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Abstract 10 

Lattice and porous structures have attracted attention in scientific literature due to the 11 

development of 3D printers that facilitate their manufacturing. A thorough understanding 12 

of the mechanical behaviour of these structures is necessary. In this work, several lattice 13 

and porous structures are analysed using the finite element method. Eleven configurations 14 

have been studied using periodic boundary conditions, in order to numerically estimate 15 

their elastic mechanical properties (Young’s modulus, shear modulus and Poisson’s ratio) 16 

as a function of the structure porosity. In addition, a tensile fracture test has been modelled 17 

to analyse the predicted fracture pattern as well as the stress-strain curve for each 18 

structure. It is shown that structures based on spherical holes distributions yield the best 19 

behaviour both in tensile and shear conditions. The distribution of cavities has a strong 20 

influence on the mechanical behaviour. The square distribution improves stiffness, while 21 

the hexagonal distribution improves the shear modulus. Random distributions clearly 22 

decrease the stiffness and strength of the structure, although the damage in these 23 

structures is more progressive. Therefore, this work provides a comparative study to 24 

assess the influence of the lattice topological structure on some mechanical properties of 25 

interest in structural engineering, as a function of porosity. 26 

Keywords: lattice structures; topological optimization; homogenization; mechanical 27 

properties; finite element modelling 28 
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1. Introduction 1 

The development of additive manufacturing has motivated investigations about the 2 

potential of lattice and porous structures developed for lightweight applications, such as 3 

aerospace, automotive or biomechanical engineering. Usually, lattice structures can be 4 

classified as periodic or random (stochastic) depending on their layout patterns [1]. 5 

Porous media or cellular structures are widely analysed in literature, based on bio 6 

mimicry, current designs imitate natural structures such as trabecular bone, corals, 7 

sponges, cork, etc, due to their enhanced mechanical characteristics, directly related to 8 

morphometry. For example, some lattice structures, e.g. the octet-truss lattice, have 9 

demonstrated to gain efficient stiffness-to-weight and strength-to-weight benefits because 10 

of its stretching-dominated behaviour [2] while porous materials are lightweight and have 11 

high impact absorption [3]. 12 

Traditionally, open-cell porous materials have been manufactured through liquid state 13 

processing (direct foaming, spray foaming, etc.), solid state processing (powder 14 

metallurgy, sintering of powder and fibres, etc.) or electro-deposition and vapour 15 

deposition [4,5]. Additive manufacturing technologies allow the generation of porous, 16 

reticular and lattice structures with predefined external shape and internal architecture 17 

[6], being geometries otherwise very difficult to fabricate through other manufacturing 18 

processes.  19 

A wide collection of lattice and porous structures has been studied in the literature in 20 

order to analyse their mechanical behaviour under different loading conditions. The 21 

estimation of mechanical properties has been carried out using numerical models (see for 22 

instance [7]) or experimental tests usually performed, see for instance [8,9]. Moreover, 23 

the influence of the lattice structure design on the mechanical properties have been 24 

analysed in several works in literature [10–15]. Different aspects have been analysed, 25 

such as the influence of load orientation [15] or the consideration of anisotropic models 26 

that account for the fabrication direction [16]. Lattice structures are appropriate for a wide 27 

variety of applications, e.g. as vibration isolation [10] or energy absorption in blast-28 

loading test [17]. The study of porous structures has also motivated several investigations 29 

[18–22]. The first approaches provided deformation mechanisms and analytical 30 

expressions of mechanical properties as a function of morphological relationships 31 

[18,19]. More recently, fatigue and failure properties have been assessed [20,21] and 32 
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detailed models based on images have highlighted the major importance of morphometry 1 

on the mechanical performance of these structures [22]. Advance materials, such as 2 

composite metal foams (CMF) are formed with metal hollow spheres and a solid matrix 3 

of another. These light structures exhibit good energy absorption and are used in armour 4 

components, aircraft and automotive applications, sound absorption or filters [23]. Foam 5 

structures are easier to manufacture than lattice structures, as they can be made from bulk 6 

material with gas injection or blowing agents [5]. Numerically, foams can be modelled as 7 

random distributions or using Laguerre-Voronoi tessellations [24]. 8 

Topology optimization is an important strategy to optimize morphology or gradient 9 

density [25] through the improvement of the structural response. Its combination with 10 

additive manufacturing allows the fabrication of proper structures for specific 11 

applications, adapting the geometry to the boundary conditions and the optimization cost 12 

function of the problem. Topology optimization techniques are based on homogenization 13 

method [26], Solid Isotropic Material with Penalization (SIMP) [27], using the level set 14 

method [28] or evolutionary structural optimization (ESO) [29,30]. The ESO technique 15 

consists in the deletion of inefficient (or underloaded) parts from a structure so that the 16 

resulting topology evolves towards an optimum architecture [29,30]. The evolution of the 17 

ESO method is named as the bidirectional ESO (BESO), which not only removes low 18 

efficient parts, but also reinforces the parts where needed to improve its objective function 19 

[31]. The BESO technique was improved to overcome non-convergence and mesh 20 

dependency problems of the original version [32]. After that, it has been demonstrated 21 

that the new BESO method is able to help in the topology optimization for macro-22 

structures with high computational efficiency [7].  23 

Due to the increasing applications of lattice and porous structures, it is important to 24 

characterise their behaviour under different loading configurations (tension/compression 25 

and shear). A numerical homogenization procedure can provide the mechanical constants 26 

required as an input in further finite element (FE) models at a larger scale. In this work, 27 

some designs of lattice structures proposed in the literature and other architectures 28 

obtained through topological optimization are analysed, including mechanical 29 

characterization and fracture propagation modelling. The influence of porosity on the 30 

elastic constants of each morphology is also explored. Structures analysed in this work 31 

could be useful in fields where the structure needs to support the required loading 32 

conditions, while it keeps its lightness and porosity. We consider that this study can be 33 
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useful for fields of research such as bone implants or replacement, prosthesis or aerospace 1 

applications.  2 

This article is organized as follows. Section 2 reviews the lattice and porous structures 3 

considered in this work. Some of them have been designed using topological 4 

optimization, as detailed in Section 3. The procedure followed for the finite element 5 

modelling is explained in Section 4. Section 5 presents the results and discussions, 6 

including a validation versus some experimental tests, an analysis of the influence of the 7 

element type, the estimation of the mechanical constants and the results obtained in the 8 

simulated fracture tests. The main conclusions of this work are summarized in Section 6.  9 

