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ORDER SPECTRUM OF THE CESÀRO OPERATOR IN BANACH
LATTICE SEQUENCE SPACES

J. BONET AND W.J. RICKER

Abstract. The discrete Cesàro operator C acts continuously in various classical Ba-
nach sequence spaces within CN. For the coordinatewise order, many such sequence
spaces X are also complex Banach lattices (eg. c0, ℓ

p for 1 < p ≤ ∞, and ces(p) for
p ∈ {0} ∪ (1,∞)). In such Banach lattice sequence spaces, C is always a positive oper-
ator. Hence, its order spectrum is well defined within the Banach algebra of all regular
operators on X. The purpose of this note is to show, for every X belonging to the above
list of Banach lattice sequence spaces, that the order spectrum σo(C) of C coincides
with its usual spectrum σ(C) when C is considered as a continuous linear operator on
the Banach space X.

1. Introduction

Let E be a complex Banach lattice and L(E) denote the unital Banach algebra of all
continuous linear operators from E into itself, equipped with the operator norm ‖ · ‖op.
The unit is the identity operator I : E −→ E. Associated with each T ∈ L(E) is its
spectrum

σ(T ) := {λ ∈ C : (λI − T ) is not invertible in L(E)}

and its resolvent set ρ(T ) := Crσ(T ). An operator T ∈ L(E) is called regular if it is
a finite linear combination of positive operators. The complex vector space of all regular
operators is denoted by Lr(E); it is also a unital Banach algebra for the norm

(1.1) ‖T‖r := inf{‖S‖op : S ∈ L(E), S ≥ 0, |T (z)| ≤ S(|z|) ∀ z ∈ E}, T ∈ Lr(E).

Again I : E −→ E is the unit. Moreover, ‖T‖op ≤ ‖T‖r for T ∈ Lr(E), with equality
whenever T ≥ 0 (i.e., if T is a positive operator). The spectrum of T ∈ Lr(E), considered
as an element of the Banach algebra Lr(E), is denoted by σo(T ) and is called its order
spectrum. Then ρo(T ) := Crσo(T ) is the order resolvent of T. Clearly

(1.2) σ(T ) ⊆ σo(T ), T ∈ Lr(E).

From the usual formula for the spectral radius, [5, Ch.I, §2, Proposition 8], it follows
that the spectral radii for T ∈ Lr(E) satisfy r(T ) = ro(T ) whenever T ≥ 0. Standard
references for the above concepts and facts are [3], [17], [18], for example.

It is clear from (1.2) that r(T ) ≤ ro(T ) for T ∈ Lr(E). So, if r(T ) < ro(T ), then (1.2)
cannot be an equality. This is the strategy applied in [18, pp.79-80] to exhibit a regular
operator for which σ(T ) $ σo(T ). For an example of a positive operator T satisfying
σ(T ) $ σo(T ), see [3, pp.283-284]. In the contrary direction, a rich supply of classical
operators T for which the equality

(1.3) σ(T ) = σo(T )
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is satisfied arise in harmonic analysis, [3, Theorem 3.4].

The aim of this note is to contribute two further classes of operators T which satisfy
(1.3). In Section 2 it is shown that in any Banach function space E, all multiplication
operators T by L∞-functions are regular operators and satisfy (1.3). This is a consequence
of the fact that the algebra of such multiplication operators is maximal commutative. Let
N := {1, 2, . . .}. The remaining three sections deal with the classical Cesàro operator
C : CN −→ CN defined by

(1.4) C(x) :=
(
1
n

∑n
k=1 xk

)
∞

n=1
x = (xn)

∞

n=1 ∈ CN,

which is clearly a positive operator for the coordinatewise order in the positive cone of
CN = RN⊕iRN. Section 3 establishes some general results for determining the regularity of
linear operators in Banach lattice sequence spaces. These results are designed to apply to
the particular operators (C−λI)−1, where C is given in (1.4). In Section 4 we will consider
the restriction of C to the Banach lattice sequence spaces c0 and ℓp, 1 < p ≤ ∞, and show
that (1.3) is satisfied in all cases (with C in place of T ). Section 5 is devoted to proving
the same fact, but now when C acts in the discrete Cesàro spaces ces(p), 1 < p < ∞, and
in ces(0).

