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Abstract: In the present study, poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHXx)]
was reinforced with hydroxyapatite nanoparticles (nHA) to produce novel nanocomposites for
potential uses in bone reconstruction. Contents of nHA in the 2.5-20 wt % range were incorporated
into P(3HB-co-3HHX) by melt compounding and the resulting pellets were shaped into parts by
injection molding. The addition of nHA improved the mechanical strength and the thermomechanical
resistance of the microbial copolyester parts. In particular, the addition of 20 wt % of nHA increased
the tensile (E¢) and flexural (Ef) moduli by approximately 64% and 61%, respectively. At the highest
contents, however, the nanoparticles tended to agglomerate, and the ductility, toughness, and thermal
stability of the parts also declined. The P(3HB-co-3HHX) parts filled with nHA contents of up to
10 wt % matched more closely the mechanical properties of the native bone in terms of strength and
ductility when compared with metal alloys and other biopolymers used in bone tissue engineering.
This fact, in combination with their biocompatibility, enables the development of nanocomposite
parts to be applied as low-stress implantable devices that can promote bone reconstruction and be
reabsorbed into the human body.

Keywords: P(3HB-co-3HHXx); nHA; nanocomposites; mechanical properties; bone reconstruction

1. Introduction

Bone fracture is one of the most common injuries. Bone regeneration encompasses three stages,
namely inflammation, bone production, and bone remodeling [1]. During the latter, it is extremely
important to expose the bone to the natural load-bearing conditions associated to its function [2].
Currently, titanium alloys such as Ti-6Al-4V are the most used for the manufacture of orthopedic fixing
devices and bone implants due to their excellent biocompatibility and high mechanical resistance [3].
However, they prevent the bone from being subjected to the required mechanical loadings [4]. Indeed,
while natural bone has a modulus ranging between 8 to 25 GPa, metals have a modulus of 110-210 GPa,
which results in the load being imparted onto the device rather than the bone which then causes a
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localized decrease in bone mineral density [5]. Meanwhile, metal ion leaching increases inflammation
and irritation around the implant [6]. As a result, there is often a need for a second surgery to remove
the fixation device, leading to higher medical costs and greatly increased patient discomfort. A current
alternative is the use of fixation devices that metabolize in the human body after fulfilling their
function [7]. In particular, the use of biopolymers with biocompatibility and reabsorption capacities is
very promising [8]. Biocompatibility involves the capability of a given substance to perform with a
suitable host response in a particular use. Furthermore, no substance or material can be “biocompatible”
if it releases cytotoxic substances. The degradation process of a given biopolymer within the human
body consists of two phases. First, the biopolymer chains break, either as a consequence of hydrolysis
or due to the action of a body enzyme. Thereafter, the human body assimilates the fragments.
For this purpose, either a phagocytosic or metabolic process develops [9]. Surface porosity, shape,
and tissue environment, including chemical build-up of the materials, play a significant role in
biocompatibility [10,11].

For the past few decades, polymers of the polyhydroxyalkanoates (PHAs) family have been
paving the way for the development of new biomedical products. These microbial biopolyesters
degrade when exposed to marine sediment, soil or compost. A vast number of microorganisms secrete
extracellular PHA-hydrolyzing enzymes, so-called PHA depolymerases, to degrade PHA into their
oligomers and monomers, which subsequently act as nutrients inside the cells [12]. Their potential as
alternatives for the manufacture of a wide range of medical devices, such as absorbable sutures, surgical
pins or staples, is well recognized on account of their biodegradable nature as well as disintegration
by surface erosion [13]. Broadly, the biocompatibility of PHA materials can be differentiated into
two categories, immunocompatibility and nonallergic response. The former involves the extent of
antigenic resemblance between the tissues of various individuals that determines the acceptance or
rejection of allografts. PHAs are essentially immunocompatible for use in medical applications, that is,
their materials should not elicit harsh immune responses upon introduction into the soft tissues or
blood of a host organism [14]. Indeed, 3-hydroxybutyrate (3HB), the main monomeric constituent of
most PHAs, is a result of cellular metabolism that is formed by oxidation of fatty acid within the liver
cells and it is a usual component of human blood [15]. Other previous studies have also revealed that
PHA did not elicit an allergic response or any hypersensitive immune reaction [10,16].

Depending on the number of carbon atoms in the monomers, PHAs can be classified as
short-chain-length PHAs (scI-PHAs; 3-5 C-atoms) and medium-chain-length PHAs (mcl-PHAs;
6—-14 C-atoms). Generally, scI-PHAs are rigid and brittle, while mcl-PHAs have higher flexibility
and toughness [17]. Poly(3-hydroxybutyrate) (PHB) is the simplest and most common member
of the PHA family. However, the high brittleness of PHB and other scl-PHAs, such as
poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) with less than 15 mol % fraction of
3-hydroxyvalerate (3HV), restricts their application in bone fixing devices [18]. In this regard,
poly(3-hydroxybutyrate-co-3hydroxyhexanoate) [P(3HB-co-3HHX)], also referred as PHBH, represents
a recent addition to the group of PHAs for biomedical applications. The introduction of the mcl
3-hydroxyhexanoate (3HHX) co-monomer into the polymer backbone of PHB significantly increases
the flexibility and reduces stiffness [19]. Therefore, the macroscopic properties of P(3HB-co-3HHx) vary
with the proportion of each monomer in the copolyester [20], in which the higher the 3HHx content,
the higher the ductility [21]. Apart from the changes in the mechanical properties, the most remarkable
transformation that P(3HB-co-3HHXx) brings along is its ability to undergo enzymatic degradation by
lipase [22], which is not seen in either PHB or PHBV. Prior experiments have shown that materials
based on P(3HB-co-3HHX) and other mcl-PHAs have good biocompatibility for chondrocytes [23], nerve
cells [24] as well as osteoblast and fibroblast cells [25,26]. This property should make P(3HB-co-3HHXx)
a suitable choice for several tissue engineering applications since it adds a further variable that can be
used to tailor its degradation [27].

