On σ-subnormality criteria in finite σ-soluble groups

A. Ballester-Bolinches, S.F. Kamornikov, M.C. Pedraza-Aguilera, and V. Pérez-Calabuig

Abstract

Let $\sigma = \{\sigma_i : i \in I\}$ be a partition of the set \mathbb{P} of all prime numbers. A subgroup X of a finite group G is called σ-subnormal in G if there is a chain of subgroups

$$X = X_0 \subseteq X_1 \subseteq \cdots \subseteq X_n = G$$

where for every $j = 1, \ldots, n$ the subgroup X_{j-1} normal in X_j or $X_j/\text{Core}_{X_j}(X_{j-1})$ is a σ_i-group for some $i \in I$.

In the special case that σ is the partition of \mathbb{P} into sets containing exactly one prime each, the σ-subnormality reduces to the familiar case of subnormality.

In this paper some σ-subnormality criteria for subgroups of σ-soluble groups, or groups in which every chief factor is a σ_i-group, for some $\sigma_i \in \sigma$, are showed.

Mathematics Subject Classification (2010): 20D10, 20D20

Keywords: finite group, σ-solubility, σ-nilpotency, σ-subnormal subgroup, factorised group.

1 Introduction and statements of results.

All groups considered in this paper are finite.

The results of this article are based on a paper of Skiba [15]. There he generalised the concepts of solubility, nilpotency and subnormality introducing σ-solubility, σ-nilpotency, and σ-subnormality in which σ is a partition of the set \mathbb{P}, the set of all primes. Hence $\mathbb{P} = \bigcup_{i \in I} \sigma_i$, with $\sigma_i \cap \sigma_j = \emptyset$ for all $i \neq j$.

1
We note that in the special case that \(\sigma \) is the partition of \(\mathbb{P} \) containing exactly one prime each, the definitions below reduce to the familiar case of soluble groups, nilpotent groups and subnormal subgroups.

From now on let \(\sigma \) denote a partition of \(\mathbb{P} \). Given a natural number \(n \), we denote by \(\sigma(n) \) the set of all elements of \(\sigma \) including the primes dividing \(n \). Two natural numbers \(m \) and \(n \) are called \(\sigma \)-coprime if \(\sigma(m) \cap \sigma(n) = \emptyset \). We say that \(n \) is \(\sigma \)-primary if \(|\sigma(n)| = 1 \), that is, if its prime factors all belong to the same member of \(\sigma \).

A group \(G \) is called \(\sigma \)-primary if \(|G|\) is a \(\sigma \)-primary number.

Definition 1. A group \(G \) is said to be \(\sigma \)-soluble if every chief factor of \(G \) is \(\sigma \)-primary. \(G \) is said to be \(\sigma \)-nilpotent if it is a direct product of \(\sigma \)-primary groups.

Note that if \(\pi \) is a set of primes and \(\sigma = \{\pi, \pi'\} \), then a group \(G \) is \(\sigma \)-soluble if and only if \(G \) is \(\pi \)-separable. In this case, \(G \) is \(\sigma \)-nilpotent if and only if \(G \) is \(\pi \)-decomposable. If \(\pi = \{p_1, \ldots, p_n\} \), and \(\sigma = \{\{p_1\}, \ldots, \{p_n\}, \pi'\} \), then \(G \) is \(\sigma \)-soluble if and only if \(G \) is \(\pi \)-soluble, and \(G \) is \(\sigma \)-nilpotent if and only if \(G \) has a normal Hall \(\pi' \)-subgroup and a normal Sylow \(p_i \)-subgroup, for all \(i = 1, \ldots, n \).

Many normal and arithmetical properties of soluble groups still hold for \(\sigma \)-soluble groups (see [15]). In particular, every \(\sigma \)-soluble group has a conjugacy class of Hall \(\sigma_i \)-subgroups and a conjugacy class of Hall \(\sigma'_i \)-subgroups, for every \(\sigma_i \in \sigma \).

The role of the class \(\mathcal{N}_\sigma \) of all \(\sigma \)-nilpotent groups in \(\sigma \)-soluble groups is analogous to that of nilpotent groups in soluble groups. In particular, \(\mathcal{N}_\sigma \) is a subgroup-closed saturated Fitting formation ([15, Corollary 2.4 and Lemma 2.5]) that is closely related to the subgroup embedding property of \(\sigma \)-subnormality.

Definition 2. Given a partition \(\sigma \) of the set of prime numbers, a subgroup \(X \) of a group \(G \) is called \(\sigma \)-subnormal in \(G \) if there exists a chain of subgroups

\[
X = X_0 \leq X_1 \leq \cdots \leq X_n = G,
\]

with \(X_{i-1} \) normal in \(X_i \) or \(X_i/Core_{X_i}(X_{i-1}) \) \(\sigma \)-primary for every \(1 \leq i \leq n \).