 10 

2. Architecture of the structures 11 

A wide variety of structure designs can be found in the literature, see for instance the 12 

architectures proposed in [33,34]. In this work, the most used configurations are selected 13 

for study. Each structure is based on an elemental 3D cubic cell, repeated in the three 14 

directions of space to use a periodic boundary conditions (PBCs) approach to calculate 15 

the corresponding elastic constants associated to each morphology. In order to dispose of 16 

models of porosities between 10% and 90%, the characteristic parameters of each 17 

architecture are varied. Each lattice structure is shown in Fig. 1 with a porosity about 18 

70%. Henceforth, names in brackets and capital letters will be used to denote each 19 

structure.  20 

1. Cubic cellular unit (CCU). Consists of bars in each edge of the cube. 21 

2. Diagonal cubic cellular unit (CCU-DIAG). Including bars in the diagonals and 22 

edges of the cube. 23 

3. Diagonal (DIAG). With bars only in the diagonal axes of the cube. 24 

4. Spheres with square distribution (SPH-SQ). A porous structure developed with 25 

spherical voids, following a square distribution. 26 

5. Spheres with hexagonal distribution (SPH-HEX). Porous structure formed with 27 

spherical voids, following a hexagonal distribution. 28 

6. Spheres with random distribution (SPH-RND). Porous structures formed with a 29 

random distribution of spherical voids. Intersection of the voids is allowed to 30 

obtain models of high porosities. 31 
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7. Octet truss (OCT). A common design used in lattice structures, composed by an 1 

octahedral cell surrounded by eight tetrahedral cells [2,14]. 2 

8. Kelvin cell (KEL-CELL). Also called tetrakaidekahedron, has spherical 3 

geometry, with fourteen faces, eight hexagonal and six quadrilateral. This 4 

structure has been used in some works as an optimal reconstruction model of real 5 

foam structures [24]. 6 

9. Random truss (TRUSS-RND). Based on the idea of the Laguerre-Voronoi 7 

tessellation [24]. A random structure formed by a random point distribution, 8 

where the neighbouring points are connected by bars. It is similar to trabecular 9 

bone distribution, where each trabecula is a bar.   10 

10. BESO optimization, maximizing E in tension test (OPT-E-TENS). Structure 11 

designed using the BESO technique, seeking for the maximum Young’s modulus 12 

(E) under traction boundary conditions. 13 

11. BESO optimization, maximizing G in shear test (OPT-G). Structure designed 14 

using the BESO technique, seeking for the maximum shear modulus (G). 15 
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 1 

Figure 1. Lattice and porous structures analysed in this work. The structures depicted in this figure have a porosity of 2 
about 70%. 3 

Each structure has been analysed for a range of porosity from 10% to 90%. As an 4 

example, cases shown in Fig. 1 present a porosity of about 70% that enables the 5 

visualization of the internal and external morphology of the cell. 6 

 7 

3. Bidirectional evolutionary structural optimization (BESO) 8 

Through an optimization process, functional structure designs can be created to 9 

optimize mechanical parameters. The BESO technique is used to create reticular 10 

structures adapted to the different boundary conditions studied in this work (see Fig. 1, 11 

structures 10 and 11). Although several optimization techniques exist, we use the BESO 12 
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technique, which is developed from the Evolutionary Structural Optimization (ESO) 1 

method [29,30]. The original ESO technique is a heuristic method based on removing 2 

inefficient zones from a structure. ESO technique has been improved in last years, leading 3 

to the new version called the bidirectional ESO (BESO), which not only removes 4 

elements from the least efficient regions, but also adds elements to the most loaded 5 

regions simultaneously [31]. First versions of BESO presented some weaknesses that 6 

limited its application to the field of microstructure design [32]. A few years later, Huang, 7 

Randman and XIE [7,32] developed an improved BESO method and successfully 8 

overcome these weaknesses. In this work we use the version proposed by Zuo and Xie 9 

[35], also used in recent works [36], specifically based on finite element analysis, which 10 

treats the relative densities of elements as the design variables. For a predefined volume 11 

fraction of the design, a design variable (density) takes the value of either 1.0 indicating 12 

the presence of the element or a small number close to 0.0 indicating the deletion of the 13 

element.  14 

 Through this method, a representative volume element (RVE) of the structure has 15 

been designed to optimize a mechanical parameter, in our case, the axial and shear 16 

stiffnesses. It consists of an iterative process, and in this work it has been implemented 17 

with a Python script to interact with the software Abaqus/CAE. In our topology 18 

optimization models, Young’s modulus of solid material corresponds to Es=1 (units of 19 

stress) and void material to Ev=1·10-9 (units of stress). Poisson’s ratio is kept constant as 20 

ν=0.3 for both materials. 21 

An initial meshed cube is necessary for the first step of the BESO iteration technique. 22 

The model needs a small variation in the geometry in order to induce stresses at the first 23 

iteration in the RVE. This variation is applied to the model with the deletion of some 24 

elements (marked in red in Fig. 2). After this first step, the BESO procedure optimizes 25 

the material disposition, seeking for the maximum value of the property defined as 26 

objective. In this work, we propose 4 different initial steps (instead of the only one 27 

proposed in [7]): v1: remove the first element from the centre of the RVE; v2:from the 28 

corners of the RVE; v3: from the centre of the faces on the RVE and v4: close to the 29 

corners but inside of the RVE. The scheme of the first elements removed from the initial 30 

model is illustrated in Fig. 2. The corresponding boundary conditions for each case (E 31 

and G optimization) are imposed to the model at every iteration. 32 
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 1 

