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Abstract

The electric vehicle (EV) is gradually being introduced in cities. The impact
of this introduction is less due, among other reasons, to the lack of charging
infrastructure necessary to satisfy the demand. In today’s cities there is no
adequate infrastructure and it is necessary to have action plans that allow an
easy deployment of a network of EV charging points in current cities. These
action plans should try to place the EV charging stations in the most appro-
priate places for optimizing their use. According to this, this paper presents
an agent-oriented approach that analyses the different configurations of pos-
sible locations of charging stations for the electric vehicles in a specific city.
The proposed multi-agent system takes into account data from a variety of
sources such as social networks activity and mobility information in order
to estimate the best configurations. The proposed approach employs a ge-
netic algorithm (GA) that tries to optimize the possible configurations of the
charging infrastructure. Additionally, a new crossover method for the GA is
proposed considering this context.

Keywords: genetic algorithm, crossover, multi-agent system, charging
station, electric vehicle
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1. Introduction

Electric vehicles (EV) are an alternative to fossil-fuel vehicles. Among
the advantages of EV, it is worth to mention that EV reduce the carbon
emissions, the air pollution and the noise [I]. The market potential of electric
vehicles could be limited by the current charging infrastructure. One of
the factors that can reduce the adoption of electric vehicles in cities is the
infrastructure that would limit the length of journeys to be made by users.
In addition, the charging time is another factor that might influence in the
adoption of EV. Although the cost of charging an electric vehicle is less
than the cost of a full tank, if charging times are relatively long, users will
prefer the immediate charging of traditional vehicles. For example, charging
a battery can take between 4 and 8 hours [2].

There are many advocates who argue that good planning of charging sta-
tions has a relevant impact on the service quality and operation efficiency and
would increase consumer adoption rates [3,[4]. This would reduce the psycho-
logical effect of "anxiety” [5] (i.e., fear of not having enough battery charge
to reach the destination) as they could rely on having accessible "nearby”
stations along the daily journeys made in the city. However, the necessary
investment in infrastructure is very costly, it is therefore necessary to man-
age investments in order to implement electric recharging stations mainly in
those areas with maximum impact. It is important to be able to determine
the optimal infrastructure planning needed to provide an acceptable charging
service for consumers. There is a need for joint and comprehensive analysis
taking into account information from multiple data sources. It is important
to take into account which areas of cities are most heavily traveled by ve-
hicles (traffic), what population there is in each area of the city, what type
of activities are carried out in each area of the city (land use), or how much
activity there is in a given area (social networks). This problem is more
complex if, in addition, when planning, it is necessary to take into account
forecasts for future extensions where necessary.

To help city policy-makers to allocate public resources efficiently to sup-
port the deployment of charging infrastructure, it is essential to provide a
systematic approach to quantify the benefit of providing public charging op-
portunities, as well as to determine where to locate charging stations subject
to limitations on the range of vehicle travel [6), [7].

This work addresses the problem of optimizing the placement of new in-
frastructures for EV charging. We design a system, made up of a set of



agents, which gathers information from heterogeneous data sources of the
city such as open data web portals to obtain data on traffic, population in
different parts of a city, data from Google applications that provide informa-
tion on the average time spent in certain points of the city or geolocalized
information from social networks to estimate user activity. Finally, a search
for the optimal solution is made by means of a genetic algorithm. This op-
timization checks the possible locations of the charging stations and tries
to distribute throughout the city the required stations. Moreover, it has to
satisfy constraints such as the maximum poles per station, it must guarantee
the supply of electricity for stations, and it has to consider urban information
such as population and traffic per neighborhood to optimize the investment.
The genetic algorithm can be configured by the user of the system to adapt
it to the specific conditions of each city.

This work is an extension of a previously published paper [8], which also
adds a crossover operator specifically designed for a geolocalized domain.
Additionally, some experiments about this operator are presented and show
a remarkable improvement of performance for these type of domains. The
paper is structured as follows: Section [2| analyzes previous works related to
the placement of electrical stations. Section [3| presents a multi-agent system
that gathers data and executes the genetic algorithm proposed in this work.
Section [4] presents a case study to illustrate how the system works. Then, an
experimental evaluation focused on a new crossover operator for the genetic
algorithm is performed in Section [f] To conclude, Section [6] presents some
conclusions and future works.

