such as carotenoids and phenolic and antioxidant 

compounds in juices (Awad et al., 2012; Paniwnyk, 2017) and to the formation of off-

flavors (Sulaiman et al., 2017).  
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Limitations  

• Usually, HPU treatment alone requires very high intensities to achieve 

acceptable levels of microbial inactivation, leading to overheating of the product 

and, consequently, to the degradation of heat-sensitive components.  

• The effect of HPU alone has demonstrated to be insufficient to inactivate bacterial 

spores (Fan et al., 2019). For this reason, HPU can be assisted with pressure 

(manosonication), temperature (thermosonication) or both (mano-

thermosonication) (Awad et al., 2012). 

• Free radicals can be formed during HPU processing, which could led to oxidation 

reactions (Yildiz et al., 2020). However, these reactions can be prevented by the 

reduction of the time and temperature of the HPU treatment (Paniwnyk, 2017). 

 

Applications 

The main applications of HPU in industrial processes are linked to the 

enhancement of heat or mass transfer operations. HPU, usually in combination with 

heat and/or pressure, has been used for microbial and enzyme inactivation in different 

products including fruit and vegetable juices, milk, liquid whole egg, etc. (Paniwnyk, 

2017; Piyasena et al., 2003). In addition, other applications are cleaning of equipment, 

homogenization and emulsification (Villamiel & de Jong, 2000), enhancement of 

dehydration or extraction processes (Santacatalina et al., 2016), enhancement of heat 

transfer in heat exchangers (Gondrexon et al., 2015), degassing of liquids, cutting or 

induction of oxidation/reduction reactions (Knorr et al., 2004). 

 

1.1.2.5. Pulsed electric fields 

General aspects 

A pulsed electric field (PEF) system consists of a generator and a treatment 

chamber with electrodes. PEF treatment involves the application of a sequence of high 

voltage and short duration (in the order of µs) electric pulses to a product that is placed 

between or passes through two electrodes. Consequently, the material is exposed to 
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an electric field whose intensity depends on the voltage across the electrodes and the 

geometry of the chamber and the electrodes. The electric field strength and the total 

specific energy are the main process parameters used to define and compare PEF 

treatments (Raso et al., 2016). The electric field strength is the field strength (kV/cm) 

locally existent in the treatment chamber during the sample processing. In parallel plate 

electrodes, the electric field between the electrodes is considered homogeneous and 

therefore, it is estimated by dividing the voltage between the electrodes by the electrode 

distance. The total specific energy can be calculated by multiplying the electrical energy 

supplied in the chamber by each pulse, by the number of pulses applied. 

 

Inactivation mechanisms 

The application of an external electric field to biological cells induces alterations 

of their transmembrane voltage which leads to electrocompressive forces that are 

balanced by elastic deformations of the cell membrane (Pataro et al., 2010). Whether 

the external electric field exceeds critical levels (>1 V), the breakdown of the membrane 

occurs, which cause the formation of reversible or irreversible pores, mechanism called 

electroporation (Palgan et al., 2012; Spilimbergo et al., 2014). In the reversible 

electroporation (Fig. 3), the membrane of the cell temporally destabilizes and increase 

its permeability. In addition, the cell can undergo sublethal damages (Pataro et al., 

2010). In the irreversible electroporation (Fig. 3), the cell membrane is irrevocably 

cracked and the intracellular content is released, leading to microbial inactivation 

(Palgan et al., 2012).  
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Fig. 3. Schematic representation of the electroporation of a cell membrane. 

  

 

Influence on the product quality 

Overall, PEF treatments for microbial inactivation purposes do not cause 

significant changes in the physicochemical and sensory properties of the treated 

products. Several authors (Dunn, 1996; Hodgins et al., 2002; Yeom et al., 2000) found 

no losses in flavor, color or nutrients and similar °Brix and pH values in PEF-treated 

fruit juices, compared to the heat-treated ones. In addition, the amount of ascorbic acid 

was minimally reduced after the PEF treatment or even increased in some cases. 

Regarding sensory properties, Dunn (1996) found the taste of orange juice treated with 

PEF similar to the untreated one. However, in some studies migration of electrode 

materials to the processed products were found and metallic flavor was detected (Yang 

et al., 2016). As an example, Evrendilek et al. (2004) found a significant increase in the 

concentration of metal ions (Fe, Cr, Zn, and Mn) in beer, which led to a noticeable 

different flavor.  
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Limitations 

• Metal ions can be released from the electrode to the treated product (Yang et al., 

2016). 

• PEF treatment is ineffective for the inactivation of bacterial spores  (Heinz et al., 

2001; Noci et al., 2009). 

• PEF treatment can be applied to a limited number of products (only to fluids). The 

treatment of liquids with particles or gas bubbles leads to dielectric breakdown 

due to the differences in the dielectric constants between liquid, gas and solid 

particles (Jeyamkondan et al., 1999). In addition, only products with 

conductivities and viscosities comprised in a suitable range can be treated. The 

treatment of high conductivity products leads to a high increase in temperature, 

which could provoke short-circuit and the implementation of a cooling system is 

difficult. The treatment of high viscosity products results in a decrease of the PEF 

effect, being sometimes inexistent (Heinz et al., 2001; Huang et al., 2006; 

Paniagua-Martínez et al., 2018). Moreover, sometimes, products such as water-

in-oil emulsions cannot be treated since the continuous oil phase prevents the 

induction of an electric field in the dispersed water phase. However, the use of 

high frequencies could solve this problem (Mastwijk & Bartels, 2007).  

• There are few companies in the market that manufacture equipment for 

processing product streams at an industrial level (Raso et al., 2016). 

 

Applications 

PEF treatment has been used for microbial and enzymes inactivation purposes 

in several matrices such as water, alcoholic beverages, fruit and vegetable juices and 

milk (Heinz et al., 2001; Li et al., 2008; Xiang et al., 2011). Moreover, PEF can be used 

as a pretreatment to enhance the efficiency of processes related with mass and heat 

transfer, since it has demonstrated to reduce the temperature and time or the amount 

of solvents required in the subsequent processes. Therefore, heat-sensitive 

compounds are better retained and higher quality products can be obtained (Llavata et 
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al., 2020). Some examples of those processes are the extraction of water, juices, 

solutes or high-added value compounds from biological matrices; the drying of fruits 

and vegetables or freezing and thawing processes (Barba et al., 2015). In addition, 

reversible electroporation is used in molecular biology and clinical biotechnological 

applications in order to introduce DNA vectors, oligonucleotides, antibodies or drugs 

into the cytoplasm of the cell and after that, to have the cell membrane resealed (Raso 

et al., 2016). 

 

1.1.2.6. Combined treatments 

A considerable number of the limitations described for the aforementioned non-

thermal technologies can be solved by their combination. Often, each individual 

technology applied in a combined treatment leads to an additional stress on the 

microorganisms, resulting in a higher effect on inactivation compared to the individual 

treatments (hurdle approach). Thus, additive or synergistic effects can be obtained. 

This allows to reduce the intensities of the individual treatments, which, in many cases, 

involves less consumed energy and higher quality of the treated products (Martín-

Belloso & Sobrino-López, 2011). In addition, bacterial spores are more prone to be 

inactivated by combined treatments (Fan et al., 2019).  

Among the combinations of non-thermal treatments for microbial inactivation, 

some authors investigated the sequential or simultaneous processing with pressurized 

CO2 and HPP. As an example, Park et al. (2002) obtained the complete inactivation of 

aerobic microorganisms (8 log-cycles of reduction) in carrot juice treated with CO2 at 

50 bar, 5ºC and 5 min followed by HPP at 3000 bar, 25ºC and 5 min; while only 4 and 

3 log-cycles were reduced applying the individual CO2 or HPP treatments for 10 min, 

respectively. The effect of HPP is known to be increased at high temperatures and low 

pH. Therefore, probably, pressurized CO2 increased the effect of the subsequent 

treatment by lowering the pH. Ortuño et al. (2013) found that the simultaneous 

application of HPP and SC-CO2 also synergistically enhanced the inactivation of 

enzymes in feijoa puree.  
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To our knowledge, there are no references in the literature studying the 

sequential combination of SC-CO2 and HPU treatments for microbial inactivation. 

Moreover, only two research groups (Universitat Politècnica de València and University 

of Padova) are currently studding the simultaneous combination of SC-CO2 and HPU 

treatments for microbial inactivation, probably due to the difficulty of implementing an 

ultrasound system with the electrical connections in contact with a highly conductor 

media, which can provoke electrical short-circuits (Ortuño et al., 2012). The application 

of HPU intensified the inactivation effectiveness of SC-CO2, shortening the process 

time to inactivate microbial cells in different media such as E. coli in fresh cut carrot 

(Ferrentino & Spilimbergo, 2016), microorganisms naturally present in coconut water 

(Cappelletti et al., 2014) or S. cerevisiae in YPD broth, apple juice and orange juice 

(Ortuño, Martínez-Pastor, et al., 2013). HPU cause vigorous agitation of the medium, 

which enhances mass transfer and facilitates the dissolution of CO2 in the liquid phase. 

In addition, the cavitation produced by HPU could damage or crack the cell walls, 

enhancing the penetration of SC-CO2 into the cells and facilitating the extraction of vital 

components.  

The combination of SC-CO2 and PEF has also been investigated for microbial 

inactivation purposes. Pataro et al. (2010, 2014) studied the effect of its sequential 

combination, PEF being applied as a pretreatment stage, followed by the SC-CO2 

treatment, in a batch (Pataro et al., 2010) and in a continuous flow (Pataro et al., 2014) 

system to inactivate S. cerevisiae and E. coli, respectively. In both cases, a synergistic 

effect was observed, probably due to the fact that electroporation increases the 

permeability of the cell membrane, enhancing the subsequent penetration of CO2 into 

the cell and accelerating the collapse of the cells.  

Some studies were also found investigating combined PEF and HPP 

treatments. Rzoska et al. (2015) showed the enhancement of the inactivation of S. 

cerevisiae in a water-agar suspension by the simultaneous application of HPP and PEF 

(200 MPa and 10 kV/cm), compared to the single treatments, allowing the use of lower 

pressures and lower electric field than for the individual treatments. The sequential 

combination of PEF followed by HHP treatments to inactivate B. subtilis spores in buffer 
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solution also led to higher inactivation levels compared to each treatment applied 

independently (Sasagawa et al., 2006).  

Promising inactivation results were also found for the sequential PEF and HPU 

treatments. Both alternatives in terms of sequence, PEF-HPU (Aadil et al., 2018; 

Palgan et al., 2012) and HPU-PEF treatments (Noci et al., 2009; Walkling-Ribeiro, Noci, 

Riener, et al., 2009) were found in the literature. As an example, Lyu et al. (2016) 

inactivated 3.7 (with HPU followed by PEF) and 3.5 log-cycles (with PEF followed by 

HPU) of S. cerevisiae with the combined treatments, while only 0.8 and 2.9 log-cycles 

were achieved with the individual HPU and PEF treatments, respectively. However, to 

our knowledge, only three studies (Huang et al., 2006; Lyu et al., 2016; Palgan et al., 

2012) compared the influence of the sequence of the application in PEF and HPU 

combined treatments. 

Nevertheless, scarce studies comparing the effectiveness of the combined 

non-thermal treatments on different microorganisms are found in the literature. For 

example, no references were found exploring the effect of SC-CO2 and HPU or PEF 

and HPU treatments on filamentous fungal or bacterial spores inoculated in a liquid 

media. Therefore, more research is needed for seeking the most efficient and cost-

effective combination for each application, while maintaining the quality of the final 

treated product 

  

1.2. Emulsions  

1.2.1. General aspects 

An emulsion consists of two immiscible liquid phases, one being dispersed as 

small droplets in the other acting as a continuous phase. In the food, pharmaceutical 

and cosmetic industry, emulsions are widely distributed and are usually composed by 

an oil and a water phase, termed as oil-in-water (O/W) emulsion when the oil phase 

droplets are dispersed in the water phase and water-in-oil (W/O) emulsion when the 

water phase droplets are dispersed in the oil phase (Dong et al., 2016). Another 

emulsions, formed by aqueous droplets trapped inside oil phase droplets, which are 
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dispersed in an aqueous solution (W/O/W) and vice versa (O/W/O), can also be formed. 

As the contact between the two immiscible phases is unfavorable and the density is 

different, emulsions are thermodynamically unstable systems. Stabilizers such as 

emulsifiers or texture modifiers can be used to enhance the kinetic stability of emulsions 

(McClements, 2015). Emulsifiers (commonly phospholipids, small surfactants 

molecules, proteins and polysaccharides) can be adsorbed in the oil-water interface of 

the droplets providing protective coating (by electrostatic double-layer repulsive force 

or by steric barrier between the dispersed droplets) preventing the droplets from 

aggregation. In addition, emulsifiers reduce the interfacial tension, facilitating the 

formation of smaller droplets during homogenization. Moreover, texture modifiers (such 

as starch, pectin, alginate, carrageenan or gelatin) are substances used to slow down 

the droplets movement by increasing the viscosity or by the formation of a gel network 

within the continuous phase (McClements, 2007). 

 

1.2.2. Use in the industry 

In the food industry, many lipid-rich products are in the form of emulsions, being 

the most common the O/W systems. Some examples are milk, cream, mayonnaise, 

soft drinks, nutritional beverages, dressings, soups and sauces. However, there are 

also some food products which are W/O emulsions, such as butter or margarine. In 

addition, emulsions can be implemented in the food industry to elaborate products with 

a higher satiating power while maintaining or enhancing the organoleptic properties 

(Lett et al., 2015). As an example, W/O/W emulsions have been elaborated to create 

fat-reduced emulsions, by replacing part of the oil phase with water droplets (Liu et al., 

2020). Some of the fats/oils commonly used for the elaboration of food emulsions are 

milk cream and vegetable oils, such as corn, soybean, sunflower or olive oil, among 

others.  

In the pharmaceutical and cosmetic industry, emulsions are also very common. 

Some examples are emulsions for topical or parenteral administration. In topical 

pharmaceutical and cosmetics emulsions, such as lotions, sun care products, 

moistening, and anti-ageing creams, small size of droplets has demonstrated to 
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enhance skin protection, minimize the loss of trans epidermal water and enhance the 

penetration of active ingredients (Azmi et al., 2019). Regarding emulsions for 

intravenous nutrition (normally O/W), which are mainly used as a source of essential 

fatty acids and calories, the microbial sterility, the emulsion stability and the droplet size 

are of great importance. Droplet sizes of 0.25-0.50 µm are required to simulate natural 

chylomicrons, which are lipoproteins that carry dietary lipids from the intestine to other 

parts of the body. Moreover, higher than 5 µm droplets involve a risk of obstruction of 

the pulmonary arterioles (Driscoll, 2006; Pertkiewicz et al., 2009). Therefore, only a 

percentage of 0.05% w/v of droplets exceeding 5 µm is allowed in intravenously 

administered emulsions (Gallegos et al., 2012). Some of the oils commonly used for 

the elaboration of intravenous emulsions are soybean oil, olive oil and fish oil.  

Emulsions are also used in other industries. For instance, emulsions can be 

implemented in paints to decrease the viscosity and enhance the spreading and drying 

processes or in chemicals to control reactions by reducing the contact between 

reagents (Mikkonen, 2020). Emulsions have also been used to encapsulate bioactive 

substances, including probiotics, vitamins, minerals, fatty acids and antioxidants. 

Encapsulation aims to control the release of target compounds or to encapsulate 

undesirable substances and to mask unpleasant flavors. This application constitutes a 

cross-sectional aspect of interest in food, pharmaceutical, cosmetic or agrochemical 

industries (Liu et al., 2020b; Muriel Mundo et al., 2020).  

 

1.2.3. Physicochemical properties and stability 

“Stability” refers to the ability of an emulsion to maintain unaltered its 

physicochemical properties throughout a defined period of time. Emulsions can be 

unstable due to different physicochemical mechanisms, all of them being often 

interrelated (Fig.4). Some of them are: 

 

• creaming and sedimentation, where droplets move upward or downward, 

because its density is lower or higher than that of the surrounding liquid. 
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• flocculation, where two or more droplets aggregate together retaining its 

individual integrity. 

• coalescence, where two or more droplets merge together and form one larger 

droplet. 

• Ostwald ripening, where larger droplets get larger at the expense of smaller 

droplets. 

• phase inversion, where an O/W emulsion become a W/O emulsion or vice versa. 

 

 
Fig. 4. Most common instability mechanisms in emulsions 

 

Physical stability of oil-in-water emulsions is highly influenced by the droplets 

concentration, size, charge and interactions between them. Small size droplets and 

narrow size distributions should contribute positively to the emulsion stability 

(Desrumaux & Marcand, 2002). In fact, emulsions with a droplet size lower than 0.5 
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µm, are known to own a great stability, since flocculation is prevented (Anton et al., 

2008). On the contrary, emulsions with large droplet size usually have a strong 

tendency to gravitacional separation, such as creaming (Azmi et al., 2019). The droplet 

charge is usually determined in terms of zeta potential, which is the difference in the 

electrical potential between the static coat of the dispersion medium attached to the 

dispersed droplets and the mobile dispersion medium. A high zeta potential, negative 

or positive, means that the emulsion is electrostatically stabilized while a low zeta 

potential leads to instability (Lu & Gao, 2010). The surrounding pH also affects the 

stability of emulsions since may reduce the repulsive forces between the particles 

resulting in flocculation, which may lead to coalescence and larger droplet formation 

(Pertkiewicz et al., 2009). Hence, the stability of emulsions may be measured by 

methods determining visible signs of instability (creaming), particle size and size 

distribution, droplet charge and pH. 

 

1.2.4. Non-thermal inactivation 

Due to the multiple applications of the emulsions, its pasteurization has gained 

interest in the industry (food, pharmaceutical, cosmetics, etc.). Moreover, in some 

pharmaceutical preparations, such as for parenteral and ophthalmic products, the 

assurance of sterility is of vital importance (Ribeiro et al., 2020). Thermal treatments 

(for pasteurization or sterilization) have been traditionally used to ensure safety and to 

extend the shelf life of food, pharmaceutical and cosmetic emulsions. However, high 

temperatures could adversely affect the stability of emulsions since many of the 

ingredients used in the emulsions are heat-sensitive; proteins, surfactants and 

polysaccharides being some examples. In addition, changes in the physicochemical 

properties such as pH, density or droplet size, in the organoleptic properties such as 

color, texture, and flavor and a decrease in the nutritional composition, such as loss of 

vitamins may occur, resulting in a decrease in the quality of the emulsions. 

Consequently, the microbial inactivation in emulsions by using non-thermal treatments 

becomes of great interest.  

 



Introduction 

25 

1.2.4.1. High pressure processing 

Several authors investigated the effects of HPP on oil-in-water emulsions and 

found generally, satisfactory levels of microbial inactivation (Anton et al., 2001). In 

addition, some of them studied the possibility of using the high-pressure 

homogenization step, usually employed for the preparation of emulsions, to decrease 

the initial microbial content (Diels & Michiels, 2006). Thus, the homogenization step 

could avoid or reduce the intensity of the subsequent process for 

pasteurization/sterilization, obtaining better quality products and reducing the cost of 

the process (Diels & Michiels, 2006; Dong et al., 2016). However, diverse results about 

the HPP effect on the properties of emulsions (such as stability and rheology) were 

reported. Liu et al. (2020) achieved the same level of reduction (2.6 log-cycles) for the 

mesophilic bacteria in milk for both HPP (600 MPa for 5 min) and thermal treatment 

(72 °C for 15 s) and similar aroma profiles and in-vitro protein digestion were found. 

However, a higher denaturalization of the protein β-lactoglobulin was found in the HPP-

treated milk. Anton et al. (2001) achieved the complete inactivation of the bacteria, 

molds and yeasts naturally present in sunflower oil emulsions (pH of 3 and 7) with an 

HPP treatment at  500 MPa, 10ºC and 10 min and no physicochemical changes were 

found, except for an increase in viscosity in the emulsions at pH 7. However, some 

studies demonstrated that the application of high pressures (>650 MPa) made 

emulsions more prone to lipid oxidation and physical instability (Gharibzahedi et al., 

2019). 

 

1.2.4.2. Irradiation  

As for the use of irradiation for the microbial inactivation in emulsions, few 

studies were found. Oil is very susceptible to the oxidation by the free radicals formed 

in the irradiation process. Therefore, the generation of undesirable organoleptic 

properties is likely to occur in emulsions (Grandison, 2012). Jo and Ahn (2000) 

investigated the effect of irradiation (doses from 2.5 to 10 kGy) in various soybean oil 

emulsions and found an accelerated lipid oxidation along with off-flavors. Low doses of 

irradiation (2-3 kGy of gamma irradiation) achieved between 2 and 3 log-cycles of 



A. Gomez-Gomez, 2021  

26 

reduction of mesophilic bacteria in milk and dairy products, such as ice creams, 

although noticeable rancid off-flavors were also reported (de Oliveira Silva et al., 2015; 

Kamat et al., 2000). Moreover, to inactivate some enzymes present in milk, such as 

phosphatase, about 5-10 times the dose required for the inactivation of microorganisms 

were needed, which makes the technology unsuitable for this purpose (Ahmad et al., 

2019). 

 

1.2.4.3. Supercritical fluids  

Regarding SC-CO2 microbial inactivation in emulsions, only studies in milk 

were found. Werner & Hotchkiss (2006) achieved reductions of 5.4 and 5.0 log-cycles 

for native microorganisms and inoculated P. fluorescens in milk treated at 207 bar, 

35°C and 10 min, while no effect was found in spores. Watanabe et al. (2003) reported 

milk coagulation after the treatment (300 bar, 95ºC and 120 min). Some authors 

explained that the SC-CO2 could destabilize casein micelles since the carbonic acid 

forms binds with calcium ions (Amaral et al., 2017; Bonnaillie & Tomasula, 2015). In 

addition, acidification by the dissolution of CO2 in the milk could affect the proteins since 

the ionic and electrostatic interactions within the casein micelles and the whey protein 

could change (Bonnaillie & Tomasula, 2015). 

 

1.2.4.4. High power ultrasound 

HPU technology, usually applied along with heat (thermosonication), has 

proven to be effective for the inactivation of microorganisms in milk and vegetable 

emulsions. Moreover, in some studies, HPU applied to inactivate microorganisms, 

simultaneously reduced the size of large oil droplets (Bermúdez-Aguirre et al., 2009; 

Cameron et al., 2009; Salve et al., 2019). Cameron et al. (2009) successfully 

inactivated E. coli, P. fluorescens and L. monocytogenes in milk with HPU for 6-10 min 

and obtained a decreased fat globule size while no important changes on pH, lactic 

acid and protein and lactose content were found. Salve et al. (2019) achieved an 

inactivation of 0.5-1.1 log-cycles of mesophilic microorganisms present in peanut milk 

after 3 min of HPU treatment while found some improved attributes, which could 
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prevent phase separation, namely smaller particle and oil droplet size, higher content 

of hydrolyzed protein and better sedimentation index. Atalar et al. (2019) obtained the 

complete inactivation of the microorganisms naturally present in hazelnut milk (75ºC, 

15-25 min, 60-80% amplitude), finding an improved quality in terms of appearance, 

syneresis, sedimentation, viscosity and consistency. However, lipid oxidation related 

with cavitation has also been reported in emulsions. For example, unpleasant off-

flavors and metallic and rancid smell have been reported in sunflower oil, sunflower oil 

emulsions (Chemat et al., 2004) and in dairy products (Awad et al., 2012).  

 

1.2.4.5. Pulsed electric fields 

Several authors investigated the PEF treatment for the microbial inactivation in 

milk. Dunn (1996), Michalac et al. (2003) and Odriozola-Serrano et al. (2006) 

inactivated between 0.3 and 6 log-cycles of microorganism naturally present in milk 

and inoculated L. innocua, P. fluorescens, L. lactis and B. cereus, reporting no changes 

in the physicochemical properties, namely pH, density, color, fat integrity, calcium 

distribution, free fatty acid content, proteins structure, moisture, droplet size and 

electrical conductivity. Moreover, less flavor degradation, compared to the milk treated 

with heat was reported by Dunn (1996). However, Xiang et al. (2011) found changes 

in the rheological and protein structure in skimmed milk. Apart from milk, PEF 

technology was also studied for microbial inactivation in some vegetable emulsions. 

Dunn (1996) affirmed that salad dressings can be PEF-pasteurized without affecting 

the emulsion integrity. Walkling-Ribeiro et al. (2010) reduced 3.4 log-cycles of bacteria 

and 4 log-cycles of yeasts and molds naturally present in coconut milk based 

smoothies, obtaining similar physicochemical and organoleptic properties than in the 

thermally pasteurized products. Moreover, Barsotti et al. (2001) treated different types 

of oil-in-water emulsions (milk, 35% fat dairy cream and 30% peanut oil emulsion) with 

PEF and the size distribution of the oil droplets was not markedly changed.  
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1.3. Justification of the research  

A great number of products in the food, pharmaceutical and cosmetics industry 

are based on emulsions. Among the emulsions used in the pharmaceutical industry, 

oil-in-water parenteral formulations are routinely used for the intravenous nutrition of 

patients with gastrointestinal disorders (also named lipid emulsions) (Amran et al., 

2019). Microbial contamination or changes in the physicochemical properties, could 

cause very serious complications in parenteral nutrition. For example, an emulsion 

droplet size larger than the capillaries diameter could led to vascular occlusion. 

Therefore, the assurance of safe parenteral emulsions, in terms of sterility and 

physicochemical stability, is considered of vital importance (Montejo et al., 2000; Takagi 

et al., 1989). In this sense, the United States Pharmacopeia (USP) sets pharmaceutical 

requirements on pH, free fatty acids and droplet size (in terms of mean droplet size and 

population of  droplets larger than 0.5 µm), among others (Driscoll, 2006; Gallegos et 

al., 2012; Wanten, 2015). As for sterility, parental emulsions are usually heat sterilized 

in steam autoclaves at 121ºC (Montejo et al., 2000; Riera et al., 2018). However, high 

temperatures are known to negatively affect heat-sensitive compounds and 

physicochemical properties of the emulsions (Chansiri et al., 1999). Specifically in 

parenteral emulsions, heat sterilization causes the hydrolysis of lipids and lecithin, 

which leads to negative effects, such as the liberation of free fatty acids, which lowers 

the pH, and an increase in the mean droplet size (Chansiri et al., 1999; Chaturvedi et 

al., 1992; Floyd, 1999; Hippalgaonkar et al., 2010). One alternative to eliminate or 

minimize the heat input is the one based on filtration techniques using sterilize grade 

filters and further aseptic filling. However, this method is less effective eliminating 

microorganisms than thermal sterilization and its use is limited to emulsions with low 

viscosity and droplet size below 0.2 μm. Moreover, filters could potentially retain some 

interesting solutes, provoke contaminations and affect the physicochemical stability of 

the emulsions (Floyd, 1999; Hippalgaonkar et al., 2010; Lidgate et al., 1992). In addition 

to filtration, no literature has been found studying other non-thermal alternatives for 

microbial inactivation in parenteral emulsions. 
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Emerging technologies, such as SC-CO2, HPU or PEF, have already 

demonstrated success on microbial inactivation in a wide range of products, while 

partially avoiding or minimizing the detrimental effects linked to high temperatures. 

Nevertheless, for some resistant microorganism (mainly spores) or some complex 

media, such as fat-rich products (e.g. lipid emulsions), the individual non-thermal 

treatments could be ineffective or require extremely long process times or intensities to 

achieve a satisfactory level of inactivation. These extreme treatments could lead to 

changes in the physicochemical properties of the product and high process cost. For 

this reason, the combination of different non-thermal technologies could be promising 

for the microbial inactivation in parenteral emulsions. Despite its importance, scarce 

literature was found about the effectiveness of combined non-thermal technologies on 

the microbial inactivation in emulsions. Specifically, no studies of combined SC-CO2, 

PEF or HPU treatments were found on vegetable oil-in-water emulsions, including 

parenteral emulsions, and the effect of the oil content on the effectiveness of these 

combined treatments has not been addressed elsewhere. In addition, no studies 

assessed the combined SC-CO2, PEF or HPU inactivation of fungal and bacterial 

spores inoculated in liquid emulsions, or compared the resistance of different types of 

microorganisms (such as vegetative bacteria and fungal and bacterial spores). As for 

the physicochemical properties of the treated product, the effect of the SC-CO2 + HPU 

treatment on the quality of emulsions has not been previously analyzed. Therefore, the 

assessment of non-thermal inactivation technologies to guarantee safe parenteral 

emulsions in terms of both, microbial and physicochemical stability, is of great interest 

for the pharmaceutical industry and its exploration is fully justified. In this context, this 

Doctoral Thesis has been carried out in the frame of the project ‘Assessment of the 

non-thermal pasteurization of lipid emulsions in supercritical CO2 intensified by power 

ultrasound’ funded by the pharmaceutical company Fresenius Kabi Deutschland 

GmbH.  

 



 

 
  

 



 
 

2. OBJECTIVES  
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The main objective of this PhD Thesis was to evaluate the feasibility of different 

emerging non-thermal technologies, applied in individual and combined form, to 

inactivate different microorganisms in oil-in-water emulsions. 

 

In order to achieve this goal, the following particular objectives were 

established:  

 

1. To determine the effect of the application of high power ultrasound (HPU) 

on supercritical carbon dioxide (SC-CO2) treatments on the inactivation of 

vegetative bacteria (E. coli and B. diminuta) and a fungal spore (A. niger) 

in a simple medium (water). 

2. To analyze the microstructural changes on the microbial cells (E. coli, 

B. diminuta and A. niger) after the SC-CO2 + HPU treatments in water.  

3. To address the application of SC-CO2 + HPU treatments for the inactivation 

of vegetative bacteria (E. coli and B. diminuta) in a complex lipid-rich 

medium (20% oil-in-water emulsions).  

4. To study the effect of the oil content in the media (water and oil-in-water 

emulsions with a 10, 20 and 30% of soybean oil) on the SC-CO2 and SC-

CO2 + HPU inactivation treatments of vegetative bacteria (E. coli and 

B. diminuta). 

5. To explore the differences on the resistance to SC-CO2 and SC-CO2 + HPU 

treatments between a fungal (A. niger) and an anaerobic bacterial spore 

(C. butyricum) in 20% oil-in-water emulsions.  

6. To determine the effect of SC-CO2 + HPU treatments on the inactivation of 

aerobic bacterial spores (B. subtilis, B. pumilus and G. stearothermophilus) 

in 20% oil-in-water emulsions.  

7. To evaluate the effect of SC-CO2 + HPU treatments on the physicochemical 

properties (appearance, pH, density, droplet size and droplet charge) of 

20% oil-in-water emulsions.  
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8. To evaluate the effect of individual and sequentially combined pulsed 

electric field (PEF) and HPU treatments on the inactivation of a vegetative 

bacteria (E. coli) a fungal spore (A. niger) and a bacterial (B. pumilus) spore 

in 20% oil-in-water emulsion. 
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3.1. Working plan 

The working plan of the present PhD Thesis (Fig. 1) was designed based on 

the objectives stablished. Thus, the experimental plan was divided into five parts giving 

rise to the two chapters in which the Results and Discussion section has been 

structured. These chapters correspond to the two different combinations of non-thermal 

technologies for microbial inactivation used, supercritical carbon dioxide and high 

power ultrasound (Chapter 1) and pulsed electric field and high power ultrasound 

(Chapter 2). 

The first chapter is composed by four parts. Firstly, the feasibility of SC-CO2 

treatments (with and without the application of high power ultrasound) to inactivate 

three different microorganisms; two vegetative bacteria (E. coli and B. diminuta) and a 

fungal spore (A. niger) was assessed in simple media (water). In addition, the 

microstructural damage on the microorganisms’ cells after the SC-CO2 + HPU 

treatments was observed by using cryoFESEM and TEM (Part 1.1, Chapter 1). 

Secondly, the same treatments were performed to inactivate E. coli and B. diminuta in 

a 20% oil-in-water emulsion. The treating medium is known to affect the effectiveness 

of inactivation treatment. Therefore, the effect of different oil content in emulsions on 

the inactivation kinetics was analyzed. For this purpose, 10, 20 and 30% oil content 

emulsions were prepared (Part 1.2, Chapter 1). Thirdly, SC-CO2 treatments (with and 

without the application of high power ultrasound) were performed on spores of A. niger 

and C. butyricum in a 20% oil-in-water emulsions with the aim of assessing the effect 

of the inactivation treatments on fungal and bacterial spores (Part 1.3, Chapter 1). 

Finally, SC-CO2 + HPU treatments were performed on different Bacillus and 

Geobacillus spores (B. subtilis, B. pumilus and G. stearothermophilus) and the effect 

of the treatment conditions (pressure, temperature and time) on the physicochemical 

properties of the emulsions (pH, density, size of droplets and ζ-potential) was analyzed 

(Part 1.4, Chapter 1). The inactivation kinetics from Chapter 1 were described by the 

Weibull model. Moreover, the effect of the treatment conditions (pressure, temperature, 

time and use of ultrasound), the treating medium and the type of microorganism on 

microbial inactivation was analyzed by a General Linear Model. 
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In the fifth part of the experimental plan (Part 2.1, Chapter 2) the effectiveness 

of the individual and the combined PEF and HPU treatments (in both sequences, PEF 

+ HPU and HPU + PEF) on the inactivation of a vegetative bacteria (E. coli), a fungal 

spore (A. niger) and a bacterial spore (B. pumilus), in 20% oil-in-water emulsions, was 

assessed. The effect of the treatment conditions (for the PEF treatments, field strength, 

treatment time and input temperature of the sample and for the HPU treatments, the 

treatment time), the sequence (PEF + HPU or HPU + PEF) and the type of 

microorganism on microbial inactivation was analyzed by ANOVA.  

In the Results and Discussion section of this PhD Thesis, the specific 

methodology used in each results’ subsection is described in detail. Consequently, in 

this Methodology section, the material and methods will be only outlined.  
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Fig. 1. Working plan 
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3.2. Preparation of microorganisms  

All the strains of the microorganisms used in this PhD Thesis were obtained 

lyophilized from the Spanish Type Culture Collection (CECT, Valencia, Spain). The 

bacteria were: Eschericha coli CECT 101, Brevundimonas diminuta CECT 313, 

Clostridium butyricum CECT 361T, Bacillus subtilis CECT 356, Bacillus pumilus CECT 

29T and Geobacillus stearothermophilus CECT 43 T. The filamentous fungi was 

Aspergillus niger CECT 2807.  

E. coli and B. diminuta were selected as gram-negative bacteria (vegetative 

bacteria). E. coli because it is commonly present in contaminated products and 

B. diminuta because of its especially small cell size. C. butyricum, B. subtilis, 

B. pumilus and G. stearothermophilus were selected as gram-positive bacteria, able to 

form spores. C. butyricum was used to study a spore with anaerobic growth and 

B. subtilis, B. pumilus and G. stearothermophilus, to study spores with aerobic growth, 

already used as biological indicators for other inactivation treatments. Lastly, A. niger 

was selected as a spore-forming filamentous fungi, very common in contaminated 

products. 

 

-Vegetative bacteria:  

A single colony of E. coli or B. diminuta was inoculated in 50 mL of Nutrient 

Broth (Scharlab, Barcelona, Spain) and grown overnight (18-24 h) at 37 and 30ºC, 

respectively, while shaking using an incubation chamber and an orbital shaker (J.P. 

Selecta, Barcelona, Spain). It is known that the culture growth stage affects the 

resistance to treatments of vegetative microorganisms, being more resistant in the 

stationary phase compared to the initial growth phases (Ortuño et al., 2012). Therefore, 

50 µL of the overnight culture were transferred to a new 50 mL of Nutrient Broth to be 

grown until the stationary phase was reached. The time at which E. coli and B. diminuta 

reached the stationary phase was stablished by plating on Plate Count Agar (data not 

shown) and measuring the optical density at 600 nm (Fig. 2), using a UV-visible 

spectrophotometer (Helios Gamma, Thermo Spectronic, Cambridge, UK). All the 

measurements were taken in triplicate.  
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Fig. 2. Growth kinetics of E. coli (A) and B. diminuta (B) monitoring by optical density 

measurements at 600 nm (OD 600). 

 

Thereby, in order to assure that E. coli and B. diminuta reached the stationary 

phase, the bacterial suspensions used to inoculate the media (water or emulsions) 

were cultivated for 14 h at 37ºC and for 36 h at 30ºC, respectively. 

-Fungal spore:  

A. niger was first cultured on Potato Dextrose Agar (Scharlab, Barcelona, 

Spain) at 25ºC for 7 days, time at which a high fungal spore concentration is formed 

(Reverter-Carrión et al., 2018). After that, the spores were rubbed and collected from 

the agar with 10 mL of 0.1% (v/v) Tween 80. The suspension was kept in a sterile 

container at 4ºC until use. 

 

-Bacterial spores:  

Bacillus, Geobacillus and Clostridium spp. were sporulated following the 

methodology of Mafart et al. (2002) with modifications. A single colony of C. butyricum, 

B. subtilis, B. pumilus or G. stearothermophilus was cultivated in its growing medium 

at optimum temperature until reaching the stationary phase according to previous 

literature (Table 1). After that, 100 µL of the bacterial suspension were incubated for 5-

6 days on agar (Table 1) enriched with MnSO4 (40 mg/L) and CaCl2 (100 mg/L) to 
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enhance the sporulation. Spores were then collected by scraping the surface of the 

agar, suspended in 2 mL of sterile deionized water, and washed three times by 

centrifugation at 8000 x g for 15 min (Medifriger BL-S, JP Selecta, Barcelona, Spain). 

The pellet was resuspended in 2 mL of ethanol (50% v/v) and kept at 4°C for 12 h. 

Then, the suspension was washed again three times, distributed into sterile microtubes 

and kept at 4°C until use. Before being treated, the microtubes were heat-shocked at 

80°C for 15 min  and cooled again (Ávila et al., 2014; Spilimbergo et al., 2003). 

B. subtilis, B. pumilus and G. stearothermophilus were aerobically sporulated, while 

C. butyricum was grown and sporulated in anaerobic conditions, with airtight incubation 

containers and CO2 generating systems (Oxoid, Thermo Fisher Scientific, Waltham, 

Massachusetts, USA).  

 

Table 1. Medium, temperature and time conditions for bacterial growth and sporulation. 