Figure 2. Four different initial states used in this work for BESO optimization. The red cubes are elements removed 2 
from the initial mesh at each design. 3 

 4 

These design procedures (v1-v4) have been used to develop the optimization process 5 

for a porosity equal to 50%, and then, mechanical properties of each design have been 6 

calculated. Finally, only one design for each mechanical property objective has been 7 

selected, according to the best mechanical performance results, for our study. It is 8 

important to remark that in this work we are looking for the highest stiffness and ultimate 9 

stress, considering it as a good mechanical behaviour. However, in other fields of 10 

research, different goals can be necessaries for the researchers.   11 

 12 

4. Finite element modelling 13 

4.1. Geometry and mesh 14 

Regarding designs obtained from the literature, the geometries have been replicated 15 

using scripts in Python with the CAD module from Abaqus, obtaining porosities ranging 16 

from 0.1 to 0.9. The structures consist of bars and spheres merged to build the final 17 

configuration. A RVE of each design studied in this work is shown in Fig. 1. These 18 

structures replicated from other works in the literature (from 1 to 9 in Fig. 1) have been 19 

modelled using tetrahedral elements with quadratic interpolation (C3D10 element type 20 

code in Abaqus) due to their good performance, good accuracy, and adaptability to the 21 

complex geometries studied in this work. For instance, random distribution structures 22 

imply complex vertexes and small edges requiring a high quality mesh. The element size 23 

has been estimated performing a mesh sensitivity analysis, leading to models that are 24 

composed of about 2·105 elements. Further refinement led to negligible effects on the 25 

results covered in the analysis. 26 



9 

 

The geometry optimized for the axial and shear stiffnesses has been obtained using 1 

the BESO technique. The final mesh connectivity and nodal coordinates of the structure 2 

are generated after an iterative process. These models have been meshed using hexahedral 3 

elements with linear interpolation (C3D8R element type code in Abaqus). Hexahedral 4 

elements are often used in topological design to simplify the process [7,13,32,35,37,38]. 5 

The element size has been set to RVEsize/50, similar to that used in other optimization 6 

works [7]. These dimensions lead to a mesh composed of a maximum of 1·106 elements, 7 

although this value decreases as porosity increases. For instance, structures with a 8 

porosity equal to 0.9 are formed by about 1·105 elements. In this work, every mesh must 9 

satisfy symmetry conditions with respect to the three planes to apply PBCs. 10 

 11 

4.2. Boundary conditions and elastic properties estimation 12 

The homogenization approach is used to estimate the elastic constants of repetitive 13 

structures, such as composite materials or biological tissues. It consists of the calculation 14 

of the stiffness matrix of the model, that relates a stress vector (σ = (σxx σyy σzz τyz τzx τxy)
T) 15 

and a strain vector (ε = (ε xx ε yy ε zz γyz γzx γxy)
T) through the Lamé-Hooke constitutive 16 

equation, Eq. 1 17 

𝜎 = 𝐶 𝜀 [1] 

The homogeneous response calculation is accomplished through the combination of the 18 

PBCs and six independent unitary strain fields, three axial and three shear strains, shown 19 

in Fig. 3. Through each unitary strain field applied on each structure, the corresponding 20 

column i of the stiffness matrix C:,i is calculated. Each column of the stiffness matrix 21 

corresponds to the equilibrium stress vector σi, corresponding to the strain field εi. Stress 22 

vectors are obtained from the nodes allocated in the faces of the FE model. PBCs are 23 

considered in combination with a unit cell of large enough dimensions in order to model 24 

a representative mechanical response of the whole structure [39]. According to Reisinger 25 

et al. [40] when PBCs are applied to a cell, the volume of analysis must fulfil two 26 

conditions: the stress field must be periodic in such a way that the unit cell is in static 27 

equilibrium and the deformed shape of opposite sides of the unit cell must be consistent. 28 

To satisfy the second condition, the geometry and mesh of the numerical model must be 29 

symmetrical. In this work, this symmetry has been guaranteed by mirroring the principal 30 

cell with respect to the planes XY, XZ and YZ. 31 
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 1 

Figure 3. Scheme of the six unitary strain fields, three pure axial (top) and three pure shear (bottom) to calculate 2 
homogenized stiffness matrix in combination to PBCs of the structures analysed. Initial cell is represented with dotted 3 

lines. The deformed shapes are not shown at true scale. 4 

 5 

In this work, constraint equations proposed in [41] to fulfil the PBCs conditions are 6 

imposed to the model by means of multi point constrains (MPCs) in Abaqus. In order to 7 

apply the MPCs in opposite nodes adequately, constrains equations must be carefully 8 

implemented in the model, using the same order of nodes in each set [42]. Using these 9 

constraint equations, the model reproduces the deformed shape corresponding to each 10 

unitary strain case, relating displacements between faces, edges and corners. 11 

The entire process of calculation of the stiffness matrix involves several stages: create 12 

a symmetric mesh from the RVE with respect to the three reference planes, create node 13 

sets to apply PBCs to the model, imposing six independent unitary strain fields and 14 

estimating the corresponding stresses from the node sets to calculate each column of the 15 

stiffness matrix. Once the stiffness matrix has been estimated, elastic constants are 16 

calculated from the flexibility matrix [S], which is obtained through the relationship [𝑆] =17 

[𝐶]−1. An orthotropic behaviour is obtained though this methodology, which is a valid 18 

assumption for the geometries under study. All the structures analysed present symmetry 19 

with respect to the three main directions, except from the random structures (SPH-RDN 20 

and TRUSS-RDN). Then, an orthotropic behaviour is expected for the symmetric 21 

structures, characterized by an axial stiffness (E), a shear stiffness (G) and a Poisson’s 22 

ratio (ν). In case of the random distribution structures, we have averaged the stiffnesses 23 

along the three main directions and planes in order to compare the results with the rest of 24 
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the models. The whole process has been automatized though several scripts combining 1 