2. Related Work

Currently, there is a paradigm shift in transport in cities from traditional
vehicles to electric vehicles. This is partly due to increased environmental
awareness in society and the observation of some of the effects of pollution.
As a result, many cities have begun to popularize the use of the electric
vehicle and have begun to investigate further the most appropriate location
of charging stations to service new users of these vehicles [9].

There are different perspectives to cover the problem of placing electric
stations. Some initiatives try to provide support, through implementation
guidelines, to the selection problem of the most appropriate location of charg-
ing stations in a city [I0, I1]. There are other approaches that consider dif-
ferent information sources and optimization algorithms for the solution of



the problem (see Table[l). Erbacs et al. [12] propose the combination of ge-
ographic, economic and urbanity information to address the Electric Vehicle
Charging Station (EVCS) site selection. The authors use fuzzy techniques
and preference by similarity to ideal solution to choose the optimal EVCS
sites. However, it is not always possible to know the optimal solution.

Lin et al. [I3] propose a Mixed Integer Linear Programming (MILP)
model to identify the optimal location and size of EVCS in cities. They
consider traffic flow data, aggregated charging profiles and land-use classifi-
cations as inputs of their MILP model to identify the optimal location and
size of EVCS in cities. The goal of their proposal is to maximize the total
profits of new charging stations. Li et al. [I4] also consider the users’ charging
behavior data to decide the distribution of charging stations. Their proposal
is mainly oriented to understand and satisfy the real needs of the current EV
drivers. However, providing a planning that goes beyond the current users
would have to consider other aspects such as traffic, uses of different areas
of the city or population in each area. A similar approach is proposed in
[15]. The authors considered that charging occurred more likely at the end
rather than in the middle of a trip. They propose a genetic algorithm to
maximize the charge quantity, optimize the layout of public charger and de-
cide which type of chargers should be installed at each location. Similarly,
Nie et al. [7] propose an analysis of journeys made by EV using an opti-
mization model. The objective of the model described here is to determine
the most appropriate charging power for each station and how many stations
would be needed to cover the journeys made, satisfying a particular level of
service and minimizing cost. In the paper presented by Wood et al. [4] the
authors focus on establishing an approximate number of charging stations to
increase vehicle utility on the one hand and how the stations can be strategi-
cally located to maximize the future benefit of EV users on the other. This
approach makes use of driver behavior, vehicle performance, travel profiles,
battery attributes, environmental conditions and charging infrastructure to
optimize EV and charging station performance. All these works are based on
an existing EVCS infrastructure and assume that the models are allowed to
access to user profiles. These facts may limit the application of the proposed
models to contexts where there is no previous infrastructure and therefore
no information on the behavior patterns of EV users.

In the paper presented in [I6] authors propose to take into account the
destination of journeys made by EV users (i.e. restaurants, shops or banks)
to decide the location of a charging station. Points of interest (POIs) are

4



these destinations. Specifically, the paper describes a model that allows
these POIs to be classified depending on how attractive they are to users
of electric vehicles. To locate a station, the work considers two approaches:
i) use a method based on obtaining maximum coverage of demand; ii) use
an iterative method that penalized the location of a new recharging point if
it was near another existing point. The main drawback of this proposal is
that it only uses travel information for EV users. Similar work was proposed
in [I7], where authors transformed the problem of locating stations into a
problem of maximum coverage of a weighted network where the weight of
the arcs was the number of cars going from one origin to one destination.

Genetic algorithms (GAs) have been also proposed as a suitable technique
to deal with the problem of determining locations for charging stations. Wei
et al. [I8] present a tool based on a GA to model the demand for taxis,
stations and electric taxis. In their proposal, the radius of action of a taxi,
the charging time and the capacity of the EV stations are taken into account
as input parameters. In the work proposed by Dong et al. [5] they also
make use of a GA to determine the location and type of charging stations.
The algorithm aims to minimize lost trips taking into account budgetary
constraints. The city is modeled as a grid in which each cell stores information
on the number of journeys ending in it. To select station locations, the most
visited destinations are taken into account.