 
*MnSO4 (40 mg/L) and CaCl2 (100 mg/L) was added to the agar to enhance the 

sporulation. (RCM: Reinforced Clostridial Medium; RCA: Reinforced Clostridial Agar; 

NB: Nutrient Broth; PCA: Plate Count Agar; TSM: Tryptic Soy Medium; TSA: Tryptic 

Soy Agar). 

 

3.3. Preparation of oil-in-water emulsions 

Oil-in-water emulsions were prepared with different soybean oil contents (10, 

20 and 30%). Deionized water was used as the control treatment medium (0% oil 

content). The emulsions were prepared in three stages: mixing, sonication and 

homogenization. The lipid phase was formed by soybean oil and egg phospholipid and 

Bacteria Growing  broth Agar medium Temperature Time for stationary phase 

C. butyricum RCM RCA* 37ºC 36 h  (Kong et al., 2006; NCBI, 2021) 

B. subtilis NB PCA* 30ºC 24 h (Lee et al., 2011; Mondal et al., 2015) 

B. pumilus NB PCA* 30ºC 24 h (Han et al., 2017; Liu et al., 2015). 

G. stearothermophilus TSM TSA* 50ºC 24 h (Hetzer et al., 2006) 
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the water phase was constituted by deionized water and glycerol. The lipid phase was 

prepared using a disperser device (IKA T25 Digital, Ultra-Turrax, tool S25N -25G, 

Staufen, Germany) at 14000 rpm for 2 min, 10200 rpm for 4 min and 10600 rpm for 4 

min and after that, it was slowly added to the water phase, while being mixed at 14000 

rpm. The mix was sonicated for 5 min with the UP400S ultrasound system and the H22 

sonotrode (Hielscher, Teltow, Germany). Finally, the product was homogenized in two 

stages (50 bar; 550 bar) with the PANDA Plus 2000 homogenizer (GEA Niro Soavi, 

Parma, Italy). 

 

3.4. Inoculation 

Prior to each treatment, the sample was prepared by inoculating the vegetative 

cell, fungal spore or bacterial spore suspension in sterile deionized water or oil-in-water 

emulsion, to reach a cell concentration of 107-108 CFU/mL for E. coli and B. diminuta, 

106-107 CFU/mL for A. niger spores, 104-105 CFU/mL for C. butyricum spores, 106-108 

CFU/mL for B. subtilis spores, 107-108 CFU/mL for B. pumilus spores and 105-106 

CFU/mL for G. stearothermophilus spores. 

 

3.5. Thermal treatments 

1.5 mL of inoculated medium were poured into sterile glass tubes (Fiolax, 8 

mm in diameter and 70 mm in length, Schott, Mainz, Germany) and placed in a 

temperature-controlled water bath (1812, Bunsen, Madrid, Spain). The tubes were 

taken from the bath after different times, depending on the microorganism and the 

temperature of the treatment and placed in ice until the microbial analysis was 

performed. The experiments were carried out in triplicate.  

 

3.6. Non-thermal treatments 

In this section, the equipment and conditions will be only outlined since further 

details can be found in the Materials & Methods subsection of the different parts of 

Results and discussion section. Before use, any non-thermal processing system used 
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in this PhD Thesis was sterilized for 5 min with a disinfectant solution (Diversey 

Delladet, South Carolina, USA). 

 

3.6.1. Supercritical carbon dioxide and high power ultrasound 

Supercritical carbon dioxide equipment 

A supercritical fluid lab-scale equipment designed and built by the research 

team for batch mode operation was used. The system (Fig. 3) consisted of an 

inactivation vessel (5, Fig. 3) submerged in a thermostatic water bath (4, Fig. 3), to 

maintain the temperature of the process, a CO2 tank (1, Fig. 3), a chiller reservoir kept 

at −18°C (2, Fig. 3) and a diaphragm metering pump (LDB, LEWA, Tokyo, Japan) to 

reach the desired pressure in the inactivation vessel (3, Fig. 3). To measure the 

temperature and pressure of the sample throughout the process, a pressure gauge and 

a K-type thermocouple were installed inside the vessel. The vessel was loaded with 

the inoculated sample (65 or 62 mL, depending on the microorganism) and immediately 

sealed and pressurized with CO2. During the treatment, sample was extracted at 

different times. Both, the treatment conditions (pressure, temperature and time) and 

the sampling times were chosen according to the microorganism to be treated.  

 

Ultrasonic system 

The ultrasound system consisted mainly of a high power (> 1W/cm2) 

piezoelectric transducer (6, Fig. 3) made up of two commercial ceramics (8, Fig. 3; 

resonance frequency of 30 kHz; ATU, Spain), a sonotrode and a power generation unit 

(10, Fig. 3). The power was 30 ± 5 W or 50 ± 5 W (I: 250 ± 10 mA; U: 220 ± 5 V) and 

the frequency was 30 ± 2 kHz, measured with a Digital Power Meter (WT210, 

Yokogawa Electric Corporation, Tokyo, Japan). The transducer was attached to the lid 

of the treatment vessel to sonicate directly the SC-CO2. When the required pressure 

was reached in the treatment vessel, the HPU system was connected.  
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Fig. 3. Supercritical CO2 treatment system. (1-CO2 tank, 2-Reservoir, 3-Pump, 4-Bath, 5-

Treatment vessel, 6-Transducer, 7-Insulation joint, 8-Ceramics, 9-Vessel output for sample 

extraction, 10-Power Generation Unit). 

 

3.6.2. Pulsed electric field and high power ultrasound  

Four different inactivation treatments were carried out: 

- PEF  

- HPU 

- PEF followed by HPU (PEF-HPU) 

- HPU followed by PEF (HPU-PEF) 

In the combined treatments (PEF-HPU and HPU-PEF), the sample was 

processed by the first treatment and immediately collected in a sterile container, cooled 

to reach the initial temperature and treated again.  

 

PEF treatments 

A continuous flow lab-scale system (Fig. 4), which consisted of a high voltage 

pulse generator (Epulsus-PM1-10, Energy pulse systems, Lisboa, Portugal) and a 
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treatment chamber with two parallel plate electrodes (electrode gap of 31 mm) was 

used for the application of monopolar square-shaped pulses. The inoculated emulsion 

was circulated through the chamber by a peristaltic pump (XX8000230, Millipore 

Corporation, Massachusetts, USA). Two K-type thermocouples, located at the inlet and 

outlet of the PEF chamber were used to measure the temperature variation caused by 

the treatment.  

 

 
Fig. 4. Schematic diagram of the PEF system. HVPG: high voltage pulse generator. P: pump, 

TC: treatment chamber, IE: inoculated emulsion, TE: treated emulsion.  

 

HPU treatments  

An UP400St ultrasonic processor (100% of amplitude, 400 W, 24 kHz) with the 

s24d14D sonotrode (Hielscher Ultrasonics, Teltow, Germany) was used for microbial 

inactivation in batch mode. The inoculated emulsion was placed in a jacketed beaker 

where water was circulated to control the temperature of the treatment. A K-type 

thermocouple was located in the beaker to measure the temperature of the emulsion 

during the treatment. 

 

 

HVPG

IE TE

TC

P
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3.7. Microbiological analyses 

The viability of the microorganisms after the inactivation treatments was 

evaluated by means of standard plate count. Depending on the expected count, 

appropriate serial dilutions were prepared with sterile deionized water. For the 

microorganisms able to grow in aerobic conditions (E. coli, B. diminuta, A. niger, 

B. subtilis, B. pumilus and G. stearothermophilus), 100 μL of the dilution were spread 

on the surface of the agar (PDA for A. niger, TSA for G. stearothermophilus and PCA 

for E. coli, B. diminuta, B. subtilis and B. pumilus) in triplicate. For C. butyricum, 500 μL 

of the dilution were poured on to empty plates in triplicate and the melted RCA agar 

was added to each plate. Plates were incubated (in anaerobic atmosphere for C. 

butyricum) at the optimum growth temperature and time (detailed conditions for each 

microorganism can be found in each part of the Results and Discussion section). The 

initial microbial population in the sample was also determined following the same 

procedures. The results were expressed as log10 (N/N0), where N0 is the initial number 

of cells in the untreated sample and N is the number of cells in the treated sample. 

 

3.8. Modelling of microbial inactivation 

Microbial inactivation kinetics were described by the Weibull model (Eq. 1), 

which is an empirical non-lineal model commonly used for describing inactivation 

kinetics of thermal and non-thermal inactivation treatments (Chen & Hoover, 2004; 

Peleg, 2006). 

 

log10 NN0 = -b·t n  Eq. (1) 

 

where N0 (CFU/mL) is the initial microbial population in the sample, N the 

number of survival microorganism in the treated sample at time t (CFU/mL), b (min-n) 

is a rate parameter and n is the shape parameter of the kinetic curve. 
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The kinetic constants (b and n) of the model were calculated by minimizing the 

sum of squared differences between experimental and the predicted data using Solver 

Microsoft Excel™ tool. The goodness of fit of the model was assessed by computing 

the root mean squared error (RMSE, Eq. 2) and the coefficient of determination (R2, 

Eq. 3). 

 

RMSE= �   ∑ (𝑦𝑦𝑘𝑘−𝑦𝑦𝑘𝑘∗)2𝑧𝑧
𝑘𝑘=1   

𝑧𝑧
  Eq. (2) 

 

R2= 1- 𝑆𝑆𝑦𝑦𝑦𝑦
2

𝑆𝑆𝑦𝑦2
  Eq. (3) 

 

where 𝑦𝑦 and 𝑦𝑦* are the experimental and the estimated data, respectively; z is 

the number of experimental values and 𝑆𝑆𝑦𝑦𝑦𝑦 and 𝑆𝑆𝑦𝑦 are the standard deviations of the 

estimation and the sample deviation, respectively. 

 

3.9. Ultrastructural analyses  

The microscopy analyses of E. coli, B. diminuta and A. niger cells were 

performed by electron microscopy, after and before the SC-CO2 + HPU treatments 

(Chapter 1, Part 1.1). The conditions selected were those that achieved the complete 

inactivation for each microorganism. 

In order to observe the morphology and surface of the microbial cell walls, a 

field emission scanning electron microscope (FESEM) was used (ZEISS ULTRA 55, 

Oxfrod Instruments, Abingdon, UK). To this end, microbial samples were centrifuged, 

filtered and placed in the holder, frozen by immersion in liquid nitrogen and transferred 

to a cryogenic unit (PP3010T, Quorum Technologies, East Sussex, UK) to be 

sublimated and coated with platinum. Samples were observed at 1 kV at a working 

distance of between 3-5 mm. For the observation of the intracellular structure of the 

microorganisms, a transmission electron microscopy (TEM) was used (HT-7800 120 
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kV, Hitachi High-Technologies, Tokyo, Japan). For this purpose, microbial samples 

were centrifuged and fixed with glutaraldehyde solution for 24 h at 4 °C and osmium 

tetroxide solution for 1.5 h. After that, cells were stabilized with agarose solution at 30ºC 

and stored at 4ºC for 24 h. The solidified agar with the cells was cut into cubes (3 mm3), 

which were fixed with glutaraldehyde solution and osmium tetroxide solution, 

dehydrated, contrasted with uranyl acetate solution and resin-embedded. The blocks 

obtained were cut in ultrathin sections (0.1 μm) with Reichert-Jung Ultracut 

ultramicrotome (Leica Microsystems, Wetzlar, Germany), collected in copper grids and 

stained with lead citrate to be observed at 100 kV. 

More details on the procedure of the ultrastructural analyses can be found in 

the Materials & Methods subsection of part 1.1 (Chapter 1). 

 

3.10. Physicochemical properties of the emulsions treated with SC-CO2 + 
HPU 

The physicochemical properties (appearance, pH, density, droplet size and 

zeta potential) were measured in triplicate before and after the SC-CO2 + HPU 

treatments at the different conditions considered in a Box-Behnken experimental 

design. Three process variables were considered: pressure (from 100 to 600 bar), 

temperature (from 55 to 95ºC) and time (from 5 to 20 min). The design involved three 

levels for each factor and three replications at the center point (15 experimental runs).  

 

3.10.1. Appearance, pH and density 

The appearance of the samples was visually evaluated with the HLWC 111 

fluorescent lamp (Waldmann, Germany) and signs of instability were searched. The pH 

was measured with a digital pH-meter (pHenomenal 1000, VWR, USA) and the density 

was measured using a densitometer (densito 30PX Mettler Toledo, Switzerland).  
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3.10.2. Droplet size and ζ -potential 

Analyses of droplet size (D[4,3] and D[3,2]) were carried out using a laser 

diffractometer (Mastersizer 2000, Malvern Instruments Ltd, Worcestershire,UK). The 

Mie theory was applied considering a refractive index of 1.456 and absorption of 0.01. 

The emulsions were diluted in deionized water until an obscuration rate of 5-12% was 

obtained. ζ-potential was obtained by using a Zetasizer (Nano ZS, Malvern Instruments 

Ltd, Worcestershire, UK). Emulsions were diluted with deionized water at a 

concentration of 0.001% v/v. The Smoluchowsky model was used to transform the 

electrophoretic mobility of the droplets into ζ-potential values.  

 

3.11. Statistical analyses  

Statistical analyses were performed with Statgraphics Centurion XVI (Statpoint 

Technologies Inc., Warrenton, VA, USA). The inactivation kinetics obtained in the SC-

CO2 and SC-CO2 + HPU treatments (Results subsections of Chapter 1) were analysed 

with a general linear model (GLM) in order to evaluate the effect of the treatment 

conditions (temperature, pressure, time and use of HPU) and the type of microorganism 

on the inactivation. Fisher's least significant difference (LSD) procedure was used to 

discriminate among the means (p<0.05). In order to evaluate the effect of the SC-CO2 

+ HPU treatments on the physicochemical properties of emulsions (Part 1.4, Chapter 

1), a Box-Behnken experimental design for response surface methodology (second-

order polynomial model) was employed.   

In the Results subsection of Chapter 2, a multifactorial ANOVA was used to 

evaluate if the operating conditions in the PEF treatments had a significant (p<0.05) 

influence on the inactivation of E. coli and the least significant difference (LSD) intervals 

were estimated to discriminate among the means (p<0.05). In addition, a one-way 

ANOVA was used to determine if the use of the different treatments (PEF and HPU) or 

its combination had a significant effect on the level of inactivation for every 

microorganism (E. coli, A. niger and B. pumilus). Fisher's least significant difference 

(LSD) procedure was used to discriminate among the means (p<0.05)

  

https://www.sciencedirect.com/topics/chemical-engineering/zeta-potential
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Microbial inactivation by means of ultrasonic assisted supercritical CO2. 
Effect on cell ultrastructure  

 

Abstract  

The effect of ultrasound (HPU) on the supercritical carbon dioxide (SC-CO2) 

inactivation of vegetative bacteria (Escherichia coli, Brevundimonas diminuta) and a 

fungal spore (Aspergillus niger) at different pressures (100 and 350 bar) and 

temperatures (35, 50 and 60ºC) was assessed. The effect of SC-CO2 + HPU on the 

microbial cell ultrastructure was also evaluated by microscopy techniques (FESEM and 

TEM). HPU enhanced the SC-CO2 inactivation treatments, showing an average 

increase of 4.8, 3.4 and 1.3 log-cycles of reduction for E. coli, B. diminuta and A. niger, 

respectively. In general, the higher the pressure and temperature, the higher the 

inactivation. A. niger spores were found to be more resistant than vegetative bacteria. 

Microscopy analysis revealed significant morphological changes, including damaged 

cell walls, and major alteration and loss of cytoplasmic content. Therefore, the SC-CO2 

+ HPU technology appears to be effective for microbial inactivation purposes despite 

the complexity of the cell wall.  

 

 

Keywords: supercritical CO2, high power ultrasound, bacteria, fungal spore, 

ultrastructure. 
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1. Introduction 

Vegetative bacteria and fungal spores can easily become contaminants of food 

and pharmaceutical products, leading to product spoilage and causing human disease. 

In this regard, the assurance of microbiological safety is essential for the industry. 

Nowadays, thermal treatments are the most common preservation methods in the food 

and pharmaceutical sectors. In order to prevent heat damage related to thermal 

treatments and obtain higher quality products, novel non-thermal technologies, applied 

individually or in combined form, have been investigated and developed during the last 

few years. Some of these so-called non-thermal technologies are irradiation (Lung et 

al., 2015), high power ultrasound (Knorr et al., 2004), pulsed electric fields (Spilimbergo 

et al., 2003), high hydrostatic pressure (Ortuño, Duong, et al., 2013) and supercritical 

fluids (Ortuño et al., 2012a).  

The supercritical state of carbon dioxide (SC-CO2) is reached at moderate 

pressure and temperature (72.8 bar and 31.1ºC), avoiding the negative thermal effects 

of traditional preservation methods. In supercritical conditions, CO2 presents lower 

viscosity than when in the liquid state and higher density than when in the gaseous 

state, making SC-CO2 an excellent solvent that can contribute to the removal of vital 

components of microbial cells. In this sense, SC-CO2 has already proven to be an 

effective method for the inactivation of some microorganisms, minimally affecting the 

physicochemical properties of the treated products (Damar & Balaban, 2006; 

Ferrentino et al., 2009; Gasperi et al., 2009). However, SC-CO2 treatments often 

require long processing times and/or high temperatures and pressures to provide the 

necessary microbial reduction that ensures product safety. As an example, more than 

75 min were insufficient to achieve the complete inactivation of E. coli in apple juice at 

32ºC and 100-300 bar (Liao et al., 2008). For this reason, it is of great interest to 

combine the SC-CO2 treatment with other non-thermal techniques, such as high power 

ultrasound (HPU), high hydrostatic pressure (HHP) (Ortuño, Duong, et al., 2013), 

pulsed electric fields (PEF) (Pataro et al., 2010) or the addition of antimicrobial agents, 

such as hydrogen peroxide (Shieh et al., 2009). In this regard, the application of HPU 

to the SC-CO2 treatments has already been demonstrated to intensify the inactivation 



Results and Discussion–Chapter 1 

63 

of a wide range of vegetative bacteria and yeasts (Ferrentino & Spilimbergo, 2016; 

Ortuño et al., 2012b). However, the SC-CO2 + HPU inactivation of filamentous fungal 

spores has not been explored yet. 

The most widely accepted inactivation mechanisms of SC-CO2 are linked to 

the diffusion and solubilisation of CO2 into the external media causing a drop in pH that 

could damage or alter the microbial cell membrane. Thus, CO2 penetrates into the cells, 

reducing the internal pH and extracting intracellular vital components which, eventually, 

can lead to  cell death (Garcia-Gonzalez et al., 2009). When HPU is implemented, the 

heat and mass transfer processes are enhanced due to cavitation effects, which could 

increase the CO2 diffusion rate, accelerating the SC-CO2 inactivation mechanisms. In 

addition, HPU could damage or crack the cell walls of the microorganisms (Ferrentino 

& Spilimbergo, 2016; Ortuño et al., 2012b). A better understanding of the inactivation 

mechanisms exerted by the combination of SC-CO2 and HPU is important in order to 

find improved strategies with which to guarantee the safety and stability of the treated 

products, as well as optimize the process conditions or the equipment. For that 

purpose, the analysis of the treated microbial cells at cellular level using microscopy 

techniques constitutes a valuable approach. Several authors observed the 

ultrastructure of microbial cells after SC-CO2 inactivation treatments and stated that 

there was a direct relation between the permeabilization of the cell membrane and the 

inactivation (Garcia-Gonzalez et al., 2010; Liao et al., 2010). Additionally, Ortuño et al. 

(2014) investigated the effect of the SC-CO2 + HPU treatment on the intracellular 

structure of vegetative microorganisms (E. coli and S. cerevisiae ). However, there has 

been no prior analysis of the cell structural effects linked to the SC-CO2 + HPU 

treatment on filamentous fungal spores. Moreover, the analysis of the changes in the 

external structure of the microbial cells after the SC-CO2 + HPU treatment is 

unexplored. Therefore, the objective of this study was to evaluate (i) the intensification 

of the SC-CO2 + HPU inactivation of different bacteria (E. coli and B. diminuta) and a 

fungal spore (A. niger) and (ii) the effect of the inactivation treatment on the external 

morphology and the intracellular structure of the microbial cells. 
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2. Materials and methods 

2.1. Preparation of the bacterial suspensions: Escherichia coli and 
Brevundimonas diminuta 

E. coli CECT 101 and B. diminuta CECT 313 were obtained from the Spanish 

Type Culture Collection (CECT, Valencia, Spain). E. coli is a facultative anaerobic 

gram-negative bacteria with a cell size of around 1 × 3 µm (Reshes et al., 2008), highly 

common in contaminated food and pharmaceutical products. B. diminuta is an aerobic 

gram-negative bacteria, which is used to test the porosity of pharmaceutical grade 

filters of 0.2 µm because of its small size (Sundaram et al., 2001): typically of around 

0.3 x 1.0 µm (Madaeni, 1999). A single colony of each bacterium was inoculated in 50 

mL of nutrient broth (Scharlab, Barcelona, Spain) and grown overnight (18-24 h) at 

37ºC for E. coli and 30ºC for B. diminuta, using an incubation chamber (3000957, J.P. 

Selecta, Spain) and an orbital shaker at 120 rpm (3000974, J.P. Selecta, Spain). 50 µL 

of the overnight starter culture were transferred to a new growth medium and it was 

incubated until ensuring the stationary phase was reached, 14 h at 37ºC for E. coli and 

36 h at 30ºC for B. diminuta (Gomez-Gomez et al., 2020). After that, 5 mL of the 

bacterial suspension in the stationary phase were inoculated in 60 mL of deionized 

water until a concentration of around 108 CFU/mL.  

 

2.2. Preparation of the Aspergillus niger spore suspension 

A. niger CECT 2807 was also obtained from the Spanish Type Culture 

Collection (CECT, Valencia, Spain). A. niger is an aerobic spore-forming filamentous 

fungi, commonly present in the environment and, thus, usually present in contaminated 

food and pharmaceutical products (Shimoda et al., 2002). A. niger was cultured on 

Potato Dextrose Agar (Scharlab, Barcelona, Spain) at 25ºC for 7 days. After that, 

spores were rubbed with 10 ml of 0.1% (v/v) Tween 80, collected and kept at 4ºC until 

use. Prior to each treatment, 5 mL of the A. niger spore suspension were inoculated in 

60 mL of deionized water until a concentration of around 107 CFU/mL. 
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2.3. Ultrasonic assisted supercritical fluid inactivation treatments  

The inactivation treatments with supercritical carbon dioxide (SC-CO2) were 

performed in a supercritical fluids lab-scale equipment and batch mode. A high-power 

ultrasound (HPU) transducer, embedded in the treatment chamber through the cap, 

was used to perform the combined SC-CO2 + HPU treatments. The ultrasound system 

consisted mainly of a high power piezoelectric transducer, a sonotrode and a power 

generation unit. The power supplied was 50 ± 5 W (I= 250 ± 10 mA; U= 220 ± 5 V) and 

the frequency was 30 ± 2 kHz. Electrical parameters were measured with a digital 

power meter (WT210, Yokogawa Electric Corporation, Tokyo, Japan). This system was 

explained in detail in a previous study (Gomez-Gomez et al., 2020).  

SC-CO2 and SC-CO2 + HPU inactivation treatments were carried out at two 

levels of pressure and temperature for each microorganism. The pressure was set at 

100 and 350 bar for all the microorganisms, as they are  common pressures used in 

SC-CO2 microbial inactivation studies (Soares et al., 2019). The temperature was set 

at 35 and 50ºC for E. coli and B. diminuta in order to select a low temperature (35 ºC), 

very close to the critical temperature for CO2 and a mild, but non-lethal, temperature 

(50ºC) for the vegetative bacteria considered in this study. In this regard, preliminary 

experiments revealed that no inactivation was found for inoculated E. coli and 

B. diminuta in deionized water using a water bath and heating at 50ºC for 50 min. In 

the case of A. niger, treatments were carried out at 50 and 60ºC due to the known 

greater resistance of fungal spores to SC-CO2 compared to vegetative bacteria (Soares 

et al., 2019). Samples of around 2 mL were collected during the treatments at different 

times, depending on the process conditions and type of microorganism. All the 

experiments were carried out in triplicate. 

 

2.4. Microbiological analyses   

The standard plate count was used to measure the number of surviving 

microorganisms. Serial dilutions of the treated samples were prepared and 100 μL of 

the appropriate dilutions were spread on PCA for the bacteria and PDA for A. niger 

(Scharlab, Barcelona, Spain) in triplicate. Plates were incubated at 37ºC and 24 h for 
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E. coli, 30ºC and 48 h for B. diminuta and 25ºC and 72 h for A. niger. The initial 

microbial population in the sample was determined following the same procedure. 

Results were expressed as log10 (N/N0), where N0 represents the number of cells 

initially inoculated in the deionized water and N the number of cells after treatment. 

 

2.5. Modelling 

The non-linear Weibull model following the decimal logarithmic form written  by 

Peleg (1999) has been demonstrated to be sufficiently robust for the prediction of 

microbial inactivation (Peleg, 2006), and was used in this study (Eq. (1)).  

 

log10 NN0 = -b·t n  Eq. (1) 

 

where N0 indicates the initial number of microorganisms in the sample 

(CFU/mL) , N is the number of microorganisms in the sample after the treatment time t 

(CFU/mL), n (dimensionless) is the shape factor and b (min-n) is the rate parameter. 

The constants of the model (b and n) were computed by minimizing the sum of 

squared differences between the experimental and predicted levels of inactivation 

using Solver from Microsoft ExcelTM. The root mean squared error (RMSE, Eq. 2) and 

the coefficient of determination (R2, Eq. 3) were determined to evaluate the goodness 

of fit. 

 

RMSE= �   ∑ (𝑦𝑦𝑘𝑘−𝑦𝑦𝑘𝑘∗)2𝑧𝑧
𝑘𝑘=1   

𝑧𝑧
  Eq. (2) 

 

R2= 1- 𝑆𝑆𝑦𝑦𝑦𝑦
2

𝑆𝑆𝑦𝑦2
  Eq. (3) 
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where 𝑦𝑦 and 𝑦𝑦* are the experimental and the estimated data, respectively; z is 

the number of experimental data, and 𝑆𝑆𝑦𝑦𝑦𝑦 and 𝑆𝑆𝑦𝑦 are the standard deviations of the 

estimation and the sample deviation, respectively.  

The model can be fitted to both downward concave survival curves (n>1) and 

upward concave curves (n<1); and the log linear curve is a special case where n=1. As 

described elsewhere (Gomez-Gomez et al., 2021), the time required to achieve the 

complete inactivation (tx) of every microorganism was calculated from Eq. 1 and from 

the b and n values of the Weibull model obtained for each condition, where x is the 

average in log-cycles for the complete inactivation of each microorganism (7.9 log-

cycles in the case of E. coli, 8.1 log-cycles in that of B. diminuta and 6.8 log-cycles for 

A. niger). 

 

2.6. Statistical analysis 

In order to evaluate the effect of both the treatment conditions (pressure, 

temperature and use of HPU) and the type of microorganism on the inactivation, a 

general linear model (GLM) was performed using Statgraphics Centurion XVI (Statpoint 

Technologies Inc., Warrenton, VA, USA). Fisher's least significant difference (LSD) was 

used to discriminate among the means (p<0.05). 

 

2.7. Electron microscopy analyses   

The microscopy analyses of the microbial cells were performed after and 

before the SC-CO2 + HPU treatments. The conditions selected were those that 

achieved the complete microbial inactivation of each microorganism: 50ºC, 350 bar and 

2 min in the case of E. coli and B. diminuta and 60ºC, 350 bar and 10 min for A. niger 

spores. 

In order to observe the external morphology of the microbial cells, a field 

emission scanning electron microscope (FESEM) was used (ZEISS ULTRA 55, Oxfrod 

Instruments, Abingdon, UK). To this end, microbial samples were centrifuged at 2600 

rpm for 5 min and filtered (0.2 µm of pore diameter). Then, samples were placed in the 
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holder, frozen by immersion in liquid nitrogen and transferred to a cryogenic unit 

(PP3010T, Quorum Technologies, East Sussex, UK) to be sublimated and coated with 

platinum by sputtering at 5 mA for 20 s. Samples were observed at 1 kV at a working 

distance of between 3-5 mm. 

For the observation of the intracellular structure of the microorganisms, 

transmission electron microscopy (TEM) was used (HT-7800 120 kV, Hitachi High-

Technologies, Tokyo, Japan). For this purpose, microbial samples were centrifuged at 

2600 rpm for 5 min, fixed with 25 g/L glutaraldehyde solution for 24 h at 4 °C and post-

fixed with 20 g/L osmium tetroxide solution for 1.5 h. After that, cells were stabilized 

with agarose solution (3 g/100mL) at 30ºC and stored at 4ºC for 24 h. The solidified 

agar with the cells was cut into cubes (3 mm3), which were fixed with 25 g/L 

glutaraldehyde solution; post-fixed with 20 g/L osmium tetroxide solution, dehydrated 

with 300, 500, 700 and 1000 g/kg ethanol, contrasted with 20 g/L uranyl acetate 

solution and resin-embedded. The blocks obtained were cut into ultrathin sections (0.1 

μm) with Reichert-Jung Ultracut ultramicrotome (Leica Microsystems, Wetzlar, 

Germany), collected in copper grids and stained with 40 g/L lead citrate to be observed 

at 100 kV. 

 

3. Results and discussion 

3.1. Analysis of the inactivation kinetics  

3.1.1. SC-CO2 microbial inactivation   

Fig. 1 shows the inactivation kinetics of E. coli (A), B. diminuta (B) and A. niger 

spores (C) in deionized water for the SC-CO2 treatments. A high degree of experimental 

variability was found, as can be observed from the error bars, which could be ascribed 

to pressure and temperature variations inside the vessel, and to the inherent variability 

in the microbial growth. Despite the great experimental variability, the Weibull model 

was satisfactorily fitted to the SC-CO2 inactivation kinetics, as depicted in Fig. 1. In 

every case, R2 was higher than 0.92 and RMSE was lower than 0.64, as shown in Table 
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1. For some of the inactivation kinetics, the model was not fitted due to the lack of 

experimental data. 

 

Effect of pressure and temperature 

Pressure and temperature had a significant (p<0.05) effect on the SC-CO2 

inactivation of B. diminuta and A. niger. In general terms, the higher the pressure and 

the temperature, the faster the inactivation. As an example, a reduction of only 4.4 log-

cycles of A. niger was achieved in 90 min at 100 bar and 50ºC, while the complete 

inactivation (6.7 log-cycles) was reached in just 15 min at 350 bar and 60ºC (Fig. 1C). 

However, only the temperature had a significant (p<0.05) effect on the inactivation of 

E. coli. For example, complete inactivation (7.9 log-cycles) was reached in 25 min at 

35ºC while the same inactivation was achieved in less than 13 min at 50ºC, regardless 

of the pressure used (Fig. 1A). Moreover, when modelling the inactivation kinetics, less 

time was generally required to achieve the complete inactivation of the E. coli, 

B. diminuta and A. niger population (t 7.9 , t 8.1 and t6.8 ; respectively), as the pressure 

and the temperature increased (Table 1). For example, in the case of A. niger, 163.7 

and 22.1 min were required at 100 bar and 50ºC and at 350 bar and 60ºC, respectively. 

On the one hand, high temperatures are known to increase CO2 diffusivity and make 

cell membranes more fluid, facilitating the penetration of CO2 (Ferrentino & 

Spilimbergo, 2015; Hong et al., 1999). On the other hand, high pressures increase the 

solubility of CO2 in the media; therefore, there is closer contact between CO2 and the 

microbial cell, and the CO2 penetration into the cells is improved (Hong et al., 1997; 

Liao et al., 2007). 

Several authors also studied the SC-CO2 inactivation of E. coli and A. niger in 

water solutions (Ballestra & Cuq, 1998; Dillow et al., 1999; Kobayashi et al., 2007; 

Noman et al., 2018; Yuk et al., 2009). However, only one study was found into the 

inactivation of B. diminuta (Gomez-Gomez et al., 2020). Noman et al. (2018) also found 

that there was notably greater inactivation of A. niger spores at higher pressures and 

temperatures (e.g. in 60 min and at a temperature of 55ºC, microbial reduction 

increased from 2.8 log-cycles at 300 bar to 4.1 at 350 bar, and at a constant pressure 
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of 350 bar it increased from 2.0 to 4.6 log-cycles at temperatures of 35 and 55ºC, 

respectively). The inactivation levels achieved by Noman et al. (2018) were of a lower 

magnitude than those in the present study (e.g. 6.8 log-cycles was achieved at 350 

bar, 50ºC and 55 min). As for E. coli, Dillow et al. (1999) reported similar effects of 

pressure and temperature to those in our study, since the temperature (34 vs 42ºC) 

affected the inactivation, achieving complete inactivation (around 8.0 log-cycles) in 30 

min at 34ºC and in 20 min at 42ºC (205 bar), while the influence of pressure was 

negligible (from 140 to 205 bar at 34ºC). Ortuño et al. (2012b) also found very similar 

reductions in the inactivation of E. coli in LB Broth, compared to the present results (e.g 

8.0 log-cycles were achieved at 36ºC and 350 bar in 22 min, while in the present study 

the same inactivation was found in 24 min at 35ºC and 350 bar). However, these 

authors found that both temperature (31-41 ºC) and pressure (100-350 bar) influenced 

microbial inactivation. As regards B. diminuta, Gomez-Gomez et al. (2020) also found 

that the higher the pressure and temperature, the higher the inactivation levels in an 

oil-in-water emulsion. However, the processing time required to achieve the complete 

inactivation of B. diminuta in the emulsions was longer than in the present study under 

the same conditions (e.g. 40 min were required in the lipid emulsion while only 10 min 

in water (Fig. 1B) at 350 bar and 50ºC). This was coherent with what can be found in 

literature, since SC-CO2 inactivation treatments have proven to be more effective in 

simple media than in complex  and, in addition, oil is known to protect the 

microorganisms from different external stresses, including SC-CO2 (Garcia-Gonzalez 

et al., 2009; Gomez-Gomez et al., 2020).  

 

Effect of the type of microorganism 

As for the resistance of the different microorganisms studied to the SC-CO2 

treatments, significant (p<0.05) differences were found, A. niger being the most 

resistant of all three microorganisms. On the contrary, very slight differences were 

found between E. coli and B. diminuta. At 50ºC and 350 bar, 55 min were required to 

achieve the complete inactivation of A. niger (6.8 log-cycles), while around 10 min were 

needed for E. coli or B. diminuta (around 8 log-cycles). This observation was coherent 
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with the fact that fungal spores are more resistant to SC-CO2 treatments than 

vegetative bacteria (Soares et al., 2019), probably due to their different and more 

resistant structure. Fungal spores are composed of a multi layered and highly 

dehydrated structure, which could restrain the CO2 dissolution and penetration into the 

spore. Moreover, the structure of A niger spores, in particular, include a layer of 

melanin, which is believed to be related to a higher resistance to environmental 

stresses (Tischler & Hohl, 2019). Similarly, Wu et al. (2007) achieved a reduction of 4.3 

log-cycles for E. coli at 78 bar, 35ºC and in 30 min, while only an inactivation of 2.1 log-

cycles was obtained for Absidia coerulea spores.  
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Fig. 1. Inactivation kinetics of E. coli (A), B.diminuta (B) and A. niger spores (C) in water treated 

with SC-CO2. Experimental data (discrete points) and Weibull model (continuous and dashed 

lines). Error bars show the experimental variability. 
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Table 1. Fitting of Weibull model to SC-CO2 inactivation kinetics in distilled water. Parameters (b 

and n), total time for complete inactivation of E. coli (t7.9; 7.9 log-cycle reduction) , B. diminuta 

(t8.1; 8.1 log-cycle reduction) and A. niger (t6.8; 6.8 log-cycle reduction) and statistical parameters 

(R2 and RMSE). Average values and standard errors (in brackets).  

 
 * Insufficient experimental data for model fitting 

 

3.1.2. SC-CO2 + HPU microbial inactivation 

The combined SC-CO2 + HPU inactivation kinetics of E. coli (A), B. diminuta 

(B) and A. niger (C) are shown in Fig. 2. As in the SC-CO2 kinetics (Fig. 1), the 

experimental variability was high due to the aforementioned factors and the additional 

variability related to the behaviour of the HPU transducer under supercritical conditions. 

The Weibull model fitted the experimental data satisfactorily (Fig. 2), with a R2 value 

higher than 0.95 and a RMSE lower than 0.59 (Table 2). In addition, every n value in 

the treatments with HPU (Table 2) was lower than 1 (from 0.26 to 0.56), which indicated 

that the shape of every curve was concave upward. 

 

Microorganism Pressure 
(bar) 

Temperature 
(ºC) b (min –n) n t 7.9/ 8.1/ 6.8 

(min) R2  

E. coli 100 35 0.84 (0.38) 0.72 (0.16) 22.5 0.97  

E. coli 350 35 1.20 (0.40) 0.61 (0.12) 22.0 0.95  

E. coli 100 50 0.28 (0.33) 1.29 (0.48) 13.3 0.92  

E. coli 350 50 * * * *  

B. diminuta 100 35 1.06 (0.30) 0.45 (0.07) 91.8 0.98  

B. diminuta 350 35 * * * *  

B. diminuta 100 50 1.48 (0.13) 0.44 (0.03) 47.6 0.99  

B. diminuta 350 50 * * * *  

A. niger 100 50 0.48 (0.26)   0.52 (0.13) 163.7 0.96  

A. niger 350 50 1.40 (1.50) 0.38 (0.27) 64.0 0.98  

A. niger 100 60 1.62 (0.48) 0.37 (0.08) 48.3 0.98  

A. niger 350 60 5.95 (0.40) 0.04 (0.02) 22.1 0.99  
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Effect of pressure and temperature 

The higher the pressure and temperature, the higher the level of inactivation of 

the SC-CO2 + HPU treatments for B. diminuta and A. niger. However, only the 

temperature had a significant (p<0.05) effect on the inactivation, as also occurred in 

the SC-CO2 treatments. With respect to E. coli (Fig. 2A), in order to achieve complete 

inactivation (7.9 log-cycles), raising the temperature from 35 to 50ºC meant that 2.5 

min (from 5.5 to 3 min) less were needed, on average; however, only 0.5 min (from 4.5 

to 4 min) less were needed when the pressure is raised from 100 to 350 bar. On the 

other hand, on average, the time required to achieve the complete inactivation of 

B. diminuta (8.1 log-cycles), was shortened from 12 to 6.5 min by raising the 

temperature from 35 to 50ºC and from 15 to 3.5 min when the pressure was increased 

from 100 to 350 bar (Fig. 2B). The effect of the temperature was also revealed by the 

time needed for complete inactivation (tx) calculated by the Weibull model (Table 2). As 

an example, for A. niger, t6.8 was shortened on average from 63.4 min to 23.1 min when 

the temperature was raised from 50 to 60ºC. Contrary to the results of the present 

study, some authors found that the increase in the pressure and temperature in the 

SC-CO2 + HPU treatments did not affect the microbial inactivation rate, probably 

because the marked effect of cavitation masked the effects of the other processing 

conditions (Ortuño et al., 2012b, 2014; Ortuño, Martínez-Pastor, et al., 2013). However, 

Gomez-Gomez et al. (2020) found that the higher the pressure and temperature, the 

higher the level of SC-CO2 + HPU inactivation for E. coli and B. diminuta in oil-in-water 

emulsions.   

