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INTEGRAL REPRESENTATION OF PRODUCT

FACTORABLE BILINEAR OPERATORS AND

SUMMABILITY OF BILINEAR MAPS ON CpKq-SPACES

E. ERDOĞAN AND E. A. SÁNCHEZ PÉREZ�

Abstract. We present a constructive technique to represent classes of
bilinear operators that allow a factorization through a bilinear product,
providing a general version of the well-known characterization of integral
bilinear forms as elements of the dual of an injective tensor product. We
show that this general method fits with several known situations coming
from different contexts—-harmonic analysis, C�-algebras, CpKq-spaces,
operator theory, polynomials—, providing a unified approach to the inte-
gral representation of a broad class of bilinear operators. Some examples
and applications are also shown, regarding for example operator spaces
and summability properties of bilinear maps.

1. Introduction and preliminaries

Consider Banach spaces E and F. It is known that every bounded linear
functional on the injective tensor product Eb̂εF is the linearization of a
continuous bilinear form on E �F that has an integral representation. The
present paper is an investigation of the bounded quadratic forms defined on
E � E for which there is a factorization through some canonical product
f : E � E Ñ F, which plays the role of the injective tensor product for the
above mentioned integral bilinear maps. As we will see, the problem can be
reduced sometimes to analyze the case of products defined on CpKq-spaces
and integral representation of linear operators in such spaces, just by using
the isomorphic representation of any Banach space F as a subspace of such
a function space. A similar characterization was investigated in [25], but
using as reference the projective tensor product instead of the injective one,
obtaining also some duality formulas as the ones that will be shown here.

We are interested in studying this type of results in a broad context,
seeking a unified approach to many of the developments and results that
have been obtained in different fields. The main reference, that provides the
starting point of our analysis, is the space of Grothendieck’s integral bilinear
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forms, that gives an isometric representation of the dual of the injective
tensor product (see for example [14, Ch.4]). Zero product preserving bilinear
operators and convolution-orthogonal polynomials, which are defined using
convolution in Lebesgue spaces of locally compact groups, define other class
of examples that fits with our procedure (see [2, 1, 3, 17] and the references
therein). Some classical constructions with spaces of operators can also be
adapted to our setting, using for example the so called trace duality.

Thus, this work is mainly synthetic, although most of the results we show
are new. As we will see, our construction can also be applied in the con-
text of orthogonal polynomials. For instance, Sundaresan proved in [29]
that a real valued n-homogeneous polynomial P defined on the Lebesgue
space Lpr0, 1s (L8r0, 1s ), with n ¤ p, is orthogonally additive —that is,
P pf � gq � P pfq �P pgq for disjoint functions f and g— if and only if there

is a function h P Lp{p�nr0, 1s (L8r0, 1s) such that P pfq �
³
r0,1s hf

n dx for

all f P Lpr0, 1s (f P L8r0, 1s). This result was extended by Benyamini et al
for the case of polynomials on order continuous Banach function spaces in
[10]. A similar result was also obtained for the case of vector valued polyno-
mials defined on CpKq-spaces by Pérez Garćıa and Villanueva, who showed
that a Banach valued n-homogeneous orthogonally additive polynomial on
CpKq can be represented by an integral as P pfq �

³
K f

ndν, f P CpKq,
where ν is a finite additive vector measure on K, which is countably addi-
tive under certain restrictions [20]. We will find these results —for the case
of 2-homogeneous polynomials— as consequences of the application of our
construction. Summability properties of bilinear maps acting in products of
CpKq-spaces will be also studied.

This paper is organised as follows. After explaining some definitions and
notations, in Section 2 we analyze a quotient of the injective tensor product
defined by a continuous product operation. We show that, for any product,
it is always associated by duality with a space of bilinear forms that allow
some kind of integral representation (Theorem 2.5). Section 3 is devoted to
explain the main examples of quotient tensor products. It is shown that some
of the well known classes of forms —such as the classical Grothendieck’s
integral forms, the orthogonally additive 2-homogeneous polynomials and
the convolution-orthogonal bilinear forms— can be represented by means of
this duality. In Section 4, general symmetric and non-symetric products on
spaces of operators are faced, providing a general structure for understanding
integral bilinear forms on these spaces; although the representation results
that are shown in the previous section deal with tensor product as E b E,
it is easily seen that they work for the case E b F as well, allowing to
analyze non-symmetric products too. Thus, they can be applied to analyze
to the natural integral forms associated to some fundamental non-symmetric
products, as the one given by the composition of operators. We have tried
to present an exhaustive analysis of the classical structures that can be
studied with our method. With the aim of providing some applications,



INTEGRAL REPRESENTATION OF PRODUCT FACTORABLE BILINEAR MAPS 3

we give in Section 5 a generalized version of the Pietsch integral bilinear
operators and analyze some of their main properties, and in Section 6 we
study summability of some new classes of integral bilinear maps defined
on function spaces CpKq. A factorization of these maps is given by using
Pisier’s Theorem and Pietsch’s Domination Theorem.

The notations and terminology used throughout the paper are standard.
Nevertheless, before going any further we remind the reader some terminol-
ogy. We will use capital letters E,F,G,X, Y, Z to denote Banach spaces. BE
and E� are the unit ball and the topological dual of the Banach space E, re-
spectively. The space of the linear continuous operators from E to F will be
denoted by LpE,F q. The Banach space of real valued continuous functions
defined on the compact set K endowed with the usual supremum norm will
be written as CpKq. MpKq denotes the space of regular Borel measures on
K. Lppµq pp ¥ 1q is the Banach lattice of functions for which the p-th power
of the absolute value is µ-integrable, equipped with its standard norm }f} �

p
³
Ω |f |

pdµq1{p. L8pµq denote the Banach space of the µ-essentially bounded
functions. Lp,qpµq p1 ¤ p, q   8q will denote the Lorentz space on the

measure space pΩ,Σ, µq equipped with }f}p,q �
� ³µpΩq

0 ptp1{pq�1f�ptqqqdt
	1{q

,

where f�ptq � infts ¡ 0 : µpt|f | ¡ suq ¤ 1u, t P r0, µpΩqq, is the decreasing
rearrangement of |f |. Note that Lp,ppµq � Lppµq.

Recall that a linear operator between Banach spaces T : X Ñ Y is called
pq, pq-summing (T P Πq,ppX,Y q) if there is a constant k ¡ 0 such that for
every x1, ..., xn P X and for all positive integers n,� ņ

i�1

��T pxiq��qY
	1{q

¤ k sup
x�PBX�

� ņ

i�1

|xxi, x
�y|p

	1{p
.

As usual, we say that an operator T : X Ñ Y is p-summing if it is
pp, pq-summing.

If E, F and G are Banach spaces, we will use often the word product for
a bilinear map f : E �F Ñ G if it is in some sense canonical in the setting
that we are considering; this name is intended to emphasize that f is fixed
in the given context and induces relevant properties in other associated
bilinear maps. If X is another Banach space, we will call a bilinear map
B : E � F Ñ X zero product preserving if it is zero valued for the couples
whose product is zero, that is, Bpx, yq � 0 whenever xf y � 0.

A particular class of products that we will consider is given by the norm
preserving products. A product f is norm preserving (n.p. product for
short) if }xf y} ¤ }x}}y} and for every z P BG,

}z} � inft}x}}y} : x P BE , y P BF , xf y � zu.

The reader can find information about this kind of products in [18, p.2].
Let E and Y be Banach spaces. A continuous Banach-valued map P :

E Ñ Y is called an n- homogeneous polynomial if there is a continuous n-
linear symmetric operator B : E�� � ��E Ñ Y such that P pxq � Bpx, ..., xq
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for all x P E. An n-homogeneous polynomial P is called orthogonally additive
if it satisfies P px� yq � P pxq � P pyq for every disjoint couple x, y P E –by
disjointness we mean that their algebraic (pointwise µ-a.e.) multiplication
is zero if E is a Banach algebra (a Banach function space). We will denote
the spaces of n-homogeneous polynomials and n-homogeneous orthogonally
additive polynomials by PpnE, Y q and P0p

nE, Y q, respectively. We will
simply write PpnEq and P0p

nEq if Y is the real line R.

2. Diagonal bilinear functionals and tensor products:
integral representations of bilinear forms

Let E be a Banach space. In this section we will consider a class of (quasi)
norms for the tensor product E b E which generalizes the injective tensor
norm, and that has as a particular case an associated quotient space that
coincides with the symmetric injective tensor product that appears in the
duality theory of homogeneous polynomials. In order to do this, we need
a continuous product operation f in the space E. The given norm —we
will denote it by εf— is defined for a quotient space of the injective tensor
product. We will prove in this section that it can be identified with a space
of bilinear functionals that can be factored through the pointwise product.

