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ABSTRACT

This paper examines the feasibility of cloaking an obstacle using Plate-type Acoustic Metamaterials (PAMs). We present two distinct strat-
egies to cloak this obstacle, using either the near-zero-density regime of a periodic arrangement of plates or the acoustic doping phenome-
non to achieve simultaneous zero-phase propagation and impedance matching. The strong limitations induced by viscothermal and
viscoelastic losses that cannot be avoided in such a system are studied. A hiding zone is reported analytically, numerically, and experimen-
tally. In contrast to cloaking, where zero-phase propagation must be accompanied by total transmission and zero reflection, the hiding con-
figuration requires that the scattering properties of the hiding device must not be affected by the presence of the obstacle embedded in it.
Contrary to cloaking, the hiding phenomenon is achievable even with a realistic PAM possessing unavoidable losses.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0042383

I. INTRODUCTION

Cloaking is perhaps one of the most intriguing phenomena
achieved through the development of metamaterials. Several strat-
egies1,2 have been considered to reach the quest of invisibility
including both passive designs based on transformation acoustics,
carpet cloaking, or extreme parameters and active designs3 based
on parity-time symmetry.4,5 Transformation acoustics consists in
using a coordinate transformation,6–10 as it is done in transforma-
tion optics,11,12 to deeply control the propagation of an acoustic
wave. The aim is to reroute the incident wave around the obstacle
to avoid any disturbance of the external field, including scattering
and shadowing. A metafluid, i.e., a fluid-like material, with a con-
trollable anisotropic density and a controllable inhomogeneity (spa-
tially varying properties) is required to achieve that goal.13 These
particular features can be obtained with a careful design of meta-
materials based on either a solid inclusion-type unit cell (inertia
metafluids)7,14–17 or an interconnected network of solid bridges

(pentamode metafluids).18–21 An alternative path to reach cloaking
is to use topological-optimization to control wave interference in
order to cancel the acoustic scattering induced by the presence of
an obstacle.22,23 Another cloaking strategy, known as carpet or
ground cloaking, is to cover an object placed on a reflective surface
with a designed shield to make it invisible.24–26 The main limitation
of this “carpet cloaking” is the large size of the device compared to
the object to be masked. The development of thin metasurfaces
overcomes this difficulty by using either Helmholtz resonators27–29

or membranes.30,31

An additional approach is to use extreme parameters achiev-
able with metamaterials32,33 to cloak an obstacle from an incoming
field. Density Near Zero (DNZ) metamaterials, the phase velocity
of which tends toward infinity,34 are good candidates. Since the
acoustic wavelength is strongly stretched in zero-index metamateri-
als, the presence of an obstacle inside the DNZ medium becomes
almost imperceptible to an external observer. Different designs can
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be considered. Zhao et al. proposed a device based on elastic copper
pieces,33 which allows, at one particular frequency, to achieve extraor-
dinary transmission while maintaining an unchanged wave front and
phase in the presence of scatterer. The DNZ condition can also result
from a periodic arrangement of degenerate resonant scatterers35 or
clamped elastic plates/membranes.36–38 In this latter case, strong dis-
persion around the resonance frequency allows to achieve zero-
density, unitary transmission, and zero-phase at three distinct fre-
quencies in the vicinity of the bandgap edge.39 Gu et al. state that
cloaking is achievable in a membrane-type metamaterial and report a
numerically obtained enhanced transmission through obstacles
embedded in a two-dimensional square arrangement of lossless
membranes.40 Nevertheless, a trade-off has to be made between the
transmission magnitude and the phase shift induced by the mem-
branes array. Yet, a perfect cloak based on this approach requires
both full transmission and zero-phase propagation, which can be ful-
filled by acoustic doping, i.e., the acoustic analog of photonic
doping.41 The embedding of a single well-designed impurity in
a membrane-type or plate-type acoustic metamaterial (PAM)
can transform the DNZ medium into DCNZ (Density and
Compressibility Near Zero), thus conciliating the static like field
distribution and the impedance matching condition, and leading
to a full non-delayed transmission in the lossless case.