 

Effect of HPU and the type of microorganism 

As in the SC-CO2 treatments, significant (p<0.05) differences were found as 

regards the resistance of the different microorganisms to the combined SC-CO2 + HPU 

treatment. A. niger was the most resistant, while E. coli and B. diminuta showed similar 

resistance. In fact, the complete inactivation of E. coli and B. diminuta was achieved in 

less than 18 min, even at low temperatures and pressures (100 bar and 35ºC), whereas 

for A. niger, at least 35 min were required to obtain complete inactivation at the same 
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pressure (100 bar) and higher temperatures (50-60ºC), which was considered too long 

a treatment for industrial applications. The use of a higher pressure (350 bar) and 60ºC 

was necessary to achieve the complete inactivation of A. niger in a shorter time (10 

min), which could be considered a reasonable industrial processing time. 

HPU significantly (p<0.05) intensified the SC-CO2 treatments for all the 

microorganisms considered in the present study, the effect being milder in the case of 

A. niger spores than for E. coli and B. diminuta (on average, the increase in the 

inactivation when HPU was used was 1.3, 4.8 and 3.4 log-cycles, respectively). For 

instance, as observed in Figs. 1 and 2, the time needed for the complete inactivation 

of E. coli and B. diminuta at 50ºC and 350 bar was shortened by 19 min when HPU 

was applied; in the case of A. niger, on the other hand, the process was shortened by 

only 5 min. Thus, the application of HPU reduced the calculated tx, on average; from 

59.1 to 24.8 min (Tables 1 and 2). HPU is known to increase the mass and heat transfer 

under SC-CO2 conditions (Cárcel et al., 2012; Gao et al., 2009) and, consequently, to 

enhance both the CO2 solubilisation in the media and penetration inside the microbial 

cells (Garcia-Gonzalez et al., 2007). Moreover, HPU could cause cracked or damaged 

cell walls due to the effects of cavitation (Ortuño, Martínez-Pastor, et al., 2013). 

Several authors (Ortuño et al., 2012b; Ortuño, Martínez-Pastor, et al., 2013; 

Paniagua-Martínez et al., 2016) also studied the application of HPU during the SC-CO2 

treatments of vegetative cells in liquid media and found that HPU drastically increased 

the inactivation level.  

The inactivation of different microorganisms depended not only on the effect of 

external stresses, but also on the cell size and morphology (Chemat et al., 2011; 

Tonyali et al., 2019). Ortuño et al. (2014) related the degree of cavitation to the size of 

the vegetative cells since they observed a stronger effect of cavitation on S. cerevisiae 

(8–10 μm) than on E. coli and assumed that there was a greater likelihood of the 

cavitation bubbles affecting the cell structure when the cells are larger. However, in the 

present study, there was probably not a big enough difference between the sizes of the 

E. coli and B. diminuta cells (a difference of less than 2 μm) to appreciate significant 

differences in the SC-CO2 + HPU inactivation between these microorganisms, as also 
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reported by Gomez-Gomez et al. (2020). In the case of A. niger spores, the cell size 

(around 4 µm (Teertstra et al., 2017)) is larger than in E. coli and B. diminuta. However, 

it is known that molds are generally more resistant to cavitation than vegetative cells 

because of the differences between the cell wall structure of species (López-Malo et 

al., 2005). In particular, A. niger spores might be more resistant to cavitation due to the 

greater rigidity of its cell wall due to the presence of melanin (Tischler & Hohl, 2019). 
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Fig. 2. Inactivation kinetics of E. coli (A), B.diminuta (B) and A. niger spores (C) in water treated 

with SC-CO2 + HPU. Experimental data (discrete points) and Weibull model (continuous and 

dashed lines). Error bars show the experimental variability. 
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Table 2. Fitting of Weibull model to SC-CO2 + HPU inactivation kinetics in distilled water. 

Parameters (b and n), total time for complete inactivation of E. coli (t7.9; 7.9 log-cycle reduction) 

, B. diminuta (t8.1; 8.1 log-cycle reduction) and A. niger (t6.8; 6.8 log-cycle reduction) and statistical 

parameters (R2 and RMSE). Average values and standard errors (in brackets).  

 
 * Insufficient experimental data for model fitting 

 

3.2. Analysis of the ultrastructure of microbial cells inactivated by SC-CO2 + 
HPU 

CryoFESEM and TEM images of the microbial cells after and before the SC-

CO2 + HPU treatment are presented in Figs. 3 and 4, respectively.  

The untreated E. coli cells showed an intact, well-defined and characteristic 

rod-shaped structure with a smooth surface (Fig. 3A). The cell wall and the cell 

membrane presented defined boundaries and were intact, enclosing the cytoplasmic 

content. In addition, the cell wall can be seen to be attached to the cell membrane (Fig. 

4A). As regards the intracellular space, it is observed to be completely and uniformly 

filled with the cytoplasm (Fig. 4A), with no signs of cytoplasm observed outside the 

Microorganism Pressure 
(bar) 

Temperature 
(ºC) b (min –n) n t 7.9/ 8.1/ 6.8 

(min) R2  

E. coli 100 35 4.42 (0.43) 0.38 (0.08) 4.6 0.97  

E. coli 350 35 3.82 (0.49) 0.46 (0.09) 4.9 0.95  

E. coli 100 50 4.55 (0.40) 0.43 (0.08) 3.6 0.98  

E. coli 350 50 * * * *  

B. diminuta 100 35 2.31 (0.34) 0.43 (0.06) 18.5 0.95  

B. diminuta 350 35 3.93 (0.69) 0.42 (0.12) 8.0 0.98  

B. diminuta 100 50 3.94 (0.26) 0.29 (0.03) 12.0 0.99  

B. diminuta 350 50 * * * *  

A. niger 100 50 1.53 (0.27) 0.35 (0.05) 70.9 0.98  

A. niger 350 50 2.39 (0.56) 0.26 (0.07) 55.8 0.96  

A. niger 100 60 0.91 (0.50) 0.56 (0.16) 36.3 0.99  

A. niger 350 60 * * * *  
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cells. On the contrary, the E.coli cells treated with SC-CO2 + HPU lost their shape (Figs. 

3B and 4B), appeared agglomerated and some of them merged, losing their 

individuality (Fig.3B). The cell walls and membranes were seen to be blurred (Fig. 4B), 

which indicated that they were partly disintegrated. Inside the cell, empty regions were 

observed (Fig. 4B), which could be due to a large amount of cytoplasmic content 

released by the effect of the treatment. This is indicated by the stains being found in 

the extracellular region (Fig. 4B). Ortuño et al. (2014) observed important 

morphological changes in E. coli cells treated with SC-CO2 + HPU at 350 bar, 36ºC for 

5 min. The cytoplasmic space presented big empty regions with an aggregated and 

unevenly distributed cytoplasm. In addition, the cell wall and membrane appeared 

disintegrated. On the contrary, after a SC-CO2 treatment under the same conditions, 

E. coli cells only presented slight changes.  

B. diminuta cells also presented a clear rod-shaped structure with a smooth 

surface when untreated (Fig. 3C). The cell walls and membranes were intact and well-

defined, (Figs. 3C and 4C) enclosing the cytoplasm, which was uniformly distributed in 

the whole intracellular space (Fig. 4C). Thus, the SC-CO2 + HPU treatment caused 

different alterations in the bacteria morphology. The surface appeared irregular with 

roughness and wrinkles and some bacteria were found merged together (Fig. 3D). The 

cell walls and membranes were undefined (Fig. 4D), indicating that they were 

damaged. In addition, empty regions in the intracellular space were observed (Fig. 4D), 

indicating that a great amount of cytoplasmic content was lost with the treatment. No 

studies were found analyzing the ultrastructure of B. diminuta cells treated with either 

SC-CO2 or SC-CO2 + HPU.  

B. diminuta and E. coli cells were both similarly affected by the SC-CO2 + HPU 

treatment. As several authors (Garcia-Gonzalez et al., 2010; Ortuño et al., 2014; 

Spilimbergo et al., 2007) observed in the case of SC-CO2 treatments, the morphological 

structure of the microbial cells, including the cell wall, generally remained almost intact 

or with only minor alterations, while changes in the intracellular structure, such as an 

uneven distribution of the cytoplasm, were found. Consequently, it could be stated that 

the inactivation effect was probably due to an increase in the permeability of the cells 

exerted by SC-CO2, instead of to the rupture of the cell wall and membrane. By 
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contrast, the application of HPU could crack or damage cell walls, severely affecting 

their morphological integrity (Ortuño et al., 2014), as observed in the images of the 

present study (Figs.3 and 4). 

In the case of A. niger spores, untreated cells presented a globular shape and 

a spiny, wrinkled surface (Fig. 3E). The cell wall and membrane showed defined 

boundaries and uniform thickness (Fig.4E). In addition, in the intracellular region, the 

organelles were clearly visible and well distributed in a dense cytoplasm (Fig.4E). In 

contrast, A. niger spores treated with SC-CO2 + HPU demonstrated significant 

alterations. The shape of the cell changed, since it appeared shrunken and squashed 

and most of the cells presented a clear cleft in the center (Figs. 3F and 4F). After the 

treatment, the cell wall appeared much thinner than that of the untreated spores, 

showing an uneven width with some dissolved areas (Fig. 4F). Moreover, the cell 

membrane was also thinner and presented an uneven thickness (Fig. 4F). As to the 

inner region of the spore, it was almost empty due to leakages of cytoplasmic content 

(Fig. 4F) and the organelles were not visible, indicating that they were completely 

destroyed after the treatment. Only a small, darker region was found in the cytoplasm, 

which could be due to the precipitation or aggregation of internal cell components (Fig. 

4F). Although no studies were found assessing the ultrastructural changes in A. niger 

spores after SC-CO2 + HPU treatments, Noman et al. (2018) and Efaq et al. (2017) 

observed the morphology of A. niger spores treated with SC-CO2 at 300 bar, 75 °C for 

90 min. These authors found completely damaged and deformed spores, with 

disintegrated cell wall and membrane. Nevertheless, an extremely long process time 

was used in those studies (90 min) and a higher temperature than in the present study 

(75ºC vs 60ºC).  

In general terms, an ultrastructural analysis revealed that for the three 

microorganisms involved in the present study, the combined SC-CO2 + HPU treatment 

damaged the cell walls and affected the permeability of cell membranes, which led to 

changes in the cell morphology and the release of cytoplasmic content and, 

consequently, cell death.  
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Fig. 3. CryoFESEM photographs of E. coli (A and B), B. diminuta (C and D) and A. niger (E 

and F) untreated and treated by SC-CO2 + HPU. 
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Fig. 4. TEM photographs of E. coli (A and B), B. diminuta (C and D) and A. niger (E and F) 

untreated and treated by SC-CO2 + HPU. 

 

4. Conclusions 

Ultrasonic application has proven to be an effective way of shortening the 

inactivation time in SC-CO2 treatments of the microorganisms studied (two vegetative 

bacteria and one fungal spore). The higher the pressure and the temperature, the 
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greater the inactivation of B. diminuta and A. niger. However, it was only the 

temperature that had a significant effect on E.coli. The results obtained confirmed the 

more marked effect that cavitation has on the SC-CO2 inactivation of vegetative 

bacteria, compared to fungal spores.  

The ultrastructural analysis illustrated the external morphology and intracellular 

structure of bacteria (E. coli and B. diminuta) and fungal spores (A. niger), which 

definitively contributed to a better understanding of the effects of the SC-CO2 + HPU 

treatments. SC-CO2 + HPU-treated cells presented a deformed shape, partly 

disintegrated walls and membranes and a leakage of cytoplasmic content, which 

explains the effectiveness of the SC-CO2 + HPU treatments for microbial inactivation 

purposes. Thus, regardless of the type of microorganism (vegetative bacteria or fungal 

spore) and its different cell wall structure and composition, the SC-CO2 + HPU 

treatment caused structural damage leading to cell death. Further research into the 

ultrastructure of other fungal or bacterial spores in different complex media is required 

to elucidate the exact inactivation mechanisms of the SC-CO2 + HPU technology.  
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Non-thermal pasteurization of lipid emulsions by combined supercritical 
carbon dioxide and high-power ultrasound treatment 

 

Abstract 

Supercritical carbon dioxide (SC-CO2) is a novel method for food 

pasteurization, but there is still room for improvement in terms of the process shortening 

and its use in products with high oil content. This study addressed the effect of high 

power ultrasound (HPU) on the intensification of the SC-CO2 inactivation of E. coli and 

B. diminuta in soybean oil-in-water emulsions. Inactivation kinetics were obtained at 

different pressures (100 and 350 bar), temperatures (35 and 50ºC) and oil contents (0, 

10, 20 and 30%) and were satisfactorily described using the Weibull model. The 

experimental results showed that for SC-CO2 treatments, the higher the pressure or 

the temperature, the higher the level of inactivation. Ultrasound greatly intensified the 

inactivation capacity of SC-CO2, shortening the process time by approximately 1 order 

of magnitude (from 50-90 min to 5-10 min depending on the microorganism and 

process conditions). Pressure and temperature also had a significant (p<0.05) effect 

on SC-CO2 + HPU inactivation for both bacteria, although the effect was less intense 

than in the SC-CO2 treatments. E. coli was found to be more resistant than B. diminuta 

in SC-CO2 treatments, while no differences were found when HPU was applied. HPU 

decreased the protective effect of oil in the inactivation and similar microbial reductions 

were obtained regardless of the oil content in the emulsion. Therefore, HPU 

intensification of SC-CO2 treatments is a promising alternative to the thermal 

pasteurization of lipid emulsions with heat sensitive compounds. 

 

 

Keywords: supercritical carbon dioxide, high power ultrasound, Escherichia coli, 

Brevundimonas diminuta, lipid emulsions  
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1. Introduction 

In the food and pharmaceutical industry, microbial inactivation is essential for 

the purposes of obtaining safe and stable products; to this end, thermal treatment has 

traditionally been the most widespread technique. However, the use of heat involves 

some undesirable effects, such as changes in the physico-chemical and organoleptic 

properties or in the nutrient content. Some of the most common changes brought about 

by high temperatures are related to colour, taste, flavour, texture, the loss of vitamins 

or the denaturation of proteins. For that reason, alternative non-thermal methods, in 

which mild temperatures can be applied, have been studied in recent years (Li & Farid, 

2016). Of these technologies, the use of high-voltage pulsed electric fields (Heinz et 

al., 2001; Raso et al., 2016), high hydrostatic pressure (Monfort et al., 2012) or 

supercritical fluids (Ortuño et al., 2012a; Paniagua-Martínez et al., 2018) could be cited. 

A supercritical fluid is a substance which is above its critical temperature and 

pressure, shows a high density (similar to that of liquids), has low viscosity (like a gas) 

and a zero surface tension (Soares et al., 2019). Different compounds can be used in 

their supercritical state, although carbon dioxide is frequently chosen in the food and 

pharmaceutical microbial inactivation applications. Supercritical carbon dioxide (SC-

CO2) diffuses easily through the microbial cells, causing a pH decrease that modifies 

their membrane. This fact leads to the extraction of intracellular components that are 

vital for the cell and eventually promotes the death of the microorganism (Ortuño et al., 

2014). Carbon dioxide has the advantage over other compounds of being non-toxic 

and inexpensive; moreover, its critical temperature (31ºC) and pressure (72.8 bar) are 

easy to reach. The application of SC-CO2 has proven to be a satisfactory non-thermal 

pasteurization technique, which contributes to better preserving the nutrients and 

organoleptic properties (Amaral et al., 2017). Ferrentino & Spilimbergo (2017) treated 

apple pieces in syrup with SC-CO2 and studied the inactivation of the microorganisms 

naturally present in the product (mesophilic microorganisms, total coliforms, yeasts and 

moulds) and polyphenol oxidase enzyme. These authors showed that pH, total acidity, 

and ascorbic acid content were not affected by the treatment and remained stable for 
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60 days at 25ºC. Additionally, no noticeable differences in the colour were observed for 

the treated apples compared to the untreated ones.  

However, in some cases, long processing times or a high pressure or 

temperature are needed to guarantee both the product’s safety and stability (Ortuño et 

al., 2012a). In order to obtain the required lethality with shorter or milder processes, 

previous studies assessed the benefits of combining SC-CO2 with other non-thermal 

techniques, such as pulsed electric fields (PEF) or high power ultrasound (HPU). 

Spilimbergo et al. (2003) found a synergistic effect when pre-treating E. coli, S. aureus 

and B. cereus with PEF before the SC-CO2 inactivation. E. coli and S. aureus treated 

at 25 kV/cm and 10 pulses and subsequently processed by SC-CO2 at 200 bar and 

34°C for 10 min, were completely inactivated. B. cereus spores, although shown to be 

more resistant, were reduced in 3 log-cycles by sequential PEF (25 kV/cm, 20 pulses) 

and SC-CO2 treatment (200 bar, 40ºC for 24 h).  

The effect of HPU on microbial inactivation is due to the compression and 

decompression cycles which generate different phenomena. Thus, mechanical stress 

caused by ultrasound may induce the violent collapse of air bubbles, a phenomenon 

known as cavitation. This causes  locally intense high temperatures and pressures, 

with significant shearing and turbulence effects (Cárcel et al., 2012), which can affect 

microbial integrity. However, very high intensities are required for pasteurization when 

using only ultrasound and a combination with temperature (thermosonication) is often 

needed. There has been a proven synergistic effect on the inactivation of different 

microorganisms when simultaneously combining SC-CO2 and HPU (Ferrentino & 

Spilimbergo, 2015; Ortuño et al., 2012b). In particular, this combined technology has 

been used for the inactivation of inoculated Salmonella enterica and microbiota in 

coconut water (Cappelletti et al., 2014) or Saccharomyces cerevisiae in apple juice 

(Paniagua-Martínez et al., 2016), among others. The application of HPU enhances the 

contact between SC-CO2 and the surface of the cells and accelerates the solubilisation 

rate of CO2 in the liquid (Cappelletti et al., 2014). Due to the vigorous stirring of the 

medium caused by HPU, the mass transfer between the inner cells and the surrounding 

SC-CO2 is also enhanced. Additionally, the cavitation created by HPU causes cell wall 

damage, which facilitates SC-CO2 penetration into the cell, causing a drastic drop in 
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the intracellular pH and the extraction of internal components (Paniagua-Martínez et 

al., 2018). Furthermore, as the inactivation time is shortened by HPU application, it 

leads to more cost-effective and environmentally-friendly industrial operations.  

Pressure, temperature and treatment time are key factors for the 

microorganism survival rate. In addition, microbial inactivation is also greatly affected 

by the nature of the suspending media (Garcia-Gonzalez et al., 2007). Whilst several 

authors observed marked protective effects against external stress on microbial cells 

in complex physicochemical systems, no protective effect was found in simple solutions 

(Wei et al., 1991). Factors, such as fat, sugar, salt and water contents, or the pH of the 

suspending medium, may modulate the microbial sensitivity to SC-CO2 inactivation 

(Garcia-Gonzalez et al., 2007). Although significant progress has been made in the 

non-thermal pasteurization of liquid products, the combination of SC-CO2 and HPU has 

mostly been tested in fat-free media products such as juices, with sugars as the main 

dissolved solutes. In this context, the inactivation of the microbiota in red grapefruit 

juice (Ferrentino et al., 2009) and the inactivation of S. cerevisiae in YPD Broth, apple 

and orange juice (Ortuño et al., 2013) have been reported. The pasteurization of lipid 

emulsions has gained interest due to its multiple application in the food, pharmaceutical 

(e.g. for parenteral nutrition) and cosmetic industries (Anton et al., 2008; Schwarz et 

al., 1994). This study, therefore, addressed the feasibility of the pasteurization of 

soybean oil emulsions using a combination of SC-CO2 and HPU. The effect of the 

combined treatment on Escherichia coli and Brevundimonas diminuta inactivation was 

assessed and compared to both the SC-CO2 treatment alone and to a conventional 

thermal treatment. Moreover, the effect of the fat content in the medium on the microbial 

resistance to SC-CO2 and SC-CO2+HPU treatments was also evaluated. 

 

2. Materials and methods 

2.1. Microorganisms  

The lyophilized strains of Eschericha coli CECT 101 and Brevundimonas 

diminuta CECT 313 used in this study were obtained from the Colección Española de 

Cultivos Tipo (CECT), Universidad de Valencia, Spain. E. coli is a facultative anaerobic 
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gram-negative bacteria with a size of ~1 x 3 µm (Reshes et al., 2008), very common in 

contaminated food and pharmaceutical products. B. diminuta is an aerobic gram-

negative bacteria. It is an opportunistic bacteria, considered of minor clinical 

importance, used to test the porosity of pharmaceutical grade filters of 0.2 µm because 

of its small size (Sundaram et al., 2001): typically of ~0.3 × 0.6 µm (Sandle, 2013). The 

inactivation kinetics of different microorganisms depend not only on the effect of 

external stresses, such as heat, but also on the membrane structure and the cell size 

and morphology (Tonyali et al., 2019). Although B. diminuta is not considered a 

significant pathogen and, in general, its virulence is low (Ryan & Pembroke, 2018); it 

was chosen in this study to compare the resistance to the inactivation treatments 

considered on microorganisms of differing cell sizes. 

 

2.2. Preparation of the starter culture 

Prior to each inactivation treatment, the cultures were refreshed from stock 

to agar plates and incubated at the suitable temperature and time (37ºC and 24 h for 

E. coli and 30ºC and 48 h for B. diminuta). A single fresh colony of each 

microorganism was inoculated in 50 mL of nutrient broth (Nutrient Broth, Scharlab, 

Spain) and grown overnight (18-24 h) at 37ºC for E. coli and 30ºC for B. diminuta, 

using an incubation chamber (J.P. Selecta, Model 3000957, Barcelona, Spain) and 

an orbital shaker at 120 rpm (J.P. Selecta, Rotabit Model 3000974, Barcelona, 

Spain).  

 

2.3. Preparation of bacterial suspensions in the stationary phase 

In order to establish the time at which E. coli and B. diminuta reached the 

stationary phase, the growth curves were determined (Fig. 1). For that purpose, 50 

µL of the overnight starter culture were transferred to a new growth medium and it 

was incubated at the right temperature for every microorganism. During the growth, 

two processes were performed:  plating on Plate Count Agar (data not shown) and 

the measurement of optical density at 600 nm (OD600), using a UV-visible 
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spectrophotometer (Thermo Electron Corporation, Helios Gamma Model, Unicam, 

England). All the measurements were taken in triplicate. Thereby, bacterial 

suspensions used to inoculate the lipid emulsions were grown 14 h for E. coli (37ºC) 

and 36 h (30ºC) for B. diminuta (Fig. 1), to assure that microorganisms reached the 

stationary phase.  

 

 
Fig. 1. Growth kinetics of Escherichia coli (A) and Brevundimonas diminuta (B) monitoring optical 

density measurements at 600 nm (OD). 
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2.4. Preparation of lipid emulsions 

The treated samples were emulsions with different oil contents (10, 20 and 

30%). Distilled water was used as the control treatment medium (0% soybean oil). Prior 

to each treatment, the bacterial suspension in the stationary phase was added (5 mL) 

to the autoclaved emulsion (60 mL) to reach a cell concentration of 107-108 CFU/mL.  

The oil-in-water emulsions were prepared in three stages: mixing with an Ultra-

Turrax, sonication and homogenization. Firstly, the lipid phase, formed by soybean oil 

and egg phospholipid, as the emulsifying agent, was mixed using an Ultra-Turrax (IKA 

T25 Digital; tool S25N - 25G, Staufen, Germany) at 14000 rpm for 2 min, 10200 rpm 

for 4 min and 10600 rpm for 4 min. Subsequently, the lipid phase was slowly added to 

the water phase (deionized water), while being mixed using the Ultra-Turrax at 14000 

rpm. Afterwards, samples were sonicated for 5 min with an ultrasound system UP400S 

(Hielscher, Teltow, Germany), using the H22 sonotrode. Finally, the product was 

homogenized in two stages (50bar; 550bar) with the GEA Niro Soavi homogenizer 

(PANDA Plus 2000, Parma, Italy). 

 

2.5. Thermal treatment 

The thermal treatments were performed at 50ºC in a temperature controlled 

water bath (1812, Bunsen, Madrid, Spain). 1.5 mL of sample (20% soybean emulsion 

at a concentration of 107 -108 CFU/mL of E. coli or B. diminuta) were poured into 

borosilicate glass tubes of 8 mm in diameter and 70 mm in length (Fiolax, Germany). 

The tubes were taken from the bath after 50 min for E. coli and after 50 and 70 min for 

B. diminuta and cooled in ice for immediate analysis. The experiments were carried out 

in triplicate. 

 

2.6. Supercritical fluids and high power ultrasound treatments  

The inactivation treatments were performed in custom supercritical fluid lab-

scale equipment designed and built by the research team for batch mode operation, 

which has already been described by Ortuño et al. (Ortuño et al., 2013). The system 
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(Fig. 2) consisted of an inactivation vessel made of stainless steel (5, Fig. 2) with a 

pressure gauge and a temperature probe, a CO2 tank stored at room temperature (1, 

Fig. 2), a chiller reservoir kept at -18ºC (2, Fig. 2); a diaphragm metering pump (LDB, 

LEWA, Japan) to reach the desired pressure in the inactivation vessel (3, Fig. 2) and a 

thermostatic water bath (4, Fig. 2) to maintain the temperature of the process. The 

pressure of the vessel was measured with a pressure gauge, the temperature of the 

vessel (temperature of the treatment) was measured with a temperature probe (K type 

termopar), both installed in the inactivation vessel. The temperature of the water bath 

was measured with a pt100 sensor submerged in the bath. All pressure and 

temperature sensors were connected to digital controllers (E5CK, Omron, Hoofddorp, 

Netherlands). The controllers of the pressure and the temperature of the treatments 

were connected to the pump and the thermostatic water bath, respectively. Carbon 

dioxide was driven from the tank to the chiller reservoir. The liquid CO2 was fed from 

the bottom of the reservoir into the vessel (600 mL internal volume) by the pump. 

Additionally, an ultrasound transducer was attached to the lid of the supercritical fluid 

vessel. The ultrasound system consisted of a high power (>1W/ cm2) piezoelectric 

transducer (6, Fig. 2) made up of two commercial ceramics (8, Fig. 2; 35 mm external 

diameter; 12.5 mm internal diameter; 5 mm thickness; resonance frequency of 30 kHz; 

ATU, Spain) and a sonotrode; an insulation system (polypropylene covered with Teflon; 

7, Fig. 2) and a power generation unit (10, Fig. 2). The power was 50 W ± 5 W (I= 250 

± 10 mA; U= 220 ± 5V), measured with a Digital Power Meter, Model WT210 

(Yogogawa, Japan) and the frequency was 30 ± 2 kHz. 

Five steps were required for each inactivation treatment: plant preparation 

(disinfection and heating), sample preparation, pressurisation, HPU connection (when 

needed) and sample extraction. Before every experimental run, the plant was 

disinfected (Disersey Detalled, Barcelona, Spain) for 5 min, afterwards, the inactivation 

vessel was rinsed twice with distilled water and once with autoclaved water. The sterile 

vessel was loaded with the inoculated soybean emulsion (65 mL) and immediately 

sealed and pressurized. The pressure set-point was reached in less than 5 min. For 

the combined SC-CO2 + HPU, the ultrasound system was turned on when the required 

pressure in the vessel was reached. Throughout the process, temperature and 
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pressure were maintained constant via the thermostatic bath and the pump, 

respectively. Samples of 2 mL were extracted during each treatment at different times 

(depending on the conditions of the process, at intervals of 1-10 min) using the 

sampling tube placed at the bottom of the inactivation vessel. The treated samples 

were cooled in ice to be immediately analysed.  

Inactivation treatments of E. coli and B. diminuta in 20% oil emulsion were 

carried out at 100 and 350 bar, and 35 and 50ºC. The lowest pressure (100 bar) was 

chosen because it is close to the critical pressure (73.8 bar) and the highest (350 bar) 

for being a common pressure used in the SC-CO2 inactivation studies. On the other 

hand, 35ºC was considered for being close to the critical temperature (31.2ºC) and 

50ºC was selected as a higher temperature that has little thermal effect on the 

inactivation of the studied microorganisms. In order to study the effect of the oil content 

in the emulsions on microbial inactivation, emulsions of 10, 20 and 30% of oil and 

distilled water (0%) were used as the treatment media and conditions of 350 bar and 

35ºC were selected. All of the treatments were performed with SC-CO2 and with SC-

CO2 + HPU. 

 
Fig. 2. Supercritical CO2 treatment system. (1-CO2 tank, 2-Reservoir, 3-Pump, 4-Bath, 5-

Treatment vessel, 6-Transducer, 7-Insulation joint, 8-Ceramics, 9-Sample extraction, 10-Power 

Generation Unit. 
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2.7. Microbiological analyses  

The treated samples were collected in sterile tubes and the plate count 

technique was carried out to determine the viability of E. coli and B. diminuta. 

Depending on the expected count, appropriate serial dilutions were prepared with 

sterile distilled water. 100 μL of the dilution were spread on the surface of Plate Count 

Agar (Scharlab, Barcelona, Spain) in triplicate and incubated at the optimum growth 

temperature and time for the bacteria (24 h at 37 ºC for E. coli and 48 h at 30º C for B. 

diminuta). The initial microbial load in the sample was also determined following the 

same procedure.  

 

2.8. Modelling 

The inactivation kinetics of thermal and non-thermal treatments were described 

by several authors as first-order kinetics, assuming that microbial populations are 

homogeneous as regards treatment resistance (Corradini & Peleg, 2012; Mafart et al., 

2002). Nevertheless, some microorganisms show more complex inactivation kinetics, 

presenting a downward concavity (shoulder) or an upward concavity (tail). Several non-

linear models were proposed in order to describe this behaviour, the Weibull model 

being a simple and sufficiently robust one. Therefore, Weibull distribution was used in 

this study to describe the microbial inactivation kinetics of E. coli and B. diminuta 

(Peleg, 2006) (Eq. 1). 

 

log10 NN0 = -b·t n Eq. (1) 

 

where N0 is the initial number of colonies of the sample, N the number of 

colonies in the treated sample at time t. The kinetic constants (b and n) of the model 

were calculated by minimizing the sum of squared differences between experimental 

and model predicted data using Solver Microsoft ExcelTM tool. Parameter b is a rate 

parameter which indicates the speed of the microorganism inactivation and n is a fitting 

parameter that determines the shape of the kinetic curves and their deviation from 
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linearity. When the value of n is higher than 1, the shape of the inactivation curve is 

concave-downward (shoulder).  However, an n value lower than 1 corresponds to 

concave-upward curves (tailing). When n is equal to 1, the Weibull model conforms a 

first-order kinetics (Jiao et al., 2019). The root mean squared error (RMSE, Eq. 2) and 

the coefficient of determination (R2, Eq. 3) were determined to evaluate the goodness 

of fit of the model and the estimation accuracy.  

 

RMSE= �   ∑ (𝑦𝑦𝑘𝑘−𝑦𝑦𝑘𝑘∗)2𝑧𝑧
𝑘𝑘=1   

𝑧𝑧
  Eq. (2) 

 

R2= 1- 𝑆𝑆𝑦𝑦𝑦𝑦
2

𝑆𝑆𝑦𝑦2
  Eq. (3) 

 

where 𝑦𝑦 and 𝑦𝑦* are the experimental and the estimated data, respectively; z is 

the number of experimental values and 𝑆𝑆𝑦𝑦𝑦𝑦 and 𝑆𝑆𝑦𝑦 are the standard deviations of the 

estimation and the total standard deviation, respectively.  

 

2.9. Statistical analysis 

The statistical package, Statgraphics Centurion XVI, was used to perform a 

general linear model (GLM) in order to evaluate the effect of both the treatment 

conditions (pressure and temperature) and the treatment media on the inactivation. 

Fisher's least significant difference (LSD) procedure was used to discriminate among 

the means with a 95.0 % of confidence (p<0.05). A multifactorial ANOVA was also used 

to analyse the parameters of the Weibull model. 
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3. Results and discussion 

3.1. Effect of pressure, temperature and high-power ultrasound on microbial 
inactivation  

3.1.1. Effect of pressure and temperature on the SC-CO2 inactivation of E. coli 
and B. diminuta. 

Fig. 3. shows the inactivation of E. coli (A) and B. diminuta (B) in a 20% oil-in-

water emulsion in SC-CO2 at different pressures (100 and 350 bar) and temperatures 

(35 and 50ºC), compared to a conventional thermal treatment at 50ºC. A wide 

experimental variability was found in the inactivation treatments, which may be ascribed 

to variations in the microbial growth behaviour and pressure and temperature 

fluctuations. In general terms, the Weibull model satisfactorily described the SC-CO2 

inactivation kinetics at different pressures and temperatures, as shown in Fig. 3. The 

R2 values were higher than 0.91 and the RMSE values were lower than 0.77, except 

for the B. diminuta kinetics at 350 bar and 35ºC (R2 =0.86 and RMSE=0.83, Table 1). 

The thermal inactivation of E. coli at 50 min and 50ºC barely reached a reduction of 0.4 

log-cycles. B. diminuta proved to be slightly more sensitive to heat than E. coli since, 

as shown in Fig. 3B, the thermal treatment led to a 0.9 log-cycle reduction. 

Pressure had a significant (p<0.05) effect on the inactivation of both E. coli and 

B. diminuta. Treatments at 350 bar were significantly (p<0.05) more effective than at 

100 bar for both 35 and 50ºC (Fig. 3). As an example, for E. coli at 50 min and 35ºC 

(Fig.3A), the inactivation at 350 bar was 2.2 log-cycles higher than at 100 bar. The 

effect of the pressure was slightly more remarkable at 35ºC than at 50ºC (1.4 log-cycles 

of difference between 100 and 350 bar at 50ºC). High pressure is known to increase 

the solubility of CO2 in the medium. Therefore, as pressure increases, the contact 

between CO2 and the bacteria in the medium is enhanced, allowing a faster microbial 

inactivation (Liao et al., 2007). Ortuño et al. (2012b) studied the inactivation of E. coli 

in LB medium at 36ºC at different pressures. Thus, at 350 bar, 25 min were needed to 

achieve 5.0-6.0 log-cycles of reduction; while 50 min were required at 100 bar to 

achieve the same inactivation level. Hong et al. (1999) also reported the relevant effect 

of the pressure on the inactivation, since 50-55 min were required to inactivate 5.0 log-
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cycles of Lactobacillus plantarum (in MRS broth and phosphate buffer) at 70 bar; while 

it took only 15-20 min when the pressure was doubled. The effect of pressure on the 

inactivation kinetics is computed in the b kinetic parameter of the Weibull model since, 

in general terms, the higher the pressure, the higher the b parameter. In the case of 

the shape parameter (n), the values found at 100 and 350ºC were similar (Table 1).  

The temperature in SC-CO2 treatments also had a significant (p<0.05) effect 

on the inactivation of both microorganisms. On average, the temperature rise from 35 

to 50ºC at 50 min leads to an increase of 3.0-4.0 log-cycles in the inactivation level, 

regardless of the microorganism and the pressure. For example, in the inactivation of 

B. diminuta with SC-CO2 (Fig. 3B), the total inactivation (8.4-8.5 log-cycles) was 

achieved in less than 70 min at 50ºC, while more than 90 min were required at 35ºC to 

completely inactivate B. diminuta. For both microorganisms, the b parameter of the 

Weibull model increased on average from 0.25 to 1.48 min -n when the temperature 

rose from 35 to 50ºC. The more intense inactivation at high temperatures could be 

explained by the fact that an increase in temperature leads to a lower CO2 viscosity 

and higher diffusion rates. In addition, heat increases the membrane permeability and 

makes cells more sensitive to inactivation (Boziaris et al., 1998; Tsuchido et al., 1985). 

Therefore, SC-CO2 is able to penetrate into the cell membranes faster and to a greater 

extent at high temperatures, which accelerates the inactivation mechanisms 

(Spilimbergo & Bertucco, 2003).  

In Fig. 3A, an initial lag-phase was found in the inactivation kinetics of E. coli 

at 35ºC, during which the inactivation was negligible. This phase is linked to the time 

required for the CO2 to dissolve in the liquid medium and to penetrate into the microbial 

cells and, consequently, to begin the inactivation mechanisms (Lin et al., 1994). Once 

the lag-phase finalized, after approximately 24 min at 35ºC, a faster decrease in the E. 

coli population was observed for both pressures tested (Fig. 3A). On the contrary, when 

using 50ºC, the lag-phase was not observed (Fig. 3A). The lag-phase is well computed 

by the n parameter of the Weibull model, whose values are higher than 1 (Table 1); in 

the case of the E. coli treatments at 35ºC, values of 4.18 at 100 bar and 3.65 at 350 

bar were found, which illustrates concave downward curves. In contrast, the values of 

n were lower than 1 in the 50ºC E. coli treatments at both pressures, indicating concave 
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upward-shaped curves (Peleg, 2006). Liao et al. (2008) reported that the higher the 

inactivation temperature, the shorter the lag-phase for E. coli. Unlike E. coli kinetics 

(Fig. 3A), the inactivation of the B. diminuta population did not show an initial lag-phase, 

regardless of the pressure and temperature applied (Fig. 3B), which might indicate 

either that CO2 is able to penetrate into the cells faster than in the case of E. coli or a 

different sensitiveness to CO2.  