Let E and Z be Banach spaces and a f : E � E Ñ Z is a bilinear
continuous map. Consider the tensor product EbE and the kernel subspace
of tensors defined as

KerfL :�
!
t �

ņ

i�1

xi b yi :
ņ

i�1

xi f yi � 0
)
.

Note that the requirement for the tensor t is independent of its represen-
tation, so the subspace is well-defined. Of course, this subspace defines an
equivalence relation in the usual way: two tensors t1, t2 P E bE are equiv-
alent —we write t1 � t2— if there is another tensor t3 P KerfL such that
t1 � t2� t3. Thus, we can define the equivalence class of a given tensor t1 as

rt1s � tt2 : t2 � t1u � tt2 : t1 � t2 P KerfLu.

In this paper we will deal with symmetric products —that is, symmetric
bilinear operators—, but this is not needed in some cases, as the standard
case of the injective tensor product itself that will be explained later on.

We will write E b{f E for the corresponding quotient space, that is ob-
viously a linear space. Let us define now a “quotient injective” norm for it.
Recall that we are always assuming that f is continuous.

Definition 2.1. Let E be a Banach space and let f : E � E Ñ F be a
continuous product on it. Consider the (algebraic) symmetric tensor product
E b E. We define the functional εf by

εfptq :�
��� ņ

i�1

xi f yi

���
F
, t �

ņ

i�1

xi b yi P E b E.



INTEGRAL REPRESENTATION OF PRODUCT FACTORABLE BILINEAR MAPS 5

Lemma 2.2. The functional εf is a norm on E b{f E.

Proof. First, note that εf is well-defined. Indeed, it is independent of the
representation of the tensor t and of the particular element of the equivalence
class of t, since if r is another tensor of the equivalence class, we have that
there is a tensor p such that t � r�p, where p �

°n
i�1 xi,pbyi,p satisfies that

}
°n
i�1 xi,pf yi,p}F � 0. It is homogeneous with respect to multiplication by

scalars, and also subadditive, since it is defined by means of a norm. So
we only need to prove that it separates points. Take a nontrivial tensor
t �

°n
i�1 xi b yi; if }

°n
i�1 xi f yi}F � 0, then we have that t P r0s, and so it

is zero. �

As usual, we will identify the classes of tensors in each space E b{f E
with the tensor that define the class itself; so we will write t instead of rts
if there is no risk of confusion. The following lemma provides alternative
formulas for εf in the case of subspaces of CpKq-spaces.

Lemma 2.3. Suppose that E and F are isometric to subspaces of a space
CpKq for a certain (Hausdorff) compact set K, and the isometries are de-
fined by the operators iE : E Ñ CpKq and iF : F Ñ CpKq, respectively. If
iF pxf yq � iEpxq � iEpyq is satisfied for f : E�E Ñ F and for all x, y P E,
then

εfptq � sup
wPK

�� ņ

i�1

λi piEpxiq�iEpyiqqpwq
�� � sup

µPBpCpKqq�

�� ņ

i�1

λi

»
K
iEpxiq�iEpyiq dµ

��,
for t �

°n
i�1 λi xi b yi P E b E.

Indeed, note that if F is a subspace of CpKq, the norm is given by the
first formula. The second one holds just by duality.

Inspired by the definition of the norm εf and the previous result, we define
the following class of continuous real valued bilinear forms. Note that, in
the situation described in Lemma 2.3 and for iE : E Ñ CpKq, F � CpKq,
iF � i : F ãÑ CpKq and the product xfy � iEpxq � iEpyq, the next definition
gives the classical integral bilinear forms.

Definition 2.4. Let ϕ : E � E Ñ R be a continuous bilinear form and
consider an F -valued product f in E. We say that ϕ is f-integral if there
is a compact set K such that F is isometrically isomorphic to a subspace of
CpKq —we write i for this identification, and we omit it in case F is already
a subspace—, and there is a Borel regular measure η on K such that

ϕpx, yq �

»
K
ipxf yqpwq dηpwq, x, y P E.

We will write IFfpE � Eq for the space of all these bilinear forms, that is
clearly linear and becomes a normed space with the usual supremum norm
for bilinear functionals.
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The following factorization scheme shows the nature of the f-integral
bilinear forms, and will be useful to prove the general duality theorem that
is the main result of this section.

E � E
ϕ //

b{f

��

R.

Eb{fE
fL // F ãÑi CpKq

Tϕ

OO

Theorem 2.5. Let E be a Banach space and f : E � E Ñ F be a product
on it. Then the following equality holds isomorphically,

pE b{f,εf Eq
� � IFfpE � Eq.

In particular, the compact set K in the integral representation of the func-
tionals in this space can be chosen to be BF� . Moreover, if f is an n.p.
product, the measure η in the integral representation of ϕ P pE b{f,εf Eq

�

can be chosen to satisfy

}η} � |η|pBF�q � }ϕ}pEb{f,εf
Eq� .

Proof. First, take a bilinear functional ϕ P pE b{f,εf Eq
�. Then we have

that there is a constant K ¡ 0 such that for every tensor t �
°n
i�1 λixib yi,

|ϕptq| ¤ K
��� ņ

i�1

λixi f yi

���
F
.

This implies that ϕ is f�factorable, so by Lemma 1 in [18] we have that it
can be factored as ϕ � h � f for a certain h P F �. Recall that any Banach
space is isometric to a subspace of the space CpKq for a suitable compact K;
indeed, the identification z ÞÑ ipzq :� xz, �y P CpBF�q, z P F, clearly provides
such an isometry. Thus, we can consider the subspace ipF q � CpBF�q, and
so we get that there is a functional h1 : ipF q Ñ R such that hpzq � h1pipzqq
for all z P F. The Hahn-Banach extension of this functional gives a regular
Borel measure η P pCpBF�qq

� such that

ϕpx, yq �

»
BF�

ipxf yq dη, x, y P F,

and the result is obtained.
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Conversely, take a f-integral bilinear operator ϕ. Then there is a regular
Borel measure η over K such that for every tensor as t �

°n
i�1 λixi b yi,

|ϕptq| �
��� »
K
ip

ņ

i�1

λixi f yiq dη
��� ¤ |η|pKq � sup

wPK

���ip ņ
i�1

λixi f yiqpwq
���

� |η|pKq �
���ip ņ

i�1

λixi f yiq
���
CpKq

� |η|pKq �
��� ņ

i�1

λixi f yi

���
F
.

Therefore, ϕ is εf-continuous, and so the result holds. Looking at the
definition of the norms in the involved spaces, it can be easily seen that the
identification is in fact an isometry if f is an n.p. product. �

Theorem 2.6. Let E,F be Banach spaces and let f be an F -valued n.p.
product. A bilinear form ϕ on E �E is f-integral if and only if there exist
a finite measure space pΩ,Σ, µq and an operator A : F Ñ L8pµq such that

ϕpx, yq �

»
Ω
Apxf yqdµ

for every x, y P E. Moreover, }ϕ}pEb{f,εf
Eq� � inf }A}µpΩq, where the

infimum is taken over all such kind of factorizations of ϕ.

Proof. Suppose that ϕ is a f-integral bilinear form. Then by Definition
2.4 and Theorem 2.5, there is a regular Borel measure η on BF� such that
ϕpx, yq �

³
BF�

ipxfyqpz1qdηpz1q, z1 P BF� , every x, y P E and }ϕ}pEb{f,εf
Eq� �

}η}. That is, using the canonical identification fpz1q � z1px f yq for all
f P CpBF�q and xf y P F , we obtain ϕpx, yq �

³
BF�

xxf y, z1ydη, z1 P BF� .

By the Radon-Nikodym Theorem, there is a Borel measurable function φ
on BF� such that |φpz1q| � 1 for every z1 P BF� and dη � φd|η|. Let µ � |η|
and Ω � BF� with the Borel σ-algebra Σ.

Let us define the map A : F Ñ L8pµq given by Apzqpz1q � φpz1q � xz, z1y,
z P F, z1 P BF� . Therefore, ϕpx, yq �

³
ΩApx f yqdµ for all x, y P E. Since,

}A} ¤ 1, we obtain }ϕ}pEb{f,εf
Eq� � }η} � µpΩq ¥ }A}µpΩq.

