Document downloaded from:

http://hdl.handle.net/10251/176110

This paper must be cited as:

Bonet Solves, JA.; Ricker, WJ. (2020). Order spectrum of the Cesàro operator in Banach lattice sequence spaces. Positivity. 24(3):593-603. https://doi.org/10.1007/s11117-019-00699-9

The final publication is available at

https://doi.org/10.1007/s11117-019-00699-9

Copyright Springer-Verlag

Additional Information

ORDER SPECTRUM OF THE CESÀRO OPERATOR IN BANACH LATTICE SEQUENCE SPACES

J. BONET AND W.J. RICKER

ABSTRACT. The discrete Cesàro operator C acts continuously in various classical Banach sequence spaces within $\mathbb{C}^{\mathbb{N}}$. For the coordinatewise order, many such sequence spaces X are also complex Banach lattices (eg. c_0, ℓ^p for $1 , and <math>\operatorname{ces}(p)$ for $p \in \{0\} \cup (1, \infty)$). In such Banach lattice sequence spaces, C is always a positive operator. Hence, its order spectrum is well defined within the Banach algebra of all regular operators on X. The purpose of this note is to show, for every X belonging to the above list of Banach lattice sequence spaces, that the order spectrum $\sigma_{\mathcal{O}}(C)$ of C coincides with its usual spectrum $\sigma(C)$ when C is considered as a continuous linear operator on the Banach space X.

1. Introduction

Let E be a complex Banach lattice and $\mathcal{L}(E)$ denote the unital Banach algebra of all continuous linear operators from E into itself, equipped with the operator norm $\|\cdot\|_{\text{op}}$. The unit is the identity operator $I: E \longrightarrow E$. Associated with each $T \in \mathcal{L}(E)$ is its spectrum

$$\sigma(T) := \{ \lambda \in \mathbb{C} : (\lambda I - T) \text{ is not invertible in } \mathcal{L}(E) \}$$

and its resolvent set $\rho(T) := \mathbb{C} \setminus \sigma(T)$. An operator $T \in \mathcal{L}(E)$ is called *regular* if it is a finite linear combination of *positive operators*. The complex vector space of all regular operators is denoted by $\mathcal{L}^r(E)$; it is also a unital Banach algebra for the norm

(1.1)
$$||T||_r := \inf\{||S||_{\text{op}} : S \in \mathcal{L}(E), S \ge 0, |T(z)| \le S(|z|) \ \forall z \in E\}, \quad T \in \mathcal{L}^r(E).$$

Again $I: E \longrightarrow E$ is the unit. Moreover, $||T||_{\text{op}} \leq ||T||_r$ for $T \in \mathcal{L}^r(E)$, with equality whenever $T \geq 0$ (i.e., if T is a positive operator). The spectrum of $T \in \mathcal{L}^r(E)$, considered as an element of the Banach algebra $\mathcal{L}^r(E)$, is denoted by $\sigma_{\text{o}}(T)$ and is called its order spectrum. Then $\rho_{\text{o}}(T) := \mathbb{C} \setminus \sigma_{\text{o}}(T)$ is the order resolvent of T. Clearly

(1.2)
$$\sigma(T) \subseteq \sigma_{o}(T), \quad T \in \mathcal{L}^{r}(E).$$

From the usual formula for the spectral radius, [5, Ch.I, §2, Proposition 8], it follows that the spectral radii for $T \in \mathcal{L}^r(E)$ satisfy $r(T) = r_0(T)$ whenever $T \geq 0$. Standard references for the above concepts and facts are [3], [17], [18], for example.

It is clear from (1.2) that $r(T) \leq r_{\rm o}(T)$ for $T \in \mathcal{L}^r(E)$. So, if $r(T) < r_{\rm o}(T)$, then (1.2) cannot be an equality. This is the strategy applied in [18, pp.79-80] to exhibit a regular operator for which $\sigma(T) \subsetneq \sigma_{\rm o}(T)$. For an example of a positive operator T satisfying $\sigma(T) \subsetneq \sigma_{\rm o}(T)$, see [3, pp.283-284]. In the contrary direction, a rich supply of classical operators T for which the equality

(1.3)
$$\sigma(T) = \sigma_0(T)$$

²⁰¹⁰ Mathematics Subject Classification. Primary 47A10, 47B37, 47B65, 47L10; Secondary 46A45, 46B45, 47C05.

Key words and phrases. Banach algebra, Banach sequence space, Cesàro operator, spectrum, order spectrum.

is satisfied arise in harmonic analysis, [3, Theorem 3.4].

The aim of this note is to contribute two further classes of operators T which satisfy (1.3). In Section 2 it is shown that in any Banach function space E, all multiplication operators T by L^{∞} -functions are regular operators and satisfy (1.3). This is a consequence of the fact that the algebra of such multiplication operators is maximal commutative. Let $\mathbb{N} := \{1, 2, \ldots\}$. The remaining three sections deal with the classical Cesàro operator $C: \mathbb{C}^{\mathbb{N}} \longrightarrow \mathbb{C}^{\mathbb{N}}$ defined by

(1.4)
$$C(x) := \left(\frac{1}{n} \sum_{k=1}^{n} x_k\right)_{n=1}^{\infty} \quad x = (x_n)_{n=1}^{\infty} \in \mathbb{C}^{\mathbb{N}},$$

which is clearly a positive operator for the coordinatewise order in the positive cone of $\mathbb{C}^{\mathbb{N}} = \mathbb{R}^{\mathbb{N}} \oplus i\mathbb{R}^{\mathbb{N}}$. Section 3 establishes some general results for determining the regularity of linear operators in Banach lattice sequence spaces. These results are designed to apply to the particular operators $(C-\lambda I)^{-1}$, where C is given in (1.4). In Section 4 we will consider the restriction of C to the Banach lattice sequence spaces c_0 and ℓ^p , 1 , and show that (1.3) is satisfied in all cases (with <math>C in place of T). Section 5 is devoted to proving the same fact, but now when C acts in the discrete Cesàro spaces $\cos(p)$, $1 , and in <math>\cos(0)$.

