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Augmented Perception for Agricultural
Robots Navigation

Francisco Rovira-Más , Verónica Saiz-Rubio, and Andrés Cuenca-Cuenca

Abstract—Producing food in a sustainable way is becom-
ing very challenging today due to the lack of skilled labor,
the unaffordable costs of labor when available, and the
limited returns for growers as a result of low produce
prices demanded by big supermarket chains in contrast
to ever-increasing costs of inputs such as fuel, chemi-
cals, seeds, or water. Robotics emerges as a technological
advance that can counterweight some of these challenges,
mainly in industrialized countries. However, the deployment
of autonomous machines in open environments exposed to
uncertainty and harsh ambient conditions poses an impor-
tant defiance to reliability and safety. Consequently, a deep
parametrization of the working environment in real time is
necessary to achieve autonomous navigation. This article proposes a navigation strategy for guiding a robot along
vineyard rows for field monitoring. Given that global positioning cannot be granted permanently in any vineyard,
the strategy is based on local perception, and results from fusing three complementary technologies: 3D vision, lidar,
and ultrasonics. Several perception-based navigation algorithms were developed between 2015 and 2019. After their
comparison in real environments and conditions, results showed that the augmented perception derived from combining
these three technologies provides a consistent basis for outlining the intelligent behavior of agricultural robots operating
within orchards.

Index Terms— 3D Vision, field robotics, autonomous navigation, digital farming, local perception, sensor fusion.

I. INTRODUCTION

THE turn of the 21st century coincided with the appearance
of off-the-shelf commercial stereo cameras, which made

3D perception accessible to many on-vehicle and outdoors
applications due to their compactness, easy connectivity, and
reasonably fast correlation algorithms that solved the stereo
matching in real time. Previous attempts [1] showed the
great potential of 3D perception in general, and stereo vision
in particular, but had required bulky rigs where physically
keeping the stereo geometry of binocular assemblies, devel-
oping their own matching algorithms, and finding capable
computers to make calculations fast, practically discouraged
any chance to work outdoors from moving vehicles. The
advent of compact stereo cameras, in combination to the
availability of more powerful processors, however, changed
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such landscape. The Census algorithm [2], for example,
offered a reliable correlation software that generated 3D point
clouds for images of common resolution (320 × 240) in real
time from any standard laptop. Solutions like this opened
a wide range of applications for agriculture, beginning with
pioneering experiences on autonomous navigation of tractors
for fields structured in crop rows, back in 2004, by analyzing
the morphology of disparity images [3], the detection of
obstacles for safeguarding in 2005 [4], and the creation of 3D
crop maps from terrain [5] and aerial [6] vehicles. This
innovative work led to the concept of 3D density for the
real-time analysis of three-dimensional point clouds obtained
with compact stereoscopic cameras [7]. This stereo analysis
based on density grids made of regular cells has been the core
algorithm of the safety system developed for an autonomous
rice harvester. The machine was guided with a multi-GNSS
receiver and a GPS compass, but the 3D perception algorithm
for detecting obstacles, in particular people standing in paddy
fields, was proved to be efficient, except for a blind zone in the
close vicinity of the camera where stereo matching was not
possible [8]. Time of flight (TOF) sensors offer a promising
alternative to stereo vision, where a matrix of infrared beams
produce 3D point clouds of a scene. In comparison, stereo
vision provides –at present– more resolution (number of pixels
or points), but TOF sensors are active sensor with their own
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illumination source, and therefore they are independent of
natural illumination, working both during the day and at night.
In an experiment conducted in a laboratory setting, a 3D
Kinect sensor was used to operate a robotic manipulator to
sample leaves, using a 3D occupancy grid to find collision-free
paths [9]. Even though 3D perception provides a faithful
reconstruction of the surrounding environment as a result of
a point cloud, where each point can be well determined by
its three Cartesian coordinates (x, y, z), monocular vision is
also capable of retrieving the visual cues needed to assist an
autonomous vehicle. Such an assistance was implemented to
control deviations from pre-planned paths for a tractor guided
by combining an RTK-GPS and monocular vision. The camera
produced fine-tuning corrections to achieve a more precise
steering, in addition to contribute to obstacle detection for
safeguarding by using color bands and texture analysis [10].

The development of GPS-based autonomous guidance for
agricultural equipment operating within commodity crop
fields, typically tractors, harvesters and self-propelled sprayers,
was intense after year 2000 when GPS selective availabil-
ity was cancelled by the US Department of Defense for
free civilian use. However, the situation for orchards and
groves was the opposite due to the uncertain signal visibility
caused by dense –sometimes tall– canopies. For this situation,
the aid supplied by local perception sensors is crucial. An
alternative to machine vision, mostly when stereo vision
still resulted computationally expensive, was represented by
laser rangefinders, as the row-following algorithm based on
the Hough Transform to guide a utility vehicle equipped
with two laser rangefinders located at its front corners [11].
As important as the sensing devices becomes the processing
algorithms to convert point sets into meaningful steering
commands. A single 2D laser scanner was mounted on a
commercial robotic platform to compare navigation algorithms
in an apple orchard. The experiment showed that a particle
filter produced better results than the Kalman filter [12].
Even though commercial laser rangefinders, also known as
lidars, are quite accurate in their range measurements, the fact
that a unique beam needs to sweep the space ahead of the
vehicle poses some challenges for off-road conditions where
shocks and vibrations are permanent. This problem has been
circumvented by using a set of several rangefinders, which
makes the solution bulkier and currently too costly for orchard
equipment. A row following system based on fixed laser scan-
ners and wheel encoders was implemented in various robotic
vehicles under the Comprehensive Automation for Specialty
Crops project (CASC), which evidenced the actual benefits
inherent to this sensing technology [13]. The vehicle that
won the DARPA Grand Challenge in 2005, the robot Stanley,
featured five lidars and six processor computing platforms,
which offered a solution for an off-road environment very
different from orchard settings, where predefined structures
exist as trees follow ordered rows, and the traveling speeds are
low in comparison to the average velocity reached by Stanley,
about 33 km/h [14].

Both lidar and machine vision solutions mentioned above
do not suffice, independently by themselves, to constitute a
general framework that solves the problem of autonomous

navigation inside orchards arranged by equidistant rows.
Therefore, a combination of diverse technologies actuating
synergically leads to results with higher robustness, something
that was detected early on [15] and still continues being
applicable [16]. Although an orderly array of quasi-parallel
rows seems, a priori, an affordable task, the challenge is
immense. There are no two equal rows, and even repeating
the same rows is usually different depending on the wind,
soil conditions, and the always-changing illumination pattern.
As a result, redundancy and sensor fusion need being the norm
for orchard navigation with robots. In addition to imaging
sensors and lidars, ultrasonic devices also provide ranging
information for short-range distances, as those measured in
the tight surroundings encountered when performing headland
turns [17]. The benefits brought by local perception sensors
to the automation of agricultural vehicles has made equip-
ment manufacturers start considering them for commercial
solutions. Claas, for instance, has introduced a color stereo
camera for steering implements in fields with structures that
can be identified by colorimetric, textual, or height informa-
tion [18]. Similarly, John Deere presented a concept trac-
tor equipped with a stereovision binocular camera in the
tradeshow Agritechnica in 2019. The robot Bakus, on the
other hand, integrates eight time-of-flight sensors that cover
the entire vicinity of the vineyard robot during the day and at
night [19]. The interest of industry in robotics for agriculture,
and the fact that perception sensors are being considered in
various assemblies and solutions to grant stability in vehicle
automation, indicate the relevance of finding reliable percep-
tion solutions for automating agricultural equipment.