Conversely, if ϕ has such a factorization, it clearly follows that ϕ is a
f-integral bilinear form and }ϕ}pEb{f,εf

Eq� ¤ }A}µpΩq. �

3. Main classes of generalized integral forms and polynomials

Let us present now the main examples of our duality formula for inte-
gral bilinear forms and quotient tensor products. Our aim is to show that
most of the cases of integral representations of bilinear forms that can be
found in the scientific literature can be understood in our setting: classi-
cal Grothendieck’s integral forms, symmetric integral bilinear forms —in
the context of the scalar valued 2-homogeneous polynomials–, disjointness
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preserving bilinear functionals and polynomials —called orthosymmetric bi-
linear forms in the context of the Banach lattices—, bilinear forms involving
convolution, and some other examples coming from different fields.

3.1. Integral bilinear forms. The canonical context in which the formula
provided in Theorem 2.5 holds is the well-known duality theorem due to
Grothendieck for the injective tensor product, that asserts that the dual
space pE bε Eq

� can be identified with the space IFpE � Eq of all the
integral bilinear functionals ϕ which can be written as

ϕpx, yq :�

»
BE��BE�

xx, x1y xy, y1y dηpx1, y1q, x, y P E,

for a certain regular Borel measure η on BE� � BE� (see for example [14,
pp.52-54]). Recall that the injective norm is given by

ε
� ņ

i�1

xi b yi

	
� sup

px1,y1qPBE��BE�

��� ņ

i�1

xxi, x
1y xyi, y

1y
���.

In this case, the (in general non-symmetric) product f can be defined as
follows. Consider as F the subspace of CpBE� �BE�q defined by the linear
hull of the functions BE� � BE� Q px1, y1q ÞÑ xx, x1y xy, y1y P F. Then, the
product is given by the following rule: in x, y P E, we can define a function
in F by the formula

xf y px1, y1q :� xx, x1y xy, y1y, x1, y1 P BE� .

In this case, if we consider a tensor t �
°n
i�1 xi � yi, we have that

εfptq �
�� ņ

i�1

xxi, �y xyi, �y
��
CpBE��BE� q

� sup
px1,y1qPBE��BE�

�� ņ

i�1

xxi, x
1y xyi, y

1y
�� � εptq.

Therefore, Theorem 2.5 gives the well-known formula

pE bε Eq
� � IFpE � Eq.

3.2. Real valued 2-homogeneous polynomials in Banach spaces. A
similar construction can be done for the symmetric version of the injective
tensor product. Usually, this is applied in the context of the analysis of
2-homogeneous polynomials by means of the definition of the so called sym-
metric tensor product E bs E. The elements of such space are symmetric
tensors, which are invariant by changing the order of the factors, as for
example x b y � y b x. It can be proved —by a direct application of the
Sylvester’s Law of Inertia [30]— that all these tensors allow a diagonal rep-
resentation, that is, they can be written as sums of single tensors as λxbx,
λ P R, x P E. The linear span of all the symmetric tensors —equivalently,
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of all the finite sums of single tensors as λxbx—, define the so-called sym-
metric tensor product, in which a symmetric injective norm can be defined
by

εsptq :� sup
x1PBE�

��� ņ

i�1

xxi, x
1y xyi, x

1y
���, t �

ņ

i�1

xi b yi P E bs E

(see [19] for more information). Since it is independent of the representation,
this formula coincides with the one that is usually given, in which only sums
of tensors as λxb x appear; it is well-known that it is a norm.

However, it can also be understood as a consequence of our construction.
We can define a first linear map S from E b E to E bs E given by the
symmetrization of the tensors, that is Spxbyq � pxby�ybxq{2 for x, y P E,
and extended by linearity. The kernel of S and the corresponding space of
equivalence classes with respect to the quotient by S can be identified with
the symmetric tensor product E bs E. Note that, by Sylvester’s Law, there
is always an element as

°n
i�1 λixi b xi in each equivalence class.

Take the subspace F of CpBE�q that is defined by all the symmetric tensors
t �

°n
i�1 xi b yi when considered as functions acting in BE� as tpx1q �°n

i�1xxi, x
1y xyi, x

1y. Write I for the corresponding map I : E bs E Ñ F.
Thus, we can consider the product f : E � E Ñ F � CpBE�q as the
composition of the (continuous) maps

f : E � E Ñb E bε E ÑS E bs, εs E ÑI F ãÑ CpBE�q.

That is, xf y px1q � xx, x1y xy, x1y for every x, y P E.
Note that, in this case, an integral bilinear functional ϕ P pE bs,εs Eq

�

can be represented as

ϕptq �
ņ

i�1

λi

»
BF�

xxi, x
1y xyi, x

1y dηpx1q, t �
ņ

i�1

λixi b yi P E bs E,

for a certain Borel regular measure η over BF� . Write K � BE� , and note
that εf � εs. Thus, the known duality relation pE bs,εs Eq

� � IFspE �Eq
is a particular case of our representation Theorem 2.5, since E bs,εs E �
E b{f,εf E, and for every x, y P E,»

BF�

xx, x1y xy, x1y dηpx1q �

»
K
xf y px1q dηpx1q.

3.3. Orthogonally additive polynomials. If we add the property of be-
ing zero product preserving to the fact of being symmetric, we obtain the so
called class of orthogonally additive polynomials. We can find this notion
for n-homogeneous polynomials in Banach lattices, Banach algebras —in
particular CpKq-spaces—, convolution algebras and Fourier algebras (see
[3, 13, 20, 29] and the references therein).

1) 2-homogeneous polynomials on the function space CpKq.
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If we consider the pointwise product d : CpKq � CpKq Ñ CpKq, we can
construct the quotient space of the injective tensor product CpKqb{d,εdCpKq
with the quotient injective norm εd given by

εdphq �
��� ņ

i�1

fi d gi

���
CpKq

, h �
ņ

i�1

fi b gi P CpKq b CpKq.

This quotient injective tensor product CpKq b{d,εd CpKq can be identified
with the function space CpKq. If we consider the canonical linear map
J : CpKq b{d,εd CpKq Ñ CpKq defined by Jphqptq �

°n
i�1 fiptqgiptq, where°n

i�1 fi b gi is a representation of h and t P K, we have

}Jphq}CpKq � sup
tPK

��� ņ

i�1

fiptqgiptq
���

�
��� ņ

i�1

fi d gi

���
CpKq

� εd

� ņ

i�1

fi b gi

	
� εdphq.

Let us show that JpCpKqb{d,εd CpKqq is dense in CpKq. Consider h P CpKq.
Let us write 1 for the unit element of CpKq, that is, 1ptq � 1 for all t P K.
Let g � 1b h P CpKq b{d,εd CpKq. Then,

}Jpgq � h}CpKq � sup
tPK

|hptq � Jpgqptq| � sup
tPK

|hptq � 1ptqhptq| � 0.

Therefore, J : CpKq b{d,εd CpKq Ñ CpKq is an isometric isomorphism. As
a result pCpKq b{d,εd CpKqq� and pCpKqq� are isomorphic. Since the dual
space of CpKq is the space MpKq of the regular Borel measures on K, we
get IFdpCpKq � CpKqq � pCpKq b{d,εd CpKqq� � pCpKqq� � MpKq by
using Lemma 2.5.

Corollary 3.1. The equality IFdpCpKq � CpKqq � P0p
2CpKqq holds iso-

morphically. In particular, every 2-homogeneous orthogonally additive poly-
nomial on CpKq has an associated bilinear map that is εd-continuous.

Proof. Let ϕ be a d-integral bilinear form. Notice that there is a unique
orthogonally additive 2-homogeneous polynomial Pϕ : CpKq Ñ R such that
ϕpf, fq � Pϕpfq for all f P CpKq. Indeed, by the integral representation of
ϕ, it is easily seen that it is symmetric and zero product preserving. So,
it defines a 2-homogeneous polynomial. Proposition 2.2. in [20] states that
a 2-homogeneous polynomial form on CpKq is orthogonally additive if and
only if its associated bilinear map is zero product preserving. Therefore, by
the zero product preservation of ϕ, it is obtained that Pϕ is orthogonally
additive.

Now, let us show that the correspondence ϕ ÐÑ Pϕ is an isomorphism.
Let us consider a 2-homogeneous orthogonally additive polynomial P and
its associated bilinear form B. By the first theorem in [13], it is seen that
P has an integral representation as P pfq �

³
K f

2dν, where ν is a regular
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Borel measure on K. Therefore its associated bilinear map has the following
integral representation;

Bpf, gq �
P pf � gq � P pfq � P pgq

2
�

»
K
fgdν.

This shows that B is a d-integral bilinear form and it is clearly unique.
Using the results proved in Section 2, we also obtain that the associated
bilinear form B of P is εd-continuous. �

Remark 3.2. The isomorphism given above can be also seen by using the
relation between orthogonally additive polynomials and regular Borel mea-
sures. The integral representation P pfq �

³
K f

2dν given in [13] for the

orthogonally additive 2-homogeneous polynomial P P P0p
2CpKqq implies a

canonical isomorphism between P0p
2CpKqq and the space MpKq of regular

Borel measures on K. From this isomorphisn and the isomorhism between
CpKq b{d,εd CpKq and CpKq, we get

IFdpCpKq�CpKqq � pCpKqb{d,εdCpKqq
� � pCpKqq� �MpKq � P0p

2CpKqq,

and this relation holds isomorphically by Lemma 2.5.

