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Abstract

The study of Complex Systems is one of the scientific fields that has had the
highest productivity in recent decades and has not ceased to fascinate the
community dedicated to studying its properties. In particular, Network Sci-
ence has proven to be one of the most prolific areas within Complex Systems.
In recent years, his methods have been applied to model multiple phenom-
ena in real life, both naturally generated, such as in biology, and due to the
actions and interactions of man, such as social networks or communication
networks.

Recently, it has been seen how the methods of Network Science can be
applied in the context of mathematics, as is the case of Number Theory. One
of the most studied cases is networks whose elements are numbers and which
are related through the divisibility relation. The main objective of this thesis
is to extend these studies to other sets of numbers. On the one hand, we
study the divisibility in natural numbers when we obtain these from Pascal
matrices of increasing size, which allows us to extract non-sequential sets of
numbers with non-constant increments between them. On the other hand,
we study the case of the divisibility relation of rational numbers. Cantor’s
diagonal argument provides a way to order all rational numbers, which allows
us to check to what extent some of the properties observed for the divisibility
of natural numbers are extensible to a more general context.

The thesis is divided into 4 Chapters. Chapter 1 contains a general intro-
duction to the thesis and it is structured into 6 sections. In Sections 1.1 and
1.2, we briefly introduce Network Science, show some application examples,
and motivate the study of networks of numbers generated from the divisibil-
ity property. In Section 1.3, we define the objectives of this PhD thesis and its
scope. In Section 1.4, we present the notion of network, its representations,
and some measures that can be calculated on them, such as nodes degrees,
their distribution, the assortativity and the clustering coefficients.

In another hand, in Section 1.5, we review the best-known network models
such as Erdös and Rényi random networks, Watts and Strogatz small-world
networks, Barabási and Albert scale-free networks, and hierarchical networks.
Finally, at the end of this Chapter 1, we show in Section 1.6 a review of
various studies carried out in order to apply Network Science methods to
problems and properties that arise in Number Theory, such as divisibility
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networks or networks generated from Collatz’s Conjecture. or Goldbach’s
Strong Conjecture.

In Chapters 2 and 3, we show the results obtained and that have been
published to date. Finally, in Chapter 4, we summarize the conclusions ob-
tained and indicate some related problems that we consider of interest to
address in the future.
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Resumen
El estudio de los Sistemas Complejos es uno de los campos científicos

que ha tenido mayor productividad en las últimas décadas y no ha dejado
de fascinar a la comunidad que se dedica al estudio de sus propiedades. En
particular, la Ciencia de Redes se ha mostrado como una de las áreas más
prolíficas dentro de los Sistemas Complejos. En los últimos años, sus métodos
han sido aplicados para modelar múltiples fenómenos de la vida real tanto
generados de manera natural, como puede ser en el caso de la biología, como
debidos a las acciones e interacciones del hombre, como puede ser el caso de
las redes sociales o las redes de comunicaciones.

Recientemente, se ha visto cómo los métodos de la Ciencia de Redes
pueden ser aplicados en el contexto de las matemáticas, como es el caso
de la Teoría de Números. Uno de los casos que más se han estudiado es el
de las redes cuyos elementos son números y que se relacionan mediante la
relación de la divisibilidad. El objetivo principal de esta tesis es extender
estos estudios a otros conjuntos de números. Por una parte, estudiamos la
divisibilidad en los números naturales cuando obtenemos estos a partir de
subconjuntos de números naturales extraídos de matrices de Pascal de orden
creciente, lo que nos permite extraer conjuntos de números de manera no
secuencial y con incrementos no constantes entre ellos. Por otra parte, estu-
diamos el caso de la relación de divisibilidad de los números racionales, dado
que a partir del argumento diagonal de Cantor se pueden ordenar, lo que nos
permite comprobar hasta qué punto algunas de las propiedades observadas
para la divisibilidad de los números naturales son extensibles a un contexto
más general.

La tesis se divide en 4 capítulos. El capítulo 1 contiene una introducción
general a la tesis y está estructurado en 6 secciones. En las secciones 1.1 y 1.2,
presentamos brevemente la Ciencia de Redes, mostrando algunos ejemplos de
aplicación y motivamos el estudio de redes de números generadas a partir de
la propiedad de divisibilidad. En la Section 1.3, definimos los objetivos de
esta tesis doctoral y su alcance. En la sección 1.4, presentamos la noción de
red, sus formas de representación y algunas medidas que se pueden calcular
sobre ellas, como son los grados de los nodos, la distribución de estos grados,
la asortatividad y los coeficientes de clustering.

Por otro lado, en la Sección 1.5, revisamos los modelos de redes más
conocidos como son las redes aleatorias de Erdös y Rényi, las redes de pequeño
mundo de Watts y Strogatz, las redes libres de escala de Barabási y Albert y
las redes jerárquicas. Mostramos en la Sección 1.6, una revisión de diversos
estudios realizados con el fin de aplicar métodos de la Ciencia de Redes a
problemas y propiedades que surgen en la Teoría de Números, como son las
redes de divisibilidad o redes generadas a partir de la Conjetura de Collatz o
la Conjetura Fuerte de Goldbach.

En los Capítulos 2 y 3, mostramos los resultados obtenidos y que han
sido publicados hasta la fecha y, finalmente, en el Capítulo 4, resumimos
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las conclusiones obtenidas e indicamos algunos problemas relacionados que
consideramos de interés abordar en un futuro.
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Resum
L’estudi dels Sistemes Complexos és un dels camps científiques que ha

tingut major productivitat en les últimes dècades i no ha deixat de fascinar
a la comunitat que es dedica a l’estudi de les seues propietats. En particular,
la Ciència de Xarxes s’ha mostrat com una de les àrees més prolífica dins dels
Sistemes Complexos. En els últims anys, els seus mètodes han sigut aplicats
per a modelar múltiples fenòmens de la vida real tant generats de manera
natural, com pot ser en el cas de la biologia, com deguts a les accions i
interaccions de l’home, com pot ser el cas de les xarxes socials o les xarxes
de comunicacions.

Recentment, s’ha vist com els mètodes de la Ciència de Xarxes poden
ser aplicats en el context de les matemàtiques, com és el cas de la Teoria
de Números. Un dels casos que més s’han estudiat és el de les xarxes els
elements de les quals són números i que es relacionen mitjançant la relació de
la divisibilitat. L’objectiu principal d’aquesta tesi és estendre aquests estudis
a altres conjunts de números. D’una banda, estudiem la divisibilitat en els
nombres naturals quan obtenim aquests a partir de matrius de Pascal de
grandària creixent, la qual cosa ens permet extraure conjunts de números de
manera no seqüencial i amb increments no constants entre ells. D’altra banda,
estudiem el cas de la relació de divisibilitat dels nombres racionals, atés que
a partir de l’argument diagonal de Cantor es poden ordenar, la qual cosa
ens permet comprovar fins a quin punt algunes de les propietats observades
per a la divisibilitat dels nombres naturals són extensibles a un context més
general.

La tesi es troba dividida en 4 Capítols. El capítol 1, conté una introducció
general a la tesi i està estructurat en 6 seccions. En les seccions 1.1 i 1.2, pre-
sentem breument la Ciència de Xarxes, mostrant alguns exemples d’aplicació
i motivem l’estudi de xarxes de números generades a partir de la propietat de
divisibilitat. En la Section 1.3, definim els objectius d’aquesta tesi doctoral y
el seu abast. En la Secció 1.4, presentem la noció de xarxa, les seves formes
de representació i algunes mesures que es poden calcular sobre elles, com
són els graus dels nodes, la distribució d’aquests graus, la asortatividad i els
coeficients de clustering.

En la Sección 1.5, revisem els models de xarxes més coneguts com són les
xarxes aleatòries de Erdös i Renyi, les xarxes de xicotet món de Watts i Stro-
gatz, les xarxes lliures d’escala de Barabási i Albert i les xarxes jeràrquiques.
Mostrem en la Sección 1.6 una revisió de diversos estudis realitzats amb la
finalitat d’aplicar mètodes de la Ciència de Xarxes a problemes i propietats
que sorgeixen en la Teoria de Números, com són les xarxes de divisibilitat o
xarxes generades a partir de la Conjectura de Collatz o la Conjectura Forta
de Goldbach.

En els Capítols 2 i 3, vam mostrar els resultats obtinguts i que han sigut
publicats fins hui i, finalment, en el Capítol 4, resumim les conclusions obtin-
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gudes i indiquem alguns problemes relacionats que considerem d’interés abor-
dar en un futur.



1 Introduction

Nowhere is the impact of network science more
evident than in the scientific community.

Albert-László Barabási.

A network is a mathematical concept that is used to model systems where
one can establish relationships (edges) between different components (nodes).
When the network has non-trivial topological features, its study falls within
the field of Network Science. In many systems of interest, one can identify
a network that represents how its parts are interconnected [B+16, Introduc-
tion]. Network science is naturally contextualized as part of complex systems
theory. Complex systems are those whose behavior is intrinsically difficult to
model due to the interactions between their parts or with an environment.
The multiple applications of Network Science have made it a very active area
within the scientific community, particularly in complex systems.

As discussed in [B+16, Introduction], the most cited papers within com-
plex systems are [WS98] and [BA99]. These two papers are much more
cited than those which are the most cited papers in other branches of com-
plex systems, like Chaos Theory (Butterfly Effect [Lor95]), neural networks
[Hop82], renormalization group theory [Wil75], spin-glasses [EA75], or frac-
tals [Man82]. As a matter of fact, the discoverer of scale-free networks, Albert-
Lásló Barabási is one of the most cited scientists in the world (at the early
of September 2021, he was cited 269202 times, with h-index=159).

A fundamental starting discovery in network science was the Graph The-
ory, with the solution of the problem of the Königsberg Bridges by Euler. It
further developed through the study of Random Networks models by Erdös
and Rényi in [ER59, ER60]. Importantly, by the turn of the century, complex
topologies of networks were introduced, giving rise to what we understand
nowadays as Network Science: The first one was the small-world network
model by Watts and Strogatz in [WS98], the second one was the scale-free
network model discovered by Barabási and Albert [BA99].

Random networks were first introduced as a mathematical topic, with no
real impact on real-world problems, as the connections in physical or social
systems are not random. The properties of these networks were far from real,
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observed networks [B+16, Ch. 3.10], [New18]. The introduction of the small-
world and scale-free hallmarked a research effort that approached the theory
to real-world phenomena.

1.1 Examples of application of complex networks

In the previous section, we discussed the impact of the discovery and introduc-
tion of the small-world and scale-free concepts, highlighting their importance
in describing the complexities of real-world phenomena. This effort has con-
tinued up to today, where directed networks, networks of networks, spatial
modular networks, etc., are used to get insight into various applications, such
as:

1. The study of the effects of natural phenomena such as global warm-
ing, extreme weather events, and earthquakes can be performed from
a network perspective. So far, physics has advanced to understand the
structure and pattern of climatic phenomena using network approaches.
However, the network science approach applied to these types of phenom-
ena could offer alternatives to predict the complexity of phenomena such
as earthquakes, the strength of El Niño events, increased air pollution,
etc. [FMC+16, GGB+12, BBB+14, MBMK12].

2. A complex network science approach to study climate phenomena, which
has allowed the generation of a type of complex network called climate
networks. Here, the nodes stand for the geographic locations where the
natural phenomenon occurs. The level of similarity, also called correla-
tion, between the records (temperature, pressure, winds, precipitation, in-
creased rainfall in some regions, and droughts in other regions, decreased
fishing, famine, or plagues) represent the links. [FMC+16].

3. The interrelationship between physiological systems and the underlying
properties of complex networks has permitted us to develop a framework
to probe the interactions between various systems. This has allowed con-
structing a comprehensive physiological network, which undergoes dy-
namic transition phases that are associated with a rapid reorganization
of physiological interactions on time scales of about a few minutes, indi-
cating high network flexibility in response to disturbances [BBK+12].

4. Applications of complex network properties related to the optimization
of electrical power systems, allowing the study and characterization of a
greater resistance of the network, a reduction in energy losses and line
load, better voltage stability, and a supply to critical loads during a black-
out [SEM18].

5. The application of complex network concepts that permit to explain the
stability of large and complex ecosystems has shown that the trophic
coherence determines food stability [JDGDM14]. Here the authors con-
struct a network in which the nodes are the species, and the predator-prey
interactions determine the edges.
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6. The development of an optimal strategy that allows immunizing a popu-
lation with the minimum possible dose [CPH+08], or a population whose
members are connected following a scale-free network pattern. Although
this last strategy does not require knowledge of the nodes or the degrees
of connectivity of each subject with respect to the others. It is highlighted
that these populations follow a distribution of broad degrees, which im-
plies the existence of hubs and, therefore, it is of vital importance the
treatment of centrality, as an inherent property of networks that follow
a power-law [CHBA03].

7. In the same direction, the efficient immunization of a network was pro-
posed by extracting an amount n of its nodes, immunizing the node with
the greatest centrality. Then this process is repeated sequentially, allow-
ing what the authors call “targeted immunization”. On the other hand,
they determine the critical percolation threshold pc and the size of the
giant component P∞. Since the number of n nodes that can be taken
varies, i.e., 1 ≤ n ≤ ∞, the authors have found a new general scale rela-
tionship between | pc(∞)−pc(n) | and in particular the relation for n as,
| pc(∞) − pc(n) |∼ n−1 exp(−αn). Concerning scale-free networks, they
have determined that pc has a transition from zero to nonzero values, as
1 ≤ n ≤ O(logN), where N is the size of the network [LSD+20].

8. Applications of complex modular structural networks to simulate and
estimate the probability of the spread of diseases worldwide, such as
pandemics, applying properties related to hierarchical networks [VBH20].

9. The application of the measures of centrality and nested communities
has permitted in the field of psychiatry has allowed explaining the under-
lying relationships (causal relationships) between the different diseases
or pathologies that the same patient has (comorbidity), to make better
diagnoses [HC18].

10. The study and characterization of urban and highway transport flows
through applying the property of complex networks called “percolation,"
which is understood as the filtration transition process in a dynamic
traffic network that is seen affected by bottlenecks, which evolves as time
passes. In this sense, the authors have proposed a new way of organizing
traffic, simulating it as a network that follows a percolation process. The
underlying idea is to show that global traffic is broken when the identified
bottlenecks are congested [LFW+15]. In this direction and using complex
networks again, it has been possible to identify multiple abrupt phase
transitions in urban transport congestion [LBHGSR21].

1.2 A perspective on divisibility networks

One active area of research within Network Science is that the network itself
is built according to a mathematical recipe or numeric relation. The nodes
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inherit the connections among them (edges) and the strength of these inter-
actions from some mathematical structure. With this idea, we can construct
complex artificial networks in which their properties are related to the un-
derlying mathematical structure. This allows to both give new insight on this
mathematical structure and to find if this path leads to interesting networks
with application in some real-world problems, see Section 1.6. This thesis is
devoted to the study of these types of networks.

The first works in this area appeared circa 2005. One of the foundational
works was realized by Chandra et. al., who studied the Goldbach Strong Con-
jecture (GSC) [SL84] using concepts from complex networks theory [CD05].
This work allowed to find a probability function P that establishes the mini-
mum distance between pairs of possible primes that sum up to a certain even
number; that is, P = |p− q|α, with (−∞ < α <∞), where p and q are prime
numbers such that ne = p+ q is an even number. We recall that according to
Goldbach’s conjecture, any even number can be broken up as the sum of two
prime numbers. The authors report that if α > −1.8, then the network con-
structed from this relation presents a small-world topology, i.e., the average
shortest distance is small (increases only logarithmically with the size of the
network). However, the clustering coefficient, which measures the tendency
of the nodes in a graph to cluster together, is high compared to the random
network. Conversely, if α < −1.8, the network is regular [WS98].