Python and MATLAB and it is sketched in Fig. 4. 2 

   3 

Figure 4. Scheme of the main tasks developed for this work. 4 

 5 

4.3. Tensile fracture simulation 6 

Tensile fracture has been numerically simulated for each structure, considering only 7 

designs with a porosity equal to 0.5. A displacement is imposed at nodes on the top face 8 

of the model in Z direction. On the opposite face, Z displacement is prescribed to zero. In 9 

addition, displacements at the central node at bottom face are fully constrained, to avoid 10 

solid rigid displacements of the model.   11 

The method to simulate the fracture propagation has been also used by the authors in 12 

other works with complex geometries obtaining good results and fracture paths [43–46]. 13 

The technique is based on the degradation of elastic properties of elements that exceed a 14 
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critical value in tension. The method is implemented by means of a USDFLD Abaqus 1 

subroutine. As a failure criterion, it is checked when the maximum principal stress at an 2 

element exceeds a limit value. Then, the Young’s modulus of that element is reduced to 3 

a minimum value in order to simulate the loss of stiffness due to the crack. 4 

In this section, the initial mechanical properties of the material are considered as: 5 

Einitial=1 (units of stress) and ν=0.3. We assume that failure occurs at a critical stress as 6 

σcrit=E/102. This value was stablished taking into account relations between mechanical 7 

properties (Young’s modulus and critical stress) in materials such as aluminium or 8 

Ti6Al4V. Once σcrit is reached in an element, its Young’s modulus is reduced to 9 

E=Einitial/105, a value low enough to simulate the smeared crack process. The dimensions 10 

of the model are 1×1×1 (units of volume) and a displacement equal to 0.01 (units of 11 

length) is imposed to the top face, which implies a maximum nominal strain of 1%. 12 

 13 

5. Results and discussion 14 

5.1. Topology optimization 15 

As explained above, the optimization process requires an initial stress state in the cell 16 

prior to initiate the procedure. This initial stress state has been induced removing one 17 

element from the model. In this work, four different initial states (v1 to v4, illustrated in 18 

Fig. 2) have been evaluated for each optimized design. After evaluating the mechanical 19 

properties of a unit cell with a 50% porosity, one initial state (v2) was chosen for each 20 

optimization design, because it led to the highest elastic axial and shear stiffnesses (E and 21 

G). Small differences were found in final optimized structures, about 5% in E values and 22 

1% in G values, using the different initial states explained above.  23 

Once the initial state design was fixed, the topological optimization was carried out 24 

for a range of porosity from 10% to 90%. Fig. 5 shows the geometries obtained for each 25 

mechanical property fixed as objective (E and G) and different porosity levels (30%, 60% 26 

and 90%). 27 
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 1 

Figure 5. Optimized structures calculated in this work with porosities around 30%, 60% and 90%. Structures are 2 
optimized to obtain the maximum Young’s modulus under tensile load (top) and shear modulus (bottom). 3 

 4 

5.2. Validation and sensitivity analysis 5 

Validation 6 

 The validation of the numerical procedure used in this work is performed through a 7 

comparison to experimental results obtained from the literature. Young’s modulus 8 

obtained for DIAG structure was obtained from experiments by McKown et al. [17] under 9 

compression loading for different levels of porosity. The relationship between the relative 10 

density (in our work: 𝑝𝑜𝑟𝑜𝑠𝑖𝑡𝑦 = 1 − 𝜌𝑟𝑒𝑙) and the relative Young’s modulus (E/Es) of 11 

the structure was inferred from the experiments. In this work, Es is the Young’s modulus 12 

of the solid material implemented in the numerical model. McKown et al. obtained a good 13 

correlation by fitting the expression 𝐸𝑟𝑒𝑙 = 0.95𝜌𝑟𝑒𝑙
2.84, where ρrel is the relative density 14 

and Erel denotes the relative elastic modulus. This expression is compared in Fig. 6 with 15 

the results of the DIAG model developed in the present work, under compression loading 16 

conditions, thus simulating the experimental tests developed by McKown et al. in [17]. 17 
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 1 

Figure 6. Validation study developed in this work for DIAG structure. Relative Young’s modulus comparison for 2 

different porosities under compression conditions: numerical models developed in this work and experimental 3 

compression tests from [17]. 4 

Fig. 6 shows the ability of the numerical model to accurately reproduce the stiffness 5 

behaviour of the structure for different porosity levels, leading to an average error about 6 

4%.  7 

Influence of the element type 8 

Different element types have been used in this work: tetrahedral and hexahedral 9 

elements. Designs inspired in previous works in the literature have been developed using 10 

tetrahedral elements, as explained in previous sections. The complexity of the structures 11 

requires the use of these elements, especially when random distributions are modelled. In 12 

the other hand, designs optimized through BESO technique are modelled using 13 

hexahedral elements, as hexahedral elements allow an easier modification of the topology 14 

and the boundary than with tetrahedral elements. The sensitivity of the numerical 15 

prediction of mechanical properties (E, G and ν) with element type was developed 16 

comparing tetrahedral and hexahedral performance during the simulation of the same 17 

structure.  18 

CCU and SPH-SQ structures have been re-meshed with regular hexahedral elements, 19 

as those we used in the topological optimization. In Fig. 7a an internal detail of the CCU 20 

design is shown with different elements types. 21 

    22 
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 1 

Figure 7. Influence of the element type on the mechanical constants calculated for CCU and SPH-SQ designs. a) 2 

Detail of CCU design modelled with tetrahedral elements (left) and regular hexahedral elements (right); b) relative 3 

Young’ modulus for both structures and elements types; c) relative shear modulus for both structures and elements 4 

types; d) relative Poisson’s ratio for both structures and elements types. 5 

Figs 7b, 7c and 7d show the results of the element type sensitivity analysis obtained 6 

in the elastic constants: Young’s modulus, shear modulus and Poisson’s ratio, 7 

respectively. Little differences were found between the tetrahedral and regular hexahedral 8 

meshes, even though regular hexahedral elements do not fully fill the volume. SPH-SQ 9 

shows higher differences between meshes for porosities from 0.7 to 0.9 when Young’s 10 

modulus or Poisson’s ratio are estimated (see Fig 7b and 7d). In general, slight differences 11 

in the predicted mechanical behaviour of the structure are observed when the use of 12 

tetrahedral or regular hexahedral elements is compared. As explained in previous 13 

sections, a mesh sensitivity analysis was developed previously to set a proper element 14 

size, ensuring negligible influence of its size. This element size is also appropriate to 15 

avoid the influence of element type.  16 

 17 

 18 
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5.3. Elastic properties (E, G, ν) estimation through homogenization  1 