To know that a non-\(\sigma \)-nilpotent group possesses a non-trivial proper \(\sigma \)-subnormal subgroup is equivalent to know that the group is not simple.
Therefore criteria for the σ-subnormality of a subgroup may have some importance in the study of the normal structure of a group. The close relationship between σ-subnormal subgroups and direct decompositions of a group strongly supports that claim. The significance of the σ-subnormal subgroups in σ-soluble groups is apparent since they are precisely the N_{σ}-subnormal subgroups, and so they are a sublattice of the subgroup lattice of G. They are also important to analyse the structural impact of some permutability properties (see [15]).

In this paper, which is a natural continuation of [3], extensions of some well-known subnormality criteria are presented. For instance, according to a result of Wielandt (see [10, Theorem 7.3.3]), a subgroup X of a group G is subnormal in G if and only if X is subnormal in $\langle X, X^g \rangle$ for all $g \in G$.

In [11, Question 19.84] (see also [18]), Skiba asked whether it is enough to know that X is σ-subnormal in $\langle X, X^g \rangle$ for all $g \in G$ to deduce that X is σ-subnormal in G. It is certainly true in the soluble universe by virtue of [2, Proposition 6.1.10 and Theorem 6.2.17] (see [3, Lemma 2]). Our first main result shows that the answer is also affirmative for σ-soluble groups.

Theorem A. Suppose that G is a σ-soluble group and X is a subgroup of G that is σ-subnormal in $\langle X, X^g \rangle$ for all $g \in G$. Then X is σ-subnormal in G.

Theorem A is not true for arbitrary groups. Therefore Question 19.84 in [11] is answered.

Example 1. Let $\pi = \{2, 3\}$ and $\sigma = \{\pi, \pi'\}$. The simple group $G = \text{PSL}_2(7)$ of order $168 = 2^3 \cdot 3 \cdot 7$ has a unique conjugacy class of elements of order 2. Let x be an element of this class. Given $g \in G$, the group $\langle x, x^g \rangle$ is isomorphic to C_2, to $C_2 \times C_2$, to S_3 or to D_8. Therefore $X = \langle x \rangle$ is σ-subnormal in $\langle X, X^g \rangle$ for all $g \in G$ but X is not σ-subnormal in G.

Another important subnormality criterion asserts that if $G = AB$ is a group which is the product of the subgroups A and B and X is a subgroup of G contained in $A \cap B$ that is subnormal in A and B, then X is subnormal in G. This result was proved by Maier in [12] for soluble groups and then for arbitrary groups by Wielandt [19]. Applying Theorem A, we show that Maier-Wielandt’s result also holds for σ-subnormal subgroups not only in the soluble universe, but also in the σ-soluble one.

Theorem B. Let the σ-soluble group G be the product of two subgroups A and B. If X is a subgroup of $A \cap B$ which is σ-subnormal in both A and B, then X is σ-subnormal in G.

3
Theorem B does not hold in general as the following example shows (see [8]).

Example 2. Let $\pi = \{2, 5\}$ and $\sigma = \{\pi, \pi'\}$. The alternating group of degree five A_5 is the product of the subgroups A and B, where A is the alternating group of degree 4 and B is a dihedral group of order 10. Then $A \cap B$ is σ-subnormal in both A and B, but $A \cap B$ is not σ-subnormal in A_5.

On the other hand, Wielandt [19] conjectured that if X is a subgroup of G such that X is subnormal in $\langle X, X^g \rangle$ for all $g \in A \cup B$, then X is subnormal in G.

Wielandt’s conjecture was proved to be true in the soluble universe by Maier and Sidki [13] for subgroups X of prime power order and then for every subgroup X of a soluble group by Casolo in [4].

In [3, Theorem A], we show that the following σ-version of the aforementioned result holds.

Theorem 1. Assume that G is a soluble group factorised as a product of the subgroups A and B. Let X be a subgroup of G such that X is σ-subnormal in $\langle X, X^g \rangle$ for all $g \in A \cup B$. Then X is σ-subnormal in G.

A natural question to ask is now whether Theorem 1 holds for σ-soluble groups. Unfortunately we have been unable to answer this question; however, our third main result could be regarded as a significant step to solve it.

Theorem C. Assume that G is a σ-soluble group factorised as a product of the subgroups A and B. Let X be a subgroup of G such that X is σ-subnormal in $\langle X, X^g \rangle$ for all $g \in A \cup B$. Then X is σ-subnormal in G if one of the following conditions is true:

(i) $|G : A|$ and $|G : B|$ are σ-primary.

(ii) $|G : A|$ is σ-primary and $|G : A|$ and $|G : B|$ are σ-coprime.

The proof of Theorem C strongly depends on the following extension of [6, Theorem 3].

Theorem D. Let G be a σ-soluble group, and A and X two subgroups of G such that X is σ-subnormal in $\langle X, X^a \rangle$ for all $a \in A$. If $|G : A|$ is σ-primary, then X is σ-subnormal in $\langle X, A \rangle$.