While PHASs are biocompatible substrates for cell propagation and are potentially an effective
template for the repair of osseous and chondral defects, there is still a need to improve the mechanical
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strength, thermal resistance, and biological response of these biomaterials in order to make them
more suitable for bone tissue engineering. Osteoconductive fillers can be introduced into polymer
matrices with the aim of improving the mechanical properties and also accelerating the bone
repair process by favoring the growth of bone cells inside the pores [28,29]. For example, calcium
orthophosphates (CaPOy) have bioactive properties that increase bone cell proliferation, the so-called
osteoinduction [30]. As a rule, both the mechanical resistance and bioactivity of composites prepared
with collagen, chitin and/or gelatin, increase with increasing CaPOy content [31]. Hydroxyapatite,
Cas(PO4)30HCas5(PO4)30H, which is the principal crystalline constituent of bone, shows a high degree
of biocompatibility and good osteoconductive and osteoinductive properties. Therefore, hydroxyapatite
nanoparticle or nanohydroxyapatite (nHA) is the most widely used “bioceramic” for the manufacture
of medical devices and dental implants [32]. This fact is exemplified by the production of prostheses
for cranial reconstruction using poly(methyl methacrylate) (PMMA)/nHA composites [33]. Indeed,
nHA exists in the human bone in the form of nanometer-sized threads, thus ensuring biocompatibility.
At present, it is mostly used to produce surface coatings, as its biomimetic mineralization enables the
production of biomaterials with biomimetic compositions and hierarchical micro/nanostructures that
closely mimic the extracellular matrix of native bone tissue [34,35].

Due to the well-known high bioactive properties in terms of bone regeneration of PHA- and
nHA-based composites, this study aims to determine the physical properties of injection-molded
parts made of P(3HB-co-3HHx)/nHA composites, for potential use as bone resorbable devices. To this
end, different contents of nHA were incorporated into P(3HB-co-3HHXx) and the mechanical, thermal,
and thermomechanical properties were analyzed and compared to some metal alloy-based solutions
currently available in the biomedical field. As a first, the parts showed sufficient dimensional and
thermal stability for bone tissue engineering and their elasticity was nearer to that of the natural bone
when compared to the metal alloys used for bone implants.

2. Materials and Methods

2.1. Materials

P(3HB-co-3HHXx) copolymer was supplied by Ercros S.A. (Barcelona, Spain) as ErcrosBio PH110.
The ratio of 3HHXx in the copolyester is ~10 mol % and its number average molecular weight (M)
is 1.22 x 10° g/mol. It shows a melt flow index (MFI) of 1 g/10 min (2.16kg/160 °C) according to the
ISO 1133-2 standard and a true density of 1.20 g/cm? following the UNE EN ISO 1183-1 standard.
Hydroxyapatite synthetic nanopowder was procured from Sigma-Aldrich S.A. (Madrid, Spain) with
commercial reference 677418. According to the manufacturer, it presents the following properties:
particle size < 200 nm, surface area > 9.4 m?/g by Brunauer-Emmett-Teller (BET) analysis, purity > 97%,
and molecular weight (Myy) of 502.31 g/mol.

2.2. Preparation and Processing of P(3HB-co-3HHx)mHA Parts

Both P(3HB-co-3HHXx) pellets and nHA powder were dried separately for at least 6 h at 80 °Cin a
dehumidifying oven from Industrial Marsé S.A. (Barcelona, Spain). The materials were then pre-mixed
manually in closed zip-bags at the ratios presented in Table 1.

Table 1. Code and composition of the samples prepared according to the weight content
(wt %) of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHXx)] and hydroxyapatite
nanoparticles (nHA).

Sample P(3HB-co-3HHX) (wt %) nHA (wt %)
P(3HB-co-3HHX) 100 0
P(3HB-co-3HHX) + 2.5 nHA 97.5 25
P(3HB-co-3HHx) + 5 nHA 95 5
P(3HB-co-3HHX) + 10 nHA 90 10

P(3HB-co-3HHXx) + 20 nHA 80 20
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The different P(3HB-co-3HHx) and nHA mixtures weighing 800 g were melt-compounded using
a co-rotating twin-screw extruder from Dupra S.L. (Castalla, Spain). It features two screws with
a diameter (D) of 25 mm and a length-to-diameter ratio (L/D) of 24, while the modular barrel is
equipped with 4 individual heating zones coupled to a strand die. Further details of the extruder
can be found elsewhere [36]. Extrusion was performed with a screw speed of 20-25 rpm to prevent
material degradation due to shear-induced viscous dissipation, a feed of 1.2 kg/h, and a barrel set
temperature profile of 110-120-130-140 °C from hopper to die. The extruded filaments were cooled
down in an air stream and pelletized using an air-knife unit.

Test parts for characterization were obtained by injection molding. The equipment (Meteor
270/75, Mateu & Solé, Barcelona, Spain) was operated with a barrel set temperature profile of
115-120-125-130 °C from hopper to nozzle, with the mold kept at 60 °C. An injection time of 1 s was
used to avoid material degradation by shear-induced viscous dissipation. The clamping force was
75 tons and the cooling time was set at 60 s. Parts with a thickness of approximately 4 mm were
obtained for characterization. Since P(3HB-co-3HHX) develops secondary crystallization with time,
the parts were allowed to age for 14 days at room temperature prior to characterization.

2.3. Mechanical Tests

Uniaxial tensile tests were performed according to the ISO 527-2: 2012 standard using a universal
testing machine ELIB-50 (Ibertest S.A., Madrid, Spain) fitted with a load cell of 5 kN and using a
3542-050M-050-ST extensometer from Epsilon Technology Corporation (Jackson, WY, USA). Flexural
properties were determined following the ISO 178: 2011 standard using the same equipment. Both
tests were carried out at 5 mm/min using 150 mm X 10 mm X 4 mm parts. Charpy impact tests were
performed following the ISO 179-1: 2010 standard. Samples with a V-shaped notch with a radius of
0.25 mm and dimensions 80 mm X 10 mm X 4 mm were subjected to the impact of a 1-] pendulum
impact tester from Metrotec S.A. (San Sebastidan, Spain). Shore hardness was measured with a 673-D
durometer (J. Bot Instruments, Barcelona, Spain), following the ISO 868: 2003 standard. At least six
parts were tested for each mechanical test.