2. Multiplication operators

Let (Ω, Σ, μ) be a localizable measure space (in the sense of [10, 64A]), that is, the associated measure algebra is a complete Boolean algebra and, for every measurable set $A \in \Sigma$ with $\mu(A) > 0$ there exists $B \in \Sigma$ such that $B \subseteq A$ and $0 < \mu(B) < \infty$ (i.e., μ has the finite subset property). All σ -finite measures are localizable, [10, 64H Proposition]. Every Banach function space E (of \mathbb{C} -valued functions) over (Ω, Σ, μ) is a complex Banach lattice for the pointwise μ -a.e. order. Given any $\varphi \in L^{\infty}(\mu)$, the multiplication operator $M_{\varphi}: E \longrightarrow E$ defined by $f \longmapsto \varphi f$, for $f \in E$, belongs to $\mathcal{L}(E)$ and satisfies $\|M_{\varphi}\|_{\mathrm{op}} = \|\varphi\|_{\infty}$. Define a unital, commutative subalgebra of $\mathcal{L}(E)$ by

$$\mathcal{M}_E(L^{\infty}(\mu)) := \{ M_{\varphi} : \varphi \in L^{\infty}(\mu) \};$$

the unit is the identity operator $I = M_1$ where 1 is the constant function 1 on Ω . Recall that the *commutant* of $\mathcal{M}_E(L^{\infty}(\mu))$ is defined by

$$\mathcal{M}_E(L^{\infty}(\mu))^c := \{ A \in \mathcal{L}(E) : AM_{\varphi} = M_{\varphi}A \ \forall \varphi \in L^{\infty}(\mu) \} \subseteq \mathcal{L}(E).$$

It is known that $\mathcal{M}_E(L^{\infty}(\mu))$ is a maximal commutatitive, unital subalgebra of $\mathcal{L}(E)$, that is, $\mathcal{M}_E(L^{\infty}(\mu)) = \mathcal{M}_E(L^{\infty}(\mu))^c$, [9, Proposition 2.2]. Moreover, also the bicommutant $\mathcal{M}_E(L^{\infty}(\mu))^{cc} = \mathcal{M}_E(L^{\infty}(\mu))$.

Proposition 2.1. Let (Ω, Σ, μ) be a localizable measure space and E be a Banach function space over (Ω, Σ, μ) .

- (i) $\mathcal{M}_E(L^{\infty}(\mu)) \subseteq \mathcal{L}^r(E)$.
- (ii) $\mathcal{M}_E(L^{\infty}(\mu))$ is inverse closed in $\mathcal{L}(E)$. That is, if $T \in \mathcal{M}_E(L^{\infty}(\mu))$ is invertible in $\mathcal{L}(E)$ (i.e., there exists $S \in \mathcal{L}(E)$ satisfying ST = I = TS), then necessarily $S \in \mathcal{M}_E(L^{\infty}(\mu))$.
- (iii) For every $T \in \mathcal{M}_E(L^{\infty}(\mu))$ we have $\sigma_o(T) = \sigma(T)$.
- Proof. (i) Let $\varphi \in L^{\infty}(\mu)$. Then $\varphi = [(\operatorname{Re} \varphi)^{+} (\operatorname{Re} \varphi)^{-}] + i[(\operatorname{Im} \varphi)^{+} (\operatorname{Im} \varphi)^{-}]$ with all four functions $(\operatorname{Re} \varphi)^{+}$, $(\operatorname{Re} \varphi)^{-}$, $(\operatorname{Im} \varphi)^{+}$, $(\operatorname{Im} \varphi)^{-}$ belonging to the positive cone $L^{\infty}(\mu)^{+}$ of $L^{\infty}(\mu)$. Since $M_{\varphi} = [M_{(\operatorname{Re} \varphi)^{+}} M_{(\operatorname{Re} \varphi)^{-}}] + i[M_{(\operatorname{Im} \varphi)^{+}} M_{(\operatorname{Im} \varphi)^{-}}]$ is a linear combination of positive operators, it is clear that $M_{\varphi} \in \mathcal{L}^{r}(E)$.

- (ii) Since $\mathcal{M}_E(L^{\infty}(\mu))$ is maximal commutative in $\mathcal{L}(E)$, it follows that $\mathcal{M}_E(L^{\infty}(\mu))$ is inverse closed in $\mathcal{L}(E)$, [5, Ch.II, §15, Theorem 4].
- (iii) In view of (1.1) it suffices to show that $\rho(T) \subseteq \rho_0(T)$. Suppose that $T = M_{\varphi}$ with $\varphi \in L^{\infty}(\mu)$. Fix $\lambda \in \rho(T)$. Then $\lambda I - T = M_{(\lambda \mathbf{1} - \varphi)}$ belongs to $\mathcal{M}_E(L^{\infty}(\mu))$ because $(\lambda \mathbf{1} - \varphi) \in L^{\infty}(\mu)$. Since $M_{(\lambda \mathbf{1} - \varphi)}$ is invertible in $\mathcal{L}(E)$, it follows from part (ii) that actually $(\lambda I - T)^{-1} \in \mathcal{M}_E(L^{\infty}(\mu))$ and hence, by part (i), that also $(\lambda I - T)^{-1} \in$