GAs consist of several elements, including genome coding, population
generation, fitness function and selection procedure, crossover, mutation and
stop criteria. In the work presented by Wei et al. [18] the crossover was
performed by the single-point crossing operator. Dong et al. [5] decided to
use an existing commercial tool to carry out their experiments, however, their
work does not detail which operators they use. In our work, we analyzed the
main components involved in the proposed GA and propose a new crossover
operator that improves the performance of the algorithm.

3. Multi-Agent System Application

In this work we propose an application that evaluates a set of points
of interest throughout a city in order to optimize the best distribution of
charging stations for EVs that minimizes the called range anziety that is
mainly determined by the infrastructure of the charging stations [19]. For
this purpose, a multi-agent system manages a genetic algorithm designed in
this work. This system tries to reduce the search problem by introducing



[ || el | as) | Blo| 7 | 2] | [@3] | [17 | [15] | Proposal

Traffic, frequent routes | v v v v v v v v v v
Social data v
Population v
Time spent in a Pol v v v v v v v v v v v
Cost per station v v v v v
Demand per station v v v v v v
GIS v v v
Land use v v v
Charging profiles v v

Table 1: Comparison of the types of information considered by the approaches that deal
with the EV charging station location.

information about the city and a heuristic that makes the search faster and
prevents premature convergence to a less optimal solution. The SPADH]
agent platform [20] was used to develop the MAS. SPADE allowed us an easy
prototyping and further development of the MAS by means of the instant
messaging support provided by the XMPP| protocol [21] in SPADE. All
messages are sent in real-time between the agents described below using the
presence notification mechanism that the platform provides.

3.1. Data collecting and processing

Before running the GA there is a set of SPADE agents of the application’s
MAS that collect information related with the city we are working on. This
allows our application to be run and reused in other municipalities with not
too much effort. The information collected by the application is:

e Points of Interest: The GA starts with a set of Points of Interest
(Pols) that are candidates for hosting a charging station. These points
are manually selected according to the city’s urban development plan.
Subsequently, the GA will be responsible for reducing this set, but the
Pol agent is in charge of detecting and classifying Pols candidates to
be selected for the input of the algorithm.

e Population information: The Urban agent gathers information about
the population living in each area of the city. It queries census sections
of open data portals and obtains the population in the different neigh-
borhoods or blocks of the city under study.

'https://github.com/javipalanca/spade
Zhttp://www.xmpp.org
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e Traffic information: The amount of traffic that an area of a city has
is obtained by the Traffic agent.

e Popularity information: The influx of an area determines its pop-
ularity. Based on the number of people that visits each Pol and how
much time they spend in the area, we can estimate its popularity. The
Popularity agent uses an exhaustive search on third party services (such
as Google cards on the search engine) to locate this data.

e Social Networks information: Geo-tagged information of social net-
works can be used to estimate the activity that occurs in that area. The
Social Network agent tracks some networks (Twitter and Instagram)
to collect all the geolocated items in an area.

Once the data is collected, the Data Processing Agent aggregates all the
information obtained and serves it through geo-queries that simplify obtain-
ing the information around an individual Pol.

3.2. Application’s data flow

The application is run in six stages that include the selection of Pols,
transforming the Pols to a Voronoi diagram, the extraction of city data,
the characterization with this data of the polygons representing Pols, the
execution of the GA and the visualization of the results (see Figure [1).

The output of the first stage is a set of Pols P that are candidates for the
location of a station s;. The Pol agent may use as first Pol set the location
of public parking and garages, which have a large number of visitors.

At the second stage the Pol agent builds a Voronoi diagram, using the
selected Pols as centroids, to determine the area of influence of each point.
This area allows us to better determine a full polygon, and not only a single
point, to consider the location of a station. It also helps to calculate which
data collected from the city at the next stage belongs to which polygon.

Third and fourth stages collect data from the city and aggregate it to the
Voronoi polygons, which get characterized with population density, traffic
intensity and social networks activity. These stages are performed by the
Data Processing Agent and the collecting agents described above.

The fifth stage is performed by the Emplacement Optimizer Agent, which
is described in depth in the next section. This agent uses the characterized
polygons and the constraints of the problem, such as the maximum number
of stations to install in the city, to make a heuristic search using a GA.
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Figure 1: Application’s data flow

The last stage of the application is performed by the User Interface Agent,
which runs a website where the results of the application can be examined on
a map, query the properties of each proposed station and run new executions.