Zhou et. al., were the first to analyze divisibility networks of natural num-
bers [ZWHC06]. The originality of this idea was to establish edges between
the nodes (which are the natural numbers) through divisibility relations in
modulo zero between these nodes. The result was a network that presents
scale-free properties; that is, the probability for a node to have k connec-
tions is pk ≈ k−2. The clustering coefficient is relatively high at the rate of
C ≈ 0.34. Also, the average path length in whatever place of the network,
which is the average number of steps along the shortest paths for all possible
pairs of network nodes, is upper bounded independently of the network size.
In their work, authors considered arbitrary networks of natural numbers, i.e,
G = (N,E) (here N is the set of nodes, which are natural numbers, i.e.
N ∈ N > 1, and E the collection of edges). The edges follow the following
rule: for all a, b ∈ N there is an edge between them if and only if a | b or
b | a in modulo zero. However, it turns out that in the limit, there will al-
ways be some prime number p ∈ N that is not divisible in modulo zero with
some value (a or b), and therefore the distance between p and a or p and b is
infinite.

To illustrate this let us suppose that p is a prime such that p ∈ V , where V
is the set of all prime numbers. On the other hand, if we denote as q = min(V )
such that q > 1, then, in the limit, there will always be some value Ω = p|q,
such that, Ω /∈ Z+. This means that the degree (number of connections) of
p is zero, that is, kp = 0, and as we will see in Section 1.5.3.1, if k = 0, then
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the constant C of the equation pk = C ·k−γ does not converge, and then, the
path length between nodes p and q goes to infinity.

This apparent problem was solved by Shekatkar et. al., in [SBA15] where
they built undirected networks, similar to those of Zhou et. al., in which the
nodes are the natural numbers and the divisibility relation between them gave
the edges. Among the most important results provided, they found analytical
expressions for the calculation of local clustering coefficient, Cn where n is the
number of different factors of a given node, that is, its number of connections
(see [SBA15, Eq. 2]), in terms of the network size. They concluded that the
value of Cn depends only on the number of different prime factors of n and
their powers, without considering the prime values present there. This result
allowed them to conclude that Cn remains constant for values N

2 < n < N ,
with N the total size of the network. This led them to discover a new property
called similary stretching, (see [SBA15, Figs. 4 & 5]).

In this Ph.D. thesis, we take on the ideas from Shekatkar et. al., extending
them to some subsets of natural numbers extracted from the Pascal triangle
and extending them to the set of rational numbers in the unit interval, too.
In this sense, we have defined the following general and specific objectives.

1.3 Objectives

The general objective of this doctoral thesis is to study the topology of com-
plex networks in which the nodes are real numbers and connectivity is es-
tablished through divisibility relations in zero modulus, between them. To
achieve this general objective, we have established the following specific ob-
jectives:

1. Study the state of the art related to the construction of complex networks
whose nodes are real numbers.

2. Determine the numerical sets that had not yet been previously studied,
from the perspective of complex network science.

3. Characterize the connectivity relationships of the previously identified
numerical sets.

4. Establish the Kolmogorov-Smirnov goodness fit test to determine if the
behavior of the data distribution is similar to the power-law distribution.

5. Program the necessary algorithms that allow us to obtain the adjacency
matrices, to later study the properties of the complex networks identified.
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1.4 Preliminaries

Few research fields can trace their birth
to a single moment and place in history.
Graph theory, the mathematical scaffold

behind network science, can.

Albert-László Barabási.

This section introduces the theoretical foundations necessary for the anal-
ysis and study of complex networks. These concepts will be used in the follow-
ing sections, and we collect them here for an easy reference. Further insights in
network theory can be found in, e.g., [B+16, New18, Est12, AAH02, Wea96].

1.4.1 What is a network?

First, we introduce the concept of a complex network which, in few words, is
just a graph. We define a complex network of the form G = (V,E) as a mathe-
matical structure consisting of a collection of nodes joined by edges. Complex
network Theory and Graph Theory are nevertheless commonly understood
as slightly different topics, due to the approach to study these objects: In
Graph Theory one is more concerned with heuristics and algorithms applied
to these elements; while in Complex Network Science one is more concerned
with studying the topology derived from the connections between the nodes.

Therefore, we can look at the set of nodes, or vertices V , as independent
elements or phenomena, whose relations among them are given by the set of
edges or links E. These edges usually represent one or more characteristics
shared by pairs of nodes. With the incorporation of computers and the in-
crease of their computational power, some datasets started to be analyzed:
The first studied examples were the actor collaboration network, the World
Wide Web, the electrical power grid network in the US [BA99], or communi-
cation networks [Arm98], and the spreading of viruses on them [PSV01]. See
Table 1.4.1 for further details about some of the most studied examples of
networks.

1.4.2 Basic notation and network measures

In this section, we introduce the main notation and measures used in network
science. Unless otherwise stated, we will refer to an arbitrary network G =
(V,E), where V is a non-empty set of nodes, denoted by v1, . . . , vn, and E is
the set of edges given by a set of pairs of elements of V . If the order of the
elements in these pairs is relevant, we will say that the network is directed ;
if not, we will say that it is undirected.
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Network Node (V ) Edge (E)
Internet routers internet connections
World Wide Web web pages hyperlinks
Power grid power plants cables
Phone calls phone numbers calls
Email email addresses emails
Science collaboration scientists co-authorship
Actor network Actors Coappearance movies
Citation network Papers Citations
Protein interactions proteins binding interactions
Food web species predation
Neural networks neurons synapses
Metabolic networks metabolic metabolic reactions
Friendship networks people friendship relations

Table 1.1: Examples of nodes and edges from different networks [B+16, Ch.
2.3] and [New18, Ch. 6.1].

The networks studied in this thesis will be undirected, so we will introduce
the following definitions and measures just for this type of networks. Besides,
our networks will be simple, without loops connecting a node with itself by
a single edge.

1.4.2.1 Adjacency matrix

There are two fundamental mathematical concepts to represent a network:
the Laplacian matrix and the adjacency matrix. However, the latter is the
most widely used concept to study the connectivity relationships between
the nodes of a network. This matrix provides the complete description of the
links between nodes. The adjacency matrix An of a network G = (V,E) is
given by a square n× n matrix whose elements Aij are set as follows:

Aij =

{
1, if there is an edge between the nodes i and j ;
0, otherwise. (1.1)

To illustrate the construction of an adjacency matrix, we consider the
network in Fig. 1.1, which has 6 nodes and 7 edges.

From Fig. 1.1, we can obtain its adjacency matrix,

A =


0 0 0 0 1 1
0 0 1 0 0 0
0 1 0 1 1 1
0 0 1 0 0 1
1 0 1 0 0 0
1 0 1 1 0 0

 . (1.2)
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Fig. 1.1: Network notation. This network has 6 nodes and 7 edges.

We can see that the matrix is symmetric with respect to its main diago-
nal, which means that we are considering an undirected network. It is worth
mentioning that, in general, these matrices need not be symmetric. If this
was the case, we say that we have a directed network. In our graphs, we will
consider simple networks without loops connecting a node with itself.

1.4.2.2 Degrees in networks

Given an undirected network G = (V,E), we call the degree of the node vi
as the number of edges connected to it, and we denote it by ki. Then, the
total number of edges |E| will be given by E = 1

2

∑N
i=1 ki. The degree of the

node vi can also be obtained from the adjacency matrix as ki =
∑N
j=1Aij .

Then, the total number of edges can also be estimated as |E| = 1
2

∑N
i=1 ki =∑

1≤i,j≤N Aij .

One of the most important properties of a network is its average degree.
This measure gives us an idea of the average stability of the connections
between nodes by measuring the number of edges compared to the number
of nodes. We call the average degree 〈k〉 to the average number of connections
of all the nodes in a network, given by

〈k〉 = 1

N

N∑
i=1

ki =
2|E|
|V |

. (1.3)

In many large networks, we have that 〈k〉 � N � |E|. In our small
example, in Fig. 1.1, its average degree is 〈k〉 = 2×7

6 ≈ 2.33. This means that
each node has, on average, approximately 2.33 edges.

We can also estimate the percentage of existing edges with respect to
the maximum possible number of edges. In a graph with N nodes this will
be
(
N
2

)
= 1

2N(N − 1). Therefore, we can define the density of a network
G = (V,E), denoted by ρ(G), as the fraction of existing edges respect to the
maximum number of admissible edges
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ρ(G) =
E(
N
2

) =
2E

N(N − 1)
=
〈k〉

N − 1
. (1.4)

Since most undirected networks have a large number of nodes, then the
estimation of ρ(G) can be reduced to

ρ(G) =
〈k〉
N
. (1.5)

This last expression shows that the density gives us information about
the probability of a pair of nodes being connected at random by an edge,
therefore ρ(G) ∈ [0, 1]. In our example, we have ρ(G) ≈ 0.39.

Given a network G = (V,E), we say that H = (W,F ) is a subnetwork
of G if ∅ 6= W ⊆ V and F ⊆ E. Let us consider a family of subnetworks
Hn = (Wn, Fn) of G with |Wn| = n and W = ∪nWn, F = ∪nFn and
H = ∪nHn. If ρ(Hn) tends to 0 as n tends to |V |, then we say that the
network is sparse. Otherwise, we say that the network is dense.

1.4.2.3 Degree distributions

Throughout this section, we describe one of the most fundamental properties
of networks, their degree distribution {p(k)}∞k=0. The network can be studied
through the degree distribution p(k), which accounts for the frequency with
which nodes of degree k appear in a G. That is, one has to count how many
nodes have each degree k, which we denote as N(k), and divide by the total
number of nodes in the network in order to obtain the fraction of nodes in
the network with degree k, i.e.

p(k) =
N(k)

|V |
. (1.6)

This provides the probability distribution that a randomly selected node in
the network has degree k. Since it is a probability distribution, it fulfills that

∞∑
k=0

p(k) = 1. (1.7)

In Fig. 1.2, we represent the degree distribution of the network example
considered in this section. We have p1 = 1/6, since one of the six nodes has
degree k2 = 1. In the same way, we get p2 = 1/2 (three of the six nodes have
degree 2, k1 = k4 = k5 = 2), p3 = 1/6 (since k6 = 3), and p4 = 1/6 since
k3 = 4, and then, for every ki ≥ 5 we have null probabilities p(ki) = 0. We
can easily check that

∑∞
k=0 p(k) = 1, as indicated in Eq. (1.7).

The degree distribution {p(k)}∞k=0 has an average which evidently coin-
cides with the average degree
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(a) (b)

Fig. 1.2: Network representation and its degree distribution. We show our
network example in Fig. 1.2a) and its degree distribution in Fig. (1.2b).

〈k〉 =
∞∑
k=0

k · p(k). (1.8)

The degree distribution provides much information about the phenom-
ena studied from the perspective of network theory, being a central part of
studying the structure of a given network. Later, we will use the degree distri-
bution to obtain different measures from it, particularly when it resembles a
power-law (or scale-free) distribution (also known as Zipf’s law or the Pareto
distribution). In such case, the distribution is of the form p(k) ∝ k−γ , with γ
some constant typically falling in the interval [2, 3]; thus, it has a well-defined
average. Note that it has finite variance only if γ > 3 and that there are also
examples of power laws where γ < 2, e.g., in continuous time random walks
[New05].

Nodes in a network can be connected by a path that results in the con-
catenation of several edges. A network can be split into one or more subsets,
with all the nodes in each subset being accessible from the rest and not acces-
sible from any other node of any other subset. Each one of these sets is called
a connected component. We say that a network is connected provided there
is an unique connected component. We seldom have a connected network in
real applications, but we have a huge connected component containing most
nodes. Such a component is called the giant connected component.

Connectedness is closely related to the robustness of the network. A net-
work is considered to be robust if it still contains a giant connected component
after removing some of its nodes. In random networks, we see that this giant
network can emerge at some phase transition. We will also see that scale-free
networks usually contain one giant connected component. The connectivity
property is strongly related to other fundamental properties of the network,
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such as the centrality, the existence of hubs, the degree distribution, the tran-
sitivity, the global and local clustering coefficients, the average degree, etc.

We can estimate the averaged distance between any pair of nodes or
average path length, denoted by 〈d〉. It is the averaged distance between all
pairs of nodes in the same connected component. This measure has sense if
we consider that each edge has an associated distance. If this is not explicitly
mentioned, we can say that all edges have a weight equal to 1. It can be
computed as

〈d〉 = 1

N(N − 1)

∑
1≤i,j≤N

di,j , (1.9)

where di,j represents the distance between nodes vi and vj , that is given by
the shortest path connecting them. Clearly, if two nodes cannot be connected
by a sequence of edges, then the distance between them will be ∞. So this
measure is only relevant within the maximal subnetworks of a given one, with
all their nodes connected among them by some of these paths.

Finally, we also recall that the maximum distance between any pair of
nodes in a network is called the diameter of the network, also denoted as
dmax. For a network with several connected components, we say that the
diameter is ∞, since we can easily find a pair of nodes at ∞ distance.

1.4.2.4 Assortativity

We call the assortativity coefficient of a network G = (V,E), denoted by
r(G) or simply by r, to the tendency of the nodes to connect to others with
the same or similar characteristics. It is expressed in terms of the degrees of
adjacent nodes and their connection preference in the whole network,

r =

∑
1≤ij≤N (Aij − kikj/2|E|)kikj∑

1≤i,j≤N (kiδij − kikj/2|E|)kikj
, (1.10)

where δij is the Kronecker delta, ki is the degree of the node vi, and Aij
stands for the corresponding element in the adjacency matrix of the network.
It is worth mentioning that computing assortativity from Eq. (1.10) supposes
a high computational cost. Therefore, we can approximate the assortativity
using the expression [New18]

r =
S1Se − S2

S1S3 − S2
2

, (1.11)

where

Se =
∑
ij

Aijkikj = 2
∑
l(i,j)

kikj , and Sm =

Nn∑
i=1

kmi , (1.12)
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form = 1, 2, 3. This coefficient ranges from −1 to 1. If r > 0, then we say that
the network is assortative. If r < 0, then we say that the network is disassor-
tative, and if r = 0, we say that it is non-assortative. Most empirical networks,
except social networks, are in general disassortative or degree-degree anticor-
related. Johnson, et. al., found that this is in general due to the principle of
maximum entropy [JTMM10].

1.4.2.5 Clustering Coefficients

The local clustering coefficient of a given node i measures the proportion of
its adjacent nodes which are connected among themselves. We can calculate
the local clustering coefficient as

Ci =
2Ei

ki(ki − 1)
, (1.13)

where Ei represents the number of links between the ki neighbors of node i.
This value ranges from 0 to 1, and it can be understood as the probability of
interconnection between adjacent nodes of a given one. For instance, Ci = 0.5
implies that there is a 50% chance that two adjacent nodes of a given one
were connected between them. To illustrate this concept, let us consider the
undirected network of Fig. 1.3a.

(a) (b) (c)

Fig. 1.3: Network representations: We have a network with 7 nodes and 8
edges in Fig. 1.3a. We represent the subnetwork of the adjacent nodes to
node v3 = 3 in Fig. 1.3b. We show the triangle formed by the vertices v3, v6,
and v7 in Fig. 1.3c.

Let us compute the local clustering coefficient of v3, named C3. First, we
take the subnetwork determined by their adjacent nodes, see Fig. 1.3b and
we compute the number of edges between them, see Fig. 1.3b: Since v2 is
not connected to any other node, then E2 = 0. Nodes v4 and v6 are only
connected with v7, so E4 = E6 = 1. Since v7 is connected with nodes v4 and
v6, we have E7 = 2. Therefore, C3 = 2(0+1+1)

4(4−1) = 1
3 . The other clustering

coefficients of this network are C1 = 0, C2 = 0, C4 = 1/6, C5 = 0, C6 = 1,
and C7 = 2/3.
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Once computed the local clustering of each node, we can estimate the
average local clustering coefficient of the whole network. It is denoted by 〈C〉
and it is obtained by calculating the mean between all the values of Ci, with
i = 1, · · · , N , that is

〈C〉 = 1

N

N∑
i=1

Ci. (1.14)

This coefficient lies between 0 and 1, and it estimates the probability that
two adjacent nodes to a randomly chosen node were connected by an edge.
For our example in Fig. (1.3a), we have

〈C〉 = (0 + 0 + 1/3 + 1/6 + 0 + 1 + 2/3)

7
=≈ 0.31.