In this work, we investigate the feasibility to perfectly cloak a
diaphragm obstructing a cylindrical waveguide using lossless PAM
in a 1D propagation configuration. Two distinct strategies are
envisaged. The first one consists in using the diaphragm itself as an
impurity to realize doping and thus cloaking, while in the second
case, a Helmholtz resonator is used to dope the system leading to a
full cloak of the diaphragm. As in most acoustic systems, viscother-
mal and viscoelastic losses cannot be neglected and are moreover
known to potentially lead to the drastic annihilation of the expected
phenomenon.42 In the case of doping, even if the efficiency is also
limited by the losses, an enhanced transmission at the zero-phase
frequency is reported in Ref. 41. The impact of losses on the effec-
tiveness of cloaking for the two strategies considered is studied
here. Furthermore, given the difficulty of achieving cloaking with a
realistic PAM, emphasis is placed on the possibility of hiding a dia-
phragm into a PAM. The strategy is different from cloaking.
Instead of trying to shield the diaphragm in the PAM to turn it
invisible, we use the peculiar DNZ property to maintain the same
acoustic behavior of the PAM (scattering and phase) with and
without the embedded diaphragm. In this case, perfect transmis-
sion is no longer required, and a realistic (lossy) application can be
considered. Finally, a hiding zone is reported experimentally in
good agreement with the predictions.

A. Design and modeling of the masking device

A periodic arrangement of N ¼ 6 thin elastic plastic shims
[Young’s modulus Ep ¼ 4:6(1þ iβp) GPa, density ρp ¼ 1400 kg m3,
Poisson’s ratio νp ¼ 0:4, thickness hp ¼ 102 μm, and loss factor
βp ¼ 0:13] equally spaced by a distance Lgap ¼ 1 cm and plugged
into a circular waveguide of radius Ra ¼ 15 mm and cross-sectional
area Sa ¼ πR2

a is considered here. The acoustic behavior of this
PAM has been extensively studied in Ref. 39.

The scattering parameters, i.e., the transmission coefficient T
and reflection coefficients Rþ and R�, of the reciprocal system are
derived analytically using a transfer matrix formulation,43

Rþ ¼ T11 þ T12=Z0 � Z0T21 � T22

T11 þ T12=Z0 þ Z0T21 þ T22
, (1)

R� ¼ �T11 þ T12=Z0 � Z0T21 þ T22

T11 þ T12=Z0 þ Z0T21 þ T22
, (2)

T ¼ 2
T11 þ T12=Z0 þ Z0T21 þ T22

, (3)

where Tqs is the qs-element of the transfer matrix T, the subscript 0
refers to the air medium, c represents the speed of sound, and Z ¼
ρc=Sa is the characteristic impedance.

Although the single PAM is symmetrical (T11 ¼ T22), i.e.,
Rþ ¼ R� ¼ R, depending on the position of the object to be con-
cealed, the system can become asymmetrical, and both Rþ and R�

must be defined, respectively, for the reflection coefficient of an
incident wave coming from the left or the right of the system.

The transfer matrix T, linking the pressure p and the flux U
from one side to the other of the metamaterial, takes the form

p
U

� �
z¼0

¼ T � p
U

� �
z¼L

¼ Tunit
N � p

U

� �
z¼L

, (4)

where Tunit is the transfer matrix of the unit cell, defined symmetri-
cal (a clamped plate surrounded on each side by an air cavity of
length Lgap=2),

Tunit ¼ Tcav � 1 Zp

0 1

� �
� Tcav

� �
, (5)

with

Zp ¼ ΔP
U

¼ � iωm
S2a

I1(kpRa)J0(kpRa)þ J1(kpRa)I0(kpRa)

I1(kpRa)J2(kpRa)� J1(kpRa)I2(kpRa)
, (6)

the Kirchhoff–Love thin plate acoustic impedance37 with

kp ¼ ω2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρphp=D

q
the wave number of the flexural waves excited in

the plate, D is the flexural rigidity of the plate, and m ¼ ρpSahp is
the mass of the circular plate.

Tcav is the transfer matrix of the air cavities,

Tcav ¼
cos

k0Lgap
2

iZ0 sin
k0Lgap
2

i
Z0

sin
k0Lgap
2

cos
k0Lgap
2

2
664

3
775: (7)

Note that both the wave number k0 and the impedance Z0 can be
defined as complex valued and frequency-dependent functions to
account for the viscothermal losses in the waveguide.44

In addition to the analytical calculations, 2D axisymmetric
full-wave simulations are performed using FEM. Each plate is
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modeled as a viscoelastic medium of thickness h having the afore-
mentioned properties, fixed at the edge boundary, and fully inter-
acting with the acoustics of the air cavities on each side. The
presence of the plate induces a pressure discontinuity (fluid load
on the viscoelastic structure corresponding to the pressure drop
ΔP ¼ p2 � p1, with p1 and p2 the acoustic pressures up and down
the structure) and continuity of the flux. The system is insonified
by an incident plane wave, and a plane wave radiation condition is
applied at the output of the waveguide to prevent reflections.