B. diminuta was found to be significantly (p<0.05) more sensitive to the SC-

CO2 treatment, compared to E. coli. Thereby, the average b parameter of the Weibull 

model was higher for B. diminuta (1.10 min -n) than for E.coli (0.63 min –n).  
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Fig. 3. Inactivation kinetics of E. coli (A) and B. diminuta (B) in 20% oil-water emulsion at different 

pressure (100 and 350 bar) and temperature (35 and 50ºC) using SC-CO2, compared to 

conventional thermal treatment (T.T.) at 50ºC. Experimental data (discrete points) and Weibull 

model (continuous and dashed lines). 
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Table 1. Parameters (b and n) and goodness of fit by using Weibull model in the E. coli and 

B. diminuta SC-CO2 inactivation kinetics for the 20% emulsion at different pressure and 

temperature conditions. Values in brackets indicate standard errors. 

 

 

3.1.2. Combined SC-CO2 + HPU inactivation of E. coli and B. diminuta. Effect of 
pressure, temperature and high-power ultrasound. 

Fig. 4. shows the inactivation kinetics of E. coli (A) and B. diminuta (B) in a 20% 

oil-in-water emulsion for the combined SC-CO2 + HPU treatment. The experimental 

variability in the inactivation kinetics with HPU (Fig. 4) was, in general, greater than in 

the SC-CO2 kinetics (Fig. 3), due to the additional variability linked to the behaviour of 

the HPU transducer under supercritical conditions. The use of HPU did not affect the 

fitting ability of the Weibull model, which also satisfactorily described the inactivation 

kinetics for both microorganisms at different pressures and temperatures, as illustrated 

in Fig. 4. Thereby, R2 values were higher than 0.97 and RMSE values were lower than 

0.45 (Table 2). 

HPU greatly improved the E. coli and B. diminuta inactivation by increasing the 

inactivation rate and the level of microbial reduction (Figs. 4A and 4B). Thus, while only 

10 min were needed to achieve a substantial inactivation in E. coli (7.0-8.0 log-cycles) 

Microorganism Treatment Pressure (bar) Temperature (ºC) b (min –n) n R2 RMSE 

E. coli SC-CO2 100 35 1.60E-07 (5.81E-07) 4.18 (0.67) 0.95 0.14 

E. coli SC-CO2 350 35 2.73E-06 (3.21E-06) 3.65 (0.35) 0.98 0.19 

E. coli SC-CO2 100 50 1.06 (0.27) 0.47 (0.07) 0.96 0.37 

E. coli SC-CO2 350 50 1.45 (0.60) 0.45 (0.12) 0.91 0.77 

B. diminuta SC-CO2 100 35 0.63 (0.26) 0.49 (0.10) 0.98 0.22 

B. diminuta SC-CO2 350 35 0.36 (0.22) 0.68 (0.15) 0.86 0.83 

B. diminuta SC-CO2 100 50 1.3 (0.15) 0.44 (0.03) 0.99 0.11 

B. diminuta SC-CO2 350 50 2.11 (0.24) 0.38 (0.03) 0.99 0.17 
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with SC-CO2 + HPU for every condition of pressure and temperature (Fig. 4A), more 

than 50 min were required if HPU was not applied (Fig. 3A). In the case of B. diminuta, 

the combined treatment shortened the total inactivation time at 350 bar and 50ºC by 32 

min, a time reduction which reached 58 min at 100 bar- 50ºC. The marked effect of 

HPU on the inactivation rate was well manifested in the Weibull b parameter, since b 

values in the SC-CO2 + HPU treatments were significantly (p<0.05) higher (on average, 

a difference of 2.15 min –n ) compared to the treatment under the same conditions 

without HPU, representing a higher inactivation rate for both bacteria. In the case of 

the shape parameter of the Weibull model, n values were under 1 for every tested 

condition (Table 1), since no lag-phases were found.  

It is known that HPU generates agitation and cavitation in the medium where it 

is applied (Ortuño et al., 2013). The strong agitation cause a reduction in the resistance 

to mass transfer, therefore the contact between the cells and the media is increased. 

Cavitation refers to the formation, growth and implosion of gas bubbles (Cárcel et al., 

2012), which has been proven to cause damaged or cracked cell walls, increasing the 

cell membrane permeation (Cappelletti et al., 2014). Thus, when HPU is implemented 

to SC-CO2 treatments, the contact between the SC-CO2 and the bacteria with disrupted 

cell walls is enhanced, making CO2 penetration in the cells easier and causing the 

extraction of vital intracellular components. In addition, the solubilisation of SC-CO2 is  

enhanced by the effective agitation of HPU causing a faster drop of the intracellular pH, 

which accelerates the inactivation mechanisms, causing eventually the cellular death 

(Benedito et al., 2015; Ortuño et al., 2012b). 

Ortuño et al. (2014) contrasted the morphology of E. coli cells treated with SC-

CO2 and SC-CO2 + HPU and reported a disordered distribution of cytoplasm with empty 

areas in the cells treated with SC-CO2 + HPU, which indicates changes in the cells, 

such as damage in the walls and membranes or the loss of cytoplasmic content, due 

to the cavitation phenomenon of HPU. Contrary to SC-CO2 treatments, both bacteria 

exhibited very similar resistance to the treatment, except at 35ºC and 100 bar in which 

B. diminuta was much more resistant than E. coli. Thus, no bacteria effect (p>0.05) 

was found in the b parameter of Weibull. 
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Ortuño et al. (2014) observed a more intense inactivation in S.cerevisiae (8–

10 μm) than in E. coli (1.2–2 μm) when treated with SC-CO2 + HPU. These authors 

suggested that the probability of cavitation bubbles affecting the cell structure is higher 

for S. cerevisiae than for E. coli due to its larger size (difference of 6.8-8 μm). However, 

in the present study, the difference in size between E. coli and B. diminuta is much 

smaller (a difference of around 2.4 μm), which can partially explain the similar sensitivity 

of both bacteria to the SCO2+HPU treatment.  

Visual observation of the emulsions did not show any alteration of the SC-CO2 

+ HPU treated samples. However, further studies should be done to analyse the effect 

of the treatment on the physicochemical properties (particle size distribution, zeta 

potential…) and the stability of the treated emulsions. 

Pressure and temperature had a significant (p<0.05) effect on the inactivation 

of E. coli and B. diminuta cells treated with combined SC-CO2 + HPU. In general terms, 

the higher the pressure and temperature, the faster the inactivation. However, in the 

case of E. coli, the inactivation kinetics at 100 bar were very similar at both 

temperatures studied (35 and 50ºC) (Fig. 4A), which illustrates a milder temperature 

effect than in SC-CO2 treatments. In addition, the inactivation kinetics of E. coli at 100 

bar and 35ºC were very close to those obtained using 350 bar and 35ºC after 7 min of 

treatment, which also points to a milder effect of the pressure. Similarly, Ortuño et al. 

(2014) treated E. coli in apple juice with SC-CO2 + HPU, and no significant (p>0.05) 

differences were found between the conditions applied (100, 225 and 350 bar at 36 °C 

and 31, 36 and 41 °C at 225 bar). However, in B. diminuta, both pressure and 

temperature effects were more noticeable. The Weibull b parameter highlighted that 

the effect of the pressure was slightly greater than that of the temperature for both 

bacteria: as an example for E. coli, the average difference between the b values at 100 

and 350 bar was 2.1 min-n, while this difference was only 0.7 when the temperature 

rose from 35 to 50ºC.   
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Fig. 4. Inactivation kinetics of E. coli (A) and B. diminuta (B) in 20% oil-water emulsion at different 

pressure (100 and 350 bar) and temperature (35 and 50ºC) using SC-CO2 + HPU. Experimental 

data (discrete points) and Weibull model (continuous and dashed lines).  
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Table 2. Parameters (b and n) and goodness of fit by using Weibull model in the E. coli and B. 

diminuta SC-CO2 + HPU inactivation kinetics for the 20% emulsion at different pressure and 

temperature conditions. Values in brackets indicate standard errors. 

 

 

3. 2. Effect of the medium composition on microbial inactivation  

3.2.1. Effect of oil content on the SC-CO2 inactivation treatments of E. coli and 
B. diminuta.  

Numerous analyses have already illustrated that the inactivation rate of 

microorganisms treated with SC-CO2 is medium dependent (Garcia-Gonzalez et al., 

2007). Several studies reported a strong protective effect on the inactivation of 

microbial cells in complex food systems, as compared to simple media (Garcia-

Gonzalez et al., 2007). Ortuño et al. (2012b) showed that the total inactivation of E. coli 

in LB broth was achieved in 22 min at 350 bar and 36ºC, while when fruit juices were 

treated instead of LB broth under the same conditions, the microbial population was 

only reduced by 0.5-1.0 log-cycles in 25 min. In the same way that the acids and sugars 

present in fruit juices were found to have a protective effect on the inactivation, the oil 

content present in the emulsions could have a protective effect on the inactivation of E. 

coli and B. diminuta. Fig. 5 shows the inactivation kinetics of E. coli and B. diminuta, in 

emulsions with different oil contents (10, 20 and 30 %) treated with SC-CO2 at 350 bar 

Microorganism Treatment Pressure (bar) Temperature (ºC) b (min –n) n R2 RMSE 

E. coli SC-CO2 + HPU 100 35 2.35 (0.18) 0.52 (0.04) 0.98 0.31 

E. coli SC-CO2 + HPU 350 35 3.77 (0.21) 0.28 (0.03) 0.98 0.29 

E. coli SC-CO2 + HPU 100 50 2.38 (0.24) 0.47 (0.05) 0.97 0.34 

E. coli SC-CO2 + HPU 350 50 5.09 (0.18) 0.20 (0.02) 0.99 0.24 

B. diminuta SC-CO2 + HPU 100 35 1.12 (0.12) 0.59 (0.04) 0.99 0.11 

B. diminuta SC-CO2 + HPU 350 35 2.37 (0.34) 0.49 (0.06) 0.99 0.45 

B. diminuta SC-CO2 + HPU 100 50 2.28 (0.48) 0.52 (0.10) 0.97 0.41 

B. diminuta SC-CO2 + HPU 350 50 4.79 (0.56) 0.29 (0.07) 0.98 0.38 
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and 35ºC. The lipid emulsion with 0 % oil content refers to the water. As in previous 

cases, the fitting of the inactivation kinetics with the Weibull model was adequate, 

providing R2 of over 0.91 and RMSE of under 0.54, except for treatments in water (0%), 

in which RMSE were slightly higher (Table 3). 

The inactivation of both E. coli and B. diminuta in water (0% oil content) was 

significantly (p<0.05) faster than in the lipid emulsions. Lin et al. (1994) suggested that 

bacterial cells in water are swollen and more accessible to the penetration of CO2. In 

addition, the high water content facilitates CO2 dissolution and acid formation which 

improves cell permeability and the transport of CO2 into the cells. In water (0% oil), 50 

min (Fig. 5A) and 30 min (Fig. 5B) were enough to achieve an inactivation of 7.4 and 

7.8 log-cycles in E. coli and B. diminuta, respectively. However, when lipid emulsions 

were treated, an E. coli inactivation of between 3.4-5.2 log-cycles was achieved in 50 

min (Fig. 5A), and of between 2.7-4.2 log-cycles for B. diminuta in 30 min (Fig. 5B). 

Equivalent conclusions were drawn from the kinetic Weibull parameter since the b 

values were much higher in water treatments than in the lipid emulsions. Thus, the b 

values were of 0.16 min -n for E. coli and 0.15 for B. diminuta in water, while in the lipid 

emulsions, an average b value of 8.67E-05 min –n for E. coli and 0.03 min –n for B. 

diminuta was identified for the different oil contents. Kobayashi et al. (Kobayashi et al., 

2016) reported that the inactivation of E. coli suspended in milk, with pressurized CO2 

at 35, 40, 45 or 50ºC and 40 bar, was less intense than in a physiological saline 

solution. These authors considered that the contact between CO2 and the bacteria 

could be hindered by protein and milkfat, and the inactivation efficiency of CO2 could 

decrease due to the buffering capacity of the different components in the solutions. Kim 

et al. (Kim et al., 2008) observed a considerably milder inactivation of L. 

monocytogenes in a physiological saline solution, treated at 35ºC,100 bar and 15 min, 

due to the addition of oleic acid at different concentrations. Two explanations were 

proposed by these authors for the purposes of understanding the effect of oil on 

inactivation. One is that SC-CO2 is not only solubilized in the lipid bilayer of the 

membrane but also in the other lipids, which greatly reduces the inactivation rate. The 

other is that lipid substances also act as a barrier protecting the lipid bilayer of the 

membranes and hindering the SC-CO2 penetration and solubilisation. Several authors 
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suggested that bacterial cells grown or suspended in a medium with fat could be 

biologically or physically affected, with changes either in the structure of cell walls and 

membranes or in their porosity. Lin et al. (1994) found that growing the bacteria in milk 

increased the resistance of L. monocytogenes to further pressurized CO2 treatments 

and, the higher the fat content in the milk, the more resistant to CO2 treatments was 

the bacteria. Additionally, when CO2 is injected into the vessel, it is partly dissolved in 

the water-phase and partly in the oil-phase of the medium (Devlieghere et al., 1998). 

Consequently, less CO2 will be available in the water phase, which is responsible for 

the pH decrease and the increase in membrane permeability, which leads to microbial 

inactivation. Therefore, it can be concluded that the protective effect of the oil observed 

in the present study was coincided with that found in previous studies into other solutes. 

In general terms, the higher the oil content, the slower the inactivation. In fact, the 

percentage of oil promoted significant (p<0.05) differences in the final inactivation 

levels for both bacteria. These results agree with previous ones reported in Garcia-

Gonzalez et al. (2009), where there was a reduction in the inactivation degree of P. 

fluorescens  treated at 105 bar, 35ºC and 20 min  when sunflower oil was added to the 

control sample (BHI broth supplemented with K2HPO4). Whereas a reduction of 6.0 log-

cycles was achieved in the control sample, in the samples with 10 and 30% of sunflower 

oil, decreases of only 3.9 log-cycles and 3.0 log-cycles, respectively, were obtained.   

In the inactivation kinetics of E. coli (Fig. 5A), a remarkable lag-phase was 

found for lipid emulsions at different oil contents. However, for B. diminuta, the lag-

phase was almost negligible (Fig. 5B). This fact was evidenced in the n parameter of 

Weibull, which ranged from 2.43 to 3.85 for E. coli, while it was close to one for for B. 

diminuta. Once again, these results highlight B. diminuta exhibits a lower degree of 

resistance to the SC-CO2 inactivation treatment than E. coli.  
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Fig. 5. Inactivation kinetics of E. coli (A) and B. diminuta (B) in oil-water emulsions with different 

oil contents (0, 10%, 20% and 30%), using SC-CO2 at 350 bar and 35ºC. Experimental data 

(discrete points) and Weibull model (continuous and dashed lines). 

 

-9

-8

-7

-6

-5

-4

-3

-2

-1

0
0 20 40 60

lo
g 1

0
(N

/N
0)

Time (min)

0%

0% - M

10%

10%- M

20%

20%-M

30%

30%-M

A

-9

-8

-7

-6

-5

-4

-3

-2

-1

0
0 20 40 60

lo
g

10
 (N

/N
0)

 

Time (min)

0%

0% -M

10%

10%-M

20%

20%-M

30%

30%-M

B



A. Gomez-Gomez, 2021 

118 
 

Table 3. Parameters (b and n) and goodness of fit by using Weibull model in the E. coli and B. 

diminuta inactivation kinetics with SC-CO2 at 350 bar and 35ºC in the different lipid emulsions (0, 

10, 20 and 30%). Values in brackets indicate standard errors. 

 

 

3.2.2. Combined SC-CO2 + HPU inactivation of E. coli and B. diminuta. Effect of 
oil content. 

Fig. 6 shows the inactivation kinetics of E. coli (A) and B. diminuta (B) at 350 

bar and 35ºC using the combined SC-CO2 + HPU treatment with different oil contents. 

As in SC-CO2 treatments using the lipid emulsions, the performance of the Weibull 

model when fitting the inactivation kinetics was noticeable, since R2 was higher than 

0.94 and RMSE was lower than 0.53 (Table 4) for every condition tested. 

The application of HPU led to a noticeable increase in the inactivation rate in 

the SC-CO2 medium of the lipid emulsions, as observed when Figs. 5 and 6 are 

compared. When using HPU, only 5 min were needed to achieve 6.2-7.0 log-cycle 

reductions of E. coli, regardless of the oil content in the emulsion (Fig. 6A), while more 

than 50 min were required with the SC-CO2 treatment (Fig. 5A). As for B. diminuta, a 

similar effect was found since similar log-cycle reductions were achieved in less than 8 

Microorganism Treatment Oil content (%) b (min –n) n R2 RMSE 

E. coli SC-CO2 0 0.16 (0.13) 1.02 (0.22) 0.91 0.81 

E. coli SC-CO2 10 9.68E-06 (1.27E-05) 3.38 (0.32) 0.98 0.23 

E. coli SC-CO2 20 1.29E-06 (2.75E-06) 3.85 (0.36) 0.98 0.18 

E. coli SC-CO2 30 2.49E-04 (2.88E-04) 2.43 (0.29) 0.96 0.19 

B. diminuta SC-CO2 0 0.15 (0.14) 1.20 (0.30) 0.94 0.67 

B. diminuta SC-CO2 10 0.03 (0.03) 1.41 (0.26) 0.96 0.54 

B. diminuta SC-CO2 20 0.05 (0.03) 1.25 (0.14) 0.99 0.30 

B. diminuta SC-CO2 30 0.02 (0.01) 1.46 (0.10) 0.99 0.15 
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min with HPU application (Fig. 6B), compared to more than 50 min in SC-CO2 

treatments (Fig. 5B). Therefore, the vigorous cavitation and stirring linked to the HPU 

application has been shown to accelerate the inactivation of the microorganisms. The 

Weibull b values ranged from 2.63 to 3.65 min -n for E. coli and from 2.04 to 6.24 min –

n for B. diminuta, while for treatments without HPU, the b values were, on average, 0.04 

min –n for E.coli and 0.06 min –n for B. diminuta, Therefore, the rate of inactivation was 

clearly larger when ultrasound was applied to the SC-CO2 treatment. In addition, the 

initial lag-phase observed in the E. coli kinetics for the lipid emulsions (Fig. 5A), 

disappeared in the combined SC-CO2 +HPU treatment (Fig. 6A), which was computed 

by the Weibull model, providing n values of under 1 in every case. Ortuño et al. (2012b) 

also observed that the initial lag-phase shown in the inactivation kinetics of E. coli with 

SC-CO2 disappeared when HPU was applied (225 bar, 31, 36 and 41ºC). Experimental 

results point to the fact that HPU application perturbs the protective capacity of the oil 

in the inactivation of both bacteria (Fig. 6) Thus, for E. coli, non-significant (p>0.05) 

differences between any of the treatment media (0, 10, 20 and 30% oil content) were 

found. While in the case of B. diminuta (Fig. 6B), only the inactivation in water was 

significantly (p<0.05) different from the emulsions. Therefore, the oil content did not 

significantly affect (p<0.05) the b Weibull parameter. Although no references were 

found to the effect of the oil content in the combined SC-CO2 + HPU inactivation, the 

effect of other solute concentrations has been analysed. Ortuño et al. (2012b) reported 

that the marked turbulence caused by ultrasound could mask any effect the nature of 

the medium may have, since ultrasound application would lead to a faster cellular 

penetration of SC-CO2 and an enhanced extraction of vital compounds from cells, 

regardless of the nature of the media. In conclusion, the HPU sharply intensifies the 

effectiveness of the process, both facilitating the mass transfer processes and also 

affecting the cell wall integrity, regardless of the nature of the medium being treated. 
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Fig. 6. Inactivation kinetics of E. coli (A) and B. diminuta (B) in the oil-water emulsion at different 

oil content (0, 10%, 20% and 30%) and distilled water using SC-CO2 + HPU at 350 bar and 35ºC. 

Experimental data (discrete points) and Weibull model (continuous and dashed lines). 
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Table 4. Parameters (b and n) and goodness of fit by using Weibull model in the E. coli and B. 

diminuta inactivation kinetics with SC-CO2 + HPU at 350 bar and 35ºC in the different lipid 

emulsions (0, 10, 20 and 30%). Values in brackets indicate standard errors. 

 

 

4. Conclusions  

This study illustrates the fact that the non-thermal pasteurization of E. coli and 

B. diminuta in lipid emulsions using SC-CO2 could be considered as a highly time-

consuming process, which could seriously restrict its industrial application. The use of 

HPU during SCO2 inactivation led to several benefits. Firstly, HPU greatly accelerated 

the treatment, shortening the time required for the inactivation by approximately 1 order 

of magnitude under every condition tested for both bacteria. Secondly, as the effect of 

pressure and temperature was milder when HPU was applied, less intense process 

conditions would be necessary. This accounts for a reduction in the cost of the process 

and could also improve the product quality. Finally, the protective effect of the oil in the 

inactivation of the lipid emulsions was masked when HPU was applied. 

Future studies should address the effect of a combined SC-CO2 + HPU 

treatment on the physicochemical properties and stability of the lipid emulsions, as well 

Microorganism Treatment Oil content (%) b (min –n) n R2 RMSE 

E. coli SC-CO2 + HPU 0 3.65 (0.12) 0.37 (0.03) 0.99 0.12 

E. coli SC-CO2 + HPU 10 3.55 (0.04) 0.42 (0.01) 0.99 0.04 

E. coli SC-CO2 + HPU 20 3.51 (0.24) 0.37 (0.05) 0.98 0.24 

E. coli SC-CO2 + HPU 30 2.63 (0.28) 0.53 (0.08) 0.97 0.34 

B. diminuta SC-CO2 + HPU 0 6.24 (0.28) 0.14 (0.03) 0.99 0.17 

B. diminuta SC-CO2 + HPU 10 2.11 (0.37) 0.59 (0.09) 0.97 0.42 

B. diminuta SC-CO2 + HPU 20 2.24 (0.47) 0.53 (0.11) 0.96 0.49 

B. diminuta SC-CO2 + HPU 30 2.04 (0.50) 0.55 (0.12) 0.94 0.53 

 



A. Gomez-Gomez, 2021 

122 
 

as assessing the inactivation of more resistant microorganisms, such as gram-positive 

bacteria, sporulated bacteria or moulds.  
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Combination of supercritical CO2 and high-power ultrasound for the 
inactivation of fungal and bacterial spores in lipid emulsions 

 

Abstract 

For the first time, this study addresses the intensification of supercritical carbon 

dioxide (SC-CO2) treatments using high-power ultrasound (HPU) for the inactivation of 

fungal (Aspergillus niger) and bacterial (Clostridium butyricum) spores in oil-in-water 

emulsions. The inactivation kinetics were analyzed at different pressures (100, 350 and 

550 bar) and temperatures (50, 60, 70, 80, 85 °C), depending on the microorganism, 

and compared to the conventional thermal treatment. The inactivation kinetics were 

satisfactorily described using the Weibull model.  

Experimental results showed that SC-CO2 enhanced the inactivation level of both 

spores when compared to thermal treatments. Bacterial spores (C. butyricum) were 

found to be more resistant to SC-CO2 + HPU, than fungal (A. niger) ones, as also 

observed in the thermal and SC-CO2 treatments. The application of HPU intensified the 

SC-CO2 inactivation of C. butyricum spores, e.g. shortening the total inactivation time 

from 10 to 3 min at 85ºC. However, HPU did not affect the SC-CO2 inactivation of 

A. niger spores. The study into the effect of a combined SC-CO2 + HPU treatment has 

to be necessarily extended to other fungal and bacterial spores, and future studies 

should elucidate the impact of HPU application on the emulsion’s stability. 

 

 

Keywords: spores, inactivation, supercritical fluids, ultrasound, emulsions 
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1. Introduction 

The inactivation of fungal and bacterial spores plays a relevant role in the food 

and pharmaceutical industry due to the fact that spores may cause product spoilage 

and related diseases. Spores are known to be highly resistant to many processing 

treatments, such as heating, drying, radiation or chemicals, among others.  

The most common technology used to inactivate all types of microorganisms, 

including spores, has been moist heat at high temperatures (≥121ºC). However, many 

disadvantages are linked to the use of high temperatures, such as changes in the 

nutritive or organoleptic properties of the treated products.   

The use of supercritical CO2 (SC-CO2) has been investigated as an alternative 

technology for the purposes of microbial inactivation (Omar et al., 2018). CO2 is non-

toxic, nonflammable, cheap, and its critical temperature (31ºC) and pressure (73.8 bar) 

are easy to reach. Moreover, SC-CO2 has liquid-like density, gas-like diffusivity and 

viscosity, and zero surface tension, which provides CO2 with excellent transport 

properties. SC-CO2 has been seen to perform well in the inactivation of vegetative cells, 

such as E. coli, S. cerevisiae (Ortuño et al., 2012a) or B. diminuta, at mild temperatures 

(35-50ºC) (Gomez-Gomez et al., 2020). The inactivation mechanisms of SC-CO2 on 

vegetative cells have been extensively studied. In short, SC-CO2 dissolves in the media 

causing acidification that modifies the membrane of the microbial cells, increasing the 

permeability; thus, SC-CO2 easily diffuses into the inner cell. As a result, the vital 

intracellular components of the cell are extracted, which leads to cell death (Ortuño et 

al., 2014). However, SC-CO2 inactivation mechanisms in spores are not yet fully 

elucidated. Spore structure is different compared to that of vegetative cells, with one of 

the main differences being the extreme dehydration of the spores (Feofilova et al., 

2012; Ishihara et al., 1999). 

In order to maintain product quality standards in SC-CO2 treatments, it is 

advisable to operate at the lowest possible temperature and pressure for the shortest 

time, while preserving product safety. However, the use of SC-CO2 at mild 

temperatures (<50ºC) is insufficient to inactivate fungal and bacterial spores and high 

pressures and temperatures and long times are required (Garcia-Gonzalez et al., 2009; 
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Kamihira et al., 1987; Rao et al., 2015). Consequently, the damage of heat sensitive 

components in the product and the increase in the process cost hinders the use of SC-

CO2 for spore inactivation.  

SC-CO2 treatment can be intensified by the application of high-power 

ultrasound (HPU). The effect of HPU on microbial inactivation is mainly linked to the 

violent collapse of microbubbles, known as cavitation (Bi et al., 2020). Locally intense 

high temperatures and pressures, with significant shearing and turbulence effects, are 

caused by cavitation (Cárcel et al., 2012), which can affect microbial integrity. In 

addition, both the contact between SC-CO2 and the surface of the cells and the SC-

CO2 penetration into the cell are enhanced (Cappelletti et al., 2014). The coupling of 

HPU to the SC-CO2 treatment has been demonstrated to shorten the inactivation time 

for vegetative cells located in fat-free media (Ferrentino & Spilimbergo, 2016; Ortuño 

et al., 2012b). However, there are no references to the combined SC-CO2 + HPU 

treatment for the inactivation of fungal and bacterial spores in lipid media. Only 

Michelino et al. (2018) dealt with the SC-CO2 + HPU inactivation of bacterial spores 

naturally present in a solid product (coriander) and revealed an enhanced inactivation 

when HPU was applied. It is well known that oils/fats can hinder SC-CO2 microbial 

inactivation; thus, due to the importance of oil-in-water emulsions in the food and 

pharmaceutical industry, it would be of great interest to find alternative non-thermal 

treatments able to achieve a noticeable spore reduction in this type of product. 

Therefore, the aim of this study was to assess the feasibility of intensifying the SC-CO2 

inactivation of fungal (Aspergillus niger) and bacterial (Clostridium butyricum) spores in 

oil-in-water emulsions by using high-power ultrasound. A. niger is a spore-forming 

mesophilic and aerobic filamentous fungi, common in contaminated food and 

pharmaceutical products (Shimoda et al., 2002) and widely distributed in the 

environment. It is also an opportunistic fungus causing otomycosis and implicated in 

nosocomial infections (Kar et al., 2019). C. butyricum is an anaerobic gram-positive 

bacterium, which forms spores as a mechanism of resistance to stress factors. It is a 

spoilage bacterium capable of growing and forming butyric acid in food and 

pharmaceutical products (Ghoddusi & Sherburn, 2010).  
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2. Materials and methods 

2.1. Preparation of the oil-in-water emulsion 

The treated samples were oil-in-water emulsions with 20 % soybean oil 

content. The emulsions were prepared in three stages: mixing with an Ultra-Turrax, 

sonication and homogenization. Firstly, the lipid phase, consisting of soybean oil and 

egg phospholipid, was mixed using a disperser device (IKA T25 Digital; tool S25N - 

25G, Staufen, Germany) at 14000 rpm for 2 min, 10200 rpm for 4 min and 10600 rpm 

for 4 min. Subsequently, the lipid phase was slowly added to the water phase 

(deionized water and glycerol), while being mixed again at 14000 rpm. Afterwards, 

samples were sonicated for 5 min (UP400S, Hielscher, Teltow, Germany) using the 

H22-type sonotrode. Finally, the product was homogenized in two stages (50 bar; 550 

bar) using a high-pressure homogenizer (PANDA Plus 2000, GEA Niro Soavi, Parma, 

Italy). 

 

2.2. Preparation of the Aspergillus niger and Clostridium butyricum spore 
suspension 

The lyophilized strains of Aspergillus niger CECT 2807 and Clostridium 

butyricum CECT 361T used in this study were obtained from the Spanish Type Culture 

Collection (CECT, Valencia, Spain).  

A. niger was cultured on Potato Dextrose Agar (PDA, Scharlab, Barcelona, 

Spain) at 25ºC for 7 days. Afterwards, the spores were rubbed from the surface of the 

agar with 10 mL of 0.1% (v/v) Tween 80 and collected. The suspension was kept in a 

sterile container at 4ºC until use. Finally, prior to each treatment, 5 mL of the A. niger 

spore suspension were inoculated in a 20% soybean emulsion (60 mL) until an A. niger 

spore concentration of 106- 107 CFU/mL. C. butyricum was sporulated following the 

methodology of Mafart et al. (2002) with modifications. A single colony of C. butyricum 

was anaerobically pre-cultivated in Reinforced Clostridial Medium (RCM, Scharlab, 

Barcelona, Spain) at 37ºC until the stationary phase was reached (36h). Anaerobic 

conditions were achieved with incubation containers with a CO2 gas generating system 
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(Oxoid, Thermo Fisher Scientific, Waltham, Massachusetts, USA). An anaerobic 

indicator (Oxoid, Thermo Fisher Scientific, Waltham, Massachusetts, USA) was used 

to monitor the anaerobic conditions. 100 µL of the C. butyricum culture were poured 

into Reinforced Clostridial Agar (RCA, Scharlab, Barcelona, Spain) enriched with 

MnSO4 (40 mg/L) and CaCl2 (100 mg/L) to enhance the sporulation. The plates were 

anaerobically incubated at 37ºC for 5-6 days, during which time spores were formed 

(determined with a Thoma counting chamber and an optical microscope). Afterwards, 

spores were collected by scraping the surface of the agar, suspended in 2 mL of sterile 

distilled water, and washed three times by centrifugation (8000x g for 15 min) 

(Medifriger BL-S, JP Selecta, Barcelona, Spain). The pellet was resuspended in 2 mL 

of ethanol (50% v/v) and kept at 4°C for 12 h to eliminate vegetative non-sporulated 

bacteria. Lastly, the suspension was washed again three times by centrifugation, 

distributed into sterile Eppendorf microtubes and kept at 4°C until use. Before being 

treated, the microtubes were heat-shocked at 80°C for 15 min to eliminate vegetative 

cells and cooled again at 4ºC. Prior to each treatment, the spore suspension was added 

(2 mL) to the autoclaved emulsion (60 mL) to reach a cell concentration of 104-105 

CFU/mL.  

 

2.3. Thermal treatment 

The thermal treatments for A. niger inoculated in the emulsion were performed 

at 50, 60 and 70ºC. The thermal treatments for C. butyricum inoculated in the emulsion 

were performed at 70 and 85ºC in a temperature-controlled water bath (1812, Bunsen, 

Madrid, Spain). 1.5 mL of sample (emulsion with a concentration of 106 -107 CFU/mL 

of A. niger or 104-105 CFU/mL of C. butyricum) were poured into borosilicate glass 

tubes, 8 mm in diameter and 70 mm in length (Fiolax, DWK, Wertheim/Main, Germany). 

The tubes were taken out of the bath after different times, ranging from 5 s to 30 min, 

depending on the microorganism and the temperature of the treatment. The samples 

were placed in ice until analysed. The experiments were carried out in triplicate.  
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2.4. Ultrasonic-assisted supercritical fluid treatments  

The supercritical carbon dioxide (SC-CO2) treatments for the purposes of 

inactivating A. niger and C. butyricum were carried out using batch lab-scale equipment 

already described by Gomez-Gomez et al. (2020) (Fig. 1). Briefly, the system consisted 

of a CO2 tank (1, Fig. 1), a chiller reservoir (2, Fig. 1); a diaphragm metering pump 

(LDB, LEWA, Tokyo, Japan) (3, Fig. 1), a thermostatic water bath (4, Fig. 1) and an 

inactivation vessel (5, Fig. 1). Additionally, a high-power ultrasound (HPU) transducer 

(Benedito et al., 2011) was attached to the vessel lid to perform the combined SC-CO2 

+ HPU treatments. The ultrasound system mainly consisted of a high power (>1W/cm2) 

piezoelectric transducer (6, Fig. 1), a sonotrode and a power generation unit (10, Fig. 

1). The power was 50 ± 5 W (I= 250 ± 10 mA; U= 220 ± 5V), and the frequency was 30 

± 2 kHz (WT210, Yokogawa Electric Corporation, Tokyo, Japan). 

Treatments were extended up to 50 min and samples of 2 mL were taken at 

different time intervals, ranging from 5 s to 20 min. Both treatment and sampling time 

were chosen depending on the microorganisms and process conditions. The treated 

samples were immediately cooled in ice before analysis.  

For A. niger, SC-CO2 and SC-CO2 + HPU inactivation treatments were carried 

out combining two different pressures (100 and 350 bar) and temperatures (50 and 

60ºC). The lowest pressure (100 bar) was chosen because it is close to the critical 

pressure (73.8 bar) and the highest (350 bar) as it is a common pressure used in SC-

CO2 inactivation studies (Soares et al., 2019). 50ºC was selected as a mild temperature 

that has little thermal effect on the inactivation of the studied microorganism (Ballestra 

& Cuq, 1998) and 60ºC was selected to study the effect a higher temperature has on 

the inactivation. Moreover, treatments at 70ºC were tested at different pressure levels 

(100, 350 and 550 bar) to explore more extreme conditions, which could provide larger 

inactivation levels. In the case of C. butyricum, and due to the greater thermal 

resistance of bacterial spores than fungal ones (Soares et al., 2019), more extreme 

conditions of temperature and pressure were tested. Thus, SC-CO2 and SC-CO2 + 

HPU inactivation treatments were performed at 60, 70, 80 and 85ºC and 100, 350 and 

550 bar. All the experiments were performed in triplicate. 
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Fig. 1. Supercritical CO2 treatment system. (1-CO2 tank, 2-Reservoir, 3-Pump, 4-Bath, 5-

Treatment vessel, 6-Transducer, 7-Insulation joint, 8-Ceramics, 9-Sample extraction, 10-Power 

Generation Unit). 

 

2.5. Microbiological analyses 

A. niger and C. butyricum spores were quantified by means of standard plate 

count techniques. Depending on the expected count, appropriate serial dilutions were 

prepared with sterile distilled water. For A. niger, 100 μL of the dilution were spread on 

the surface of PDA (Scharlab, Barcelona, Spain) in triplicate and incubated at 25ºC for 

72 h. The initial A. niger population in the sample was also determined following the 

same procedure. For C. butyricum, 500 μL of the dilution were poured on to empty 

plates in triplicate and melted RCA (Scharlab, Barcelona, Spain) was added to each 

plate. Plates were anaerobically incubated at 37ºC for 15 h. The initial C. butyricum 

spore population in the sample was also determined following the same procedure.  

 

2.6. Modelling 

Microbial inactivation kinetics are usually considered as first-order kinetics 

(Corradini & Peleg, 2012; Mafart et al., 2002). However, a survival curve is the 
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cumulative temporal distribution of mortality events and can exhibit a wide variety of 

shapes. Thus, several models have been proposed to describe this behaviour, the 

Weibull model being a robust one (Peleg, 2006). Therefore, Weibull distribution was 

used in this study to describe the microbial inactivation kinetics of A. niger and 

C. butyricum, computing the log-cycle reduction in the number of viable cells (N), using 

Eq. 1. 

 

log10 �
N
N0
� = −b ⋅ tn Eq. (1) 

 

where N0 (CFU/mL) represents the initial number of spores in the sample, N is 

the number of spores in the sample (CFU/mL) at treatment time t, n is the shape factor 

and b is the rate parameter (min-n). The kinetic constants (b and n) of the model were 

calculated by minimizing the sum of squared differences between experimental and 

predicted inactivation level using Solver Microsoft ExcelTM tool. According to this model, 

an upward concavity is manifested for n < 1 (tailing) and a downward concavity for n > 

1 (shoulder). The traditional ‘first-order kinetics’ is just a special case of the model, with 

n = 1 (Jiao et al., 2019).  

The root mean squared error (RMSE, Eq. 2) and the coefficient of 

determination (R2, Eq. 3) were computed to evaluate the estimation accuracy and the 

model’s goodness of fit. 

 

RMSE= �   ∑ (𝑦𝑦𝑘𝑘−𝑦𝑦𝑘𝑘∗)2𝑧𝑧
𝑘𝑘=1   

𝑧𝑧
  Eq. (2) 

 

R2= 1- 
𝑆𝑆𝑦𝑦𝑦𝑦2

𝑆𝑆𝑦𝑦2
  Eq. (3) 

 



Results and Discussion- Chapter 1 

141 

where 𝑦𝑦 and 𝑦𝑦* are the experimental and the estimated data, respectively; z is 

the number of experimental values and 𝑆𝑆𝑦𝑦𝑦𝑦 and 𝑆𝑆𝑦𝑦 are the standard deviations of the 

estimation and the sample deviation, respectively.  