Another clustering measure is the global clustering coefficient, denoted as
C∆. We say that a triplet is any set of three nodes. The global clustering
coefficient measures the total number of closed triplets in a network. It can
be easily seen that a triangle ABC, like the one in Fig. 1.3c, has 3 triplets
associated to it: ABC, BCA, and CAB. We define the global clustering
coefficient as

C∆ =
3×Number of triangles

Number of connected triples
. (1.15)

For a more accessible computational estimation of the global clustering
coefficient, we can define it in terms of the elements of the adjacency matrix
of the network

C∆ =

∑
i,j,k AijAjkAki∑
i ki(ki − 1)

, (1.16)

where AijAjkAki = 1 represents a closed triplet. When the denominator is
0, we say that C∆ = 0.

If we return to Eq. (1.13), we can see that Ej stands for the number of
closed triplets that contain vj , as each link between two adjacent nodes to a
given one closes a triplet.
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1.5 Network Models

Network science aims to build models that reproduce
the properties of the real networks.

Albert-László Barabási.

The study of real-life phenomena modeled with networks has become a
vey appealing field of study in the last decades. Three are the cornerstones
that set the basis of Network Science: The random networks introduced by
Erdös and Rényi (1959) [ER59] and Gilbert (1959) [Gil59], the small-world
networks (1998) introduced by Watts and Strogatz [WS98, Wat04], and the
scale-free networks introduced by Barabási and Albert (1999) [BA99].

However, the modeling of real-life problems dates back to earlier times.
The first to model this type of problem was Euler, in 1736, giving an ingenious
and simple solution to the famous problems of the seven bridges of Königs-
berg. The solution to this problem gave rise as well know as Graph Theory.
According to Barabási [B+16, Ch. 2.1], the Euler’s ingenious resolution gives
us two important messages: The first is that some problems become simpler
and more tractable if they are represented as a graph. The second is that the
existence of the path does not depend on our ingenuity to find it. Rather,
it is a property of the graph. Indeed, given the structure of the Königsberg
graph, no matter how smart we are, we will never find the desired path. In
other words, networks have properties encoded in their structure that limit or
enhance their behavior.

Unlike Graph Theory, Network Science studies the structure of the con-
nections between the nodes based on the topological study of the network,
which is essential to understand the interaction between the components
(nodes). In this section, we review and analyze some of the most well-known
topologies that arise from the connectivity relationships (edges) between the
components.We will focus on the description of random networks, small-world
networks, and scale-free networks.

1.5.1 Random Networks

Let us consider a set of nodes siting in specific places in space. We want to
establish, randomly, routes that connect pairs of nodes. Suppose that node
vi can be connected with the node vj with certain probability. This type of
phenomenon occurs when we are in the presence of random networks. These
models were firstly introduced by Erdös and Rényi in 1959 [ER59, ER60],
and they are also known as Erdös-Rényi networks.

According to Newman, et. al., [New18] a random network is a specific type
of network in which we fix a predetermined set of parameters, usually the
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(a) (b) (c)

(d) (e) (f)

Fig. 1.4: Representation of two random network models G(N, p). Panels (a),
(b) and (c) represent three instances of G(10, 0.15). We observe that the
number of edges is different for each simulation, that is, (L = 7, 8, 9). Panels
(d), (e) and (f) show three instances of G(100, 0.01). Here there are a lot of
nodes with degree k = 0.

number of nodes N = |V |, the number of edges L = |E|, and the probability
p, in such a way that the edges are connected to the nodes in a random way.
To build a random network we carry out one of the following approaches.

Random networks with N nodes, where the edges are generated following a
binomial probability distribution of parameter p. These networks are denoted
by G(N, p).

1. We consider a fixed number of nodes N and a probability p ∈ [0, 1].
2. We choose a pair of nodes vi, vj ∈ V and a random number p0 between

0 and 1. Then we connect the pair of nodes vi, vj if p0 < p and we leave
them disconnected if p0 ≥ p.

3. Step 2 must be repeated for each one of the N(N − 1)/2 different pairs
of nodes.

Random networks with N nodes and L edges where the nodes connect
to each other, randomly, using one of those L edges. We denote them by
G(N,L). They are generated as follows:

1. We consider a fixed number of nodes N and edges L.
2. We choose randomly a pair of disconnected nodes vi, vj ∈ V and we

connect them by an edge.



22 1 Introduction

(a) (b) (c)

(d) (e) (f)

Fig. 1.5: Representation of two random network models G(N,L). Panels (a),
(b) and (c) represent three instances ofG(30, 50). We observe that the number
of edges is 50 in the three cases. Panels (d), (e) and (f) show three instances
of G(100, 300). Each one contains 300 edges.

3. Step 2 must be repeated for each one of the L edges.

We illustrate examples of these networks in Figs. 1.4 and 1.5.

1.5.1.1 Degree distribution

It is challenging to compute properties and topologies of networks generated
under the Erdös-Rényi model G(N,L) because of the underlying nature of
the dynamics of the edges allocation. Of course, some properties that depend
on the number of links, such as the average degree 〈k〉 = 2L/N are easy to
compute.

However, we do not know the probability of a pair of nodes vi, vj to be con-
nected. Then, it is very hard to compute the degree distribution {p(k)}∞k=0,
the local clustering coefficient Ci, the average path length 〈d〉, etc. This is why
most of the work and algorithm development have been focused on the ran-
dom networks of type G(N, p). Further details on the following estimations
can be found in [B+16, Sec. 3.3 & 3.4] and [New18, Ch. 11.3].

Given a fixed number of nodes N and a probability p one can have slightly
different network configurations since the number of edges may vary. The
probability that a random network has exactly L links depends on the next
terms: The probability that the node v was connected to L specific nodes is
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pL, but we have to multiply it by the probability that it will not be connected
with the rest, that is (1 − p)N(N−1)/2−L. There are

(
N(N−1)/2

L

)
possibilities

to plug the L edges with the N nodes. Therefore, the probability that the
network generated under the parameters above has L edges is equal to

pL =

(
N(N − 1)/2

L

)
pL(1− p)N(N−1)/2−L. (1.17)

This is a binomial distribution. The expected number of edges of a network
of type G(N, p) will be given by

〈L〉 =

N(N−1)
2∑

L=0

LpL = p
N(N − 1)

2
. (1.18)

Hence, this is equal to the probability p multiplied by the number of
attempts to connect an edge. Then, we can easily obtain the average degree
of the network 〈k〉, which reads

〈k〉 = 2〈L〉
N

= p(N − 1). (1.19)

Let us show how to obtain the degree distribution {p(k)}∞k=0. If we revise
again Figs. 1.4 and 1.5, we can observe that each realization has a different
number of edges. Moreover, we have some nodes that have more connections
than others. The degree distribution should capture these differences. Let us
compute it for random networks of type G(N, p).

Let us consider an arbitrary node v of a random network of type G(N, p).
This node may be connected with each one of the other (N − 1) nodes with
probability p. This means that the probability of being connected, in partic-
ular, to k nodes and not to the rest is given by: pk(1 − p)N−1−k. Now, we
can choose k edges of the N − 1 potential edges that a node can have, which
gives

(
N−1
k

)
different combinations. Therefore, the total probability that a

node was connected exactly with k of the other N − 1 nodes is

p(k) =

(
N − 1

k

)
pk(1− p)N−1−k, (1.20)

which is a binomial distribution of parameters N − 1 and p that represent
the network size and probability of connection. The standard deviation for
this distribution will be

σ = [p(1− p)(N − 1)]1/2. (1.21)

Nevertheless, when 〈k〉 � N , it is common to approximate the binomial
by a Poisson distribution because it provides an analytic expression that is
easier to manipulate in subsequent calculations. The condition 〈k〉 � N is
usually satisfied in real networks since most of them are sparse. When p
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is small, the degree distribution of random networks G(N, p) can be well
approximated by a Poisson distribution, see Fig. 1.6a.

(a) (b)

Fig. 1.6: Representation of the sparse adjacency matrix of a network
G(215, 0.01) (left) and its degree distribition (right).

For a network with average degree 〈k〉, its degree distribution {p(k)}∞k=0

can be approximated by the following Poisson distribution

p(k) = e−〈k〉
〈k〉k

k
. (1.22)

We can easily check that the binomial and Poisson distributions have
a peak around 〈k〉, as expected. Besides, the distribution width is also con-
trolled by 〈k〉, and therefore by p as we can see in Eqs. (1.19) and (1.21). When
〈k〉 increases, we can find more differences between the degrees. Another ad-
vantage of approximating the degree distribution by a Poisson distribution is
that it does not explicitly depend on the network size.

We conclude this section obtaining the expected maximum and minimum
degree in a random network. Let us consider a network of N nodes. We define
the degree kmax as the value such that the network has at most one node with
a degree higher than kmax. According to Barabási, kmax means that the area
behind the Poisson distribution for all k ≥ kmax should be 1/N . The area
is given by 1 − P (kmax), where P (k) is the cumulative degree distribution
obtained from p(k). Then, for a Poisson distribution, we have
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1− P (kmax) = 1− e−〈k〉
kmax∑
k=0

〈k〉k

k!

= e−〈k〉
∞∑

k=kmax+1

〈k〉k

k!

≈ e−〈k〉 〈k〉
kmax+1

(kmax + 1)!
.

(1.23)

As a consequence, a random network lacks of hubs, or nodes with very
high degree. To calculate the value of kmin we follow the same argument used
to estimate kmax. Here, kmin is the value such that there is, at most, one node
with a degree less than kmin. Analogously, we have

P (kmin − 1) = e−〈k〉
kmin−1∑
k=0

〈k〉k

k!
. (1.24)

1.5.1.2 Giant connected component

Consider again Fig. 1.4a. Notice that there are nodes that remain isolated
while others have degree k ≥ 1. When the number of degrees increases, most
of the nodes remain in one connected component. Erdös and Rényi obtained
the size of the largest connected component of a random network G(N, p).
Let us show how this largest connected component can be obtained. Further
details can be found in [New18, Ch. 11.5].

The biggest connected component of a random network G(N, p) is the
connected set off nodes with the highest number of nodes. It is evident that
if p = 0 the size will be 0 and if p = 1, then the size will be N . In one extreme,
the result is independent of the network size, but in the other it is proportional
(equal) to the number of nodes. Let us try to determine when there is the
change of behavior between these two limiting cases as in [ER59, SR51].

Let us denote by w the average fraction of nodes that do not belong to the
giant component. Pick any node vi not in the giant connected component.
We have two cases: Firstly, vj is in the giant connected component, so the
probability that vi is not connected with vj should be 1− w. Secondly, vj is
not connected in the giant connected component but it is still connected with
vi, so the probability should be pw. Adding both probabilities and considering
it for any of the other n− 1 nodes, we have

w = (1− p+ pw)N−1. (1.25)

Considering Eq. (1.19), we can simplify the previous equation to

w =

[
1− 〈k〉

N − 1
(1− w)

]N−1
. (1.26)

Then, taking logarithms of both sides we obtain
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logw = (N − 1) log

[
1− 〈k〉

N − 1
(1− w)

]
' −(N − 1)

〈k〉
N − 1

(1− w)

= −〈k〉(1− w).

(1.27)

Finally, taking exponentials of both sides again, we have exactly the frac-
tion of nodes that does not belong to the giant component

w = e−〈k〉(1−w). (1.28)

Since we are interested in the size of the giant component, we denote it as
GC. Since GC = 1−w, with w as defined above, the size of giant component
will be

GC = 1− e−〈k〉GC . (1.29)

We can appreciate that the higher the average degree 〈k〉, the closer the
network is to have a unique connected component. If 〈k〉 is large enough, then
there are two possible solutions: One when GC = 0 and another one when
GC > 0 and only between these values can a giant component be found. We
can find the transition value by taking derivatives

d

dGC
(1− e−〈k〉GC) = 1, (1.30)

that yields

〈k〉e−〈k〉GC = 1. (1.31)

We cannot explicitly expressGC in terms of 〈k〉. However, we can illustrate
this result, like in [New18, Ch. 11.5, Fig. 11.2]. In Fig. 1.7, we have three
different curves with a different average degree 〈k〉. Fig. 1.7a represents the
three curves where y = 1 − e−〈k〉GC for different average degree value 〈k〉.
The discontinuous black line at the diagonal shows identity equation y = GC,
where the intersection gives the solution to Eq. (1.29), GC = 1 − e−〈k〉GC .
There is only one intersection for the bottom curve at GC = 0, so there is no
giant component, while for the top curve, there is a solution at GC = 0.64.
This last solution is represented at the intersection point of the vertical line
at GC = 0.64 and the identity equation y = GC. The middle curve is precisely
at the threshold between the regime where a non-trivial solution for GC exists
and the regime with only the trivial solution GC = 0.

In Fig. 1.7b we show the resulting solution for the size of the giant com-
ponent as a function of 〈k〉. We appreciate a phase transition
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(a) (b)

Fig. 1.7: Graphical solution for the size of the giant component. (a) Repre-
sentation of the three curves y = 1− e−〈k〉GC in terms of GC for 〈k〉 = 0.3, 1,
and 1.3. A phase transition appears when 〈k〉 = 1. (b) Phase transition dia-
gram of the relative size of the giant connected component as a function of
the average degree. The phase transition is again noticed for 〈k〉 = 1.

1.5.1.3 Clustering coefficient

Given an arbitrary node vi, its clustering coefficient represents the probability
that two of its adjacent nodes are connected by an edge. One of the properties
of random networks that differ from other real-world networks is precisely
their clustering coefficient since it normally presents values that tend to zero,
while the clustering coefficients of many of the networks in real life have
higher values, even reaching up to 1 [New18]. In a random network G(N, p),
the probability that two of its adjacent nodes are connected by an edge will
always be 〈k〉

N−1 , so the local clustering coefficient of vi will be

Ci =
〈k〉

N − 1
. (1.32)

To illustrate this result, let us consider the random network of Fig. 1.6a
that has N = 215 and was generated with probability p = 0.01. The mean
degree will be 〈k〉 = 327.68, and hence, the clustering coefficient is C = 0.01,
exactly the probability p.

1.5.1.4 Path length

Another one of the most important properties of real networks is the average
path length d. To calculate it in a random network G(N, p) it is enough to
calculate the logarithmic relationship between the average degree and the
size of the network [New18] through the expression
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d =
N

ln ln〈k〉
. (1.33)

As an example, we consider the results discussed previously, with 〈k〉 =
327.68 andN = 215 to compute the path length, this is, d = ln(215)/ ln(327.68) =
1.8. We also show in Fig. 1.8 the normalized evolution of the clustering coef-
ficient and the path length Eq. (1.33). We can appreciate that Cn tends to 0
and d tends logarithmically to 1.

Fig. 1.8: Evolution of the normalized clustering coefficient and path length
for random networks of the form G(215, p).

1.5.2 Small world networks

We have studied random networks in Section 1.5.1, and we saw that one of
their most relevant properties is that the clustering coefficient Ci tends to
zero when the network size grows and that the path length d grows loga-
rithmically, as nodes are added to the network, see Fig. 1.8. However, other
real-world network configurations have small path lengths but also high clus-
tering coefficients, see Fig. 1.9. Such networks are called small-world networks
and their main characteristics are a small average path and high clustering
coefficients.

One of the main examples of this type of networks are social networks.
Many social researchers started to work on this topic around 40’s, indepen-
dently of mathematicians. Social scientists were content to study small social
communities and weak relationships between people. However, mathemati-
cians found it more interesting to study social networks when the population
size was very big. Despite the interest in studying unpredictable connections
between people that seemed loosely connected, it was not until 1960 when
the social scientist de Sola Pool and the mathematician Kochen provided the
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first advances in the formulation of what we know today about the small
world phenomenon [DSPK78, Koc89].