3.8. The Emplacement Optimizer Agent

This agent is responsible for determining the most appropriate locations
for the emplacement of electric charging stations. In this subsection, we
describe the formalization of the problem of finding the most suitable con-
figuration for the location of the stations and the GA used.

3.3.1. Location of electric charging stations problem

The goal of the Emplacement Optimizer agent is to analyze a set of
possible configurations and select the most appropriate according to a utility
function and a set of pre-defined Pols. We consider a set of possible locations
(i.e., Pols) P = {p1,...,pn} belonging to the city under study. Each Pol p; is
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described by a set of attributes p; = {ay, as, ..., a,}. Specifically, we consider
the following attributes: (1) Gpoputation, Population in the area around p;; (2)
Qiraffic, average traffic in the area; (3) ayime, average time spend by citizens
in public places in the area; (4) asoeiar, geolocated social networking activity
in the area; (5) cost_area, cost depending on the area covered by the stations;
(6) cost_per_charger, cost per each charging station.

Besides the set of possible locations, the agent considers a set of charging
stations S = {s1,...,8,};0 < s; < maz_chargers_per_poi, that could be
deployed in the city. The number of chargers per station in a Pol ranges
from 0 to a constant value maz_chargers_per_poi (4 in our tests).

Considering the set of predefined Pols P and the set of charging stations
S, the agent is able to provide the most appropriate configuration C; for
the location of stations in Pols. A configuration C; = {{p1,s1}, {p2, 2},
.oy {Pn, Sn}} consists of a set of pairs Pol-stations. Each configuration has
associated a fitness value V(C;) according to its suitability.

3.8.2. Genetic Algorithm

Our Genetic Algorithm (GA) [22] is implemented using the DEAF li-
brary. We propose a GA that will generate solutions where each individual
is a possible configuration of the charging stations. Initially, the algorithm
considers a random population of /N individuals. Each individual is a feasible
solution C; to the problem. Specifically, a chromosome is composed of a set
of locations P and the number of stations per location S. An example of the
chromosome encoding and functions of the GA are shown in Figure [2|

To evaluate the suitability of each chromosome (i.e., solution), the agent
uses a fitness function that evaluates the quality of the solution considering
the suitability of placing charging stations in the selected points using the
parameters defined above. The fitness function considered is as follows:

V(Cz) - E ((wp . CLpopulatz’on + Wip atraffic + Wt * Qiime + Wg * asocial)_
Vp,eC

(wq - cost_area + w, - cost_per_charger - |s;])), (1)
where apopuiation denotes the population that is covered by the charging sta-

tions located in p;; airarfic refers to the traffic generated in the area of p;;
ayme refers to the average time citizens spend in public/commercial places

3https://github.com/DEAP/deap
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Figure 2: The encoding of individuals (i.e., chromosomes) and genetic algorithm.

in the area of p;; as.cia refers to the average social networks activity in the
area of p;; cost_area refers to the cost of locating stations in p; that covers
the demand of that area; and cost_per_charger is a constant cost per each
charger (|s;|) located in p;. The value of these parameters ranges in the in-
terval [0,1]. Each parameter has associated a weight value w established by
the users of the system depending on the characteristics of the city (in our
tests, these values are w, = 0.4; wy, = 0.3; wy = 0.2; and w; = 0.1).

In our implementation, we used the tournament selection method, which
makes several random groups of individuals, called tournaments, and selects
the best one of each group (in our tests, the size of groups is 3). The selected
chromosomes are combined with others (crossover) and/or mutated.

We used a new crossover algorithm that considers the geolocated domain
of this problem. This crossover will be presented in next section.

We use the uniform integer technique as a mutation operator (with a
mutation probability of 0.05), which generates a new integer value within a
provided range with an independent probability (also fixed to 0.05) of each
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attribute to be mutated. At the end of the GA process, the Emplacement
Optimizer Agent sends the obtained results to the User Interface Agent.