We shall adhere to the notation and terminology of [2] and [5].
2 Preliminaries

Our first lemma collects some basic properties of \(\sigma \)-subnormal subgroups which are very useful in induction arguments.

Lemma 1 ([15]). Let \(H, K \) and \(N \) be subgroups of a group \(G \). Suppose that \(H \) is \(\sigma \)-subnormal in \(G \) and \(N \) is normal in \(G \). Then the following statements hold:

1. \(H \cap K \) is \(\sigma \)-subnormal in \(K \).
2. If \(K \) is a \(\sigma \)-subnormal subgroup of \(H \), then \(K \) is \(\sigma \)-subnormal in \(G \).
3. If \(K \) is \(\sigma \)-subnormal in \(G \), then \(H \cap K \) is \(\sigma \)-subnormal in \(G \).
4. \(HN/N \) is \(\sigma \)-subnormal in \(G/N \).
5. If \(N \subseteq K \) and \(K/N \) is \(\sigma \)-subnormal in \(G/N \), then \(K \) is \(\sigma \)-subnormal in \(G \).
6. If \(L \leq K \) and \(K \) is \(\sigma \)-nilpotent, then \(L \) is \(\sigma \)-subnormal in \(K \).
7. If \(|G : H| \) is a \(\sigma_i \)-number, then \(O^{\sigma_i}(H) = O^{\sigma_i}(G) \).
8. If \(N \) is a \(\sigma_i \)-subgroup of \(G \), then \(N \leq N_G(O^{\sigma_i}(H)) \).

A standard induction argument using Lemma 1 allows us to prove the following result.

Lemma 2. Let \(X \) be a subgroup of a \(\sigma \)-soluble group \(G \). Then \(X \) is \(\sigma \)-subnormal in \(G \) if and only if \(X \) is \(\mathcal{N}_\sigma \)-subnormal in \(G \), that is, there exists a chain of subgroups

\[
X = X_0 \leq X_1 \leq \cdots \leq X_n = G,
\]

such that \(X_{i-1} \) is a maximal subgroup of \(X_i \) and \(X_i/\text{Core}_{X_i}(X_{i-1}) \in \mathcal{N}_\sigma \), for \(1 \leq i \leq n \).

The fact that \(\sigma \)-subnormal subgroups are \(\mathcal{N}_\sigma \)-subnormal in the \(\sigma \)-soluble universe allows us to prove some relevant properties of these subgroups which are crucial in the proof of our main results.

Lemma 3. Let \(X \) be a subgroup of a group \(G \).
1. ([2, Lemma 6.1.9 and Proposition 6.1.10]) If X is σ-subnormal in G, then the N_σ-residual X^{N_σ} of X is subnormal in G.

2. ([2, Lemma 6.1.9]) If X is subnormal in G, then X is σ-subnormal in G.

3. ([2, Lemmas 6.3.11 and 6.3.12 and Example 6.3.13]) N_σ is a lattice formation, that is, the set of all σ-subnormal subgroups of a σ-soluble group G forms a sublattice of the subgroup lattice of G.

4. ([2, Theorem 6.3.3]) If X is a σ-subnormal σ-nilpotent subgroup of a σ-soluble group G, then X is contained in $F_\sigma(G)$, the N_σ-radical of G. In particular, if X is σ_i-group, then $X \leq O_{\sigma_i}(G)$.

Note that by Lemmas 1 (2) and 3 (2), subnormal subgroups of σ-subnormal subgroups of a group G are σ-subnormal in G. This fact will be applied in the sequel without further reference.

Our third lemma shows that the residual associated with the class of all σ_i-groups (also called σ_i-residual) respects the σ-subnormal generation of σ-soluble groups.

Lemma 4. Let $\sigma_i \in \sigma$. If A and B are σ-subnormal subgroups of a σ-soluble group $G = \langle A, B \rangle$, then $O^{\sigma_i}(G) = \langle O^{\sigma_i}(A), O^{\sigma_i}(B) \rangle$.

Proof. Assume the result is false and let G be a counterexample of least order. Denote $H = \langle O^{\sigma_i}(A), O^{\sigma_i}(B) \rangle$ and $X = O^{\sigma_i}(G)$. Clearly $1 \neq X$. Let N be a minimal normal subgroup of G such that $N \leq X$. Since G is σ-soluble, it follows that N is σ_j-group for some $\sigma_j \in \sigma$. The minimality of G yields $X = HN$ and $Core_G(H) = 1$.

On the other hand, by Lemma 3 (5), we have that $G^{N_\sigma} = \langle A^{N_\sigma}, B^{N_\sigma} \rangle \leq \langle O^{\sigma_i}(A), O^{\sigma_i}(B) \rangle = H$. Since G^{N_σ} is normal in G and $Core_G(H) = 1$, it follows that G is σ-nilpotent.