We can consider social networks as networks where people are represented
by nodes and their relationships by edges. While the works of de Sola Pool-
Kochen are based on the topologies of the structure of social networks and
without contributing much to the literature emanating from random net-
works, the models Erdös-Rényi abound in its sense. That is, both investi-
gations were polarized, and nothing was known about what was happening
between this disciplinary gap [B+16]. The preliminary version of [DSPK78]
inspired Milgram’s experiment on social distance, what was later commonly
know as the theory of the six degrees of separation or the small world phe-
nomenon [Mil67b, Mil67a, MT69]. In a few words, this work illustrated that
despite the network’s size, the distance between any pair of nodes is really
small since people are more interconnected than we can think at first sight.

Some drawbacks of Milgram’s experiment are the following: It does not
favor the quality of the information collected since it does not guarantee that
the relationships are minimum distance, favoring many clusters with small
numbers of nodes. Random networks cannot predict two important properties
that social networks have: (1) the small-world phenomenon (or small mean
distances between two randomly selected nodes) and (2) high values of the
clustering coefficients. To overcome these deficiencies, Watts and Strogatz
presented a new algorithm for generating networks that can satisfy both
properties [WS98]. Let us discuss in some detail their model.

Suppose an initial one-dimensional network with N nodes, see Fig. 1.9.
These nodes can be arranged in the form of a k-regular ring. That is, each
node is connected with 2k of its closest neighbors, i.e., each node vi has degree
2k. We denote by p the probability of reconnect each link from one node with
any other randomly chosen node. For a network with p = 0 it can be seen
that the connectivity is the same and the degree of each node is still 2k,
and its clustering coefficient is Ci ∼ 3

4 . Any non-zero value of p introduces
a disorder in the network so that the connectivity is not uniform but still
maintaining an average value of 2k. This construction allows us to tune the
graph between the regularity p = 0 (Fig. 1.9a) and the disorder p = 1, see
Fig. 1.9c. Therefore, the intermediate region 0 < p < 1, see Fig. 1.9b), is
precisely the area where the small-world phenomenon occurs, and where the
most interesting and theoretically challenging phenomena occur.

One interpretation of small-world networks is that the distance d between
two randomly chosen nodes in a network is short. To illustrate this, let us
consider a random network with average degree 〈k〉. A node in this network
has on average 〈k〉 nodes at distance one (d = 1), 〈k〉2 nodes at distance
two (d = 2), 〈k〉3 nodes at distance three (d = 3), and so on. Then, the
expected number of nodes at a distance d from a given node can be estimated
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(a) p = 0 (b) 0 < p < 1 (c) p = 1

Fig. 1.9: Different configurations to build the small-world networks: (a) A
regular ring where each node is connected to their next neighbors. Here, each
node has 〈k〉 = 1/2 with p = 0. In (b) each node is connected to the rest
with probability 0 < p < 1. For a small p, the network continues with a
high clustering coefficient, but the random long-range links can drastically
decrease the distances between the nodes [B+16, Box 3.9]. Finally, for p = 1
the configuration in (c) turns to a random network, as we discussed in Section
1.5.1.

recursively as 〈k〉d = 〈k〉 · 〈k〉d−1. In this way, the number of nodes at a
distance at most d from a given node can be estimated as

N(d) ≈ 1 + 〈k〉+ 〈k〉2 + · · ·+ 〈k〉d = 〈k〉
d+1

〈k〉 − 1
. (1.34)

If dmax is the network diameter, then N(dmax) ≈ N . For values of 〈k〉 � 1,
we can neglect the -1 in the numerator and denominator, and taking loga-
rithms we get

dmax ≈
log(N)

log(〈k〉)
. (1.35)

Some remarks should be given concerning this last equation. On the one
hand, since the nodes at a distance dmax are usually very few, the estimation
in Eq. (1.35) works quite well as an approximation of the average path length
〈d〉. On the other hand, since log(N) � N , we have that the dependency
of 〈d〉 in ln(N) implies that the distances in a random network are several
orders of magnitude lower than the network size. Consequently, by small
in the small world phenomenon, we mean that the average path length (or
diameter) depends logarithmically on the size of the network. Therefore, small
world means that 〈d〉 is proportional to log(N), rather than N or some power
of N .

To calculate the local clustering of a node vi, we must first estimate the
number of edges Li between their ki adjacent nodes. We know that the prob-
ability that the neighbors of a given node are linked to each other is p and
there are ki(ki − 1)/2 possible links between the ki adjacent nodes to vi.
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Therefore, the expected value of Li will be 〈Li〉 = p
ki(ki − 1)

2
. Hence, the

local clustering Ci will be given by

Ci =
2〈Li〉

ki(ki − 1)
= p =

〈k〉
N
. (1.36)

From this last equation, we can conclude that if 〈k〉 is fixed, then the
probability p (and the local clustering coefficient Ci) tend to zero as N grows,
at the rate 1/N . Besides, despite being a local measure, the local clustering
coefficient depends heavily on the network size N .

1.5.3 Scale-Free Networks

In this section, we will describe the scale-free networks proposed by Barabási
and Albert in 1999. At that time, along with other researchers, they focused
on projects to map the World Wide Web (WWW), where the documents
are represented by nodes and the hyperlinks between documents by edges. In
collaboration with Jeong, they mapped the domain of the University of Notre
Dame nd.edu, which at that time had 300,000 documents and 1.5 million
links between them [B+16, Video 4.1]. The goal was to approximate the
properties of random networks using Poisson distributions. They expected
that the topology of the web would behave like a random social network
because each document contained information from personal and professional
searches.

However, when looking at the results, they realized that certain pages
were highly connected to others despite the WWW network’s apparent ran-
domness. This phenomenon is contrary to what should happen in a random
network because the presence of these hyperlink containers produces a se-
ries of high clusters and, which is in disagreement with Eq. (1.32) already
discussed in Section 1.5.1.3.

This study revealed the existence of very few pages that were highly con-
nected while most of the pages remained with very few links. The existence
of hubs (nodes with an exceptionally large number of edges) led them to
verify that if a large number of nodes (more than 80%) were disconnected,
the network remained connected. However, if some nodes with many connec-
tions were disconnected (between 5 and 10 %, approximately), then the net-
work was disconnected. The most exciting point about this property is that
it also holds for some other networks such as sexually transmitted diseases
[LEA+01], phone books [OSH+07], bibliographic citations between members
of the academic community [New01], technological alliances, coappearance of
film actors [BF02], neural synapses [CH03], contacts between people in an
organization [WWA+08], food chains [PLC91], connections between organ-
isms linked to metabolism or regulatory proteins [RSM+02] or the spread of
diseases and computer viruses [PSV01].
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The presence of hubs allowed the emergence of a new type of networks
called scale-free networks. We will see that the degree distribution of any of
these networks follows a power-law of the form

pk = Ck−γ , (1.37)

with C, γ > 0.
Networks showing such degree distribution show some other properties,

such as:

1. The exponent −γ in the power-law (k−γ) is usually between 2 and 3.
2. Any node is connected to any other node with very few degrees of separa-

tion (small-world phenomenon). In fact, distances are even smaller than
in random networks, due to the ultra-small regime of scale-free networks,
see [B+16, Sec. 4.6].

3. Existence of nodes whose connectivity value exceeds the average number
several times, which is not typical of random networks.

4. They present hierarchical modularity, in the sense that several small com-
munities form bigger communities, which recombine into even bigger com-
munities. This can be appreciated when looking at the dependence of the
node clustering coefficient of its degree, which usually follows the law
Ci ≈ i−1. This property will be explained in Section 1.5.4.

Due to the singular distribution of scale-free networks, many of the sta-
tistical methods such as sampling, analysis of variance, generalization, cor-
relation coefficients are not relevant to treat them. The reason is that these
methods implicitly involve normal distributions, which does not occur in these
networks. However, we will try to outline some notions about these networks.

1.5.3.1 Power-laws and scale-free networks

We consider, again, an arbitrary and undirected network G = (V,E), with
degree distribution p(k). Mathematically, the scale-free networks show an
asymptotic behavior that is determined by Eq. (1.37). The probability p(k)
that a node has degree k is inversely proportional to k power to some exponent
γ > 0, p(k) ∝ k−γ .

In general, in the real-life and nature examples, we find 2 < γ < 3. The
power-law degree distribution is associated with a preference for attachment
and far away from being random. Therefore, a Poisson distribution presents
a poor adjustment when fitting a power-law distribution, mainly due to the
hubs. However, on a logarithmic axis scale (log− log), the data points form
an approximate straight line.

For representing power-law distributions, it is better to take logarithms
to both sides of Eq. (1.37). Then, one gets that log p(k) depends linearly on
log k, whose coefficient (slope) is the value of the exponent γ
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log p(k) = −γ log k + log(C). (1.38)

We can see that this distribution depends on the γ power of k, and this
is the reason why this type of distribution is called a power-law. Since p(k)
represents the fraction of nodes with degree k, this means that p(k) is the
probability of the total fraction of nodes with degree k, therefore

∞∑
k=0

p(k) = 1. (1.39)

However, for k = 0, Eq. 1.37 diverges because p(0) tends to ∞ and we
know that all probabilities must lay between 0 and 1. This leads us to think
that the power-law distribution has some minimum degree kmin. Let us sup-
pose that kmin ≥ 1, which means that there are no nodes with zero degrees
so that p(0) = 0, when substituting in Eq. (1.39), we get

C

∞∑
k=1

k−γ = 1, (1.40)

or
C =

1∑∞
k=1 k

−γ =
1

ζ(γ)
, (1.41)

where ζ(γ) =
∑∞
k=1 k

−γ is the Riemann zeta function and therefore, for all
k > 0 and assuming p0 = 0, the correctly normalized power-law distribution
will be

p(k) =
k−γ

ζ(γ)
. (1.42)

It is important to highlight that the expression in Eq. 1.42 still diverges
for the value of k = 0. The kmin is exactly the point from which the tail
of the distribution becomes heavy. Often only the heavy tailed part of the
distribution contains the relevant information of the network, particularly it
contains the greatest number of degrees [CSN09]. For this reason, we must
normalize the fraction of nodes with degree k by the minimum value of the
degrees, that is, kmin and we get

p(k) =
k−γ∑∞

k=kmin
k−γ

=
k−γ

ζ(γ, kmin)
, (1.43)

where ζ(γ, kmin) =
∑∞
k=kmin

k−γ is the so-called generalized zeta function.
If we consider a kmin ≥ 1, the sum over all k is well approximated by the
integral and therefore the normalization constant C can be written as

C ' 1∫∞
kmin

k−γdk
= (γ − 1)kγ−1min , (1.44)



34 1 Introduction

or

p(k) ' γ − 1

kmin

(
k

kmin

)−γ
. (1.45)

In the same way, the cumulative distribution function represented can be
written as

P (k) =

(
k

kmin

)−(γ−1)
. (1.46)

1.5.3.2 Size of hubs

There are networks whose number of nodes is huge. For instance, our brain
has approximately 1011 neurons and the WWW, 1012 webpages, see Table
1.4.1. However, in all the networks that the human has discovered, there is
finiteness. This means that we can count the number of nodes and connections
in these networks, particularly in scale-free networks. Let us estimate the
degree of the hubs. Suppose that there is a value kmax from which it is
expected that at most, there will be a vertex with a degree greater than
kmax. From the Eq. (1.46) and taking into account that

∫∞
kmax

pkdk = 1
N , we

obtain that

kmax = kminN
1

γ−1 . (1.47)

The previous expression allows to conclude that the size of the hub in
a network is directly proportional to the number of nodes and connections.
That is, the larger a network is, the greater the degree of its largest hub will
be.

1.5.4 Hierarchical networks

Hierarchical networks or modular networks are a type of complex network
whose construction is based on the dense interconnection between nodes, see
Fig. 1.10. The modularity characteristic is due to the underlying property in
this type of network that has to do with preferential attachment. That is,
nodes prefer to connect to those of the same community rather than those of
another [B+16, Ch. 9.1].

We illustrate here two of the main types of hierarchical networks:

1. Social networks. A very particular characteristic of social networks is that
they are full of communities, which are easily identifiable. This makes the
study of social networks topologies of vital importance. Zachary was the
first one who applied graph theory methods in order to identify these
communities [Zac77]. This social network has been studied due to a con-
flict between the club administrator, John A., and the instructor, Mr. Hi.
This conflict caused the club to split into two equally proportioned parts,
see Fig. (1.11a), which could be identified after studying the applying
Ford-Fulkerson algorithm to the social network obtained measuring the
affinity between their members.
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(a) (b) (c)

Fig. 1.10: Representation of some hierarchical networks. Panel (a) shows a
densely connected center-module with 5 nodes and 8 edges. (b) Four replicas
of the center-module, where one can see that peripheral nodes are connected
with the center node of the center-module. This structure has 25 nodes and
56 edges. (c) Twenty-five replicas of the center-module. This structure has
125 nodes and 344 edges.

2. Biological Networks. In 1999, L.H. Hartwell argued that “biology must
move beyond its focus on single genes. It must explore instead how groups
of molecules form functional modules to carry out specific cellular func-
tions” [HHLM99]. This argument caught the attention of E. Ravasz et.
al., who led the first attempt to identify these modules in metabolic net-
works systematically [RSM+02], see Fig. 1.11b. They made the following
fundamental hypothesis: A network’s community structure is uniquely
encoded in its wiring diagram. It was possible by constructing a model
that allowed the identification of sub-groups of molecules that, being in-
terconnected, formed communities.

The concept of modularity is the main characteristic of this type of net-
work. It is closely related to the emergency property, which characterizes
complex networks that expand as nodes are added to the network. The mod-
ularity of this network implies that: 1) nodes have a preferential attachment,
and 2) the clustering coefficient is high because each module is densely con-
nected, both with the module that generates it, as well as with the potentials
modules that it generates.

1.5.4.1 Degree distribution

One of the essential measures in the study of complex networks is the degree
distribution. We will show an example of how to study the degree distribution
in one particular case, starting from one of the main characteristics of scale-
free networks: the hubs.

Let us consider Fig. 1.12, as it is done in [B+16, Adv. Top. 9.A]. We
identify the center of one of the smallest modules as hubs, and they will be
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(a) (b)

Fig. 1.11: Representation of two examples of hierarchical networks. (a) shows
Zachary’s Karate social network in which the color nodes represent two com-
munities. This network has 34 nodes and 78 edges. (b) shows an example of
a metabolic network with 100 nodes and 311 edges. Each color represents a
different community.

denoted by H. For example, we call Hn to the central node of the hierarchical
network. Then, we consider one of its repetitions, which we call Hn−1 to its
central node. Next, we consider the peripheral module, considering its central
node, which we call Hn−2. We repeat this process for all peripheral branches
throughout the network.

Fig. 1.12 is built for 4 iterations. For convenience, let us consider a hier-
archical network obtained by this recursive process after n iterations. After
the n-th iteration, the degree of the hub Hi, denoted by kn(Hi) is

kn(Hi) =

i∑
l=1

4l =
4

3
(4i− 1) (1.48)

Let us now count the number of modules in the network. We have 4
modules for i = n − 1, 4 · 5 modules for i = n − 2 and so on, until 4 · 5n−2
for the case i = 1. Recursively, the number of Hi modules hubs with degree
kn(Hi) will be Nn(Hi) = 4 · 5n−i−1. Substituting in Eq. (1.48), we have

log(Nn(Hi)) = Cn − i · log(5), (1.49)

with Cn = log(4) + (n − 1) · log(5). Besides, we can also approximate
log(kn(Hi)) ≈ i · log(4) + log(4/3). Combining both expressions, we get

log(Nn(Hi)) = C
′

n − log(kn(Hi))
log(5)

log(4)
, (1.50)
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Fig. 1.12: Computing the Degree Distribution like [B+16, Fig. 9.35].

for some constant C
′

n or, simplifying the notation kn(Hi) by ki, we have

Nn(Hi) ≈ log(k
− log(5)

log(4)

i ). (1.51)

For computing the degree distribution, it is necessary to normalize Eq.
(1.51) as follows

pki ≈
Nn(Hi)

ki+1 − ki
≈ k−γi . (1.52)

Since ki+1 − ki =
∑i+1
l=1 4

l −
∑i
l=1 4

l = 4i+1 = 3ki + 4, we obtain

pki =
k
− log(5)

log(4)

i

3ki + 4
≈ k

−1− log(5)
log(4)

i , (1.53)

and γ = 1 + ln 5
ln 4 = 2.16, satisfying that 2 < γ < 3, that is a characteristic

parameter for scale-free networks.