2.4. Thermal Tests

Samples weighing 5-10 mg were analyzed by differential scanning calorimetry (DSC) in a Q200
from TA Instruments (New Castle, DE, USA) to study the thermal transitions. The samples were
subjected to a three-stage thermal cycle in which the samples were first heated from -50 to 200 °C
and cooled down to —50 °C in order to eliminate the thermal history and then reheated to 200 °C.
All the heating and cooling scans were performed at 10 °C/min. Testing was performed under inert
atmosphere using a nitrogen flow of 50 mL/min. The degree of crystallinity (Xc ;) was calculated
using Equation (1) [37]:

AHp

Xepay = |
Cmax [AHm-(l—w)

] -100% 1)
where AHpy, (J/g) corresponds to the melting enthalpy of P(3HB-co-3HHx), AH” (J/g) is the theoretical
value of a fully crystalline of P(3HB-co-3HHXx), taken as 146 J/g [38], an 1 — w indicates the weight
fraction of P(3HB-co-3HHXx) in the sample.

Thermogravimetric analysis (TGA) was performed to determine the thermal stability of the
injection-molded parts. Samples weighing 10-20 mg were heated from 30 to 700 °C at a heating rate of
20 °C/min in a TGA 100 from Linseis Messgerdte GmbH (Selb, Germany) under nitrogen atmosphere
with a flow rate of 25 mL/min. All thermal tests were carried out in triplicate.

2.5. Thermomechanical Tests

Injection-molded parts sizing 10 mm X 5 mm X 4 mm were subjected to a temperature sweep from
—70 to 100 °C at a heating rate of 2 °C/min using a DMA-1 from Mettler-Toledo S.A. (Barcelona, Spain).
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Dynamic thermomechanical analysis (DMTA) was carried out in bending mode with a maximum
bending strain of 10 um at a frequency of 1 Hz and a force of 0.02 N.

The dimensional stability of the parts was studied by thermomechanical analysis (TMA) in a Q400
thermomechanical analyzer from TA Instruments (New Castle, DE, USA). The applied force was set to
0.02 N and the temperature program was scheduled from —70 to 70 °C in air atmosphere (50 mL/min)
at a constant heating rate of 2 °C/min. All thermomechanical tests were performed in triplicate.

2.6. Microscopy

The fracture surfaces of the injection-molded parts after the Charpy impact tests were analyzed
by field-emission scanning electron microscopy (FESEM) (Oxford Instruments, Abingdon, UK) with
an electron acceleration voltage of 2 kV. A gold-palladium coating was applied through sputtering
(5C7620, from Quorum Technologies Ltd, East Sussex, UK). Additionally, to visualize the dispersion of
nHA in the P(3HB-co-3HHX) matrix, the fracture surfaces were attacked with 6M hydrochloric acid
(HCI) (37% purity, Panreac AppliChem, Barcelona, Spain) for 12 h to selectively remove nHA prior to
observation [39].

2.7. Statistical Analysis

Statistical evaluation of the mechanical, thermal, and thermomechanical properties of
P(3HB-co-3HHx)/nHA parts was carried out with the open source R software (http://www.r-project.org)
with a Shapiro-Wilk test regarding a normal distribution for n < 1000. Tukey tests were performed to
determine significant differences between the data on normally distributed data. In order to establish
the non-parametric relationship between mechanical properties and nHA content in the parts, the
Spearman’s correlation test was followed. The number of tested samples for each test is included in
Table 2 and the level of significance was established as p < 0.05 in all cases.

Table 2. Number of tested samples (1) for each injection-molded poly(3-hydroxybutyrate-co-3-
hydroxyhexanoate) [P(3HB-co-3HHXx)]/hydroxyapatite nanoparticles (nHA) parts and the type of statistical
test performed for each testing method with level of significance (p).

Testing Method n Normality Test p Significance Test p
Tensile 6 Shapiro-Wilk 0.05 Tukey 0.05
Flexural 6 Shapiro-Wilk 0.05 Tukey 0.05
Hardness 7 Shapiro-Wilk 0.05 Tukey 0.05
Impact strength 8 Shapiro-Wilk 0.05 Tukey 0.05
DsC 3 - - Kruskal-Wallis 0.05
TGA 3 - - Kruskal-Wallis 0.05
DMTA 3 - - Kruskal-Wallis 0.05
TMA 3 - - Kruskal-Wallis 0.05

DSC = differential scanning calorimetry; TGA = thermogravimetric analysis; DMTA = dynamic thermomechanical
analysis; TMA = thermomechanical analysis.

3. Results and Discussion

3.1. Mechanical Characterization of the P(3HB-co-3HHx)/nHA Parts

The data collected for the mechanical properties from the tensile, flexural, hardness, and impact
Charpy tests of the neat P(3HB-co-3HHXx) and P(3HB-co-3HHx)/nHA composite parts produced with
the different compositions is summarized in Table 3. Figures 1 and 2 display the effect of nHA
incorporation on the tensile and flexural properties, respectively, whereas Table 4 shows the correlation
coefficient (rs) and p for each mechanical property according to the Spearman’s test.
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Table 3. Mechanical properties of the injection-molded parts of poly(3-hydroxybutyrate-co
-3-hydroxyhexanoate) [P(3HB-co-3HHx)]/hydroxyapatite nanoparticles (nHA) in terms of maximum
tensile stress (0max), tensile modulus (E¢), elongation at break (e},), maximum flexural stress (of), flexural
modulus (Ef), Shore D hardness, and impact strength.

Impact
Part Omax (MPa) E; (MPa) p (%) o¢ (MPa) E¢ (MPa) Shore D Hardness Strength
(kJ/m?)
P(3HB-co-3HHXx) 17.7 1.1 1022.3 +£59.2 194+ 038 241+19 735.3 £43.5 64.2+0.8 51+03
P(HB-co-3HHx) + 25nHA  161+05%  1097.0£523* 129+03* 256+1.0% 7441263 64.0£09 35+02*
P(3HB-co-3HHx) + 5 nHA 158 £0.6 11131283  125+08 26418  8132x241% 652 +£0.8* 26+02*
P(3HB-co-3HHx) + 10 nHA 155+ 0.5 13982 +683* 104+0.6* 267+05 919.8 +38.6 * 658 +1.1 22£01*
P(3HB-co-3HHx) + 20 nHA 142+02%  16814+563* 65+£07% 269+19  11825+452*% 69.4+£05% 17 £02%
* Indicates a significant difference compared with the previous sample (p < 0.05). Level of significance (p) values are
included in Table S1.
20 2000
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—e— E,(MPa
E‘(O/ ) -+ 1800 r
IR —A—al%) oot
L1600 T
120
— L1400 ]
o =116
[ —_
— W™
o° - 1200 11
L1000 | ¢
+ 800 ] 4
5 T L U L T 600 L0
0 5 10 15 20

% nHA

Figure 1. Evolution of the maximum tensile stress (o0max), tensile modulus (E;), elongation at break (ep,)
in the injection-molded parts of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHXx)]
with the content of hydroxyapatite nanoparticles (nHAs). * Indicates a significant difference compared
with the previous sample (p < 0.05)
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Figure 2. Evolution of the maximum flexural stress (o¢) and flexural modulus (E¢) in the injection-molded
parts of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHx)] with the content of
hydroxyapatite nanoparticles (nHAs). * Indicates a significant difference compared with the previous
sample (p < 0.05).



