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On σ-subnormal subgroups of factorised �nite

groups

A. Ballester-Bolinches, S.F. Kamornikov, M.C. Pedraza-Aguilera and X. Yi

Abstract

Let σ = {σi : i ∈ I} be a partition of the set P of all prime numbers.

A subgroup X of a �nite group G is called σ-subnormal in G if there

is chain of subgroups

X = X0 ⊆ X1 ⊆ · · · ⊆ Xn = G

with Xi−1 normal in Xi or Xi/CoreXi(Xi−1) is a σi-group for some

i ∈ I, 1 ≤ i ≤ n.
In the special case that σ is the partition of P into sets containing

exactly one prime each, the σ-subnormality reduces to the familiar

case of subnormality.

If a �nite soluble group G = AB is factorised as the product of

the subgroups A and B, and X is a subgroup of G such that X is

σ-subnormal in 〈X,Xg〉 for all g ∈ A ∪ B, we prove that X is σ-
subnormal in G. This is an extension of a subnormality criteria due

to Maier and Sidki and Casolo.

Mathematics Subject Classi�cation (2010): 20D10, 20D20

Keywords: �nite group, soluble group, σ-subnormal subgroup, σ-nil-
potency, factorised group.

1 Introduction and statements of results.

All groups considered in this paper are �nite.
An important subnormality criterion asserts that if G = AB is a group

which is the product of the subgroups A and B and X is a subgroup of G
contained in A ∩ B that is subnormal in A and B, then X is subnormal in
G. This result was proved by Maier in [5] for soluble groups and then for

1



arbitrary groups by Wielandt [11]. In the same paper, Wielandt conjectured
that if X is a subgroup of G such that X is subnormal in 〈X,Xg〉 for all
g ∈ A ∪B, then X is subnormal in G.

Wielandt's conjecture was proved to be true in the soluble universe by
Maier and Sidki [6] for subgroups of prime power order and then for arbitrary
soluble groups by Casolo in [2].

Theorem 1. Let the soluble group G = AB be the product of the subgroups

A and B. If X is a subgroup of G such that X is subnormal in 〈X,Xg〉 for
all g ∈ A ∪B, then X is subnormal in G.

Recently, Skiba [7] has generalised the concept of subnormality, introdu-
cing σ-subnormality, in which σ is a partition of the set P, the set of all
primes. Hence P =

⋃
i∈Iσi, with σi ∩ σj = ∅ for all i 6= j.

A group G is σ-primary if the prime factors, if any, of its order all belong
to the same member of σ.

De�nition 1. A subgroup X of a group G is called σ-subnormal in G if there

is chain of subgroups

X = X0 ⊆ X1 ⊆ · · · ⊆ Xn = G

with Xi−1 normal in Xi or Xi/CoreXi(Xi−1) σ-primary for 1 ≤ i ≤ n.

In the special case that σ is the partition of P into sets containing exactly
one prime each, the σ-subnormality reduces to the familiar case of subnor-
mality.

Skiba [7] has also extended the concept of nilpotency, introducing σ-
nilpotency.

De�nition 2. A group G is said to be σ-nilpotent if it is a direct product of

σ-primary groups.

He proved that the class Nσ of all σ-nilpotent groups is a subgroup-closed
saturated Fitting formation ([7, Corollary 2.4 and Lemma 2.5]).

Note that a subgroupX of a groupG is σ-subnormal inG if and only if it is
K-Nσ-subnormal in G in the sense of [1, De�nition 6.1]. This characterisation
allows us to deduce that the set of all σ-subnormal subgroups of a group G
forms a sublattice of the subgroup lattice of G ([1, Lemmas 6.3.11 and 6.3.12
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and Example 6.3.13]). This will be used in the paper without any further
reference.

Skiba [7] showed that the set of all σ-subnormal subgroups has a strong
in�uence on the structure of σ-soluble groups, that is, groups in which every
chief factor is σ-primary. Therefore it is natural and interesting to investig-
ate which of remarkable theorems about subnormal subgroups have analogs
when we consider σ-subnormal subgroups of σ-soluble groups.

Our objective in this paper is to present a σ-subnormal version of The-
orem 1. We prove:

Theorem A. Assume that G is a soluble group factorised as a product G =
AB of the subgroups A and B. Let X be a subgroup of G such that X is

σ-subnormal in 〈X,Xg〉 for all g ∈ A ∪B. Then X is σ-subnormal in G.