1.5.4.2 Hierarchical clustering

Let us consider again Fig. 1.10. Here, the network is built up of a number
of small cross-shaped sub-modules Fig. 1.10a which in turn are divided into
smaller modules with 5 nodes Figs. 1.10b and 1.10c. The measure that cap-
tures the modularity in this type of networks is the clustering coefficient Ci
of the node vi, expressed in terms of the behavior of its ki adjacent nodes.
From Eq. (1.51), we can obtain the clustering coefficient of the hubs Hi
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C(Hi) =
2ki

ki(ki − 1)
=

2

ki − 1
. (1.54)

So that, we have that hubs satisfy that C(i) ≈ 2
i . Therefore, we can

appreciate a property that usually holds in scale-free networks: the higher
the degree of a node is, the lower its clustering coefficient is.

1.6 Network in number theory

Numbers represent absolute reality.

Pythagoras.

Modeling relations between numbers through networks seems to be an
exciting idea that captures the scientific community’s attention dedicated to
studying complex systems. There is an interest in checking whether the be-
havior observed in networks associated with real-life processes is also replied
in networks associated with abstracts elements such as numbers and with
different connectivity relationships between them.

We know the human capacity to create is extensive and is often unlim-
ited [Ara10], and one of his most commendable creations is the numbers
[Bor66]. Since numbers were discovered, humans have used them to number
and count, coming up with clever and fun ways to do it [Str12, Loc09], as if
it were a game, going from one infinity to another [Dau90]. The wealth and
properties that are inherent in numbers have allowed the creation of what
is now known as Number Theory, which is the branch of mathematics that
is responsible for studying the properties of integers [Apo13, Hist. Introd.].
Precisely, this section aims to study the relationship between number the-
ory and network theory. These two fields have found a commonplace in the
study of networks whose elements are numbers that are linked through some
mathematical relationship.

1.6.1 Divisibility networks

Zhou and Wang were the first ones to study networks that emerge from num-
ber theory concepts, such as the divisibility network of the natural numbers
in [ZWHC06]. In this work, they represented the nodes as natural numbers,
and two nodes n,m ∈ N were connected by a directed edge if n divides to
m. One of their most important results is that this network has a large clus-
tering coefficient C ≈ 0.34, which is almost not sensitive to the network size.
Besides, they also show that the average distance 〈d〉 between a pair of nodes
is upper bounded in contrast to small-world networks [WS98], in which there
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is a lower bound for 〈d〉. Some other interesting results are that the network
posses a hierarchical architecture and that the degree distribution is scale-
free of the form p(k) ∼ k−γ . Fig. 1.13 shows a representation of the natural
number divisibility structure.

Fig. 1.13: Network representation with 19 nodes and 19 edges. There are
5 disjoint components. The relationship is due to the divisibility patterns
mod 0.

Shekatkar et. al., studied the undirected network of divisibility of natural
numbers (N). Here, nodes are the natural numbers and two nodes a, b are
connected by an edge provided that a|b or b|a mod (0) [SBA15]. The struc-
ture studied consisted of a network in constant growth, from time t = 1 that
represents a single node, i.e., N = 1, up to time t = 225, which consisted of
a network of N=33.554.432 nodes. They showed that its degree distribution
is scale-free. Applying the maximum likelihood method, they found that the
scaling-index γ ∼ 2. Another interesting result is that the local clustering Ck
is not stationary, which has allowed the emergence of a new property that
they called similarity stretching with respect to a value C∆ = 0. They also
showed that the average degree grows logarithmically as a function of N , that
is, 〈k〉n ∼ 2 log(N)− 1.6912. We illustrate this in Fig. 1.14.

Yuan et. al., [YZW+14] and Yan et. al., [YWCS16] studied the relation-
ship between arithmetic congruences of natural numbers and layered networks
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Fig. 1.14: Divisibility network representation for the first 16 natural numbers.

of the form G(r > 0, N), with N the number of nodes. There, the connectiv-
ity relationship between the nodes vi, vj is established by the edge eij , such
that, j ≡ r mod (i). These directed networks satisfy that if r is large, then
the layers are dispersed. Each layer has only N − r nodes interconnected.
The parameter r determines the structure of the congruence network G. For
example, if r = 0, then the congruence network reduces to a divisibility net-
work, equal to the networks already studied in [ZWHC06, SBA15]. Besides,
the authors provided an analytical expression of the distribution of degrees
when the network G is very large.

p(k) =
1

k(k + 1)
, (1.55)

and therefore, for very large k, the degree distribution becomes pk ≈ k−2,
obtaining as a result, a scale-free network. Like the result of Shekatkar, et. al.,
the average degree grows logarithmically withN following the next expression

〈k〉 ≈ log(N − r) +H, (1.56)

where

H = 2C − 1−
∑r
i=1b

N−r
i c

N − r
, (1.57)

is a constant. When r is very large H ≈ C − 1 − log(r), with C ≈ 0.57721
being the Euler constant.
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Rajans and Ambika continued the study of divisibility patterns between
the natural numbers in [RA20]. In this recent work, they showed a new ap-
proach to study, analytically, some of the most relevant topologies of complex
network models, such as the nodes degrees, the local and global clustering
coefficients, the geodesic distances, and the centrality of a node. All these
analyses are expressed in terms of the floor and divisors functions b�c, and
s(n), respectively. Besides, given that the primes are distributed in a non-
homogeneous way in the set of natural numbers [DGGB11], the authors derive
analytical expressions from verifying how the primes are in the degrees dis-
tribution related to each node. For instance, they notice that the node degree
kn can be approximated, analytically, as

kn = bN/nc+ s(n)− 2, (1.58)

where n ∈ V , such as: n =
∏k
i=1 p

λi
i , and s(n) =

∏k
i=1 p

λi+1
i , here λ ∈ Z+.

The proof is in [RA20, Th. 1]. The Eq. (1.58) means that the distribution of
the degrees throughout the network is directly related to the floor function
divisors function (see [RA20, Fig. 2]). They also show that the density of the
subnetwork of size N can be approximated by N−3/4, following a power-law.

Corso et. al., developed a network of the form G = (V,E) whose nodes
are natural numbers V = N and two numbers are connected following the
next rule: Given a, b ∈ N, we say that a is connected with b, if and only if,
they share a common prime factor pl [Cor04]. These networks have a high
clustering coefficient and an average path length that is close to 1.8.

Luque, Miramontes, and Lacasa studied the divisibility patterns of nat-
ural numbers [LML08], but with a different approach from that studied in
[ZWHC06, SBA15]. They were looking for a quite simple and general process
in which a scale-free degree distribution can induce the onset of criticality in
the dynamics of self-organized systems. They considered an iterative driven
and dissipative process in which integers are constantly introduced and re-
moved from it. First, we recall that a primitive set of natural numbers, i.e.,
none of the elements of V divides exactly another. We start with a primi-
tive set V of n elements extracted from the numbers between 2 and m, with
n < m. The rest of the numbers remain in a pool. We pick a new number
from the pool at random, and we introduce it in V . If the set is still primi-
tive, we pick another number from the pool. If the set is not primitive, either
the number added divides or is divided by s elements. So, we retire them
and repeat the process. With this simple process, Luque et. al., showed a
general mechanism by which simple dynamics running on networks become
self-organizing critical for unscaled topologies.

García-Pérez et. al., studied the relationship between networks and stochas-
tic processes theories, through the architecture of prime and composite num-
bers [GPSB14]. They proposed a non-parametric non-Markovian dynamical
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model that naturally generates primes randomly and study their relation
with composite numbers. The stochastic process is non-Markovian, because
the probability of a number being a prime depends on the probabilistic pro-
cess on all Z, that is, PN . This probability follows a dichotomous selection
process that is defined for k = 2, . . . , N as

nk =

{
1, if k is prime,
0, otherwise. (1.59)

Hence, we can write PN as

PN = 〈nN 〉 =
1∑

n2=0

· · ·
1∑

nN=0

nNρ(n2, · · · , nN ), (1.60)

where 〈nN 〉 is the statistical average and ρ(n2, . . . , nN ) is the joint probability
of the particular sequence (n2, . . . , nN ).

Besides, they indicate that their model refines, to a great extent, the
statistical model proposed by Cramer, related to the existing gap between
consecutive prime numbers. Besides, this model allows a better understanding
of the counting function of the prime numbers, proposing a stochastic function
in which, given an integer z ∈ Z, the probability of know how many primes
there are, such that |p| < |z|.

Natural numbers can be represented by a weighted bipartite network. Its
construction is as follows: Applying the Arithmetic Fundamental Theorem
[Apo13, Ros13], we can decompose any natural number as a unqiue product
of prime factors. Each composite number is connected with the prime factors
appearing in its decomposition, with weights according to the number of times
that this prime number appears in the factorization. It allow us to build Fig.
1.15 where we descompose a composite number as nc = pλ1

1 · p
λ2
2 · · · p

λk
k · · · ,

where pi is the i-th prime and λi are non-negative integers.
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Fig. 1.15: Bipartite network of natural number of side n = 25, like [GPSB14,
Figure 1]. Here we can observe the decomposition of the natural numbers
in composite and prime factors. Circled nodes represent composite numbers,
and squared nodes represent prime numbers.

One of the most important results in this work is that the for a net-
work size N , the degree distribution P (kp), that a randomly chosen prime is
connected to kp different composite numbers, is given by

P (kp) =
π
(

N
kp+1

)
− π

(
N

kp+2

)
π(N)

, (1.61)

where π(N) ∼ N
lnN is the prime counting function [GPSB14, Eq. (2)], kp =

0, 1, · · · , bN2 c and bxc denotes the floor function. Another very important
result is that, applying the prime number theorem, we get that the degree
distribution behaves following a power-law of the form P (kp) ∼ kp−2.

1.6.2 Network analyses of conjectures in number theory

Some of the most well-known conjectures in number theory have been revis-
ited from the perspective of network science. We briefly outline here the main
existing results.
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1.6.2.1 The Collatz Conjecture

Emmert-Streib analyzed the Collatz conjecture from complex network theory
perspective [ES13]. The Collatz sequence’s conjecture was enunciated by the
Collatz in 1937, and it has not been resolved yet. The conjecture states that
“every positive integer has an orbit under the function T defined as

T (n) =


1, if n = 1,
3n+ 1, if n odd is and n > 1,
n

2
, if n is even.

(1.62)

which will always reach 1 and, therefore, it will also reaches the cycle (4, 2, 1)
[Lag85].

Apart from Collatz graphs [ES13, Fig. 1], they propose the study of Collatz
step graphs, that are defined as follows: Given n ∈ N, let us define the function
λ(n) = t if T t(n) = 1, for all n > 1. Then, we define a second one θ : N →
Nn−1 by nθ(n, T ) = (λ(2), . . . , λ(n)) for n > 1. Let us construct the Collatz
step sequence graph, for brevity denoted as GCS , as follows: The set of nodes
will be given by the natural numbers m such that m is equal to the i-th
component of Θ(n) for some 1 ≤ i ≤ n−1. Two nodes m and k are connected
if exists some i such that m = Θi(n) and k = Θi+1(n), see [ES13, Fig. 2]. If
we count how many i’s provide this equality, we can even generate a weighted
graph.

The authors claim that this network was motivated after studying the
mechanism of a biological cell. Collatz orbits are very similar to the pro-
cess that occurs in a cell, when DNA follows a linear sequence until it is
transcribed into a mRNAs, which is subsequently translated into proteins
that interact with each other, as well as other types of gene structures
[Zha09, ESG11]. After studying these networks, they conclude the following:

1. There are clear and subtle differences between the orbits of the odd and
even natural numbers.

2. The average number of steps until an orbit reaches 1 [ES13, Eq. 13] is
logarithmically approximated with the size of n.

3. The distribution of weighted degrees behaves, asymptotically, like a
power-law distribution of the form p(k) ∼ k−0.92. It is important to note
that the value of the exponent is not affected by the number of nodes
and, therefore, is invariant to the size of the network.

4. If n→∞, the average path length L(n) tends to

L∞ =

{
3.069± 0.006, if GCS is undirected,
4.134± 0.009, if GCS is directed. (1.63)

5. If n→∞, then the global clustering coefficient tends to 0.609± 0.004.
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1.6.2.2 The Goldbach Strong Conjecture

Chandra et. al., offered us one fascinating result by relating the Goldbach
Strong Conjecture (GSC) [SL84] with network science [CD05]. The beauty of
his work is to establish a probability function that establishes the minimum
distance between pairs of possible primes that result in an even number.
Recall that the GSC, which was proposed by Goldbach in 1742, states that
"every even number (ne) greater than 4 is the sum of two prime numbers
p1, p2", that is: ne = p1 + p2, and Goldbach’s weak conjecture (GWC) states
that "every odd number (no) greater than 5 can be written as the sum of
three primes p1, p2, p3", that is: no = p1 + p2 + p3 [Sch40]. GWC was proved
in 2015 by Helfgott [Hel13]. Chandra et. al., started from GSC, where nodes
were prime numbers and for every even number n, we put an edge between
the component primes p and q with probability |p− q|α, with −∞ < α <∞.

For example, let us consider n = 34. We can decompose it into the follow-
ing sums of two primes: 3+31, 5+29 and 11+23. Then, we define ∆ = |p−q|,
that is ∆ = 28, 24, 12. The possible edges are L = {(3, 31), (5, 29), (11, 23)}.
We define a variable s =

∑k
i=1∆

α
i , i.e. s = 28α + 24α + 12α. Then, we can

define pi =
∆αi
s , as the probability that each edge connects the primes (p, q);

in our example, it would be : p1 = 28α

s , p2 = 24α

s and p3 = 12α

s . Given that
p1 + p2 + p3 = 1, a pair of primes is chosen that belongs to the interval [0, 1].
Then, for M even numbers, we will have M edges because only one edge is
placed for each pair of primes (p, q), but the number of nodes will be smaller
N < M . If α = 0, then the choice of the pair (p, q) is independent of the
value of ∆, while if α 6= 0, then the edge that goes from p to q must meet the
probability that the distance is minimal. As results, the authors report that
if α > −1.8 the network that is formed presents a small-world topology, i.e.,
the average shortest distance is small (increases only logarithmically with the
size of the network), but the clustering coefficient is high compared to the
random network, and if α < −1.8, the network is regular [WS98].

1.6.2.3 The Erdös-Straus Conjecture

Mondreti, et. al., in , offers us another interesting result in which a number
theory problem can be modeled and verified using complex network theory
techniques [Mon19]. In his work, Mondreti studied the famous Erdös-Straus
Conjecture. This conjecture states that "for any positive integer n ≥ 2, the
Diophantine Equation (DE)

4

n
=

1

x
+

1

y
+

1

z
, (1.64)

has a solution where x, y, z are also positive integers".
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To the aim of building an increasing family of networks Gn associated to
Graph of the Edrös-Straus Conjeture. The authors build function S(n) that
generates an unordered set of integers that could be part of the solution to
Eq. (1.64). With this in mind, they generate another function Dn = {k ∈ N :
k ≤ n} that contains all the triplets of solutions x, y, z, which correspond to
the denominators of the DE. From the two previous functions Sn and Dn, it
is easy to determine the set of nodes, which is defined as

Vn = Dn

⋃
i∈Dn

Si. (1.65)

Now, the relationships between nodes are established by the connections
between the unique positive integer solutions to Eq. (1.64), that is,

En = {(s, t) : ∀t ∈ Ss for each s ∈ Dn}. (1.66)

Tests done for large values of n indicate that the degree distribution is
scale-free, see [Mon19, Fig. 2 and 3], with γ ≈ 1.80. However, in the largest
SCC we only have γ ≈ 0.546. This last LSCC appears because the conjecture
can be rewritten as

4

mp
=

1

mx
+

1

my
+

1

mz
, with p a prime number, (1.67)

so the solutions for composites are simply multiples of the solutions associated
to their factors.