Polymers 2020, 12, 1389 7 of 21

Table 4. Spearman’s test correlation coefficient (rs) and level of significance (p) for each
mechanical property.

Mechanical Properties Ts P
Omax (MPa) -0.917 0.028
Et (MPa) +0.988 0.002
ep (%) —-0.903 0.035
o (MPa) +0.782 0.118
Ef (MPa) +0.993 0.001
Shore D hardness +0.977 0.004
Impact strength (kJ/m?) -0.839 0.032

The tensile properties of the injection-molded P(3HB-co-3HHXx) parts were relatively similar
to those reported by Giubilini et al. [40], although the here-prepared materials were slightly less
mechanically resistant and more ductile. These differences could be related to the 3HHx monomer
content in the copolyester as well as to differences in processing. One can observe in both Table 3 and
Figure 1 that the values of omax and ¢}, decreased, while those of E; increased with increasing nHA
concentration in the nanocomposite parts. The Spearman’s test confirmed the existence of a trend
between the tensile properties of the nanocomposites and the nHA content, showing a negative 7;
trend (inversely proportional correlation) for omax and ¢, and a positive trend (directly proportional
correlation) for E;, while in all cases p < 0.05. In particular, the addition of 20 wt % of nHA produced a
slight decrease of omax from 17.7 to 14.4 MPa, but an increase of nearly 64% in E; (from approximately
1 to 1.7 GPa) accompanied with a significant loss of ductility (e, was reduced from 19.4 to 6.5%).
The reduction in stress was probably caused by the poor interface adhesion between biopolymer and
nanofiller. Higher interfacial adhesion can probably be promoted through the pretreatment of nHA
with silanes [41], but it could negatively affect the biocompatibility of the parts. The increase in E; was
anticipated, since nHA forms highly rigid structures. Furthermore, as it will be discussed during the
thermal characterization, the addition of nHA could promote higher degrees of crystallinity and, hence,
higher stiffness. Although similar results have been reported earlier [42,43], the here-prepared parts
showed higher ductility due to the use of a more flexible PHA. The decrease observed in stiffness with
increasing nHA content can be attributed to insufficient wetting and impregnation of the nanoparticles
by the polymer matrix, mainly due to particle agglomeration during manufacture or processing of
the materials [44]. However, melt-mixing methodologies using co-rotating twin-screw extruders,
as adopted here, can generally yield well-dispersed nanocomposites [45]. Ductility loss was expected
since the presence of nHA can prompt polymer crystallinity, hindering chain mobility due to adsorption
of biopolymer chains on the surface of the nanoparticles [46,47].

In Figure 2, it can be seen that the addition of nHA to P(3HB-co-3HHXx) increased both of and
E¢, particularly the latter. The former increased up to a content of 5 wt % of nHA and then became
insensitive to higher nanoparticle contents, since the values showed no significant differences. Indeed,
the Spearman’s test showed a positive correlation (r; > 0) for both E¢ and o¢, however, for the latter,
the statistical hypothesis should be rejected as p was higher than 0.05. Contrarily, the addition of 20 wt %
of nHA caused an increase of approximately 60% of Ef, as similarly observed above for E;. The resultant
increase in mechanical strength can be related to the intrinsic high values of compressive strength and
modulus of nHA, which are in the ranges of 500-1000 MPa and 80-110 GPa, respectively [48,49].

In comparison with the mechanical values of other degradable and non-degradable materials,
the P(3HB-co-3HHx)/nHA parts produced in this study showed intermediate values to most
biodegradable polymers and metal alloys. For instance, the E; values of poly(e-caprolactone) (PCL)
and PLA materials range between 400-600 MPa [50] and 2-3 GPa [51,52], respectively, while other
biodegradable copolyesters such as poly(butylene adipate-co-terephthalate) (PBAT) show significantly
lower values [53]. However, PLA is a brittle polymer, which can limit its application in bone fixation
devices, or any other biomedical device that would be subjected to local flexural stress or impacts.
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The values attained are relatively similar to those of poly(lactic-co-glycolic acid) (PLGA), that is,
1.4-2.8 GPa [54]. Indeed, PLGA is widely used in biomedical and pharmaceutical applications, but it
shows longer degradation times, which can extend up to 12 months [55]. Regarding metal alloys, the E;
values of the most widely used stainless steels for implant fixing devices and screws, that is, SUS316L
stainless steel and cobalt-chrome (Co-Cr) alloys, are around 180 GPa and 210 GPa, respectively [56].
Lower values have been reported for titanium (Ti) and its light alloys, such as Ti-6Al-4V ELIL which are
also widely used for making implant devices, having a value of around 110 GPa [57]. As shown above,
in comparison to metal alloys, the elasticity of the P(3HB-co-3HHx)/nHA composites prepared in this
study is nearer to that of the natural bone, which is in the 825 GPa range [5]. Thus, from a mechanical
point of view, their use in bone scaffolds and resorbable plates or screws looks promising.