 

Several authors (Deen & Diez-Gonzalez, 2019; Jiao et al., 2019) have 

compared the parameters (b and n) of the Weibull model as independent values, but 

they are mathematically related since the units of b rate parameter are min-n. Thus, 

when comparing two different inactivation treatments, a higher value of b in one of them 

does not directly involve a faster inactivation, since a lower n can diminish the microbial 

inactivation rate in favor of the other treatment. In this regard, some authors have fixed 

the shape parameter (n) at an average value and estimated only the rate parameter b 

(Baril et al., 2011; Couvert et al., 2005). However, this estimation is only acceptable 

when there is no influence of the studied conditions (pressure and temperature of the 

treatment, type of microorganism, treated media) on the shape of the inactivation 

kinetics. Therefore, in order to use the model to compare the effect of the different 

variables (temperature, pressure, use of HPU and microorganism) on microbial 

inactivation, the time required to achieve complete inactivation (tx) was calculated from 

Eq.1 and the b and n values of Weibull model obtained for each condition (Tables 1 

and 2), where x is the average number of log-cycles of total inactivation for every 

microorganism (6.8 log-cycles for A. niger and 4.8 log-cycles for C. butyricum). 

 

2.7. Statistical analysis 

Statgraphics Centurion XVI was used to perform a general linear model (GLM) 

in order to evaluate the effect of the treatment conditions (pressure, temperature and 

use of HPU) and the type of microorganism on the inactivation. Fisher's least significant 

difference (LSD) procedure was used to discriminate among the means with a 95.0 % 

confidence level (p<0.05).  
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3. Results and discussion 

3.1. SC-CO2 inactivation of A. niger spores in oil-in-water emulsions 

Fig. 2A shows the inactivation of A. niger spores in the 20% oil-in-water 

emulsion treated with SC-CO2 at different pressures (100 and 350 bar) and 

temperatures (50 and 60ºC), compared to the conventional thermal treatments at 50 

and 60ºC. The experimental variability found in the inactivation treatments may be 

ascribed to possible pressure and temperature fluctuations and a variability in microbial 

growth behaviour. The fitting of the Weibull model to the SC-CO2 kinetics was 

satisfactory, providing R2 of over 0.97 and RMSE of under 0.199 (Table 1). All n Weibull 

parameter values were lower than 1, which reveals that the shape of the inactivation 

kinetics was concave-upward, except for the treatment at 100 bar and 50ºC, with an n 

value of 1.04, which was close to the linear behaviour.   

 

SC-CO2 vs thermal treatments 

The thermal inactivation of A. niger after 50 min and at 50ºC was negligible (a 

reduction of less than 0.2 log-cycles), while at 60ºC, 6.8 log-cycles were achieved after 

20 min. In SC-CO2 treatments at 50ºC, an average of 5.1 log-cycles for 100 and 350 

bar were inactivated after 40 min (Fig. 2A). However, in the treatments at 60ºC, only 

the use of 350 bar allowed for a slightly (p<0.05) faster inactivation than the thermal 

treatment (Fig.2A). Ballestra & Cuq (1998) demonstrated a greater lethal effect in the 

case of A. niger spores in Ringer solution with saccharose treated with CO2 at 50 bar 

and 50ºC (D-value of 46 min), compared to the thermal treatment (D-values of more 

than 300 min). On the contrary, when using 60ºC, these authors found no noticeable 

differences between the thermal and the pressurized CO2 treatments, which coincides 

with the experimental results depicted in Fig. 2A. Ballestra & Cuq (1998) manifested 

that at high temperatures, the antimicrobial effect of pressurized CO2 could be masked 

by the lethal effect of heat.  
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Effects of pressure and temperature 

The temperature had a significant (p<0.05) effect on inactivation in both 

thermal and SC-CO2 treatments. The time required to reach complete inactivation (on 

average, 6.8 log-cycles of reduction; t6.8) was computed using the Weibull model in 

order to compare the performances of the different treatments (Table 1). For the 

thermal treatments, values of 7588 min and 25.4 min at 50 and 60ºC, respectively, were 

computed. For the SC-CO2 treatments, the average t6.8 values were 58.3 min at 50ºC 

and 24.6 min at 60ºC. Therefore, A. niger inactivation kinetics in oil-in-water emulsions 

was highly temperature dependent. The increase in temperature is known to decrease 

the CO2 viscosity and, therefore, to facilitate its diffusion in the media. The temperature 

also affects the integrity of the cell wall of the fungal spores, facilitating the penetration 

of CO2  and the hydration of the cell structure (Noman et al., 2018).  

The pressure also had a significant (p<0.05) effect, although milder than the 

temperature. On average, a rise in pressure from 100 to 350 bar for a treatment of 20 

min led to an increase of between 4.2 and 5.1 log-cycles in the inactivation level of 

A. niger (Fig. 2A). The pressure shortened the t6.8 computed by the Weibull model 

(Table 1), lasting on average 56.0 min at 100 bar and 27.9 min at 350 bar. The rise in 

pressure is known to increase the solubility of CO2 in the suspension; therefore, both 

the acidification of the external medium and the contact between CO2 and the microbial 

cells are improved, which facilitates the CO2 penetration into the cells (Ceni et al., 2016; 

Liao et al., 2007).  

Noman et al. (2018) and Shimoda et al. (2002) also found that the inactivation 

of A. niger spores was more noticeable at high temperatures and pressures in distilled 

water and a saline solution, respectively. However, different results were obtained by 

Calvo et al. (2007) for A. niger inoculated in milled dried cocoa since the increase in 

the temperature (from 40 to 80ºC) or the pressure (from 130 to 300 bar) did not improve 

the inactivation. This distinction was probably due to the sizeable differences in the 

nature of the treated medium, since Calvo et al. (2007) conducted the experiments in 

a solid medium. The composition and nature of the treated medium may modulate its 

protective effect on the microorganism. In fact, marked protective effects to inactivation 
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treatments were observed in complex physicochemical samples, compared to simpler 

media (Garcia-Gonzalez et al., 2007). As an example, Noman et al. (2018) observed 

A. niger spores to be completely inactivated (6.0 log-cycles of reduction) in distilled 

water at 75ºC, 300 bar and after 90 min; in contrast, the maximum inactivation level in 

a seawater medium and normal saline was 5.5 log-cycles. No references have been 

found to the inactivation of A. niger in lipid media. However, several authors found there 

was a protective effect exerted by the oil content in the treating media against 

subcritical CO2 or SC-CO2 treatments for other microorganisms, such as vegetative 

bacteria (Garcia-Gonzalez et al., 2009; Gomez-Gomez et al., 2020).  

 

3.2. SC-CO2 + HPU inactivation of A. niger spores in oil-in-water emulsions 

Fig. 2B shows the SC-CO2 + HPU inactivation kinetics of A. niger spores in the 

oil-in-water emulsion at 50 and 60ºC and 100 and 350 bar. The Weibull model 

satisfactorily described the inactivation kinetics since R2 was higher than 0.98 and 

RMSE was lower than 0.301 (Table 1). In the case of the shape parameter (n), all the 

values were lower than 1 (Table 1), indicating the kinetics were concave-upward 

shaped. Since the process times required to achieve emulsion sterilization were longer 

than expected, higher temperatures and pressure levels (70ºC and up to 550 bar) were 

assessed for the combined SC-CO2+ HPU treatment (Fig. 3). 

 

Effect of temperature and pressure 

As in the SC-CO2 inactivation treatments (Fig. 2A), both temperature and 

pressure significantly (p<0.05) affected the inactivation level of SC-CO2 + HPU 

treatments at 50 and 60ºC (Fig. 2B), the temperature effect being greater than that of 

the pressure. An increase in temperature from 50 to 60ºC implied the shortening of the 

time needed for total inactivation from 45 to 17.5 min, whereas an increase in pressure 

from 100 to 350 bar only led to a reduction from 35 to 27.5 min (Fig. 2B). When 

ultrasound was applied, the effect of the pressure and temperature on inactivation 

kinetics was milder compared to that in the SC-CO2 treatments. Gomez-Gomez et al. 
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(2020) reported similar results for the inactivation of E. coli and B. diminuta in oil-in-

water emulsions. However, several studies using SC-CO2 + HPU to inactivate 

microorganisms found that an increase in both the pressure and temperature of the 

process did not increase the inactivation rate, probably because the marked influence 

of HPU masked the effects (Ortuño et al., 2012b, 2013). In this sense, although Ortuño 

et al. (2014) found that neither pressure (100-350 bar at 36ºC) nor temperature (31-

41ºC at 225 bar) had any effect on the inactivation level of E. coli in apple juice, the 

effects were significant (p<0.05) for S. cerevisiae. Therefore, the effect of pressure and 

temperature on SC-CO2 + HPU inactivation depends not only on the treating media but 

also on the microorganism considered. The effect of the temperature still remained 

strong at 70ºC, since the total inactivation time was shortened from less than 3 min 

(Fig. 3) to the 10-25 min required at 60ºC (Fig. 2B). As for the pressure, A. niger spores 

were completely inactivated (6.8 log-cycles) after a longer time (3 min) at 70ºC and 100 

bar, compared to higher pressures (350 bar and 550 bar), where similar results were 

found and the complete inactivation was achieved in only 5 s (Fig. 3). Therefore, 5 s 

treatments at 350 bar could be implemented in the industry for emulsion pasteurization, 

which could improve the quality of the treated products, properly preserving heat 

sensitive compounds.  

 

Effect of HPU 

Unlike previous studies into inactivation, where the implementation of HPU in 

the SC-CO2 treatment drastically shortened the processing times (Gomez-Gomez et 

al., 2020; Ortuño et al., 2012b, 2013), in the present study, HPU did not significantly 

(p>0.05) affect the SC-CO2 inactivation kinetics of A. niger (Fig. 2B). For example, at 

350 bar, 50ºC and after 45 min, similar reductions were achieved without (Fig. 2A) or 

with HPU (Fig. 2B) (6.2 and 6.8 log-cycles, respectively). Moreover, no microbial count 

was detected after 10 min at 350 bar and 60ºC, regardless of the use of HPU (Fig. 

2AB). As regards the thermal treatment at 70ºC (Fig. 3), a slower rate of inactivation 

was shown at the beginning of the treatment (until 30 s of process), compared to the 

SC-CO2 + HPU treatments. However, in the following 30 s of the thermal treatment, the 
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inactivation rate sped up to reach a similar inactivation level as in the SC-CO2 + HPU 

treatment at 100 bar and, no plate count was detected after 3 min for either treatment. 

Therefore, at high temperatures (60 and 70ºC), similar inactivation levels are reached 

in the thermal treatment and the SC-CO2 + HPU treatment at 100 bar.  

No references were found to the application of HPU to the SC-CO2 treatment 

of inoculated filamentous fungi. However, the results obtained would show that the 

inactivation of the A. niger fungal spores was limited by the CO2 penetration through 

the A. niger spore structure. In addition, the expected effect of the ultrasound cavitation 

on the spore integrity was not found. In fact, the A. niger spore could be more resistant 

to cavitation than other microorganisms due to the differences in the composition of its 

multilayer cell wall. A. niger conidium cell is composed of a multi layered 

polysaccharide-rich wall, covered by a proteinaceous, highly hydrophobic layer of 

rodlets (hydrophobins), which conceals an underlying, dense, pigmented layer, 

composed of melanin (Tischler & Hohl, 2019). Melanin is related to an adaptation of 

fungi whereby they are able to resist environmental stress since this pigment is known 

to increase cell wall rigidity, which could improve its resistance to ultrasonic mechanical 

stress.  
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Fig. 2. Inactivation kinetics of A. niger in oil-in-water emulsion treated using thermal (T.T.) and 

SC-CO2 treatments (A) and through SC-CO2 + HPU treatments (B) at different pressures (100 

and 350 bar) and temperatures (50 and 60ºC). Experimental data (discrete points) and Weibull 

model (continuous and dashed lines). 
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Fig. 3. Inactivation kinetics of A. niger in oil-in-water emulsion at 70ºC treated with SC-CO2 + 

HPU at different pressures (100, 350 and 550 bar) and by thermal treatment (T.T.). Experimental 

data (discrete points) and Weibull model (continuous and dashed lines). 
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Table 1. Parameters (b and n), total time for complete inactivation (t6.8; 6.8 log-cycle reduction) 

and goodness of fit by using the Weibull model for thermal, SC-CO2 and SC-CO2 + HPU 

inactivation kinetics of A. niger in oil-in-water emulsions under different pressure and temperature 

conditions. Values in brackets indicate standard errors.  

 
* Not enough experimental data for model fitting 

 

3.3. SC-CO2 inactivation of C. butyricum spores in oil-in-water emulsions 

Fig. 4 shows the inactivation kinetics of C. butyricum in a 20 % oil-in-water 

emulsion for the SC-CO2 treatment, at 70ºC (A) and 85ºC (B) and 550 bar, compared 

to the conventional thermal treatment at 70 and 85ºC. The fitting of the Weibull model 

to the SC-CO2 inactivation kinetics was highly satisfactory at 70ºC, providing R2 higher 

than 0.99 and RMSE lower than 0.097 (Table 2), while not enough experimental data 

was obtained for the fitting at 85ºC.  

The fact that C. butyricum spores displayed greater heat resistance than 

A. niger spores was remarkable. In the thermal treatments at 70ºC, no A. niger count 

was detected after 3 min, while no inactivation was found for C. butyricum under the 

same conditions. As for the SC-CO2 treatments, C. butyricum spores were also 

Treatment Temperature (ºC) Pressure (bar) b (min–n) n t6.8 (min) R2 RMSE 

Thermal 50 - 0.01 (0.002) 0.73 (0.06) 7588.4 0.99 0.006 

Thermal 60 - 5.60 (0.18) 0.06 (0.01) 25.4 0.99 0.059 

Thermal 70 - 3.77 (0.88) 0.52 (0.26) 3.1 0.80 1.079 

SC-CO2 50 100 0.08 (0.01 1.04 (0.04) 71.6 0.99 0.064 

SC-CO2 50 350 0.29 (0.10) 0.82 (0.10) 46.9 0.97 0.199 

SC-CO2 60 100 5.25 (0.03) 0.07 (0.002) 40.3 0.99 0.006 

SC-CO2 60 350 5.24 (0.004) 0.12 (0.0004) 8.8 0.99 0.003 

SC-CO2 + HPU 50 100 0.82 (0.33) 0.52 (0.11) 58.4 0.98 0.246 

SC-CO2 + HPU 50 350 0.39 (0.19) 0.75 (0.13) 45.2 0.98 0.301 

SC-CO2 + HPU 60 100 4.77 (0.39) 0.11 (0.33) 25.1 0.99 0.089 

SC-CO2 + HPU 60 350 6.17 (0.23) 0.04 (0.02) 11.4 0.99 0.119 

SC-CO2 + HPU 70 100 5.48 (0.17) 0.18 (0.03) 3.3 0.98 0.313  

SC-CO2 + HPU 70 350 * * * * * 

SC-CO2 + HPU 70 550 * * * * * 
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significantly (p<0.05) more resistant than A. niger spores. A. niger was completely 

inactivated (6.8 log-cycles) after 10 min of SC-CO2 treatment at 60ºC and 350 bar, 

while only 0.5 log-cycles of C. butyricum spores were reduced for the same treatment 

time at a higher temperature (70ºC) and pressure (550 bar).  

 

SC-CO2 vs thermal treatments 

The SC-CO2 treatment at 550 bar significantly (p<0.05) enhanced the 

inactivation, compared to the thermal treatment alone (Fig. 4), since no inactivation was 

obtained in the thermal treatment at 70ºC while 3.2 log-cycles were reduced in the SC-

CO2 treatment at 70ºC after 50 min (Fig. 4A). In addition, only 0.7 log-cycles were 

achieved after 10 min of the thermal treatment at 85ºC, while no microbial count was 

detected in the SC-CO2 one (Fig. 4B). The results obtained clearly indicated that CO2 

has a major role in C. butyricum spore inactivation.  

Few studies have addressed the SC-CO2 inactivation of Bacillus spores, such 

as B. subtilis (Ballestra & Cuq, 1998; Rao et al., 2015; Spilimbergo et al., 2003) or 

B. pumilus (Zhang et al., 2006). However, for the first time, this study addresses the 

SC-CO2 inactivation of Clostridium spp. Only Haas et al. (1989) studied the inactivation 

of C. sporogenes spores using pressurized CO2 at low pressure (55 bar).  

 

Effect of temperature  

As for the temperature, the use of 70 or 85ºC in the SC-CO2 treatments 

significantly (p<0.05) affected to what extent C. butyricum was reduced. In Fig. 4, the 

SC-CO2 inactivation kinetics showed that after only 10 min, C. butyricum spores were 

completely inactivated at 85ºC (B), while at 70ºC (A), the inactivation achieved after 10 

min was only of 0.5 log-cycles. Haas et al. (1989) also found a clear temperature effect 

when treating C. sporogenes spores (7.8 log CFU/mL) suspended in thioglycolate broth 

with CO2 at 55 bar, since substantial levels of inactivation were achieved at 70ºC after 

120 min (from 0.8 to 7.8 log-cycles, depending on the pH of the media), while no 

inactivation was found at 60ºC. The effect of high temperatures has been widely 
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investigated for the SC-CO2 inactivation of vegetative bacterial cells, where SC-CO2 is 

able to penetrate into the cell membranes faster, accelerating the inactivation 

mechanisms (Spilimbergo & Bertucco, 2003). However, the complex and resistant 

structure of bacterial spores could not be compatible with those mechanisms (Ballestra 

& Cuq, 1998; Zhang et al., 2006) because the CO2 penetration and dissolution into the 

spore could be restrained, as its structure is dehydrated (Ishihara et al., 1999). There 

is no clear explanation for the inactivation mechanisms for bacterial spores. One of the 

hypotheses was that spores firstly have to be activated so as to germinate before being 

inactivated (Spilimbergo & Bertucco, 2003). As Spilimbergo et al. (2003) explained, the 

effect of the CO2 acidification along with a certain spore-dependent temperature could 

be sufficient to promote the activation, which leads to a destruction of the spore coat 

and the subsequent hydration of the spore structure, becoming more sensitive to CO2 

treatments (Rao et al., 2015). Another widely accepted mechanism is related with 

changes in the spore structure (Soares et al., 2019) induced by the effect of the 

temperature along with SC-CO2, causing damage to the spore envelope until the inner 

membrane is modified and its permeability increased. Thus, the core spore could be 

hydrated and the spores could lose their resistance (Rao et al., 2015).  
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Fig. 4. Inactivation kinetics of C. butyricum spores in oil-in-water emulsion treated with SC-CO2 

at 550 bar and 70ºC (A) and 85ºC (B) and using thermal treatments (T.T.). Experimental data 

(discrete points) and Weibull model (continuous line). 
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3.4. SC-CO2 + HPU inactivation of C. butyricum spores in oil-in-water emulsions 

Figs. 5 and 6 show the inactivation kinetics of C. butyricum in a 20% oil-in-

water emulsion for the combined SC-CO2 + HPU treatment at different temperatures 

and pressures. The fitting of the kinetics with the Weibull model was appropriate, 

providing R2 higher than 0.94 and RMSE lower than 0.385 in every case (Table 2).  

 

Effect of temperature and pressure 

As in the SC-CO2 treatments (Fig. 4), the higher the temperature, the higher 

the level of SC-CO2 + HPU inactivation (Fig. 5). As an example, at the lowest studied 

temperature (60ºC), a reduction of 1.4 log-cycles was achieved after 50 min, which 

should be considered as a weak inactivation level for a highly time-consuming 

treatment with HPU. On the contrary, at 85ºC, no microbial count was achieved after a 

treatment of only 3 min. The temperature effect was also computed by the t4.8, which 

shortened as the temperature rose (Table 2), being 94.8, 52.9 and 15.2 at 60, 70 and 

80 ºC, respectively. In the kinetics at 60ºC and 550 bar (Fig. 5), an initial lag-phase (of 

around 15 min) was found, a phase which was not observed at higher temperatures 

(70 and 80 ºC). This could mean that at temperatures higher than 60ºC, the heat along 

with the decrease in the pH of the media exerted by the SC-CO2 and the effect of HPU 

are able to damage the cortex of the spore immediately, making it accessible for CO2. 

The lag-phase in the SC-CO2 + HPU treatments at 550 bar (Fig.5) was also well 

computed by the n parameter of the Weibull model (Table 2) since it was only higher 

than 1 for the treatment at 60ºC (2.06). 

As regards pressure, whether 350 or 550 bar was used was found to have no 

significant (p>0.05) effects on the SC-CO2 + HPU inactivation at 60ºC (Fig. 6A). In 

addition to 350 bar and 550 bar, a lower pressure (100 bar) was investigated in the 

treatments at 85ºC (Fig. 6B). In this case, the pressure had a significant (p<0.05) effect 

on the inactivation. After 2 min, 2.0 log-cycles of reduction were achieved at 100 bar, 

3.2 log-cycles at 350 bar and 4.1 log-cycles at 550 bar. However, after 3 min, no 

microbial count was obtained either at 350 or 550 bar. Therefore, high pressures barely 

improved CO2 solubility in oil-in-water emulsions. Ballestra & Cuq (1998) postulated 
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that if the spore structure is already altered by the action of the SC-CO2 and 

temperature, an increase in pressure can lead to an increase in the amount of CO2 

passing through the membrane and to a decrease in the internal pH.  

 

Effect of HPU 

The application of HPU had a significant (p<0.05) effect on the inactivation at 

both studied temperatures (70 and 85ºC). In the treatments at 70ºC with HPU (Fig.5), 

no microbial count was obtained after 50 min, while only 3.2 log-cycles were reduced 

when HPU was not applied (Fig.4A). In addition, at 70ºC, the kinetics changed from a 

downward concavity shape (n>1) in the treatment without HPU (Fig.4A) to upward 

concavity behavior (n<1) in the treatment with HPU (Fig.5). At 85ºC, the time required 

for no microbial count was shortened from 10 (Fig. 4B) to only 3 min (Fig. 5) when 

ultrasound was applied.  

Numerous studies have already demonstrated the high effect of HPU on SC-

CO2 treatments in vegetative microorganisms (Michelino et al., 2018; Ortuño et al., 

2013; Paniagua-Martínez et al., 2018). As for bacterial spores, only Michelino et al. 

(2018) studied  the effect of the combined SC-CO2 + HPU (40W) treatment. An 

inactivation of 1.6 log-cycles of mesophilic bacterial spores from fresh coriander (with 

an initial load, naturally present in the product, of 3.6 log CFU/g) was achieved at 40 or 

50ºC and 100 bar only during the pressurization (20 min) and depressurization (40 

min), while no spore inactivation was obtained when HPU was not applied.  

As concerns the effect of HPU on the SC-CO2 treatments, although a 

remarkable difference was found between the microorganisms analyzed in the present 

study, it was only remarkable in the case of the inactivation of C. butyricum spores 

while no significant effect of HPU was found for the inactivation of A. niger spores. 

Therefore, it seems that the differences between the cell wall of fungal (A. niger) and 

bacterial spores (C. butyricum) contribute not only to the roles of temperature, pressure 

and time but also to the effect that HPU has on the inactivation process (Noman et al., 

2018). Although no previous studies have compared the resistance of bacterial and 

fungal spores to SC-CO2 + HPU treatments, the objective of Michelino et al. (2018) was 
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to compare bacterial spores with the yeast and molds naturally present in coriander; 

however, yeast and molds were already completely inactivated in the SC-CO2 

treatment without HPU. In addition, other authors compared the resistance of different 

bacterial spores to thermosonication treatments (70–75 °C, up to 60 min) and found a 

negligible effect on A. acidoterrestris and C. perfringens spores, while for B. cereus the 

effect was remarkable in beef slurry (Evelyn & Silva, 2018).  

 

 
Fig. 5. Inactivation kinetics of C. butyricum spores in oil-in-water emulsion treated with SC-CO2 

+ HPU at 550 bar and four different temperatures (60, 70, 80 and 85ºC). Experimental data 

(discrete points) and Weibull model (continuous and dashed lines). 
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Fig. 6. Inactivation kinetics of C. butyricum spores in oil-in-water emulsion treated with SC-CO2 

+ HPU at 350 and 550 bar at 60ºC (A) and at 100, 350 and 550 bar at 85ºC (B). Experimental 

data (discrete points) and Weibull model (continuous line).  
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Table 2. Parameters (b and n), total time for complete inactivation (t4.8; 4.8 log-cycles of 

reduction) and goodness of  fit by using Weibull model for thermal, SC-CO2  and SC-CO2 + HPU 

inactivation kinetics of C. butyricum spores in oil-in-water emulsions under different pressure and 

temperature conditions. Values in brackets indicate standard errors.  

 
 * Not enough experimental data for model fitting 
 

4. Conclusions 

The present study demonstrated that the industrial application of the low 

temperature pasteurization (< 60ºC) of fungal and bacterial spores in oil-in-water 

emulsions using SC-CO2 was not feasible due to the low inactivation rate. A. niger 

spores were more sensitive to the SC-CO2 treatments than C. butyricum spores and 

the application of HPU only intensified the inactivation of the C. butyricum spores, thus 

illustrating for the first time the different resistance of bacterial and fungal spores to the 

combined SC-CO2 + HPU. The performance of the SC-CO2 + HPU inactivation 

treatments on C. butyricum spores was affected by the temperature (from 60 to 85ºC), 

while pressure levels above 350 bar did not improve the inactivation. Additional studies 

should evaluate the effect of the combined SC-CO2 + HPU treatment on other spores 

and address its effect on the quality properties of the oil-in-water emulsions. 
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Treatment Temperature (ºC) P (bar) b (min-n) n t4.8 (min) R2 RMSE 

Thermal 70 - 1.33E-02 1.00E-02 - 0.50 0.004 

Thermal 85 - 0.39 (0.09) 0.27 (0.14) 9751.8 0.85 0.086 

SC-CO2 70 550 0.02 (0.01) 1.29 (0.12) 70.0 0.99 0.097 

SC-CO2 85 550 * * * * * 

SC-CO2 + HPU 60 550 4.07E-04 (0.001) 2.06 (0.53) 94.8 0.94 0.144 

SC-CO2 + HPU 70 550 0.50 (0.17) 0.57 (0.10) 52.9 0.95 0.342 

SC-CO2 + HPU 80 550 1.66 (0.60) 0.39 (0.14) 15.2 0.95 0.385 

SC-CO2 + HPU 85 550 * * * * * 

SC-CO2 + HPU 60 350 0.14 (0.02) 0.48 (0.04) 1578.2 0.98 0.036 

SC-CO2 + HPU 85 100 0.98 (0.20) 1.17 (0.16) 3.9 0.99 0.171 

SC-CO2 + HPU 85 350 * * * * * 
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Ultrasonic-assisted supercritical CO2 inactivation of bacterial spores and 
effect on the physicochemical properties of oil-in-water emulsions 

 

Abstract 

A combined supercritical carbon dioxide and high power ultrasound treatment 

(SC-CO2 + HPU) to inactivate spores while minimizing the physicochemical changes in 

emulsions was investigated. The inactivation kinetics were obtained for 

Bacillus subtilis, Bacillus pumilus and Geobacillus stearothermophilus spores and the 

effect of the treatment conditions on the quality of the emulsions was explored using 

response surface methodology. The treatment for 20 min at 95ºC and 350 bar was 

effective at inactivating B. subtilis and B. pumilus. Treated emulsions showed, in 

general, minimal changes in density and good stability, although the pH decreased and 

the droplet size increased. The treatment at 600 bar, 95ºC and 12.5 min permitted 

satisfactory B. subtilis and B. pumilus inactivation with minimal physicochemical 

changes in the emulsions. Therefore, the use of SC-CO2 + HPU could be a viable 

alternative for the preservation of emulsions using temperatures lower than those of 

thermal treatments. 

 

 

Keywords: supercritical CO2; high power ultrasound; inactivation; spores; emulsion; 

quality.  
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1. Introduction 

Microbial safety is essential in the food and pharmaceutical industries. 

Specifically, spore contamination is a major industrial risk since spores are the most 

resistant form of bacteria due to the fact that their structure is different to that of 

vegetative cells (Dong et al., 2016), more complex and reinforced . Some gram-positive 

bacteria, such as those from the Bacillus, Geobacillus (aerobic) and Clostridium 

(anaerobic) genus, are able to form spores as a mechanism of resistance to stress 

factors, being able to survive under extreme chemical and physical environments 

(Spilimbergo et al., 2003; Watanabe et al., 2003). Therefore, treatments in intense 

process conditions are required to reach satisfactory levels of bacterial spore 

inactivation. In this regard, some species of bacterial spores have been used as 

biological indicators for sterilization procedures: Bacillus subtilis for dry heat and 

ethylene oxide sterilization, Bacillus pumilus for irradiation and Geobacillus 

stearothermophilus for steam sterilization and formaldehyde sterilization (Spicher, 

1988; Y. Zhang et al., 2018).  

In addition to the microbial safety, consumers also demand high-quality 

processed products. In this sense, non-thermal preservation technologies are 

emerging, which are defined as processes where the application of heat is not the main 

cause of microbial inactivation. Therefore, the advantage of these technologies over 

thermal technologies is the milder impact on the physicochemical and nutritional 

properties of the treated product. Among others, some examples of  non-thermal 

technologies are high hydrostatic pressure (Bermúdez-Aguirre & Barbosa-Cánovas, 

2011), irradiation (Lewis et al., 2002), electric fields (Michalac et al., 2003), high power 

ultrasound (HPU) (Evelyn & Silva, 2015) and supercritical carbon dioxide (SC-CO2) 

(Ribeiro et al., 2020). SC-CO2 has shown itself to be effective at inactivating vegetative 

cells (Gomez-Gomez et al., 2020; Ortuño et al., 2012). However, the complex, highly 

dehydrated and robust structure of spores makes them highly resistant to SC-CO2 

treatments and, usually, the increase of the permeability of the spore coat is required 

to allow SC-CO2 to exert its inactivating effect. In this sense, the implementation of high 

temperatures, normally over 60ºC, has shown to enhance the permeability to SC-CO2 
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in bacterial spores (Rao et al., 2015). Nonetheless, long processing times are still 

necessary. In this regard, 40 min and 30 min were needed to completely inactivate 

Alicyclobacillus acidoterrestris spores at 65ºC and 100 bar and at 70°C and 80 bar, 

respectively (Bae et al., 2009); 60 min to inactivate less than 1 log-cycle of 

Bacillus subtilis spores at 66-77ºC and 200 bar (Rao et al., 2015) and 60 min for a 6 

log-cycle reduction of Bacillus subtilis spores at 55°C and 300 bar (Ishikawa et al., 

1997). In this regard, the combination of SC-CO2 and medium-high temperatures with 

other non-thermal technology could be essential to enhance the SC-CO2 effectiveness 

for spore inactivation. 

High intensity (> 1 W/cm2) and low frequency (20-100 kHz) ultrasound, also 

called high power ultrasound (HPU), is made up of acoustic waves whose vibration is 

transmitted through the medium exerting an effect on the product or process (Cárcel et 

al., 2012). HPU has been used for microbial inactivation purposes, although its 

application alone has been shown to be insufficient for the inactivation of bacterial 

spores (Fan et al., 2019). It has been demonstrated that the simultaneous application 

of HPU to the SC-CO2 treatment enhances mass and heat transfer processes, 

facilitating the SC-CO2 inactivation mechanisms. In addition, the cavitation produced 

by HPU could cause the degradation of the external layers of the spore structure 

(Mañas & Pagán, 2005), enhancing the penetration of SC-CO2 into the cells. Only one 

reference to the combined SC-CO2 + HPU treatment for the inactivation of naturally 

present mesophilic bacterial spores during coriander drying was found (Michelino et 

al., 2018). Moreover, most of the studies into SC-CO2 + HPU inactivation mainly focus 

on microbial inactivation, commonly postponing the analysis of the quality of the treated 

product. A few studies can be found analysing the quality of the SC-CO2 + HPU treated 

products. In this sense, Paniagua-Martinez et al. (2018a & 2018b) treated fruit juices 

and found small differences in the physicochemical properties and even discovered an 

enhancement in the quality of some attributes, such as in the quantity of phenolic 

compounds, the antioxidant capacity or the stability of the juices, compared to the 

thermally treated juices. Working on chicken, Morbiato et al. (2019) were able to 

simultaneously drying-inactivate (the naturally present and inoculated S. enterica) the 

raw meat, while maintaining its nutritional properties. Lastly, Ferrentino & Spilimbergo 
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(2015) found no differences in the pH and total acidity of carrot when compared to the 

untreated and, although changes in texture were found, those were also observed in 

the thermally treated carrot. Instead, a noticeable off taste was perceived in the SC-

CO2 + HPU treated carrot. 

Interest in microbial inactivation in commercial emulsions has increased due to 

the multiple industrial applications of emulsions (food, pharmaceutical, cosmetic, etc.). 

An emulsion is composed of two immiscible liquids, one dispersed in the other. 

Consequently, emulsions, except microemulsions (Lu & Gao, 2010), are 

thermodynamically unstable systems and can be destabilized by means of a wide 

variety of mechanisms, such as gravitational separation, droplet aggregation, chemical 

and microbiological processes or applied mechanical forces (McClements, 2015). 

Gomez-Gomez et al. (2020) investigated the SC-CO2 + HPU inactivation of vegetative 

bacteria in oil-in-water emulsions. Nevertheless, no studies were found into the 

changes in the physicochemical properties after SC-CO2 + HPU treatments in 

emulsions. Therefore, the objective of the present study was to assess the feasibility of 

using the SC-CO2 + HPU treatment at high temperatures in the inactivation of different 

bacterial spores in oil-in-water emulsions and to analyze the effect of the SC-CO2 + 

HPU treatment on its physicochemical properties.  

 

2. Materials and methods 

2.1. Preparation of the lipid emulsion 

The treatment media were oil-in-water emulsions with a soybean oil content of 

20 % and egg phospholipid as the emulsifying agent. The emulsions were prepared in 

three stages: mixture  with a disperser device, sonication and homogenization, 

following the procedure described by Gomez-Gomez et al. (2020) 

 

2.2. Preparation of the bacterial spore suspensions 

B. subtilis (CECT 356), B. pumilus (CECT 29T) and G. stearothermophilus 

(CECT 43 T) were obtained from the Spanish Type Culture Collection (CECT), Spain. 
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Bacterial spores were obtained following the methodology of Mafart et al. (2002), with 

modifications. A single colony of the bacteria was cultivated on Nutrient Broth 

(Scharlab, Barcelona, Spain) for B. subtilis and B. puminus at 30ºC and in Tryptic Soy 

Broth (Scharlab, Barcelona, Spain) for G. stearothermophilus at 50ºC until the 

stationary phase was reached (around 24 h  (Han et al., 2017; Hetzer et al., 2006; Lee 

et al., 2011; Mondal et al., 2015) ). 100 µL of the suspension were poured on agar 

(Plate Count Agar for B. subtilis and B. pumilus and Tryptic Soy Agar for 

G. stearothermophilus) enriched with MnSO4 (40 mg/L) and CaCl2 (100 mg/L) to 

enhance the sporulation. The plates were incubated at the required temperature for 

each bacteria for 5-6 days, a time during which spores were formed (determined with 

a Thoma counting chamber and an optical microscope). Afterwards, the spores were 

collected by scraping the surface of the agar, suspended in deionized water, and 

washed three times by centrifugation (Medifriger BL-S, JP Selecta, Barcelona, Spain) 

at 8000x g for 15 min. The pellet was suspended in 2 mL ethanol (50% v/v) and kept 

at 4°C for 12 h to eliminate vegetative non-sporulated bacteria. Afterwards, the 

suspension was washed again three times by centrifugation. Lastly, the final 

suspension was distributed in sterile microtubes and kept at 4°C until use. Prior to each 

inactivation treatment, the microtubes were heat-shocked at 80°C for 15 min to 

eliminate the remaining vegetative cells (Ávila et al., 2014; Spilimbergo et al., 2003) 

and cooled at 4ºC. After that, 2 mL of the spore suspension were added to the 

autoclaved emulsion (60 mL) to reach a cell concentration of 106-108 CFU /mL for 

B. subtilis, 107-108 CFU /mL for B. pumilus and 105-106 CFU /mL for 

G. stearothermophilus.  

 

2.3. Thermal treatment 

The thermal treatments were performed at 85 and 95ºC for B. subtilis and at 

95ºC for B. pumilus and G. stearothermophilus in a temperature-controlled water bath 

(1812, Bunsen, Madrid, Spain). A 1.5 mL sample (emulsion with bacterial spore 

suspension) was poured into borosilicate glass tubes of 8 mm in diameter and 70 mm 

in length (Fiolax, Germany). The tubes were taken from the bath after 5, 10, 15 and 20 
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min for B. subtilis and after 10 and 20 min for B. pumilus and G. stearothermophilus. 

The samples were cooled in ice for immediate analysis. The experiments were carried 

out in triplicate.  

 

2.4. Ultrasonic assisted supercritical CO2 processing  

Batch lab-scale equipment, designed and built by the research group to 

operate with supercritical fluids, was used for the SC-CO2 and SC-CO2 + HPU 

treatments. The main components of the system are a tank of carbon dioxide, a chiller 

reservoir, a diaphragm metering pump (LDB, LEWA, Japan), an inactivation vessel 

(600 mL of internal volume) and a thermostatic water bath. For the inactivation 

treatments, 62 mL of sample (emulsion with bacterial spore suspension) were 

introduced in the vessel. Additionally, a HPU transducer was attached to the lid of the 

vessel to carry out the combined SC-CO2 + HPU treatments (Benedito et al., 2011). 

The ultrasound system consisted essentially of a high power (>1W/cm2) piezoelectric 

transducer, a sonotrode and a power generation unit. The power was 35 W ± 5 W (I= 

250 ± 10 mA; U= 220 ± 5V) and the frequency was 30 ± 2 kHz, both measured using a 

digital power meter (WT210, Yokogawa Electric Corporation, Tokyo, Japan). HPU was 

connected when the desired pressure was reached in the vessel. The equipment and 

procedure described in detail can be found in Gomez-Gomez et al. (2020).  

For B. subtilis, SC-CO2 and SC-CO2 + HPU inactivation treatments were 

carried out at 85 and 95ºC and 350 bar. For B. pumilus and G. stearothermophilus, SC-

CO2 + HPU inactivation treatments were only performed at the highest temperature 

(95ºC). 85 and 95ºC were selected because bacterial spores are known to be extremely 

resistant to heat and unaffected by SC-CO2 at mild temperatures (T<60ºC) (Rao et al., 

2015). In turn, the inactivation of bacterial spores is known to be drastically improved 

at temperatures above 70ºC (Perrut, 2012). The pressure (350 bar) was chosen for 

being commonly used in SC-CO2 inactivation studies (Soares et al., 2019). In addition, 

to test a condition which could provide a greater level of G. stearothermophilus spore 

reduction, a higher pressure (550 bar) was tested for the SC-CO2 + HPU treatments. 