Concerning the average path length 〈l〉, for large values of n, we have that
the average path length 〈l〉 is smaller than 1, see [Mon19, Fig. 4] because most
of the nodes appear in some solution, but the DE is not solved for them.

However, when studying the largest SCC, the value of 〈l〉 ≈ 2, see [Mon19,
Fig. 5]. According to this, the author conjectures that, in the limit, any
solution of the DE will probably belong to the LSCC. The author leaves
this conjecture open for future lines of research. Finally, another interesting
result is the estimation of the clustering coefficient in the largest SCC, which
is C ≈ 0.5.

1.6.3 Networks based on Fibonacci numbers

Fibonacci numbers have been used to define iterative networks that can be
easily scaled [GKD94]. These networks permit us to run algorithms that
require minimal modifications when we want to adapt them for scaled versions
of the network. They have also been for implementing sorting algorithms in
parallel computers [Sta00].
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However, as we have seen in previous cases, the numerical properties Fi-
bonacci numbers have also been studied from network science. Jing et. al.,
derive the analytical expressions related to the topology of this network in
[JYWGLYCP13]. The Fibonacci network built-in time n by Fn consists of
the genealogy tree genealogy of the first n descendants given by an initial pair
of rabbits. Apart from studying the degree distribution, the local clustering
coefficient, the average path length, and the average degree 〈k〉; they also
measure the mean time efficiency of random walks on them.

Fig. 1.16: From left to right, Fibonacci Networks Fn for times n = 1, 2, 3, 4,
and 5.

It is important to remark Fn is obtained from Fn−1 recursively. Each
network Fn will have n nodes. We start with F1 with a single node. F2

consists of two nodes, v1 and v2 linked by an edge. Then, F3 is generated
from F2 adding a third node v3 and linking them with v1 and v2. In general,
Fn is obtained from Fn−1 adding the n-th node vn and connecting them to
their ancestors. This yields that the average degree is approximately 2. To
compute the degree distribution, the authors use

p(k) = r
−(k+2)
1 = e−(k+2)α ∼ e−kα, with r1 =

1 +
√
5

2
, (1.68)

where α = log(r1). Hence, the degree distribution follows a exponential dis-
tribution, like [WKT+06, Eq. 9].

The average path length, denoted by dt is computed by

dt =
2Dt

Nt(Nt − 1)
, (1.69)

where
Dt =

∑
i,j∈Ft
i 6=j

dij , (1.70)
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here dij is the are the shortest distance from node vi to node vj . It is also
worth to mention that the clustering coefficient is zero, because there is no
closed triangle.
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Abstract. The Pascal triangle is so simple and rich that it has al-
ways attracted the interest of professional and amateur mathemati-
cians. Their coefficients satisfy a myriad of properties. Inspired by the
work of Shekatkar et al [SBA15], we study the divisibility patterns
within the elements of the Pascal triangle, through its decomposi-
tion into Pascal’s matrices, from the perspective of network science.
Applying Kolmogorov-Smirnov test, we determine that the degree
distribution of the resulting network follows a power-law distribu-
tion. We also study degrees, global and local clustering coefficients,
stretching graph, averaged path length and the mixing assortative.

2.1 Introduction

Number theory has been one of the most studied fields of mathematics for
centuries. In contrast, network science has emerged as a discipline in the
last twenty years. Nevertheless, networks have attracted the interest of many
researchers due to their multiple applications to different disciplines, such
as biology, telecommunications, social and environmental sciences, as well as
systems medicine.
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Besides, some networks have emerged from mathematical concepts, such
as the divisibility network. This was firstly studied by Zhou et al in [ZWHC06].
Here, nodes represent natural numbers and two nodes n,m ∈ N are connected
by a directed edge if n divides m, denoted by n|m. These authors noticed
that this network has a large clustering coefficient of approximately 0.34,
which is insensitive to the network size. Besides, they showed that: (i) the
average distance between a pair of nodes is upper bounded, in contrast to
small-world networks, (ii) it posses a hierarchical architecture, and (iii) the
degree distribution follows a power-law.

A divisibility network can also be considered as a non-directed one if we
connect a pair of nodes a, b ∈ N if either a|b or b|a. Shekatkar et al [SBA15]
studied it using the framework of a growing complex network. Among other
properties, they showed that it is scale-free but has a non-stationary degree
distribution, reporting a stretching similarity pattern, and showing how this
pattern evolves with the size of the network. Related to divisibility networks,
Yan et al [YWCS16] showed that every layer in a multiplex congruence net-
work is a sparse and heterogeneous subnetwork satisfying the scale-free prop-
erty, providing an insight into the simultaneous congruences problem through
the graphical solutions provided there.

All these results have inspired us to look for other ways of consider the
divisibility network through a different growing network procedure. Due to
the abundance of beautiful and unpredictable properties hidden in the Pas-
cal Triangle (PT), we have studied the non-directed divisibility following a
similar approach as Shekatkar et al did. For this purpose, we have considered
squared Pascal symmetric matrices as a covering of growing finite subsets of
the PT. These matrices were firstly analyzed by Brawer and Pirovino [BP92].
We will denote by Sn the Pascal square matrix of order n, that is obtained
when taking the square with two orthogonal sides given by the first n ones
of both sides of the PT. As an example, we have indicated in bold font the
Pascal matrix S4 in Eq. (2.1). From S4 we construct a divisibility network
whose nodes are {1, 2, 3, 4, 6, 10, 20}.

Row 0 1
Row 1 1 1
Row 2 1 2 1
Row 3 1 3 3 1
Row 4 1 4 6 4 1
Row 5 1 5 10 10 5 1
Row 6 1 6 15 20 15 6 1

(2.1)

Pascal matrices present some beautiful properties. As an example, we
mention the decomposition of the Pascal matrices proposed by Edelman and
Strang [ES04] who showed how to decompose any Pascal matrix Sn of order
n, into the product of two matrices Ln, which is a lower triangular matrix,
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and Un, which is an upper triangular matrix, such that, Sn = LnUn, for every
n ∈ N.

For any given number k ∈ N, there is some n0 ∈ N such that k ∈ Sn for all
n ≥ n0. With this in mind, we will study the divisibility networks provided
by these matrices. On the one hand, using these matrices, we can cover all
the natural numbers through a growing family of subnetworks. On the other
hand, the numbers in these matrices are not consecutive, and when sequen-
tially ordered, we can find big gaps between some of them. This suggests us
to study whether the scale-free degree distribution holds and other network
properties are still satisfied as to the ones shown in [SBA15].

In particular, we have considered the evolution of several network mea-
sures along with the size of Pascal matrices, such as the average degree 〈k〉,
the histogram of the connectivity degree distribution; the local and global clus-
tering coefficients Ci and C∆, the assortativity index r; and the average path
length 〈d〉. We will recall the definition of these notions in the next section.

The degree distribution is studied in Section 2.2.1, where we show that
it is scale-free. We also study an example of how to compute the fitting pa-
rameters. In order to study the structure of this network, we have studied
how the clustering evolves with the size of the network. The local and global
clustering coefficients are presented in Sections 2.2.2 and 2.2.3. The tendency
of nodes to connect to nodes of similar degree is analyzed through the assor-
tative coefficient in Section 2.2.4, and how nodes are separated respect to the
others through the average path length, see Section 2.2.5.

We refer the reader to the books of Barabási [B+16], Estrada [Est12], and
Newman [New18], as basic references of Network Science.

2.2 Network analysis

For any arbitrary n ∈ N, we consider the divisibility network Mn = (Vn, En),
associated to the Pascal matrix Sn of order n. This network has Vn as its set
of nodes and En as its set of edges. We point out that we exclude the number
1 of Vn since it will be linked with any other number, which does not provide
useful information for studying the evolution of the network properties of
these matrices.

We denote card(Vn) by Nn, with Nn ∈ O(n2), and card(En) by Ln. Once
fixed the set of nodes Vn with the non-repeated elements of Sn, we recall that
an arbitrary pair of elements a, b ∈ Vn are linked by an edge if, and only if,
a|b or b|a. Figs. 2.1a and 2.1b are generated from matrices S6 and S7.

2.2.1 Degree distribution

Given the sequence of nodes from a networkMn, with n ∈ N, we first analyze
the evolution of the degree distribution p(k) = nk/Nn, where nk is the number
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(a) Divisibility network associated to S6 (b) Divisibility network associated to S7

Fig. 2.1: Examples of divisibility networks obtained from Pascal ma-
trices S6 and S7. From S6, we have that the network M6 has 14 nodes and
29 edges, see Fig. 2.1a), and from S7 we have that M7 has 20 nodes and 72
edges, see Fig. 2.1b.

of coefficients with degree k in Mn, along with n. First, we check if the scale-
free property holds, which will result into the existence of many nodes with
only a few edges and a few nodes with a large number of edges, that are
called hubs, see [BA99, B+16].

In Fig. 2.2, we illustrate the asymptotic growth of the cumulative and
the averaged cumulative degree distributions for the network M26 , that has
a total of 2001 nodes and 51147 edges. The nodes are indexed in increasing
order respect to the term of S26 that they represent. We appreciate how both
measures tend to stabilize when adding the last nodes of each network.

Applying the Maximum Likelihood method [CSN09, SBA15], we confirm
that the divisibility network of Pascal matrices satisfies a scale-free law. This
means that the network degree distribution follows, at least asymptotically, a
power-law of the form p(k) = C ·k−γ for all k ≥ kmin. We recall that when the
power-law governs a process, this usually occurs from what we determinate
the “minimum value” kmin, which is exactly the point where one can start to
observe the fall of the heavy tail. In Fig. 2.3a, we represent again the degree
distribution for M211 with logarithmic binning in the degree values.

We characterize the power-law of the degree distribution of M26 through
bootstrapping, using 1000 iterations of bootstrapping. The obtained fitting
parameters were kmin = 3 and γ = 1.2256. In Fig. 2.2a, we plot the histogram
of the values obtained for the γ parameter. For γ = 1.2256, the Kolmogorov-
Smirnov coefficient was 0.976, see Fig. 2.3b, which shows the goodness of the
estimation. It is worth to mention that network with similar degree distribu-
tions could have a different inner structure, see [Sha12].

We also show the degree distributions of M25 , M26 , M27 and M28 in Fig.
2.4. We observe a high concentration of nodes (plateau) in the region of high
values of the degree. This suggests a bias in the linear model fitting due to the



2.2 Network analysis 53

(a) (b)

Fig. 2.2: Cumulative degree and average degree distributions for the
network M26 . Fig. 2.2a shows the cumulative degree as the coefficients of
S26 grow in value. Fig. 2.2b plots the evolution of the average degree when
the coefficients of S26 are progressively added. For n = 26 the average degree
is 〈k〉n = 51.114.

(a) (b)

Fig. 2.3: In Fig. 2.3a, the sizes of the bins are equal to successive positive
powers of 2, and the count in each bin is normalized dividing by the bin
width, like in [SBA15, Fig. 2]. In Fig. 2.3b, we characterize the uncertainty
in the parameter fitting to a power law using 1000 bootstraps for M26 .

comparatively large number of nodes with low degrees respect to the fewer
number of nodes with large degrees [B+16, Gil15].

In order to correct the non-uniform sampling seen with the linear binning,
we show these degrees distributions with logarithmic binning again, see Fig.
2.5.
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(a) M25 (b) M26

(c) M27 (d) M28

Fig. 2.4: Representation of the degree distribution for M25 ,M26 ,M27 ,
and M28 .

As n grows, the γ coefficient of the power-law fitting decreases. Increasing
the number of nodes of the network does not guarantee a better fit of the
linear model. It is worth to mention that these indicators do not fully reflect
the network robustness due to the inherent bias of the particular sampling
process, see for instance [Sha17].

We also have wondered how important is the role of the lowest numbers,
which have the highest degrees, in determining the scale-free nature of the
network. In this line, we have removed the hubs corresponding to nodes as-
sociated with numbers 2 to 6. These new degree distributions also follow a
power-law, as we can see in Fig. 2.6.

2.2.2 Local clustering coefficient

Many scale-free networks also display a high degree of clustering. This is the
result of a hierarchical organization in which small groups of nodes organize
into increasingly larger ones while preserving the scale-free property [RB03].

Since all the natural numbers appear along the first row/column of Pascal
matrices, and the rest of their elements are composite numbers, there will be
many connections from the first elements to the second ones. Besides, as
numbers in the inner columns/rows of the matrices grow pretty fast, there
will be fewer edges among them. Therefore, we have analyzed how clustered
the network is. The main two measures for analyzing the clustering are the
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(a) M25 (b) M26

(c) M27 (d) M28

Fig. 2.5: Representation of the degree distribution for M25 ,M26 ,M27 , and
M28 , with logarithmic bining.

local and the global clustering coefficients. The global version provides an
indicator of the clustering in the network, whereas the local one gives an
indicator of the connection between the adjacent nodes to a given one.

We recall that given Mn = (Vn, En) and a node vi ∈ Vn with degree ki,
we denote by ṽi the set of nodes adjacent to vi. Then, the local clustering
coefficient Ci is the number of pairs of adjacent nodes to vi that are connected
between them by an edge, divided by the number of admissible neighbor pairs
of vi [DM02, New03b, New18] that is:

Ci =
2 |{ljk : vj , vk ∈ ṽi}|

ki(ki − 1)
, where ljk denotes an edge linking vj and vk.

(2.2)
From Eq. (2.2), we generate some stretching graphs to show how the clus-

tering coefficient evolves when adding the nodes one by one to the networks
M26 ,M27 and M28 , see Fig. 2.7.
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(a) (b)

Fig. 2.6: Degree distributions of the Pascal network M211 with logarithmic
bining. In Fig. 2.6a we have removed node 2 and in Fig. 2.6b we have removed
nodes 2 to 6.

Fig. 2.7: Local clustering coefficient in terms of the node index for different
network sizes: (a) M26 , (b) M27 , (c) M28 . Nodes are indexed in increasing
order of the number to which they are associated. This graph shows a stretch
of similarity due to the divisibility between the coefficients of the Pascal
matrix. The stretch is the same, regardless of the size of the network, as it
was shown in [SBA15].

To see this evolution, we can also represent the difference between the
local clustering of two consecutive nodes, namely ∆C = Ci −Ci+1. This can
be compared respect to [SBA15, Fig. 5]. Fig. 2.8 shows a symmetrical pattern
with respect to the value ∆C = 0, as the network grows.
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Fig. 2.8: Behavior of the evolution of the difference between the clustering
coefficient Ci and the clustering coefficient Ci+1.

Fig. 2.9: Evolution of the global clustering, assortativity, and average path
length for M22 ,M25 ,M27 ,M29 , and M211 .

2.2.3 Global clustering coefficient

The global clustering coefficient is based on ordered triplets of connected
nodes, that can be linked by 2 (open triplet) or 3 edges (closed triplet).
With this, a triangle graph has 3 closed triplets: That is, a triangle ABC
has 3 triplets associated to it: ABC, BCA, and CAB. With this, the global
clustering coefficient can be computed as
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C∆ =
3 × number of triangles

number of connected triplets
(2.3)

As we can see in Fig. 2.9 the global clustering coefficients decreases when
the size of Mn grows, approaching to 0 for high values of n, which represents
that the networks Mn become more and more sparse when increasing its size
n.