Impedance matching, zero-density, and zero-phase propagation
occur at three different frequencies, fm ¼ 423 Hz, fρ¼0 ¼ 414 Hz, and
ff¼0 ¼ 403 Hz for the lossless case. A large impedance mismatch at
the zero-phase propagation frequency prevents total transmission, the
magnitude of which is moreover strongly dependent on the number
of unit cells, i.e., number of plates, in the system.39

Losses, mainly due to the viscoelasticity of the plate and char-
acterized by the loss factor β, strongly alter the amplitude of the
transmission at the zero-phase frequency, which drops from
jTf¼0j ¼ 0:91 in the lossless case to jTf¼0j ¼ 0:48. The zero-phase
frequency is shifted to ff¼0 ¼ 389 Hz, while the maximum of
transmission jTmj ¼ 0:61 is found at fm ¼ 439 Hz, which is the res-
onance frequency of the lossy plate as reported in Ref. 39.

B. Design and modeling of the object to conceal

Among the many possibilities of obstacles to conceal, the
choice made in this study is a rigid diaphragm with orifice radius
Rd [sketched in Fig. 1(a)] because of the ease of controlling the
scattering properties and of manufacturing. Depending on its
aperture, the diaphragm switches from transparent (transmission
close to 1 for large Rd) to opaque (reflection close to 1 for small
Rd), thus giving one degree of freedom to adjust its influence on
the scattering parameters.

The rigid diaphragm is modeled as a short waveguide of
radius Rd and length Ld ¼ 2 mm. An end correction ΔLd ¼ 16

3π Rd ,
accounting for the radiation at both ends is considered and leads to
an elementary transfer matrix of the form

Td ¼ 1 iZdkdLd þ iωρ0ΔLd
i
Zd
kdLd þ iω κ0½ ��1ΔLd 1

� �
, (8)

in the kdLd � 1 approximation, with Zd and kd being the charac-
teristic impedance and wavenumber of the orifice, and κ0 being the
bulk modulus of the air medium.

Figure 1(b) shows the dependence of the transmission magni-
tude through the diaphragm on both the frequency and Rd . The
smaller the orifice is, the greater the reflection and then the lower
the transmission. In addition, the transmission amplitude also
decreases with frequency for the same diaphragm aperture due to
the frequency-dependent viscothermal losses in the aperture.44

The shaded surface in Fig. 1(b) highlights the particular case
of a diaphragm with a Rd ¼ 4 mm orifice, the scattering parameters
of which are shown in Fig. 1(c). The transmission remains high
over the considered frequency range, while the magnitude of the
reflection varies from 0.2 to 0.5, thus confirming the large scatter-
ing strength of the obstacle. In addition, the presence of the dia-
phragm in a duct induces an increasing phase delay with frequency

as shown by the phase of the transmission coefficient in Fig. 1(d).
The designed device will then have to act on both the amplitude
and phase of the scattering coefficients to enable cloaking.

II. CLOAKING

A. Lossless system

In the first step, we analyze the lossless case, i.e., when neither
the viscoelastic losses of the plates nor the viscothermal losses in both
the diaphragm orifice and the waveguide are accounted for. The dia-
phragm to be concealed is embedded in the middle of a 6-unit long
PAM, i.e., between the 3rd and 4th plates. The two cloaking configu-
rations under examination are optimized to find the ideal geometry
to cloak the diaphragm. The efficiency of these lossless optimized
systems is then tested.

1. Cloaking configurations

The first approach, depicted in Fig. 2(a), is to use the dia-
phragm itself as a dopant to match the total system impedance to
the surrounding waveguide impedance at the zero-density fre-
quency of the system. This impedance matching condition would
lead to full transmission, zero reflection, and zero-phase propaga-
tion, as if the diaphragm was not present in the waveguide.