Theorem 1 is just Theorem A for the partition of P into sets containing
exactly one prime each.

We shall adhere to the notation and terminology of [1] and [3].

2 Preparatory lemmas

In this section we collect some results which will be used in the proof of our
main theorem.

Our �rst lemma collects some basic properties of σ-subnormal subgroups.

Lemma 1 ([7]). Let H, K and N be subgroups of a group G. Suppose that H
is σ-subnormal in G and N is normal in G. Then the following statements

hold:

1. H ∩K is σ-subnormal in K.

2. If K is a σ-subnormal subgroup of H, then K is σ-subnormal in G.

3. If K is σ-subnormal in G, then H ∩K is σ-subnormal in G.

4. HN/N is σ-subnormal in G/N .

5. If N ⊆ K and K/N is σ-subnormal in G/N , then K is σ-subnormal

in G.
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6. If K ⊆ H and H is σ-nilpotent, then K is σ-subnormal in G.

7. If H is a σi-group, where σi ∈ σ, then H ≤ Oσi(G).

According to a result of Wielandt (see [4, Theorem 7.3.3]), given a sub-
group X of a group G, it is enough to know that X is subnormal in the
subgroup generated by 〈X,Xg〉 for all g ∈ G to deduce that X is subnormal
in G. This result still holds for σ-subnormal subgroups of soluble groups and
it is a direct consequence of [1, Proposition 6.1.10 and Theorem 6.2.17]. We
include a proof here for the sake of completeness.

Lemma 2. Suppose that G is a soluble group and X is a subgroup of G such

that it is σ-subnormal in 〈X,Xx〉 for all x ∈ G. Then X is σ-subnormal in

G.

Proof. We argue by induction on | G |. If G is σ-nilpotent, then X is σ-
subnormal in G by Lemma 1 (6). Hence we may assume that G is not
σ-nilpotent so that the σ-nilpotent residual L of G is non-trivial. Let N
be a minimal normal subgroup of G such that N ≤ L. By inductive hy-
pothesis, XN/N is σ-subnormal in G/N and so XN is σ-subnormal in G
by Lemma 1 (5). If XN were a proper subgroup of G, then X would be
σ-subnormal in XN by the inductive hypothesis. Applying Lemma 1 (2), it
follows that X is σ-subnormal in G. Hence we can suppose that G = XN
and G 6= X. Since N is abelian, X is a maximal subgroup of G. If X is
normal in G, then it is σ-subnormal in G. If X is not normal in G, there
exists an element g ∈ G such that X 6= Xg. Then G = 〈X,Xg〉 and X is
σ-subnormal in G. The proof is now complete.

Our next lemma is crucial in the proof of our main result. It con�rms
that Theorem A holds for σ-primary subgroups.

Lemma 3. Let the soluble group G = AB be the product of the subgroups A
and B. Let X be a σ-primary subgroup of G such that X is σ-subnormal in

〈X,Xg〉 for all g ∈ A ∪B, then X is σ-subnormal in G.

Proof. Suppose that the result is false. We choose a counterexample G of
minimal order and proceed to derive a contradiction. Without loss of gener-
ality, we may assume that X is a σ1-group. We deduce

1. Oσ1(G) = 1.
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Suppose that T = Oσ1(G) 6= 1. Observe that XT/T satis�es the
hypothesis of the lemma in G/T = (AT/T )(BT/T ) by Lemma 1 (4).
By the minimality of G we have that XT/T is σ-subnormal in G/T .
Applying Lemma 1 (5), we have that XT is σ-subnormal in G. Since
XT is a σ1-group, X is σ-subnormal in G by Lemma 1 (2) and (6),
which is not the case.

2. There exists a prime p /∈ σ1 such that G is a (σ1 ∪ {p})-group.
Since G is soluble and Oσ1(G) = 1, there exists a prime p /∈ σ1 such
that Op(G) 6= 1. Let N be a minimal normal subgroup of G con-
tained in Op(G). Then XN/N satis�es the hypothesis of the lemma
in G/N = (AN/N)(BN/N) by Lemma 1 (4). By minimality of G,
XN/N is σ-subnormal in G/N . Since XN/N is a σ1-group, we can
apply Lemma 1 (7) to conclude that XN/N ≤ Oσ1(G/N) = O/N .
Clearly O is a normal (σ1 ∪ {p})-subgroup of G containing X. Thus
X ≤ O ≤ Oσ1∪{p}(G). Let A1 and B1 be Hall (σ1∪{p})-subgroups of A
and B respectively such that H = A1B1 is a Hall (σ1∪{p})-subgroup of
G. Since Oσ1∪{p}(G) is normal in G, we have that Oσ1∪{p}(G) ≤ H. If
H is a proper subgroup of G, then the minimality of G implies thatX is
σ-subnormal in H. By Lemma 1 (1), X is σ-subnormal in Oσ1∪{p}(G).
Since Oσ1∪{p}(G) is σ-subnormal in G, it follows that X is σ-subnormal
in G by Lemma 1 (2), which is not so by hypothesis. Hence G = H is
a (σ1 ∪ {p})-group.