In this section, the relative mechanical properties E/Es, G/Gs, ν/νs are estimated from 2 

the PBC models. These results have also been included in Appendix A. Fig. 8 shows an 3 

example of tensile and shear loading cases from the numerical model for the OCT design. 4 

The values of the mechanical properties have been averaged, taking into account the 5 

different values obtained in each direction or plane. In the case of random structures 6 

(SPH-RND and TRUSS-RND), five different distributions have been developed and the 7 

mean result is considered for the study. Results for E, G and ν are shown in Figs. 9 and 8 

10, respectively, plotted as normalized variables (E/Es, G/Gs, ν/νs).  9 

 10 

Figure 8. Numerical model of the OCT design with a porosity of around 70%. Strain contour plots under different 11 

loading conditions: a) ε11=1 and b) γ12=1. 12 

 13 

Young’s modulus E/Es 14 

Fig. 9a shows results obtained in the analysis for the relative Young’s modulus 15 

for porosities ranging from 10% to 90%. A non-linear dependence on porosity is observed 16 

for most of the structures. The structures containing spherical voids with squared or 17 

hexagonal distributions (SPH-SQ and SPH-HEX) and both optimized structures (OPT-E-18 

TENS and OPT-G) show the highest values of relative Young’s modulus. As expected, 19 

random distribution designs (SPH-RND and TRUSS-RND) show poorer results. The 20 

random distribution involves the existence of thinned zones in the structure with the 21 

consequent decrease of stiffness. For example, in SPH-RND, the randomness causes 22 

strong E/Es variations for some levels of porosity, resulting in stiffness values close to the 23 

maximum values reached by other designs. Therefore, a random distribution of material 24 
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makes difficult to predict the stiffness accurately, but a range of values expected may be 1 

provided. In the results presented in Fig. 9a, it can be observed that the squared 2 

distribution (SPH-SQ) have the best performance and is the upper bound regarding axial 3 

stiffness with respect to the random spheres distribution (SPH-RDN). 4 

 5 

Figure 9. Results obtained for relative Young’s modulus (a) and relative shear modulus (b) for different porosities.  6 

CCU and KEL-CELL structures present analogous E/Es behaviour which can be 7 

explained because of the similarities in the material distribution at the RVE edges, see 8 

Fig 9a. This conditions the wall deformation mechanisms and thus the elastic properties. 9 

On the other hand, CCU-DIAD, DIAG and OCT morphologies lead to the lowest E/Es 10 

results, in the lower bound of the structures analysed, see Fig. 9a. Again, these similarities 11 

are result from the geometrical characteristics, presenting material at the diagonals of the 12 

RVE. 13 

Results obtained by means of BESO technique are compared with the analysis 14 

developed by Huang et al. [7] where bulk and shear modulus maximum were sought, 15 

using a previous version of this technique. Considering the OPT-E-TENS design, Huang 16 

et al. [7] presented results for porosity equal to 0.5, 0.6 and 0.7. Results of models of 17 

porosity equal to 0.5 are similar to those obtained in this work, but lower porosities led to 18 

higher values of axial stiffness results in this work, about twice those presented by Huang 19 

et al. [7]. Structures calculated by Huang et al. are similar to those obtained in this work 20 

(see Fig. 5), although there are small differences on the morphometry obtained. This can 21 

be due to the use of different initial states for the iteration process, presented in Section 22 

3, Fig. 2. Huang et al. [7] used the initial state denoted v1 in Fig. 2. However, in our study 23 

it was observed that v2 initial configuration led to the highest results for traction and shear 24 

conditions.  25 



18 

 

SPH-SQ can be considered the best design regarding tensile stiffness behaviour, 1 

because it presents the highest E/Es values for the range of porosities under study. Other 2 

works in the literature have also highlighted high stiffness results using this design, such 3 

as in the work by Hollister and Lin [47] for the effective Young’s modulus.  4 

 Some of the designs of this work have been analysed in the literature for some 5 

ranges of porosity. Here, we compare those values to the models developed in the present 6 

work. CCU was analysed by Cheng et al. [37] using experimental and numerical 7 

approaches, leading to similar results to those obtained in this work. Also the diagonal 8 

structure (DIAG) has been analysed in other works [17], and it was found that this design 9 

is not proper for tensile loading conditions. None of their trusses are oriented in the 10 

loading direction, which leads to low Young’s modulus values. Octet truss (OCT) has 11 

been widely analysed in literature, although it was shown that it is one of the worst design 12 

for tensile conditions, with similar values to those obtained in literature [2,14]. It is worth 13 

noting that loading orientation can have a large influence on the behaviour of this design 14 

[14]. 15 

 16 

Shear modulus G/Gs 17 

Shear modulus results for a variation of porosity between 10% and 90% are shown 18 

in Fig 9b. The numerical results are normalized by the nominal shear modulus 19 

corresponding to the nominal properties implemented in the model without porosity, 20 

following the equation 𝐺𝑠 = 𝐸𝑠/2(1 + 𝜈), valid for solid homogenous isotropic 21 

materials. The trends obtained for G/Gs are different to those previously found for relative 22 