II. 3D PERCEPTION FOR OPEN ENVIRONMENTS:
CHALLENGES AND SOLUTIONS IN AGRICULTURE

At the dawn of artificial intelligence, it was soon made
evident that developing a General Problem Solver was not
the way to go [20], as even though a computer program was
capable of simulating human behavior in a first approximation,
it did it successfully only in a narrow domain. Well-determined
problems, such as chess or checkers, were attainable with
highly focused algorithms, but a complete understanding of
the problem to solve was indispensable. Likewise, agricultural
environments are too diverse and complex for attempting a
common solution within robotics. However, a set of require-
ments unambiguously defined is essential for deploying an
autonomous robot in open environments. Requirements for
covering many vineyards in Europe can be a row spacing
between 1.5 m and 3 m, canopies structured in vertical
trellises, and slopes below a certain angle, say 15◦. For
the case of the vineyard robots considered for this study,
the problem of navigation is split into two independent modes:
inside-row guidance and headland turning. Given that the
scope of this research considers perception-based navigation
rather than solutions based on GNSS positioning, the structure
of the environment is key. Unlike planetary and military rovers
that also traverse off-road terrains, agricultural vehicles are
subjected to regular structures except for the case of farming
barren fields. However, the diversity of environments requires
dealing with the specificity of each particular situation, such
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Fig. 1. Layouts for crop row structures (a) and orchard row structures (b).

that a successful solution begins by successfully understanding
and characterizing the surrounding environment. In general,
the morphology of agricultural fields can be classified as crop
rows (Fig. 1-a) or orchard rows (Fig. 1-b). Although they may
seem equivalent from an aerial perspective, the challenges
posed for autonomous navigation of ground vehicles are totally
different, as well as their perceptive features. Several crop rows
are typically tracked simultaneously, whereas only the two
bounding (left-right) rows are visible for orchard guidance.
In addition, orchards create higher risks as vehicles tend to
be squeezed between thick canopies, with little room for
steering corrections, and with likely chances of damaging
valuable assets. Crop row guidance greatly benefits from
GNSS solutions, as large equipment usually places antennas
several meters above crops. In orchard layouts, however,
satellite signals are many times blocked or reflected (multi-
path errors) by large canopies over medium-size machinery;
for these cases, perception-based navigation and safeguard-
ing is essential. Fig. 1 illustrates the structural differences
between crop rows (soybeans) and orchard rows (cherry
trees).

A fundamental precept for perception-based navigation is
the presence of features from which extract guidance and
safety commands. Furthermore, not only the presence but also
the properties of surrounding objects have a strong influence
on the performance of these navigation systems. Stereoscopic
vision, for instance, strongly relies on the texture of sur-
rounding canopies for the right execution of the correlation
algorithm, whereas the reflective properties of vegetation are
fundamental for lidars and sonar rangefinders. Apart from
the influence exerted by the specific properties of vegetation
on the behavior of perception sensors and their capacity to
sense the surrounding environment, the fact that agricultural
robots must work outdoors in harsh environments, conditions
their long-term performance as well as their cost-efficiency
opportunities. The temperature and humidity conditions found
in many farms are usually ruinous for electronic boards
and components, which aggravates by vibration and shocks
induced by rough terrain and a not always advantageous sus-
pension system. Military-certified components with protection
indices above IP-65 are convenient for these environmental
conditions, but unfortunately, they are out of reach for most
agronomical solutions in which cost, market competition, and
a favorable return of investment are decisive factors. Fig. 2
shows the effects of ambient temperature on a stereoscopic
camera used in a Portuguese vineyard that exceeded 40◦ C.
The vision sensors overheated and the red color of the RGB
CMOS imager was momentarily lost.

Fig. 2. Effects of ambient temperature on a stereo camera:
(a) Temperature below 30◦; (b) Temperature above 40◦ C causing the
loss of the red color component in the RGB CMOS sensor.

This article focuses on inside-row guidance of robots oper-
ating in vineyards. A preliminary study of headland turning
strategies for guidance in vineyards is available in [17], and
the safeguarding algorithm for obstacle detection implemented
in the developed robots falls outside the scope of this article,
as it operates according to a different logic even though
it utilizes the same sensor suite. Each guidance mode –
inside-row and headland turning– presents its own challenges
for stable navigation and reliable safeguarding. The reader
should never be misled by the apparent geometrical simplicity
of navigating inside well-determined vertical walls made of
leaves and branches. Just the fact that we are dealing with
live organisms introduces high doses of uncertainty and the
occurrence of special situations. One such case is the presence
of large gaps within canopies caused by dead or severely
damaged vines. Large gaps create complex situations for
navigation algorithms relying on the features of the scenes
ahead of the vehicle. When large gaps coincide in both sides
simultaneously, the robot might get confused and engage the
headland turning routine. Another control challenge may come
from the unpredictable response of the suspension system to
the terrain, which may depend on the status of the soil (farmed
or untilled), its moisture content, and even the tractive capacity
for a given battery power. Boundary rows and irregular row
ends, where one side is significantly longer than the other,
also require additional capacities from the navigation system.
A commercial vineyard consists of many rows and the con-
ditions of all of them are normally unknown. There is an
abyss between a 10-minute demonstration and a solution that
must work for hours, where the simple fact of losing battery
power with time typically affects the vehicle dynamics and
its navigation accuracy. The following sections describe the
strategies for guiding a ground robot within vineyard rows
after facing all the challenges mentioned above.

III. AUGMENTED PERCEPTION FOR

LOCAL-BASED NAVIGATION

The navigation algorithm for inside-row guidance mode
relies on the Augmented Perception two-dimensional (2D)
Obstacle Map (APOM), which roots in two principles:

a) The APOM is a discrete division of the 3D space
surrounding the vehicle and consists of square cells,
which may be filled by a set of perception sensors of
three diverse working natures and covering ranges.
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b) The APOM populating procedure is not expected to be
random; occupied cells are supposed to align around
two high-density nuclei representing the rows ahead
of the vehicle providing the guidance features. Further
geometrical derivations will depart from this assumption.

The rationale behind the way augmented perception has
been physically articulated in the APOM obeys to two facts:
1) sensor redundancy is necessary because electronic devices
are prone to fail or perform under expectation when used
repeatedly over long periods of time, mainly outdoors; and
2) perception sensors typically excel for a determined limited
area, but lose consistency as targets move away from it; there-
fore, the complementarity of field of views adds robustness
to the solution. Three range levels, in particular, are defined
within the APOM:

a) Long ranges zone: pointing ahead between 4 m and
8 m from the sensing head, this zone is instrumental
to calculate the target point towards which the robot
is directed. It provides mild corrections and smooth
navigation.

b) Short ranges zone: pointing ahead below 4 m from the
sensing head. This zone produces corrections that are
more reactive but it is key to keep the robot at a safety
distance from canopies.

c) Close vicinity zone: covers a 2 m ring around the robot,
it is highly reactive, and basically exerts safeguarding
corrections to re-center the robot or stop it in the
presence of interfering obstacles.