2) Bilinear operators on Banach function spaces that factor through the
pointwise product.

Let us show that orthogonally additive 2-homogeneous real-valued poly-
nomials that act in Banach function spaces —which coincide with bilinear
maps factoring through the pointwise product when the factor spaces are
the same—, can be characterized also using Theorem 2.5. For the aim of
simplicity we will consider the pointwise product in L2r0, 1s, but the reader
can notice easily that the same construction works for every pointwise self-
product of Banach function spaces (see [18, 22] and references therein).
Let µ be Lebesgue measure on r0, 1s and consider the µ-a.e. pointwise
product d : L2r0, 1s � L2r0, 1s Ñ L1r0, 1s. The quotient tensor product
L2r0, 1s b{d L

2r0, 1s is defined by the equivalence classes

rts �
! m̧

i�1

f 1i b g1i P L
2r0, 1s b L2r0, 1s :

ņ

i�1

fi � gi �
m̧

i�1

f 1i � g
1
i � 0µ� a.e.

)
,

for every tensor t �
°n
i�1 fi b gi. A d-integral bilinear functional ϕ is then

given by the factorization through the µ-a.e. pointwise product. In fact, for
this case we can obtain two different representations for such a functional.

First, the continuity of the map ϕ with respect to εd gives that it factors
through L1r0, 1s as ϕ � Tϕ � d for a certain linear and continuos operator
Tϕ : L1r0, 1s Ñ R (see [18, Corollary 1]). Therefore, there is a function
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h P L8r0, 1s such that

ϕpf, gq � Tϕpf d gq �

»
r0,1s

�
fpwq � gpwq

�
� hpwq dµpwq

�

»
r0,1s

fpwq gpwqhpwq dµpwq, f, g P L2r0, 1s.

On the other hand, L1r0, 1s can be embedded isometrically in CpBL8r0,1sq
by the canonical inclusion i : L1r0, 1s Ñ CpBL8r0,1sq, and so the product can
be considered as taking values in a subspace of this space. This gives an
alternate representation of ϕ as

ϕpf, gq �

»
BL8r0,1s

� »
r0,1s

fpwq gpwqhpwq dµpwq
	
dηphq, f, g P L2r0, 1s,

for a certain regular Borel measure η.
Note that this class of bilinear forms coincides with the orthogonally

additive homogeneous polynomials of degree 2 with respect to the point-
wise product. Indeed, for a d-integral bilinear form ϕ, define the map
p : L2r0, 1s Ñ R by ppfq � ϕpf, fq. The operator p defines a 2-homogeneous
polynomial since ϕ is symmetric. By the zero product preservation of the
functional ϕ we get that there is a function h P L8r0, 1s such that for disjoint
functions f, g P L2r0, 1s,

ppf � gq � ϕpf � g, f � gq

�

»
r0,1s

fpwq2 hpwq dµpwq � 2

»
r0,1s

fpwq gpwqhpwq dµpwq

�

»
r0,1s

gpwq2 hpwq dµpwq � ϕpf, fq � ϕpg, gq � ppfq � ppgq.

It shows that p is an orthogonally additive polynomial. On the other hand,
if p is an orthogonally additive polynomial it can be written as an integral
as

ppfq :�

»
r0,1s

f2 h dµ, f P L2r0, 1s,

for a given h P L8r0, 1s (see [29, Theorem 2] or [10, Corollary 2.5]). Its
associated bilinear form, that is given by

ϕpf, gq :�
ppf � gq � ppfq � ppgq

2
, f, g P L2r0, 1s,

is clearly an d-integral bilinear form.

3)Convolution-orthogonal 2-homogeneous polynomials.

As in the pointwise-product case, it is possible to obtain integral repre-
sentations for bilinear forms defined on the convolution algebras on a given
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compact group. Let T denote the circle group —the real line mod 2π— and
let �c be the convolution operation defined by

f �c gpxq �

»
T
fpx� yqgpyqdµpyq

for scalar-valued measurable functions f, g satisfying the necessary integra-
tion requirements.

Let us consider the convolution �c defined from L1pTq�L1pTq to L1pTq. It
is known that L1pTq�cL1pTq � L1pTq by the Cohen’s factorization theorem.
We consider the quotient tensor product L1pTq b{�c L

1pTq given by the
equivalence classes

rts �
! m̧

i�1

f 1ibg
1
i P L

1pTqbL1pTq :
ņ

i�1

fi�cgi�
m̧

i�1

f 1i�cg
1
i � 0

)
, t �

ņ

i�1

fibgi.

So, by Theorem 2.5 the �c-integral bilinear functionals are defined by con-
volution as

φpf, gq �

»
BL8pTq

ipf �c gqdη �

»
BL8pTq

i
� »

T
fpx� yqgpyqdµpyq

	
dη

with a regular Borel measure η on BL8pTq. As in the pointwise-product
case, this can be improved if we consider the zero product preservation. In
this case, φ factors through L1pTq by convolution as φ � T � �c (see [17,
Theorem 3.4]). Thus, there is a functional in pL1pTqq� —that is, a function
h P L8pTq— such that

φpf, gq �

»
T
pf �c gqpxqhpxqdλpxq.(3.1)

On the other hand, by using the canonical inclusion of L1pTq in CpBpL1pTqq�q
we also get

φpf, gq �

»
BL8pTq

»
T
pf �c gqpxqhpxqdλpxqdηphq

�

»
BL8pTq

»
T

� »
T
fpx� yqgpyqdµpyq

	
hpxqdλpxqdηphq.

These bilinear forms coincide with the convolution-orthogonally additive
2-homogeneous polynomials defined on L1pTq. To show this let us use the
integral representation given in (3.1). If we define the map p : L1pTq Ñ R
by ppfq � φpf, fq for all f P L1pTq, by commutativity of the convolution
it defines a 2-homogeneous polynomial which is convolution-orthogonally
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additive, since

ppf � gq � φpf � g, f � gq �

»
T
ppf � gq �c pf � gqqpxqhpxqdλpxq

�

»
T
pf �c fqpxqhpxqdλpxq � 2

»
T
pf �c gqpxqhpxqdλpxq

�

»
T
pg �c gqpxqhpxqdλpxq � φpf, fq � φpg, gq � ppfq � ppgq

for each pair of functions f, g P L1pTq whose convolution is zero.
Conversely, consider a 2-homogeneous convolution-orthogonally additive

polynomial p defined on L1pTq. Then, there is a unique continuous linear
operator T : L1pTq Ñ R such that ppfq � T pf �c fq (see [3, Theorem 3.1]).
By the Riesz’s representation theorem we get an integral representation

T pf �c fq �

»
T
pf �c fqhdλ,

where h P L8pTq. Consequently, the associated bilinear form

φpf, gq � T � �cpf, gq �
ppf � gq � ppfq � ppgq

2
pf, g P L1pTqq

defines a �c-integral bilinear form.

Remark 3.3. We can also give a class of �c-integral bilinear forms which
does not coincide with the corresponding class of orthogonally additive 2-
homogeneous polynomials. Let UpTq denote the Banach spaces L2pTq or
CpTq. The equivalence classes

rts �
! m̧

i�1

f 1ibg
1
i P UpTqbUpTq :

ņ

i�1

fi�cgi�
m̧

i�1

f 1i�cg
1
i � 0

)
, t �

ņ

i�1

fibgi.

define the quotient tensor product UpTqb{�cUpTq. It is known that L2pTq�c
L2pTq � W pTq and CpTq �c CpTq � W pTq, where W pTq is the so-called
Wiener algebra, the Banach space of the functions having absolutely sum-
mable Fourier series. It is well-known that W pTq is isometrically isomorphic
to `1pZq, and the isomorphism is given by the Fourier transform. It is a sub-
set of both CpTq and L2pTq (see [21, §34.40]), and so UpTqb{�cUpTq �W pTq.

Now, consider a �c-integral bilinear form φ : UpTq � UpTq Ñ R. As in
the other cases, the Wiener algebra W pTq can be embedded isometrically
in CpBpW pTqq�q by the canonical inclusion i : W pTq Ñ CpBW pTq�q. Using our
representation technique, for every �c-integral bilinear functional φ we get a
regular Borel measure η on BpW pTqq� such that

φpf, gq �

»
BpW pTqq�

xf�cg, ϕy dηpϕq �

»
BpW pTqq�

@ »
T
fpx�yqgpyqdµpyq, ϕ

D
dηpϕq.