2. Multiplication operators

Let (Ω,Σ, µ) be a localizable measure space (in the sense of [10, 64A]), that is, the
associated measure algebra is a complete Boolean algebra and, for every measurable set
A ∈ Σ with µ(A) > 0 there exists B ∈ Σ such that B ⊆ A and 0 < µ(B) < ∞
(i.e., µ has the finite subset property). All σ-finite measures are localizable, [10, 64H
Proposition]. Every Banach function space E (of C-valued functions) over (Ω,Σ, µ) is
a complex Banach lattice for the pointwise µ-a.e. order. Given any ϕ ∈ L∞(µ), the
multiplication operator Mϕ : E −→ E defined by f 7−→ ϕf, for f ∈ E, belongs to L(E)
and satisfies ‖Mϕ‖op = ‖ϕ‖∞. Define a unital, commutative subalgebra of L(E) by

ME(L
∞(µ)) := {Mϕ : ϕ ∈ L∞(µ)};

the unit is the identity operator I = M1 where 1 is the constant function 1 on Ω. Recall
that the commutant of ME(L

∞(µ)) is defined by

ME(L
∞(µ))c := {A ∈ L(E) : AMϕ = MϕA ∀ϕ ∈ L∞(µ)} ⊆ L(E).

It is known that ME(L
∞(µ)) is a maximal commutatitive, unital subalgebra of L(E), that

is, ME(L
∞(µ)) = ME(L

∞(µ))c, [9, Proposition 2.2]. Moreover, also the bicommutant
ME(L

∞(µ))cc = ME(L
∞(µ)).

Proposition 2.1. Let (Ω,Σ, µ) be a localizable measure space and E be a Banach function
space over (Ω,Σ, µ).

(i) ME(L
∞(µ)) ⊆ Lr(E).

(ii) ME(L
∞(µ)) is inverse closed in L(E). That is, if T ∈ ME(L

∞(µ)) is invertible
in L(E) (i.e., there exists S ∈ L(E) satisfying ST = I = TS), then necessarily
S ∈ ME(L

∞(µ)).
(iii) For every T ∈ ME(L

∞(µ)) we have σo(T ) = σ(T ).

Proof. (i) Let ϕ ∈ L∞(µ). Then ϕ = [(Reϕ)+− (Reϕ)−]+ i[(Imϕ)+− (Imϕ)−] with all
four functions (Reϕ)+, (Reϕ)−, (Imϕ)+, (Imϕ)− belonging to the positive cone L∞(µ)+

of L∞(µ). Since Mϕ = [M(Reϕ)+−M(Reϕ)− ]+i[M(Imϕ)+−M(Imϕ)− ] is a linear combination
of positive operators, it is clear that Mϕ ∈ Lr(E).
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(ii) Since ME(L
∞(µ)) is maximal commutative in L(E), it follows that ME(L

∞(µ))
is inverse closed in L(E), [5, Ch.II, §15, Theorem 4].

(iii) In view of (1.1) it suffices to show that ρ(T ) ⊆ ρo(T ). Suppose that T = Mϕ

with ϕ ∈ L∞(µ). Fix λ ∈ ρ(T ). Then λI − T = M(λ1−ϕ) belongs to ME(L
∞(µ)) because

(λ1 − ϕ) ∈ L∞(µ). Since M(λ1−ϕ) is invertible in L(E), it follows from part (ii) that

actually (λI − T )−1 ∈ ME(L
∞(µ)) and hence, by part (i), that also (λI − T )−1 ∈

Lr(E). �

Remark 2.2. We point out that ‖T‖op = ‖T‖r for each T ∈ ME(L
∞(µ)). Indeed, let

ϕ ∈ L∞(µ) satisfy T = Mϕ, in which case ‖Mϕ‖op = ‖ϕ‖∞. Define S := ‖ϕ‖∞I and note
that S ≥ 0 with ‖S‖op = ‖ϕ‖∞. Moreover,

|Mϕ(f)| = |ϕf | ≤ ‖ϕ‖∞|f | = S(|f |), f ∈ E,

and so ‖T‖r ≤ ‖S‖op = ‖ϕ‖∞ = ‖T‖op; see (1.1). The reverse inequality ‖T‖op ≤ ‖T‖r
always holds.