The first stage for the implementation of the inside-row
guidance algorithm is the creation of the APOM, being the
final output the position (xt, yt) of the target point Pt in it. With
this position, the onboard navigation control system calculates
the front-wheel Ackerman angle θ that needs to be steered
for the robot to reach Pt. The APOM will be populated with
the measurements retrieved from the 11-beam lidar sensor and
the 3D stereo camera. The definition and origin of coordinates
for both sensor must be the same. Notice that the lidar
produces flat coordinates as it senses in a plane, whereas
the 3D camera provides the three Cartesian dimensions. The
origin of coordinates was located in the symmetrical plane
of the robot at ground level, as indicated in Fig. 3, which
also illustrates the definition of the Cartesian frame [X, Y, Z].
Let CL = {(xL,yL)1, …, (xL,yL)k} be the set of coordinates
retrieved from the lidar sensor, and let CV = {(xV,yV,zV)1,
…, (xV,yV,zV)m} be the set of point cloud coordinates output
by the stereoscopic camera. These sets of coordinates are
bounded by the number of beams in the lidar, and by the
image resolution set in the camera for every sample obtained
at a given cycle time of the central computer running the
perception engine. For the particular case of the robot shown
in Fig. 3, the number of lidar beams is 11 (k ≤ 11) and the
image resolution of the stereo camera is 640 pixels in the
horizontal dimension by 480 pixels in the vertical dimension
(m ≤ 640 × 480). Fig. 3 also shows the stereo camera located
at 1.05 m from the ground and tilted 10◦ downwards, whereas
the lidar beams scan a horizontal plane parallel to the ground
at a height of 0.9 m. The perceptual capacity of the sensors

Fig. 3. Definition of coordinate system used in the robotic platform.

depends on their respective specifications, but the calculation
of coordinates is always prone to errors. To avoid severe
outliers, the elements of CL and CV were limited to logic
values through the concept of the Validity Box [5], which
establishes the logical limits for both types of coordinates and
for a given agricultural environment according to (1):

Pi (x, y, z) ∈ VBOX ⇔

⎧⎪⎨
⎪⎩

Xmin ≤ x ≤ Xmax

0 ≤ y ≤ Ymax

Zmin ≤ z ≤ Zmax

(1)

Although the APOM has been defined to cover the entire
surroundings of the vehicle, the geometrical calculation of the
target point Pt for inside-row guidance only uses the perception
information of the lidar rangefinder and the 3D stereo camera,
both of which can only sense ahead of the vehicle, and
therefore cannot yield negative values for the Y axis as stated
in (1). The four sonar sensors covering the close vicinity
of the vehicle, however, provide emergency corrections and
safeguarding commands but do not populate the APOM for
the calculation of Pt. The active APOM, therefore, will only
consider the positive side of the Y axis. If c is the size of
the square cell (Fig. 4) in the active grid that represents long
and short ranges determined by the lidar and the camera,
the dimensions for the grid are bounded by (2). For the vehicle
shown in Fig. 3, the active grid has dimensions 50 cells ×
80 cells, being c = 0.1 m, which implies an area of 5 m
× 8 m = 40 m2 covered ahead of the robot in the forward
direction, as depicted in the schematic of Fig. 4.

dim (active APOM)

{
XG = ∥∥(Xmax − Xmin) /c

∥∥
YG = ∥∥Ymax/c

∥∥ ;
XG , YG ∈ N (2)

To fill the active APOM grid, all the coordinates included
in the sets CL and CV that fall inside the validity box have
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Fig. 4. Layout for the APOM and its active grid zone.

to be discretized. As dim(CL) + dim(CV) is usually greater
than (XG · YG), it is common to have cells containing various
points. The function γ L is defined to hold the content of a
given cell based on lidar readings; when two locations coincide
in the same cell, γ L increases its value in one. The procedure
to discretize the coordinate positions of CL is similar to the
calculations of (2), as detailed in (3):

∀
(

x L, y L
)

i
∈ CL →

{
LV = ∥∥y L/c

∥∥
L H = ∥∥(x L − Xmin)/c

∥∥ ;
LV , L H ∈ N (3)

The filling of the grid with the data coming from the
3D point cloud retrieved by the stereoscopic camera requires
several intermediate steps. The purpose of these steps is the
normalization of the content of the cells such that the function
γ V is uniform regardless of the position of the cell, given that
closer objects are represented by a larger number of pixels in
stereo cameras, due to a horizontal field of view (43◦ in this
case) that expands as the distance from the camera grows [7].
The way to process the 3D point cloud was based on the
concept of 3D density [7], by which all the stereo-correlated
points of the cloud within the validity box were fit into the
cells of the active APOM grid. Notice that 3D points have a
z component, and therefore, all points for which Zmin ≤ z ≤
Zmax were enclosed in the same cell according to the following

discretization (4):

∀
(

x V , yV , zV
)

i
∈ CV →

{
VV = ∥∥yV /c

∥∥
VH = ∥∥(x V − Xmin)/c

∥∥ ;
VV , VH ∈ N (4)

The number of points that fall inside a given cell of
coordinates (VH,VV) is denominated its 3D density, and it
is represented as D(VH,VV) ≥ 0. The normalized density DN
that compensates for the loss of resolution in far ranges is
given in (5), as proved in [7], and it corrects the density for
ranges farther than 3 m while leaving unchanged those cells
closer than 3 m from the camera:

DN (VH, VV) =

⎧⎪⎨
⎪⎩

D (VH, VV) ·
(

VV · c

3

)2

VV · c > 3

D (VH, VV) Otherwise
(5)

Not all the cells with DN > 0 are representative of
occupancy and therefore pointing at actual plant rows, as point
clouds are typically corrupted with a small number of noisy
outliers. The definition of the γ function for the stereo cam-
era, namely γ V(6), accounts for scattering noise through the
application of a threshold TH that assures that only cells with
high density pass to the final composition of the augmented
obstacle map APOM. If TH is the threshold to discriminate
obstacles from empty space, the definition of γ V is:

γ V (VH , VV )=
{

1 DN (VH , VV )>TH·max(DN ) ; 0≤TH≤1

0 Otherwise

(6)

Once the functions γ L and γ V have been defined for both
sources of perception information, their content can be merged
in a unique map that will populate the active grid of the
APOM under the fusion function �(h, v) described in (7).
However, for the merging function and augmented map to be
coherent, the distance units of c, validity box boundaries (1),
and coordinates of sets CL and CV have to be necessarily
the same, for example meters; in such case, (LH, LV) points
at the same cell as (VH, VV), and therefore coordinates may
be simplified to the notation (h, v) of (7). Let n = XG·YG
be the resolution of the active grid, let = {γ L (1,1), γ L

(1,2), …, γ L (XG,YG)}n indicate the set of cells activated
by the lidar rangefinder, let = {γ V (1,1), γ V (1,2), …,
γ V (XG,YG)}n indicate the set of cells activated by the stereo
camera. The active grid holding the information needed for the
calculation of the target point Pt is the union of both sets, i.
e., APOM ≡ ∪ . The diverse nature of the sensors advises
for a weighted union in the merging of both sets to yield �.
In particular, the lidar produces more accurate readings than
the stereo camera, but the fact that just a limited number of
beams is readily available each cycle, results in an unbalanced
filling of the grid, where lidar readings are scarce but very
reliable and stereo-based points are numerous but prone to
noise. In order to make lidar perception more consistent in the
augmented grid, each cell activated by the lidar automatically
activated the two cells immediately above and below, as can be
seen in the red cells of the grids depicted in Fig. 5. The higher
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accuracy and reliability of lidar, however, was mathematically
conveyed to the final grid by the introduction of weighting
constants KL and KV, as shown in the formal definition of
� given in (7). In the final version of the navigation system,
which yielded the grids of Fig. 5, KL = 3 and KV = 1. It is
important to keep in mind that the function �, that determines
the content of the cells in the grid, can only admit nonnegative
integers, i. e., natural numbers. In (7), the horizontal position
h coincides with VH and LH, as well as the vertical position
v in the grid is equivalent to positions VV and LV calculated
in (3) and (4).