Remark 2.2. We point out that $||T||_{\text{op}} = ||T||_r$ for each $T \in \mathcal{M}_E(L^{\infty}(\mu))$. Indeed, let $\varphi \in L^{\infty}(\mu)$ satisfy $T = M_{\varphi}$, in which case $||M_{\varphi}||_{\text{op}} = ||\varphi||_{\infty}$. Define $S := ||\varphi||_{\infty}I$ and note that $S \geq 0$ with $||S||_{\text{op}} = ||\varphi||_{\infty}$. Moreover,

$$|M_{\varphi}(f)| = |\varphi f| \le ||\varphi||_{\infty} |f| = S(|f|), \quad f \in E,$$

and so $||T||_r \leq ||S||_{\text{op}} = ||\varphi||_{\infty} = ||T||_{\text{op}}$; see (1.1). The reverse inequality $||T||_{\text{op}} \leq ||T||_r$ always holds.

3. The Cesàro operator in Banach sequence spaces

We begin with some preliminaries. Equipped with the topology of pointwise convergence $\mathbb{C}^{\mathbb{N}}$ is a locally convex Fréchet space. Let $A=(a_{nm})_{n,m=1}^{\infty}$ be any lower triangular (infinite) matrix, i.e., $a_{nm} = 0$ whenever m > n. Then A induces the continuous linear operator $T_A: \mathbb{C}^{\mathbb{N}} \longrightarrow \mathbb{C}^{\mathbb{N}}$ defined by

(3.1)
$$T_A(x) := (\sum_{m=1}^{\infty} a_{nm} x_m)_{n=1}^{\infty}, \quad x \in \mathbb{C}^{\mathbb{N}}.$$

For $x \in \mathbb{C}^{\mathbb{N}}$ define $|x| := (|x_n|)_{n=1}^{\infty}$. Then also $|x| \in \mathbb{C}^{\mathbb{N}}$. A vector subspace $X \subseteq \mathbb{C}^{\mathbb{N}}$ is called *solid* (or an *ideal*) if $y \in X$ whenever $x \in X$ and $y \in \mathbb{C}^{\mathbb{N}}$ satisfy $|y| \leq |x|$. It is always assumed that X contains the vector space consisting of all elements of $\mathbb{C}^{\mathbb{N}}$ which have only finitely many non-zero coordinates. In addition, it is assumed that X has a norm $\|\cdot\|_X$ with respect to which it is a complex Banach lattice for the coordinatewise order and such that the natural inclusion $X\subseteq\mathbb{C}^{\mathbb{N}}$ is continuous. Under the previous requirements X is called a Banach lattice sequence space.

Lemma 3.1. Let $A = (a_{nm})_{n,m=1}^{\infty}$ be a lower triangular matrix with all entries non-negative real numbers and $X \subseteq \mathbb{C}^{\mathbb{N}}$ be a Banach lattice sequence space such that $T_A(X) \subseteq$ X. Let $B = (b_{nm})_{n,m=1}^{\infty}$ be any matrix such that

$$(3.2) |b_{nm}| \le a_{nm}, \quad n, m \in \mathbb{N}.$$

Then the restricted operator $T_A: X \longrightarrow X$ belongs to $\mathcal{L}(X)$. Moreover, $T_B: \mathbb{C}^{\mathbb{N}} \longrightarrow \mathbb{C}^{\mathbb{N}}$ satisfies $T_B(X) \subseteq X$ and the restricted operator $T_B: X \longrightarrow X$ also belongs to $\mathcal{L}(X)$. In addition, $||T_B||_{\text{op}} \leq ||T_A||_{\text{op}}$.

Proof. Condition (3.2) implies that B is also a lower triangular matrix. Moreover, the continuity of both $T_A: \mathbb{C}^{\mathbb{N}} \longrightarrow \mathbb{C}^{\mathbb{N}}$ and of the inclusion map $X \subseteq \mathbb{C}^{\mathbb{N}}$ imply, via the Closed Graph Theorem in the Banach space X, that the restricted operator $T_A \in \mathcal{L}(X)$. Given $x \in X$ we have for each $n \in \mathbb{N}$, via (3.2), that

$$(T_B(x))_n = |\sum_{m=1}^{\infty} b_{nm} x_m| \le \sum_{m=1}^{\infty} |b_{nm}| \cdot |x_m| \le \sum_{m=1}^{\infty} a_{nm} |x_m| = (T_A(|x|))_n.$$

Since X is solid and $T_A(|x|) \in X$, these inequalities and (3.1) imply that $T_B(x) \in X$. Moreover, as $\|\cdot\|_X$ is a lattice norm it follows that

$$||T_B(x)||_X = ||(\sum_{m=1}^{\infty} b_{nm} x_m)_{n=1}^{\infty}||_X \le ||(\sum_{m=1}^{\infty} a_{nm} |x_m|)_{n=1}^{\infty}||_X$$
$$= ||T_A(|x|)||_X \le ||T_A||_{\text{op}} ||x||_X,$$

for each $x \in X$, where the stated series are actually finite sums. Hence, $||T_B||_{\text{op}} \leq ||T_A||_{\text{op}}$ and the proof is complete.

Since the operator T_A as given in Lemma 3.1 satisfies $T_A \geq 0$, it is clearly regular.

Corollary 3.2. Let $A = (a_{nm})_{n,m=1}^{\infty}$ be a lower triangular matrix with non-negative real entries and $X \subseteq \mathbb{C}^{\mathbb{N}}$ be a Banach lattice sequence space such that $T_A(X) \subseteq X$. Let $B = (b_{nm})_{n,m=1}^{\infty}$ be any matrix satisfying (3.2). Then the operator $T_B \in \mathcal{L}(X)$ is necessarily regular, that is, $T_B \in \mathcal{L}^r(X)$.