3.4. A new crossover algorithm for geolocated domains

If we analyze our domain, we find that there is a relationship between each
of the characteristics of a chromosome. This is because they are geolocated
in a map and they have neighbors, so we can look at the quality of a portion
of the solution that includes some characteristics that are close to each other.
With this scenario, representing the chromosome as a list of characteristics
does not show the relations between those characteristics.

We propose in this work a better representation of the chromosome as a
graph, where the nodes are the characteristics of the chromosome and the
edges represent that two nodes are close to each other in a map. Thus,
if instead of randomly exchanging characteristics of the chromosome we do
it by selecting subgraphs of the graph, we will be bringing the semantics
of the proximity between nodes to the crossover algorithm. To create the
graph we start from the Voronoi tessellation created by our GA and use it to
create a Delaunay triangulation. Then the nodes representing the locations
on the map are joined by edges to their neighbors. The crossover algorithm
randomly selects a node and their neighbors, and these are the nodes that
are exchanged between the selected parents, checking that the new generated
individual is feasible, i.e., that it satisfies the constraints of the problem. This
process can be done with as many subgraphs g as we want and with a variable
depth in the selection of neighbors n.

Therefore, an individual is the set of vertices V' of a connected graph
G and a set of edges E that connect the vertices, where G = (V, E), for
veV,Nw)=1v e€V|(v,v') € E, which identifies the set of vertices that are
connected to v. Then, a subgraph S that is going to be exchanged between
two parents is (assuming g = 1,n = 1) S = (vg,v1,...,vr), where vy is
selected randomly to be the center of the subgraph and L is the length of
N(vg). Thus, N(vg) = (v1,...,vr), which represents the neighbors of vy. For
bigger values of n this process is repeated for each neighbor of N(vg). For
bigger values of g multiple S are selected.

Figure |3 shows how a subgraph of the a geolocated graph is exchanged
using the graph crossover and how it would be represented in a linear chro-
mosome. The blue node is the randomly selected center of the subgraph and
the red nodes are their neighbors at level one. In Section [5| we will present
some experimental results about this new crossover.
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Parent 1

Figure 3: Example of a graph crossover exchanging one subgraph with one neighbor level.

4. Example: City of Valencia

This section presents a case study in the city of Valencia using data from
the open data portal supported by the city counci]ﬂ The goal is to determine
the most suitable locations in Valencia to locate EV charging stations using
the system presented above. Currently, there are 76 charging points in the
province of Valenciaﬂ and 24 of these are located in the city of Valencia.

In the first phase, the MAS determines the P potential Pols for the
location of a charging station s; taking into account data from the General
Urban Development Plan. The system determines the area of influence of
each of the Pols creating a Voronoi diagram around the selected points.

After this, in a second phase, the MAS collects data about different as-
pects from the city of Valencia: (i) Information about the level of traffic in
each street of the city. (ii) Information about the population that lives or
works in each zone of the city. (iii) The average time spent in commercial
and public spaces. This information is obtained from statistics published by
the city council and extracted from Google cards. (iv) Information about the
geolocated social activity from social networks. This information is obtained
using uTool [23], which performs a real-time analysis on the activity of a city
through the messages that users exchange inside a social network.

This data is collected and aggregated for each of the polygons around a

“http://gobiernocabierto.valencia.es/es/data/
Shttps://www.electromaps.com/puntos-de-recarga/espana/valencia
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Pol using the agents described in Section |3.1} The Emplacement Optimizer
Agent receives all this data in order to determine possible solutions.

Finally, in the third phase, the Emplacement Optimizer Agent returns
solutions through the proposed GA. The best individual in the population is
chosen based on the fitness value obtained by Equation [T

The proposed system has been tested with different data and configura-
tions for the particular case study of Valencia in order to compare solutions
of different quality. Figure [4] represents two example computed solutions.
Figure is a solution computed with an initial population of 250 with a
fitness value of 0.563. The solution of Figure is computed with an initial
population of 4000 that yields in a fitness of 0.639.