Such a �c-integral bilinear form defines a convolution-orthogonally addi-
tive homogeneous polynomial of degree 2. Indeed, based on the integral
representation of φ, some computations as the ones given above shows that
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the formula ppfq � φpf, fq, f P UpTq, provides an orthogonally additive
polynomial p : UpTq Ñ R.

However, the converse is not true in general. In fact, for a convolution-
orthogonally additive 2-homogeneous polynomial p defined on L2pTq or
CpTq, it is not always possible to find a continuous linear map T such that
ppfq � T pf �c fq (see [3, Section 4] for counterexamples). Therefore, these
polynomials does not define in general �c-integral bilinear forms.

4. Symmetric and non-symmetric products on spaces of
operators

In this section and following the method we have explained in the previ-
ous ones, we will describe the natural spaces of integral forms that can be
associated to the composition product on spaces of operators. As we will
show, two opposite cases appear, the first one connected with the classical
formula of the integral operators and a factorization through a CpKq space,
and the second one with a factorization through an L1-space.

Let E be a Banach space and let LpE,Eq the space of continuous linear
operators on it. Let UpE,Eq be a —not necessarily closed— subspace of
LpE,Eq, for example a component of an operator ideal. Although the non-
symmetric nature of the products that will be given in this section allows
the use of different factor spaces, we choose coincidence of both of them for
the aim of simplicity —UpE,Eq instead of UpE,F q, and UpE,Eq in both
sides of the product—.

4.1. Main products on spaces of operators. Let us explain the main
examples of products that can be defined for spaces of operators in a natural
way and show the characterization of the associated dual spaces, that are
identified with some classes of bilinear operators.

1) The canonical composition product on spaces of operators can be con-
structed as follows. It is given by the composition product in UpE,Eq,

� : UpE,Eq � UpE,Eq Ñ LpE,Eq, pT, Sq ÞÑ T � S, S, T P LpE,Eq.

The natural topology associated to the product � for the tensor product
is given by

ε�

� ņ

i�1

Ti b Si

	
�
��� ņ

i�1

Ti � Si

���
LpE,Eq

,

and the linearization of the corresponding �-integral operators ϕ : UpE,Eq�
UpE,Eq Ñ R have the formula

ϕ
� ņ

i�1

Ti b Si

	
�

»
φPB�

LpE,Eq

��
� ņ

i�1

xTi � Si, φy
	
dηpφq,

°n
i�1 TibSi P UpE,EqbUpE,Eq, for a certain Borel regular measure η. As

a consequence of Theorem 2.5, we get the isomorphism between the space
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UpEqb{�,ε� UpEq

��
and the space of all such integral bilinear forms. How-

ever, note that a direct representation by means of a fixed φ0 P pLpE,Eqq
�

is also available: a bilinear form belonging to the dual of UpEq b{�,ε� UpEq
factors through a subspace of LpE,Eq, and so it can be extended to the
whole space by means of Hahn-Banach Theorem, giving a representation as

ϕpT, Sq �
@
T � S, φ0

D
, S, T P UpE,Eq.

2) Trace duality. Given two linear operators T, S P LpE,Eq, we can
always define a duality relation among them by means of the trace trpT �Sq.
This is a real number but it is on the basis of the so called trace duality for
operator ideals (see for example [15, Ch.6]). In certain particular cases in
which a concrete representation of the duality in the space E is available,
we can obtain a product having values in a Banach space. Let us explain an
easy example that involves Hilbert-Schmidt operators. Let H be the Hilbert
space L2r0, 1s, write µ for Lebesgue measure and consider UpE,Eq to be the
space S2pL

2r0, 1s, L2r0, 1sq of Hilbert-Schmidt operators, that is a Hilbert
space. If T, S P S2pL

2r0, 1s, L2r0, 1sq, the inner product is defined using the
trace as

pT, Sq �
8̧

i�1

»
r0,1s

T pfiqSpfiq dµ

where tfi : i P Nu is an orthonormal basis for L2r0, 1s. This formula is inde-
pendent of the basis, and allows to define a product I : L2r0, 1s�L2r0, 1s Ñ
L1r0, 1s by fixing the basis and defining

IpT, Sq �
8̧

i�1

T pfiqpwqSpfiqpwq P L
1r0, 1s, T, S P S2pL

2r0, 1s, L2r0, 1sq.

Thus, the associated integral bilinear forms are given by a formula as

ϕpT, Sq :�

»
r0,1s

T pfiqpwqSpfiqpwqhpwq dµpwq, T, S P UpE,Eq,

where h P L8pµq.

3) The pointwise evaluation product. There are several ways of defining
classes of integral bilinear forms associated to the pointwise evaluation of
the composition of operators.

Take first a non-null vector x P E. A pointwise product bx : UpE,Eq �
UpE,Eq Ñ E can be defined by the formula

T bx S � pT � Sqpxq P E, T, S P UpE,Eq.

Using our procedure, we can easily get that a bx-integral bilinear forms allow
an expression as

ϕpT, Sq �
@
T � S, x1ϕ

D
, T, S P UpE,Eq

for a certain functional x1ϕ P E
�.
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As usual, in the case of E � CpKq we obtain an explicit formula involving
integrals over K. If 0 � f0 P CpKq, the product bf0 : UpCpKq, CpKqq �
UpCpKq, CpKqq Ñ CpKq is given by bf0pT, Sq � T � Spf0q P CpKq. Thus, a
bf0-integral operator ϕ allows an integral representation formula as

ϕpT, Sq �

»
K
pT � Sqpf0q dη, T, S P UpCpKq, CpKqq,

for a certain Borel regular measure η on K.

4) The average products. There are several ways of defining a product
based on the average of pointwise evaluations of operators.

(a) Let pΩ,Σ, µq be a probability measure space and take a µ-Bochner in-
tegrable function f : Ω Ñ E. Recall that, if T : E Ñ E is a linear and
continuous operator, we can always define the Bochner integrable
function T pfq, that is given by T p

°n
i�1 xi χAiq �

°n
i�1 T pxiqχAi for

simple functions. Due to Hille’s Theorem (see [16, Chapter II, The-
orem 2.6]), we have that T pfq is also µ-Bochner integrable, and

T
� »

Ω
fpwq dµpwq

	
�

»
Ω
T
�
fpwq

�
dµpwq.

Fix a function f0 P L
1pµ,Eq. A first way of defining a Bochner

space valued composition product

bf0 : UpE,Eq � UpE,Eq Ñ� L1pµ,Eq ÑIµ E,

where Iµ is the integration map on L1pµ,Eq, is

bf0pT, Sq :�

»
Ω
T � Spf0qpwq dµpwq P E, T, S P UpEq.

However, note that by the above mentioned theorem of Hille, we
have that

bf0pT, Sq �

»
Ω
T � Spf0qpwq dµpwq � T � S

� »
Ω
f0pwq dµpwq

	
,

and so bf0 � bp
³
Ω f0dµq, and so it is as described above in 3).

(b) However, there is another way of defining an L1pµq-valued product.
For this aim, fix two Bochner 2-integrable functions f P L2pµ,Eq
and g P L2pµ,E�q, and consider the product formula

bf,gpT, Sq �

»
Ω
xT � Spfpwqq, gpwqy dµpwq

�

»
Ω
xSpfpwqq, T 1pgpwqqy dµpwq, T, S P UpE,Eq.
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We have that

bf,gpT, Sq ¤
� »

Ω
}Spfpwqq}2dµpwq

	1{2 � »
Ω
}T 1pgpwqq}2dµpwq

	1{2

¤ }S} }T } }f}L2pµ,Eq }g}L2pµ,E�q.

and so the product is well-defined and continuous. The corre-
sponding integral bilinear forms can be represented as

ϕpT, Sq :�

»
Ω
xSpfpwqq, T 1pgpwqqyhϕpwq dµpwq, T, S P UpE,Eq,

where hϕ P L
8pµq.

(c) A measure average product. It can also coincide with the pointwise
evaluation product. Let AE � BE be a Borel set, and consider a
measure space pAE ,BpAEq, ηq, where BpAEq is the class of all the
Borel sets of AE —AE is endowed with the norm topology—, and
η is a Borel measure. Consider the space of Bochner integrable
functions L1pη,Eq, and assume that the E-valued functions T � S
are strongly BpAEq-measurable; we can assume for example that the
identity map I : AE Ñ AE is η-integrable. Then we have that all of
these functions belong to L1pη,Eq, since»

AE

��T � Spxq��
E
dηpxq ¤

�
sup
AE

��T � Spxq��
E

�
� ηpAEq ¤ }T } }S} ηpAEq.