As expected, hardness increased with the presence of nHA that, due to its ceramic nature, is highly
rigid. The increase was significant at nHA contents higher than 2.5 wt % and this effect was statistically
corroborated by Spearman’s test, showing a positive trend with an s value of ~0.98. In addition,
molecular mobility could be reduced due to the presence of the nanoparticles [58]. In particular,
the incorporation of 20 wt % of nHA yielded an increase of 8% in hardness. A similar increase in Shore
D hardness was reported by Ferri et al. [39] for PLA after the incorporation of nHA. In particular,
it increased from 73.9, for neat PLA, up to 78.4, for the PLA composite containing 30 wt % of nHA.
As also anticipated, the impact strength of the nanocomposites diminished significantly with increasing
nHA content with significant differences between the samples, which was confirmed by the negative
correlation obtained by the Spearman’s test (rs ~ —0.84). For instance, the nanocomposite parts
containing 20 wt % of nHA revealed an impact strength approximately three times lower than that
of the neat P(3HB-co-3HHX) part, that is, it reduced from 5.1 to 1.7 kJ/m?. Lower values of impact
strength were reported for V-notched injection-molded pieces of PLA, that is, 2.1 kJ/m? [51]. In addition,
significantly higher values have been described for Ti-6Al-4V, with a Rockwell hardness C (HRC) of 38
and approximately 112 kJ/m? impact strength [59]. In the case of natural bone, toughness varies widely
with age and type. For instance, the impact strength of the femora ranges from 4 to 70 kJ/m? [60].
Therefore, the various mechanicals tests revealed a clear tendency towards a decrease in ductility and
an increase in stiffness of the injection-molded parts with increasing nHA content, which are closer to
those of the natural bone.

In summary, the here-developed P(3HB-co-3HHx)/nHA parts showed an improvement of the
stiffness determined in terms of E; and Eg, in which a positive trend was observed in both cases (rs > 0).
The ductile properties, that is, e, and impact strength, showed negative trends (rs < 0), which was
ascribed to a chain mobility reduction that also contributed to a hardness increase of the nanocomposite,
showing a positive trend in the Spearman’s test.

3.2. Thermal Characterization of the P(3HB-co-3HHx)/nHA Parts

Figure 3 displays the DSC curves for the neat P(3HB-co-3HHX) part and the P(3HB-co-3HHx)/nHA
composite parts with different nanoparticle contents. Table 5 presents the thermal properties obtained
from the second heating scan, after erasing the thermal history of the sample. At approximately
0 °C, one could observe a step change in the base lines, which corresponded to the glass transition
temperature (Tg) of P(3HB-co-3HHXx). This second-order thermal transition was located at —0.3 °C
for the neat biopolymer and it was significantly unaffected by the presence of nHA. The exothermic
peaks located between 40 and 70 °C corresponded to the cold crystallization temperature (Tcc) of
P(3HB-co-3HHXx). In the case of the neat biopolymer part, this peak was located at 49.8 °C. It could
be observed that the values of T increased with increasing nHA content until 10 wt %, and then
slightly decreased at the highest content tested, that is, 20 wt %. These results suggested that low nHA
contents impaired the movement of P(3HB-co-3HHXx) chains and, hence, hindered the crystallization
process. A similar thermal behavior during the analysis of the second heating curves was recently
observed by Senatov et al. [61], who associated the presence of nHA to a decrease in the molecular
chain mobility of the biopolymer that impeded the crystallization process. Finally, the crystalline
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P(3HB-co-3HHx) domains melted in the thermal range from 100 to 150 °C in two peaks. Furthermore,
the occurrence of a broad melting region suggested the presence of heterogeneous crystallites with
different degrees of perfection, commonly produced in PHAs with relatively high comonomer
contents [62]. The thermogram of neat P(3HB-co-3HHX) revealed two melting temperatures (T, and
Tmp) at approximately 113 and 140 °C. Similar thermal properties were reported by Zhou et al. [63]
for P(B3HB-co-3HHx) with 11 mol % content of 3HHx, who also observed a double-melting peak
phenomenon in the DSC heating curves of this copolyester. The presence of two melting peaks have
been previously ascribed to the melting-recrystallization-melting process of P(3HB-co-3HHXx) [64].
During this process, imperfect crystals melt at lower temperatures and the amorphous regions order
into packed spherulites with thicker lamellar thicknesses that, thereafter, melt at higher temperatures.
Alternatively, the melting peaks attained at low temperatures, that is, 110-115 °C, could also relate to
the crystalline phase of the 3HHx-rich fractions. Lastly, one could observe that the melting profile of
P(3HB-co-3HHXx) was nearly unaffected by the nHA presence, indicating that the nanoparticles did not
significantly influence the crystallization process.

P(3HB-co-3HHXx)

P(3HB-co-3HHXx) + 2.5 nHA

P(3HB-co-3HHXx) + 5 nHA

Heat flow

P(3HB-co-3HHx) + 10 nHA

P(3HB-co-3HHx) + 20 nHA

2 mW

T T ' T " T T T T 1
0 20 40 60 80 100

T T
120 140 160 180

Temperature (°C)

Figure 3. Differential scanning calorimetry (DSC) thermograms taken during second heating of the
injection-molded poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHx)]/hydroxyapatite
nanoparticle (nHA) parts.

Table 5. Thermal properties of the injection-molded poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)
[P(BHB-co-3HHXx)]/hydroxyapatite nanoparticle (nHA) parts in terms of glass transition temperature
(Tg), cold crystallization temperature (Tcc), melting temperatures (Ty,; and Tyy), cold crystallization
enthalpy (AHcc), melting enthalpy (AHp), and maximum degree of crystallinity (Xc max)-

Part Tg (@) Tee Q) Tm1 Q) Tm2 (o) AH¢ (J/g) AHp (I/g) Xe max (%)
P(3HB-co-3HHX) -03+0.1 498 + 0.5 1129+ 05 139.7+0.3 20.7 £ 0.5 31.2+04 214+1.8
P(3HB-co-3HHX) + 2.5 nHA -0.2+0.1 521 +04 113.6 +03 1409+04 298+04* 350+05* 243+24*
P(3HB-co-3HHXx) + 5 nHA -04+0.2 541+02 1138+ 04 1394+02 31.8+06* 401+03* 289+22*

P(BHB-co-3HHXx) + 10 nHA -04+02 574+03* 1143+02 1390+£03 29.0+05* 325+04* 247+15*
P(3HB-co-3HHx) + 20 nHA -03+01 559+04* 1134+05 139.1+04 259+04* 290+01* 248+14

* Indicates a significant difference compared with the previous sample (p < 0.05). Level of significance (p) values are

included in Table S2.