The time of the experiments was limited to 20 min because longer SC-CO2 + HPU 
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treatments are not desirable for industrial processes. Samples of around 2 mL were 

drawn at intervals of 2-5 min and were cooled in ice before analysis. Each treatment 

condition was applied in triplicate.  

 

2.5. Microbiological analyses 

The bacterial spores were quantified by means of the standard plate count 

technique, before and after the treatments. For that purpose, 100 μL of the sample 

dilutions  were spread on agar (Plate Count Agar for B. subtilis and B. pumilus and 

Tryptic Soy Agar for G. stearothermophilus) in triplicate and incubated for 24 h at 30ºC, 

for the B. subilis and B. pumilus spores, and at 50ºC, for the G. stearothermophilus 

spores. Microbial inactivation was reported as log (N/N0) versus time, where N 

(CFU/mL) was the number of spores after different times of the treatment and N0 the 

number of spores in the untreated emulsion. 

 

2.6. Modelling 

The Weibull model, which is a robust, empirical, non-linear model successfully 

applied to inactivation kinetics (Peleg, 2006), was used in the decimal logarithmic form 

to describe the inactivation of the spores (Eq. 1).  

 

log10 �
N
N0
� = −b ⋅ tn Eq. (1) 

 

where N0 is the number of spores counted in the untreated emulsion (CFU/mL), 

N is the number of spores in the emulsion (CFU/mL) after the treatment time t, n is the 

shape factor and b is the rate parameter.  

The kinetic constants of the model (b and n) were calculated by minimizing the 

sum of the squared differences between the experimental and predicted data using the 

Solver Microsoft ExcelTM tool. According to this  model, n < 1 and n > 1 correspond to 

survival curves with concave-upwards (tailings) and concave-downwards (shoulders), 
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respectively; while n =1 represents the traditional first-order kinetics (Jiao et al., 2019). 

The root mean squared error (RMSE, Eq. 2) and the coefficient of determination (R2, 

Eq. 3) were determined to evaluate the goodness of fit of the model.  

 

RMSE= �   ∑ (𝑦𝑦𝑘𝑘−𝑦𝑦𝑘𝑘∗)2𝑧𝑧
𝑘𝑘=1   

𝑧𝑧
  Eq. (2) 

 

R2= 1- 
𝑆𝑆𝑦𝑦𝑦𝑦2

𝑆𝑆𝑦𝑦2
  Eq. (3) 

 

where 𝑦𝑦 and 𝑦𝑦* are the experimental and the estimated data, respectively; z is 

the number of experimental values and 𝑆𝑆𝑦𝑦𝑦𝑦 and 𝑆𝑆𝑦𝑦 are the standard deviations of the 

estimation and the sample deviation, respectively.  

The Weibull parameters (b and n) are simultaneously identified and are both 

affected by the inactivation velocity. Therefore, for model analysis, they should not be 

considered as independent values. Thus, when two different inactivation treatments 

are compared, a higher value of b in one of them does not directly involve a faster 

inactivation since a lower n value can diminish the microbial inactivation rate in favor of 

the other treatment. Therefore, in order to use the model to compare the effect of the 

different variables on microbial inactivation, the time required to achieve complete 

inactivation (tx) was calculated from Eq. 1 and the b and n values of the Weibull model 

were identified for each condition, where x was the average of the total inactivation for 

every bacterial spore (6.8 log-cycles for B. subtilis, 8.1 for B. pumilus and 5.3 for 

G. stearothermophilus). 
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2.7. Statistical analysis of microbial kinetics 

The statistical package Statgraphics Centurion XVI (Statpoint Technologies 

Inc., Warrenton, VA, USA) was used to perform a general linear model (GLM) in order 

to evaluate the effect of both the treatment conditions (temperature, pressure and use 

of HPU) and the different bacterial spores on the level of inactivation and the LSD 

(Least Significant Differences) were identified to discriminate among the means 

(p<0.05).  

 

2.8. Effect of the treatments on the physicochemical properties of the emulsions. 
Experimental design and response surface analysis 

In addition to studying the effectiveness of SC-CO2 + HPU treatments on the 

inactivation of the bacterial spores, the effect of these treatments on the 

physicochemical properties of the emulsions was assessed. For that purpose, a Box-

Behnken experimental design for response surface methodology (second-order 

polynomial model) was employed, using Statgraphics Centurion XVI (Statpoint 

Technologies Inc., Warrenton, VA, USA). Three process variables were considered: 

pressure (range from 100 to 600 bar), temperature (range from 55 to 95ºC) and time 

(range from 5 to 20 min). The design had 15 experimental runs, which involved three 

levels for each factor and three replications at the center point (Table 2).  

 

2.9. Physicochemical analysis of the oil-in-water emulsions 

The quality of emulsions is heavily influenced by the concentration, size, 

charge and interactions of the droplets. Hence, physical stability was measured by 

methods determining visible aggregation (creaming), droplet size, ζ-potential and pH 

(McClements, 2007). The physicochemical properties were measured before and after 

the SC-CO2 + HPU treatments under the different conditions considered in the 

experimental design (Table 2). All of the measurements were taken at 25 °C in 

triplicate.  
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2.9.1. Appearance 

The appearance of the samples was visually evaluated with the aid of a 

fluorescent lamp (HLWC 111, Waldmann, Germany), searching for signs of instability, 

such as visible oil droplets on the surface or creaming.  

 

2.9.2. pH and density 

The pH was measured using a digital pH-meter (pHenomenal 1000, VWR, 

USA) after calibration with commercial buffer solutions at pH 4, 7 and 10. The density 

was measured with a densitometer (densito 30PX Mettler Toledo, Switzerland), which 

uses the oscillating body method.  

 

2.9.3. Droplet size 

The mean droplet size was expressed as volume–length diameter (D[4,3] ) and 

area–volume mean diameter (D[3,2]). D[4,3]  and D[3,2] were measured using a laser 

diffractometer (Mastersizer 2000, Malvern Instruments, UK). The emulsions were 

diluted in deionized water until an obscuration rate of 5-12% was obtained and the Mie 

theory was applied considering a refractive index of 1.456, and absorption of 0.01. 

 

2.9.4. ζ-potential 

The surface charge of the droplets was established by ζ-potential using a 

Zetasizer (Nano ZS, Malvern Instruments, UK), which transforms the electrophoretic 

mobility of the droplets by applying the Smoluchowski model to ζ-potential values. For 

this purpose, dilutions of the emulsions were prepared in deionized water at a 

concentration of 0.001% v/v.  

 

 

 

 

https://www.sciencedirect.com/topics/chemical-engineering/zeta-potential
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3. Results and discussion 

3.1. SC-CO2 and SC-CO2 + HPU treatments of B. subtilis spores 

Fig. 1 shows the inactivation kinetics of B. subtilis spores inoculated in an oil-

in-water emulsion with SC-CO2 (350 bar) and SC-CO2 + HPU (350 bar) treatments at 

85 and 95ºC. The Weibull model satisfactorily described the SC-CO2 and SC-CO2 + 

HPU inactivation kinetics, as shown in Fig. 1, with R2 values of over 0.98 and RMSE 

values lower than 0.25. On the contrary, for the thermal treatment kinetics, the Weibull 

model only fitted well in the 95ºC treatment (R2 0.99 and RMSE 0.07) and almost no 

inactivation (a reduction of 0.1 log-cycles) was achieved at 85°C in 20 min (Fig. 1A). 

A significantly (p<0.05) higher level of inactivation was achieved when the 

B. subtilis spores were treated with SC-CO2 than when the thermal treatment was used. 

In addition, the temperature had a significant (p<0.05) effect on inactivation in both the 

thermal and the SC-CO2 treatments. At 95ºC, the reduction in 20 min varied from 2.7 

log-cycles in the thermal treatment to 6.2 log-cycles in the SC-CO2 (Fig.1B). According 

to the Weibull model, the time needed for the complete inactivation of B. subtilis spores 

(t 6.8) in the SC-CO2 treatments was 28.5 min at 85ºC and 22.0 min at 95ºC (Table 1). 

In addition, the shape of the SC-CO2 kinetics also varied according to the temperature 

since, as observed in Fig. 1, at 85ºC (A) the inactivation was negligible in the initial 5 

min of treatment (an inactivation of 0.04 log-cycles), while at 95ºC (B) a rapid 

inactivation was obtained for the same time (a reduction of 3.5 log-cycles). The shape 

parameter of the Weibull model (n) successfully represented the observed shapes of 

the kinetics, since n was higher than 1 (2.22) for the SC-CO2 treatment at 85ºC, linked 

to a downward concavity and lower than 1 (0.41) for the SC-CO2 treatment at 95ºC, 

related to an upward concavity. Therefore, the SC-CO2 inactivation kinetics of 

B. subtilis in oil-in-water emulsions was highly temperature dependent. 

Several authors have reported higher levels of B. subtilis spore inactivation 

using SC-CO2 than when a conventional thermal treatment was used at the same 

temperature (Ballestra & Cuq, 1998; Spilimbergo et al., 2003). As an example, 

Spilimbergo et al. (2003) achieved complete inactivation (7.0 log-cycles) at 75ºC, 70 

bar and in 2 h in a saline solution, while no inactivation was obtained in the thermal 
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treatment with the same time-temperature combination. As regards the temperature 

effect, Ballestra & Cuq (1998) also observed that a rise in temperature brought about 

higher inactivation levels for B. subtilis spores in a saline solution treated with CO2 at 

50 bar (e.g. in 45 min, less than 2.0 log-cycles were reduced at 80ºC while around 3.0 

log-cycles were inactivated at 90ºC). In addition, Rao et al., (2015) completely 

inactivated (a reduction of 7.0 log-cycles) B. subtilis spores in deionized water with SC-

CO2 at 86ºC and at 91ºC (100-150 bar) in 60 min, while less than 1.0 log-cycle was 

reduced at temperatures of under 77ºC. 

High temperatures are known to enhance the diffusivity of CO2 and the fluidity 

of the cell wall in vegetative microorganisms; thus, at high temperatures SC-CO2 is able 

to penetrate into the cell membranes faster, enhancing the inactivation effect 

(Spilimbergo & Bertucco, 2003). Nevertheless, the inactivation mechanisms of SC-CO2 

for vegetative cells might not be applicable to bacterial spores (Ballestra & Cuq, 1998; 

Zhang et al., 2006). Spores have a complex and extremely dehydrated structure 

(Ishihara et al., 1999), which makes it difficult for CO2 to penetrate through the spore 

structure. The inactivation mechanisms for bacterial spores need to be elucidated, but 

some authors have explained that spores firstly need to be activated and germinated 

before being inactivated (Spilimbergo & Bertucco, 2003). The activation, which  

damages the coating and leads to the successive hydration of the spore structure, 

could be achieved with the CO2 acidification along with a certain spore-dependent 

temperature (Spilimbergo et al., 2003). However, the findings of Rao et al. (2016) 

suggested that the SC-CO2 inactivation of B. subtilis spores was achieved through the 

direct damage of the spore structure caused by the effect of high temperatures along 

with SC-CO2. Thus, the spore envelope is damaged by the process, which leads to the 

alteration of the inner membrane and the loss in spore resistance to treatments (Rao 

et al., 2015). Another way of increasing spore coat permeability is the exposure of the 

spore to chemicals (White et al., 2006), but this option is less attractive for food and 

pharmaceutical products. 
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3.1.1. Effect of HPU 

The application of HPU had a significant (p<0.05) effect on the lethality of the 

SC-CO2 treatments, the effect being greater at the lowest temperature (85ºC). In 20 

min, the level of inactivation for the B. subtilis spores in SC-CO2 was increased by 2.3 

and 0.5 log-cycles by using HPU at 85 and 95ºC, respectively. In addition, the 

application of HPU in the 85ºC treatment changed the shape parameter of the curves 

from n>1 (concave downward) in the SC-CO2 treatment to n<1 (concave upward) in 

the SC-CO2 + HPU treatment (Table 1), as also observed in Fig. 1A. As in the SC-CO2 

treatments, the temperature had a significant (p<0.05) effect on the inactivation with 

SC-CO2+HPU. For example, in a treatment time of 10 min, 3.7 log-cycles were reduced 

at 85ºC while at 95ºC there was a reduction of 6.3 log-cycles. The temperature in the 

SC-CO2 + HPU inactivation kinetics also affected the t6.8 (Table 1), since it was 26.5 

min at 85ºC and 18.3 min at 95 ºC. 

HPU produces the alternating compression and decompression of the medium 

along with the formation of cavitation bubbles. These bubbles give rise to a vigorous 

agitation of the medium and can collapse, causing high local temperatures and 

pressures, which produce, in turn, high located energy shear waves (Cárcel et al., 

2012). The agitation and implosion of the bubbles reduce the resistance to mass and 

heat transfer processes (Contreras et al., 2018) and, in addition, could damage the 

structure of the spores, affecting its permeability (Mañas & Pagán, 2005; Palacios et 

al., 1991). The increase in spore permeability could lead both to a release of calcium 

dipicolinic acid (DPA) and other substances from the spore core and also to the 

rehydration of the structure, processes related with the loss of the extreme resistance 

of bacterial spores (Black et al., 2007; Palacios et al., 1991; Setlow, 2006). In fact, 

several authors observed that a HPU pretreatment enhanced the sensitivity of the 

spores in the subsequent thermal treatments (Ansari et al., 2017; Burgos et al., 1972; 

Evelyn & Silva, 2015; Ordoñez & Burgos, 1976; Palacios et al., 1991). Therefore, the 

application of HPU to the SC-CO2 treatments was expected to enhance the 

solubilization and penetration of CO2 and to accelerate the SC-CO2 inactivation 

mechanisms. Numerous studies have already demonstrated the marked effect of HPU 

on SC-CO2 treatments for vegetative microorganisms (Michelino et al., 2018; Ortuño et 
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al., 2013; Paniagua-Martínez et al., 2018). However, as regards bacterial spores 

treated with SC-CO2 + HPU, only Michelino et al. (2018) studied the effect of the 

combined SC-CO2 + HPU (40W) treatment on the inactivation of mesophilic bacterial 

spores in fresh coriander at 100 bar and two temperatures (40 and 50ºC). An 

inactivation of 1.6 log-cycles was obtained during the pressurization (20 min) and 

depressurization (40 min) stages with HPU, while no spore inactivation was obtained 

when HPU was not applied. In contrast to our results, no significant (p>0.05) effect of 

the temperature was found by these authors. The different influence of temperature on 

microbial inactivation between Michelino et al. (2018) and the present work, could be 

due to the differences in the temperature range, media, equipment and nature of 

bacterial spores.   

As in the present study the B. subtilis spores were found to be very resistant to 

the SC-CO2 + HPU treatment at high temperatures, and based on preliminary 

experiments, the remaining bacterial spores were only treated with HPU at 95ºC (the 

highest temperature the equipment can reach). 
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Fig 1. Inactivation kinetics of B. subtilis spores in oil-in-water emulsion: thermal (T.T.) at 85 (A) 

and 95ºC (B) and SC-CO2 and SC-CO2 + HPU treatments at 350 bar and 85 (A) and 95ºC (B). 

Experimental data (discrete points) and the Weibull model (dashed lines).  
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Table 1. Modelling of inactivation kinetics using the Weibull equation. Fitting parameters (b and 

n), time for complete inactivation (t6.8; a reduction of 6.8 log-cycles for B. subtilis; t8.1; 8.1 log-

cycles for B. pumilus and t5.3; 5.3 for G. stearothermophilus) and goodness of fit. Values in 

brackets indicate standard errors.  

 

 

3.2. SC-CO2 + HPU treatment of B. pumilus spores 

The Weibull model satisfactorily described the SC-CO2 + HPU inactivation 

kinetics, as shown in Fig. 2. The R2 value was 0.99 and the RMSE value 0.22 (Table 

1). The inactivation of the B. pumilus spores with SC-CO2 + HPU was significantly 

(p<0.05) more efficient than the thermal treatment at the same temperature, since the 

inactivation level of the SC-CO2 + HPU treatment in 20 min was 7.1 log-cycles while 

only 3.5 log-cycles were achieved in the thermal treatment. As in the SC-CO2 + HPU 

treatments for B. subtilis, the shape parameter of Weibull (n) was also lower than 1, 

which is linked to concave upward curves, as observed in Fig. 2. 

No previous data was found concerning the effects of SC-CO2 + HPU on the 

inactivation of B. pumilus spores and scarce data is available on the effects of individual 

SC-CO2 treatments. Zhang et al. (2006) studied the inactivation of B. pumilus spores 

in medical devices using SC-CO2 and found a maximum reduction of around 3 log-

cycles at 275 bar and 60-80ºC in 4 h, which was a very poor inactivation over an 

 

Spore Treatment 
Temperature 

(ºC) 

Pressure 

(bar) 
b (min-n) n 

t6.8/ t8.1/ t5.3 

(min) 
R2 RMSE 

B. subtilis Thermal 85 - 9.96E-04 (0.01) 1.64 (2.02) 217.4 0.33 0.06 

B. subtilis Thermal 95 - 0.09 (0.02) 1.16 (0.09) 41.5 0.99 0.07 

B. subtilis SC-CO2 85 350 4.00E-3 (1.40E-3) 2.22 (0.11) 28.5 0.99 6.00E-02 

B. subtilis SC-CO2 95 350 1.91 (0.30) 0.41 (0.06) 22.0 0.99 0.22 

B. subtilis SC-CO2 + HPU 85 350 0.64 (0.14) 0.72 (0.08) 26.5 0.98 0.25 

B. subtilis SC-CO2 + HPU 95 350 4.26 (0.22) 0.16 (0.02) 18.3 0.99 0.18 

B. pumilus Thermal 95 - * * * * * 

B. pumilus SC-CO2 + HPU 95 350 3.70 (0.45) 0.22(0.05) 35.8 0.99 0.22 

G. stearothermophilus Thermal 95 - * * * * * 

G. stearothermophilus SC-CO2 + HPU 95 350 * * * * * 

G. stearothermophilus SC-CO2 + HPU 95 550 * * * * * 

 

  * Not enough experimental data for model fitting purposes 
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extremely long time. These authors added H2O2 to intensify the SC-CO2 treatment and 

complete inactivation was achieved at 60ºC, 275 bar and 4h.  

 

 

Fig. 2. Inactivation kinetics of B. pumilus spores in oil-in-water emulsion: thermal (T.T.) at 95ºC 

and a SC-CO2 + HPU treatment at 350 bar and 95ºC. Experimental data (discrete points) and 

the Weibull model (dashed lines). 

 

3.3. SC-CO2 + HPU treatment of G. stearothermophilus spores 

The 20 min thermal treatment at 95ºC did not achieve satisfactory inactivation 

levels for G. stearothermophilus (Fig. 3). In fact, the spore load slightly increased (1 

log-cycles), which shows that 95ºC could be an appropriate growth temperature for 

G. stearothermophilus spores. The combined SC-CO2 + HPU at 95ºC did not 

significantly (p>0.05) affect the G. stearothermophilus spore count and negligible 

reductions were achieved in 20 min (<0.5 log-cycles), regardless of the pressure.  No 

references were found to the inactivation of G. stearothermophilus by SC-CO2 + HPU. 

However, some authors studied the inactivation of the individual treatments. In this 

sense, Palacios et al. (1991) treated G. stearothermophilus in water with HPU (20 kHz, 
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120 W) at 12ºC and for 30 min and found no lethal effects; neither did Watanabe et al. 

(2003), who treated G. stearothermophilus spores using a conventional thermal 

treatment at 95ºC  for 120 min and found no inactivation. However, although no 

inactivation in the SC-CO2 treatment (300 bar and 120 min) was found at temperatures 

from 35 to 85ºC, the spores were reduced 5 log-cycles at 95ºC (Watanabe et al., 2003). 

Therefore, it seems that long processing times (100 min more than in our treatments) 

and high temperatures are required to obtain a significant effect of the SC-CO2 

treatment on the inactivation of G. stearothermophilus spores. However, processing 

times of the SC-CO2 + HPU treatments of over 20 min do not seem feasible for 

industrial purposes. Therefore, from the obtained results, it could be concluded that the 

SC-CO2 + HPU treatment was not adequate to inactivate G. stearothermophilus 

spores. For biomedical applications, the combination of SC-CO2 with chemical 

additives can be a feasible approach for G. stearothermophilus spores inactivation 

(White et al., 2006). 

 

 

Fig. 3. Inactivation kinetics of G. stearothermophilus spores in oil-in-water emulsion: thermal 

(T.T.) at 95ºC and SC-CO2 + HPU treatments at 350 and 550 bar and 95ºC. Experimental data 

(discrete points). 
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3.4. Effect of the type of spores on the SC-CO2 + HPU treatment 

Significant (p<0.05) differences were found as regards the resistance of the 

different bacterial spores considered in this study to both thermal and SC-CO2 + HPU 

treatments at 95ºC. G. stearothermophilus spores were found to be the most resistant 

to inactivation treatments. However, no significant (p>0.05) differences were found 

between the resistance of B. subtilis and B. pumilus to thermal and SC-CO2 + HPU 

treatments. Da Silva et al. (2016) also found that G. stearothermophilus spores had a 

greater resistance than B. subtilis treated with SC-CO2 at 60ºC and 300 bar; this was 

to be expected since G. stearothermophilus is considered one of the most resistant 

microorganisms and is often used as a biological indicator of thermal processes, such 

as sterilization by steam under pressure (Periago et al., 1998). 

 

3.5. Effect of the SC-CO2 + HPU treatments on the physicochemical properties of 
the emulsions.  

3.5.1. Appearance of the emulsions treated with SC-CO2 + HPU 

Most of the volume of the emulsions extracted from the vessel after the SC-

CO2 + HPU treatments presented no apparent signs of destabilization and, therefore, 

the appearance was similar to the original emulsions. However, when the last aliquot 

(2 mL) of the treated emulsions was extracted from the vessel, oil separation on the 

surface of the emulsions was visible under every condition, except for the 12.5 min 

treatment at 100 bar and 55ºC and the 5 min treatment at 100 bar and 75ºC (Runs 2 

and 6, Table 2), where no destabilization signs were identified with the fluorescent lamp 

(Fig. 4). Thus, for a correct emulsion treatment, this fraction should be removed after 

the process. It is known that CO2 is more soluble in lipids than in water or aqueous 

solutions (Bonnaillie & Tomasula, 2015). Therefore, CO2 in supercritical conditions 

could probably be dissolved in the oil droplets of the emulsion during the treatment 

(Jakobsen et al., 2009). However, when the treated emulsions are extracted from the 

vessel, a severe depressurization occurs, and the supercritical CO2 quickly becomes 

gaseous CO2, which could break the oil-water interface leading to the coalescence of 

the droplets and the release of a small part of the oil (Ling et al., 2016). As regards 
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HPU, it is known that shear forces can reduce the size of the droplet to a critical shear 

stress when the coalescence of droplets may occur, a mechanism known as over-

processing, which is dependent on the ultrasonic power and processing time (Kentish 

et al., 2008; Mahdi Jafari et al., 2006). In fact, although HPU has been demonstrated 

to be an efficient technique for emulsification purposes (Chemat et al., 2011), some 

authors applied HPU to enhance aggregation and to facilitate the separation of the oil 

and the aqueous phases in emulsions, such as milk (Juliano et al., 2011) or canola oil 

emulsions (Nii et al., 2009).  

No previous literature has addressed the effect of the SC-CO2 + HPU treatment 

on the quality of oil-in-water emulsions. However, there are a few studies assessing 

the effect of the individual treatments on the quality of food emulsions. In this sense, 

Watanabe et al. (2003) found that the 120 min SC-CO2 treatment  at 95ºC and 300 bar 

resulted in milk coagulation. In this case, SC-CO2 could affect milk protein since the 

carbonic acid forms bonds with calcium ions, which may destabilize the casein micelles 

(Amaral et al., 2017). Moreover, the lower pH may change the ionic and electrostatic 

interactions within the casein micelles and the whey proteins (Bonnaillie & Tomasula, 

2015). On the contrary, several studies have shown promising results in terms of the 

quality of vegetable emulsions after the application of HPU for microbial inactivation 

purposes. For example, rice milk beverages showed an increased cloud index, which 

indicates the stability of the particles dispersed in the suspension (Amador-Espejo et 

al., 2020); peanut milk showed an increase in the hydrolyzed protein content, a better 

sedimentation index and smaller particle and oil droplets, which could prevent phase 

separation (Salve et al., 2019); and hazelnut milks showed an increase in the content 

of total phenolic compounds, and improved antioxidant activity, appearance, syneresis, 

sedimentation, viscosity and consistency (Atalar et al., 2019).  
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Fig. 4. Appearance of emulsions treated at 100 bar, 55ºC and for 2.5 min; run 2 (A, no 

destabilization) and at 350 bar, 55ºC and for 20 min; run 3 (B, oil separation). 

 

3.5.2. pH, density, droplet size and ζ-potential of the emulsions treated with SC-
CO2 + HPU 

The physicochemical measurements of the original untreated emulsion were: 

pH: 8.4 ± 0.4, density: 0.987 ± 0.001 g/cm3, D[4,3]: 0.365 ± 0.021 µm, D[3,2]: 0.343 ± 

0.014 µm and ζ-potential: -41.9 ± 4.7 mV. The physicochemical measurements of the 

treated emulsions are reported in Table 2. Response surface models were fitted to the 

studied variables (pH, density, D[4,3], D[3,2] and ζ-potential), but were only significant 

(p<0.05) for D[3,2]. The R2 of the response surface models ranged from 0.71 for pH to 

0.90 for D[3,2]. This poor fit shows the highly variable effect of the SC-CO2 + HPU 

treatments on the physicochemical properties of the emulsions. 

 

3.5.2.1. pH 

As observed in Table 2, the pH was reduced after every SC-CO2 + HPU 

treatment, being between 2.8 and 3.3 lower than the untreated emulsion. Moreover, 

the pH was not restored to its initial value after resting (4 h) for the purposes of 

degassing after the treatment. A pH decrease in the medium where the droplets are 

dispersed may reduce the repulsive forces between the droplets leading to 

aggregation, which could result in a loss of emulsion stability (Pertkiewicz et al., 2009). 

B A 
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However, in the present study, the pH was not significantly (p>0.05) related to the 

droplet size or the ζ-potential of the emulsions. 

It is known that most of the CO2 dissolved in water remains in the solvated form 

of CO2 while a small fraction reacts with water to form carbonic acid (H2CO3). A portion 

of H2CO3 dissociates to H+ and HCO3-, which can further dissociate to CO3 2- and H+, 

leading to a decrease in pH. Moreover, cavitation could enhance the decrease in pH 

since it is known that agitation increases the rate of CO2 decomposition into carbonic 

acid (Bonnaillie & Tomasula, 2015). Martin et al. (2003) also observed a pH decrease 

(from 6.3 to 4.7-5.0) after injecting CO2 into raw milk. On the contrary, Paniagua-

Martínez et al., (2018) found no changes in the pH of orange juice processed with SC-

CO2 + HPU at 31-41ºC and 100 bar, compared to the untreated juice. These authors 

suggested it could be due to both the short process time  (3.06 min) and the low initial 

pH of the juice (3.6-3.7), since, at low pH values, the dissociation of the carbonic acid 

formed by the dissolution of the CO2 into the juice could be hindered (Zhou et al., 2009). 

Unlike Paniagua-Martinez et al. (2018), the time of the process in the present study 

was longer (from 5 to 20 min) and the emulsions presented an initial pH much higher 

(8.4). Consequently, the dissociation of carbonic acid could be facilitated, lowering the 

pH of the medium. 

 

3.5.2.2. Density 

As shown in Table 2, the changes found between the density of the untreated 

emulsion (0.987 g/cm3) and the treated (0.985-1.007 g/cm³) were minimal. Soybean oil 

and deionized water have different density values, the oil density being lower than that 

of the water. Therefore, a high density could be related to the oil separation in the 

emulsion. 

 

3.5.2.3. Droplet size 

D[4,3] increased, on average, from 0.365 (untreated) to 1.713 µm in the treated 

emulsions, except for the 20 min treatment at 600 bar and 75ºC (run 7) in which a lower 
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value was obtained (0.338 µm). D[3,2] also increased, on average, from 0.343 to 0.731 

µm in the treated emulsions, except for the 20 min treatment at 600 bar and 75ºC (0.320 

µm, run 7 Table 2) and the 12.5 min treatment at 600 bar and 95ºC (0.340 µm, run 13 

Table 2). An emulsion containing small droplets improves its stability. In fact, emulsions 

with a droplet size of <0.5 µm are known to be highly stable (Anton et al., 2008). On 

the contrary, emulsions with large droplets usually have a strong tendency towards 

coalescence or Ostwald ripening (Azmi et al., 2019).  

The only significant (p<0.05) model found to explain the effect of the process 

variables on the droplet size was for D[3,2] ( R2 0.90). In the Pareto Chart (Fig. 5), the 

decreasing order of importance of the process variables can be found. The pressure 

and its interaction with temperature were found to be significant (p<0.05) factors.  

 

 

Fig. 5. Pareto chart of the standardized effects (bars) in decreasing order of importance for D[3,2]. 

Effects crossing the vertical line are statistically significant at the 95.0% confidence level (A: 

pressure, B: temperature and C: time). 
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3.5.2.4. ζ-potential 

ζ-potential is the difference between the electrical potential of the static coat of 

the dispersion medium attached to the dispersed droplets and the mobile dispersion 

medium.  Generally, absolute ζ-potential values higher than or equal to 30 mV indicates 

that the electrostatic repulsion among droplets contributes to preventing their 

aggregation (Ribes et al., 2017). However, low absolute ζ-potential values indicate that 

emulsions tend towards destabilization (Lu & Gao, 2010). In the present study, all of 

the treated emulsions showed stability (≤ -36.90 mV), except the emulsion treated at 

100 bar, 95ºC for 12.5 min, in which a ζ-potential of -10.04 mV was obtained (Table 2). 

All of the ζ-potential values were negative due to the negative charge provided by the 

layer of phospholipids around the oil droplets (Pertkiewicz et al., 2009).  

 

Table 2. Box-Behnken experimental design and physicochemical properties of the emulsions 

treated with SC-CO2 + HPU.  

 

Run Pressure 
(bar) 

Temperature 
(ºC) 

Time 
(min) pH 

Density 

(g/cm3) 

D[4,3] 

(µm) 

D[3,2] 

(µm) 

ζ-potential 

(mV) 

1 350 55 5 5.1 0.998 2.312 0.546 -49.47 

2 100 55 12.5 5.3 0.985 3.420 2.018 -43.13 

3 350 55 20 5.5 0.995 1.090 0.475 -36.90 

4 600 55 12.5 5.2 1.007 0.856 0.426 -39.63 

5 350 75 12.5 5.2 0.991 0.957 0.494 -42.47 

6 100 75 5 5.2 0.991 2.386 1.397 -38.60 

7 600 75 20 5.2 0.998 0.338 0.320 -40.03 

8 600 75 5 5.3 0.995 0.645 0.397 -46.83 

9 350 75 12.5 5.3 0.990 1.047 0.513 -41.43 

10 350 75 12.5 5.2 0.989 1.334 0.586 -54.97 

11 100 75 20 5.1 1.001 7.996 1.505 -42.50 

12 350 95 20 5.3 0.991 0.998 0.505 -44.70 

13 600 95 12.5 5.5 0.997 0.430 0.340 -51.43 

14 350 95 5 5.4 0.992 0.949 0.503 -48.90 

15 100 95 12.5 5.6 1.004 0.911 0.441 -10.04 
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4. Conclusions  

The inactivation of bacterial spores is highly complex. The higher the 

temperature of the treatments (thermal, SC-CO2 and SC-CO2 + HPU), the greater the 

inactivation level of B. subtilis spores. The SC-CO2 treatments were more effective at 

inactivating B. subtilis spores than the thermal treatments. Compared to the thermal 

treatments, the degree of inactivation of the B. subtilis and B. pumilus spores achieved 

by the combined SC-CO2 + HPU treatment was 2.5 times greater and twice as great, 

respectively. No differences were found between the resistances of B. subtilis and 

B. pumilus spores to treatments. On the contrary, the SC-CO2 + HPU treatment did not 

significantly affect the inactivation level obtained for G. stearothermophilus spores, 

compared to the thermal treatment at 95ºC and nor did the use of  higher pressures 

increase the effectiveness of the treatment.  

A decrease in the pH and an increase in the droplet size of the emulsions was 

caused by the SC-CO2 + HPU treatment. Nevertheless, no changes in density or ζ-

potential were documented. In general terms, for the SC-CO2 + HPU inactivation 

treatment, only a mild effect of the process variables (temperature, pressure and time) 

was found on quality. 

Suitable conditions of pressure, temperature and time permitted the quality and 

stability of the treated emulsions to be maintained while achieving satisfactory 

inactivation levels for two of the three bacterial spores studied (B. subtilis and 

B. pumilus). In view of a possible industrial application of the SC-CO2 + HPU 

technology, suitable process conditions should be sought bearing in mind the target 

microorganisms and the expected droplet size.  
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Combined pulsed electric field and high-power ultrasound treatments for 
microbial inactivation in oil-in-water emulsions 

 

Abstract 

The impact of individual and combined pulsed electric field (PEF) and high 

power ultrasound (HPU) on the inactivation of different microorganisms in emulsions 

was investigated. The highest inactivation level using PEF was 2.6, 1.2 and 0.1 log-

cycles for Escherichia coli, Aspergillus niger and Bacillus pumilus, respectively, 

achieved at the highest energy level and temperature (152.3-176.3 kJ/kg and 25ºC). 

HPU led to the highest reduction (5.4, 4.3 and 0.3 log-cycles for E. coli, A. niger and B. 

pumilus, respectively) after the longest treatment time studied (3 min). PEF (152.3-

176.3 kJ/kg) followed by HPU (3 min) was found to be the most effective sequence, 

leading to synergistic effects (6.6 and 1.0 log-cycles for A. niger and B. pumilus, 

respectively), compared to the individual treatments. PEF-HPU is a promising hurdle 

technology with which to inactivate vegetative bacteria or fungal spores in emulsions. 

However, limited inactivation was achieved for bacterial spores. 

 

 

Keywords: fungal spores, bacterial spores, pulsed electric fields, high-power 

ultrasound, emulsions. 

  



A. Gomez-Gomez, 2021 

208 

1. Introduction 

Non-thermal technologies for microbial inactivation purposes are considered 

as an alternative to thermal treatments and have lately been the subject of increased 

industrial interest. These technologies employ alternative microbial inactivation sources 

rather than heat, which could reduce the detrimental effects on highly heat-sensitive 

compounds, and offer higher quality than conventional thermal treatments. Some of 

these non-thermal technologies are pulsed electric fields (Mosqueda-Melgar et al., 

2008), high power ultrasound (Piyasena et al., 2003), high pressure carbon dioxide 

(Ortuño et al., 2012) and high hydrostatic processing (Erkmen & Doǧan, 2004), among 

others. Moreover, some of these non-thermal technologies such as pulsed electric 

fields or high power ultrasound are considered as “green technologies” due to minimal 

impact exerted on the environment in terms of reduction of water, energy, wastes, etc. 

(Jambrak, 2018). 

The pulsed electric field (PEF) treatment consists of the application of high 

voltage and short duration electric pulses to a medium placed between two electrodes 

(Halpin et al., 2013). Thus, the product is subjected to an electric field whose intensity 

depends on the voltage across the electrodes and on the geometry of the space 

between them (Raso et al., 2016). This technology has been shown to be able to 

inactivate microorganisms when using high electric field strength (>20 kV/cm), while 

minimally modifying the physicochemical and nutritional properties of the treated 

products (Barba et al., 2015). The mechanisms for microbial inactivation by PEF are 

related with an increase in transmembrane potential caused by the external electrical 

field. When the electrical field strength exceeds the critical threshold value of the 

transmembrane potential, pores in the cell membrane are formed. This phenomenon 

is known as electroporation, which can be reversible or irreversible (Spilimbergo et al., 

2014). In the case of reversible electroporation, the membrane of the cell temporarily 

destabilizes and loses its permeability. In addition, the cell can undergo sublethal 

damage, which is responsible for the subsequent cell death in simultaneous or 

sequential treatments (Pataro et al., 2010). In the irreversible electroporation, the cell 

membrane is irrevocably cracked and the intracellular content is released, leading to 
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microbial inactivation (Palgan et al., 2012). Several authors investigated the use of PEF 

treatment to inactivate microorganisms in different media, such as water (Pyatkovskyy 

et al., 2018), buffer solutions (Pataro et al., 2010), fruit juices (Hodgins et al., 2002; 

Yeom et al., 2000; Yildiz et al., 2019, 2020) or emulsions, such as milk (Michalac et al., 

2003; Odriozola-Serrano et al., 2006).  

High power ultrasound (HPU) consists of elastic waves of low frequency (20–

100 kHz) and high intensity (>1 W/cm2), which are known to increase heat and mass 

transfer; therefore, it is used to bring about changes in the products or processes 

(Contreras et al., 2018). One of the significant applications of HPU in food and 

pharmaceutical applications has been the inactivation of microorganisms (Piyasena et 

al., 2003). The inactivation mechanisms of HPU are related to cavitation, which consists 

of the formation, growth and abrupt implosion of bubbles, causing peaks of extremely 

high temperatures and pressures and mechanical shock that can damage or break the 

cellular structure of the microorganisms (Cárcel et al., 2012). Some authors have 

already studied the inactivation of microorganisms via HPU in different media, such as 

fruit juices (Evelyn et al., 2016; Evelyn & Silva, 2018), beef slurry, strawberry puree 

(Evelyn & Silva, 2018), liquid whole egg (Bi et al., 2020) or emulsions, such as milk 

(Khanal et al., 2014; Scudino et al., 2020).  