3. G has a unique minimal normal subgroup.

Suppose that G has two di�erent minimal normal subgroups, N1 and
N2 say. Arguing as in Step 2, XN2/N2 is σ-subnormal σ1-group of G
and XN2/N2 ≤ Oσ1(G/N2) = K/N2. Assume that [X,N1] 6= 1. Since
[X,N1] ≤ [XN2, N1] ≤ K ∩N1, it follows that N1 ≤ K. Therefore N1

is a σ1-group, which is not so by Step (1). Thus we may assume that
[X,N1] = [X,N2] = 1. Then X is a normal subgroup of XN2 which is
a σ-subnormal subgroup of G by Lemma 1 (5). Applying Lemma 1 (2),
it follows that X is σ-subnormal in G, which is not the case.

4. G is a primitive group. Therefore N = Soc(G) = CG(N) = F(G) =
Op(G) is the unique minimal normal subgroup of G which is comple-
mented by a core-free maximal subgroup of G.
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Let N = Soc(G) be the unique minimal normal subgroup of G. Write
Oσ1(G/N) = K/N . Suppose that N ≤ Φ(G), it follows by [3, A,
Lemma 13.2], that K = N × Kσ1 , where Kσ1 denotes the Hall σ1-
subgroup of K. Arguing as in Step 3, we have that XN ≤ K. Hence
X ≤ Kσ1 . But Kσ1 is a subnormal σ1-subgroup of G. By Lemma 1 (7),
Kσ1 ≤ Oσ1(G) = 1. This is a contradiction. Therefore Φ(G) = 1, G
is primitive and N is complemented by a core-free maximal subgroup
of G. By [1, Theorem 1.1.7], N = CG(N) = F(G). By Steps 1 and 2,
N = Op(G).

5. N ∩ A = N ∩B = 1.

Assume that N∩A 6= 1 and let 1 6= t ∈ N∩A. Then 〈X,X t〉 = [t,X]X.
Since X is σ-subnormal in 〈X,X t〉, we have that X t is σ-subnormal
in 〈X,X t〉t. But 〈X,X t〉t = ([t,X]X)t = [t,X]tX t = [t,X]X t ≤
[t,X][t,X]X = [t,X]X. Therefore 〈X,X t〉t = 〈X,X t〉 and X t is also
a σ-subnormal subgroup of 〈X,X t〉. Then, X and X t are σ-subnormal
σ1-subgroups of 〈X,X t〉. By Lemma 1 (7), 〈X,X t〉 ≤ Oσ1(〈X,X t〉).
Thus 〈X,X t〉 is a σ1-group. Furthermore, [t,X] ≤ [N,X] ≤ N is a
p-group. Therefore [t,X] = 1 and X ≤ CG(N ∩A) ≤ NG(N ∩A) = H.
Hence N∩A 6= N by Step 4 and so H = A(H∩B) is a proper subgroup
of G. The minimal choice of G implies that X is σ-subnormal in H.
By Lemma 1 (7), X ≤ Oσ1(H). Since N ≤ H and N is a σ1

′-group, we
have that X centralizes N , which is not so by Step 4.

6. Let P be a Sylow p-subgroup of G such that P = (P ∩ A)(P ∩ B).
Then |N | ≤ |P ∩ A|.
Since N(P ∩B) ≤ P , and N ∩B = 1, we have

|N ||(P ∩B)|/|N ∩ (P ∩B)| = |N ||(P ∩B)|

and

|N ||(P ∩B)| ≤ |(P ∩ A)||(P ∩B)|/|P ∩ A ∩B| ≤ |P ∩ A||P ∩B|.

Thus |N | ≤ |P ∩ A|.