Young’s modulus calculation. In general, results show less dispersion than for Young’s 23 

modulus. A non-linear influence of porosity is observed for all the structures analysed, 24 

see Fig. 9b. The SPH-HEX configuration shows the best behaviour under shear conditions 25 

for porosities ranging between 10% and 60%. However, its shear stiffness properties 26 

decrease for higher porosities and other structures, such as DIAG, CCU-DIAG and OCT, 27 

present higher G/Gs values. 28 

DIAG design also gives good results in terms of G/Gs values, while in tensile 29 

loading shows one of the worst behaviours. The diagonal distribution of the material for 30 

these configurations, with bars oriented at ±45° degrees, improves the behaviour under 31 

shear loading. The spheres distribution includes diagonal trusses of material in SPH-HEX 32 
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case, leading to a similar effective configuration. In addition, the absence of stress 1 

concentrators in SPH-HEX leads to a better shear behaviour than that exhibited by the 2 

DIAG design for porosities up to 60%.  3 

The random design TRUSS-RND shows the lowest shear performance for most 4 

of the porosities analysed and would be the lower bound of shear properties for the 5 

structures under study. This points out that randomness is undesirable to optimize a 6 

certain mechanical parameter. Concerning the effect of the randomness distribution, it is 7 

mainly observed in the in the SPH-RND distribution.  8 

On the other hand, the results of several models fall in a narrow range of variation, 9 

see results of CCU-DIAG, SPH-SQ, OCT and OPT-E-TENS in Fig. 9b. Therefore, in 10 

terms of relative shear modulus (G/Gs) some of the morphometries lead to very similar 11 

results, with analogous behaviour for a variation of the model porosity. 12 

Shear loading has been analysed in [7], however the initial state for the 13 

optimization was different (v1) than in this work (v2), which leads to slight differences 14 

in the final structure that can have an influence on the mechanical behaviour. This type 15 

of optimization was also studied for shear loading in [38], solving a 2D problem to create 16 

a micro-cellular structure, being a different problem providing no comparable results. 17 

 18 

Poisson’s ratio ν/νs 19 

Fig. 10 shows the normalized Poisson’s ratio (ν/νs) related to the value used for 20 

the bulk material in the numerical model for the cases analysed. As expected, values 21 

obtained for the models of low porosities are close to material Poisson’s ratio. To the 22 

author’s knowledge, Poisson’s ratio has been poorly analysed in reticular and porous 23 

structures despite its importance in the compressibility of the structure. 24 
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 1 

Figure 10. Results obtained for Poisson’s ratio for models of different porosities. In this figure, the Poisson’s ratios 2 

calculated using PBC have been divided by the material Poisson’s ratio implemented in the numerical model. 3 

When porosity increases, the Poisson’s ratio experiences a strong dispersion 4 

depending on the configuration. Architectures with high Poisson’s ratio present higher 5 

strains in the transverse direction when the load is applied in the longitudinal direction. 6 

Obviously, this is result from the morphometry and the subsequent deformation 7 

mechanisms of each structure. In DIAG configuration, Poisson’s ratio reaches values 8 

close to ν=0.5, with porosity equal to 0.9. CCU-DIAG and OCT configurations present 9 

little variation on the relative Poisson’s ratio with values nearby 1 for the porosities 10 

analysed. Both configurations have morphological similarities, like the diagonal bars of 11 

the RVE. In case SPH-HEX, Poisson’s ratio is relatively constant up to a 60% of porosity, 12 

with values around 0.25. However, for larger porosities, Poisson’s ratio decreases 13 

proportionally up to 0.12. The random configurations, SPH-RND and TRUSS-RND, are 14 

influenced similarly by the porosity level and the relative Poisson’s ratio (ν/νs) takes 15 

decreasing values around 0.75. Strong variations can be found for large porosities in SPH-16 

RND, due to its complex geometry. 17 

On the other hand, some configurations show a Poisson’s ratio decrease when 18 

porosity is close to 1, for instance CCU, OPT-G and SPH-SQ. Specifically, SPH-SQ 19 

presents a value about ν=0.01 for a 90% model porosity, close to auxetic materials, 20 

leading to low strains in transverse direction. For these three configurations, material is 21 

principally distributed at the RVE edges.  22 
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It is worth noting the variable trend of the Poisson’s ratio for a change on porosity 1 

for the KEL-CELL and OPT-E-TENS configurations varying from low to high values. It 2 

is observed the influence of porosity on transverse strains, leading to higher compressive 3 

strains in the transverse direction to the load. 4 

 5 

5.4. Stress-strain tension curves and fracture paths 6 

Fig. 11 shows the stress-strain curves obtained in the tensile fracture simulation for 7 

each configuration. Experimentally, fracture tests on lattice structures are usually carried 8 

out under compressive loads, and only few works in the literature study the fracture 9 

process under tensile loading [48,49].  10 

 11 

Figure 11. Stress-strain curves obtained for each design with porosities equal to 50% under tensile loading conditions 12 

until fracture. 13 

Regarding the stiffness of the structure, results shown in Fig. 11 are similar to 14 

those shown in previous section, although small differences exist due to the non-periodic 15 

boundary conditions imposed in this simulation. Configurations presenting the highest 16 

stiffnesses are OPT-E-TENS, SPH-SQ and OPT-G, matching the highest strength values. 17 

There are slight differences when the stiffness of the structure is analysed using PBC or 18 

conventional tensile test, although the tendency of the values keeps similar.   19 

Compression analyses in reticular structures in scientific literature show different 20 

stress-strain curves presenting several local stress maxima with a quasi-continuum 21 
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increase of the stress and high level of deformation, where material densification occurs 1 

[13,50]. However, Fig. 11 shows curves with a unique maximum stress for each 2 

configuration followed by a strong decrease of the stress, which is expected for tension 3 

loading conditions. The mechanical properties imposed to the model that assume a purely 4 

elastic material and a fragile fracture criterion influence the trends observed in the 5 

stress/strain curves. Although the structures are composed by several bars, failure tends 6 

to be localized in fracture bands rather than spread, see Fig. 13. Moreover, bars fracture 7 

simultaneously leading to a macroscopic fragile behaviour. This effect is in agreement 8 

with the observations by Xu et al. with 3D printed lattice structures with PLA [48], where 9 

a fragile fracture behaviour is reported. In our study, CCU-DIAG presents a small second 10 

peak after the initial crack, because the longitudinal bars break before than the diagonal 11 

ones (see Fig. 11, CCU-DIAG stress-strain curve). Random structures (TRUSS-RND and 12 