2.2.4 Assortative coefficient

The assortativity coefficient r the correlation coefficient of the degrees of
adjacent nodes. It shows the preference of nodes to connect with other nodes
of comparable degree [New03a, New18].

Given a network Gn = (Vn, En), it is defined as follows:

r =

∑
ij(Aij − kikj/2Ln)kikj∑
ij(kiδij − kikj/2Ln)kikj

(2.4)

where ki is the degree of vi, Aij is the (i, j)th element of the adjacency matrix
associated to the eventual connection between vi and vj , Ln is the total of
links in the network, and δij is the Kronecker delta. However, determining
the assortativity from Eq. (3.13) supposes a high computational cost, and
therefore, it is suggested to approximate the assortativity by means of the
next expression [New18, Sec. 10.7]:

r =
S1Se − S2

S1S3 − S2
2

with Se =
∑
ij

Aijkikj = 2
∑
l(i,j)

kikj , and (2.5)

Sm =

Nn∑
i=1

kmi for m = 1, 2, 3, . . . .

where we have introduced l(i,j) for referring to all unordered pairs of nodes
connected by an edge and Nn is the total number of nodes of a network Mn.

Assortativity coefficient presents values ranging from −1 to 1. If r = 1, we
called the network to be fully assortative. In case of r = 0 the network is said
to be not assortative, while if r = −1, the network is called disassortative
[New02, New03a, DM02]. The divisibility networks Mn approaches to be
disassortative as long as n increases, see Fig. 2.9, which reflects that nodes
that have a high degree tend to connect with low-grade nodes.

2.2.5 Average path length

The network average path length, denoted by 〈d〉 is the averaged distance
between all pairs of nodes. For each pair, the distance between them is given
by the shortest path connecting them. Clearly, if two nodes belong to different
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connected components, the distance will be ∞. For computing the average
path length we have excluded pairs of nodes belonging to different connected
components.

〈d〉 = 1

N(N − 1)

∑
i,j=1,N
i6=j

di,j. (2.6)

We can see that, if connected, the averaged path length is short. In Fig. 2.9,
we show it for several networks. It increases with the size of the network, but
even for M211 it is 2.05. This means that the biggest connected component
is closed to be a bipartite network.

2.3 Conclusions

PT and Pascal matrices present multiple properties that have fascinated
mathematicians for ages. Here, we have studied them from the perspective
of Network Science. We have considered Pascal matrices as a ground for
constructing a growing divisibility network. Its structure has been studied,
following the approach of [SBA15]. The interest of this choice lies in the fact
that PT contains all the natural numbers on each of their sides. The way in
which we increasingly construct the divisibility network by taking the Pascal
matrices provides a different arrangement of the natural numbers,with gaps
between some of them. Nevertheless, the scale-free property for the degree
distribution also holds.

Either in [SBA15] or here, both growing networks present similar struc-
tures and characteristics to real based networks. This can be noticed when
looking at the degree distribution, the global and local clustering coefficients,
the assortativity, and the average path length. This work fits within our inter-
est in studying divisibility networks constructed from subsets of the natural
numbers, and to see how network measures can help us to describe them
and how to find hidden structures and hierarchies [BSW19]. In future works,
we will study the divisibility networks provided by other arrangements of
the natural numbers, and the divisibility networks of other countable sets of
numbers such as the rational numbers in the unit interval [SHGMC20].

The results concerning the local clustering coefficient are similar to the
ones given by [SBA15]. Besides, we have seen that when the size of the net-
work grows, the global clustering coefficient tends to 0, and the divisibility
networks approach more and more to be disassortative. Both results agree
with the average path length that, despite low, it increases as the network
size grows and indicates that the network is close to be bipartite.
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Abstract. Divisibility networks of natural numbers present a scale-
free distribution as many other process in real life due to human
interventions. This was quite unexpected since it is hard to find pat-
terns concerning anything related with prime numbers. However, it
is by now unclear if this behavior can also be found in other net-
works of mathematical nature. Even more, it was yet unknown if
such patterns are present in other divisibility networks. We study
networks of rational numbers in the unit interval where the edges are
defined via the divisibility relation. Since we are dealing with infinite
sets, we need to define an increasing covering of subnetworks. This
requires an order of the numbers different from the canonical one.
Therefore, we propose the construction of four different orders of the
rational numbers in the unit interval inspired in Cantor’s diagonal
argument. We motivate why these orders are chosen and we com-
pare the topologies of the corresponding divisibility networks show-
ing that all of them have a free-scale distribution. We also discuss
which of the four networks should be more suitable for these analyses.
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3.1 Introduction

Network science is the field that model different phenomena as networks
of connected elements. There, the elements are represented by nodes which
are connected by links or edges [Wat04, PSRDG03, New18, BBV08, B+16,
BFW13, Est12]. In recent years this has found applications and received
contributions from a wide variety of research fields, such as telecommuni-
cations [JD16], machine learning [PBGGNPC20], biology [BO04], social sci-
ences [BMBL09], etc.

Recently, network science has been used to study mathematical prop-
erties from the point of view of complex systems apart from graph theory
itself. Some interesting networks have arisen when studying mathematical
structures of numbers sets: divisibility networks of natural numbers following
the increasing sequential order, [SBA15], divisibility networks of natural num-
bers according to its arrangement within the Pascal Triangle [SHMPBC20] or
networks of prime numbers [CD05]. Yan et al studied congruence relations
through multiplex networks and studied the multiplex congruence network.
They found that each one of the layers was sparse and presents a scale-free
degree distribution [YWCS16].

This motivates our interest in studying how network measures can help us
describe them and find hidden structures and hierarchies [BSW19]. In some
cases, we can even find analytical expressions of the results, as it is the case
of the degree, clustering, geodesic distance, and centrality of the divisibility
network on the natural numbers [AA20]. In addition. expressions for other
the centrality measures were shown in [RA20].

Network science has also provided an approach to analyze conjectures
in number theory as it is the case of the Erdös-Straus conjecture [Mon19]
or the Goldbach conjecture [CD05]. Fibonacci networks were studied in
[JYWGLYCP13], where the degree distribution and the average path length
are calculated. These networks verify the small-world property and have an
exponential degree distribution.

In this work, we study divisibility networks where the nodes are rational
numbers, each of them connected to other nodes if one divides another one.
Despite that we can find rational numbers at a different scale to natural
numbers, we wonder if we rational numbers present a symmetric behavior to
the natural numbers with respect to the divisibility relation. We also consider
that this approach of using network science data analysis tools on datasets
of mathematical nature can attract the interest of pure mathematicians to
these computational methods.

In principle, these networks consist of infinite sets of numbers (nodes). A
common approach is to order the nodes and to define an increasing covering
of the set of nodes according to a particular criteria to pick up the nodes.
This approach permits to reduce an infinite network to an increasing family
of subnetworks whose sets of nodes are in correspondence with the elements
of the covering.
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We say that a set A is countable if we can set a bijection f : N→ A, which,
in fact, also yields a sequential order on A, taking a1 < a2, with a1, a2 ∈ A,
provided that f−1(a1) < f−1(a2). Using again bijections, we can prove that
the countable union of countable sets is again countable. So, to prove the
countability of the rational numbers, it is enough to prove the countability of
the rational numbers in the unit interval, and then to consider the countable
union of intervals between consecutive integers.

In Section 3.2 we first propose the construction of four different types of
networks in the unit interval that are based on Cantor’s diagonal argument.
Later, we numerically analyze the structure of these networks. In Section
3.3, we study several topological parameters compared to the size of their
respective subnetworks, and we see how do they evolve when the size of the
network grows. In particular, we discuss the degree distribution p(k); the local
clustering coefficient c(k); the average degree 〈k〉n; the k cumulative degree;
the local and global clustering coefficients Ci and C∆; the average clustering
〈C〉; the assortativity index r; the average path length 〈d〉, and the network
density ρ. In particular, for the local clustering we represent it splitting the
behavior for prime numbers in the numerator and in the numerator. Since the
order of the rational numbers does not always correspond with the natural
order in the interval, we also indicate their position according to the canonical
order and the order obtained through different diagonal arguments. All these
measures provide a general overview of the network structure and set the first
steps for more detailed analysis that can lead to conjecture analytic formulas
that can describe this structure.

Finally, we present the conclusions and draft some future research lines.

3.2 Matherials and Methods

For studying the divisibility network of Q∩]0, 1], we invoke Cantor’s diago-
nal argument to prove its countability [Val13]. He arranged all the rational
numbers in an infinite-dimensional square matrix and he set a path there to
order all their elements sequentially. In this work, we are going to consider
several types of these matrices: In the first one, that we will call A0 = (a0ij),
with a0ij = i/j we arrange all positive rational numbers. It is explicitly given
by:

A0 =



Col 1 Col 2 Col 3 Col 4 Col 5 Col 5 . . .
Row 1 1/1 1/2 1/3 1/4 1/5 1/6 . . .
Row 2 2/1 2/2 2/3 2/4 2/5 2/6 . . .
Row 3 3/1 3/2 3/3 3/4 3/5 3/6 . . .
Row 4 4/1 4/2 4/3 4/4 4/5 4/6 . . .
Row 5 5/1 5/2 5/3 5/4 5/5 5/6 . . .
Row 6 6/1 6/2 6/3 6/4 6/5 6/6 . . .

...
...

...
...

...
...

(3.1)
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To order them sequentially, one just has to stack one right diagonal after
the other. For every n ∈ N, we define A0

n as the list of numbers extracted
from the first n-right diagonals of A0. For example, A0

6 will be

A0
6 =

(
1

1
,
1

2
,
2

1
,
1

3
,
2

2
,
3

1
,
1

4
,
2

3
,
3

2
,
4

1
,
1

5
,
2

4
,
3

3
,
4

2
,
5

1
,
1

6
,
2

5
,
3

4
,
4

3
,
5

2
,
6

1

)
. (3.2)

We start with the divisibility networks that have as the set of nodes all
the non repeated elements from A0

n, n ∈ N. The corresponding set of nodes
will be denoted by V (A0

n). For instance, V (A0
6) is

V (A0
6) =

{
1

1
,
1

2
,
2

1
,
1

3
,
3

1
,
1

4
,
2

3
,
3

2
,
4

1
,
1

5
,
5

1
,
1

6
,
2

5
,
3

4
,
4

3
,
5

2
,
6

1

}
. (3.3)

Fig. 3.1: Divisbility network G(A0
6), with 17 nodes and 71 links.

A connection between nodes, vi, vj ∈ V (A0
n) occurs if one divides the

other, that is, the division is modulo 0 with a natural number as quotient. We
remark that this will provide a non-directed network. We have also considered
that 1 is connected with all the numbers, since it is the identity element for
the division of non-null elements. We denote as L(A0

n) the set of links. The
networks given by these sets of nodes and links will be denoted by G(A0

n) =
(V (A0

n), L(A0
n)). As an example, we plot in Fig. 3.1 the network G(A0

6), which
has 17 nodes, since 2/2 and 3/3 are equivalent to 1, 2/4 is equivalent to 1/2,
and 4/2 is equivalent to 2.

This first network based on Cantor’s diagonal argument will inspire the
four networks that we will study here. In contrast to G(A0

n) that is a network
of rational numbers, we will consider four different networks, all their elements
will belong to Q∩]0, 1].

3.2.1 Networks G(A1
n)

The first type of network is denoted by G(A1
n) = (V (A1

n), L(A1
n)), n ∈ N.

It is obtained directly from A0
n by dividing all the nodes by the maximum
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number, which is n. This normalization rescales all numbers to fit within the
unit interval without affecting the existing links between nodes. For example,
from V (A0

6) one will obtain that the set of nodes V (A1
6) will be

V (A1
6) =

{
1

6
,
1

12
,
1

3
,
1

18
,
1

2
,
1

24
,
1

9
,
1

4
,
2

3
,
1

30
,
5

6
,
1

36
,
1

15
,
1

8
,
2

9
,
5

12
, 1

}
. (3.4)

3.2.2 Networks G(A2
n)

A second network G(A2
n) = (V (A2

n), L(A2
n)), n ∈ N, can be obtained from A0

n

if we just pick up the numbers in ]0, 1] and their connections. Therefore, links
between nodes will be also set according to the aforementioned divisibility
relation, but the number of nodes and links in G(A2

n) is smaller than the
number of nodes and links of G(A1

n). For example, the set of nodes with
n = 6 will be

V (A2
6) =

{
1

1
,
1

2
,
1

3
,
1

4
,
2

3
,
1

5
,
1

6
,
2

5
,
3

4

}
, (3.5)

which can be compared with V (A1
6) in Eq. (3.4). For illustrating these defi-

nitions, Figs. 3.2(a) and 3.2(b) represent G(A1
6) and G(A2

6), respectively.

(a) (b)

Fig. 3.2: Divisbility networks G(A1
6) and G(A2

6). The first one has 17
nodes and 71 links, and the second one has 9 nodes and 15 links.

3.2.3 Networks G(B1
n)

The next two networks are based on a matrix B0 = (b0ij), with bij = i/(j +
(i − 1)) and i, j ∈ N. By construction, this matrix only contains rational
numbers in the unit interval. In this matrix, the n-right diagonal will have n
as a common denominator and the first n natural numbers as numerators.
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B0 =



Col 1 Col 2 Col 3 Col 4 Col 5 Col 5 . . .
Row 1 1/1 1/2 1/3 1/4 1/5 1/6 . . .
Row 2 2/2 2/3 2/4 2/5 2/6 2/7 . . .
Row 3 3/3 3/4 3/5 3/6 3/7 3/8 . . .
Row 4 4/4 4/5 4/6 4/7 4/8 4/9 . . .
Row 5 5/5 5/6 5/7 5/8 5/9 5/10 . . .
Row 6 6/6 6/7 6/8 6/9 6/10 6/11 . . .

...
...

...
...

...
...

(3.6)

Then, we define B0n as the set of elements in the first n right diagonals
from B0, where n ∈ N. For example, the elements of B06 are listed in Eq. (3.7).

B06 =


1st diag.︷︸︸︷

1

1
|

2th diag.l︷︸︸︷
1

2
,
2

2
|

3th diag.︷ ︸︸ ︷
1

3
,
2

3
,
3

3
|

4th diagonal︷ ︸︸ ︷
1

4
,
2

4
,
3

4
,
4

4
|

5th diagonal︷ ︸︸ ︷
1

5
,
2

5
,
3

5
,
4

5
,
5

5
|

6th diagonal︷ ︸︸ ︷
1

6
,
2

6
,
3

6
,
4

6
,
5

6
,
6

6

 .

(3.7)
Then, the third type of networks, denoted by G(B1n) = (V (B1n), L(B1n)),

n ∈ N will have the non-repeated elements of B0n as the set of nodes. The set
of links will again be given by the divisibility relation. As an example, the
set of nodes for n = 6 is

V (B16) =
{
1

1
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1

2
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1

3
,
2

3
,
1

4
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3

4
,
1

5
,
2

5
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5
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4

5
,
1

6
,
5

6

}
. (3.8)

3.2.4 Networks G(B2
n)

Finally, we define a fourth type of network, denoted byG(B2n) = (V (B2n), L(B2n)),
n ∈ N, whose set of nodes B2n consists of the elements just in the n-th right
diagonal of B0k. Again, the sets of links L(B2n) is given by the divisibility
relation. For example, for n = 6 one has

V (B26) =
{
1

6
,
2

6
,
3

6
,
4

6
,
5

6
,
6

6

}
. (3.9)

We recall that in the first three types of networks, the set of nodes provides
a covering of the rational numbers in the unit interval, excluding 0. However,
in this fourth case, the set of nodes V (B2n), n ∈ N is in correspondence
with the first n-natural numbers. Note that when running n, one obtaines an
increasing family of networks isomorphic to the partial subnetworks of the
divisibility network of natural numbers, which were analyzed in [SBA15]. We
represent examples of these last two types of networks in Fig. 3.3, where we
plot G(Bi6) for i = 1, 2.
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(a) (b)

Fig. 3.3: Divisibility networks G(B16) and G(B26). The first one has 12 nodes
and 22 links and the second one has 6 nodes and 10 links.