3. The Cesàro operator in Banach sequence spaces

We begin with some preliminaries. Equipped with the topology of pointwise conver-
gence CN is a locally convex Fréchet space. Let A = (anm)∞n,m=1 be any lower triangular
(infinite) matrix, i.e., anm = 0 whenever m > n. Then A induces the continuous linear
operator TA : CN −→ CN defined by

(3.1) TA(x) := (
∑

∞

m=1 anmxm)∞n=1 , x ∈ CN.

For x ∈ CN define |x| := (|xn|)
∞

n=1. Then also |x| ∈ CN. A vector subspace X ⊆ CN is
called solid (or an ideal) if y ∈ X whenever x ∈ X and y ∈ CN satisfy |y| ≤ |x|. It is
always assumed that X contains the vector space consisting of all elements of CN which
have only finitely many non-zero coordinates. In addition, it is assumed that X has a
norm ‖ · ‖X with respect to which it is a complex Banach lattice for the coordinatewise
order and such that the natural inclusion X ⊆ CN is continuous. Under the previous
requirements X is called a Banach lattice sequence space.

Lemma 3.1. Let A = (anm)∞n,m=1 be a lower triangular matrix with all entries non-

negative real numbers and X ⊆ CN be a Banach lattice sequence space such that TA(X) ⊆
X. Let B = (bnm)∞n,m=1 be any matrix such that

(3.2) |bnm| ≤ anm, n,m ∈ N.

Then the restricted operator TA : X −→ X belongs to L(X). Moreover, TB : CN −→ CN

satisfies TB(X) ⊆ X and the restricted operator TB : X −→ X also belongs to L(X). In
addition, ‖TB‖op ≤ ‖TA‖op.

Proof. Condition (3.2) implies that B is also a lower triangular matrix. Moreover, the
continuity of both TA : CN −→ CN and of the inclusion map X ⊆ CN imply, via the
Closed Graph Theorem in the Banach space X, that the restricted operator TA ∈ L(X).

Given x ∈ X we have for each n ∈ N, via (3.2), that

(TB(x))n = |
∑

∞

m=1 bnmxm| ≤
∑

∞

m=1 |bnm| · |xm| ≤
∑

∞

m=1 anm|xm| = (TA(|x|))n.

Since X is solid and TA(|x|) ∈ X, these inequalities and (3.1) imply that TB(x) ∈ X.

Moreover, as ‖ · ‖X is a lattice norm it follows that

‖TB(x)‖X = ‖(
∑

∞

m=1 bnmxm)∞n=1‖X ≤ ‖(
∑

∞

m=1 anm|xm|)∞n=1‖X

= ‖TA(|x|)‖X ≤ ‖TA‖op‖x‖X ,
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for each x ∈ X, where the stated series are actually finite sums. Hence, ‖TB‖op ≤ ‖TA‖op
and the proof is complete. �

Since the operator TA as given in Lemma 3.1 satisfies TA ≥ 0, it is clearly regular.

Corollary 3.2. Let A = (anm)∞n,m=1 be a lower triangular matrix with non-negative

real entries and X ⊆ CN be a Banach lattice sequence space such that TA(X) ⊆ X.

Let B = (bnm)∞n,m=1 be any matrix satisfying (3.2). Then the operator TB ∈ L(X) is

necessarily regular, that is, TB ∈ Lr(X).

Proof. Define the non-negative real numbers snm := (Re bnm)+, unm := (Re bnm)−, vnm :=
(Im bnm)+ and wnm := (Im bnm)− for each n,m ∈ N. Then bnm = (snm − unm) + i(vnm −
wnm) and {snm, unm, vnm, wnm} ⊆ [0, anm] for n,m ∈ N. Setting S := (snm)∞n,m=1, U :=

(unm)∞n,m=1, V := (vnm)∞n,m=1 and W := (wnm)∞n,m=1 it is clear from the definition (3.1)
that each operator TS ≥ 0, TU ≥ 0, TV ≥ 0 and TW ≥ 0 (in X) belongs to L(X); see
Lemma 3.1. Since TB = (TS − TU ) + i(TV − TW ), it follows that TB ∈ Lr(X). �

Together with appropriate estimates, Corollary 3.2 will be the main ingredient required
to establish (1.3) for C (in place of T ) when it acts in various classical Banach lattice
sequence spaces X.