Both technologies, PEF and HPU, have shown themselves to be of great 

potential as non-thermal preservation treatments in liquid products (Palgan et al., 

2012). However, the individual effects of PEF or HPU treatments on microbial 

inactivation are usually moderate; therefore, intense conditions or long application 

times are required to obtain a substantial microbial reduction, which could involve 

undesirable effects on the quality properties of the treated product, along with some 

limitations on an industrial scale. In addition, the individual use of PEF and HPU 

technologies have not been fully successful in inactivating bacterial spores (Fan et al., 

2019; Noci et al., 2009). The combined use of various non-thermal technologies (hurdle 

effect) have been proven to enhance the effectiveness as regards microbial 

inactivation, compared to the individual treatments, leading to additive or synergistic 

effects. Some authors already studied the combination of PEF and HPU treatments for 

the purposes of microbial inactivation (Aadil et al., 2018; Halpin et al., 2013; Huang et 
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al., 2006; Lyu et al., 2016; Palgan et al., 2012; Walkling-Ribeiro, Noci, Cronin, et al., 

2009; Walkling-Ribeiro, Noci, Riener, et al., 2009). Table 1 shows a list of applications 

that use PEF, HPU and its combination for the inactivation of different microorganisms 

in various media. In this regard, Aadil et al. (2018) investigated the effect of a PEF 

treatment (20 kV/cm and 600 µs) followed by HPU (600 W, 28 kHz and 30 min) on the 

microorganisms naturally present in grapefruit juice, finding a reduction of 1.9 log-

cycles (Total Plate Count) with the combined treatment (1st PEF-2nd HPU) (Table 1), 

compared to a reduction of 0.5 and 1.5 log-cycles in the individual HPU and PEF 

treatments, respectively. Noci et al. (2009) studied the reverse combined treatment (1st 

HPU- 2nd PEF) for the inactivation of L. innocua in milk and obtained a reduction of 6.8 

log-cycles, compared to 3.3 and 0.6 log-cycles for the individual PEF (40 kV/cm and 

50µs) and HPU (400W, 80s) treatments, respectively. However, to our knowledge, only 

a few studies have compared the influence of the order of application of combined PEF 

and HPU treatments (Huang et al., 2006; Lyu et al., 2016; Palgan et al., 2012), and 

none of them compared the effectiveness of the combined treatment on 

microorganisms with different characteristics.  

Oil-in-water emulsions are widely used in several industries, including 

pharmaceuticals, foods, cosmetics and agrochemicals (Muriel Mundo et al., 2020). 

Despite that, few studies were found into microbial inactivation in vegetable emulsions 

using PEF or HPU. Only Dunn (1996), Barsotti et al. (2001) and Markus Walkling-

Ribeiro et al. (2010) stated that emulsions (salad dressings, peanut oil emulsions and 

coconut milk based smoothies, respectively) could be pasteurized using PEF with 

minor physicochemical changes. As regards HPU, only two studies were found into 

microbial inactivation in vegetable emulsions, specifically peanut milk (Salve et al., 

2019) and hazelnut milk (Atalar et al., 2019). In addition, although some authors studied 

the effectiveness of the combined PEF and HPU treatments at inactivating 

microorganisms in milk-based products (Halpin et al., 2013; Noci et al., 2009; Palgan 

et al., 2012), no studies have been found for vegetable oil-in-water emulsions. 

Therefore, the objective of this study was to test the feasibility of individual and 

combined PEF and HPU treatments in oil-in-water emulsions for the purposes of 
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inactivating different types of microorganisms (vegetative bacteria and fungal and 

bacterial spores).  

 

Table 1. Pulsed electric field (PEF) and high power ultrasound (HPU) inactivation treatments and 

its combination on different microorganisms and media.  

 

Treatment Conditions Microorganism Medium 
Microbial 
reduction 

Reference 

PEF 
0-30 kV/cm, 0.5-2.5 µs, 50ºC  

(Exponential waves). 
Escherichia coli Nutrient broth 0.2 log-cycles (Yan et al., 2021) 

PEF 45 kV/cm, 1 µs, 100 pulses, 30ºC 
Aspergillus niger 

spores 
Collagen gels 2.0 log-cycles (Griffiths et al., 2012) 

PEF 
7.5 kV/cm, 5 µS, 1kHz, 1000 pulses / 

7.5 kV/cm, 5 µS, 1kHz, 10000 pulses. 

Bacillus pumilus 

spores 
NaCl solution 

Negligible / 

67± 8% 
(Pillet et al., 2016) 

PEF 
30 kV/cm, 1 μs width, 15 Hz, 150 μs, <56ºC / 

40 kV/cm, 1 μs width, 15 Hz, 150 μs, <56ºC 

Staphylococcus 

aureus 
Orange juice 

3.0 log-cycles / 

5.5 log-cycles 

(Walkling-Ribeiro et al., 

2009) 

PEF 80 mL/min,1 kHz, 20 kV/ cm, 600 µs, 40ºC. 

Total plate counts 

(TPC) / yeasts and 

molds (Y&M) 

Grapefruit juice 

1.5 log-cycles 

(TPC) / 1.4  log-

cycles (Y&M) 

(Aadil et al., 2018) 

HPU 42 kHz, 5-60 min, 20ºC Escherichia coli Orange juice 
~0.4- 1.3 log-

cycles 
(Kernou et al., 2021) 

HPU 20 kHz, 120 µm, 3 min, 52.5ºC 
Aspergillus flavus 

spores 
Broth ~0.4 log-cycles 

(López-Malo et al., 

2005) 

HPU 20 kHz, 5 bar,117 μm, 12 min, 70°C 
Bacillus subtilis 

spores 
Distilled water >99% (Raso et al., 1998) 

HPU 30 kHz, 5, 10, and 20 min, 55ºC 
Staphylococcus 

aureus 
Orange juice 

0.8, 1.8, and 3.3 

log-cycles 

(Walkling-Ribeiro et al., 

2009) 

HPU 600 W, 28 kHz, 30 min, 20ºC. 

Total plate counts 

(TPC) / yeasts and 

molds (Y&M) 

Grapefruit juice 

0.5 log-cycles 

(TPC) / 0.5 log-

cycles (Y&M) 

(Aadil et al., 2018) 

HPU-PEF 
HPU: 30 kHz, 10min, 55ºC 

PEF: 40 kV/cm, 1 μs width, 15 Hz, 150 μs, <56ºC 

Staphylococcus 

aureus 
Orange juice 6.8 log-cycles 

(Walkling-Ribeiro et al., 

2009) 

HPU-PEF 
HPU: 20 kHz, 750 W, 120 min, 35°C. 

PEF: 12 kV/cm, 3 µs width, 300 Hz, 120 μs, 35°C. 

Saccharomyces 

cerevisiae 
Rice wine 3.7 log-cycles (Lyu et al., 2016) 

HPU-PEF 

HPU: 100%, 20 kHz, 160 mL/min, 40 W/cm2, 

200 kPa, <52ºC. 

PEF: 160 mL/min, 34 kV/cm, 32 µs, <35ºC 

Listeria innocua 
Milk-based 

beverage 

5.6 log-cycles 

 
(Palgan et al., 2012) 

PEF-HPU 
PEF: 12 kV/cm, 3 µs width, 200 Hz, 120 μs, 35°C. 

HPU: 20 kHz, 750 W, 120 min, 35°C. 

Saccharomyces 

cerevisiae 
Rice wine 3.5 log-cycles (Lyu et al., 2016) 

PEF-HPU 
PEF: 80 mL/min,1 kHz, 20 kV/ cm, 600 µs, 40ºC. 

HPU: 600 W, 28 kHz, 30 min, 20ºC. 

Total plate counts 

(TPC) / yeasts and 

molds (Y&M) 

Grapefruit juice 

1.9 log-cycles 

(TPC) / 1.7 log-

cycles (Y&M) 

(Aadil et al., 2018) 

PEF-HPU 

PEF: 160 mL/min, 34 kV/cm, 32 µs, <35ºC 

HPU: 100%, 20 kHz, 160 mL/min, 40 W/cm2 

,200 kPa, <52ºC 

Listeria innocua 
Milk-based 

beverage 
4.2 log-cycles (Palgan et al., 2012) 
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2. Materials and methods 

2.1 Preparation of emulsions 

20% oil-in-water emulsions were prepared to be used as the treatment media. 

They were elaborated in three steps: mixing, sonication and homogenization. Soybean 

oil and an emulsifying agent (egg phospholipid) were mixed with a dispersing device 

(IKA T25 Digital Ultra-Turrax, tool S25N-25G, Germany) at 14000 rpm for 2 min, 10200 

rpm for 4 min and 10600 rpm for 4 min. Then the dispersion was slowly poured to the 

water phase, constituted by deionized water and glycerol, while being mixed using the 

Ultra-Turrax at 14000 rpm. Afterwards, the preparation was sonicated for 5 min using 

the H22 sonotrode and the ultrasound system UP400S (Hielscher, Germany). Finally, 

the sample was homogenized in two stages (50 bar; 550 bar) with the PANDA Plus 

2000 homogenizer (GEA Niro Soavi, Italy). 

 

2.2. Microorganisms  

The effectiveness of PEF and HPU treatments has been shown  to be 

dependent on the type of microorganism because of the different composition and 

structure of their cell walls (Piyasena et al., 2003; Spilimbergo et al., 2014). Therefore, 

a vegetative bacterium (Escherichia coli CECT 101, Spain) and a fungal (Aspergillus 

niger CECT 2807, Spain) and a bacterial (Bacillus pumilus CECT 29T, Spain) spore 

were used in this study to assess the effectiveness of the inactivation treatments on 

different types of microorganisms. E. coli was selected because it is widely present in 

nature, including the gastrointestinal tracts of humans. Therefore, its presence in the 

industry is a good indicator of unfavorable hygienic conditions. A. niger  was chosen 

because it is the most abundant filamentous mold found in the environment (Nadumane 

et al., 2016) and, consequently, its presence in contaminated products is not rare. 

Lastly, B. pumilus was selected due to its higher prevalence in contaminated food 

compared to other Bacillus species (From et al., 2007; Iurlina et al., 2006). 

All the microorganisms were prepared to be treated in their most resistant form 

(growth stage and spore when applicable). 
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E. coli was inoculated in 50 mL of nutrient broth (Scharlab, Spain) and 

incubated for 24 h at 37ºC (3000957, J.P. Selecta, Spain) at 120 rpm (Rotabit Model 

3000974, J.P. Selecta, Spain). Then 50 µL of the starter culture were transferred to 50 

mL of nutrient both medium and incubated (for 14h) until reaching the stationary phase; 

this period of time was established from the growth curves by Gomez-Gomez et al. 

(2020). 

A. niger was cultured on Potato Dextrose Agar (Scharlab, Spain) at 25ºC for 7 

days. Then the spores were rubbed from the surface of the agar with 10 ml of 0.1% 

(v/v) Tween 80 and collected. The suspension was kept in a sterile container at 4ºC 

until use.  

B. pumilus cells were sporulated following the methodology of Mafart et al. 

(2002), with modifications. A single colony of the bacteria was grown in nutrient broth 

(Scharlab, Spain) at 30ºC until the stationary phase was reached, according to 

bibliography (around 24 h) (Han et al., 2017; Liu et al., 2015). 100 µL of the culture with 

bacteria were poured on Plate Count Agar (Scharlab, Spain) enriched with MnSO4 (40 

mg/L) and CaCl2 (100 mg/L) to enhance the sporulation and incubated at 30ºC for 5-6 

days, a period of time in which spores were formed (confirmed with a Thoma counting 

chamber and an optical microscope). Afterwards, spores were collected by scraping 

the surface of the agar, suspended in 2 mL of sterile deionized water, and washed three 

times by centrifugation (8000x g for 15 min) (Medifriger BL-S, JP Selecta). The pellet 

was resuspended in 2 mL of ethanol (50% v/v) and kept at 4°C for 12 h to eliminate 

vegetative non-sporulated bacteria. The suspension was once again washed three 

times by centrifugation. Lastly, the final suspension was distributed into sterile 

microtubes and kept at 4°C until use.  

 

2.3. Non-thermal inactivation treatments 

Prior to each experiment, the PEF and the HPU systems were sterilized with a 

disinfectant solution (Diversey Delladet, USA) for 5 min and rinsed with sterile 

deionized water. 5 mL of the E. coli or the A. niger spore suspensions were added to 

60 mL of the emulsion to reach a cell concentration of 107- 108 and 106- 107 CFU/mL 
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for E. coli and A. niger spores, respectively. As for B. pumilus spores, the microtubes 

were heat-shocked at 80°C for 15 min to eliminate vegetative cells and cooled again to 

4ºC before each inactivation treatment. Then, 2 mL of the spore suspension were 

added to 60 mL of emulsion to reach a concentration of 107-108 CFU/mL. The resulting 

treatment media had a conductivity of 1151, 498 and 430 µS/cm for E. coli, A. niger 

and B. pumilus, respectively.  

 

2.3.1. PEF treatment system 

PEF inactivation treatments were performed in a laboratory scale continuous 

flow unit (Fig. 1). The high voltage pulse generator used was the Epulsus-PM1-10 

(Energy pulse systems, Portugal), which produced monopolar square pulses. The 

emulsion flow was driven by a peristaltic pump (XX8000230, Millipore Corporation, 

USA) through two parallel plate electrodes in a treatment chamber (groove with a length 

of 38 mm, height of 3.4 mm and a gap between electrodes of 3.1 mm). Two K-type 

thermocouples, located at the inlet and outlet of the PEF chamber, were used to 

measure the initial and the final temperature of the emulsion and a data logger 

(Fieldlogger, Novus Automation, USA) was used to register the temperature 

measurements each second. 

 

 

Fig. 1. Schematic diagram of the PEF system. HVPG: high voltage pulse generator. P: pump, 

TC: treatment chamber, IE: inoculated emulsion, TE: treated emulsion.  
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2.3.2. HPU treatment system 

Sonication treatments were performed in a batch system with an ultrasonic 

processor (UP400St, Hielscher Ultrasonics, Germany) and a Ø14mm sonotrode 

(s24d14D, Hielscher Ultrasonics, Germany) at 100% of amplitude (160 W measured 

by the calorimetric method, 24 kHz). The inoculated emulsion (110 mL) was placed in 

a jacketed beaker, with water circulating at different temperatures: at 40ºC for E. coli 

and A. niger to reach a final temperature lower than that for thermal inactivation (known 

for each microorganism though the thermal treatment kinetics); and at 85ºC for 

B. pumilus spores to increase the temperature reached in the HPU treatment, due to 

the greater resistance of this bacterial spore to the thermal treatments, compared to 

E. coli and A. niger spores. A K-type thermocouple was located inside the jacketed 

beaker to measure the temperature of the emulsion during the treatment (each 

second), which was recorded with the same data logger used in the PEF treatments. 

 

2.3.3. Treatment conditions 

E. coli 

The effect of different PEF parameters (field strength, treatment time and input 

temperature of the sample) on inactivation was examined for E. coli. For that purpose, 

the width of the pulse and the pulse repetition frequency were fixed at 5 µs and 50 Hz, 

respectively. The flow of the pump was set to obtain a PEF treatment time of 90, 130 

and 170 µs, (calculated by multiplying the pulse width by the number of pulses received 

in the treatment chamber), corresponding to 66.6, 46.0 and 35.3 mL/min. As reported 

by Raso et al. (2016), a treatment field strength of 15-40 kV/cm is required for microbial 

inactivation. Therefore, in this study, the applied field strength was set at 20, 25 and 30 

kV/cm (6200, 7750 and 9300 V, respectively) and the total energy applied on E. coli 

ranged from 41.5 to 176.3 kJ/kg. The experiments were performed at two input 

temperatures of the emulsion (15 and 25ºC).  

HPU treatments were carried out for 2 (HPU2) and 3 min (HPU3). The 

combination of PEF and HPU technologies were performed in both sequences, PEF-

HPU and HPU-PEF. The experiments were done in triplicate. 
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A. niger and B. pumilus spores 

The conditions of the most effective PEF and HPU treatments found for E. coli 

were selected to investigate how the individual and the combined treatments affect  the 

inactivation of A. niger spores. However, as the total energy applied to the sample by 

the PEF treatment is related to the conductivity of the treatment sample, a lower energy 

was applied for the inactivation of A. niger spores (76.3 kJ/kg). In order to supply the 

same total energy as for E. coli (176.3 kJ/kg), an additional PEF treatment at 32.3 

kV/cm (corresponding to 10000 V) and 10 µs of pulse width was performed (PEFB) to 

study the individual and HPU-PEF combined inactivation of A. niger. For B. pumilus 

spores only, the PEFB treatment (152.3 kJ/kg) was applied to study both the individual 

and the combined (PEF-HPU and HPU-PEF) inactivation effectiveness, due to the 

known greater resistance of bacterial spores to PEF treatments. The experiments were 

performed in triplicate. 

 

2.4. Thermal treatments 

PEF and HPU treatments involve a rise in temperature. In order to separate 

the temperature effect in the PEF and HPU treatments and to ensure that the 

inactivation obtained was mostly due to the electroporation mechanisms of PEF and to 

the cavitation effects of sonication, conventional thermal treatments were conducted at 

50 and 60ºC for E. coli and A. niger; and at 85, 90ºC and 95ºC for B. pumilus.  

The thermal treatments were performed in a temperature-controlled water bath 

(1812 Bunsen, Spain). 1.5 mL of inoculated emulsion (the concentration of each 

microorganism was the same than in the non-thermal treatments) were poured into 

borosilicate glass tubes of 8 mm in diameter and 70 mm in length (Fiolax, Germany). 

The tubes were periodically taken from the bath and cooled in ice for immediate 

analysis. The experiments were carried out in triplicate.  
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2.5. Microbiological analyses 

The cell viability in the emulsions before and after each treatment was 

determined by the plate count technique. Depending on the expected count, 

appropriate serial dilutions were prepared with sterile deionized water. 100 μL of the 

dilution were spread on the surface of PCA (Scharlab, Spain) for E. coli and B. pumilus 

and PDA (Scharlab, Spain) for A. niger in triplicate and incubated at 37ºC  for 24 h, 

30ºC for 24 h and 25ºC for 72 h, respectively. The initial microbial load in the sample 

was also determined following the same procedure. Results were expressed as a 

logarithm reduction: log10 (N/N0), where N0 was the initial population of microorganisms 

in the untreated emulsion and N the population of microorganisms after the treatment. 

 

2.6. Statistical analysis 

Statistical analyses were performed with Statgraphics Centurion XVI (Statpoint 

Technologies Inc., USA). A multifactorial ANOVA was used to assess the influence of 

the PEF parameters on the inactivation level of E. coli. In addition, a one-way ANOVA 

was used to determine whether the use of the different non-thermal treatments 

considered or their combination had a significant effect on the level of inactivation for 

every microorganism. Fisher's least significant difference (LSD) procedure was used to 

discriminate among the means (p<0.05). 

 

3. Results and discussion 

3.1. E. coli inactivation in emulsion using PEF 

Table 2 reports the level of reduction obtained for E. coli after the PEF 

treatment under different conditions of field strength, treatment time and initial 

temperature of the emulsion. The degree of inactivation was significantly (p<0.05) 

higher for the greatest electric field intensity (30 kV/cm), the longest treatment times 

(130 and 170 µs) and the highest input temperature (25ºC). The maximum inactivation 

level achieved was 2.6 log-cycles for the most intense treatment (30 kV/cm, 170 µs and 

an input temperature of 25ºC).  
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The application of an electric field of 30 kV/cm increased the inactivation of 

E. coli by 0.2 and 0.5 log-cycles compared to the application of 25 and 20 kV/cm, 

respectively. These results coincided with those found by other authors. As an 

example, Spilimbergo et al., (2003) also found that the higher the electric field strength 

(4.5-25 kV/cm), the higher the inactivation levels of E. coli in water (0-3.2 log-cycle 

reduction). Higher inactivation levels (2.25 log-cycles) were obtained by Pataro et al. 

(2014) when treating E. coli in buffer solution at 40 kJ/L and an input temperature of 

22ºC, compared to an inactivation of 1.2 log-cycles at 41.5 kJ/kg and 25ºC found in the 

present study (Table 2). However, these differences could be explained by the different 

nature of the treatment media, since it is well known that the presence of fat in the 

media could exert a protective effect on microorganisms against PEF inactivation 

treatments (Mosqueda-Melgar et al., 2008). Therefore, a more moderate inactivation 

could be expected in the oil-in-water emulsions than in a simpler medium, such as 

water or buffer solutions.  

As for the input temperature, an average increase in the level of inactivation 

from 1.0 to 1.7 log-cycles was found for a rise in temperature from 15 to 25ºC. Several 

authors (Lyu et al., 2016; Raso et al., 2016; Timmermans et al., 2014) have also 

observed a greater microbial inactivation when the input temperature of the sample 

increases; in all likelihood, this is due not only to the simple thermal action but also to 

the fact that the cell membrane becomes more fluid and, therefore, more prone to 

electroporation. As an example, Lyu et al. (2016) achieved a S. cerevisiae inactivation 

of 2.1 log-cycles when the sample was treated at an initial temperature of 40ºC 

compared to 1.2 log-cycles at 30ºC. The maximum temperature reached in the present 

study during the PEF treatment was 50ºC (30 kV/cm, 170 µs and an input temperature 

of 25ºC), which is a non-lethal temperature for E. coli in the emulsion since, as can be 

observed in Fig. 2A, only 0.4 log-cycles of reduction were achieved in 50 min of thermal 

treatment. Therefore, although higher temperatures enhanced PEF microbial 

inactivation, the effect of PEF on the inactivation of E. coli was not linked to the 

temperature rise during the process but to the damage caused by the high voltage 

electrical pulses. PEF is thought to damage the cell membrane by the induced potential 

exerted across it. The transmembrane potential inside the membrane cell is 30-70 mV; 
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this increases as an external field is applied until a critical value is reached (70-100 

mV), leading to the formation of irreversible pores in the membrane for suitable electric 

field strength and energy input levels (Pataro et al., 2014; Spilimbergo et al., 2003). 

Although no sterile emulsions (2.6 log-cycles out of 8.2 log-cycles for complete 

inactivation) were obtained under these treatment conditions, higher inactivation levels 

could be achieved by the application of a combined PEF and HPU treatment (PEF-

HPU or HPU-PEF). In addition, the existence of commercial equipment for the 

continuous treatment of products using PEF or HPU would facilitate the implementation 

of sequential PEF and HPU treatments in the industry. 

 

Table 2. Inactivation of E. coli in oil-in-water emulsion after the PEF treatments. Treatment 

conditions: pulse width of 5 µs, frequency of 50 Hz. 

 

All data shown are means of the microbial reduction. Values in brackets are the 

standard deviations. 

 

 

Field strength 

(kV/cm) 

Treatment time 

(µs) 

Number of 

pulses 

Total energy 

(kJ/kg) 

Microbial reduction at 

15ºC of inlet temperature 

(log-cycles) 

Microbial reduction at 

25ºC of inlet temperature 

(log-cycles) 

30 170 34 176.3 1.3 (0.4) 2.6 (0.4) 

25 170 34 122.4 1.3 (0.1) 1.6 (0.4) 

20 170 34 78.3 0.9 (0.1) 1.5 (0.4) 

30 130 26 135.4 1.1 (0.4) 2.2 (0.3) 

25 130 26 94.0 1.0 (0.1) 1.8 (0.2) 

20 130 26 60.2 0.8 (0.3) 1.6 (0.3) 

30 90 18 93.5 1.0 (0.3) 1.4 (0.6) 

25 90 18 64.9 1.2 (0.1) 1.3 (0.3) 

20 90 18 41.5 0.6 (0.3) 1.2 (0.5) 
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Fig. 2. Inactivation kinetics for the thermal treatment of E. coli (A), A. niger spores (B) and 

B. pumilus spores (C) in oil-in-water emulsion. 
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3.2. E. coli inactivation in emulsions using high power ultrasound 

Log-cycle reductions of E. coli after different sonication treatment times (2 and 

3 min) are shown in Fig. 3. No significant (p>0.05) differences were found between 

using HPU2 or the most intense PEF treatment (30 kV/cm, 170 µs and 25ºC). However, 

lengthening the sonication time from 2 to 3 min led to a significant (p<0.05) inactivation 

boost (from 1.9 to 5.4 log-cycles), with HPU3 becoming the most effective individual 

treatment, compared to PEF and HPU2. Other authors also found that the longer the 

sonication time, the greater the E. coli inactivation (Ince & Belen, 2001; Piyasena et al., 

2003). 

HPU2 and HPU3 treatments reached a final temperature of 58.6 and 60ºC, 

respectively. The level of inactivation achieved by the HPU2 treatment was equal to 

the level reached in the conventional thermal treatment at 60ºC (1.9 log-cycles in 2 

min) (Fig. 2A); therefore, it could be thought that the inactivation obtained by HPU2 

could mainly be due to the heating effect. However, when the sonication treatment was 

extended to 3 min, a greater degree of inactivation was reached than in the thermal 

treatment at 60ºC: 5.4 log-cycles in the HPU3 treatment (Fig. 3) compared to 2.6 log-

cycles in the thermal (Fig.2A). Therefore, it seems that the mechanical cell stress 

caused by cavitation is dependent on the sonication time and 3 min were required to 

observe the synergistic effect between ultrasound cavitation and heat. Ince & Belen 

(2001) also observed a moderate inactivation of E. coli in buffer solution in the initial 2 

min of the HPU treatment (180 W) and, for longer treatments, the inactivation rate 

increased steeply. Consequently, HPU3 was selected for the inactivation treatments of 

A. niger and B. pumilus spores. 

 

3.3. E. coli inactivation in emulsions using a combined PEF and HPU treatment  

In Fig 3, the levels of inactivation of E. coli treated with the individual and the 

sequential PEF and HPU treatments are depicted. The PEF treatment was carried out 

under the most intense condition (30 kV/cm, 170µs and 25ºC input temperature), while 

sonication was performed for 2 and 3 min.  
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The application of PEF as a pre-treatment (PEF-HPU2 and PEF-HPU3) 

significantly (p<0.05) increased the inactivation level of E. coli, compared to the 

individual treatments. However, the inactivation level of PEF-HPU2 (3.8 log-cycles) 

was lower than the addition of the log-reductions of each individual treatment (2.6 + 

1.9= 4.5 log-cycles). This could be explained by considering that 3 min of HPU were 

required to observe any synergistic effect between cavitation and heat, as previously 

explained. On the contrary, the complete inactivation was reached by the combined 

PEF-HPU3 treatment (8.2 log-cycles, Fig. 3), which was a higher inactivation level than 

the theoretical sum of the reductions of each individual treatment (2.6 + 5.4= 8.0 log-

cycles). 

When HPU was applied first, the combined HPU2-PEF treatment showed non-

significant (p>0.05) differences as regards inactivation, compared to the PEF treatment 

alone. In addition, the level of inactivation achieved in the combined HPU2-PEF 

treatment (3.2 log-cycles) was lower than the addition of the individual treatments (4.5 

log-cycles). This was in accordance with the minimum threshold (> 2 min) required to 

observe inactivation linked to ultrasonic cavitation. 

With a longer sonication time in the first stage (HPU3-PEF), the inactivation 

level significantly (p<0.05) increased from 2.6 to 5.7 log-cycles, compared to the PEF 

treatment alone, but no differences were found (p>0.05) when employing the individual 

HPU3. In fact, the level of inactivation of the combined HPU3-PEF treatment was lower 

than the sum of the two individual treatments (5.4 + 2.6= 8.0 log-cycles), as also 

observed for the HPU2-PEF treatment. As an example, Walkling-Ribeiro, Noci, Riener, 

et al. (2009) treated S. aureus in orange juice by means of a 10 min HPU treatment 

followed by a PEF treatment (40 kV/cm for 150 µs), obtaining a slightly smaller 

reduction than that of the theoretical sum of the two hurdles, as can be observed in 

Table 1. These authors explained that cavitation may inactivate only the most sensitive 

cells, leaving the most resistant cells intact for the inactivation brought about by the 

PEF treatment.  

As for the sequence in which the treatments were applied, similar levels of 

reduction (3.2 and 3.8 log-cycles) were obtained when combining PEF and HPU2, 
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regardless of which of them was applied first, which is consistent with the reduced 

cavitation effects found in the HPU2 treatment. On the contrary, when combining PEF 

and HPU3, the sequence of the treatments significantly (p<0.05) affected the 

inactivation level, being more effective when PEF was carried out as a pre-treatment 

(from 5.7 log-cycles in the HPU3-PEF treatment to 8.2 in the PEF-HPU3 treatment). 

Thus, the most intense inactivation was found in the PEF-HPU3 treatment, resulting in 

the complete inactivation of E. coli (8.2 log-cycles). According to literature, one 

hypothesis could explain the effects of the sequence in the combined PEF and HPU 

treatments. PEF technology applied as a first hurdle has demonstrated its ability to 

exert sublethal injuries in the surviving population of microorganisms by damaging the 

membranes (Mañas & Pagán, 2005), making the microbial cells more sensitive to the 

subsequent treatment. On the contrary, several authors (Barbosa-Cánovas et al., 2005; 

Mañas & Pagán, 2005; Walkling-Ribeiro, Noci, Riener, et al., 2009) did not detected 

sublethal injuries in the surviving cells after HPU treatments and described the 

cavitation effect on inactivation as an “all or nothing” phenomenon, where the most 

sensitive cells were inactivated, leaving the remaining most resistant cells intact for the 

subsequent treatment. Thus, lethal synergistic effects should not be expected when 

HPU is applied as a first hurdle to inactivate vegetative cells.  

Only three references were found comparing the influence of the order of 

application of PEF and HPU treatments on microbial inactivation. On the one hand, Lyu 

et al. (2016) and Huang et al. (2006) found a similar reduction for both combinations. 

However, Huang et al. (2006), found no effect on inactivation when the  PEF treatment 

was applied alone; thus, when comparing the sequences of the combined treatments, 

similar reductions were observed. On the other hand, Palgan et al. (2012) reported that 

the highest inactivation level was found if the HPU treatment was applied before the 

PEF (HPU-PEF), conversely to the results of the present study. However, the 

aforementioned analyses used different media and microorganisms (S. cerevisiae in 

rice wine (Lyu et al., 2016), S. enteritidis in liquid whole egg (Huang et al., 2006) and 

L. innocua in a milk-based beverage (Palgan et al., 2012)), indicating that the exact 

inactivation mechanisms of the combined PEF and HPU treatments is still unclear and 
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the effect of the order of the application of these technologies might depend on the type 

of microorganism and the food matrix. 

 

Fig. 3. Inactivation of E. coli in oil-in-water emulsion treated by PEF at 30 kV/cm, 170 µs of 

treatment time, 5 µs of pulse width, 50 Hz and 25ºC of inlet temperature (176.3 kJ/kg), HPU for 

2 (HPU2) and 3 min (HPU3) and its combination. Dashed lines indicate complete inactivation. 

Letters show homogeneous groups established from LSD intervals (95%). 

 

3.4. A. niger inactivation in emulsions using a combined PEF and HPU treatment 

In Fig.4, the log reductions of A. niger spores after the individual and combined 

PEF and HPU treatments are shown. No inactivation of A. niger spores was found after 

the PEF treatment at 30 kV/cm, a pulse width of 5µs and an inlet temperature of 25ºC 

(76.3 kJ/kg of total energy, PEFA). However, increasing the field strength to 32.3 kV/cm 

and the pulse width to 10 µs (176.3 of total energy, PEFB) significantly (p<0.05) 

affected the inactivation of A. niger spores, since a reduction of 1.2 log-cycles was 

observed (Fig.4). E. coli treated by PEF at similar total energy levels (78.3 and 176.3 

kJ/kg) led to reductions of 1.5 and 2.6 log-cycles, respectively (Table 2), which 

demonstrates the greater resistance to PEF treatments of A. niger spores than E. coli. 

The application of HPU3 led to an inactivation of 4.3 log-cycles (Fig.4) of the A. niger 

population while only 1.7 log-cycles were reduced in the same length of thermal 

treatment at 60ºC (Fig.2B). Therefore, as found for E. coli, the inactivation obtained by 

HPU for 3 min was mainly due to cavitation effects and not to heat. As in the PEF 
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treatments, A. niger spores were more resistant to HPU treatment than E. coli cells. 

This greater resistance is linked to the multi-layered cell wall of Aspergillus spores, with 

a different composition and structure to the bacteria cell wall. Specifically, the A. niger 

cell wall is covered by proteins (hydrophobins), which confer a high degree of 

hydrophobicity to the cell wall protecting the spore (Tischler & Hohl, 2019). Under the 

protein layer, there is a dense layer composed of melanin, which is known to increase 

the cell wall rigidity and make the spore remain turgid when exposed to an external 

stress (Gow et al., 2017). Therefore, the characteristics of the wall of the A. niger 

spores could be responsible for its greater resistance to electroporation and ultrasonic 

mechanical stress than the vegetative bacteria.   

On the one hand, the application of PEF at 76.3 kJ/kg followed by HPU3 

(PEFA-HPU3) did not lead to any beneficial effects on A. niger inactivation, compared 

to the HPU3 treatment alone (p>0.05) (Fig.4). Non-significant (p>0.05) differences in 

the level of inactivation were also obtained when the reverse sequence (HPU3-PEFA) 

was applied. Thereby, not only was the PEF treatment at low energy (PEFA), unable 

to inactivate A. niger spores, but neither did it seem to increase the spores’ 

susceptibility to the subsequent treatment. On the other hand, the combination of high-

energy PEF (PEFB 176.3 kJ/kg) followed by HPU3 (PEFB-HPU3) led to the complete 

inactivation of A. niger (6.6 log-cycles), reaching a higher degree of inactivation than 

the sum of each individual treatment (5.5 log-cycles). Thus, a synergistic effect on 

inactivation was found, which could be explained by considering that PEF with an 

energy of 176.3 kJ/kg (PEFB) as a pre-treatment was intense enough to make the cell 

structure of the fungal spore more sensitive to the subsequent HPU3 treatment. On the 

contrary, the HPU3-PEFB combination (4.9 log-cycles) did not significantly (p>0.05) 

increase the inactivation level reached by the individual HPU3 (4.3 log-cycles). This 

once again illustrates that HPU application as a first hurdle does not lead to sublethal 

injuries in the microbial cells, as has also been observed for E. coli and reported 

previously. 
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Fig. 4. Inactivation of A. niger spores in oil-in-water emulsion treated by PEF at 50Hz and 25ºC 

of inlet temperature (PEFA: 30 kV/cm, 170 µs of treatment time, 5 µs of pulse width and 76.3 

kJ/kg of total energy and PEFB: 32.3 kV/cm, 340 µs of treatment time, 10 µs of pulse width and 

176.3 kJ/kg of total energy), HPU for 3 min (HPU3) and its combination. Dashed lines indicate 

complete inactivation. Letters show homogeneous groups established from LSD intervals (95%). 

 

3.5. B. pumilus inactivation in emulsions using a combined PEF and HPU 
treatment 

The reduction of B. pumilus spores after the individual and combined PEF and 

HPU treatments is shown in Fig.5. PEF treatment at 152.3 kJ/kg (PEFB) was not able 

to inactivate B. pumilus spores (0.1 log-cycles reduction). Some authors also studied 

the PEF inactivation in bacterial spores and either found no effect at all or a very limited 

one (Devlieghere et al., 2004; Heinz et al., 2001; Noci et al., 2009). As an example, 

Spilimbergo et al. (2003) found an inactivation of only 0.5 log-cycles when treating 

B. cereus spores in water at room temperature, 25 kV/cm, and 20 pulses applied at 5 s 

intervals. The application of HPU3, where a peak temperature of 90ºC was reached, 

led to a reduction of 0.3 log-cycles. However, the 3 min thermal treatment at 90ºC led 

to a greater reduction (0.6 log-cycles). Therefore, it could be assumed that the 

inactivation achieved by HPU3 could be mainly associated with the thermal effect. 

Bacterial spores seem very resistant to cavitation, as reported by previous studies. Fan 

et al. (2019) required 40 min of HPU at 20 W/mL and 80ºC to achieve a 2.4 log-cycle 

inactivation of B. subtilis spores and Evelyn & Silva (2018) needed 60 min at 0.33 W/g 
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and 75ºC for a reduction of <0.3 and 1.0 log-cycles of B. cereus and C. perfringens 

spores, respectively, in beef slurry. The extreme resistance of bacterial spores to PEF 

and HPU treatments is attributed to the highly resistant mechanical properties of the 

spore structure (Fan et al., 2019; Reineke & Mathys, 2020). The spore structure is 

markedly different from that of the corresponding vegetative cells. Among other things, 

the main differences are the number of both the layers and constituents of the spore, 

the dramatic dehydration and the less fluid membrane and cytoplasm, which confer 

great resistance to different inactivation treatments on the bacterial spore (Black et al., 

2007; Feofilova et al., 2012; Ishihara et al., 1999).  

As for the vegetative bacteria and the fungal spore, the sequence of the 

treatments significantly (p<0.05) affected the inactivation level of B. pumilus spores, 

being more effective when PEF was carried out before the HPU treatment (Fig. 5). Non-

significant (p>0.05) differences in inactivation were found between the combined 

HPU3-PEF treatment and the individual ones, and the level of inactivation of the HPU3-

PEF treatment was lower (0.3 log-cycles) than the sum of the two individual treatments 

(0.3 + 0.1= 0.4 log-cycles), as also observed for E. coli and A. niger. On the contrary, 

the combined PEFB-HPU3 treatment showed a synergetic effect on the inactivation of 

B. pumilus spores (Fig.5), since the achieved inactivation (1 log-cycles) was higher 

than the addition of the individual treatments (0.4 log-cycles). Nevertheless, the level 

of reduction was low and, therefore, not satisfactory for pasteurization purposes. No 

studies have been found assessing the effect of the combined PEF and HPU 

treatments on bacterial spores; therefore, it would be interesting to assess their effect 

on the inactivation of bacterial spores other than B. pumilus. In addition, the 

combination of PEF and HPU with other emerging non-thermal technologies, such as 

cold plasma (Liao et al., 2019) or high hydrostatic pressures (Black et al., 2007), could 

be of great interest.  



A. Gomez-Gomez, 2021 

228 

 

Fig. 5. Inactivation of B. pumilus spores in oil-in-water emulsion treated by PEF at 50 Hz and 

25ºC of inlet temperature, 32.3 kV/cm, 340 µs of treatment time, 10 µs of pulse width and 152.3 

kJ/kg of total energy (PEFB), HPU for 3 min (HPU3) and its combination. Dashed lines indicate 

complete inactivation. Letters show homogeneous groups established from LSD intervals (95%). 