FIG. 1. Acoustic signature of a single rigid diaphragm: (a) sketch and photo-
graph of the aluminum diaphragm, (b) 3D plot of the transmission magnitude vs
frequency and the orifice radius Rd of the diaphragm, (c) scattering parameters
of a diaphragm of radius Rd ¼ 4 mm, (d) phase of the transmission coefficient
(black, left axis) and normalized effective density (red, right axis). Analytical, full-
wave simulation, and experimental results are given, respectively, by solid lines,
dashed-lines, and symbols.
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The total transfer matrix characterizing the whole symmetrical
system reads as

p
U

� �
0

¼ Tunitð Þ3�Td � Tunitð Þ3 p
U

� �
L

: (9)

The variation of the diaphragm geometry provides the optimal
design for achieving cloaking. The lossless scattering magnitudes of
the total system, that is, the PAM with the embedded diaphragm,
are calculated analytically for different orifice radii Rd as shown in
Fig. 2(a). A perfect transmission with zero reflection is found for
the optimal radius Rd ¼ 0:15 mm.

In the second configuration, an additional dopant consisting in a
cylindrical Helmholtz resonator is used to dope the whole system, so
as to enable cloaking. The doping condition is reached when the effec-
tive density and the effective compressibility are simultaneously equal
to zero.41,45,46 A Helmholtz resonator (cavity length Lc, cavity radius
Rc ¼ 1 cm, neck length Ln ¼ 2 cm, and neck radius Rn ¼ 2 mm) is
mounted on the main waveguide, between the first two plates.

The total transfer matrix of the asymmetrical system can then
be defined as follows:

p
U

� �
0

¼ Tunit � THR � Tunitð Þ2�Td � Tunitð Þ3 p
U

� �
L

: (10)

The cloaking condition is found in Fig. 2(b) by varying the
length of the Helmholtz resonator cavity and looking for a maximal
bulk modulus, i.e., almost zero compressibility. A maximum is found
for a length Lc ¼ 4:1 cm. With this particular geometry, an imped-
ance matching condition coupled with zero-phase propagation could
be achieved.

2. Cloaking efficiency

An analytical (solid line) and a FEM numerical study (dashed
line) of the scattering parameters (magnitude and phase) and of

the effective density of the two cloaking configurations are per-
formed and presented in Figs. 3(a) and 3(b).

The numerical simulation of the self-doped configuration
described in Sec. I A is performed using a 2D axisymmetric full-
wave model. The doped configuration, with an additional
Helmholtz resonator, requires on the contrary a 3D model repro-
ducing the cylindrical impedance tube of radius Ra ¼ 15 mm used
in the experimental setup. The system is insonified by a plane
incident wave propagating from left to right. A plane wave radia-
tion condition is applied at both ends of the waveguide to avoid
spurious reflections. The plates are modeled as hp-thick viscoelas-
tic media having the above-mentioned mechanical properties Ep,
ρp, νp. The rigid diaphragm is modeled as a Ld ¼ 2 mm-long
cylindrical duct of radius Rd , located at the bounds between the
3rd and 4th unit cells of the PAM. The Helmholtz resonator,
mounted on the waveguide boundary between the 1st and 2nd
plates, is modeled as two air-filled cylindrical waveguides of radii
Rn and Rc and lengths Ln and Lc, respectively. The reflection and
transmission coefficients are recovered from a 4-microphone mea-
surement consisting of two pairs of microphones upstream and
downstream of the PAM.

The two lossless configurations—self-doped diaphragm [Fig. 3(a)]
and doped with a Helmholtz resonator [Fig. 3(b)]—lead to cloaking.
In the first configuration, the full transmission (black color) and zero
reflection (red color) observed over a very narrow frequency range in
Fig. 3(a-2) result from the high impedance of the diaphragm (due to
its narrow aperture). The resulting transparency is also accompanied
by zero effective density (red color) and zero-phase propagation
[Fig. 3(a-3)] at fft¼0 ¼ 88:3 Hz.

Doping occurs as expected in the second configuration,
when the designed Helmholtz resonator is mounted on the
system. As a result, impedance matching (jTj � 1, jRj � 0)
[Fig. 3(b-2)] and zero-phase propagation [Fig. 3(b-3)] are also
achieved at fft¼0 ¼ 403 Hz.