Let Σ0 := {0} ∪ { 1
n : n ∈ N}. We recall the formula for the inverses (C − λI)−1 :

CN −→ CN whenever λ ∈ CrΣ0, [14, p.266]. Namely, for n ∈ N the n-th row of the lower
triangular matrix determining (C − λI)−1 has the entries

(3.3) −1
nλ2

∏n
k=m(1− 1

kλ
)
, 1 ≤ m < n, and n

1−nλ = 1
( 1

n
−λ)

, m = n,

with all other entries in row n being 0. We write

(3.4) (C − λI)−1 = TDλ
− 1

λ2TEλ
,

where the diagonal matrix Dλ = (dnm(λ))∞n,m=1 is given by

(3.5) dnn(λ) :=
1

( 1

n
−λ)

and dnm(λ) := 0 if n 6= m.

Setting γ[λ] := dist(λ,Σ0) > 0 it is routine to check that

(3.6) |dnn(λ)| ≤
1

γ[λ] , n ∈ N, λ ∈ CrΣ0.

Moreover, Eλ = (enm(λ))∞n,m=1 is the lower triangular matrix given by e1m(λ) = 0, for
m ∈ N, and for all n ≥ 2 by

(3.7) enm(λ) :=

{
1

nΠn
k=m(1− 1

kλ
)

if 1 ≤ m < n

0 if m ≥ n.

Lemma 3.3. Let X ⊆ CN be any Banach lattice sequence space. For each λ ∈ CrΣ0 the
diagonal operator TDλ

, with Dλ = (dnm(λ))∞n,m=1 given by (3.5), is regular in X, that is,

TDλ
∈ Lr(X).

Proof. Fix λ 6∈ Σ0 and let A := 1
γ[λ]I, where I is the identity matrix in CN, in which case

TA(X) ⊆ X is clear. It follows from (3.6) that the matrix B := Dλ satisfies (3.2). Hence,
the regularity of TDλ

in X follows from Corollary 3.2. �

Remark 3.4. (i) Since any Banach lattice sequence space X ⊆ CN is a Banach function
space over the σ-finite measure space (N, 2N, µ), relative to counting measure µ, and the
function n 7−→ dnn(λ) on N belongs to L∞(µ) by (3.6), the regularity of TDλ

∈ L(X) also
follows from Proposition 2.1(i).
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(ii) For appropriate X and λ 6∈ Σ0, it is clear from (3.4) and Lemma 3.3 that the
regularity of (C − λI)−1 ∈ L(X) is completely determined by the matrix Eλ.

The following inequalities will be needed in the sequel. For α < 1 we refer to [14,
Lemma 7] and for general α ∈ R to [1, Lemma 3.2(i)].

Lemma 3.5. Let λ ∈ CrΣ0 and set α := Re( 1λ ). Then there exist positive constants P (α)
and Q(α) such that

(3.8) P (α)
nα ≤

∏n
k=1 |1−

1
kλ | ≤

Q(α)
nα , n ∈ N.

4. The classical spaces ℓp, 1 < p ≤ ∞, and c0

For each 1 < p ≤ ∞ let Cp ∈ L(ℓp) denote the Cesàro operator as given by (1.4) when it
is restricted to ℓp. As a consequence of Hardy’s inequality, [11, Theorem 326], it is known
that ‖Cp‖op = p′, where 1

p +
1
p′ = 1 (with p′ := 1 when p = ∞). Concerning the spectrum

of Cp we have

(4.1) σ(Cp) = {λ ∈ C : |λ− p′

2 | ≤
p′

2 }, 1 < p ≤ ∞.

Various proofs of (4.1) are known for 1 < p < ∞, [6], [12], [13], [15], [16]; see the discussion
on p.268 of [6]. For the case p = ∞ we refer to [12, Theorem 4], for example.