Proof. Define the non-negative real numbers $s_{nm} := (\operatorname{Re} b_{nm})^+, u_{nm} := (\operatorname{Re} b_{nm})^-, v_{nm} := (\operatorname{Im} b_{nm})^+$ and $w_{nm} := (\operatorname{Im} b_{nm})^-$ for each $n, m \in \mathbb{N}$. Then $b_{nm} = (s_{nm} - u_{nm}) + i(v_{nm} - w_{nm})$ and $\{s_{nm}, u_{nm}, v_{nm}, w_{nm}\} \subseteq [0, a_{nm}]$ for $n, m \in \mathbb{N}$. Setting $S := (s_{nm})_{n,m=1}^{\infty}, U := (u_{nm})_{n,m=1}^{\infty}, V := (v_{nm})_{n,m=1}^{\infty}$ and $W := (w_{nm})_{n,m=1}^{\infty}$ it is clear from the definition (3.1) that each operator $T_S \geq 0, T_U \geq 0, T_V \geq 0$ and $T_W \geq 0$ (in X) belongs to $\mathcal{L}(X)$; see Lemma 3.1. Since $T_B = (T_S - T_U) + i(T_V - T_W)$, it follows that $T_B \in \mathcal{L}^r(X)$.

Together with appropriate estimates, Corollary 3.2 will be the main ingredient required to establish (1.3) for C (in place of T) when it acts in various classical Banach lattice sequence spaces X.

Let $\Sigma_0 := \{0\} \cup \{\frac{1}{n} : n \in \mathbb{N}\}$. We recall the formula for the inverses $(C - \lambda I)^{-1} : \mathbb{C}^{\mathbb{N}} \longrightarrow \mathbb{C}^{\mathbb{N}}$ whenever $\lambda \in \mathbb{C} \setminus \Sigma_0$, [14, p.266]. Namely, for $n \in \mathbb{N}$ the *n*-th row of the lower triangular matrix determining $(C - \lambda I)^{-1}$ has the entries

$$(3.3) \qquad \frac{-1}{n\lambda^2 \prod_{k=m}^n (1-\frac{1}{k\lambda})}, \quad 1 \le m < n, \quad \text{ and } \quad \frac{n}{1-n\lambda} = \frac{1}{(\frac{1}{n}-\lambda)}, \quad m = n,$$

with all other entries in row n being 0. We write

$$(3.4) (C - \lambda I)^{-1} = T_{D_{\lambda}} - \frac{1}{\lambda^2} T_{E_{\lambda}},$$

where the diagonal matrix $D_{\lambda} = (d_{nm}(\lambda))_{n,m=1}^{\infty}$ is given by

(3.5)
$$d_{nn}(\lambda) := \frac{1}{(\frac{1}{n} - \lambda)} \quad \text{and} \quad d_{nm}(\lambda) := 0 \quad \text{if } n \neq m.$$

Setting $\gamma[\lambda] := \operatorname{dist}(\lambda, \Sigma_0) > 0$ it is routine to check that

(3.6)
$$|d_{nn}(\lambda)| \leq \frac{1}{\gamma[\lambda]}, \quad n \in \mathbb{N}, \quad \lambda \in \mathbb{C} \setminus \Sigma_0.$$

Moreover, $E_{\lambda} = (e_{nm}(\lambda))_{n,m=1}^{\infty}$ is the lower triangular matrix given by $e_{1m}(\lambda) = 0$, for $m \in \mathbb{N}$, and for all $n \geq 2$ by

(3.7)
$$e_{nm}(\lambda) := \begin{cases} \frac{1}{n \prod_{k=m}^{n} (1 - \frac{1}{k\lambda})} & \text{if } 1 \leq m < n \\ 0 & \text{if } m \geq n. \end{cases}$$

Lemma 3.3. Let $X \subseteq \mathbb{C}^{\mathbb{N}}$ be any Banach lattice sequence space. For each $\lambda \in \mathbb{C} \setminus \Sigma_0$ the diagonal operator $T_{D_{\lambda}}$, with $D_{\lambda} = (d_{nm}(\lambda))_{n,m=1}^{\infty}$ given by (3.5), is regular in X, that is, $T_{D_{\lambda}} \in \mathcal{L}^r(X)$.

Proof. Fix $\lambda \notin \Sigma_0$ and let $A := \frac{1}{\gamma[\lambda]}I$, where I is the identity matrix in $\mathbb{C}^{\mathbb{N}}$, in which case $T_A(X) \subseteq X$ is clear. It follows from (3.6) that the matrix $B := D_{\lambda}$ satisfies (3.2). Hence, the regularity of $T_{D_{\lambda}}$ in X follows from Corollary 3.2.

Remark 3.4. (i) Since any Banach lattice sequence space $X \subseteq \mathbb{C}^{\mathbb{N}}$ is a Banach function space over the σ -finite measure space $(\mathbb{N}, 2^{\mathbb{N}}, \mu)$, relative to counting measure μ , and the function $n \longmapsto d_{nn}(\lambda)$ on \mathbb{N} belongs to $L^{\infty}(\mu)$ by (3.6), the regularity of $T_{D_{\lambda}} \in \mathcal{L}(X)$ also follows from Proposition 2.1(i).

(ii) For appropriate X and $\lambda \notin \Sigma_0$, it is clear from (3.4) and Lemma 3.3 that the regularity of $(C - \lambda I)^{-1} \in \mathcal{L}(X)$ is completely determined by the matrix E_{λ} .