The pressure field is constant (quasi-static distribution)
along the system in the “Helmholtz doped configuration.” In con-
trast, the pressure varies within the metamaterial in the “self-
doped configuration” (when the diaphragm itself enables cloak-
ing). That change in the pressure field is, however, imperceptible
to an outside observer.

Although the presence of the diaphragm becomes impercep-
tible in terms of scattering magnitude, both configurations do not
reproduce the correct apparent phase induced by wave propaga-
tion. Indeed, measuring the phase advance of a wave propagating
over a length L ¼ 6 cm in an air-filled waveguide or through the
proposed designs (PAM + diaphragm + potentially an additional
dopant) leads to different results. The current configurations give
a non-delayed propagation, that is, Δf � 0, while the phase shift
to be reproduced with the device should be Δf ¼ k0L ¼
2πfft¼0=c0 (with fft¼0 ¼ 88:3 Hz or fft¼0 ¼ 403 Hz depending on
the configuration) to account for the propagation. The realization
of a full cloak then requires the addition of another constraint. As
the whole system must be undetectable, both in terms of scatter-
ing and phase, the total length L of the PAM must be chosen so
that propagation over a L-thick slab of filling material results in a
phase advance of Δf ¼ m2π, with m an integer. Consequently,
the length of the PAM must be

FIG. 2. Geometry optimization from analytical formulas for cloaking a diaphragm
using a 6-unit long lossless PAM: (a) sketch of the configuration and influence of
the diaphragm radius on the system’s scattering parameters, (b) sketch of the con-
figuration with an external dopant and optimal geometry for cloaking by doping a
6-unit long lossless PAM with a Helmholtz resonator. Evolution of the effective bulk
modulus with the cavity length of the Helmholtz resonator.
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Lopt ¼ 2mπ
c0

ωft¼0
, (11)

that is, Lopt ¼ 3:88 m for the first configuration and Lopt ¼ 85:11 cm
for the second. The overall dimensions of the cloaking device are,
therefore, no longer subwavelength.

B. Lossy system

While cloaking seems to occur in lossless PAMs, we now con-
sider the case of a realistic system, with the impact of losses, the
role of which has been previously shown to be crucial in zero-index
metamaterials.39,41,47

Figures 3(c) and 3(d) show the effect of total losses (viscoelas-
ticity of the plates and viscothermal losses) on the effectiveness of
the two cloaking strategies. The viscothermal losses are accounted
for by the complex, frequency-dependent wave number and imped-
ance44 in the air-filled cavities (waveguide of radius Ra, diaphragm
of radius Rd , and neck of radius Rn and cavities of radius Rc of the
Helmholtz resonator).

In the first configuration shown in Fig. 3(c), viscothermal
losses in the small aperture turn the diaphragm totally opaque. The
incident wave is totally reflected, as if a rigid wall is encountered.
In addition, the phase of the transmission coefficient no longer
passes through zero. Considering a realistic diaphragm with such
an orifice then totally annihilates the cloaking effect.

In the second configuration, the viscoelasticy of the plates
limits the doping efficiency as already observed in Ref. 41. As a
result, the presence of the system in the waveguide induces a

scattering (non-zero reflection). Losses thus also prevent cloaking
in the second configuration.

C. Feasibility of cloaking

To summarize on the feasibility of cloaking, despite claims in
the literature on the subject, this work shows that realistic applications
of cloaking with membranes or plate-type metamaterials are very
limited. First of all, the presence of losses in the system prevents total
transparency, i.e., perfect transmission. Moreover, although the
stretching of the effective wavelength produces a static-like field distri-
bution, making the obstacle imperceptible in terms of apparent phase
to an outside observer, full cloaking requires, on the contrary, repro-
ducing the phase of an air-filled waveguide of the same length, as if
the object to be cloaked and the occultation device were both absent.
Full cloaking, therefore, requires specific lengths of the PAM, which
are for low frequencies very large, i.e., no longer sub-wavelength.

III. HIDING

The goal here is to use the stretch of the effective wavelength
in the metamaterial to hide the diaphragm (or any other obstacle)
inside, without disturbing the acoustic scattering of the PAM itself,
i.e., by maintaining a constant magnitude of reflection and trans-
mission at the zero-phase frequency ff¼0.