Remark 4.1. For each λ 6= 0 set α := Re( 1λ). Then, for any b > 0 we have

α < 1
b and only if |λ− b

2 | >
b
2 .

The corresponding results for α > 1
b and α = 1

b also hold.

Proposition 4.2. For each 1 < p < ∞ the order spectrum of the positive operator
Cp ∈ L(ℓp) satisfies

(4.2) σo(Cp) = σ(Cp).

Proof. Via (1.2) it suffices to verify that ρ(Cp) ⊆ ρo(Cp).

With the notation of (3.4) and (3.7) it is shown on p.269 of [6], as a consequence of
(3.8) in Lemma 3.5 above, that for every λ 6= 0 satisfying α := Re( 1λ ) < 1 there exists a
constant β(λ) > 0 such that

(4.3) |enm(λ)| ≤ β(λ)
n1−αmα , 1 ≤ m ≤ n, n ∈ N.

Set B := Eλ and let A be the lower triangular matrix whose entries anm(λ) ≥ 0 are given
by the right-side of (4.3) for each n ∈ N and 1 ≤ m ≤ n (and 0 otherwise). According to
(4.3) the matrices A and B satisfy (3.2). Let X := ℓp for p ∈ (1,∞) fixed. Then Corollary
3.2 implies that Eλ will be regular (i.e., TEλ

∈ Lr(ℓp)) whenever TA(ℓ
p) ⊆ ℓp. Note that

TA ∈ L(CN) is given by

(4.4) x 7−→ β(λ)
(

1
n1−α

∑n
m=1

xm
mα

)
∞

n=1
:= β(λ)Gλ(x), x ∈ CN.

So, if Re( 1λ) < 1, then (4.4) implies that TA ∈ L(ℓp) whenever Gλ : ℓp −→ ℓp is continuous.

Let now λ ∈ ρ(Cp), that is, |λ − p′

2 | >
p′

2 . Then α := Re( 1λ ) <
1
p′ , because of Remark

4.1, and hence, (1 − α)p > 1. Then the Proposition on p.269 of [6] yields that indeed
Gλ ∈ L(ℓp). As noted above, this implies that TEλ

∈ Lr(ℓp). Combined with (3.4) and
Lemma 3.3 it follows that (Cp − λI)−1 ∈ Lr(ℓp), that is, λ ∈ ρo(Cp). This completes the
proof of (4.2). �
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Recall that ‖C∞‖op = 1 and, from (4.1) for p = ∞, that

(4.5) σ(C∞) = {λ ∈ C : |λ− 1
2 | ≤

1
2}

Proposition 4.3. The order spectrum of the positive operator C∞ ∈ L(ℓ∞) satisfies

σo(C∞) = σ(C∞).

Proof. Again by (1.2) it suffices to prove that ρ(C∞) ⊆ ρo(C∞).

Fix λ ∈ ρ(C∞). According to (4.5), for b = 1 the condition in Remark 4.1 is satisfied
with α := Re( 1λ). Hence, the inequalities (4.3) are valid and so A := (anm(λ))∞n,m=1 ≥ 0

and B := Eλ can again be defined exactly as in the proof of Proposition 4.2. Then (3.2)
is satisfied with X := ℓ∞. Arguing as in the proof of Proposition 4.2 (via Corollary 3.2) it
remains to verify that TA : ℓ∞ −→ ℓ∞ is continuous, where TA is given by (4.4). To this
effect, since (1− α) > 0 by Remark 4.1, it follows that

(4.6) supn∈N
∑

∞

m=1 |anm(λ)| = β(λ) supn∈N
1

n1−α

∑
∞

m=1
1

mα < ∞;

this has been verified on p.778 of [2] (put w(n) = 1 there for all n ∈ N) by considering
each of the cases α < 0, α = 0 and 0 < α < 1 separately. But, condition (4.6) is known
to imply that TA ∈ L(ℓ∞), [19, Ex.2, p.220]. The proof that λ ∈ ρo(C∞) is thereby
complete. �

To conclude this section we consider the Cesàro operator C, as given by (1.4), when it
is restricted to c0; denote this operator by C0. It is shown in [12, Theorem 3], [14], that
‖C0‖op = 1 and

(4.7) σ(C0) = {λ ∈ C : |λ− 1
2 | ≤

1
2}.