�(h, v) = KV · γ V (VH, VV) + KL · γ L (LH, LV) ;
∀ h, v C APOM/h ≤ XG, v ≤ YG; �(h, v)εN (7)

At this point, the active grid of APOM represented in Fig. 4
is populated according to the � function of (7). The following
operations have the purpose of analyzing the grid to identify
the guiding rows as the perceptual features to determine the
best position for the target point to which the robot will
be guided. The first stage consists of subdividing the grid
into six equal operational zones, as outlined in Fig. 4 and
mathematically defined in (8) through the occupancy matrix
OM. Notice that indices h and v in (8) must be positive
integers, and therefore the limits of the summations in (8)
have been ideally set at a fraction of grid limits XG and YG,
such as XG/2 and YG/3. However, a limit ideally set at YG/3,
in practice means that one summation will end at ||YG/3||
and the consecutive series will initiate at ||YG/3 || + 1. The
components of the occupancy matrix omij are basically the
counting of the occupied cells within each operational zone.

O M
def=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

om11 = ∑XG
2

h=1

∑YG
3

v=1 �(h, v)

om12 = ∑XG

h= XG
2

∑YG
3

v=1 �(h, v)

om21 = ∑ XG
2

h=1

∑2· YG
3

v= YG
3

�(h, v)

om22 = ∑XG

h= XG
2

∑2· YG
3

v= YG
3

�(h, v)

om31 = ∑ XG
2

h=1

∑YG

v=2· YG
3

�(h, v)

om32 = ∑XG

h= XG
2

∑YG

v=2· YG
3

�(h, v)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

omij ∈ N (8)

After the six regions of the grid have been mathematically
defined by (8), the subsequent geometrical parameters are cal-
culated for each specific region omij. The first such parameter
is the cumulative profile CUMij(h) defined in (9):

CUM11(h) =
∑∥∥∥ YG

3

∥∥∥
v=1

�(h,v); h =1, . . . , �XG/2�

CUM12(h) =
∑∥∥∥ YG

3

∥∥∥
v=1

�(h,v); h =�XG/2� + 1, . . . , XG

CUM21(h) =
∑2·

∥∥∥ YG
3

∥∥∥
v=

∥∥∥ YG
3

∥∥∥+1
�(h,v); h =1, . . . , �XG/2�

CUM22(h) =
∑2·

∥∥∥ YG
3

∥∥∥
v=

∥∥∥ YG
3

∥∥∥+1
�(h,v); h =�XG/2�+1, . . . , XG

CUM31(h) =
∑YG

v=2·
∥∥∥ YG

3

∥∥∥+1
�(h,v); h =1, . . . , �XG/2�

TABLE I
DEFINITION OF PERCEPTION SITUATIONS

CUM32(h) =
∑YG

v=2·
∥∥∥ YG

3

∥∥∥+1
�(h,v); h =�XG/2�+1, . . . , XG

(9)

The cumulative profile of (9) was used to calculate the
moment Mij, whose expression for the first zone M11 is given
in (10), being the rest of moments Mij for the rest of the
zones easily deducible using the same procedure as in (9)
and (10). Associated with the moment, and following the same
philosophy, the summation of the cumulative profile SUM11
was calculated according to (11). Notice that the summation
of the cumulative profile for a given operational zone is
equivalent to the amount of cells in that zone, which implies
that omij = SUMij.

M11 =
∑�XG/2�

h=1
((�XG/2� − h) · CUM11(h)) (10)

SUM11 =
∑�XG/2�

h=1
CUM11(h) (11)

The objective of calculating moments is detecting the
highest likelihood, within operational zones omij, of locating
vegetation rows based on perceptual evidences. Taking into
account that the algorithm expects parallel rows ahead of the
vehicle, each zone resulted in one expected placement for the
section of the row given by function L and defined in (12)
for both the left and right side of the field of view. The
alignment of Lij in well-populated zones was an indication
of reliable perception and thus led to stable estimations of
the target point. Misalignments and scarce filling of the grid
anticipated complex navigation scenarios. Some examples of
the calculation process until the estimation of the position
of the rows given by function L is shown in Fig. 5. The
morphology of occupancy matrix OM resulted in the definition
of the six perception situations enunciated in Table I.

Li j
def=

⎧⎨
⎩

Li1 =
∥∥∥ XG

2 − Mi1
SU Mi1

∥∥∥
Li2 =

∥∥∥ XG
2 + Mi2

SU Mi2

∥∥∥ ;
i = 1, 2, 3; j = 1, 2; SUMij �= 0 (12)

The specific results derived from the calculation of the occu-
pancy matrix OM in (8) provide the evidence of the perception
reality ahead of the robot, and therefore are determinant to
choose one expected situation from the list given in Table I.
In particular, two activation modes were defined according to
(14) and (15): high activation and low activation. In physical
terms, high activation represents a strong evidence of feature
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TABLE II
ACTIVATION OF SITUATION 2

existence (canopy and supporting structure), whereas low acti-
vation implies a weaker evidence and thus major uncertainty
in the identification of guidance patterns.

OM = max
1≤i≤3

1≤j≤2

omij (13)

High activation δH
ij ⇔ omij ≥ ∥∥0.4 · OM

∥∥ (14)

Low activation δL
ij ⇔ omij ≥ ∥∥0.2 · OM

∥∥ (15)

The preceding set of equations, in particular (8), (14), and
(15), enunciate the conditions that place the robot in one of
the situations defined in Table I. Only situations 1, 2, and
3 will lead to the calculation of the target point, which will
be computed with the application of (9) to (12). Situation 0,
to begin with, represents the absence of features, which is
an indicator of a failure in the perception system (all sensors
failing) or the possibility of the robot getting out of the field
by mistake, or even large unexpected gaps at both side rows.
In any case, the situation is unstable and requires stopping the
robot motion. From a practical standpoint, we can consider
that the occupancy matrix OM is empty (situation 0), allowing
for occasional momentary noise, with less than a value of one
(omij = 1) per operational zone in average, i. e., less than
a sum of six for the entire grid, as mathematically defined
in (16). ∑3

i=1

∑2

j=1
omij ≤ 6 (16)

The logic conditions for meeting situation 2 make use of
the activations states δH

ij and δL
ij defined in (14) and (15),

according to the combinations stated in Table II. Any of the
seven conditions of the table will activate situation 2, which
according to Table I indicates that the left row has been
detected by the perception system, and therefore is eligible
for the calculation of the target point PT.

In a similar fashion to the logic rationale for activating
situation 2, Table III provides the combinations to fire situation
3, which indicates a correct detection of the right row in
Table I.

Situation 1, which is the most desired in terms of stability,
occurs when both situations 2 and 3 are simultaneously
activated, as determined by Tables II and III. For between-
rows guidance purposes, only situations 1, 2, and 3 are valid,
as are the ones used to calculate the target point, which in
turns determines the steering angle sent to the front wheels.
Situations 10 and 11, by contrast, indicate a potential collision

TABLE III
ACTIVATION OF SITUATION 3

risk whose anticipation requires a sharp reaction with no need
of knowing the ideal position for the target point, obviously
without value in such circumstances. The activation of situ-
ations 10 and 11 combines information from the occupancy
matrix –just like the operations firing situations 2 and 3– with
lidar and sonar specific constrains.