Then $G = X \times Y$ with $Y = O_{\sigma_i}(G)$. If $Y \neq 1$, then by the minimal choice of G, we have that $G = X \times Y = H \times Y$, and therefore $X = H$. Thus $Y = 1$ and so $G = O^{\sigma_i}(G)$, $A = O^{\sigma_i}(A)$ and $B = O^{\sigma_i}(B)$. This contradiction proves the lemma.

\[\square\]
Lemma 5. Let H^* denote either the N_2-residual or the σ_i-residual of a subgroup H of a σ-soluble group G, for $\sigma_i \in \sigma$. Let A be a subgroup of G. If H is a σ-subnormal subgroup of $\langle H, H^a \rangle$ for all $a \in A$, then H normalises $(H^*)^A$.

Proof. Let $a \in A$. Since H is a σ-subnormal subgroup of $\langle H, H^{a^{-1}} \rangle$, it follows that H^a is σ-subnormal in $\langle H^a, H \rangle = \langle H, H^a \rangle$. By Lemmas 3 (5) and 4, we have $\langle H, H^a \rangle^* = \langle H^*, (H^a)^* \rangle = \langle H^*, (H^*)^a \rangle$, thus

$$[H, (H^*)^a] \leq [H, \langle H, H^a \rangle^*] \leq \langle H, H^a \rangle^* \leq (H^*)^A.$$

Lemma 6. Let G be a σ-soluble group, X a σ_i-subgroup of G and H a Hall σ_i-subgroup of G. If X is σ-subnormal in $\langle X, X^h \rangle$ for all $h \in H$, then $X \leq H$.

Proof. Suppose that the result is false. Let G be a counterexample of the smallest possible order. Clearly the hypotheses of the lemma hold in $G/O_{\sigma_i}(G)$. Therefore, if $O_{\sigma_i}(G) \neq 1$, we have that $XO_{\sigma_i}(G)/O_{\sigma_i}(G) \leq H/O_{\sigma_i}(G)$ by minimality of G. Hence $X \leq H$, contrary to supposition. Thus $O_{\sigma_i}(G) = 1$.

Let N be a minimal normal subgroup of G. Then N is a σ_j-group for some $j \neq i$. Since $X \leq HN$ by the minimal choice of G, there exists $n \in N$ with $X^n \leq H$. Let $x \in X$ and $h = x^{-n} \in H$. Then $[x, h] = [x, n][x^{-1}, n] \in N$ and $[x, h] = x^{-1}x^h \in \langle x, x^h \rangle$. Hence $[x, h] \in N \cap \langle x, x^h \rangle$. Then X is σ-subnormal in $\langle X, X^h \rangle$ by hypothesis. Since X is a σ_j-subgroup, we have that $X \leq O_{\sigma_i}(\langle X, X^h \rangle)$ by Lemma 3 (4). Therefore, $\langle X, X^h \rangle = O_{\sigma_i}(\langle X, X^h \rangle)X^h$ is a σ_i-subgroup of HN. Thus $[x, h] \in N \cap \langle X, X^h \rangle = 1$ and $[x, h] = 1$. In particular, $[x, n] = [x^{-1}, n]$ is a σ_i-element. Since N is a $(\sigma_i)^*$-group and $[x, n] \in N$, it follows that $[x, n] = 1$ and $X^n = X \leq H$.

Lemma 7. Let H be a subgroup of a σ-soluble group G such that $O^{\sigma_i}(H) = H$ for some $\sigma_i \in \sigma$. Assume K is a normal σ_i-subgroup of G and $k \in K$ such that H is a σ-subnormal subgroup of $\langle H, H^k \rangle$. Then k normalises H.

Proof. Denote $L = \langle H, H^k \rangle$. Let Z denote the normal closure of H in L. By Lemma 4, $O^{\sigma_i}(Z) = Z$. Since $O^{\sigma_i}(L/Z) = L/Z$, it follows that $L = O^{\sigma_i}(L)Z$. By [2, Proposition 6.5.5], it follows that $O^{\sigma_i}(L) = O^{\sigma_i}(L)O^{\sigma_i}(Z) = O^{\sigma_i}(L)Z = L$.

On the other hand, $L = L \cap HK = H(L \cap K)$. By Lemma 4, $L = O^{\sigma_i}(L) = O^{\sigma_i}(H)O^{\sigma_i}(L \cap K) = H$. Thus $L = H$ and $H^k = H$.

7
3 Proofs of the main theorems

Proof of Theorem A. Suppose the result is not true and let G be a counterexample with $|G|+|X|$ minimal. Then $G^{N_G} \neq 1$. Let N be a minimal normal subgroup of G contained in G^{N_G}. Then N is a σ_i-group for some $\sigma_i \in \sigma$. Note that XN/N is σ-subnormal in G/N by the minimality of the pair (G, X). If XN were a proper subgroup of G, then X would be σ-subnormal in XN.

By Lemma 1, X would be σ-subnormal in G, contrary to our assumption. Hence $G = XN$. Assume that X is a σ_i-group. Then G is a σ_i-group, and X is σ-subnormal in G. This contradiction implies that X is not a σ_i-group, and so $O^{\sigma_i}(X) \neq 1$.

