Table of contents

Abstract	
General introduction	13
Introduction: Sustainable chemistry and circular bioeconomy	15
The biorefinery concept for bioenergy and bioproducts generation	20
Renewable resources towards circular bio-based economy	24
Industrial biotechnology, biocatalysis and biomass conversion	28
Bio-based chemicals and polymers for sustainable development	31
References	39
Justification, objectives and scope	49
Experimental work and results	55
List of Publications	57
$CHAPTER \ I- \ In \ silico \ prospection \ of \ microorganisms \ to \ produce \ polyhydroxyalkanoate$	
from whey: Caulobacter segnis DSM 29236 as a suitable industrial strain	59
1.1. Background and aim	60
1.2. Materials and methods	62
1.3. Results and discussion	66
1.4. Conclusion	80
References	80
CHAPTER II- Camelina oil as a promising substrate for mcl-PHA production in	
Pseudomonas sp. Cultures	89
2.1 Background and aim	90
2.2 Materials and methods	92
2.3 Results and discussion	94
2.4 Conclusion	100
References	101

CHAPTER III- Improved Raoultella planticola strains for the production of 2,3-butanediol

from glycerol		105
	3.1 Background and aim	106
	3.2 Materials and methods	107
	3.3 Results and discussion	111
	3.4 Conclusion	117
	References	118

CHAPTER IV- Microbial production of 2,3-Butanediol from the organic fraction of

municipal solid waste	121
4.1 Background and aim	122
4.2 Materials and methods	123
4.3 Results and discussion	126
4.4 Conclusion	133
References	134

CHAPTER V- Production of D-lactic acid by the fermentation of orange peel waste

hydrolysate by lactic acid bacteria	139
5.1 Background and aim	140
5.2 Materials and methods	142
5.3 Results and discussion	144
5.4 Conclusion	151
References	151

Integrative discussion	157
Renewable bioprocessing to bio-based chemicals and polymers	159
Direct polyhydroxyalkanoates production from food byproducts	161
Improvement and upscaling of 2,3-butanediol production from bio-residues	163
Production of D-lactic acid with high enantiomeric excess using citrus waste	164
Prospects for bioprocesses development using renewable resources	165
References	166

Conclusions and future work	

Contributions	173
Index of abbreviations	175