SPH-RND) are able to support higher strains, due to the random distribution leading to 13 

bar failure at different loads depending on their orientation with respect to the loading 14 

direction. This same fact affects to the DIAG configuration, since all of its bars are 15 

oriented differently with respect to the loading direction. This exacerbates the effect of 16 

bar orientation leading to a great admissible strain and low stress peak. 17 

Fig. 12a shows a scatter plot of the failure stress as a function of the apparent 18 

stiffness for a 50% porosity. The highest the apparent modulus is the greater the stress at 19 

failure. Therefore, for a 50% porosity level, the material distribution conditions both the 20 

elastic and failure properties following a linear relationship, with a coefficient of 21 

correlation ρ=0.87. This kind of behaviour have been observed in other foamed structures, 22 

such as cancellous bone [46]. On the other hand, the failure strain does not correlate to 23 

the apparent modulus, since a coefficient of correlation ρ=0.42 was obtained, see Fig. 24 

12b.  25 

 26 



23 

 

 1 

Figure 12. Scatter plot of a) failure stress and b) failure strain as a function of the apparent modulus of each structure. 2 

 3 

Fracture paths obtained under tensile loading are shown in Fig. 13 for 4 

configurations with a porosity of 50%. Structures with connected bars show fracture paths 5 

located at bars joints due to the elevated stress concentration at these zones. Probably, the 6 

incorporation of fillets at these corners would improve the response of these structures to 7 

high stresses, increasing their maximum admissible load. Structures cut by spheres (SPH-8 

SQ and SPH-HEX) present fracture paths in zones with small thickness walls due to the 9 

presence of voids. SPH-SQ is fractured by transverse fracture paths, while SPH-HEX also 10 

presents a diffuse fracture path at 45º with respect to the loading direction. These are 11 

maximum shear planes appearing in the structure due to the hexagonal distribution of the 12 

cutting spheres. Random structures mainly present two transverse fracture paths close to 13 

the upper and lower face. These fracture paths are more diffuse than those shown, for 14 

instance, in SPH-SQ due to the random distribution. Optimized structures also present 15 

transverse fracture paths located at the thinnest walls. Also OPT-E-TENS presents 16 

damaged areas close to the faces where boundary conditions were applied. 17 
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 1 

Figure 13. Simulation of fracture paths under tensile loading. The displacement is applied in vertical direction. 2 

Elements in red represent damaged elements while grey elements in grey intact material. SPH-SQ, SPH-HEX and 3 

OPT-G are cut through a plane to show an internal view. Porosity for all structures is 50%. 4 

As explained above, fracture paths shown in this work are mainly transverse to 5 

the loading direction, except for SPH-HEX, where the hollow hexagonal distribution 6 

leads to some diagonal fracture planes, corresponding to maximum shear planes at 45º. 7 

This location of the fracture paths seems to be clearly influenced by the geometry of the 8 

structure. Some examples extracted from literature are shown in Fig. 14. Tensile fracture 9 

tests reported in the literature [48,49] show that an increased quantity of bars oriented 10 

with the same direction of load, leads to enhanced transverse fracture paths. The absence 11 

of longitudinal bars originates cracks following the bars located closer to the longitudinal 12 

axis (see for instance Fig. 14a from [49]). Compression tests reported in literature also 13 

highlight the strong influence of the structure design on the fracture path. Depending on 14 

the architecture, transverse fracture paths [15] or diagonal cracks [17] can be found. For 15 
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example, in Fig. 14a and 14c, failure tends to concentrate in shear bands, which 1 

correspond to the maximum shear planes direction. Another failure mode observed in this 2 

kind of structures is the local buckling of the struts [15]. The presence of longitudinal or 3 

transverse bars only implies a transverse fracture path (see fracture under compression in 4 

Fig. 14b from [15]), while the use of also diagonal bars leads to a diagonal crack path (see 5 

Fig. 14c from [17]). Also, a bad quality of the PLA printed can influence the fracture 6 

path, leading to a more diffuse crack [51]. 7 

 8 

Figure 14. Some fracture paths reported in literature. a) Diagonal fracture path at 30º from [49]. b) Transverse 9 

fracture under compression due to local buckling from [15]. c)  Diagonal fracture path at 45º under compression from 10 

[17]. Reprinted from Refs. [15,17,49] with permissions. 11 

 12 

6. Conclusions 13 

In this work, the mechanical behaviour of several lattice and porous structures has 14 

been modelled using finite element numerical models. This numerical analysis allowed 15 

the study of the mechanical behaviour of different configurations, obtained from the 16 

literature or developed through topological optimization. This kind of analysis is useful 17 

to understand the behaviour of each structure under different conditions, allowing the 18 

selection of a specific structure for a given loading case. 19 

Numerical models have been validated comparing with experiments extracted from 20 

literature, leading to accurate results.  21 

PBCs have been implemented aiming at estimating the stiffness matrix associated to 22 

each morphology and the subsequent mechanical properties for different levels of 23 

porosity. Regarding apparent Young’s modulus, the configurations with spherical cavities 24 

arranged in a square distribution yield the best results, because of the bulk material 25 

aligned with the loading direction. The topologic optimized configuration for this purpose 26 

also shows an enhanced behaviour, since it follows a similar distribution to that created 27 
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by spherical cavities. The configuration with spherical cavities arranged in a hexagonal 1 

distribution leads to the best mechanical behaviour under shear loading. The increased 2 

distribution of material at the diagonal zone explains this behaviour. As expected, 3 

configurations with random distributions show a worse behaviour both in tensile and 4 

shear loading, due to the small effective area involved. As regards the Poisson’s ratio, an 5 

interesting dispersion of the results has been found, showing strong variations as the 6 

porosity changes. This fact has led to either an increase or a decrease of the Poisson’s 7 

ratio for high levels of porosity that depends on the structure. 8 

Fracture has also been modelled for each structure to analyse the tensile stress-strain 9 

curve and the fracture path. Thus, the stiffness behaviour of the structures has been 10 

corroborated at the first loading stages. Random structures show that are not able to 11 

withstand high loads, since local damage initiates at the first steps of the loading process. 12 