Then the product is given by

bpT, Sq :�

»
AE

�
T � S

�
pxq dηpxq P E, T, S P UpEq.

The simplest example is given by a finite set of vectors AE � txi :
i � 1, ..., nu � BE , and a probability measure ηpCq :�

°n
i�1 αiδxipCq,

where
°n
i�1 αi � 1 and δxi is the Dirac’s delta on xi. All the func-

tions T � Sp�q are obviously strongly measurable, and so Bochner
integrable. Then the product coincides again with a pointwise eval-
uation product. The same construction can be adapted to the case
of norm compact sets of E.

4.2. Some non-standard products and the associated dual spaces
of product integral linear operators. In the classical cases, the dual
of the tensor products involved are well-known, and have provided some of
the most relevant results in the theory of spaces of operators. This is the
case for example of the dual space of the injective tensor product, which
produce the classical space of integral operators, and the case of the adjoint
operator ideals—between, for example, summing and integral operators—
that are obtained by trace duality. There are, however, some other cases
that could be interesting and are associated with non-standard products.
We will explain here some of them.
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1) Operators between CpKq-spaces and the pointwise product. Consider a
norm one function f0 P CpKq and the pointwise product

bf0 : LpCpKq, CpKqq � LpCpKq, CpKqq Ñ R.

Then for every functional in�
LpCpKq, CpKqq b{bf0 ,εbf0

LpCpKq, CpKqq
��

there is a Borel regular measure η P pCpKqq� such that

ϕηpT, Sq �

»
K
T � Spf0q dη

and each such an η defines a bf0-integral operator. A standard construction
using Hahn-Banach Theorem gives that for every norm one function f1 P
CpKq there is a norm one operator S0,1 such that S0,1pf0q � f1. Since the
same can be done for T, if f2 is a norming element for η (up to an ε ¡ 0) we
can find an operator T1,2 such that T1,2pf1q � f2, and so we have that there
is a pair of norm one operators such that T1,2 � S0,1pf0q � f2, and

xT1,2 � S0,1pf0q, ηy � ε ¡ }η}.

On the other hand, using Lemma 2.3, we get

}ϕη} � sup
εbf0 p

°
TibSiq¤1

�� ņ

i�1

»
K
TipSipf0qqdη

��
¤ sup

εbf0 p
°
TibSiq¤1

�� ņ

i�1

»
K
TipSipf0qq}CpKq }η} ¤ }η}.

Therefore, the norm of ϕη satisfies that }ϕη} � }η}pCpKqq� , and so we have
the isometry�

LpCpKq, CpKqq b{bf0 ,εbf0
LpCpKq, CpKqq

��
� pCpKqq� �MpKq,

the space of regular Borel measures over K.

2) Composition-integral maps between spaces of operators. Let us char-
acterize the space of operators associated to the bilinear forms studied in
Section 4.1. In order to do that, we need to introduce a non-symmetric
versions of Theorem 2.5. It is easy to check in the proof of this result that
the duality formula given there is still valid if the factors do not coincide.
That is, we have that, if f : E �H Ñ F is a product,

pE b{f,εf Hq
� � IFfpE �Hq.

Take now as first space LpF,Gq, and for the second one take the closure
N0pE

�, F q of the tensor product E bπ F endowed with the projective norm
π considered as a subspace of nuclear operators (see [14, 3.6] ). The product
� is then well-defined from LpF,Gq �N0pE

�, F q Ñ LpE�, Gq. We have that�
LpF,Gq b{�,ε� N0pE

�, F q
��
� IF�pLpF,Gq �N0pE

�, F qq.
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Therefore, we can represent each element of this dual space as pT, Sq ÞÑ
BφpT, Sq � xφ, T � Sy, where φ P pLpE�, Gqq�. Recall that pE bπ F q

� �
LpE,F �q. Then we have that each bilinear form Bφ defines a linear and
continuous operator

Rφ : LpF,Gq Ñ
�
N0pE

�, F q
��
� LpE,F �q

by

xRφpT q, Sy :� xφ, T � Sy, T P LpF,Gq, S P N0pE
�, F q.

Let us write I�
�
LpF,Gq, LpE,F �q

�
for the space of all the �-integral opera-

tors that are given by these operators just described. Thus, we have shown
the following representation formula:

I�
�
LpF,Gq, LpE,F �q

�
�
�
LpF,Gq b{�,ε� N0pE

�, F q
	�
.

In particular, if S �
°n
i�1 xi b yi, where xi P E and yi P F, we have that

the formula for the �-integral linear operators from LpF,Gq to LpE,F �q is

xRφpT q, Sy :� xφ, T � p
ņ

i�1

xxi, �y b yiqy � xφ,
ņ

i�1

xxi, �yT pyiqy.

Moreover, note that E�bπ G
�

ãÑ LpE�, Gq�, and so if φ �
°m
j�1 x

1
ib z

1
i, we

have that

RφpT qpSq :�
@ m̧

j�1

x1i b z1i,
ņ

i�1

xxi, �yT pyiq
D
�

m̧

j�1

ņ

i�1

xT pyiq, z
1
jy xxi, x

1
jy.

5. Integral representations of operators through Pietsch
integral maps and applications

In this section, we will analyze a particular class of factorable summing
multilinear maps that are related to the multilinear version of the so called
Pietsch integral operators. Our aim is to show how our general representa-
tion formulas can be applied. We will assume again that f is an F -valued
n.p. product, for a Banach space F.

Definition 5.1. Let X,F,Z be Banach spaces and 1 ¤ p, q   8. A bilinear
operator B : X � X Ñ Z is said to be f-factorable pq, pq-summing for
the surjective product f : X � X Ñ F if there exists a constant C ¡ 0
such that for every couple of positive integers A, D and all A�D matrices
pxikq, pyikq P X, the following equality holds,

� A̧

i�1

��� Ḑ

k�1

Bpxik, yikq
���q
Z

	1{q
¤ C sup

fPBF�

� A̧

i�1

��� Ḑ

k�1

xxik f yik, fy
���p	1{p

.

This notion is inspired by the definition of factorable pp, qq-summing mul-
tilinear operators given in [23].

The well-known class of the Pietsch integral operators was extended to
the multilinear case and to the framework of the homogeneous polynomials
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by Alencar, and was also studied by Villanueva (see [4, 31]). We introduce
the notion of f-Pietsch integral bilinear map in a similar way.

Definition 5.2. We will say that a bilinear operator B : X � X Ñ Z is
f-Pietsch integral for the product f : X � X Ñ F if there is a regular
(countable additive) Z-valued Borel measure η on BF� such that

Bpx, yq �

»
BF�

xxf y, fy dηpfq, x, y P X.

The space of f-Pietsch integral operators PIfpX�X,Y q is a Banach space
under the norm }B}PIf � inf |η|pBF�q, where the infimum is computed over
all the measures satisfying the requirements above.

Remark 5.3. It is clearly seen that a bilinear operator B is f-Pietsch integral
if and only if it factors through the n.p. product f and a Pietsch integral
linear operator. Indeed, consider a f-Pietsch integral B and define the
map T : F Ñ Y given by T px f yq � Bpx, yq �

³
BF�

xx f y, fydηpfq for all

xfy � z P F . It is easily seen that T is well defined, linear and independent
of the elements x, y appearing in the representation of xf y. Moreover, it is
continuous since }T } ¤ inf |η|pBF�q, and it is a Pietsch integral operator by
the representation T pzq �

³
BF�

xz, fy dηpfq, xf y � z P F, and B � T � f.

The converse is obvious.

Example 5.4. The bilinear map B : CpKq � CpKq Ñ L1pµq defined by
Bpf, gq � f � g is a d-Pietsch integral operator, where µ is a regular Borel
measure on K. Indeed, the bilinear map B factors through a linear operator
T : CpKq Ñ L1pµq defined by Bpf, gq � T pf �gq, since Bpf �g, hq � pf �gq�h �
f � pg � hq � Bpf, g � hq for all f, g, h P CpKq (see [2, pp.133]). It is also clear
that the linear map T is the natural injection from CpKq to L1pµq, which is
a Pietsch integral operator (see [16, Ch. VI, Example 3.10]).

Theorem 5.5. A continuous bilinear operator B : X�X Ñ Y is f-Pietsch
integral if and only if B has the following factorization,

X �X
B //

f

��

Y

F
S // CpKq J // L1pηq,

T

OO

where K is a compact Hausdorff space, η is a regular Borel positive measure
on K, R and S are bounded linear operators and J is the inclusion map.