A. Calculation of the Target Point Pt

The position with the highest likelihood for the left and
right vegetation rows that serve as guidelines is given by (8)
and (12) according to the rate of occupancy found in OM.
Situations 2 and 3 (Table I) only perceive one of the guiding
rows, and therefore are forced to position the target point
displaced half the row spacing from the detected row bound-
ary given by function L (12). Situation 1, on the contrary,
locates both guiding lines within the APOM, and Pt will
reside in the geometrical locus that is equidistant from both
estimated row boundaries (12). Each operational zone with
the proper filling of its cells will lead to an estimated line
position Lij, as graphically represented in Fig. 5. The particular
section of the line Lij that intervenes in the calculation of
Pt (xt, yt) depends on the activation of specific omij. Situ-
ation 1, for instance, made use of 16 logic propositions to
determine the horizontal position (ht) of Pt in the APOM.
The vertical position (yt), was calculated as the sum of the
look-ahead distance of 5 m and the wheel base (0.6 m in the
robot of Fig. 3). Fig. 5 shows diverse real scenarios in which
the APOM has been populated with a 3D stereoscopic camera
(green cells) and a multi-beam lidar (red cells). Each grid also
depicts (in blue) the six lines Lij, given by (12), pointing at
the best estimates for the row boundaries, together with the
resulting position for Pt in the grid. In the two scenes portrayed
in Fig. 5, vine variety, soil conditions, and row spacing were
different (left vineyard in Portugal; right vineyard in Spain).
Notice on the right scene that when the 3D perception (canopy
represented with green pixels) was lost for the right row,
the lidar marked the position of that row for the estimation of
L22 and L32, proving the value of augmented perception for
a reliable solution. In this case, the proper position of Pt was
determined without the participation of L12 in the calculation
of Pt because om12 was empty.

IV. METHODS FOR ANALYTICAL COMPARISON

The evaluation of a perception system for autonomous nav-
igation must be based on the real capacity of the auto-steered



ROVIRA-MÁS et al.: AUGMENTED PERCEPTION FOR AGRICULTURAL ROBOTS NAVIGATION 11719

Fig. 5. Calculation of the target point in the APOM for real scenarios in
commercial vineyards.

vehicle to navigate safely in relevant environments while
executing a task efficiently. This is easy to check by visual
inspection over a limited period of time, but very complex –if
not inviable– to quantitatively assess for any possible environ-
ment (complying with the design requirements) encountered
during the life span of the vehicle. In order to validate the
proposed multi-perception strategy, we will use five different
evaluation procedures, none of which perfect by itself, but in
conjunction providing a useful assessment of the performance
of the navigation algorithm embedded in the robot. To begin
with, the observable results are the coupled effect of the
perception algorithm and the control system executing the
steering commands. Therefore, a tight maneuver might be
the result of a poor calculation of the steering command,
or the inadequate actuation of the steering mechanics, or very
likely both in certain degree of participation.

In addition to the coupling effect of the control system actu-
ating on the front wheels, there is another handicap affecting
the evaluation of navigation performance: the lack of a well-
determined reference allowing a quantitative and objective
assessment of deviations without ambiguity. It is obvious that
an autonomous vehicle must circulate between adjacent rows
without touching them, but after traversing several rows with-
out crashing, the question to answer is which one had a better
performance, and what made it be the optimal. GPS-based
navigation has been evaluated in especially designed tracks,
where key parameters are under control and the track is very
accurately geographically referenced. However, this solution
makes no sense for perception-based navigation where the

Fig. 6. Evaluation of guidance performance with lime-marked trajecto-
ries.

surrounding environment is continuously changing. Even the
same rows when the canopies grow, there is wind, or the soil
conditions vary offer a completely different situation. As a
result, a dynamic evaluation, which would be very difficult
to replicate in a reference track, is necessary. A dynamic
method to evaluate the performance of auto-guidance in the
field without the need of fixed reference tracks was developed
in [21], but it relies on the accurate recording of the reference
trajectory, which requires a very precise GNSS receiver with
sub-inch errors (RTK) and the assistance of a very skillful
driver, both of which difficult to assure in the field in a
regular basis. The methods described below bring together
complementary views of the principal goal of evaluating nav-
igation performance, and although the following sections will
analyze some particular runs of various fields and conditions,
the strength of the methodology resides in the capacity of
analyzing many rows under all kind of conditions; only by
conducting massive analytical comparisons will we be able to
conclude on the superiority of one algorithm over the rest.

The first evaluating method is very straightforward, and
consists of dropping lime powder as the robot moves forward
to draw the actual trajectory followed in autonomous mode.
Once the trajectory was drawn over the ground, deviations
from a geometrical centerline that is equidistant to the poly-
lines defined by the vine trunks at both sides were manually
measured with a tape. Fig. 6 illustrates the procedure and
Fig. 7 plots the results of applying this procedure. The sec-
ond method focuses on the monitoring and analysis of the
perception situations defined in Table I. As the objective is
the evaluation of inside-row guidance, those situations leading
to the calculation of the target point Pt will be favorable,
i.e., 1 to 3, whereas the rest will indicate the activation of
warning signs and correcting commands. The third approach
takes advantage of the lateral distance measured by the side
sonars. The more centered the vehicle is, the closer these
two distances will be among them. If LS is the distance to
the canopy measured by the left sonar (cm), and RS (cm) is
the corresponding distance measured by the right-side sonar,
we can define the left-right offset ratio ρ by expression (17),
where the most stable situation from the navigation stand
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Fig. 7. Analysis of deviations from virtual centerline: (a) GPS trajectory
of full row; (b) Deviations measured with lime dust.

point will occur when ρ → 0. Notice that LS and RS are
bounded in (17) by the physical limitations of the specific
ultrasonic sensors used. The fourth method focuses on the
precision in the execution of steering commands, and therefore
also accounts for the performance of the control system and
steering design, which as mentioned before, are coupled with
the behavior of the perception system. It is based on the
comparison of the profile of commanded steering angles and
the actual orientation of the front wheels measured by a linear
potentiometer (PC67, Gefran spa, Provaglio d’Iseo, Italy).
Finally, the last comparison method envisioned makes use of
the onboard electronic compass to assess heading stability,
under the hypothesis that smooth rides will be associated
to slight yaw fluctuations around a virtual centerline that is
equidistant from left and side rows.

ρ =
∣∣∣∣1 − RS

LS

∣∣∣∣ RS ∈ [8,200] ; LS ∈ [8,200] (17)

V. RESULTS IN REAL ENVIRONMENTS

A. Selection of Representative Runs and Coupling
Effects

The navigation strategy based on augmented perception pre-
sented in this article was developed along two research projects
lasting seven years, and the results obtained come from field
experiments conducted between 2015 and 2019 in commercial
vineyards of France, Spain and Portugal. The ideal experiment
would be that conducted in an invariant vineyard where con-
ditions are fully controlled and numerous test would succeed
over and over under permanent challenges. Unfortunately,
that is not possible in practice. The algorithms and sensing
capabilities of the robots have been improving along the time,
such that many vineyards under very different conditions were
tested. The specific characteristics of the testing runs along the
vineyard plots used in the upcoming analysis is included in
Table IV. Three different robotic platforms have been used
with diverse configurations for the perception engine. In this
section, we will compare such perceptive configurations for
vineyard rows that approximately present similar challenges
in terms of canopy structure, soil conditions, robot forward
velocity, and environmental hardships; and contrarily, we will

TABLE IV
SPECIFICATIONS OF THE TESTS USED IN THE ANALYSIS

analyze how a particular perception configuration reacts to
scenarios posing challenges of different nature. The compari-
son methods applied have been described in Section IV, and
in addition to the fact that diverse perceptive solutions were
compared using different vineyard rows in different moments,
results should be interpreted taking into account the coupling
effect of the steering control system on the final behavior
of the robot, which is the observable outcome upon which
measurements and comparisons may be carried out.