The following inequalities will be needed in the sequel. For $\alpha < 1$ we refer to [14, Lemma 7] and for general $\alpha \in \mathbb{R}$ to [1, Lemma 3.2(i)].

Lemma 3.5. Let $\lambda \in \mathbb{C} \setminus \Sigma_0$ and set $\alpha := Re(\frac{1}{\lambda})$. Then there exist positive constants $P(\alpha)$ and $Q(\alpha)$ such that

(3.8)
$$\frac{P(\alpha)}{n^{\alpha}} \le \prod_{k=1}^{n} |1 - \frac{1}{k\lambda}| \le \frac{Q(\alpha)}{n^{\alpha}}, \quad n \in \mathbb{N}.$$

4. The classical spaces ℓ^p , $1 , and <math>c_0$

For each $1 let <math>C_p \in \mathcal{L}(\ell^p)$ denote the Cesàro operator as given by (1.4) when it is restricted to ℓ^p . As a consequence of Hardy's inequality, [11, Theorem 326], it is known that $||C_p||_{\text{op}} = p'$, where $\frac{1}{p} + \frac{1}{p'} = 1$ (with p' := 1 when $p = \infty$). Concerning the spectrum of C_p we have

(4.1)
$$\sigma(C_p) = \{ \lambda \in \mathbb{C} : |\lambda - \frac{p'}{2}| \le \frac{p'}{2} \}, \quad 1$$

Various proofs of (4.1) are known for 1 , [6], [12], [13], [15], [16]; see the discussionon p.268 of [6]. For the case $p = \infty$ we refer to [12, Theorem 4], for example.

Remark 4.1. For each $\lambda \neq 0$ set $\alpha := \text{Re}(\frac{1}{\lambda})$. Then, for any b > 0 we have

$$\alpha < \frac{1}{b}$$
 and only if $|\lambda - \frac{b}{2}| > \frac{b}{2}$.

The corresponding results for $\alpha > \frac{1}{b}$ and $\alpha = \frac{1}{b}$ also hold.

For each 1 the order spectrum of the positive operatorProposition 4.2. $C_p \in \mathcal{L}(\ell^p)$ satisfies

(4.2)
$$\sigma_{o}(C_{p}) = \sigma(C_{p}).$$

Proof. Via (1.2) it suffices to verify that $\rho(C_n) \subseteq \rho_0(C_n)$.

With the notation of (3.4) and (3.7) it is shown on p.269 of [6], as a consequence of (3.8) in Lemma 3.5 above, that for every $\lambda \neq 0$ satisfying $\alpha := \operatorname{Re}(\frac{1}{\lambda}) < 1$ there exists a constant $\beta(\lambda) > 0$ such that

$$(4.3) |e_{nm}(\lambda)| \le \frac{\beta(\lambda)}{n^{1-\alpha}m^{\alpha}}, \quad 1 \le m \le n, \quad n \in \mathbb{N}.$$

Set $B := E_{\lambda}$ and let A be the lower triangular matrix whose entries $a_{nm}(\lambda) \geq 0$ are given by the right-side of (4.3) for each $n \in \mathbb{N}$ and $1 \le m \le n$ (and 0 otherwise). According to (4.3) the matrices A and B satisfy (3.2). Let $X := \ell^p$ for $p \in (1, \infty)$ fixed. Then Corollary 3.2 implies that E_{λ} will be regular (i.e., $T_{E_{\lambda}} \in \mathcal{L}^{r}(\ell^{p})$) whenever $T_{A}(\ell^{p}) \subseteq \ell^{p}$. Note that $T_A \in \mathcal{L}(\mathbb{C}^{\mathbb{N}})$ is given by

$$(4.4) x \longmapsto \beta(\lambda) \left(\frac{1}{n^{1-\alpha}} \sum_{m=1}^{n} \frac{x_m}{m^{\alpha}}\right)_{n=1}^{\infty} := \beta(\lambda) G_{\lambda}(x), \quad x \in \mathbb{C}^{\mathbb{N}}.$$

So, if $\operatorname{Re}(\frac{1}{\lambda}) < 1$, then (4.4) implies that $T_A \in \mathcal{L}(\ell^p)$ whenever $G_{\lambda} : \ell^p \longrightarrow \ell^p$ is continuous. Let now $\lambda \in \rho(C_p)$, that is, $|\lambda - \frac{p'}{2}| > \frac{p'}{2}$. Then $\alpha := \operatorname{Re}(\frac{1}{\lambda}) < \frac{1}{p'}$, because of Remark 4.1, and hence, $(1-\alpha)p > 1$. Then the Proposition on p.269 of [6] yields that indeed $G_{\lambda} \in \mathcal{L}(\ell^p)$. As noted above, this implies that $T_{E_{\lambda}} \in \mathcal{L}^r(\ell^p)$. Combined with (3.4) and Lemma 3.3 it follows that $(C_p - \lambda I)^{-1} \in \mathcal{L}^r(\ell^p)$, that is, $\lambda \in \rho_o(C_p)$. This completes the proof of (4.2).

Recall that $||C_{\infty}||_{\text{op}} = 1$ and, from (4.1) for $p = \infty$, that

(4.5)
$$\sigma(C_{\infty}) = \{\lambda \in \mathbb{C} : |\lambda - \frac{1}{2}| \le \frac{1}{2}\}$$

Proposition 4.3. The order spectrum of the positive operator $C_{\infty} \in \mathcal{L}(\ell^{\infty})$ satisfies

$$\sigma_{\rm o}(C_{\infty}) = \sigma(C_{\infty}).$$

Proof. Again by (1.2) it suffices to prove that $\rho(C_{\infty}) \subseteq \rho_{o}(C_{\infty})$.