[
Aldaia =y

Sedalee

Alaquas

Figure 4: GA solutions for EV charging stations locations in Valencia

At a glance, both solutions are very similar. There is only a difference of
2 stations between the two proposals (solution of Figure has 40 charging
stations, while Figure has 42). However, the quality of a solution is
given by the disposition of the stations throughout the city. For instance,
Figure places a charging station in the far south of the city because
there is some activity there. However, this activity is not significant enough
and it would be a waste of resources because that area does not need to be
covered (in our scenario). The solution of Figure places the charging
stations more uniformly in the city, covering the full area where the main
activity occurs. Concretely, there are several charging stations covering the
center and north of the city which are not present in Figure [4(a)] Bearing
this in mind, the solution proposed in Figure is more appropriate if we
take into account the characteristics of the city.

13



5. Experimental Evaluation

In these experiments, we analyze the graph crossover explained in Section
from different points of view. Firstly, we analyze the maximum fitness
obtained by the graph crossover with different values of the number of sub-
graphs g and the depth of neighbors n. Then, we show the evolution of
maximum fitness of a selection of graph crossover with different values of g
and n compared to the uniform crossover. Finally, we compare the evolution
of maximum fitness of different crossover methods.

For the experiments presented in this section, we use an initial population
of 250 individuals, which evolve in the GA through 200 generations. There
are 926 Pols in the city of Valencia after performing the clustering. The initial
Pols of these experiments is significantly higher than those in the previous
example. The goal is to locate 100 charging points in the provided Pols,
considering a max_chargers_per_poi of 4. With these settings, the search
space is significantly large, which justifies the use of a GA.

The weights for the different parameters that characterize the city are
wp = 0.4; wy = 0.3; wy = 0.2; and w, = 0.1; which represent population,
traffic, time spent in a place and social activity, respectively. The weights
for the costs cost_area and cost_per_charger are w, = 0.5 and w. = 0.5,
respectively. Finally, the probability of performing a crossover operation is
0.5, while the probability of performing a mutation operation is 0.05.

The first experiment of the graph crossover consists of a series of tests to
evaluate the maximum fitness of the best individual that the GA can achieve
using different values of g and n. The g value represents the number of
subgraphs (centered on one random Pol) that will be switched between the
two individuals to perform the crossover. The value n is the depth level of
neighbors of the selected center Pol to be switched in the crossover.

The combinations of the values g and n are restricted to a maximum
that depends on the number of genes which are finally switched between
the parents. So any combination of g and n that provokes all genes (the
number of Pols) or more to be switched is not interesting since genes would
be switched more than one time. Therefore, we use an approximation of
the maximum values of g and n depending on the values of the problem to
solve (g - avg_neighbors™ = |Pols|) where g and n are the parameters of the
graph crossover corresponding to the number of subgraphs and the depth
level of neighbors; avg_neighbors is the average number of neighbors per Pol
in the problem to solve, which in our experiments is 5.974; and |Pols| is
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the total number of Pols in the problem, which is 926 for these experiments
in Valencia. For instance, if we consider ¢ = 200 and n = 1, the graph
crossover will switch approximately 200-5.974" = 1493.5 Pols (genes), which
is significantly higher than the actual number of Pols in these experiments.
Hence, this combination is not interesting and we must decrease g. Another
example with ¢ = 1 and n = 5 implies that 1-5.974% = 7608.97; which is
more than 8 times the number of Pols of the problem.

Table |2 shows the maximum fitness achieved by the best individual of
an instance of the GA using the graph crossover. Each cell represents the
average of 10 different repetitions for the same values of g and n. Cells with
an X symbol represent combinations of g and n which are out of the valid
values for these experiments as we explained above. Each column represents
a number of subgraphs ¢, and each row a depth level of neighbors n.

n\g 1 2 5 10 15 20 25 40 50 75 100 125 150 175
1 | 7.73E-6 | 3.08E-5 | 2.68E-5 | 4.60E-5 | 4.21E-5 | 6.08E-5 | 5.09E-5 | 1.04E-4 | 9.85E-5 | 6.84E-5 | 7.74E-5 | 4.97E-5 | 6.41E-5 | 5.61E-5
2 | 1.62E-5 | 2.62E-5 | 4.88E-5 | 3.99E-5 | 6.31E-5 | 3.41E-5 | 6.50E-5 X X X X X X X
3 | 2.55E-5 | 4.58E-5 | 5.51E-5 X X X X X X X X X X X
4 | 2.14E-5 X X X X X X X X X X X X X

Table 2: Maximum fitness for different values of ¢ and n of the graph crossover

The results depicted in Table [2|show that the maximum fitness is achieved
by the experiments with 40 subgraphs (in bold), followed by the combinations
of 50, 75, and 100 subgraphs. Additionally, the combinations of 15 and 25
subgraphs with 2 depth levels of neighbors n also achieve a high fitness.
Therefore, we can distinguish a pattern which indicates that the results are
not good if the gene swaps at the crossover are few, as well as the results are
also not good if most of the genes are switched between the parents.