Assume that $O^{\sigma_i}(X) < X$. By minimality of (G, X), it follows that $O^{\sigma_i}(X)$ is σ-subnormal in G. By Lemma 1 (8), N normalises $O^{\sigma_i}(O^{\sigma_i}(X)) = O^{\sigma_i}(X)$. Hence $O^{\sigma_i}(X)$ is a normal subgroup of G. The minimal choice of G implies that $X/O^{\sigma_i}(X)$ is σ-subnormal in $G/O^{\sigma_i}(X)$ and then X is σ-subnormal in G by Lemma 1 (5). This is not possible. Thus $X = O^{\sigma_i}(X)$.

If $n \in N$ then X is σ-subnormal in $U_n = \langle X, X^n \rangle = (U_n \cap N)X$ by hypothesis. By Lemma 1 (7), we have that

$$O^{\sigma_i}(U_n) = O^{\sigma_i}((U_n \cap N)X) = O^{\sigma_i}(X) = X.$$

In particular, X is normal in U_n. Consequently, X is normal in $V = \langle X^n : n \in N \rangle$. Since V is normal in G, we have X is subnormal in G, and we have reached the desired contradiction. \hfill \Box

Proof of Theorem B. Assume the result is false and let G be a counterexample such that $|G : A|+|X|$ is minimal. Suppose that M is a maximal subgroup of G containing A. Then $M = A(M \cap B)$ and X is σ-subnormal in both A and $M \cap B$ by Lemma 1 (1). By minimality of G, X is σ-subnormal in M. On the other hand, $G = MB$. If $|G : M| < |G : A|$, we have X is σ-subnormal in G, which is a contradiction. Therefore $A = M$ is a maximal subgroup of G.

Let $K = \text{Core}_G(A)$. If $K \neq 1$, then XK/K is σ-subnormal in G/K by the minimal choice of G. By Lemma 1 (5), XK is σ-subnormal in G. Moreover $X \leq XK \leq A$. Thus X is σ-subnormal in XK by Lemma 1 (1). Thus X is σ-subnormal in G. This contradiction yields $K = 1$ and G is a primitive group. By Lemma 3 (1), X^{N_G} is a subnormal subgroup of A and B. Applying the result of Maier-Wielandt, we have that X^{N_G} is a subnormal subgroup of G. By [10, Lemma 7.3.16], $X^{N_G} \leq \text{Core}_G(A) = 1$. Hence X is σ-nilpotent. By Lemma 1 (6), every subgroup of X is σ-subnormal in X. Therefore every
proper subgroup of X is σ-subnormal in A and B by Lemma 1 (2). The minimal choice of X implies that every proper subgroup of X is σ-subnormal in G. By Lemma 3 (3), X is cyclic of prime power order. Assume X is a σ_i-group. Since X is σ-subnormal in A, by Lemma 3 (4), X is contained in $O_{\sigma_i}(A)$. Then X^A, the normal closure of X in A, is a σ_i-group. Analogously, X^B is a σ_i-group. According to [1, Lemma 1.3.2], there exist Hall σ_i-subgroups A_{σ_i} of A and B_{σ_i} of B such that $A_{\sigma_i}B_{\sigma_i}$ is a Hall σ_i-subgroup of G. Then $\langle X^A, X^B \rangle$ is a σ_i-group because it is contained in $A_{\sigma_i}B_{\sigma_i}$. Let $g = ab \in G$ with $a \in A$ and $b \in B$. Then

$$\langle X, X^g \rangle = \langle X^{b^{-1}}, X^a \rangle^b \leq \langle X^B, X^A \rangle^b.$$

Consequently $\langle X, X^g \rangle$ is a σ_i-group and then X is σ-subnormal in $\langle X, X^g \rangle$ for every $g \in G$ by Lemma 1 (6). Applying Theorem A, X is σ-subnormal in G, a contradiction.

Proof of Theorem D. Suppose that the result is false. We choose a counterexample G with $|G| + |X|$ minimal and proceed to derive a contradiction. The minimal choice of G and Theorem A show that $G = \langle X, A \rangle$ and X is not contained in A. Suppose that $|G : A|$ is a σ_i-number for some $\sigma_i \in \sigma$. Then A contains a Hall σ'_i-subgroup of G.

If $C = \text{Core}_G(A) \neq 1$, then XC is a σ-subnormal subgroup of G by minimality of G. Moreover, by Theorem A, X is σ-subnormal in XC. Thus X is σ-subnormal in G by Lemma 1 (2). This contradiction shows that $\text{Core}_G(A) = 1$.

Let N be a minimal normal subgroup of G. Then N is a σ_j-group for some $\sigma_j \in \sigma$. If $i \neq j$, then N is contained in every Hall σ'_i-subgroup of G. In particular, N is contained in A, a contradiction. Therefore N is a σ_i-group, $O_{\sigma_i}(G) \neq 1$, and $O_{\sigma_i}(G) = 1$.