 

4. Conclusions 

If applied individually for the purposes of inactivating vegetative bacteria and 

fungal and bacterial spores in oil-in-water emulsions, PEF and HPU treatments only 

achieved moderate or negligible levels of reduction. The combined HPU-PEF treatment 

led to lower inactivation levels than that produced by the addition of the individual 

treatments. On the contrary, the reverse treatment (PEF-HPU) led to there being 

synergistic effects on the level of inactivation, achieving complete inactivation for E. coli 

and A. niger spores. Therefore, the combined PEF-HPU treatment has shown itself to 

be a promising means of inactivating vegetative bacteria and fungal spores. However, 

it does not seem feasible for the inactivation of bacterial spores, at least for B. pumilus. 

Further studies should address the impact of the combined treatments on different 

species of bacterial spores, microorganisms isolated from food and different treatment 

media must be tested. In addition, future research should analyze the effect of the 

combined PEF and HPU treatments on the physicochemical properties and stability of 

the emulsions.  
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Microbial safety of emulsions represents a relevant issue in the food and 

pharmaceutical industry. In particular, spores contamination is a major risk since they 

are the most resistant microbial form against inactivation due to their complex cell 

structure. Consumers also demand high-quality products and, in this sense, non-

thermal preservation technologies are emerging since they could affect the 

physicochemical and nutritional properties of the treated products to a lower extent than 

conventional thermal treatments. Supercritical carbon dioxide (SC-CO2), high power 

ultrasound (HPU) and pulsed electric fields (PEF) are emerging methods for 

pasteurization, but there is still room for improvement in terms of the inactivation rate 

and product quality. The combination of several non-thermal technologies could 

enhance the inactivation performance and therefore, milder conditions or shorter 

processing times could be used, obtaining a better quality of the treated products and 

less costly processes.  

Different aspects can affect the sensitivity of microorganisms, including the 

process conditions (pressure, temperature, time…), the use of combined treatments, 

the composition of the medium and the type of microorganism. All these issues have 

been addressed in the present PhD Thesis and will be discussed as a whole in this 

section. 

 

SC-CO2 + HPU microbial inactivation (CHAPTER 1) 

Supercritical carbon dioxide treatments  

The effectiveness of SC-CO2 inactivation and conventional thermal treatments 

was compared for vegetative bacteria (E. coli and B. diminuta) and fungal (A. niger) 

and bacterial spores (C. butyricum and B. subtilis), achieving higher inactivation in SC-

CO2. As an example, in the oil-in-water emulsions thermally treated (50ºC), only a 

reduction of 0.4 log-cycles of E. coli was achieved in 50 min, while when emulsions 

were SC-CO2–treated at 100 and 350 bar (50ºC), on average, a reduction of 7.1 log-

cycles  was achieved at the same time. However, SC-CO2 could be considered as a 

highly time-consuming process, which could seriously restrict its industrial application. 

In fact, to achieve the complete inactivation for vegetative bacteria (E. coli and 
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B. diminuta), which was the most sensitive type of microorganism studied in this PhD 

Thesis, more than 40-50 min were required. Consequently, the application of HPU to 

the SC-CO2 treatment for different microorganisms and media was investigated.  

 

Effect of the application of HPU to the SC-CO2 treatments  

The implementation of HPU drastically enhanced the SC-CO2 inactivation for 

vegetative bacteria (E. coli and B. diminuta) in both water and emulsions. In fact, it 

shortened the complete inactivation time of both bacteria by approximately 1 order of 

magnitude. HPU also noticeably improved the SC-CO2 inactivation of A. niger spores 

in water. This fact was in accordance with the damage observed by microscopy 

techniques for the microbial cells (E. coli, B. diminuta and A. niger spores) inactivated 

by SC-CO2 + HPU in water. The inactivated cells lost their shape and their cell walls 

appeared partially disintegrated. In addition, in the intracellular space, the cytoplasm 

was observed unevenly distributed, with extensive empty regions, indicating that an 

important amount of cytoplasmic content was released and with aggregated 

cytoplasmic content in some areas. However, no effect of HPU was found on the 

inactivation of A. niger spores in the emulsion, which could indicate that the oil-in-water 

dispersion protected the A. niger spores, in particular, from cavitation. Therefore, the 

effect exerted by HPU on SC-CO2 treatments may depend on both the microorganism 

and the composition of the medium.   

As for the inactivation of bacterial spores in emulsions, in general terms, an 

enhanced inactivation was found in the SC-CO2 + HPU treatments. For example, the 

time required for the complete SC-CO2 + HPU inactivation of C. butyricum spores was 

shortened from 10 to 3 min at 550 bar and 85ºC compared to the individual SC-CO2 

treatment. In addition, for the inactivation of B. subtilis spores at 20 min, 350 bar and 

85ºC, an inactivation of 5.4 log-cycles was achieved when using SC-CO2 + HPU, 

compared to 3.1 log-cycles in SC-CO2. Nevertheless, SC-CO2 + HPU treatments at 

95ºC did not significantly (p>0.05) enhance the inactivation of G. stearothermophilus 

spores, regardless the pressure applied (350 or 550 bar), compared to the thermal 

treatment at the same temperature (95ºC) and time (20 min). Watanabe et al. (2003) 
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also studied the SC-CO2 inactivation of G. stearothermophilus spores at 95ºC and 300 

bar, although in water, and achieved an inactivation of 5.0 log-cycles in 120 min without 

the use of HPU. Probably, longer treatment times than the ones used in our 

experiments (20 min) are required to achieve a noticeable reduction of these spores, 

regardless of the use of HPU. However, treatments longer than 20 min could be 

considered unfeasible for industrial implementation and, consequently, the inactivation 

of G. stearothermophilus spores with SC-CO2 + HPU could not be considered at 

industrial level.  

Several authors (Ortuño et al., 2012, 2013; Paniagua-Martínez et al., 2016) 

found that the SC-CO2 inactivation of vegetative cells drastically improved with the 

implementation of HPU. In this sense, Ortuño et al., (2012) demonstrated that the effect 

of the combined SC-CO + HPU treatment was synergistic. HPU is known, on the one 

hand, to induce cavitation which affects the microbial cells by causing fractures on the 

cell walls, facilitating the penetration of SC-CO2 inside the cell and the extraction of 

internal vital compounds (Ortuño et al., 2013). On the other hand, HPU has 

demonstrated to increase the mass and heat transfer in SC-CO2 (Cárcel et al., 2012; 

Gao et al., 2009) and, consequently, to enhance the solubilisation of CO2 into the 

medium and its contact with the cells. Thus, the penetration of SC-CO2 into the 

microbial cells is facilitated. However, the effects of SC-CO2 + HPU treatments on the 

inactivation of inoculated fungal and bacterial spores had not been previously 

investigated. Generally, fungal spores have shown a larger resistance to HPU than 

vegetative cells (López-Malo et al., 2005) probably because of their more resistant cell 

wall structure. In addition, A. niger spores in particular, might be more resistant to 

cavitation due to the larger rigidity of their cell wall provided by melanin (Tischler & 

Hohl, 2019). In fact, although in the present PhD Thesis, HPU affected the inactivation 

of A. niger in water, the effect was of less magnitude than on E. coli and B. diminuta.  

In bacterial spores, HPU could act damaging its highly dehydrated and 

resistant structure and triggering the hydration of the spore (Barbosa-Cánovas et al., 

2005). Thereby, HPU makes the cell more sensitive to SC-CO2 treatment since CO2 

can dissolve and penetrate more easily inside the bacterial spore, as may occur for 

C. butyricum, B. subtilis and B. pumilus spores. However, the structure of 
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G. stearothermophilus spores was probably stronger and more resistant to cavitation 

effects than the spores from the Clostridium and Bacillus genus.  

 

Effect of pressure and temperature 

The results found in the present PhD Thesis illustrated that, in general terms, 

the higher the pressure and the temperature in the SC-CO2 and SC-CO2 + HPU 

treatments, the more intense the microbial inactivation.  

The increase in the pressure and temperature led to an improvement in the 

inactivation of B. diminuta, regardless the treatment (SC-CO2 or SC-CO2 +HPU) or the 

medium (water or 20% oil-in-water emulsion). The same effects were found for E. coli 

in the 20% oil-in-water emulsion while only the temperature had a significant (p<0.05) 

effect on the inactivation of E. coli in water in both SC-CO2 and SC-CO2 + HPU 

treatments.  

As regards the fungal spores (A. niger), the higher the pressure and the 

temperature, the higher the inactivation in both media (water and 20% oil-in-water 

emulsions) and treatments (SC-CO2 and SC-CO2 + HPU). As for bacterial spores, the 

increase in the temperature also led to a higher inactivation of C. butyricum and 

B. subtilis, regardless the treatment (e.g. the inactivation level of B. subtilis spores 

increased from 0.1 to 2.7 log-cycles, from 3.1 to 6.2 log-cycles and from 5.4 to 6.7 log-

cycles when temperature was raised from 85 to 95ºC, in 20 min of thermal, SC-CO2 

and SC-CO2 + HPU treatment, respectively) and the pressure also affected the 

inactivation, being of larger magnitude as pressure was increased but up to a limit (350 

bar) from which an increase in pressure did not result into a larger inactivation of 

C. butyricum or G. stearothermophilus spores. Therefore, the effect of pressure was 

probably limited by the CO2 solubility, which may increase weakly from 350 to 550 bar. 

Therefore, in general terms, pressure seems to have a lower effect than temperature 

in the ranges considered in this PhD Thesis for both parameters.  

Contrary to the results presented in this PhD Thesis, Ortuño et al. (2012, 2013, 

2014) did not reported so far a noticeable effect of the pressure and temperature in SC-

CO2 + HPU inactivation kinetics. This fact could be explained by the less resistant 
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microorganisms analyzed by these authors since they studied only vegetative cells in 

which the strong effect of HPU leads to very fast inactivation kinetics, which could mask 

the influence of other variables, such as pressure and temperature.  

High pressure increases the solubility of CO2 in the medium, therefore, the 

contact between CO2 and the microbial cell is higher and the CO2 penetration into the 

cells could be improved (Hong et al., 1997; Liao et al., 2007). However, the effect of 

the CO2 pressure on inactivation is limited by the saturation solubility of CO2 in the 

suspending medium (Garcia-Gonzalez et al., 2007). As mentioned, this saturation was 

reflected in our inactivation kinetics when the pressure was increased more than 350 

bar. In addition, high temperatures are known to increase CO2 diffusivity and to make 

vegetative cell membranes more fluid, facilitating the penetration of CO2 (Ferrentino & 

Spilimbergo, 2015; Hong et al., 1999). Regarding fungal and bacterial spores, these 

mechanisms may not be applicable due to their highly resistant and dehydrated 

structure. Thus, two hypotheses for the SC-CO2 inactivation of bacterial spores were 

found in the literature, having in common that it is necessary to reach a threshold 

temperature, which was dependent on the bacterial spore specie, to reduce the 

extreme resistance of the spores to the treatment and to obtain lethal effects. In this 

sense, 

• Spilimbergo et al. (2003) suggested that the effect of CO2 acidification along with 

a certain temperature was able to initiate the activation and germination of the 

bacterial spores. Thus, the spore structure is rehydrated becoming more 

sensitive to SC-CO2 treatment. However, the length of the inactivation kinetics in 

the present PhD Thesis is too short to believe that this mechanism could be 

taking place.  

• Rao et al. (2015) proposed that in SC-CO2 treatments, a certain temperature, 

which was dependent on the bacterial spore, is necessary to exert direct damage 

on the external structure of the spores and make them more prone to hydration 

and more permeable to SC-CO2. This hypothesis could be more plausible, 

considering the short treatment times applied on this PhD Thesis.   
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Regardless these hypotheses, the exact mechanisms for SC-CO2 inactivation 

of spores have not been elucidated on this PhD Thesis and its understanding could be 

considered matter of relevant future research.  

 

Effect of the type of microorganism 

As for the vegetative bacteria studied in the present PhD Thesis (E. coli and 

B. diminuta), in general terms, very slight differences in terms of resistance to SC-CO2 

and SC-CO2 + HPU treatments were found. However, A. niger spores was significantly 

(p<0.05) more resistant compared to both vegetative bacteria, regardless of the type 

of treatment (thermal, SC-CO2 or SC-CO2+ HPU) or the medium. For example, for the 

SC-CO2 treatment at 50ºC and 350 bar in water, 55 min were required to achieve the 

complete inactivation of A. niger (6.8 log-cycles), while around 10 min were needed for 

E. coli or B. diminuta (8 log-cycles). Other studies already reported that fungal spores 

are more resistant to SC-CO2 treatments than vegetative bacteria, due to their different 

and more resistant structure (Soares et al., 2019). Specifically, in A. niger spores, the 

multi layered wall, which contains melanin, may confer high rigidity to the cell wall 

(Tischler & Hohl, 2019). Among all the types of microorganisms studied, bacterial 

spores were found to be the most resistant to thermal, SC-CO2 and SC-CO2 + HPU 

treatments. Bacterial spores own a very resistant and dehydrated structure, which 

could hinder CO2 to dissolve and to penetrate thought the cell. Among the bacterial 

spores studied, the anaerobic one (C. butyricum) was the most sensitive, compared to 

those aerobic (B. subtilis, B. pumilus and G. stearothermophilus). No difference was 

found between the resistances of spores from the genus Bacillus (B. subtilis and 

B. pumilus), which were completely inactivated with a SC-CO2 + HPU treatment at 350 

bar, 95ºC and 20 min. On the contrary, the spores of G. stearothermophilus were the 

most resistant, since, even with the most intense treatment employed (SC-CO2 + HPU 

at 550 bar, 95ºC and 20 min), the inactivation obtained was negligible (0.5 log-cycles). 

G. stearothermophilus spores are often used for the validation of sterilization processes 

where temperature, steam and pressure are involved due to its extreme resistance to 

external stresses. Therefore, as mentioned before, the proposed inactivation 
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technologies were not useful for the inactivation of G. stearothermophilus spores due 

to its extremely strong resistance. 

 

Effect of the treating medium 

Most of the authors previously addressing microbial inactivation observed 

protective effects against external stresses on microbial cells in complex 

physicochemical systems, compared to more simple media. The content of certain 

compounds such as water, fat, sugar and salt or the pH of the suspending medium has 

demonstrated to affect the microbial sensitivity to SC-CO2 inactivation (Garcia-

Gonzalez et al., 2007). In the present PhD Thesis, SC-CO2 and SC-CO2 + HPU 

treatments were carried out in different media (water and oil-in-water emulsions with 

different oil content). For both vegetative bacteria, E. coli and B. diminuta, the 

inactivation obtained by SC-CO2 were significantly (p<0.05) higher in water than in the 

emulsions. Moreover, in overall terms, the higher the oil content in the emulsion (10, 

20 or 30%), the slower the bacterial inactivation. Therefore, it seems that the presence 

of oil in the medium protected the microbial cells against SC-CO2 inactivation. Some 

hypotheses explaining the reduced effectiveness of the SC-CO2 inactivation in the 

emulsions, compared to water, are suggested: 

• The different components in the emulsions could provide certain buffering 

capacity, which could be not present in a simple medium, such as water. Thus, 

the inactivation performance of SC-CO2 could be limited since one of the 

assumed mechanisms for SC-CO2 inactivation is the decrease of pH in the 

suspending medium.  

• The contact between SC-CO2 and microbial cells could be reduced by the 

presence of oil in the suspending medium. Lipid substances could act as a barrier 

protecting the lipid bilayer of the membranes and hindering the SC-CO2 

penetration into the cells. 

• The SC-CO2 could be partly dissolved in the oil-phase of the suspending medium 

and, consequently, less CO2 could be available to be dissolved in the water 

phase of the medium or solubilized in the lipid bilayer of the cell membrane. Thus, 
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the decrease of the pH of the medium and the increase of permeability of the 

microbial cell membranes could be restrained.  

When HPU was applied to the SC-CO2 treatments, similar inactivation levels 

of E. coli and B. diminuta were obtained, regardless of the oil content in the emulsion 

(10, 20 or 30%). Probably, the intense turbulence caused by cavitation lead to a faster 

diffusion and penetration into the microbial cells of SC-CO2. Thus, the protective effect 

of the oil was masked.  

On the contrary, the inactivation capacity of both SC-CO2 and SC-CO2 + HPU 

treatments was not significantly (p>0.05) affected by the suspending medium for 

A. niger spores (on average, 4.4 and 4.3 log-cycles of reduction were obtained for the 

treatments in water and in the 20% oil emulsion). In this regard, Noman et al. (2018) 

found a slightly higher inactivation level in A. niger spores treated with SC-CO2 in water 

(6.0 log-cycles), compared to seawater or saline solutions (5.5 log-cycles). Therefore, 

it seems that the resistance of A. niger spores can be affected by the content of salts 

in the suspending medium. However, as shown in the present PhD Thesis, the 

presence of oil in the suspending medium did not exert any protective effect for this 

microorganism. 

 

Effect of the SC-CO2 + HPU treatments on the physicochemical properties of the 
emulsions  

In order to determine a SC-CO2 + HPU treatment able to inactivate spores 

while minimizing the physicochemical changes in the emulsions, different combinations 

of pressure (100, 350 and 600 bar), temperature (55, 75 and 95ºC) and time (5, 12.5 

and 20 min) were considered and the most relevant quality parameters of the emulsions 

were measured. In general terms, only a mild effect of the process variables 

(temperature, pressure and time) on the quality of the emulsions was found. Treated 

emulsions showed, in general, minimal changes in density and good electrostatic 

stability (measured by the zeta potential). However, the pH decreased and the droplet 

size increased.  
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Depressurization and/or the application of HPU for a long time (over-

processing) could have broken the oil-water interface of some droplets, leading to 

coalescence and the appearance of larger droplets. In fact, a small fraction of the 

emulsion (~2 mL) with visible oil separation was found in the last fraction extracted from 

the vessel. Consequently, a better appearance and a lower mean droplet size could be 

obtained by removing the separated oil fraction of the processed emulsion.  

The basic pH of the untreated emulsions (8.4) could enhance the dissociation 

of the carbonic acid formed by the dissolution of the CO2 in the water phase of the 

emulsion, leading to a decrease of pH. However, the reduction in the pH did not affect 

the repulsive forces between droplets, as shown by the zeta potential. Despite these 

slight physicochemical changes, suitable conditions of pressure, temperature and time 

(e.g. 600 bar, 95ºC and 12.5 min) permitted the quality and stability of the treated 

emulsions to be maintained while achieving a satisfactory microbial inactivation, except 

for G. stearothermophilus spores.  

In short, the combined SC-CO2 + HPU technology was feasible for the 

processing of oil-in-water emulsions in order to achieve microbial and physicochemical 

stability. The presence of oil in the medium was not a limitation for SC-CO2 + HPU 

inactivation, which was completely achieved for all the microorganisms studied, 

including bacterial spores, except for G. stearothermophilus spores. SC-CO2 + HPU 

treatments at 350 bar and around 10 min were enough to completely inactivate 

vegetative bacteria at 50ºC and A. niger spores at 60ºC. Moreover, 350 bar and 20 min 

were sufficient to achieve the complete inactivation of C. butyricum at 80ºC and Bacillus 

spores at 95ºC.  

 

PEF and HPU microbial inactivation (CHAPTER 2) 

The impact of individual and combined pulsed electric field (PEF) and high 

power ultrasound (HPU) treatments on the inactivation of different types of 

microorganisms (a vegetative bacteria, a fungal spore and a bacterial spore) in oil-in-

water emulsions was studied for the first time.  
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Effect of the treatment conditions  

In the PEF treatments, it was observed that the higher the field strength, time 

and input temperature in the PEF treatments, the larger the inactivation level of E. coli. 

Thus, the highest level of E. coli inactivation by PEF was achieved at the highest total 

energy delivered (176.3 kJ/kg) at 25ºC input temperature. The fluidity of the 

membranes in vegetative cells could increase at high temperatures , making cells more 

prone to electroporation (Mosqueda-Melgar et al., 2008). The total energy applied in 

the PEF treatment was also significant (p<0.05) on the inactivation of A. niger spores 

(no inactivation at 76.3 kJ/kg and 1.2 log-cycles of inactivation at 176.3 kJ/kg at 25ºC).  

Regarding HPU, the longer the treatment, the greater the E. coli inactivation 

(the inactivation achieved increased from 1.9 to 5.4 log-cycles from using 2 to 3 min). 

In fact, the inactivation level reached after 2 min of HPU treatment equalled that of the 

thermal treatment at the same temperature. Therefore, probably, the inactivation 

achieved up to 2 min was mainly linked to only the heating effect. On the contrary, when 

the HPU treatment was extended to 3 min, the inactivation level reached was higher 

than that of the thermal treatment at the same temperature and, consequently, it could 

be related to cavitation effects. Nevertheless, the maximum inactivation levels achieved 

by PEF and HPU were of 2.6 and 5.4 log-cycles, respectively, for E. coli (out of 8.1 log-

cycles, corresponding to the complete inactivation), 1.2 and 4.3 log-cycles, 

respectively, for A. niger spores (out of 6.6 log-cycles) and 0.1 and 0.3 log-cycles, 

respectively, for B. pumilus spores (out of 7.5 log-cycles). Therefore, in order to 

increase the microbial inactivation, the combination of both technologies applied 

sequentially was investigated.  

 

Effect of the combined treatments  

The sequence in which the combined PEF and HPU treatments was applied 

was found to be more effective if PEF was conducted as the first hurdle. The 

combination of PEF (152.3-176.3 kJ/kg) followed by HPU (3 min) led to a higher 

inactivation than that of the sum of the individual treatments for all the studied 

microorganisms, leading to synergistic effects for A. niger and B. pumilus spores. On 
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the contrary, when HPU (3 min) was followed by PEF, the inactivation level was lower 

than the sum of the inactivation levels for the individual treatments, regardless the 

microorganism. There are two hypotheses that could explain these results:  

• As some authors suggested, cavitation effect on inactivation could be an “all or 

nothing” treatment with no sublethal effects on the microbial cells (Barbosa-

Cánovas et al., 2005; Walkling-Ribeiro et al., 2009). Consequently, synergistic 

effects should not be expected when HPU is applied prior to an additional 

inactivation treatment. Thus, when HPU is applied first, the most sensitive cells 

may be inactivated by cavitation, leaving the most resistant cells intact to be 

inactivated by the subsequent PEF treatment. On the contrary, PEF treatment 

has demonstrated to exert lethal and sublethal effects in microbial cells, leaving 

the non-inactivated cells more sensitive for the subsequent HPU treatment.  

• PEF treatment involves accumulation of electrical charges at both sides of the 

cell membrane, which shows a non-conductive behaviour (Delso et al., 2020). 

Thus, when the transmembrane potential increases above a critical value, 

electroporation occurs. However, the fractures in the cell membrane caused by 

HPU are conductive structures and, consequently the transmembrane potential 

exerted by the further PEF treatment could be diminished and it does not lead to 

the electroporation. Thus, if the microbial cells are initially damaged or cracked 

by the HPU treatment, the effect of the further PEF is limited than the one found 

in the intact cell. On the contrary, HPU may similarly affect both intact and 

electroporated cells, being possible to lead to synergistic effects. 

 

Effect of the type of microorganism 

PEF treatments at the same temperature (25ºC) and similar energies (152.3-

176.3 kJ/kg) reached reductions of 2.6, 1.2 and 0.1 log-cycles for E. coli, A. niger and 

B. pumilus, respectively. HPU treatment applied for 3 min led to 5.4, 4.3 and 0.3 log-

cycles reduction for E. coli, A. niger and B. pumilus, respectively. The microorganism 

with the highest resistance to both treatments, PEF and HPU, was the bacterial spore 

(B. pumilus), followed by the fungal spore (A. niger) and lastly, by the vegetative 
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bacteria (E. coli). When PEF is applied, charges located at both sides of the cell 

membranes exert electrocompressive forces, which are equilibrated by elastic 

deformation of the membranes until a critical field strength where the electric 

breakdown of the membrane occurs and cells are electroporated. However, the 

complex and rigid structure of bacterial and fungal spores is not easily deformed and 

extremely high field strengths are probably required for achieving lethal effects on 

spores. In addition, it is known that the internal electrical conductivities of spores was 

lower than in the vegetative cells, due to the highly dehydrated structure and the low 

mobility of ions in the spore structure (Deeth & Datta, 2018; Mastwijk & Bartels, 2007), 

which could also explain the lower effect of PEF on spores.  

The inactivation levels achieved with the combination of PEF and HPU showed 

the same order in terms of microbial resistance than in the case of the treatments 

individually applied, being the inactivation levels 8.2, 6.6 and 1 log-cycles for E. coli, 

A. niger and B. pumilus, respectively, after the PEF (152.3-176.3 kJ/kg)-HPU (3 min) 

treatment and 5.7, 4.9 and 0.3 log-cycles for E. coli, A. niger and B. pumilus, 

respectively, after the HPU (3 min)-PEF (152.3-176.3 kJ/kg) treatment.  

In summary, the combined PEF-HPU treatment is a promising hurdle 

technology to inactivate vegetative bacteria or fungal spores in emulsions. However, 

the effect on the inactivation of bacterial spores is limited.  

 

Comparison of combined technologies 

Both combined technologies (SC-CO2 + HPU and PEF-HPU) were feasible 

alternatives to the thermal pasteurization of lipid emulsions, which were greatly affected 

by the process variables. The comparison of the combined technologies (SC-CO2 + 

HPU and PEF-HPU) in terms of inactivation effectiveness is difficult since usually, 

different temperatures and times were employed. The peak temperature reached in the 

PEF-HPU treatment to inactivate E. coli was of 60ºC while the highest temperature 

used in the SC-CO2 + HPU treatments was 50ºC. Consequently, a longer time was 

required in the SC-CO2 + HPU treatment (at least 8 min) to achieve the complete E. coli 

inactivation, compared to the PEF-HPU treatment (around 3 min). The SC-CO2 + HPU 
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treatment at 60ºC completely inactivated A. niger spores in 10-25 min, depending on 

the pressure, while approximately 3 min of the PEF-HPU treatment was enough to 

achieve the same inactivation level at the same temperature. Therefore, the PEF-HPU 

treatment was more effective for A. niger spores. The inactivation of Bacillus spores 

with SC-CO2 + HPU at 85ºC was approximately of 1.4 log-cycles in 3 min, which was 

a higher inactivation than the one obtained after the PEF-HPU treatment (1 log-cycle) 

at a higher temperature (90ºC) and approximately the same time. Hence, it seems that 

the SC-CO2 + HPU treatment was more effective for Bacillus spores. Therefore, since 

the inactivation mechanisms of each technology are different, the effectiveness of the 

treatment depends on the type of microorganism and its particular resistance to those 

mechanisms.  

The comparison of both combined technologies in terms of industrial 

implementation is not easy since several aspects should be taken into consideration. 

The use of high pressures in SC-CO2 + HPU treatments implies a higher initial 

investment than in the case of the implementation of the PEF technology. However, a 

wider variety of products can be treated by SC-CO2 + HPU while a more limited number 

are appropriate to be treated by PEF, due to the conductivity characteristics needed for 

its optimum application. Notwithstanding, nowadays, there are very few companies in 

Europe manufacturing SC-CO2 or PEF equipment to treat products at industrial levels, 

which makes these technologies rare in the industry.  
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Based on the obtained experimental results of the present thesis, the main 

conclusions are listed and divided according to the two chapters of the Results and 

Discussion section. Moreover, a general conclusion is outlined at the end of this 

section. 

 

6.1. SC-CO2 + HPU microbial inactivation (CHAPTER 1)  

6.1.1. Supercritical carbon dioxide treatments  

• For all the microorganisms studied (E. coli, B. diminuta, A. niger spores, 

C. butyricum spores and B. subtilis spores), higher inactivation levels were 

achieved by the SC-CO2 treatments compared to the thermal ones.  

• The microbial inactivation in oil-in-water emulsions using SC-CO2 was highly 

time-consuming, which could seriously restrict its industrial application. 

 

6.1.2. Effect of the application of HPU in the SC-CO2 treatments 

• HPU improved the SC-CO2 inactivation of vegetative bacteria (E. coli and 

B. diminuta) in both water and emulsions. Therefore, shorter processing times 

than in the treatments using only SC-CO2 can be applied. 

• HPU also enhanced the SC-CO2 inactivation of A. niger spores in water. 

However, no effect of HPU was found on the inactivation of A. niger spores in the 

oil-in-water emulsion, which could indicate that the effect of ultrasonic cavitation 

on SC-CO2 treatments may depend both on the type of microorganism and the 

composition of the medium.  

• Microscopy analyses revealed important morphological changes on vegetative 

bacteria and fungal spores treated with SC-CO2 + HPU in water, including 

disintegrated wall cells and loss of cytoplasmic content.  

• The combined SC-CO2 + HPU enhanced the inactivation of C. butyricum and 

B. subtilis spores in the oil-in water emulsions compared to the individual SC-

CO2 treatment.  
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• The SC-CO2 + HPU treatment (95ºC and 350 or 550 bar) had no effect on the 

inactivation of G. stearothermophilus spores. 

 

6.1.3. Effect of pressure and temperature 

• The higher the pressure and temperature, the greater the SC-CO2 and SC-CO2 

+ HPU inactivation of B. diminuta and A. niger spores in water. However, only the 

temperature affected the inactivation of E. coli in water for both the SC-CO2 and 

SC-CO2 + HPU treatments. 

• The higher the pressure and the temperature, the greater the SC-CO2 and SC-

CO2 + HPU inactivation of E.coli, B. diminuta and A. niger in the oil-in-water 

emulsion. 

• The higher the temperature, the larger the SC-CO2 + HPU inactivation of the 

bacterial spores (C. butyricum and B. subtilis). 

• The pressure increase improved SC-CO2 + HPU inactivation of the bacterial 

spores (C. butyricum and G. stearothermophilus) until a threshold was reached 

(350 bar). 

 

6.1.4. Effect of the type of microorganism 

• In general terms, no differences in the resistance to the SC-CO2 and SC-CO2 + 

HPU treatments were found between the vegetative bacteria (E. coli and 

B. diminuta). 

• A. niger spores were found to be more resistant than the vegetative bacteria 

(E. coli and B. diminuta), regardless of the type of treatment (thermal, SC-CO2 or 

SC-CO2+ HPU) or the treatment medium. 

• C. butyricum spores were more resistant to the inactivation treatments (thermal, 

SC-CO2 and SC-CO2 + HPU) than A. niger spores. 

• B. subtilis spores were more resistant to the inactivation treatments (thermal, SC-

CO2 and SC-CO2 + HPU) than C. butyricum. No difference was found between 
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the resistance of spores from the genus Bacillus (B. subtilis and B. pumilus) to 

the inactivation treatments applied (thermal and SC-CO2 + HPU). 

• G. stearothermophilus spores were the most resistant microorganism since even 

with the most intense treatment applied (SC-CO2 + HPU at 550 bar, 95ºC and 20 

min) the inactivation achieved was below 0.5 log-cycles reduction.  

 

6.1.5. Effect of the treatment media 

• Oil content in the treatment media protected the vegetative bacteria from SC-CO2 

inactivation. The higher the oil content in the medium (0, 10, 20 and 30%), the 

lower the effectiveness in the SC-CO2 inactivation. 

• The application of HPU reduced the protective effect of the oil on the vegetative 

bacteria inactivation.  

• The treatment media (water or oil-in-water emulsions) did not have a significant 

effect on the resistance of A. niger spores to SC-CO2 or SC-CO2 + HPU 

treatments. 

• The presence of oil in the emulsions did not affect the SC-CO2 + HPU 

inactivation, which was completely achieved for all the microorganisms, including 

bacterial spores, except for G. stearothermophilus. 

 

6.1.6. Effect of the SC-CO2 + HPU treatments on the physicochemical properties 
of the emulsions  

• In general terms, only a mild effect of the process variables (temperature, 

pressure and time) on the quality of the emulsions was found.  

• Treated emulsions had good electrostatic stability (ζ-potential ≤ -30 mV) and 

changed density minimally. However, in general terms, they presented lower pH 

and higher droplet size. 
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• The selection of adequate conditions of pressure, temperature and treatment 

time preserved the quality and stability of the emulsions, while achieving a 

satisfactory microbial inactivation, except for G. stearothermophilus spores.   

 

6.2. PEF and HPU microbial inactivation (CHAPTER 2) 

6.2.1. Effect of the treatment conditions  

• The higher the field strength, time and input temperature in the PEF treatments, 

the greater the inactivation of E. coli.  

• The effect of the total energy applied in the PEF treatment was also noticeable 

on the inactivation of A. niger spores.  

• The longer the HPU treatment, the greater the inactivation of E.coli. 

• The inactivation levels achieved by the individual PEF and HPU treatments were 

limited and the complete inactivation was not reached for any of the 

microorganisms studied (E. coli, A. niger spores and B. pumilus spores). 

 

6.2.2. Effect of the combined treatments  

• The combined PEF-HPU sequence was more effective than the reverse one 

(HPU-PEF).  

• Synergistic effects on inactivation were found with the combined PEF-HPU 

treatment for all the studied microorganisms. 

• PEF-HPU was able to completely inactivate vegetative bacteria and fungal 

spores. However, it seems not to be effective inactivating bacterial spores since 

only 1 log-cycle of B. pumilus spores was reduced. 

 

6.2.3. Effect of the type of microorganism 

• E. coli was more sensitive to PEF and HPU treatments than A. niger and 

B. pumilus spores, being B. pumilus the most resistant microorganism. 
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6.3. General conclusion 

It can be concluded that the simultaneous application of HPU and SC-CO2 

enhanced the solubilization of CO2 and mass and heat transfer processes, which 

facilitates the SC-CO2 inactivation mechanisms. In addition, HPU could also damage 

cell membranes, increasing its permeability. This was evidenced by the observation of 

the SC-CO2 + HPU-inactivated vegetative bacteria and fungal spores, since important 

membrane and cytoplasmic alterations were shown. Moreover, the combined SC-CO2 

+ HPU technology was feasible for the microbial inactivation in oil-in-water emulsions 

while maintaining their physicochemical stability.  

 The sequential application of HPU after PEF treatments led to synergistic 

effects on microbial inactivation, compared to the individual treatments. After the PEF 

treatment, the remaining surviving cells were probably sublethally damaged, leading to 

incremented sensitivity to the HPU treatment.  

Therefore, the application of HPU in non-thermal treatments (SC-CO2 and 

PEF) could lead to short the processing time and/or to apply milder process conditions 

to achieve a target microbial inactivation. Thus, the cost of the processes could be 

reduced and higher product quality could be obtained, which is very relevant for 

industrial applications. In addition, the protective effect that some components of the 

media, such as oil, exert on microbial inactivation, could be minimized by the strong 

effect of HPU. Therefore, these emerging technologies, applied in combination, could 

be an alternative to thermal treatments of oil-in-water emulsions used in the food and 

pharmaceutical industries, minimizing quality changes on the treated products.  
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According to the results obtained in the present PhD Thesis and in order to 

improve the knowledge related to the different emerging non-thermal technologies 

studied (SC-CO2 , PEF and HPU), applied in individual and combined form, further 

research on the following topics is recommended: 

 

Microorganisms 

- To evaluate combined treatments (SC-CO2 + HPU and PEF-HPU) on the inactivation 

of other types of microorganisms, different from those studied in the present PhD 

Thesis, such as viruses and other bacteria and from different provenance, in particular, 

on pathogen and spoilage microorganisms naturally present in food and 

pharmaceutical products. 

- To study the effect of the size, shape, type of cell wall and concentration of the 

microorganisms present in the treatment medium on the microbial inactivation.  

 

Inactivation mechanisms 

- To deep on the inactivation mechanisms involved in the combined treatments, 

especially those related to bacterial spores inactivation, since these mechanisms have 

not been fully elucidated in the present work. For that purpose, several analyses could 

be performed, such as the study of the external and internal cell structure by 

microscopy techniques and the identification of the possible increase of the membrane 

permeability using staining agents, changes in the enzymatic activity and sublethally 

injured cells by the use of selective and non-selective growing media,.  

- To elucidate how the order of the sequence of the combined PEF and HPU treatments 

affects the inactivation mechanisms involved.  

 

Composition of treatment medium 

- To measure the effect of the oil content of the emulsions studied in the present Thesis 

on the inactivation of the individual and combined PEF and HPU treatments. 
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- To study the individual effect of other properties, different from the oil content, such 

as pH, viscosity, conductivity and protein content in model simple media, on the 

inactivation achieved by the SC-CO2 + HPU and the PEF-HPU treatments. In addition, 

the study could be extended to other food and pharmaceutical products, including other 

commercial emulsions. 

 

Quality of the treated products 

- To extend the study of the SC-CO2 + HPU treatment effects on other additional 

properties of the oil-in-water emulsions, such as lipid oxidation, viscosity or color 

changes, among others.  

- To study the effect of the combined PEF and HPU technologies on the 

physicochemical properties of the emulsions 

- To determine the effect of the combined treatments on the quality of other treated 

media, different from the oil-in-water emulsions investigated in the present PhD Thesis, 

such as water-in-oil emulsions or fruit and vegetable juices.  

 

Industrial implementation 

- To improve technical aspects of the inactivation systems: 

• To adapt both batch systems studied in the present Thesis (SC-CO2 + HPU and 

PEF-HPU), to be applied in a continuous mode, in order to make these 

technologies more suitable for industrial implementation.  

• To design a flexible ultrasonic system that allows to adjust the supplied power 

and frequency and to study the effect of these variables on microbial inactivation.  

• To design and build a device capable of simultaneously applying the PEF and 

HPU fields and study its effectiveness on the inactivation.   

• To decrease the electrolysis and corrosion phenomena related to the PEF 

technology by the design of titanium electrodes or the application of bipolar 

squared pulses. 
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• To evaluate possible approaches to increase inactivation effectiveness, such as 

the recirculation of the sample, or the use of several chambers in order to 

increase the treatment time in both combined treatments (SC-CO2 + HPU and 

PEF + HPU). 

-To evaluate the shelf-life of the treated products in terms of microbial and 

physicochemical stability during storage.  

- To assess the technical and economic feasibility of the different combined treatments 

to be industrially implemented and to select optimum conditions to find a compromise 

between inactivation effectiveness, changes in the physicochemical properties of the 

products and economic cost. 

-To compare both combined technologies in terms of inactivation of target 

microorganisms, preservation of the product quality, cost of the treatment and 

environmental impact.  
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