We must note that the values of fitness of all these experiments are signif-
icantly lower that the ones shown in the previous example of Section 4] since
the setup of the problem is completely different with much more Pols.

In order to perform a deeper analysis of these results, we select the most
significant combinations of g and n to show the evolution of the maximum
fitness in Figure 5] We also used the results of the uniform crossover as a
baseline to compare with the maximum fitness obtained by different param-
eter combinations of our graph crossover.

As we can see in Figure [5 the uniform crossover depicted with blue z
marks (baseline to compare with graph crossover) tends to stabilize at around
generation 125, achieving minor improvements thence onward. However,
the graph crossover maximum fitness stabilize later at around 150 or 175
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Figure 5: Maximum fitness for baseline crossover and different values of graph crossover

generations. Hence, our graph crossover needs some more generations to
reach the top values of fitness compared to the uniform crossover.

Some of the graph crossover values are near the baseline during the evo-
lution, or even below it (see 20g, 15g2n, 2592n, in Figure to finally reach a
higher fitness value in the final generations. However, the values reached by
these combinations, including the fitness values of 75¢, are not significantly
higher than the fitness values of the baseline. Finally, the values of maximum
fitness achieved by the combinations of ¢ = 40 and g = 50, as well as the
values during the evolution, are significantly higher than the values of the
baseline. Concretely, the final value of those combinations are 1.72 and 1.63
times greater than the baseline, respectively.

The last of these experiments is a comparison between four different
crossover methods. Figure [6] shows the maximum fitness reached by the
best individual for the one-point crossover, two-points crossover, uniform
crossover, and graph crossover. As in previous experiments, these results are
the average of 10 repetitions for each crossover. In the graph crossover, we
plot the combination of g = 40 which achieved the highest fitness.

Figure [6] shows that the one-point crossover stabilizes before arriving to
100 generations, while the two-points crossover stabilizes at 100 generations.
Regarding the uniform crossover and the graph crossover, as we mentioned
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Figure 6: Maximum fitness evolution for alternative crossovers

before, these results stabilize at around 125 and 150, respectively.

Our graph crossover has a significantly higher maximum fitness than the
rest of crossover methods as dotted green line shows in Figure[6] The uniform
crossover is the next with higher fitness followed by the two-points crossover,
being the one-point crossover the one that reaches the lowest fitness. The
graph crossover reaches a maximum fitness which is 1.72 times greater than
the maximum fitness of the uniform crossover; 3.4 times greater than the
fitness of the two-points crossover; and 7.99 times greater than the fitness
reached by the one-point crossover. So we can claim that our graph crossover
clearly outperforms the other crossover methods in these experiments.

The fact of using a graph structure that considers the neighbor Pols in
the map of the city has proven to be the best technique compared with the
standard crossover methods for GAs since it considers context information.
Therefore, our graph crossover is the superior approach for the GA applied to
the problem of locating EV charging stations, thus confirming our hypothesis.

6. Conclusions

A new multi-agent system has been proposed in order to facilitate the
analysis of possible locations of EV charging stations. The proposed MAS
integrates information from heterogeneous data sources as a starting point to

17



characterize the areas where charging stations could be located. The core of
the system is a genetic algorithm that takes such data as input and generates
a proposal of possible locations taking into account several restrictions. The
system has been evaluated with real data from the city of Valencia. Addi-
tionally, the proposed algorithm incorporates a new crossover method which
is specially designed for geolocated domains. Experiments have also showed
a good performance of the new proposed crossover method.

As future works, it is considered to define a planning of the installation
by phases or years between the different proposed sites. In this way, it would
be possible to define a phased installation plan. We also consider an in-
depth analysis of the expected energy consumption of the charging stations,
especially at times of greatest demand.
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