Proposition 4.4. The order spectrum of the positive operator C0 ∈ L(c0) satisfies

σo(C0) = σ(C0).

Proof. Since (4.7) shows that σ(C0) = σ(C∞), the entire proof of Proposition 4.3 can be
easily adapted (now for X := c0 and fixed λ ∈ ρ(C0)), using the same notation, up to the
stage where (4.6) is shown to be valid. In addition to the validity of (4.6) it is also true
that

(4.8) limn→∞ anm(λ) = β(λ)
mα limn→∞

1
n1−α = 0, m ∈ N,

because α := Re( 1λ ) satisfies (1 − α) > 0. The two conditions (4.6) and (4.8) together
are known to imply that TA ∈ L(c0), [19, Theorem 4.51-C]. Again via Corollary 3.2 and
Lemma 3.3 we can conclude that TEλ

∈ Lr(c0) and hence, also (C0 − λI)−1 is regular on
c0. �

5. The discrete Cesàro spaces ces(p), 1 < p < ∞, and ces(0)

For 1 < p < ∞ the discrete Cesàro spaces are defined by

ces(p) := {x ∈ CN : ‖x‖ces(p) :=
(∑

∞

n=1(
1
n

∑n
k=1 |xk|)

p
)1/p

< ∞}.

In view of (1.4) we see that ‖x‖ces(p) = ‖C(|x|)‖ℓp for x ∈ ces(p). It is known that
each space ces(p), 1 < p < ∞, is a reflexive Banach lattice sequence space for the norm
‖ · ‖ces(p) and the coordinatewise order. The spaces ces(p) have been thoroughly treated
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in [4]. According to Theorem 5.1 of [8] the restriction of C (see (1.4)) to ces(p), denoted
here by C(p), is continuous with ‖C(p)‖op = p′ and

(5.1) σ(C(p)) =
{
λ ∈ C : |λ− p′

2 | ≤
p′

2

}
, 1 < p < ∞.

Proposition 5.1. For each 1 < p < ∞ the order spectrum of the positive operator
C(p) ∈ L(ces(p)) satisfies

(5.2) σo(C(p)) = σ(C(p)).

Proof. In view of (1.2) it suffices to verify that ρ(C(p)) ⊆ ρo(C(p)).

We decompose the set ρ(C(p)) into two disjoint parts, namely the set

(5.3) ρ1 := {λ ∈ Cr{0} : Re
(
1
λ

)
≤ 0} = {u ∈ Cr{0} : Re(u) ≤ 0}

and its complement ρ2 := ρ(C(p))rρ1.

First fix λ ∈ ρ1. Then λ 6∈ Σ0 and so we may consider Eλ = (enm(λ))∞n,m=1 and
Dλ = (dnm(λ))∞n,m=1 as specified by (3.7) and (3.6), respectively. It is shown on p.72 of

[8] that

(5.4) |enm(λ)| ≤ 1
n , 1 ≤ m < n, n ∈ N.

Warning : In [8] the set N = {0, 1, 2, . . .} is used rather than N = {1, 2, 3, . . .} which is
used here and so the inequalities from [8] are slightly different when they are stated here.
Back to our proof, it is clear from (1.4) that the matrix A = (cnm)∞n,m=1 for the Cesàro

operator C is lower triangular with its n-th row, for each n ∈ N, given by cnm := 1
n for

1 ≤ m ≤ n and cnm := 0 for m > n. Setting B := Eλ it is clear from (5.4) that (3.2) is
satisfied for the pair A,B in the space X := ces(p). Since C(p) = TA : ces(p) −→ ces(p)
is continuous, it follows from Corollary 3.2 that TEλ

∈ Lr(ces(p)) and hence, via Lemma
3.3 and (3.4), that also (C(p) − λI)−1 ∈ Lr(ces(p)).