Fix $\lambda \in \rho(C_{\infty})$. According to (4.5), for b=1 the condition in Remark 4.1 is satisfied with $\alpha := \text{Re}(\frac{1}{\lambda})$. Hence, the inequalities (4.3) are valid and so $A := (a_{nm}(\lambda))_{n,m=1}^{\infty} \geq 0$ and $B := E_{\lambda}$ can again be defined exactly as in the proof of Proposition 4.2. Then (3.2) is satisfied with $X := \ell^{\infty}$. Arguing as in the proof of Proposition 4.2 (via Corollary 3.2) it remains to verify that $T_A : \ell^{\infty} \longrightarrow \ell^{\infty}$ is continuous, where T_A is given by (4.4). To this effect, since $(1 - \alpha) > 0$ by Remark 4.1, it follows that

$$(4.6) \sup_{n \in \mathbb{N}} \sum_{m=1}^{\infty} |a_{nm}(\lambda)| = \beta(\lambda) \sup_{n \in \mathbb{N}} \frac{1}{n^{1-\alpha}} \sum_{m=1}^{\infty} \frac{1}{m^{\alpha}} < \infty;$$

this has been verified on p.778 of [2] (put w(n) = 1 there for all $n \in \mathbb{N}$) by considering each of the cases $\alpha < 0$, $\alpha = 0$ and $0 < \alpha < 1$ separately. But, condition (4.6) is known to imply that $T_A \in \mathcal{L}(\ell^{\infty})$, [19, Ex.2, p.220]. The proof that $\lambda \in \rho_0(C_{\infty})$ is thereby complete.

To conclude this section we consider the Cesàro operator C, as given by (1.4), when it is restricted to c_0 ; denote this operator by C_0 . It is shown in [12, Theorem 3], [14], that $||C_0||_{\text{op}} = 1$ and

(4.7)
$$\sigma(C_0) = \{\lambda \in \mathbb{C} : |\lambda - \frac{1}{2}| \le \frac{1}{2}\}.$$

Proposition 4.4. The order spectrum of the positive operator $C_0 \in \mathcal{L}(c_0)$ satisfies

$$\sigma_{\rm o}(C_0) = \sigma(C_0).$$

Proof. Since (4.7) shows that $\sigma(C_0) = \sigma(C_\infty)$, the entire proof of Proposition 4.3 can be easily adapted (now for $X := c_0$ and fixed $\lambda \in \rho(C_0)$), using the same notation, up to the stage where (4.6) is shown to be valid. In addition to the validity of (4.6) it is also true that

(4.8)
$$\lim_{n\to\infty} a_{nm}(\lambda) = \frac{\beta(\lambda)}{m^{\alpha}} \lim_{n\to\infty} \frac{1}{n^{1-\alpha}} = 0, \quad m \in \mathbb{N},$$

because $\alpha := \operatorname{Re}(\frac{1}{\lambda})$ satisfies $(1 - \alpha) > 0$. The two conditions (4.6) and (4.8) together are known to imply that $T_A \in \mathcal{L}(c_0)$, [19, Theorem 4.51-C]. Again via Corollary 3.2 and Lemma 3.3 we can conclude that $T_{E_{\lambda}} \in \mathcal{L}^r(c_0)$ and hence, also $(C_0 - \lambda I)^{-1}$ is regular on c_0 .

5. The discrete Cesàro spaces ces(p), 1 , and <math>ces(0)

For 1 the discrete Cesàro spaces are defined by

$$\operatorname{ces}(p) := \{ x \in \mathbb{C}^{\mathbb{N}} : ||x||_{\operatorname{ces}(p)} := \left(\sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{k=1}^{n} |x_k| \right)^p \right)^{1/p} < \infty \}.$$

In view of (1.4) we see that $||x||_{\cos(p)} = ||C(|x|)||_{\ell^p}$ for $x \in \cos(p)$. It is known that each space $\cos(p), 1 , is a reflexive Banach lattice sequence space for the norm <math>||\cdot||_{\cos(p)}$ and the coordinatewise order. The spaces $\cos(p)$ have been thoroughly treated

in [4]. According to Theorem 5.1 of [8] the restriction of C (see (1.4)) to ces(p), denoted here by $C_{(p)}$, is continuous with $||C_{(p)}||_{op} = p'$ and

(5.1)
$$\sigma(C_{(p)}) = \left\{ \lambda \in \mathbb{C} : |\lambda - \frac{p'}{2}| \le \frac{p'}{2} \right\}, \quad 1$$

Proposition 5.1. For each 1 the order spectrum of the positive operator $C_{(p)} \in \mathcal{L}(\operatorname{ces}(p))$ satisfies

(5.2)
$$\sigma_{\mathcal{O}}(C_{(n)}) = \sigma(C_{(n)}).$$

Proof. In view of (1.2) it suffices to verify that $\rho(C_{(p)}) \subseteq \rho_{o}(C_{(p)})$.

We decompose the set $\rho(C_{(p)})$ into two disjoint parts, namely the set

(5.3)
$$\rho_1 := \{ \lambda \in \mathbb{C} \setminus \{0\} : \operatorname{Re}\left(\frac{1}{\lambda}\right) \leq 0 \} = \{ u \in \mathbb{C} \setminus \{0\} : \operatorname{Re}(u) \leq 0 \}$$
 and its complement $\rho_2 := \rho(C_{(p)}) \setminus \rho_1$.