In addition to the characteristic values of Tg, Tee, and Try, the enthalpies corresponding to the cold
crystallization (AH(.) and melting (AHy,) enthalpies were collected from the DSC curves. The latter
parameter was used to determine the maximum degree of crystallinity, that is, X¢ s, which gives
more information about the effect of the additives on the biopolymer, since it does not consider the
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crystals formed during cold crystallization. It can be seen that P(3HB-co-3HHx) showed a maximum
degree of crystallinity of 21.4%. One can also observe that crystallinity varied significantly with nHA
content. In particular, as nHA was gradually incorporated in higher percentages, the crystallinity
increased steadily up to a maximum of nearly 29% at 5 wt % of nHA and then it slightly decreased to
values close to 25% for nHA contents of 10 and 20 wt %. This result, in combination with the slightly
higher T and Ty, values, suggests that the nanoparticles hindered the formation of crystals at low
temperatures, but the crystals formed were slightly more perfect and more mass crystallized. This is in
agreement with previous studies that concluded that the introduction of nHA into biopolyesters has
an effect on the ordering of their molecular chains by acting as a nucleating agent [61,65].

Figure 4 presents the thermogravimetric data for all the materials, while Table 6 gathers the main
thermal stability parameters obtained from the TGA curves. Thermal degradation of P(3HB-co-3HHX)
was observed to occur through a one-step process, which is in agreement with the values reported
by Li et al. [20], who showed that the thermal stability of the microbial copolyester was as high as
225 °C with almost no mass loss. The temperature at 5% mass loss (Tse,) showed no significant
differences with nHA contents of up to 5 wt %, but a significant decrease was observed for higher
loadings. The temperature at which the maximum mass loss rate occurred (Tgeg) increased from
296.7 °C, for the neat P(3HB-co-3HHXx) part, to 300.9 °C, for the part of P(3HB-co-3HHX) filled with
2.5 %wt of nHA. This increase in thermal stability has been previously ascribed to the formation of
strong hydrogen interactions and Van der Walls forces between the inorganic nanoparticles and the
biopolymer chains during the melt-mixing process [66]. The values of T4eg remained nearly constant,
showing no significant differences for nHA contents from 2.5 to 10 wt %, but it significantly decreased
t0 295.6 °C in the part filled with 20 wt % of nHA. The onset of degradation was also reduced for the
most filled sample, showing a Ts¢, value of 254.8 °C, which represents a reduction of approximately
18 °C in comparison to the unfilled P(3HB-co-3HHXx) sample and its nanocomposites at low contents.
These results further indicate that the nanoparticles formed aggregates at high contents, which created
volumetric gradients of concentration [66]. In this regard, Bikiaris et al. [65] suggested that when
high amounts of nanosized filler aggregates are formed, the structure shifts from nanocomposite to
microcomposite and, thus, the shielding effect of the nanosized particles is lessened. In addition,
Chen et al. [67] reported that high loadings of nHA in PHBV lower the onset degradation temperature
since they can catalyze thermal decomposition. In any case, low nHA loadings (<10 wt %) slightly
improved the thermal stability of P(S3HB-co-3HHX) parts and their thermal stability is considered to
be high enough for bone tissue engineering and biomedical applications, which can require thermal
sterilization methods such as dry heat sterilization (160 °C for 2 h) and steam sterilization (121 °C
for 20-60 min) [68]. However, the relatively low Ty, of P(3HB-co-3HHx) would limit the use of these
techniques for sterilization and the resultant implantable biomedical devices should be sterilized at
low temperatures using ethylene oxide (EO) gas, gamma radiation or ozone. Finally, it can be observed
that the residual mass at 700 °C increased gradually with the nHA content due to the high thermal
stability of the mineral nanoparticles.

Table 6. Main thermal degradation parameters of the injection-molded poly(3-hydroxybutyrate-
co-3-hydroxyhexanoate) [P(3HB-co-3HHXx)]/hydroxyapatite nanoparticle (nHA) parts in terms of onset
temperature of degradation (Tsy,), degradation temperature (Tqeg), and residual mass at 700 °C.

Part Ts9, (°C) Theg (°C) Residual Mass (%)
P(BHB-co-3HHXx) 2725+23 296.7 + 1.4 2.6 +0.3
P(BHB-co-3HHXx) + 2.5 nHA 2722 +1.7 300.9 +2.2 51+05*
P(BHB-co-3HHx) + 5 nHA 2724 +13 2999 £ 1.7 76 £04*
P(BHB-co-3HHx) + 10 nHA 2623 +1.8* 299.6 + 1.8 122 +0.7*
P(BHB-co-3HHx) + 20 nHA 2548 +1.3* 2956 +1.6* 22.1+0.8*

* Indicates a significant difference compared with the previous sample (p < 0.05). Level of significance (p) values are
included in Table S3.
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Figure 4. (a) Thermogravimetric analysis (TGA) and (b) first derivate thermogravimetric (DTG)
curves of the injection-molded poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHX)]/

hydroxyapatite nanoparticle (nHA) parts.
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3.3. Thermomechanical Characterization of the P(3HB-co-3HHx)/mHA Parts

DMTA was carried out on the injection-molded composite parts in order to understand the role
played by nHA on the viscoelastic behavior of P(3HB-co-3HHx)/nHA. Figure 5 illustrates the DMTA
curves of the neat P(3HB-co-3HHX) part and the P(3HB-co-3HHx)/nHA composite parts with different
nanoparticle contents. Figure 5a gathers the evolution of the storage moduli (E’) in the temperature
sweep from —40 to 80 °C at a frequency of 1 Hz. The T values and the corresponding values of E” at
—40, 37, and 70 °C are presented in Table 7, since the first and last temperatures are representative of
the stored elastic energy of the amorphous phase of P(3HB-co-3HHX) in its glassy and rubber states,
respectively, whereas the middle one corresponds to the actual temperature of the human body. It can
be observed that all the P(3HB-co-3HHXx)-based parts presented a similar thermomechanical profile.
In particular, the samples showed high E’ values, that is, high stiffness, at temperatures below 0 °C and
then E’ sharply decreased. This thermomechanical change was produced because the temperature
exceeded the alpha («)-relaxation of the biopolymer, which is related to its Tg. One can also observe that
the rate of decrease of E’ reduced somewhat when the temperature reached approximately 40 °C due to
the occurrence of cold crystallization. The values of E” at —40, 37, and 70 °C of the neat P(3HB-co-3HHXx)
part were 1909.9, 519.2, and 210.5 MPa, respectively. The E’ value attained at 37 °C was in accordance
with the mechanical data presented in Section 3.1, which indicated that only the P(3HB-co-3HHx)
parts filled with the highest nHA contents, that is, 15 and 20 wt %, showed significantly higher values.
However, the results also indicated that the parts crystallized during the ageing process since the
thermomechanical changes during and after cold crystallization were relatively low. As expected,
the E’ values progressively increased with increasing the nHA content, given the high stiffness of the
nanoparticles. It is worth noting that the reinforcing effect was more noticeable at higher temperatures
since the amorphous phase of P(3HB-co-3HHXx) was in the rubber state. Indeed, at higher temperatures,
the thermomechanical response of all the P(3HB-co-3HHx) composite parts was significantly different,
dependent upon the nHA content. For instance, at —40 °C the E’ value increased from 1935.2 MPa for
the nanocomposite part containing 2.5 wt % of nHA, to 2100.4 MPa for the part filled with 20 wt % of
nHA, whereas these values increased from 212.3 MPa to 333.1 MPa at 70 °C.