B. Analysis of Deviations From Virtual Centerline of
Trajectories Marked With Lime

Fig. 6 provides an overview of this experimental setup,
where a lime container with a vibrating implement was affixed
to the rear of a robot, placed in its geometrical center.
When the robot was engaged in autonomous mode, the lime
container dropped the white dust on the ground as the vehicle
moved forward, tracing the trajectory of the robot until the
container ran out of lime. Fig. 7a plots the full run where
only the first 16 m were measured with the lime trace. Fig. 7b
provides the detailed deviations for the 16 points measured,
with an approximate distance between adjacent points of 1 m.
The average deviation from the centerline was 7.6 cm. The
perception engine at the time of the tests (21 June 2016) only
used the forward-looking stereoscopic camera for inside-row
guidance.

C. Quantifying Inside-Row Navigation Complexity
Through the Comparison of Perception Situations

The perception situations enunciated in Table I provide
a quantitative means of tracking the events of sub-optimal
actuation, when the robots get too close to the vines for
a safe navigation. Situations 1 to 3, in particular, are con-
sidered reliable outputs of the perception system, whereas
10 and 11 indicate a risk of collision, and although the
vehicle usually got out of these situations and recovered the
centerline, the maneuver did not convey the stability desired
in autonomous guidance, while increasing the chances of an
accident. Showing stability for a demonstration run of a few
minutes is not a big problem, but what results interesting for
developing an autonomous vehicle is tracking stability and
behavior in the long run, where batteries are not fully charged,
computers may become overheated, sensors are exposed to
strong sun radiation, and new areas of the field never tra-
versed before may pose unforeseen challenges due to careless
canopies, unseen damage, unknown weeds, or rough terrain.
The objective of this analysis, and those in the remaining of
Section V, is twofold:
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Fig. 8. Trajectory followed by the robot in autonomous mode: (a) Series
C; (b) Series AA.

1. Demonstrate the advantageous performance of aug-
mented perception for autonomous navigation inside
orchard rows.

2. Develop a methodology to quantify the behavior of
local perception systems, especially those that combine
sensors working under diverse physical principles such
as vision, lidar, and sonar. This methodology should
be applicable in any relevant environment (unknown
beforehand) rather than pre-defined testing tracks.

Aligned with the second objective stated above, the first
challenge encountered in the field was to quantify the com-
plexity that any given orchard scenario poses to a determined
perception engine. The comparison of perception situations
(Table I) was conducted with the same robotic prototype in
two vineyards of the same region and cooperative (Data series
AA and C). Data were acquired with the robotic prototype
of Fig. 6, whose perception engine included a binocular
3D stereoscopic camera (Bumblebee 2, FLIR Systems, Inc.,
Wilsonville, OR, USA) for inside-row guidance and six low-
cost ultrasonic sensors (Ping, Parallax, Rocklin, CA, USA),
three of them facing forward, two looking sideways, and the
last one in the rear for reverse maneuvers over the headlands.
The classification of perception situations was basically driven
by the 3D stereo camera and the lateral sonars facing the
canopies. Both data series were recorded in Buzet-sur-Baïse,
France. Series C (5 September 2016) represents an ideal
vineyard, where canopies were carefully trimmed, weeds were
incipient or removed, and there was no slope or vegetation
gaps. Series AA (23 June 2016), in contrast, was acquired
in a complicated vineyard with certain slope and soft terrain
where the robot found tractive problems. Fig. 8a plots the six
rows of Series C that the robot traversed in autonomous mode
without any incident, and Fig. 8b represents the Series AA
trajectory followed by the same robot where in the middle of
the five rows the operator had to intervene once.

According to Table I, except for the case of situation 0 when
there is no perception, the ideal perception situation is 1,
situations 2 and 3 are weaker than 1, but still allow for
the calculation of the target point, and alerting situations are
penalized with scores 10 and 11. As a result, the summation
of perception situations with time will grow faster as more
unstable commands take place along the rows. To be able
to compare plots and series of different size, this summation
must be normalized by the number of data points, and the
situations related to the headland turns have to be removed

Fig. 9. Perception situations for Series C.

Fig. 10. Perception situations for Series AA.

from the series for the analysis, as we are analyzing inside-row
navigation. This way of charging over risky conditions from
the perception standpoint is similar to the idea of “weighing
evidences” proposed by Marvin Minsky [22], where weights
increase fast with unexpected orientations of the robot (head-
ing) and their consequent dynamic instability. Fig. 9 depicts
the perception situations detected in Series C after removing
the data at the headland turns, and Fig. 10 shows the same
plot for Series AA. Notice that situation 0 was assigned to the
headland turns in Figs. 9 and 10, as such perception situation
(sit 0 ≡ no features detected) was never detected during
runtime in any data series. Likewise, the earlier version of
the algorithm also included situation 4 to point the beginning
of the first headland turn, as it appears in both figures. Taking
the size of the data series from Table IV, the summation of
situations for Series C was 3742/3649 points = 1.02 whereas
for Series AA was 1943/1577 points = 1.23. The number
of situations 10-11 for Series AA was 35 after removing
the headlands, and for Series C was 8. If we calculate the
percentage of risky situations out of the number of points
recorded for inside-row guidance, the results are given in (18):

SAA = 35 situations 10 − 11

1577 points
· 100 = 2.2%

SC = 8 situations 10 − 11

3649 points
· 100 = 0.22%

⎫⎪⎪⎬
⎪⎪⎭ (18)

D. Navigation Stability From the Study of Left-Right
Offset Ratio ρ

The situations of Section V-C and Table I provide an esti-
mate of the overall performance of the perception algorithm in
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Fig. 11. Distance to side rows in straight guidance for Series C.

Fig. 12. Distance to side rows in straight guidance for Series AA.

the detection of guiding rows, but do not account for the actual
position of the robots related to the surrounding canopies.
However, the instantaneous measurement of the distance from
the robot sides to the bounding canopies provides an accurate
account of the capacity of the perception algorithm to keep
the robot close to the virtual centerline that is equidistant to
adjacent guiding rows. This account, therefore, should reflect
the intrinsic difficulty of any tested run, as well as allow the
numerical quantification of such difficulty. Figs. 11 and 12 plot
these measurements for Series C and AA, respectively. For
the former, the average left separation was 52 cm whereas
the average right separation was 56 cm. For the Series AA,
the average left separation was 76 cm and the average right
separation was 67 cm. The smaller differences between left
and right distances, the more centered the robot navigates.
The left-right offset ratio ρ of (17) avoids negative numbers
when the vehicle shifts from the left to the right side of the
centerline, and yields 0 when the robot is centered in the row.
The stability of runs, therefore, can be estimated by tracking
the summation of ρ normalized by the series size. Fig. 13
plots the ratio ρ for the C Series, and Fig. 14 shows the same
profile for Series AA. The summation of the offset ρ for Series
C was 699/3649 points = 0.19, whereas for Series AA was
350.8/1577 points = 0.22. Stability increases as the summation
of ρ approaches to 0. After removing the points associated
with the headlands, there were still invalid values for (17) that
were coded as 0 in Figs. 13 and 14. These null values altered
the calculation of the real average offset. After their removal,
the final average offset ratio R for each series was obtained

Fig. 13. Left-right offset ratio ρ for Series C.

Fig. 14. Left-right offset ratio ρ for Series AA.

in (19).

RAA =
∑

ρ∑
ρ �= 0

= 350.8

1207 points
= 0.29

RC =
∑

ρ∑
ρ �= 0

= 699

3405 points
= 0.2

⎫⎪⎪⎬
⎪⎪⎭ (19)

The results of (19) yield the average offset ρ, but higher
divergences are found when the median is calculated, as the
median for Series C is Med(ρC) = 0.12 whereas for Series
AA is Med(ρAA) = 0.29.