However, the damage in these structures is more progressive, although its failure strain is 13 

similar to the ones for non-random structures. A linear relationship between the apparent 14 

stiffness and the stress at failure has been obtained. The highest the rigidity is, the greater 15 

the stress at failure. No significant correlation was found to the strain at failure. Fracture 16 

paths initiate principally at connections between bars that act as stress concentrators. In 17 

general, path propagation is clearly influenced by the material distribution in the structure. 18 

In this work we have included the most important structures designed or studied in 19 

literature. Due to the large number of structures available in research, some of them have 20 

not been included in this work, which is a limitation of the paper. For instance, triply 21 

periodical minimal surface (TPMS) geometries such as gyroids have not been studied in 22 

this work, since the large number of design possibilities would make the paper difficult 23 

to follow and to understand. 24 

Another limitation of the work is the fact that we only have analysed the ideal 25 

geometry of the structures by finite element models. However, these procedures can 26 

produce geometrical imperfections, such as porosity, variation in strut’s thickness, 27 

residual stress and localised buckling due to bed’s instabilities [34]. Also, the orientation 28 

of the 3D printing can influence its mechanical behaviour, leading to a structure with 29 

orthotropic behaviour, while here they have been considered as modelled by 30 

homogeneous materials. These imperfections could affect to the behaviour of the 31 

structure, reducing their mechanical properties like in this work have been analysed. 32 
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Appendix A 1 

Table I. Relative mechanical constants for different porosities. CCU structure 2 

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Erel 0.820 0.637 0.480 0.389 0.280 0.219 0.144 0.092 0.037 

Grel 0.807 0.583 0.388 0.247 0.149 0.080 0.040 0.010 0.004 

νrel 0.940 0.848 0.737 0.622 0.548 0.451 0.369 0.265 0.208 

 3 

Table II. Relative mechanical constants for different porosities. CCU-DIAG structure 4 

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Erel 0,745 0,592 0,414 0,289 0,220 0,130 0,078 0,056 0,023 

Grel 0,779 0,623 0,467 0,336 0,248 0,160 0,100 0,069 0,030 

νrel 0,946 0,889 0,874 0,868 0,868 0,916 0,952 0,954 0,984 

 5 

Table III. Relative mechanical constants for different porosities. DIAG structure 6 

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Erel 0,760 0,588 0,378 0,240 0,184 0,080 0,033 0,013 0,003 

Grel 0,771 0,619 0,471 0,368 0,290 0,200 0,131 0,084 0,039 

νrel 0,919 0,880 0,927 1,012 1,021 1,216 1,363 1,483 1,565 

 7 

Table IV. Relative mechanical constants for different porosities. SPH-SQ structure 8 

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Erel 0,839 0,710 0,596 0,488 0,377 0,269 0,200 0,139 0,059 

Grel 0,812 0,639 0,487 0,353 0,233 0,138 0,074 0,028 0,005 

νrel 0,947 0,886 0,818 0,737 0,624 0,484 0,349 0,187 0,034 

 9 

Table V. Relative mechanical constants for different porosities. SPH-HEX structure 10 

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Erel 0,880 0,713 0,581 0,444 0,353 0,257 0,171 0,100 0,066 

Grel 0,836 0,686 0,552 0,431 0,315 0,211 0,110 0,044 0,007 

νrel 0,936 0,906 0,877 0,876 0,844 0,827 0,722 0,600 0,408 

 11 
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Table VI. Relative mechanical constants for different porosities. SPH-RND structure 1 

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Erel 0,817 0,647 0,482 0,476 0,256 0,254 0,092 0,031 0,006 

Grel 0,804 0,611 0,449 0,425 0,218 0,198 0,062 0,019 0,002 

νrel 0,946 0,887 0,842 0,791 0,732 0,689 0,664 0,566 0,999 

 2 

Table VII. Relative mechanical constants for different porosities. OCT structure 3 

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Erel 0,804 0,582 0,398 0,274 0,182 0,114 0,075 0,035 0,016 

Grel 0,816 0,645 0,479 0,350 0,247 0,171 0,116 0,058 0,027 

νrel 0,946 0,915 0,903 0,908 0,932 0,990 1,019 1,061 1,079 

 4 

Table VIII. Relative mechanical constants for different porosities. KEL-CELL structure 5 

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Erel 0,853 0,649 0,546 0,381 0,304 0,191 0,125 0,061 0,013 

Grel 0,817 0,661 0,499 0,352 0,229 0,143 0,074 0,031 0,010 

νrel 0,933 0,913 0,829 0,805 0,715 0,738 0,752 0,885 1,205 

 6 

Table IX. Relative mechanical constants for different porosities. TRUSS-RND structure 7 

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Erel 0,707 0,514 0,375 0,283 0,179 0,112 0,068 0,033 0,009 

Grel 0,711 0,498 0,345 0,234 0,153 0,085 0,050 0,022 0,005 

νrel 0,886 0,801 0,748 0,695 0,669 0,697 0,679 0,663 0,818 

 8 

Table X. Relative mechanical constants for different porosities. OPT-E-TENS structure 9 

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Erel 0,830 0,691 0,560 0,441 0,343 0,301 0,198 0,068 0,012 

Grel 0,791 0,627 0,490 0,371 0,249 0,179 0,119 0,058 0,005 

νrel 0,937 0,880 0,846 0,817 0,745 0,630 0,640 0,916 1,206 

 10 

 11 
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Table XI. Relative mechanical constants for different porosities. OPT-G-TENS structure 1 

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Erel 0,843 0,707 0,581 0,470 0,369 0,269 0,121 0,071 0,019 

Grel 0,777 0,590 0,440 0,334 0,240 0,167 0,022 0,006 0,0002 

νrel 0,923 0,848 0,757 0,666 0,578 0,478 0,344 0,249 0,124 

 2 

 3 