A. Centered diaphragm

The phase shift induced by the presence of the diaphragm in a
waveguide [observable in Fig. 1(d)] can be inhibited by the

FIG. 3. (a) and (c) Cloaking of a Rd ¼ 0:15 mm diaphragm in a conventional 6 PAM: lossless (a) and lossy (c) configurations. (b) and (d) Cloaking of a Rd ¼ 4 mm dia-
phragm in a 6 PAM doped with a Helmholtz resonator (Rn ¼ 2 mm, Ln ¼ 2 cm, Rc ¼ 1 cm, and Lc ¼ 40:95 cm): lossless (b) and lossy (d) configurations. (1) Pressure
field from the full-wave simulation. (2) Transmission coefficient magnitude (black) and reflection coefficient magnitude (red). (3) Phase of the transmission coefficient
(black, left axis) and normalized effective density (red, right axis). The solid line represents the analytical results, and the dashed line the full-wave simulation ones.
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presence of a PAM in the DNZ regime. Figure 4 shows a compari-
son of the acoustic response (scattering parameters and effective
density) of a conventional 6-unit long PAM [Figs. 4(a)–4(c)] and a
6-unit long PAM with an embedded diaphragm [Fig. 4(d)], the
orifice of which is either Rd ¼ 4 mm [Figs. 4(e) and 4(f )] or
Rd ¼ 1 mm [Figs. 4(h)–4(i)]. In both cases, the presence of a PAM
provides both zero-phase and zero-density to the whole system as
evidenced in Figs. 4(f) and 4(i). A twofold procedure, including 2D
axisymmetric full-wave simulations (dashed line) and experimental
measurements (circle symbols), is followed to validate the
TMM-based analytical predictions. A very good agreement between
the numerical results, the analytical calculations, and the measure-
ments is found. The weak discrepancies on the reflection coefficient
are attributed to a remaining variability on the unit cells, due to
either the clamping condition or the intrinsic properties of the
plates as previously observed.

The presence of the DNZ metamaterial makes it possible to
lower and even to cancel the scattering effect induced by the dia-
phragm. The total system (metamaterial and diaphragm) indeed
achieves the non-delayed propagation property. The zero-phase fre-
quency of the whole system fft¼0 depends directly on the impedance
of the obstacle, related here to the open area ratio Rd=Ra. As shown

in Fig. 4(g), the smaller the orifice radius, and, therefore, the larger
the impedance of the diaphragm, the lower the zero-phase frequency
of the system. The zero-phase frequency shifts from ff¼0 ¼ 390 Hz
for the unique PAM to fft¼0 ¼ 373 Hz for the system with a dia-
phragm of radius Rd ¼ 4 mm (green marker), and to fft¼0 ¼ 303 Hz
for the diaphragm of Rd ¼ 1 mm (orange marker).

At the zero-phase frequency of the system with a Rd ¼ 4 mm
diaphragm, fft¼0 ¼ 373 Hz, the amplitudes of the measured
(respectively analytical and numerical) transmission and reflection
coefficients are 0.45 (respectively, 0.47) and 0.75 (respectively, 0.57)
and are equal (approximately for experimental data) to the ones of
the metamaterial alone at its zero-phase frequency ff¼0, respec-
tively, 0.42 (respectively, 0.47) and 0.79 (respectively, 0.57). For the
1 mm diaphragm, the scattering parameters of the total system and
of the metamaterial alone at their respective zero-phase frequencies
fft¼0 and ff¼0 are not exactly the same with a transmission of 0.39
(respectively, 0.38) and a reflection of 0.59. (respectively, 0.62). The
efficiency of the hiding phenomenon is, therefore, restricted when
the impedance of the obstacle is excessively large. A trade-off needs
to be found between the diaphragm scattering strength related to
its acoustic impedance, i.e., its opening area ratio, and the efficiency
of the PAM to hide the scatterer, as investigated in Fig. 5.