First fix $\lambda \in \rho_1$. Then $\lambda \notin \Sigma_0$ and so we may consider $E_{\lambda} = (e_{nm}(\lambda))_{n,m=1}^{\infty}$ and $D_{\lambda} = (d_{nm}(\lambda))_{n,m=1}^{\infty}$ as specified by (3.7) and (3.6), respectively. It is shown on p.72 of |8| that

$$(5.4) |e_{nm}(\lambda)| \le \frac{1}{n}, \quad 1 \le m < n, \quad n \in \mathbb{N}.$$

Warning: In [8] the set $\mathbb{N} = \{0, 1, 2, \ldots\}$ is used rather than $\mathbb{N} = \{1, 2, 3, \ldots\}$ which is used here and so the inequalities from [8] are slightly different when they are stated here. Back to our proof, it is clear from (1.4) that the matrix $A = (c_{nm})_{n,m=1}^{\infty}$ for the Cesàro operator C is lower triangular with its n-th row, for each $n \in \mathbb{N}$, given by $c_{nm} := \frac{1}{n}$ for $1 \le m \le n$ and $c_{nm} := 0$ for m > n. Setting $B := E_{\lambda}$ it is clear from (5.4) that (3.2) is satisfied for the pair A, B in the space $X := \operatorname{ces}(p)$. Since $C_{(p)} = T_A : \operatorname{ces}(p) \longrightarrow \operatorname{ces}(p)$ is continuous, it follows from Corollary 3.2 that $T_{E_{\lambda}} \in \mathcal{L}^r(\operatorname{ces}(p))$ and hence, via Lemma 3.3 and (3.4), that also $(C_{(p)} - \lambda I)^{-1} \in \mathcal{L}^r(\text{ces}(p))$.

Consider now the set ρ_2 . From (5.1) it is routine to establish that a non-zero point $z \in \mathbb{C}$ belongs to $\sigma(C_{(p)})$ if and only if $\operatorname{Re}(\frac{1}{z}) \geq \frac{1}{p'}$. From the case of equality in Remark 4.1, it follows that $\rho_2 = \bigcup_{0 < \alpha < 1/p'} \Gamma_{\alpha}$, where

$$(5.5) \Gamma_{\alpha} := \left\{ z \in \mathbb{C} \setminus \{0\} : \operatorname{Re}\left(\frac{1}{z}\right) = \alpha \right\} = \left\{ z \in \mathbb{C} \setminus \{0\} : \left| z - \frac{1}{2\alpha} \right| = \frac{1}{2\alpha} \right\}.$$

Fix a point $\lambda \in \rho_2$. Then there exists a unique number $\alpha \in (0, \frac{1}{p'})$ such that $\lambda \in \Gamma_{\alpha}$, namely $\alpha := \operatorname{Re}(\frac{1}{\lambda})$. In the notation of (3.7) it is shown on p.72 of [8] that

$$(5.6) |e_{nm}(\lambda)| \le e_{nm}\left(\frac{1}{\alpha}\right), \quad n, m \in \mathbb{N}.$$

Note that $e_{nm}(\frac{1}{\alpha}) \geq 0$ for all $n, m \in \mathbb{N}$ follows from (3.7) as $0 < \alpha < \frac{1}{p'}$ implies that $1 - \frac{1}{k(1/\alpha)} = (1 - \frac{\alpha}{k}) > 0$ for $m \le k \le n$. Setting $\widetilde{A} := E_{1/\alpha}$ and $\widetilde{B} := E_{\lambda}$ it is clear from (5.6) that (3.2) is satisfied for the pair $\widetilde{A}, \widetilde{B}$ in place of A, B. Moreover, $\frac{1}{\alpha} > p'$ implies that $\frac{1}{\alpha} \in \rho(C_{(p)})$, that is, $(C_{(p)} - \frac{1}{\alpha}I)^{-1} \in \mathcal{L}(\operatorname{ces}(p))$. Since $T_{D_{1/\alpha}} \in \mathcal{L}(\operatorname{ces}(p))$ by Lemma 3.3 (with $\frac{1}{\alpha}$ in place of λ), the identity $T_{E_{1/\alpha}} = \alpha^2 (T_{D_{1/\alpha}} - (C_{(p)} - \frac{1}{\alpha}I)^{-1})$ shows that $T_{\widetilde{A}} \in \mathcal{L}(\operatorname{ces}(p))$. Hence, Corollary 3.2 can be applied to conclude that $T_{\widetilde{B}} = T_{E_{\lambda}} \in \mathcal{L}^r(\operatorname{ces}(p))$. It then follows from (3.4) and Lemma 3.3 that $(C_{(p)} - \lambda I)^{-1} \in \mathcal{L}^r(ces(p))$.

The remaining space to consider is $ces(0) := \{x \in \mathbb{C}^{\mathbb{N}} : C(|x|) \in c_0\}$ equipped with the norm

$$||x||_{\cos(0)} := ||C(|x|)||_{c_0} = \sup_{n \in \mathbb{N}} \frac{1}{n} \sum_{k=1}^n |x_k|, \quad x \in \cos(0).$$

It is a Banach lattice sequence space for the norm $\|\cdot\|_{ces(0)}$ and the coordinatewise order. According to [8, Theorem 6.4], the restriction of C (see ((1.4)) to ces(0), denoted here by $C_{(0)}$, is continuous with $\|C_{(0)}\|_{op} = 1$ and

(5.7)
$$\sigma(C_{(0)}) = \{ \lambda \in \mathbb{C} : |\lambda - \frac{1}{2}| \le \frac{1}{2} \}.$$

Proposition 5.2. The order spectrum of the positive operator $C_{(0)} \in \mathcal{L}(\cos(0))$ satisfies

$$\sigma_{\mathbf{o}}(C_{(0)}) = \sigma(C_{(0)}).$$

Proof. As usual it suffices to show that $\rho(C_{(0)}) \subseteq \rho_{o}(C_{(0)})$.