The loss tangent or dynamic damping factor (tan 6) curves are shown in Figure 5b. Since the
position of the tan 6 peak gives an indication of the biopolymer’s Tg, these values were also included
in Table 7. In the case of the neat P(3HB-co-3HHX) part, the tan 6 peak was located at 10.7 °C, which is
similar to that reported by Valentini et al. [69]. It is worth mentioning that, in all cases, the tan 6
peaks were approximately 10 °C higher than the T values. Since tan 6 represents the ratio of the
viscous to the elastic response of a viscoelastic material, this indicates that part of the applied load
was dissipated by energy dissipation mechanisms such as segmental motions, which are related to Tg,
but part of the energy was also stored and released upon removal of the load at higher temperatures.
One can observe that the incorporation of nHA shifted slightly the position of the tan 6 peaks and
also reduced their intensity for the highest nHA loadings, that is, 10 and 20 wt %. Decreasing tan 6
peaks intensity indicated that the nanocomposite parts showed a more elastic response and, hence,
presented more potential to store the applied load rather than dissipating it [70]. This reduction is
directly related to the higher E’ values attained due to nanoparticle reinforcement and it confirmed
that nHA imposed restrictions on the molecular motion of the P(3HB-co-3HHXx) chains, resulting in a
material with more elastic behavior [71]. It also correlated well with the DSC results shown above,
indicating that P(3HB-co-3HHXx) developed more crystallinity in the nanocomposite parts due to the
nucleating effect of nHA and, thus, the less amorphous phase underwent glass transition.
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Figure 5. Evolution as a function of temperature of the (a) storage modulus and (b) dynamic damping
factor (tan 0) of the injection-molded hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHX)]/

hydroxyapatite nanoparticles (nHA) parts.
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Table 7. Thermomechanical properties of the injection-molded poly(3-hydroxybutyrate-co
-3-hydroxyhexanoate) [P(3HB-co-3HHXx)]/hydroxyapatite nanoparticles (nHA) parts in terms of dynamic
damping factor (tan 0) peak, glass transition temperature (Tg), storage modulus (E’) measured at —40,
37,and 70 °C, and coefficient of linear thermal expansion (CLTE) below and above Tj.

DMTA TMA
Part tan & E at E at E at T, CO) CLTE (u/m-°C)
Peak (°C) —40 °C (MPa) 37 °C (MPa) 70 °C (MPa) Below Ty Above T,
P(3HB-co-3HHX) 10.7 £ 0.4 1909.9 + 50.2 519.2 + 142 2105+ 25 -0.6 £0.2 643 +1.1 1772+ 4.6
P(3HB-co-3HHX) + 2.5 nHA 109+0.2 19352 +41.7* 544.1 +26.3* 2123+ 3.1 -03+02 613+04*% 1761 +7.2*
P(3HB-co-3HHXx) + 5 nHA 112+0.3 1940.1 +82.5* 557.8 +17.1* 2225+46* -0.1+0.1 59.3+0.5 175.0+0.8
P(3HB-co-3HHx) + 10 nHA 114 +05 20903 +74.6* 639.0 +18.1* 256.8 +5.1* -04+02 582+ 04 1702 £3.8*

P(3HB-co-3HHXx) + 20 nHA 145+ 04* 21004 +65.1* 7288 +26.6* 333.1+34* -03+0.2 56.7 £0.7 159.1+£5.7*

* Indicates a significant difference compared with the previous sample (p < 0.05). Level of significance (p) values are

included in Table S4.

The effect of temperature on the dimensional stability of the P(3HB-co-3HHx)/nHA parts was also
determined by TMA. The coefficient of linear thermal expansion (CLTE), both below and above Tg,
was obtained from the change in dimensions versus temperature and it is also included in Table 7 along
with the Tg values. In all cases, lower CLTE values were attained in the parts below Tg, due to the lower
mobility of the P(3HB-co-3HHXx) chains of the amorphous regions in the glassy state. As anticipated,
both below and above Tg, the CLTE values decreased significantly with increasing nHA content due to
the increasing replacement of the soft biopolymer matrix by a ceramic material with a considerably
lower CLTE value, that is, 13.6 um/m-°C [72]. As a result, the CLTE value below Ty was reduced from
64.3 pm/m-°C for the neat P(3HB-co-3HHXx) part, to 56.7 um/m-°C for the nanocomposite part filled
with 20 wt % of nHA. Similarly, above Ty, it decreased from 177.2 to 159.1 um/m-°C, respectively.
This thermomechanical response was slightly better than that of the PLA/nHA composites, in which
the CLTE values below T decreased from 73 to 71 um/m-°C after the incorporation of 20 wt % of nHA
into PLA pm/m-°C [73]. These results point out that the nanocomposite parts prepared herein show
excellent dimensional stability against temperature exposition. However, it is also worth mentioning
that, as expected, the CLTE of Ti-based materials was significantly lower, having a mean value of
8.7 um/m- °C [72].

3.4. Morphological Characterization of the P(3HB-co-3HHx)mHA Parts

Figure 6 shows the samples before and after the various processing steps. Combining melt
compounding and injection molding represents a cost-competitive melt-processing methodology to
produce a large number of parts using nanocomposites. According to this route, the P(3HB-co-3HHX)
pellets and the nHA powder were pre-mixed and fed together to the co-rotating twin-screw extruder.
In this way, pellets of nanocomposites containing different contents of dispersed nHA particles were
obtained. They were subsequently injection molded into dumbbell bars. All parts were defect-free and
had a bright surface, the nHA content influencing their color; neat P(3HB-co-3HHXx) parts were yellow
pale, typical of microbial PHA, while the presence of nanoparticles induced a whiter color.