FIG. 4. Hiding of a centered embedded diaphragm. (a)–(c) 6-unit long PAM behavior (hp ¼ 102 μm, Lunit ¼ 1 cm): (a) sketch, (b) transmission coefficient magnitude
(black, left label), reflection coefficient magnitude (red, right label), and (c) phase of the transmission coefficient (black, left label), real part of the effective dynamic mass
density (red, right label). (d)–(i) 6-unit long PAM behavior with embedded Ld ¼ 2 mm thick annular diaphragm with an aperture of radius Rd : (d) sketch, (g) relative fre-
quency shift [ratio of the zero-phase frequency of the transmission coefficient for the total system (diaphragm embedded into the metamaterial) to the one of the metamate-
rials alone] vs the diaphragm to the waveguide radii ratio (TMM). (e) and (h) transmission coefficient magnitude (black, left label) and reflection coefficient magnitude (red,
right label) of the total system, metamaterial with an embedded diaphragm of aperture Rd ¼ 4 mm and Rd ¼ 1 mm, respectively. (f ) and (i) the phase of the transmission
coefficient (black color) and real part of the effective dynamic mass density (red color) of the total system for Rd ¼ 4 mm and Rd ¼ 1 mm, respectively. Black dashed
curves in Figs. (e) and (h) represent the transmission of the Rd ¼ 4 mm and Rd ¼ 1 mm diaphragms alone.
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Figure 5(b) shows that the amplitude of the scattering parame-
ters at fft¼0 remains constant and equal to the ones of the metama-
terial alone at ff¼0 as long as the ratio orifice/total cross section
remains larger than 16% (gray mapped surface). Due to the slight
change of the zero-phase frequency in that range, a small phase
shift is noticeable for the PAM alone at the zero-phase frequency of
the whole system fft¼0 in Fig. 5(c). Beyond that 16% ratio, the
impedance of the diaphragm becomes too large. The zero-phase
frequency of the whole system is consequently significantly down
shifted. The 16% cross-sectional area ratio corresponds to a varia-
tion of fft¼0 of 10% with respect to the zero-phase frequency of the
metamaterial alone ff¼0. Due to this frequency shift, the DNZ
strength of the PAM is no longer sufficient to allow a proper
hiding phenomenon. The system behaves like two distinct DNZ
media separated by an obstacle of a given impedance. The scatter-
ing amplitude then varies drastically with the variation of fft¼0.

However, it is interesting to note that the hiding of a dia-
phragm (or any other obstacle) is possible with a lossy DNZ meta-
material, as soon as the impedance of the object to be hidden is
well controlled. In this periodic arrangement of plates, despite the
small variation of the zero-phase frequency (10% in the operating
range) that results in a small phase change, the effect of the dia-
phragm is very limited. It is then possible to hide the diaphragm in
the metamaterial in this frequency range even in the presence of
losses.

B. Hiding zone

Moreover, the stretch of the effective wavelength in the PAM
should allow us to expand the hiding phenomenon to different
locations of the scatterer. Figure 6 shows the evolution of the

FIG. 5. Influence of the diaphragm aperture ratio on its scattering parameters
(analytically calculated). (a) Variation of the zero-phase frequency. (b) Evolution of
the amplitude of the scattering parameters: transmission magnitude (black, left
axis) and reflection magnitude (red, right axis) at the zero-phase frequency of the
total system fft¼0. (c) The phase of the transmission coefficient of the metamate-
rial alone at the zero-phase frequency of the global system fft¼0 for the different
diaphragm radii. The shaded area shows the aperture range for which the ampli-
tude of the scattering parameters is independent of the orifice radius.

FIG. 6. Hiding zone of a 4 mm radius diaphragm in the PAM: with losses (a)–(c) and lossless (d)–(f ). Sketches of the considered system (a) and (d), magnitude of the
scattering parameters (transmission, black and left axis and reflection, red and right axis) at the zero-phase frequency of the system (b) and (e), and zero-phase frequency
of the system (c) and (f ). The circles, dots symbols, and dotted lines represent, respectively, the experimental, analytical data for the total system, and the experimental
amplitude of the scattering parameters of the metamaterial alone at its zero-phase frequency.
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scattering amplitude and of the zero-phase frequency for different
locations of the diaphragm along the metamaterial and in its vicin-
ity. The two subplots Figs. 6(b) and 6(e) represent, in the lossy and
lossless cases, respectively, the transmission magnitude (in black)
and the reflection magnitude (in red) of the whole system at the
zero-phase frequency fft¼0 for each location xd of the diaphragm.