3.3 Results

Since the matrices A0 and B0 are infinite dimensional, we take finite sub-
networks of the different four types described above. We start analyzing the
complexity of the network through the number of edges. As we have stated
previously, despite of considering a similar number of diagonals in matrix A0

and B0, the number of nodes and edges is different for each type of network.
For a fixed number of diagonals, the networks G(A1

n) and G(B1n) have more
edges and nodes than the respective networks G(A2

n) and G(B2n). The varia-
tion of their number of links is a key characteristic that will determine their
degree distribution, as the comparative analysis we will carry out will show.

3.3.1 Degree distribution

Let us consider an arbitrary network G = (V,L), with V the set of nodes
and L the set of edges. We denote by |V | and |L| the cardinals of both sets.
We recall that the degree of a node v ∈ V is the number of links adjacent
to v. We denote by p(k), k ∈ N the frequency with which nodes of degree
k appear in G. That is, for every k ∈ N one has to count how many nodes
have degree k, which we will denote as N(k), and divide this number by the
size of the set of nodes |V |, in order to obtain the fraction of nodes in the
network with degree k, i.e. p(k) = N(k)/|V |. This can be illustrated with the
histograms of the degree frequency, the cumulative degree, and the average
degree 〈k〉 = 2|L|/|V |.

In order to better compare the densities we compute a network of each
type with N = 216 nodes. We plot in Fig. 3.4 the histogram of the degree
distribution p(k) with logarithmic bining [B+16, Sec. 4.12.2] and the logfit to
show that the amount of links change very differently for different networks.

These degree distributions are heavy tailed, similarly as it was shown
in [SBA15, SHMPBC20] for other divisibility networks. These distributions
show a plateau for the frequencies of high-order degrees, [B+16, Ch. 4.12.2].
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(a) (b)

(c) (d)

Fig. 3.4: Degree distribution with log-binning for the networks: (a) G(A1
n),

(b) G(A2
n), (c) G(B1n), (d) G(B2n) for a fixed network size of 216 nodes.

These distributions can be fitted to a power law distribution of the form
p(k) = C · k−γ , for all k ≥ kmin. For each type of network we have estimated
the values of kmin and γ through bootstrapping after 500 iterations. The
results for n = 216 are shown in Fig. 3.4. On the one hand, the kmin values
median are: kmin(G(A1

n)) = 4, kmin(G(A1
n)) = 1, kmin(G(B1n)) = 4, and

kmin(G(B2n)) = 2. We also see that the γ estimations for two of the networks
are very similar: γ(G(A1

n)) = 2.05 and γ(G(B2n)) = 2.03. The other two
networks provide higher values of γ, i.e., γ(G(A2

n)) = 2.58 and γ(G(B1n)) =
2.36. We recall that for free scale networks, the γ of the power-law fitting
usually fulfills 2 < γ < 3, which is satisfied for all the values obtained for γ.
So that, according to these degrees distribution, we have that G(A1) is the
divisibility network with a more similar behaviour to the divisibility network
of the natural numbers, G(B2).

Alternatively, we can see how the number of edges increase through the
k-cumulative degree or the average degree 〈k〉 in Figs. 3.5a and 3.5b, respec-
tively. There are some differences up to n = 103. However, from this value,
the accumulated degrees tend to behave similarly. We see that network that
G(A1) presents the highest average degree, and the others present similar
values for big network sizes.



3.3 Results 69

(a) (b)

Fig. 3.5: Evolution of the (a) k-cumulative and (b) 〈k〉n for the networks
G(A1

n), G(A2
n), G(B1n), and G(B2n) for different network sizes up to 216 nodes.

3.3.2 Density and Sparsity

Given a network G = (V,L), we define its density ρ(G) as the probability of
a connection between an arbitrary pair of nodes in G. We compute it as the
number of edges of the network divided by the maximum admissible number
of edges that this network can have. In other words, ρ(G) = 2|E|

|V |(|V |−1) , see
for instance [New18, Ch. 6.10.1]. This value ranges between 0 ≤ ρ ≤ 1, the
closer to 0, the more sparse the network is, and the closer to 1, the more
dense it is. For ρ = 0 we have the null network, and for ρ = 1 we have a
complete network.

Fig. 3.6: Evolution of the density of networks G(A1
n), G(A2

n), G(B1n) and
G(B2n) for different network sizes up to 216 nodes.

In Fig. 3.6, we appreciate that the density of G(A1) is higher than the
others, which agrees with what we observed concerning the average and k-
cumulative degrees.
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3.3.3 Local clustering coefficient

The clustering coefficient can be interpreted as the coefficient that captures
the degree to which the neighbors of a given node link to each other [B+16,
Ch. 2.10]. Mathematically, the clustering coefficient of a degree vi ∈ V is
computed as:

Ci =
2Li

ki(ki − 1)
, (3.10)

where d(vi) = ki and Li ⊂ L is the set of edges connecting adjacent nodes
to vi between them. The local clustering coefficient ranges between 0 and 1.
It can also be understood as the probability that any two adjacent nodes to
vi are connected by an edge. This probability gives us information about the
density of links in the subnetwork given by the set of nodes adjacent to vi. We
have represented the stretching separating the cases in which the numerators
and denominators are prime or not.

Unlike to the results of [SBA15, SHMPBC20], we have plot the local clus-
tering separating the cases in which numerators (denominators) are prime
or not. The nodes are following the order in which they appear following
the diagonal argument in their respective matrices. The results are presented
in Fig. 3.7. The order in which the nodes appear is represented with col-
ors according to the scale near to each figure. We have also studied if the
appearance of prime numbers in the numerator or denominator provide any
insight to the clustering coefficient or the similarity stretching, but this is not
the case, as we can see in Fig. 3.7. With these networks, the more similar
behaviour to G(B2) is given by G(A2) and G(B1)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3.7: Local clustering coefficient of the networks (1st row) G(A1
n), (2nd

row) G(A2
n), (3rd row) G(B1n), and (4t row) G(B2n). On the left (right), we

separate the values taking into account if the values of the numerator (de-
nominator) are prime or not. Values are colored according to the order of the
number following the diagonal argument on the corresponding matrix.
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3.3.4 Network topologies

In this section we study four topological parameters: the global clustering
coefficient, C∆, the average clustering coefficient, 〈C〉, the assortativity coef-
ficient, r, and the average path length, 〈d〉. Further details in [New18, Ch. 6]
and [B+16, Ch. 4].

3.3.4.1 Global clustering coefficient

The global clustering coefficient measures the degree of clustering of the whole
network. A triplet consist on three nodes of a given network that are con-
nected by edges. If they are just connected by two edges the triplet is said to
be open. If they are connected by three, the triplet is closed.

The global clustering coefficient, denoted by C∆ is the quotient of the
total number of closed triplets divided by the total number of triplets (open
& closed).

C∆ =
3 × number of closed triplets

number of triplets (open & closed)
. (3.11)

We see that it decreases to 0 as the size of the finite subnetworks of each type

grow. It can be appreaciated that C∆ can be approximated by
1

N
[B+16, Ch.

4]. Alternatively, in order to measure the clustering of the whole network one
can also study the average clustering coefficient, 〈C〉, defined as the average
of all local clustering coefficients of a network normalized by the network size,
that is:

〈C〉 = 1

|V |

|V |∑
i=1

Ci. (3.12)

The comparison between both coefficients can be seen in Fig. 3.8. We see
that the global clustering coefficient tends to 0 as the size of the network gets
bigger for all networks except for G(B1n), which seems to stabilize around 0.3.
On the contrary, the average clustering coefficient seems to be more inherent
to the network and not so influenced by the network size. A significative
difference is observed for the values of G(A1

n) respect to the other networks.

3.3.4.2 Assortative coefficient

In order to measure how nodes are related between them, we compute
the Pearson correlation between degrees of adjacent nodes, see for instance
[New02, New03a, DM02] or the more recent books [New18, Sec. 10.7] and
[B+16]. The assortative coefficient of a given network is defined in Eq. (3.13).

r =

∑
ij(Aij − kikj/2|L|kikj∑

ij)(kiδij − kikj/2|L|)kikj
(3.13)
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Fig. 3.8: Evolution of the global clustering coeffcient, C∆, and the average
clustering coefficient 〈C〉, for different network sizes up to n = 216.

where ki is the degree of vi, Aij is the (i, j)th element of the adjacency matrix
associated to the eventual connection between vi and vj , |L| is the total of
links in the network, and δij is the Kronecker delta. However, to determine
the assortativity from Eq. (3.13) supposes a high computational cost, and
therefore it is suggested to approximate the assortativity by means of the
expression

r =
S1Se − S2

S1S3 − S2
2

with Se =
∑
ij

Aijkikj = 2
∑
l(i,j)

kikj , and (3.14)

Sm =

Nn∑
i=1

kmi for m = 1, 2, 3, . . . .

where we have introduced l(i,j) for referring to all unordered pairs of nodes
connected by an edge and Nn is the total number of nodes of each one of our
networks.

The assortativity coefficient presents values between−1 and 1. If r = 1, we
called the network to be fully assortative. In case of r = 0 the network is said
to be not assortative, while if r = −1, the network is called disassortative. The
results can be seen in Fig. 3.9. In the four cases we find a non-assortative
pattern that combine with the free-scale property emphasizes that highly
connected nodes tend to connect with nodes of low degree.

On the other hand, we observe that the network is dissasortative, r <
1, and therefore the probability that there are clusters of nodes with the
same characteristics is minimal, however, we can see that the assortativity
coefficient tends to zero for each network type as n grows. Finally, the average
path length 〈d〉 → 2 as n grows.

3.3.4.3 Average path length

The network average path length, denoted by 〈d〉 is the averaged distance be-
tween all pairs of different nodes [B+16]. For each pair, the distance between
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Fig. 3.9: Evolution of the assortativity coefficient, r, and the average path
length, 〈d〉, for different network sizes.

them is given by the shortest path connecting them. Since one is connected
with all the nodes, then the average path length would be lower than 2.

〈d〉 = 1

N(N − 1)

|V |∑
i,j=1
i6=j

di,j . (3.15)

In our complex networks, we can see that the 〈d〉 → 2 for all networks, which
means that all of them are close to be bipartite.

3.4 Conclusions

The countability of the set of rational numbers shown by Cantor is one of
the most striking elementary results in Mathematics. Starting from his idea
of the diagonal arrangement of rational numbers in a matrix, we can propose
there is no unique way to set a sequential order in the rational numbers, even
in the interval [0, 1].

We have explored 4 possible arrangements and their subsequent divisibil-
ity networks in order to study divisibility properties from the point of view
of Network Science. In all these works, when studying the degree distribution
and other network properties, we notice characteristics and structures similar
to real based networks.

In all the cases, the obtained results agree with similar results presented by
the natural numbers divisibility network explored in [SBA15, SHMPBC20],
holding the scale-free property again. We have seen that G(A1) behaves in a
similar way as G(B2). We have also shown how different measures evolve with
the network size, and the average path length seems to stabilize in 2, being
close to what it yields for a bipartite network. Also, the global clustering
coefficient approaches to 0, except for the case of G(B1n), which seems to give
a value around 0.3. However, for the rest of the properties, G(A2) seems to
present more similar characteristics to G(B2), the divisibility network of the
natural numbers.
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We can find many sequences and arrangements of countable sets in the
development of mathematical results, which are susceptible to constructing
networks linking them, as we have done here with the divisibility relation.
We can also consider other relations among natural or rational numbers that
would provide us a network covering of the whole network. We consider of
interest to know which are the underlying network topologies in each case.
Moreover, we also wonder if we can find some analytical results that would
back the obtained results. Besides, we also wonder if this approach can give
further insight in order to state and prove new properties of the relation
under consideration.
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4 Discussion of the results and conclusions

The human brain is an incredible
pattern-matching machine.

Jeff Bezos.

With this thesis, we have contributed to describing different properties of
Number Theory from the perspective of Network Science by using network
representations. We summarize the main conclusions presented in this work
and a list of topics to be developed in the future.

4.1 Discussion of the results

Network Science emerged as a new discipline motivated by the discovering
that most real networks do not behave as random networks since they present
hubs, satisfy the small world phenomenon, and present a scale-free degree
distribution. Such phenomena have also been noticed in networks generated
from mathematical relations, particularly from the divisibility relation in the
natural numbers.

We have studied if these properties are satisfied for natural numbers ar-
ranged differently, as is the case when we extract an increasing family of
Pascal Matrices from the Pascal Triangle. The obtained results can be com-
pared with the ones of [SBA15]. Apart from presenting a scale-free degree
distribution, we have seen that the global clustering coefficient approaches 0,
and the network becomes disassortative as the network size grows. Besides,
the average path length tends to two, which means that the network tends
to be close to a bipartite network.

We have also explored divisibility relation for another countable set, the
set of the rational numbers in the unit interval. There is no unique way of
setting the bijection to provide a sequential order to these numbers for study-
ing this problem. Therefore, we have studied several configurations inspired
by Cantor’s diagonal argument to prove the natural numbers’ countability.
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4.2 Future work

To conclude this memory, we present some research projects that we want to
mention some research lines in which we are working and that we want to
present some new results in a short future:

1. Divisibility can also provide several different relations in the set of natural
numbers that can also be studied by using networks. We can consider that
two numbers a, b ∈ N are connected if they share a prime factor pλki with
λk ≥ 1. It will not only be interesting how the properties of these networks
when increasing k, but also if they are considered as multilayer networks
[CDARM18]. Multilayer networks can be seen as a network with multiple
layers. Several configurations can be chosen, either the divisibility by one
prime number at each layer or, more generally, increasing the number of
common prime factors at each layer.

2. The prime decomposition of natural numbers yields an expression of the
total number of divisors of any number directly. Therefore, we can also
study the divisibility property from the sequence {Dn}n, where Dn is
the number of divisors of n. Time series can also be studied with network
methods like visibility graphs. Natural and horizontal visibility graphs
were introduced by Lacasa et. al., for [LLB+08, LLBL09]. With this ap-
proach, we can convert time series into networks, and several properties
of the time series are transferred into the network structure. For instance,
periodic series are converted into regular networks, random time series
into random networks, and fractal series do so into scale-free networks.
We want to explore what is the behavior of these networks constructed
from the number of divisors.

3. In 1742 Christian Goldbach conjectured that "every pair number greater
than 4 is the sum of two prime numbers". Since that time, many math-
ematicians have tried to solve it, including Goldbach and Euler, but it
has not yet been possible, although significant advances have been made
in the attempt to prove it.
Chandra and Dasgupta set a network in which each node is a prime
number and corresponding to every even number n = p + q, with p, q
prime numbers, we link p, and q with an edge [CD05]. They determined
that this network of prime numbers satisfies the small-world property,
but the clustering coefficient is high compared to the random network.
However, other approaches can be used to study networks whose genera-
tion is based on these conjectures. On the one hand, Schnirelmann demon-
strated that there exists aM such that if n≫ 2, starting from a place, n
can be represented by, at most, M primes, that is: n = p1+p2+ · · ·+pM
with n≫ 2 [Sch40]. Later, Wen-Lin proved that M ≤ 18 [Yin56]. On
the other hand, Vinogradov used Schnirelmann’s results to demonstrate
that if n is a large odd number, then it can be expressed as the sum
of three primes: n = p1 + p2 + p3. The most significant approach was
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given by Helfgott, who proved Goldbach’s weak conjecture, which
states that "every odd number n greater than 5 can be written as the sum
of three primes" [Hel13]. It would be interesting to analyze Goldbach’s
weak conjecture through Network Science and, in particular, to study the
clustering in connection to the triplets of numbers used for representing
each number bigger than 5. By now, we already have seen that, applying
the Kolmogorov-Smirnov test, the degree distribution behaves similarly
to the power-law distribution.
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