Injection
molding

Figure 6. Processing steps carried out to prepare the poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)
[P(3HB-co-3HHXx)]/hydroxyapatite nanoparticle (nHA) parts; from left to right: as-received
P(3HB-co-3HHx) pellets and nHA powder, compounded pellets of the nanocomposite,
injection-molded parts.
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Figure 7 shows the FESEM image, taken at 10,000%, of the nHA powder. The nanoparticles show a
flake-like morphology based on plates with sizes 60-120 nm and mean cross-sections of approximately
30 nm. This particular morphology of nHA has been reported to occur at pH values below 9, due to
the solution environment changes by the OH™ ions during synthesis using polyethylene glycol (PEG)
as a template [74].
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Figure 7. Field-emission scanning electron microscopy (FESEM) images of the hydroxyapatite
nanoparticles (nHA) powder. Image was taken at 10,000x with scale marker 150 nm.

Micrographs obtained by FESEM of the fracture surfaces of the injection-molded parts of
P(3HB-co-3HHXx) and the various P(3HB-co-3HHx)/nHA composites after the Charpy impact tests
are gathered in Figure 8. The fracture surface of the neat P(3HB-co-3HHXx) part, shown in Figure 8a,
indicated that the material presented a relatively high toughness, since it yielded a rough surface
with the presence of multiple microcracks and some holes. Some microparticles could be seen in
the inset FESEM micrograph taken at higher magnification, which could be related to the presence
of nucleating agents and/or fillers added by the manufacturer, such as boron nitride (BN). In this
regard, Tiirkez, et al. [75] have recently demonstrated that BN nanoparticles show slight cytotoxicity
potential. In particular, contents below 100 mg/L did not lead to lethal response on human primary
alveolar epithelial cells (HPAEpiC), suggesting their safe and effective use in both pharmacological and
medical applications. Figure 8b—e gather the fracture surfaces of the P(3HB-co-3HHx)/nHA composite
parts. The morphological characteristics of the fracture surfaces for the nanocomposites filled with low
nHA contents, that is, 2.5 and 5 wt %, remained very similar to that of neat P(3HB-co-3HHx)/nHA.
In all cases, the nanoparticles were relatively well dispersed and distributed within the biopolymer
matrix. However, at higher contents, the nanoparticles tended to form some microaggreagates and the
resultant fracture surfaces were smoother, indicating that the nanocomposites were more brittle.

Due to the low nHA particle size and the presence of BN and/or additives in the P(3HB-co-3HHXx)
matrix, selective separation was carried out on the fracture surfaces of the nanocomposite parts, in order
to better evaluate the dispersion of the nanoparticles. Figure 9 presents the FESEM images of the
fracture surfaces subjected to treatment with 6 M HCl for 12 h. The voids and holes formed in the
surfaces were related to removed/dissolved nHA and the overall void size and distribution gave an
indication of the original particle dispersion. The micrographs revealed that some microholes were
produced after the selective attack on the P(3HB-co-3HHX) parts filled with 10 and 20 wt % of nHA,
which should correspond to nHA aggregates, whereas the nanocomposites containing low nanoparticle
loadings showed nano-sized holes well distributed along the biopolymer matrix, which suggested an
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efficient dispersion. Agglomeration was particularly noticeable for the nanocomposite part containing
20 wt % of nHA, thus indicating that the presence of aggregates could induce particle debonding during
fracture, as a result of the dissimilar mechanical strength and rigidity of the ceramic nanoparticles
and biopolymer matrix. Therefore, the present results correlate well with the mechanical and thermal
properties described above, in which nHA loadings of up to 10 wt % increased the mechanical and
thermal performance of the P(3HB-co-3HHXx) parts, whereas the highest nHA content impaired the
overall properties due to nanoparticle aggregation.

Figure 8. Field-emission scanning electron microscopy (FESEM) images of the fracture surfaces of the
injection-molded poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHx)]/hydroxyapatite
nanoparticle (nHA) parts of: (a) neat P(BHB-co-3HHXx); (b) P(3HB-co-3HHx) + 2.5 nHA;
(c) P(3HB-co-3HHXx) + 5 nHA; (d) P(3HB-co-3HHXx) + 10 nHA; (e) P(3HB-co-3HHXx) + 20 nHA. Images
were taken at 500x and with scale markers of 10 pm. Inset image showing the detail of the microparticles
was taken at 2500x with scale marker of 2 pm.
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Figure 9. Field-emission scanning electron microscopy (FESEM) images of the fracture surfaces of the
injection-molded poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHX)]/hydroxyapatite
nanoparticles (nHA) parts after selective attack with 6M hydrochloric acid (HCI) for 12 h:
(a) P(3HB-co-3HHX) + 2.5 nHA; (b) P(3HB-co-3HHx) + 5 nHA; (c¢) P(3HB-co-3HHx) + 10 nHA;
(d) P(3HB-co-3HHXx) + 20 nHA. Images were taken at 1000x with scale marker of 5 um.

4. Conclusions

One of the most exciting areas of new material development in the biomedical device community is
resorbable polymers. As bone scaffolds, biodegradable and biocompatible polymers will maintain their
strength until the liquid in contact begins the dissolution process, eventually leading to their complete
elimination from the body, thus avoiding a second surgery for their removal. The herein-prepared
injection-molded composite parts of P(3HB-co-3HHx)/nHA showed a better matching of mechanical
and thermomechanical performance than metal alloys to replace natural bone. While natural bone has
a modulus ranging from about 8-25 GPa, the herein-prepared injection-molded parts showed E; values
from approximately 1 up to 1.7 GPa and ¢}, values ranging from 6.5 to 19.4%. The incorporation of up
to 10 wt % of nHA also improved slightly the thermal stability of the P(3HB-co-3HHXx) parts and their
thermal stability was considered to be high enough for bone tissue engineering, taking into account that
nonthermal sterilization methods would be required. These balanced properties in terms of strength
and ductility offer the biomedical industry a material that can accomplish different applications in
bone reconstruction, for which high-stress materials are not needed, such as bone screws and small
orthopedic plates or rods. Future works will explore the potential use of the P(3HB-co-3HHx)/nHA
composites as drug delivery systems.
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