In particular, B is a f-Pietsch integral operator if and only if the following
diagram commutes,

X �X
B //

f
��

Y

F
S // CpKq,

T

OO
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where S is a bounded linear map and T is an absolutely summing operator.

Proof. A bilinear map B is f-Pietsch integral if and only if it factors through
a Pietsch integral operator. Since a linear map is a Pietsch integral operator
if and only if it admits a factorizations through L1pηq and CpKq (see [16,
Theorem VI.3.11]), the diagrams are obtained. �

Theorem 5.6. Every f-Pietsch integral operator is f-factorable q-summing.

Proof. Fix natural numbersA andD, and considerA�D matrices pxikq, pyikq P
X and a f-Pietsch integral operator T : X � X Ñ Z with associated Z-
valued Borel measure η. Recall that T is a Pietsch integral operator if and
only if its representing Borel vector measure has finite variation (see for
example [27, Proposition 5.28]). Then

� A̧

i�1

��� Ḑ

k�1

T pxik, yikq
���q
Z

	1{q
�

�
A̧

i�1

��� »
BF�

Ḑ

k�1

xxik f yik, fydηpfq
���q
Z

�1{q

¤

�
A̧

i�1

� »
BF�

��� Ḑ

k�1

xxik f yik, fy
���d|η|pfq	q

�1{q

� sup
λiPB`q1

�
A̧

i�1

λi

»
BF�

��� Ḑ

k�1

xxik f yik, fy
��� d|η|pfq

�

¤

»
BF�

sup
λiPB`q1

� A̧

i�1

λi

��� Ḑ

k�1

xxik f yik, fy
���	 d|η|pfq

¤ sup
fPBF�

sup
λiPB`q1

� A̧

i�1

λi

��� Ḑ

k�1

xxik f yik, fy
���	 |η|pBF�q

� sup
fPBF�

�
A̧

i�1

��� Ḑ

k�1

xxik f yik, fy
���q
�1{q

|η|pBF�q,

where |η|pBF�q   8 is the total variation of the measure. Thus, T is f-
factorable q-summing. �

Let us finish this section by giving some new properties of f–Pietsch
integral bilinear operators. Let us consider a class of bilinear maps which
do not allow integral representations but satisfy integral dominations. By
using the definition of q-semi integrals given by Alencar and Matos in [5],
we can introduce a class of bilinear maps in a similar manner. If 1 ¤ q   8,
we say that a bilinear operator B : X �X Ñ Z is f-q-semi integral for the
product f : X �X Ñ F if there is a constant K and a regular probability
measure η on BF� such that

}Bpx, yq} ¤ K
� »

BF�

|xxf y, fy|qdηpfq
	1{q

.
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Let us show that every f-Pietsch integral bilinear operator B : X�X Ñ Z
is f-q-semi integral. For instance, a standard domination inequality involv-
ing the variation of the vector measure that represents B gives the result.
It can also be proved using the associated vector norm inequality. Indeed,
since every f-Pietsch integral operator on X�X is f-factorable q-summing
by Theorem 5.6, if we assume D � 1 in Definition 5.1 we get that there is a
constant C ¡ 0 such that for every finite family x1, ..., xn, y1, ..., yn P X,� ņ

i�1

���Bpxi, yiq���q
Z

	1{q
¤ C sup

fPF�

� ņ

i�1

���xxi f yi, fy
���q	1{q

.

Taking into account that the product f is n.p. product by assumption,
this inequality gives that the linear operator T : F Ñ Z appearing in its
linearization is q-summing. Pietsch Domination Theorem gives then that
the bilinear map is f-q-semi integral.

Corollary 5.7. Every f-integral bilinear functional on X�X is f-Pietsch
integral, and therefore, f-factorable q-summing map and f-q-semi integral.

6. Applications: summability properties of bilinear maps on
CpKq-spaces

In this section we will investigate summability conditions of bilinear maps
defined on the Cartesian product of CpKq-spaces. Although pq, 1q-summing
bilinear operators on these products have recently been analyzed in [23]
(see also [24] for the polynomial version), the results presented here and the
type of summing inequalities we consider differ from those studied there.
However, some related arguments and additional explanations about the
general framework of summability of multilinear operators can be found in
these papers.

The definition of the positive pq, pq-summing operator was given by Blasco
in [11] as follows; a linear operator T from a Banach lattice X to a Banach
space Y is called positive pq, pq-summing (1 ¤ p, q   8) if there exists a
constant C ¡ 0 such that for every choice of the finitely many positive
elements x1, . . . , xn P X� ņ

i�1

}Txi}
q
Y

	1{q
¤ C sup

x�PBX�

� ņ

i�1

|xxi, x
�y|p

	1{p
.

It is clear that every pq, pq-summing operator is positive pq, pq-summing
(1 ¤ p, q   8). In particular, if we consider the Banach lattice X as the
function space CpKq for a compact Hausdorff space K, this allows us to
obtain the following result.

Lemma 6.1. Any linear operator T : CpKq Ñ Y is pq, pq-summing if and
only if it is positive pq, pq-summing.

Proof. The if assertion is trivial. The only if assertion is proved as follows.
If we consider a positive pq, pq-summing operator T and arbitrary elements
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f1, . . . , fn in CpKq, by the positive pq, pq-summability of the operator T , we
get� ņ

i�1

}Tfi}
q
Y

	1{q
¤
� ņ

i�1

}T pf�i q}
q
Y

	1{q
�
� ņ

i�1

}T pf�i q}
q
Y

	1{q

¤ sup
x�PBpCpKqq�

� ņ

i�1

|xf�i , x
�y|p

	1{p
� sup
x�PBpCpKqq�

� ņ

i�1

|xf�i , x
�y|p

	1{p

¤
���� ņ

i�1

|f�i |
p
	1{p���

CpKq
�
���� ņ

i�1

|f�i |
p
	1{p���

CpKq

¤ 2
���� ņ

i�1

|f�i |
p � |f�i |

p
	1{p���

CpKq

� 2
���� ņ

i�1

|fi|
p
	1{p���

CpKq

� 2 sup
x�PBpCpKqq�

� ņ

i�1

|xfi, x
�y|p

	1{p
.

Thus, we obtain pq, pq-summability of the linear map T . �

In order to use disjointness arguments in the framework of the CpKq-
spaces, we need to adapt the notion of zero product preserving bilinear op-
erator. The problem is that, for technical reasons, we require the disjointness
preserving property for characteristic functions of measurable sets, that are
not of course continuous functions. So, let us write BdpKq for the space of
(real valued) bounded Borel measurable functions with the supremum norm.
Recall that, in the context of the Arens extensions of multilinear operators,
every such map can be extended —in several ways— to the bidual spaces,
with an extension having values in the bidual of the original range space (see
[7, 6, 8]). This allows to extend any bilinear operator B : CpKq�CpKq Ñ Y
to a bilinear (continuous) map B : BdpKq � BdpKq Ñ Y �� such that
}B} � }B} (see Theorem 9 in [12]) which is very much related to integral
representation of multilinear maps by polymeasures (see [12] and Section
5 in [28]). A complete characterization of the properties of such extended
multilinear maps (including uniqueness and norm preservation) using the
Aron-Berner extension as technical tool [8] can be found in these papers.

In this setting, we will say that a bilinear operator B : CpKq�CpKq Ñ Y
has zero product preserving extension if the (an) extension B : BdpKq �
BdpKq Ñ Y �� satisfies that, if A X B � H, then BpχA, χBq � 0. In other
words, the bimeasure that provides the integral representation of B pre-
serves disjointness. Recall that B is weakly compact if BpBCpKq, BCpKqq
is a relatively weakly compact subset of Y. This will imply, following the
results in the classical paper of Bartle, Dunford and Schwartz [9], that the
linear factorization operator is also weakly compact and then representable
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by an integral with respect to a countably additive vector measure, which
will be needed to extend the operator to the space BdpKq.

Theorem 6.2. Let us consider a weakly compact bilinear operator B :
CpKq � CpKq Ñ Y, 1 ¤ q   8, and let p � 1 or p � q. The following
statements are equivalent:

(1) B has a zero product preserving extension and there is a constant
K ¡ 0 satisfying� ņ

i�1

}Bpfi, fiq}
q
	1{q

¤ K
���� ņ

i�1

pf2
i q
p
	1{p���

CpKq
,

for every finite sequence f1, . . . fn in CpKq.
(2) The operator B has a zero product preserving extension, is symmetric

—that is, Bpf, gq � Bpg, fq for all f, g P CpKq—, and there exists a
constant K ¡ 0 such that for every choice of finitely many functions
f1, . . . , fn, g1, . . . , gn P CpKq,� ņ

i�1

}Bpfi, fiq �Bpgi, giq}
q
	1{q

¤ K
���� ņ

i�1

|f2
i � g2

i |
p
	1{p���

CpKq
.