7. We have a contradiction.

By Step 6, |N | ≤ |P ∩A| and, by Step 5, |N ||(P ∩A)| ≤ |P |. Therefore
|N |2 ≤ |P |.
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Let M be a core-free maximal subgroup of G such that G = NM and
N∩M = 1. Then P = NMp, whereMp = P ∩M is a Sylow p-subgroup
of M . It is clear that N is a faithful and irreducible M -module over
the �nite �eld of p-elements. Applying [12, Corollary 1.9], we have that
|Mp| ≤ |N |/2. Thus |P | ≤ |N |2/2. Consequently, 2|N |2 ≤ 2|P | ≤ |N |2,
which is not the case.

3 Proof of Theorem A

Proof. Suppose that the theorem is false and let G be a counterexample
for which |G| + |X| is minimal. Since the join of σ-subnormal subgroups is
again σ-subnormal, it follows by Lemma 3 that X is not σ-nilpotent. Let
1 6= XNσ be the Nσ-residual of X and let S/XNσ be a maximal subgroup
of X/XNσ . Then, by Lemma 1 (5) and (6), S is a maximal subgroup of X
and S is σ-subnormal in X. By Lemma 1 (1) and (2), S is σ-subnormal
in 〈S, Sg〉 for all g ∈ A ∪ B. By the minimal choice of the pair (G,X), we
have that S is σ-subnormal in G. Suppose that T/XNσ is another maximal
subgroup of X/XNσ . Then T is is σ-subnormal in G and therefore X =
〈S, T 〉 is σ-subnormal in G, contrary to supposition. Therefore X/XNσ has a
unique maximal subgroup and so X/XNσ is a cyclic p-group for some prime
p. Without loss of generality we may assume that p ∈ σ1.

By [1, Lemma 6.1.9(1)], XNσ is subnormal in 〈X,Xg〉 for all g ∈ A ∪ B.
Hence XNσ is subnormal in 〈XNσ , (XNσ)g〉 for all g ∈ A ∪ B. Applying
Theorem 1, we conclude that XNσ is subnormal in G.

Assume that X ≤ A. Then, by Lemma 2, X is σ-subnormal in A. In
particular, A 6= G. Let M be a maximal subgroup of G containing A. Then
M = M∩AB = A(M∩B) andM satis�es the hypotheses of the theorem. By
the choice ofG, X is σ-subnormal inM . WriteK = CoreG(M). Observe that
XK/K satis�es the hypothesis of the theorem in G/K = (AK/K)(BK/K)
by Lemma 1 (4). If K 6= 1, the minimality of G implies that XK/K is σ-
subnormal in G/K. By Lemma 1 (5), XK is σ-subnormal in G. Since X ≤
XK ≤M , it follows that X is σ-subnormal in XK by Lemma 1 (1). Hence
X is σ-subnormal in G by Lemma 1 (2), contrary to assumption. Therefore
K = 1 and so G is a primitive group. Then N = Soc(G) = F(G) is the unique
minimal normal subgroup of G and there exists a maximal subgroup M of G
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such that G = NM and N ∩M = 1. In particular N ∩XNσ ≤ N ∩M = 1.
Since XNσ is subnormal in G, we have that F(XNσ) ≤ F(G) = N . Therefore
F(XNσ) = 1. Since XNσ is soluble, XNσ = 1. Thus X is a σ-nilpotent group,
a contradiction.

Suppose that X is not contained in A. Let A0 = 〈A,X〉. Then A0 =
A0 ∩ AB = A(A0 ∩ B) and A0 satis�es the hypotheses of the theorem. If
A0 6= G, then X is σ-subnormal in A0 by the choice of G. Let g ∈ A0 ∪ B.
If g ∈ B, then X is σ-subnormal in 〈X,Xg〉. If g ∈ A0, then X ≤ 〈X,Xg〉 ≤
〈A,X〉 = A0. Since X is σ-subnormal in A0, it follows that X is σ-subnormal
in 〈X,Xg〉 by Lemma 1 (1). Hence X is σ-subnormal in 〈X,Xg〉 for all
g ∈ A0 ∪ B. Then the above reasoning implies that X is σ-subnormal in G,
which is a contradiction. Thus we may assume that G = 〈A,X〉. Let q be a
prime dividing the order of F(XNσ) and denote R = Oq(G). Since F(XNσ)
is subnormal in G, we have that 1 6= Oq(X