As for the cloaking configuration, the presence of a non-
centered obstacle causes an asymmetry in the system. It is then neces-
sary to distinguish the reflection coefficients of the waves incident
from each side of the device. The reflection coefficient Rþ refers to
the incidence from the left, while R� refers to the incidence from the
right. Since only one obstacle is considered here, the reflection Rþ

generated by an obstacle placed between the 5th and 6th plates for a
wave incident from the left is equivalent to the reflection R� gener-
ated by an obstacle placed between the 1st and 2nd plates for a wave
incident from the right. In the following, only the coefficient Rþ will
thus be presented. In addition, it is worth noting here that the system
preserves its reciprocity condition but not the symmetry.

In the lossless case, no matter where the 4 mm radius dia-
phragm is along the metamaterial, the magnitudes of transmission
and reflection coefficients remain constant and equal to the ones of
the metamaterial alone. The hiding phenomenon covers the entire
structure, which acts as a homogeneous and almost symmetrical
material (Rþ � R� � R). As soon as the viscothermal and viscoe-
lastic losses are accounted for, the asymmetry of the system
becomes much more visible, Rþ = R�, which results in a slight
change of the reflection with the location of the diaphragm as we
can see in Fig. 6(b). The agreement between the experimental
results, represented by the circle symbols, and the analytical predic-
tions, represented by the solid points, is very good on the transmis-
sion coefficient and the zero-phase frequency. More significant
differences are, however, noticeable on the reflection, already noted
in the case of the metamaterial alone [see Fig. 4(b)]. However, we
find that regardless of the location of the diaphragm, the measured
reflection and transmission of the whole system equal the ones of
the PAM without diaphragm, the measured values of which are
reminded by the dotted horizontal lines in Fig. 6(b).

According to these results, it is, therefore, possible to define a
hiding zone corresponding to the whole metamaterial. The dia-
phragm can be dissimulated when placed between any plates, as long
as the losses and impedance of the object to hide are controlled.

IV. CONCLUSIONS

In this work, both the cloaking and hiding efficiency of a plate-
type metamaterial device have been investigated, using the DNZ
regime associated with such systems. The study has been restricted to
the case of a thin rigid diaphragm to be hidden due to the ease of
manufacturing but can, nevertheless, be extended to any other obstacle.

We have shown that acoustic doping can be used to attain full
cloaking in the lossless case, i.e., canceling any scattering from the
diaphragm (total transmission, zero reflection, and zero-phase), by
using either the impedance of the element to be concealed or an
external impurity such as a designed Helmholtz resonator. We have
reported that these two strategies have transformed the DNZ regime
into DCNZ, thus fulfilling the requirement for cloaking. However, the
effectiveness is significantly altered when the full viscothermal and

viscoelastic losses are turned on. In addition, the length of the DNZ
medium required, for the apparent phase to be equal with and
without the cloaking device, results in a system size that is no longer
subwavelength. In the self-doped configuration, the diaphragm aper-
ture necessary to have a strong enough impedance to dope the system
is so small that the viscothermal losses in the orifice make the dia-
phragm opaque. When doping is accomplished using a Helmholtz
resonator impurity, the viscoelastic losses have been shown to avoid
impedance matching, thus preventing full transmission and cloaking.

Accounting for the difficulties of obtaining cloaking condi-
tion using a device based on a 1D realistic PAM, we have shown
that instead of using the PAM to suppress any scattering of the
external sound field, the effective wavelength stretch produced by
the DNZ regime of the PAM can be used to hide an obstacle
inside. In doing so, the acoustic behavior of a medium filled with
DNZ material (here the PAM) remains unchanged, regardless of
whether an obstacle is present inside or not, as soon as its imped-
ance is controled. Furthermore, we have shown that the long
effective wavelength allows us to change the position of the obsta-
cle inside the metamaterials without affecting the effectiveness of
the hiding at all in the lossless case and with only a slight impact
on the reflection in the lossy case.

We were thus able to report analytically, numerically, and
experimentally on the presence of a hiding zone along the entire
PAM. However, it is important to keep in mind that, as with most of
the concealment strategies considered so far, the system proposed in
this study is indeed efficient at a single frequency. Although limited
by this narrow frequency band, the promising hiding strategy pro-
posed in this paper alleviates the constraint of cloaking (a unitary
transmission being almost impossible to reproduce with realistic
devices and a non-subwavelength treatment length being necessary
to reproduce the required apparent phase). This new hiding strategy
could, therefore, help in the design of new applications, based on
acoustic metamaterials involving plates, membranes, or any other
DNZ system, capable of ensuring constant transmission even in the
presence of obstacles.
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