E. Analysis of Steering Performance to Detect
Mechanical Limitations

The perception situations and offset ratio previously ana-
lyzed allow the assessment of navigation performance, but
mask the effect of the steering system, whose accurate actu-
ation is essential for automatic steering systems. Very slight
misalignments in the steering mechanism result in asymmet-
rical performance of the front wheels for Ackerman steering.
Even when the robot mechanics are carefully built, the recur-
rent exposure to uneven terrains and rough ground ends up
loosing linkages and reducing the precision of commanded
angles. For manned vehicles, this problem is not usually
a hazard because the operator somehow corrects for the
misalignments and sends the vehicle to the maintenance shop
when necessary. For unmanned vehicles, by contrast, steering
misalignments and loose fittings can have severe consequences
whose origin are sometimes hard to identify. A continuous –or
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Fig. 15. Analysis of steering stability for Series C.

periodic– self-checking procedure for assessing steering con-
sistency can result instrumental for long-term use of intelligent
equipment endowed with automated navigation.

The perception system –sensor suite and algorithm– cal-
culates steering angles based on the instantaneous position
and orientation of the robot with respect to the surrounding
environment. The profile of the calculated steering angles
gives an idea of the stability of the steering actuation, such
that sudden large commands are an indication of navigation
alerts leading to situations 10 and 11. The response of the
steering system, however, is traceable by tracking the actual
angles of the front wheels measured by a linear potentiometer.
We cannot assume that all commands sent by the algorithm are
precisely materialized in due time, as there are always delays
in the system response and inertias to overcome caused by
the interaction of the tire with the terrain. Fig. 15 plots the
comparison of calculated angular commands and real angles
for Series C. As desired, the average angle commanded by
the algorithm is 0, which is a clear indication that the robot
travelled along the centerline between the adjacent vineyard
rows. However, while the robot moved straightforwardly,
the actual angles measured at the front wheels had an average
of 0.4◦, which reveals that the steering linkage had a slight
misalignment of +0.4◦. The plot also shows that angles are
slightly larger at the entrance maneuver of each new row when
the wheels have to recover the alignment after the 180◦ turn
at the headlands, except for two occasions in the 2nd and 6th

rows where an angular correction of 4◦ was necessary in the
middle of the run.

The limitations introduced by the mechanical embodiment
of the steering system not only affect permanent misalign-
ments caused by systematic offsets, but also a lack of sym-
metry in the execution of turns, which is more acute at
the sharp angles required for changing rows. Fig. 16 plots
the steering angles (actual and commanded) for Series E,
including the nine turns at the headlands. In addition to
show a misalignment when the robot moves inside the row,
with an average real angle of −0.6◦ when the commanded
angles are 0◦ in average, the turning capacity of the robot
was asymmetrical and limiting. The graph reveals that the
maximum right angles (positive angles) were around 20◦,
which were quickly reached with commanded angles of 15◦.
However, left angles were physically constrained by −15◦, and

Fig. 16. Analysis of steering stability for Series E.

could never exceed this limit in spite of recurrent commands
of −20◦. Although headland turns (where extreme turning is
necessary) fall outside the scope of this article, it is worth
mentioning the capacity of this evaluation method to locate
important sources of problems and malfunctioning, especially
in automated equipment where constant supervision is no
longer present.

F. Self-Assessment of Augmented Perception

After developing a methodology to evaluate the performance
of a perception system for guiding a vehicle inside rows, and
taking advantage of the fact that this methodology can be
applied to any vehicle operating in any relevant environment
(specialty crops under vertical trellises), the goal of this section
is to apply such methodology to different configurations of
the perception system for a quantitative evaluation. The first
case is represented by Series E (Table IV), which features a
perception system based on the 3D stereoscopic camera used
in series C and AA but augmented with a forward looking
11-beam 2D LIDAR (OMD 8000-R2100-R2-2V15, Pepperl +
Fuchs, Manheim, Germany). Series E was recorded in Portugal
on 16 July 2018, and portrays a vineyard with the typical
challenges of commercial plots: canopy gaps, long shoots,
mild slope (up to 10◦), and a terrain of varying conditions.
The specifications of the series are included in Table IV,
and Fig. 17 plots the trajectory followed by the robot in
autonomous mode.

As there were no lateral sonars in the robot when Series
E was recorded, the evaluation based on the left-right offset
ratio ρ cannot be carried out. As a result, navigation stability
will be assessed by the analysis of perception situations,
as outlined in Section V-C. Fig. 18 depicts the perception
situations monitored over the nine straight paths of Fig. 17,
in which the summation of situations was 11476/11176 points
= 1.02. The number of situations 10-11 for Series E was 30,
and the percentage of alerts recorded for inside row guidance
was 0.27 % as detailed in (20).

SE = 30 situations 10 − 11

11176 points
· 100 = 0.27% (20)

The Series B was recorded with the prototype of Fig. 3, and
featured the full-perception augmented approach consisting
of the 3D stereo camera already used in Series E, amplified
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Fig. 17. Trajectory followed by the robot in Series E.

Fig. 18. Perception situations for Series E.

with three ultrasonic sensors (UC2000-30GM-IUR2 V15, Pep-
perl + Fuchs, Manheim, Germany) and the forward looking
11-beam 2D LIDAR (OMD 8000-R2100-R2-2V15, Pepperl
+ Fuchs, Manheim, Germany). The forward-looking sonar
was only used for obstacle detection and headland turning,
therefore only the lateral sonars (left and right) were actually
used for inside row guidance. Fig. 4 indicates the position and
range of the ultrasonic sensors. Series B data were recorded in
Quinta do Ataíde, Portugal, on 5 September 2019, which is the
same vineyard used for Series E. The specifications of Series
B are included in Table IV, and Fig. 19 plots the trajectory
followed by the robot in autonomous mode.

The first analysis centers on the perception situations
tracked along the 15 rows plotted in Fig. 19. The sum-
mation of situations for this series, derived from Fig. 20,
was 12070/10914 = 1.1, whereas the number of situations
10-11 was 119, leading to a percentage of alerts for inside
row guidance of 1.1 % as detailed in (21).

SB = 119 situations 10 − 11

10914 points
· 100 = 1.1% (21)

The analysis of the navigation stability based on the offset
ratio ρ results from the lateral distances of Fig. 21 and
the subsequent ratio of Fig. 22. Specifically, the average left

Fig. 19. Trajectory followed by the robot in Series B.

Fig. 20. Perception situations for Series B.

separation measured with the lateral sonar was 67 cm whereas
the average right separation was 73 cm. The summation of the
offset ρ for Series B was 3636/10914 points = 0.33. As usual,
stability increases as the summation of ρ approaches to 0.
After removing the points associated with the headlands and
other null values, the average offset ratio RB for this series
was obtained as detailed in (22). The median of offset ratio ρ
for Series B was Med(ρB) = 0.25.

RB =
∑

ρ∑
ρ �= 0

= 3636

10700 points
= 0.34 (22)

The steering performance for Series B can be deduced from
the profiles plotted in Fig. 23. The average real angle measured
by the potentiometer was −0.2◦ whereas the average com-
manded angle was 0.1◦. Both are close, and close to 0, but the
profile of real angles in Fig. 23 shows larger corrections than
in Fig. 15, which implies a less stable navigation performance.
Mathematically, these fluctuations around the centerline can
be estimated through the standard deviation, being 2.6◦ for
the real angles and 1.3◦ for the angular commands sent by the
controller to the steering motor. Fig. 23 also indicates that the
front wheels turned sharper to the right than to the left.

The last comparison uses an onboard electronic compass
(SEC385, Bewis Sensing Technology LLC, Wuxi City, China)
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Fig. 21. Distance to side rows in straight guidance for Series B.

Fig. 22. Left-right offset ratio ρ for Series B.