Suppose that X is not σ-nilpotent. Then $1 \neq X^{N_{\sigma}}$ is a proper subgroup of X which is σ-subnormal in $\langle X, X^a \rangle$ for all $a \in A$. The choice of the pair (G, X) yields that $X^{N_{\sigma}}$ is σ-subnormal in $\langle X^{N_{\sigma}}, A \rangle$. Hence $X^{N_{\sigma}}$ is σ-subnormal in $(X^{N_{\sigma}})^A$. By Lemma 5, X normalises $(X^{N_{\sigma}})^A$. Therefore $(X^{N_{\sigma}})^A$ is a normal subgroup of G and $X^{N_{\sigma}}$ is a σ-subnormal subgroup of G. Since X is not a σ_i-group, it follows that $1 \neq O^\sigma_i(X)$. Moreover, since $1 \neq X^{N_{\sigma}}$ is a σ-soluble group, it follows that $F_\sigma(X^{N_{\sigma}}) \neq 1$. Thus $F_\sigma(X^{N_{\sigma}}) \neq 1$ is a σ-nilpotent σ-subnormal subgroup of G. By Lemma 3 (4), $F_\sigma(X^{N_{\sigma}}) \leq F_\sigma(G) = O_{\sigma_i}(G)$ and then $1 \neq O_{\sigma_i}(X^{N_{\sigma}}) \leq O_{\sigma_i}(G)$. Hence $Z = X \cap O_{\sigma_i}(G) \neq 1$ and Z^A is a σ-subnormal σ_i-subgroup of G. Let $a \in A$.

Therefore σ proper

Then X is σ-subnormal in $\langle X, Z^a \rangle$ and so $O_{\sigma_i}(\langle X, Z^a \rangle)$ normalises $O^{\sigma_i}(X)$ by Lemma 1 (8). Since $Z^a \leq O_{\sigma_i}(\langle X, Z^a \rangle)$, it follows that Z^a normalises $O^{\sigma_i}(X)$. Therefore Z^A normalises $O^{\sigma_i}(X)$.

Applying Lemma 5, it follows that X normalises $(O^{\sigma_i}(X))^A$. Hence $(O^{\sigma_i}(X))^A$ is a normal subgroup of G. Assume that $O^{\sigma_i}(X)$ is a proper subgroup of X. By minimality of the pair (G, X), we have that $O^{\sigma_i}(X)$ is a σ-subnormal subgroup of $(O^{\sigma_i}(X), A)$. Therefore $O^{\sigma_i}(X)$ is a σ-subnormal subgroup of $(O^{\sigma_i}(X))^A$, and so $O^{\sigma_i}(X)$ is σ-subnormal in G. By Lemma 1 (8), $O_{\sigma_i}(G)$ normalises $O^{\sigma_i}(O^{\sigma_i}(X)) = O^{\sigma_i}(X)$ and hence $XO_{\sigma_i}(G)$ normalises $O^{\sigma_i}(X)$. Then $X/O^{\sigma_i}(X)$ is σ-subnormal in $XO_{\sigma_i}(G)/O^{\sigma_i}(X)$. Thus X is σ-subnormal in $XO_{\sigma_i}(G)$ which is σ-subnormal in G by minimality of G and Lemma 1 (5). Lemma 1 (2) yields that X is σ-subnormal in G, contrary to assumption. Hence $O^{\sigma_i}(X) = X$ and so Z^A normalises X. In addition, $[Z^A, X] \leq [N_G(X) \cap O_{\sigma_i}(G), X] \leq X \cap O_{\sigma_i}(G) = Z \leq Z^A$. Hence Z^A is normalised by X and so it is a normal subgroup of G. Again the minimality of G and Lemma 1 (5) imply that XZ^A is σ-subnormal in G. Since X is normal in XZ^A, we have that X is σ-subnormal in G. This contradiction shows that X is σ-nilpotent.

Suppose that $O^{\sigma_i}(X) \neq 1$. Since X is σ-nilpotent, it follows that either X is a σ'_i-group or $O^{\sigma_i}(X)$ is a proper subgroup of X. Assume that X is a σ'_i-group. Then, by Lemma 6, X is contained in A. Hence $G = A$ and X is σ-subnormal in G by Theorem A, which is not possible. Suppose that $O^{\sigma_i}(X)$ is a proper subgroup of X. By minimality of (G, X), $O^{\sigma_i}(X)$ is σ-subnormal in $(O^{\sigma_i}(X), A)$, and, by Lemma 5, X normalises $(O^{\sigma_i}(X))^A$. Therefore $O^{\sigma_i}(X)$ is a σ-subnormal subgroup of $O^{\sigma_i}(X)^A$ which is a normal subgroup of G. Consequently $O^{\sigma_i}(X)$ is a σ-subnormal σ-nilpotent subgroup of G. By Lemma 3 (4), $O^{\sigma_i}(X)$ is contained in $F_\sigma(G) = O_{\sigma_i}(G)$. Hence X is a σ_i-group, contrary to supposition.