(3) B admits a zero product preserving extension B and there exists
a constant K ¡ 0 satisfying that for every choice of finitely many
functions f1, . . . , fn, g1, . . . , gn P CpKq,� ņ

i�1

}Bpfi, giq}
q
	1{q

¤ K
���� ņ

i�1

|fi � gi|
p
	1{p���

CpKq
.

(4) The operator B admits a factorization of the form

CpKq � CpKq d // CpKq T // Y,

where T is a pq, pq-summing linear operator and d is the pointwise
product.

(5) There is a probability measure λ on K such that the bilinear map B
can be factored through the Lorentz space Lq,ppλq as

CpKq � CpKq B //

d

��

Y.

CpKq
ris // Lq,ppλq,

T̃

OO

where ris is the inclusion/quotient map and T̃ is a continous map.

Proof. p1q ùñ p4q We will show that, since B has zero product preserving
extension and CpKq d CpKq � CpKq, B can be factored through the CpKq-
space by an operator T : CpKq Ñ Y and the pointwise product d : CpKq �
CpKq Ñ CpKq. This T can be defined by T pf � gq :� Bp1, f � gq for all f, g P
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CpKq, where 1 is the unit element of CpKq. It is clearly seen that T is well-
defined, linear and continuous. We need to prove that Bp1, f � gq � Bpf, gq
for all f, g P CpKq.

Note first that, by assumption, the bilinear map B is defined for couples
of characteristic functions of Borel sets A and B, and BpχA, χBq � 0 if
AXB � H. Since f, g are continuous –hence uniformly continuous– on the
compact Hausdorff space K, we can define a partition

�N
i�1Ai of disjoint

sets for K such that for every ε ¡ 0 and every x, y P Ai, |fpxq � fpyq|   ε,
|gpxq � gpyq|   ε, |fgpxq � fgpyq|   ε, for all i � 1, . . . , N . Let us represent

the unit element as 1 � χ�N
i�1 Ai

, and so 1 �
°N
i�1 χAi . Choose an xi from

each Ai and define the functions sf �
°N
i�1 fpxiqχAi , sg �

°N
i�1 gpxiqχAi

and sfg �
°N
i�1 fpxiqgpxiqχAi . Thus, the following inequalities involving

computations in Y ��,

}Bpf, gq �Bpsf , sgq} ¤ }Bpf � sf , gq �Bpsf , g � sgq}

¤ }B}p}f � sf }8}g}8 � }sf }8}g � sg}8q

� }B}ε p}f}8 � }g}8q

and,

}Bp1, sfgq �Bp1, f � gq} � }Bp1, sfg � f � gq} ¤ }B}ε

are obtained. By using that B is zero product preserving, we get

Bpsf , sgq �Bp1, sfgq � B
� Ņ

i�1

fpxiqχAi ,
Ņ

j�1

gpxjqχAj

	

�B
� Ņ

i�1

χAi ,
Ņ

j�1

fpxjqgpxjqχAj

	

�
Ņ

i�1

fpxiqgpxiqBpχAi , χAiq �
Ņ

i�1

fpxiqgpxiqBpχAi , χAiq � 0.

Therefore, we get for all f, g P CpKq,
}Bpf, gq �Bp1, f � gq}

¤ }Bpf, gq �Bpsf , sgq} � }Bpsf , sgq �Bp1, sfgq} � }Bp1, sfgq �Bp1, f � gq},

which is as small as we want by choosing adequate simple functions sf , sg
and sfg.

To finish the proof, just note that the inequality given in (1) implies the
positive pq, pq-summability of the linear operator T, since each non-negative
function in CpKq can be written as the square root of a function in CpKq.
By Lemma 6.1, it is seen that T is pq, pq-summing.
p4q ùñ p5q For p � 1, by Pisier’s theorem we get that for the Banach

space valued linear operator T : CpKq Ñ Y , there is a probability measure λ
on K such that T can be factored through the Lorentz space Lq,1pλq pq ¥ 1q
by the inclusion/quotient map and a continuous linear operator (see [26,
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Theorem 2.4.]). For p � q, this factorization is obtained by using the well-
known Pietsch’s domination theorem which states that every p-summing
operator defined on CpKq is factored through Lppλq space with a regular
Borel probability measure λ on K (see [15, Corollary 2.15]). Therefore, the
required factorization is obtained.
p5q ùñ p3q First note that the pointwise product d can be extended

to d : BdpKq � BdpKq Ñ BdpKq in the obvious way. Now we use that B

is weakly compact to prove that the factorization operator T :� T̃ � ris in
(5) can be written as an integral with respect to a countably additive vector
measure having values in Y (Theorem 3.2 in [9], see also Theorem 13 in
[28] and the comments therein regarding multilinear versions of this result).
This integral provides an extension T of T to the space BdpKq. Therefore,
we obtain the extension B � T � d, that is clearly zero product preserving.

On the other hand, by using the pq, pq-summability of T̃ � ris we get

� ņ

i�1

}Bpfi, giq}
q
	1{q

�
� ņ

i�1

}T̃ � rispfi � giq}
q
	1{q

¤ C sup
x�PBpCpKqq�

� ņ

i�1

|xfi � gi, x
�y|p

	1{p

¤ K
���� ņ

i�1

|fi � gi|
p
	1{p���

CpKq
.

p3q ùñ p1q is obvious.
p4q ùñ p2q Since B factors through the linear operator T : CpKq Ñ Y

defined by Bpf, gq � T pf �gq, it is seen that the map B is symmetric. To show
the inequality, consider finitely many elements tfiu

n
i�1, tgiu

n
i�1 P CpKq and

define the finite sets of functions tψiu
n
i�1 � tfi�giu

n
i�1, tφiu

n
i�1 � tfi�giu

n
i�1.

By the symmetry of the map B, we get Bpψi, φiq � Bpfi, fiq�Bpgi, giq and
ψi � φi � f2

i � g2
i by the pointwise product of the functions. Using the

pq, pq-summability of the linear map T , the inequality is obtained as follows.

� ņ

i�1

}Bpfi, fiq �Bpgi, giq}
q
	1{q

�
� ņ

i�1

}Bpψi, φiq}
q
	1{q

�
� ņ

i�1

}T pψi � φiq}
q
	1{q

¤ K
���� ņ

i�1

|ψi � φi|
p
	1{p���

CpKq

� K
���� ņ

i�1

|f2
i � g2

i |
p
	1{p���

CpKq
.

p2q ùñ p1q is obvious, and so the proof is finished.
�
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Remark 6.3. Note that in the case q � p the weak compactness requirement
for B is not needed in Theorem 6.2; since every p-summing operator is
weakly compact (what is not true for the case of pq, 1q-summing operators),
we do not need this assumption. A look to the proof shows that once we
have the factorization in (4), this implies that B is weakly compact.

On the other hand, the requirement on the existence of a zero product
preserving extension can be avoided under further assumptions on B. For
example, if Y is a Banach lattice and B is positive, that is, Bpf, gq ¥ 0 for all
non-negative elements f and g, an argument based on the use of a partition
of the unit provides also the factorization in (5) just assuming (1) without
any mention to the extension. However, for the general case it seems to be
necessary to explicitly require zero product preservation of B.

Let us finish the paper by writing the representation of the bilinear oper-
ator that is implicitly used in the previous arguments. Recall that if K is a
compact Hausdorff space and BpKq is the σ-algebra of its Borel sets, every
vector measure µ : BpKq Ñ Y defines an integration operator Iµ : CpKq Ñ Y
by Iµpfq �

³
K fdµ, f P CpKq, that can be extended to BdpKq.

Corollary 6.4. Let us consider a weakly compact bilinear map B : CpKq �
CpKq Ñ Y and for 1 ¤ q   8, let p � 1 or p � q. Any of the assertions of
Theorem 6.2 holds if and only if B can be written as an integral

Bpf, gq �

»
K
f � g dµ, f, g P CpKq,

for a countably additive vector measure such that the corresponding integra-
tion map Iµ : CpKq Ñ Y �� is pq, pq-summing.
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[30] J. J. Sylvester. A demonstration of the theorem that every homogeneous quadratic
polynomial is reducible by real orthogonal substitutions to the form of a sum of
positive and negative squares. Philosophical Magazine, 4(23):138–142, 1852.

[31] I. Villanueva. Integral mappings between Banach spaces. J. Math. Anal. Appl.,
279(1):56–70, 2003. https://doi.org/10.1016/S0022-247X(02)00362-1.

Department of Mathematics, Faculty of Art and Science, Marmara Uni-
versity, 34722, Kadıköy, Istanbul, Turkey.
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