Consider now the set ρ2. From (5.1) it is routine to establish that a non-zero point
z ∈ C belongs to σ(C(p)) if and only if Re(1z ) ≥

1
p′ . From the case of equality in Remark

4.1, it follows that ρ2 =
⋃

0<α<1/p′ Γα, where

(5.5) Γα :=
{
z ∈ Cr{0} : Re

(
1
z

)
= α

}
=

{
z ∈ Cr{0} :

∣∣z − 1
2α

∣∣ = 1
2α

}
.

Fix a point λ ∈ ρ2. Then there exists a unique number α ∈ (0, 1
p′ ) such that λ ∈ Γα,

namely α := Re( 1λ ). In the notation of (3.7) it is shown on p.72 of [8] that

(5.6) |enm(λ)| ≤ enm
(
1
α

)
, n,m ∈ N.

Note that enm( 1α) ≥ 0 for all n,m ∈ N follows from (3.7) as 0 < α < 1
p′ implies that

1− 1
k(1/α) = (1 − α

k ) > 0 for m ≤ k ≤ n. Setting Ã := E1/α and B̃ := Eλ it is clear from

(5.6) that (3.2) is satisfied for the pair Ã, B̃ in place of A,B. Moreover, 1
α > p′ implies

that 1
α ∈ ρ(C(p)), that is, (C(p) −

1
αI)

−1 ∈ L(ces(p)). Since TD1/α
∈ L(ces(p)) by Lemma

3.3 (with 1
α in place of λ), the identity TE1/α

= α2(TD1/α
−(C(p)−

1
αI)

−1) shows that TÃ ∈

L(ces(p)). Hence, Corollary 3.2 can be applied to conclude that T
B̃
= TEλ

∈ Lr(ces(p)).

It then follows from (3.4) and Lemma 3.3 that (C(p) − λI)−1 ∈ Lr(ces(p)). �
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The remaining space to consider is ces(0) := {x ∈ CN : C(|x|) ∈ c0} equipped with the
norm

‖x‖ces(0) := ‖C(|x|)‖c0 = supn∈N
1
n

∑n
k=1 |xk|, x ∈ ces(0).

It is a Banach lattice sequence space for the norm ‖ · ‖ces(0) and the coordinatewise order.
According to [8, Theorem 6.4], the restriction of C (see ((1.4)) to ces(0), denoted here by
C(0), is continuous with ‖C(0)‖op = 1 and

(5.7) σ(C(0)) = {λ ∈ C : |λ− 1
2 | ≤

1
2}.

Proposition 5.2. The order spectrum of the positive operator C(0) ∈ L(ces(0)) satisfies

σo(C(0)) = σ(C(0)).

Proof. As usual it suffices to show that ρ(C(0)) ⊆ ρo(C(0)).

Let the set ρ1 be as in (5.3). For each α ∈ (0, 1) let Γα be given by (5.5). Then (5.7)
ensures that we have the disjoint partition ρ(C(0)) = ρ1 ∪ ρ2 with ρ2 :=

⋃
0<α<1 Γα.

For any given point λ ∈ ρ1 the estimates (5.4) are again valid (see [8, p.72]) and so the
argument in the proof of Proposition 5.1 can be easily adapted ( now for X := ces(0)) to
again show that (C(0) − λI)−1 ∈ Lr(ces(0)).

Fix now λ ∈ ρ2. Then there exists a unique α ∈ (0, 1) such that λ ∈ Γα, namely
α := Re( 1λ). Then Re(1− 1

kλ) = (1− α
k ) ≥ 0 for k ∈ N. Arguing as at the bottom of p.396

in [7], now with x ∈ ces(0) in place of a ∈ ces(2) there, it follows that the 1-st coordinate
of Eλ(x) is 0 and, for n ≥ 2, that the n-th coordinate of Eλ(x) satisfies

|(Eλ(x))n| ≤ (E1/α(|x|))n, x ∈ ces(0).

Substituting x := (δrj)
∞

j=1 into the previous estimates, for each r ∈ N, yields (5.6). Since

0 < α < 1 implies that 1
α ∈ ρ(C(0)), the argument can be completed along the lines given

in the proof of Proposition 5.1 to conclude that (C(0) − λI)−1 ∈ Lr(ces(0)). We again
warn the reader that N = {0, 1, 2, . . .} is used in [7]. �
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