Let the set ρ_1 be as in (5.3). For each $\alpha \in (0,1)$ let Γ_{α} be given by (5.5). Then (5.7) ensures that we have the disjoint partition $\rho(C_{(0)}) = \rho_1 \cup \rho_2$ with $\rho_2 := \bigcup_{0 < \alpha < 1} \Gamma_{\alpha}$.

For any given point $\lambda \in \rho_1$ the estimates (5.4) are again valid (see [8, p.72]) and so the argument in the proof of Proposition 5.1 can be easily adapted (now for $X := \cos(0)$) to again show that $(C_{(0)} - \lambda I)^{-1} \in \mathcal{L}^r(\cos(0))$.

Fix now $\lambda \in \rho_2$. Then there exists a unique $\alpha \in (0,1)$ such that $\lambda \in \Gamma_{\alpha}$, namely $\alpha := \text{Re}(\frac{1}{\lambda})$. Then $\text{Re}(1 - \frac{1}{k\lambda}) = (1 - \frac{\alpha}{k}) \ge 0$ for $k \in \mathbb{N}$. Arguing as at the bottom of p.396 in [7], now with $x \in \cos(0)$ in place of $a \in \cos(2)$ there, it follows that the 1-st coordinate of $E_{\lambda}(x)$ is 0 and, for $n \ge 2$, that the n-th coordinate of $E_{\lambda}(x)$ satisfies

$$|(E_{\lambda}(x))_n| \le (E_{1/\alpha}(|x|))_n, \quad x \in \operatorname{ces}(0).$$

Substituting $x := (\delta_{rj})_{j=1}^{\infty}$ into the previous estimates, for each $r \in \mathbb{N}$, yields (5.6). Since $0 < \alpha < 1$ implies that $\frac{1}{\alpha} \in \rho(C_{(0)})$, the argument can be completed along the lines given in the proof of Proposition 5.1 to conclude that $(C_{(0)} - \lambda I)^{-1} \in \mathcal{L}^r(\text{ces}(0))$. We again warn the reader that $\mathbb{N} = \{0, 1, 2, \ldots\}$ is used in [7].

Acknowledgement. The research of the first author (J. Bonet) was partially supported by the projects MTM2016-76647-P and GV Prometeo 2017/102 (Spain).

References

- 1. A.A. Albanese, J. Bonet, W.J. Ricker, Spectrum and compactness of the Cesàro operator on weighted ℓ_p spaces, J. Aust. Math. Soc., **99** (2015), 287–314.
- 2. A.A. Albanese, J. Bonet, W.J. Ricker, Mean ergodicity and spectrum of the Cesàro operator on weighted c_0 spaces, *Positivity*, **20** (2016), 761–803.
- 3. W. Arendt, On the o-spectrum of regular operators and the spectrum of measures, *Math. Z.*, **178** (1981), 271–287.
- G. Bennett, Factorizing the classical inequalities, Mem. Amer. Math. Soc. 120 (Nr. 576) (1996), 1–130.
- 5. F. F. Bonsall, J. Duncan, Complete Normed Algebras, Springer, Heidelberg-New York, 1973.
- 6. G.P. Curbera, W.J. Ricker, Spectrum of the Cesàro operator in ℓ^p , Arch. Math. (Basel), 100 (2013), 267–271.
- 7. G.P. Curbera, W.J. Ricker, Solid extensions of the Cesàro operator on the Hardy space $H^2(\mathbb{D})$, J. Math. Anal. Appl., 407 (2013), 387–397.
- 8. G.P. Curbera, W.J. Ricker, Solid extensions of the Cesàro operator on ℓ^p and c_0 , Integral Equ. Oper. Theory, 80 (2014), 61–77.

- 9. B. de Pagter, W.J. Ricker, Algebras of multiplication operators in Banach function spaces, J. Oper. Theory, 42 (1999), 245-267.
- 10. D.H. Fremlin, Topological Riesz Spaces and Measure Theory, Cambridge University Press, Cambridge,
- 11. G.H. Hardy, J.E. Littlewood, G. Polya, *Inequalities*, 2nd ed., Cambridge University Press, Cambridge,
- 12. G. Leibowitz, Spectra of discrete Cesàro operators, Tamkang J. Math., 3 (1972), 123–132.
- 13. G. Leibowitz, Discrete Hausdorff transformations, Proc. Amer. Math. Soc., 38 (1973), 541-544.
- 14. J.B. Reade, On the spectrum of the Cesàro operator, Bull. London Math. Soc., 17 (1985), 263-267.
- 15. B.E. Rhoades, Spectra of some Hausdorff matrices, Acta Sci. Math. (Szeged), 32 (1971), 91–100.
- 16. B.E. Rhoades, Generalized Hausdorff matrices bounded on ℓ^p and c, Acta Sci. Math. (Szeged), 43
- 17. H.H. Schaefer, Banach Lattices and Positive Operators, Springer, Berlin-Heidelberg-New York, 1974.
- 18. H.H. Schaefer, On the o-spectrum of order bounded operators, Math. Z., 154 (1977), 79–84.
- 19. A.E. Taylor, Introduction to Functional Analysis, Wiley, New York, 1958.
- J. Bonet, Instituto Universitario de Matemática Pura y Aplicada IUMPA, Universitat Politècnica de València, 46071 Valencia, Spain

EMAIL: JBONET@MAT.UPV.ES

W.J. Ricker: Math.-Geogr. Fakultät, Kath. Universität Eichstätt-Ingolstadt, 85072 EICHSTÄTT, GERMANY

EMAIL: WERNER.RICKER@KU.DE