Fig. 23. Analysis of steering stability for Series B.

to assess heading stability, by associating smooth rides to
small yaw fluctuations around the average heading of each
row. Fig. 24 overlays the instantaneous heading measured by
the electronic compass and, at the same time, by the onboard
GPS. As shown in the plot, the GPS estimates have so much
variability due to noise that they do not reflect the behavior of
the robot, and therefore cannot be used in the stability analysis.
The standard deviation registered for the rows whose heading
averaged 72◦ was σ72 = 3.7◦, and the dispersion for the rows
of average heading 245◦ was σ245 = 4.7◦.

G. Discussion

The procedure illustrated in Fig. 6 to evaluate the navigation
performance of an autonomous vehicle by tracing its trajectory

Fig. 24. Analysis of heading stability for Series B.

with lime turned out to be cumbersome, impractical, and
inaccurate. Lime dust had to be under constant stirring to avoid
clogging, and a manageable tank size only reached for 16 m.
The measurement of deviations from the centerline resulted
time-consuming, physically-demanding, and prone to error as
it was not always clear to identify the precise boundaries
defining the deviations with a lime line several cm wide. The
average deviation of 7.6 cm, however, is comparable with
other estimates based on the analysis of the lateral distances
to the canopies. Thus, for example, the average deviation
for Series C was 2 cm, for Series AA was 4.5 cm, and for
Series B was 3 cm. With a longer run, one complete row at
least, the deviations measured with lime would probably have
been smaller once the vehicle reached its regular traveling
velocity, but this method is not applicable in a regular basis,
and therefore cannot be considered an option for evaluating
navigation performance.

The analysis of the situations defined in Table I provided
a convenient self-assessment tool to evaluate navigation sta-
bility; it was not the summation of all situations but the
normalized counting of situations 10-11 what resulted useful.
The summation of situations, even after normalization with
the number of measurements, was biased by population size,
that is, the length of the series. The reason is that the majority
of situations are 1, and if the series is long, the occasional
summation of 10 or 11, even if these situations are weighted
ten times, will have an overall mild effect. The counting
of alerting situations, by contrast, allows the grading of
navigation stability. Section V-C provides a reference range,
where the same robot was tested under mild (Series C) and
challenging (Series AA) environments. The most favorable
outcome was SC = 0.22 % (18) whereas the more complex
scenario was quantified with SAA = 2.2 % (18). Series E
and B represent an intermediate case, i. e., a commercial
vineyard with typical challenges, but with a robot endowed
with augmented perception capabilities. SE = 0.27 % (20)
indicates a very stable navigation, but SB = 1.1 % (21), even
running the robot in the same plot as Series E, reveals a more
oscillating behavior. The reasons for this may be various; one
could be the fact that Series B was recorded after 6 pm, where
batteries were at low charge. Other reason could be the vines
or the terrain being in different conditions (E was recorded
in July and B in September). Overall, even though it resulted
quite complex to quantify the behavior of a vehicle in real



11726 IEEE SENSORS JOURNAL, VOL. 21, NO. 10, MAY 15, 2021

time before a changing environment, according to the field
results it seems reasonable to expect good performance when
S is below or around 1 %.

The evaluation method based on the study of left-right
offset ratio ρ has a key advantage over the previous method:
simplicity. The definition and verification of the perception
situations of Table I is elaborate, including multiple conditions
to meet that differ according to the perception sensors on
board. The measurement of lateral distances and its cor-
responding calculation of ρ through (17), on the contrary,
is straightforward, and only requires the side sonars to estimate
RS and LS. The average values of RS and LS provide an
estimate of the deviations from the centerlines, as shown
in the discussion of the lime-based evaluation. As for ρ,
the normalized summation suffers from the same disadvantage
detected in the summation of perception situations; a masking
effect as the population size grows. Therefore, even though the
monitoring of ρ is quite simple, the normalized summation
is not very helpful. However, the most significant parameter
in relation to the offset ratio was the median. The same
divergence found for Series C and AA regarding the perception
situations was also found for the analysis of the offset ratio,
specifically yielding Med(ρC) = 0.12 and Med(ρAA) = 0.29.
For Series B, as expected, the outcome fell within that interval.
A median above 0.3 would recommend a deeper examination
of the navigation stability before proceeding further.

The analysis of steering performance was also revealing,
which makes it attractive due to its simplicity. Only the
real-time measurement of the front wheels Ackerman angle
suffices to track what is occurring at the steering mecha-
nism. With only basic inference statistics it was possible
to detect slight misalignments –under 1◦– of the steering
linkage, asymmetrical performance of the front wheels, and
an oscillating-steady execution of guiding commands. More
advanced analysis tools applied to the profiles of Figs. 15,
16 and 23 may bring a more complete picture of how
efficiently the autonomous vehicle is executing automatic
steering.

Finally, the assessment of heading stability with the on-
board electronic compass showed potential, but could not
be extensively analyzed with the detail of all other methods
because it was implemented in the robots in 2019, and heading
data was available only for Series B out of the rest of series
cited in Table IV. A conclusion was straightforward, though:
GPS instantaneous heading extracted from VTG NMEA mes-
sages resulted so unstable that it was actually useless. How-
ever, the standard deviations of compass-determined heading
for two rows at 3.7◦ and 4.7◦ show what seems to be a
stable behavior, although more data series will be needed for
a consistent comparison.

VI. CONCLUSION AND FUTURE STEPS

Autonomous navigation in the open environments of vine-
yards is a challenging feat, and its performance evaluation
is equally demanding. To face the former, navigation was
split into two mutually exclusive tasks: inside-row guidance
and headland turning, with this article focusing on the first
task. To confront the latter, a set of complementary methods

were enunciated and demonstrated for a variety of scenarios.
These methods are based on the measurements exerted by local
perception sensors, an electronic compass, and a potentiometer
to estimate the front wheels angle. The measurement of vehicle
deviations with a lime dust dispenser makes no sense for com-
mon field extensions, but the permanent monitoring of the row-
matching perception algorithm, the continuous logging of the
lateral distance of the vehicle to the surrounding canopies, and
the profile of the steering actuation allow for the calculation of
various quality indices to assess the behavior of an autonomous
vehicle. It is clear from this study that self-assessment is the
most practical option, and to do so, we only need to use the
sensors already onboard for navigation.

The goal of this work was not to come up with an evaluating
method. As a matter of fact, this article mainly deals with
perception algorithms for in-field navigation, but we cannot
address navigation without a reliable way to assess guidance
results for any possible situation unknown beforehand. Train-
ing the system always for the same row is unrealistic and
misleading. Once a general methodology to evaluate results
in real environments was established, various perception con-
figurations were tried. The result was as expected; by fusing
different –but complementary– technologies, the outcomes are
more consistent and fail-safe, as shown in Fig. 5. For the
strategy proposed in this research, the suite of sensors selected
was 3D stereovision, multi-beam lidar, and sonar, chosen on
the grounds of reliability under harsh environments and cost-
efficiency (key in agricultural applications). For agricultural
robots, and for specialty crops in particular, it is important
to rely on on-vehicle perception solutions for navigation that
offer stability and safety with independence to the availability
of global positioning signals.

Future steps on this research topic will focus on three
directions: first, the improvement of the augmented perception
system with better devices and algorithms; second, the elabora-
tion of a solid framework for headland turning, which is even
more challenging than inside-row guidance; and third, keep
developing the self-assessment methodology until it becomes
independent of the vineyard size and configuration, as well as
the environmental conditions. With no doubt, there is still a
long way to go, but the only way to keep moving forward will
certainly be by testing and developing in real scenarios, many
times, many different geographical regions, and many hours
under the sun, because the natural environments of agricultural
robots are the fields rather than the labs.
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