Consequently, $O^{\sigma_i}(X) = 1$ and X is a σ_i-group. Since every minimal normal subgroup N of G is a σ_i-group, and XN is σ-subnormal in G, it follows that X is σ-subnormal in G. This final contradiction proves the theorem.

\[\square \]

Proof of Theorem C. Suppose that the theorem is false and let G be a counterexample for which $|G| + |X| + |G : A| + |G : B|$ is minimal. Note that every proper σ-subnormal subgroup Z of X satisifies the hypotheses of the theorem. Therefore Z is a σ-subnormal subgroup of G by the choice of (G, X).
We proceed in a number of steps.

Step 1. If \(X \) is not contained in \(A \), then \(G = \langle A, X \rangle \) and \(|G : A| \) is not \(\sigma \)-primary.

Let \(A_0 = \langle A, X \rangle \). We have that \(A_0 = A_0 \cap AB = A(A_0 \cap B) \) and \(G = A_0B \). If \(A_0 \neq G \), then \(A_0 \) is not a counterexample to the theorem. Then \(X \) is \(\sigma \)-subnormal in \(A_0 \), and the 4-tuple \((G, X, A_0, B)\) satisfies the hypotheses of the theorem. The minimal choice of \((G, X, A, B)\) implies that \(X \) is \(\sigma \)-subnormal in \(G \). Consequently, \(G = \langle A, X \rangle \). If \(|G : A| \) were \(\sigma \)-primary, then we would have \(X \) is \(\sigma \)-subnormal in \(G \) by Theorem D. This is not the case. Thus \(|G : A| \) is not \(\sigma \)-primary.

Step 2. Assume that \(X \) is contained in \(A \) and \(|G : A| \) is \(\sigma \)-primary. If \(X \) is not contained in \(B \), then \(|G : A| \) and \(|G : B| \) are not \(\sigma \)-coprime.

Assume that \(X \) is not contained in \(B \) and \(|G : A| \) and \(|G : B| \) are \(\sigma \)-coprime and derive a contradiction. Let \(B_0 = \langle X, B \rangle = B(B_0 \cap A) \). Then \(B \) is a proper subgroup of \(B_0 \) and \(G = AB_0 \). Then \((B_0, X, B_0 \cap A, B)\) satisfies the hypotheses of the theorem. Suppose that \(B_0 \) is a proper subgroup of \(G \). Then the theorem holds in \(B_0 \), and hence \(X \) is \(\sigma \)-subnormal in \(B_0 \). Applying Theorem A and Theorem B, we conclude that \(X \) is \(\sigma \)-subnormal in \(G \). This contradicts the choice of \(G \), however, and we conclude that \(G = \langle X, B \rangle \).

By hypothesis, \(|G : A| \) is a \(\sigma_i \)-number, for some \(\sigma_i \in \sigma \). Since \(|G : A| \) and \(|G : B| \) are \(\sigma \)-coprime, it follows that \(|G : B| \) is a \(\sigma_i \)-number. Therefore \(B \) contains a Hall \(\sigma_i \)-subgroup of \(G \).

Let \(N \) be a minimal normal subgroup of \(G \). Then \(N \) is \(\sigma \)-primary. Assume that \(N \) is a \(\sigma_j \)-group, where \(j \neq i \). Since \(|G : A| \) is \(\sigma_i \)-number, then \(N \leq A \). By the choice of \(G \), \(XN \) is a \(\sigma \)-subnormal subgroup of \(G \). Moreover, \(XN \leq A \). Therefore \(X \) is \(\sigma \)-subnormal in \(XN \) and then in \(G \), a contradiction. Consequently, every minimal normal subgroup of \(G \) is a \(\sigma_i \)-group and \(F_{\sigma}(G) = O_{\sigma_i}(G) \). Moreover, \(R = O_{\sigma_i}(G) \) is contained in \(B \).

Suppose that \(X \) is not \(\sigma \)-nilpotent. Then \(O^{\sigma_i}(X) \neq 1 \). Suppose that \(O^{\sigma_i}(X) \) is a proper subgroup of \(X \). Then it is \(\sigma \)-subnormal in \(G \). By Lemma 1 (8), \(O_{\sigma_i}(G) \) normalises \(O^{\sigma_i}(O^{\sigma_i}(X)) = O^{\sigma_i}(X) \) and hence \(XO_{\sigma_i}(G) \) normalises \(O^{\sigma_i}(X) \). Then \(X/O^{\sigma_i}(X) \) is \(\sigma \)-subnormal in \(XO_{\sigma_i}(G)/O^{\sigma_i}(X) \). Thus \(X \) is \(\sigma \)-subnormal in \(XO_{\sigma_i}(G) \) which is \(\sigma \)-subnormal in \(G \) by minimality of \(G \) and Lemma 1 (5). Lemma 1 (2) yields that \(X \) is \(\sigma \)-subnormal in \(G \), contrary to supposition. Thus \(O^{\sigma_i}(X) = X \).