Nσ) ≤ R.
Suppose that q ∈ σ1. Let N be a minimal normal subgroup of G

contained in R. Then XN/N satis�es the hypothesis of the theorem in
G/N = (AN/N)(BN/N) by Lemma 1 (4). By minimality of G, XN/N is
σ-subnormal in G/N . Then XN is σ-subnormal in G by Lemma 1 (5). Since
XNσ is subnormal in G, we have that N ≤ NG(XNσ) by [3, Lemma A.14.3].
Then XNσ is normal in XN and XN/XNσ = (X/XNσ)(NXNσ/XNσ) is a
σ1-group. Applying Lemma 1 (6), we conclude that X/XNσ is a σ-subnormal
subgroup of XN/XNσ . By Lemma 1 (2), X is a σ-subnormal subgroup of
G, a contradiction.

Then q /∈ σ1. We may assume that q ∈ σ2. Denote W = R ∩XNσ . Since
1 6= Oq(X

Nσ) ≤ R, it follows that W 6= 1. Moreover W is a subnormal
subgroup of G by [3, Corollary A.14.2]. Let g ∈ A. Then X is σ-subnormal
in 〈X,Xg〉. In particular X is σ-subnormal in 〈X,W g〉 by Lemma 1 (1).
Therefore there exists a chain of subgroups

X = X0 ⊆ X1 ⊆ · · · ⊆ Xn = 〈X,W g〉

such that either Xi−1 is normal in Xi or Xi/CoreXi(Xi−1) is σ-primary for
all i = 1, 2, . . . , n. On the other hand, X ≤ 〈X,W g〉 ≤ XRg = XR. Hence
|〈X,W g〉 : X| is a q-number. Then either Xi−1 is normal in Xi and Xi/Xi−1
is a q-number or Xi/CoreXi(Xi−1) is a σ2-group for all 1 ≤ i ≤ n.

We prove that Oσ2(〈X,W g〉) = Oσ2(X). First we see that Oσ2(〈X,W g〉) =
Oσ2(Xn−1). Clearly Oσ2(Xn−1) ≤ Oσ2(〈X,W g〉) = Oσ2(Xn). Assume that
Xn−1 is a normal subgroup of Xn. Then Oσ2(Xn−1) is a normal subgroup of
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Xn. Therefore Xn/Oσ2(Xn−1) is a σ2-group and we have that Oσ2(Xn−1) =
Oσ2(Xn). Assume that Xn/CoreXn(Xn−1) is σ2-group. Then it follows that
(Xn/Oσ2(CoreXn(Xn−1)/CoreXn(Xn−1)/Oσ2(CoreXn(Xn−1)) is isomorphic to
Xn/CoreXn(Xn−1). Hence Xn/Oσ2(CoreXn(Xn−1)) is a σ2-group. This im-
plies that Oσ2(Xn) ≤ Oσ2(CoreXn(Xn−1)) ≤ Oσ2(Xn−1). Consequently,
Oσ2(〈X,W g〉) = Oσ2(Xn) = Oσ2(Xn−1). Arguing by induction we have that
Oσ2(〈X,W g〉) = Oσ2(X0) = Oσ2(X) ≤ X.

SinceX/Oσ2(〈X,W g〉) is σ-nilpotent,XNσ ≤ Oσ2(〈X,W g〉). SinceX/XNσ
is a p-group, and p /∈ σ2, we have that Oσ2(〈X,W g〉) = X and then X
is a normal subgroup of 〈X,W g〉. Since it holds for every element of A,
we have that X is a normal subgroup of XWA. Hence [X,WA] ≤ X.
Moreover [X,WA] ≤ [X,R] ≤ R. Therefore [X,WA] ≤ X ∩ R. Since
(X∩R)XNσ/XNσ = 1 (notice that it is a p-group, with p ∈ σ1, and a q-group,
with q ∈ σ2), we have thatX∩R = XNσ∩R = W . Thus [X,WA] ≤ W ≤ WA

and X normalises WA. This means that WA is a normal subgroup of
G = 〈X,A〉. On the other hand, WA 6= 1 since W 6= 1. Since XWA/WA

satis�es the hypothesis of the lemma in G/WA = (AWA/WA)(BWA/WA)
by Lemma 1 (4), it follows that XWA/WA is σ-subnormal in G/WA by the
choice of G. Then XWA is σ-subnormal in G by Lemma 1 (5). Then the
normality of X in XWA implies that X is σ-subnormal in G by Lemma 1 (2).
This contradiction completes the proof.
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