On the other hand, since \(X \) is not \(\sigma \)-nilpotent, \(1 \neq X^{N_\sigma} \) is \(\sigma \)-subnormal in \(G \). Therefore \(1 \neq F_\sigma(X^{N_\sigma}) \) is \(\sigma \)-nilpotent \(\sigma \)-subnormal subgroup of \(G \) contained in \(F_\sigma(G) = O_{\sigma_i}(G) \) by Lemma 3 (4). In particular, \(O_{\sigma_i}(X) \neq \)
1. Applying Lemma 5, we conclude that \(X \) normalises \((O_{\sigma_i}(X))^B \). Hence \((O_{\sigma_i}(X))^B \) is a normal subgroup of \(G \). Write \(Z = X \cap O_{\sigma_i}(G) \). Then \(1 \neq Z \) is a \(\sigma \)-subnormal \(\sigma_i \)-subgroup of \(G \). Let \(b \in B \). Then \(X \) is \(\sigma \)-subnormal in \(\langle X, Z^b \rangle \) and so \(O_{\sigma_i}(\langle X, Z^b \rangle) \) normalises \(O_{\sigma_i}(X) = X \) by Lemma 1 (8). Since \(Z^b \leq O_{\sigma_i}(\langle X, Z^b \rangle) \), it follows that \(Z^b \) normalises \(X \). Therefore \(Z^B \) normalises \(X \). Then \([Z^B, X] \leq X \cap O_{\sigma_i}(G) = Z \leq Z^B \) and \(Z^B \) is normal in \(G \). By the choice of \(G \), it follows that \(XZ^B \) is a \(\sigma \)-subnormal subgroup of \(G \) and then \(X \) is \(\sigma \)-subnormal in \(G \), a contradiction.

Thus \(X \) is \(\sigma \)-nilpotent. By assumption every proper subgroup of \(X \) is \(\sigma \)-subnormal in \(G \). Applying Lemma 3 (3), \(X \) is a cyclic \(p \)-group for some prime \(p \in \sigma_j \), for some \(\sigma_j \in \sigma \). Assume that \(i = j \). Then \(XN \) is a \(\sigma \)-subnormal \(\sigma_i \)-subgroup of \(G \). Consequently, \(X \) is \(\sigma \)-subnormal in \(G \), which contradicts our assumption that \(G \) is a counterexample. Thus \(i \neq j \) and \(O_{\sigma_i}(X) = X \).

By Lemma 7, \(R = O_{\sigma_i}(G) \) normalises \(X \), and so \(X \) is normal in \(XR \). Since \(XR \) is \(\sigma \)-subnormal in \(G \) by minimality of \(G \) and Lemma 1 (5), we conclude that \(X \) is \(\sigma \)-subnormal in \(G \), which is not the case.

Step 3. We have a contradiction

Assume that either \(|G : A| \) and \(|G : B| \) are \(\sigma \)-primary or \(|G : A| \) is \(\sigma \)-primary and \(|G : A| \) and \(|G : B| \) are \(\sigma \)-coprime. Then, by Steps 1 and 2, \(X \subseteq A \cap B \). Then, by Theorem A, \(X \) is \(\sigma \)-subnormal in \(A \) and \(B \). Therefore \(X \) is \(\sigma \)-subnormal in \(G \) by Theorem B.

\(\square \)

Acknowledgements

The first and third authors are supported by the grant PGC2018-095140-B-I00 from the Ministerio de Ciencia, Innovación y Universidades and the Agencia Estatal de Investigación, Spain, and FEDER, European Union and Prometeo/2017/057 of Generalitat (Valencian Community, Spain). The second author was supported by the State Program of Science Researchers of the Republic of Belarus (Grant 19-54 «Convergence-2020»).

The authors are very grateful to the referees for extremely careful reading of the paper and for his numerous suggestions that have contributed to a substantial improvement of it.
References

A. BALLESTER-BOLINCHES
Department of Mathematics, Guangdong University of Education
510310, Guangzhou, People’s Republic of China

Departament de Matemàtiques, Universitat de València
Dr. Moliner 50, 46100 Burjassot, València (Spain)
e-mail: Adolfo.Ballester@uv.es

S.F. KAMORNIKO
Department of Mathematics
F. Scorina Gomel State University
Gomel 246019, Belarus
e-mail: sfkamornikov@mail.ru

M.C. PEDRAZA-AGUILERA
Instituto Universitario de Matemática Pura y Aplicada
Universitat Politècnica de València,
Camino de Vera, 46022, Valencia, Spain
e-mail: mpedraza@mat.upv.es

V. PÉREZ-CALABUIG
Departament de Matemàtiques, Universitat de València
Dr. Moliner 50, 46100 Burjassot, València (Spain)
e-mail: vpercal@gmail.com