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Abstract

This paper studies the introduction of sparse group LASSO (SGL)

to the quantile regression framework. Additionally, a more flexible ver-

sion, an adaptive SGL is proposed based on the adaptive idea, this is,

the usage of adaptive weights in the penalization. Adaptive estimators

are usually focused on the study of the oracle property under asymp-

totic and double asymptotic frameworks. A key step on the demonstra-

tion of this property is to consider adaptive weights based on a initial

√
n-consistent estimator. In practice this implies the usage of a non pe-

nalized estimator that limits the adaptive solutions to low dimensional

scenarios. In this work, several solutions, based on dimension reduc-

tion techniques PCA and PLS, are studied for the calculation of these

weights in high dimensional frameworks. The benefits of this proposal

are studied both in synthetic and real datasets.
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Politècnica de València
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1 Introduction

Along years, regression has become a key method in statistics. Least squares

(LS) regression estimates the conditional mean response of a variable as a

function of the covariates. Usually, these models assume the errors to be cen-

tered, homoscedastic and independent. Making this assumptions, it is guar-

anteed that the LS estimator is the best linear unbiased estimator, or a BLUE

estimator. Additionally, if the errors are assumed to be Gaussian one can

perform finite sample studies. However, these hypothesis are not always veri-

fied in practical applications, and the LS estimator is known to be extremely

sensitive to the presence of outliers or heavy tailed distributions, making it per-

form poorly when the errors are non Gaussian. Ever since the seminal work

of Koenker and Bassett (1978), quantile regression (QR) models have gained

importance when dealing with this kind of situations. QR models allow for a

relaxation of the classical first two moment conditions over the model error.

In addition, the errors in QR are not required to be Gausian. This means that

QR offers robust estimators capable of dealing with heteroscedasticity and

outliers. QR models can also estimate different quantile levels of a response

variable, giving a precise insight of the relation between response and covari-

ates at upper and lower tails. This can provide a much richer point of view

than OLS regression. For a full review on quantile regression, we recommend

(Koenker, 2005).

In recent years, high dimensional data in which the number of covariates p

is larger than the number of observations n (p� n), has become increasingly

common. This problem can be found in many different areas like computer

vision and pattern recognition (Wright et al., 2010), climate data over differ-

ent land regions (Chatterjee et al., 2011), and prediction of cancer recurrence
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based on patients genetic information (Simon et al., 2013), (Yahya Algamal

and Hisyam Lee, 2019). In these scenarios, variable selection gains in special

importance offering sparse modeling alternatives that help identifying signifi-

cant covariates and enhancing prediction accuracy. One of the first and most

popular sparse regularization alternatives is LASSO, which was proposed by

Tibshirani (1996) and adapted to the QR framework by Li and Zhu (2008),

who developed the piece-wise linear solution of this technique. LASSO is a

technique that penalizes each variable individually, enhancing thus individ-

ual sparsity. However, in many real applications variables are structured into

groups, and group sparsity rather than individual sparsity is desired. One can

think for example of a genetic dataset grouped into gene pathways. This prob-

lem was faced by the group LASSO penalization of Yuan and Lin (2006), and

opened the doors to more complex penalizations like the sparse group LASSO

(Friedman et al., 2010), which is a linear combination of LASSO and group

LASSO providing solutions that are both between and within group sparse.

With the same objective in mind, Zhou and Zhu (2010) proposed a hierarchi-

cal LASSO. Other studies have worked on properties for robust estimators in

regression when the number of covariates increase with sample size (see for

example Huber and Ronchetti (2009)). In the same line, it is also worth men-

tioning the work from Loh (2017), that extends the usage of robust estimators,

like those obtained using Hubert or Tuckey loss functions (among others) to

high dimensional settings, introducing a set of generalized M-estimators capa-

ble of dealing with outliers in both the errors and the covariates terms. To

the best of our knowledge, the SGL technique has not been studied in the

framework of QR models, so this gap is addressed first, extending the SGL

penalization to quantile regression.
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Zou (2006) was the first to propose the usage of adaptive weights for each

variable on the LASSO penalization as a way to increase the model flexibility

and correct the estimator bias. This idea, generally known as the adaptive

idea, was then extended to other penalizations. The weights of the adaptive

idea are defined in the literature based on an initial
√
n-consistent estimator.

Typically, this is the result of a nonpenalized model. This definition is a key

step for the demonstration of the oracle property of the estimators (in the sense

of Fan and Li (2001)), but it is also restrictive, as it limits the usage of adap-

tive penalizations just to the situations in which solving a nonpenalized model

is a feasible first step. This approach, focused on the oracle property under

asymptotic, or even double asymptotic frameworks is observed in Nardi and

Rinaldo (2008) for the adaptive group LASSO, Ghosh (2011) for an adaptive

elastic net, Ciuperca (2019) for the adaptive group LASSO in QR, Ciuperca

(2017) for the adaptive fused LASSO in QR, Wu and Liu (2009) for the adap-

tive LASSO and SCAD penalizations in QR, and Zhao et al. (2014) for an

adaptive hierarchical LASSO in QR among others. It is especially interesting

to remark the work developed by Poignard (2018), in which an adaptive sparse

group LASSO estimator suitable for low dimensional scenarios (with n > p)

is proposed, studying its theoretical properties for a set of general convex loss

functions.

The main contribution of this work lies here. An adaptive sparse group

LASSO (ASGL) for quantile regression estimator is defined, working especially

on enabling the usage of the ASGL estimator in high dimensional scenarios

(with p � n). In order to achieve this objective, four alternatives for the

weight calculation step are proposed. It is worth noting that these weight

calculation alternatives can be used not only in the case of the ASGL esti-
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mator, but also in the rest of the adaptive-based estimators available in the

literature. The performance of these alternatives is also studied in the case of

low dimensional scenarios, making the proposed work a good alternative for

both high dimensional and low dimensional problems.

The rest of the paper is organized as follows. In Section 2 some basic

theoretical concepts are introduced, along with the formal definition of the

sparse group LASSO in quantile regression. This definition is extended to the

adaptive idea in Section 3, proposing the ASGL estimator. Section 4 discusses

the main results regarding asymptotic behavior of adaptive estimators, and

Section 5 introduces the weights calculation alternatives for high dimensional

scenarios, as well as some remarks regarding the asymptotic behavior of the

proposed alternatives. Simulation results are divided into two blocks: Sec-

tion 6 shows the advantages of this proposal in synthetic datasets in high and

low dimensional scenarios considering a symmetric error distribution while the

supplementary material shows a sensitivity analysis of the proposed methods

under skewed distribution errors as well as the effect of different hyperparame-

ter values. In Section 7 the proposed model is used in a real dataset, a genomic

dataset including gene expression data of rat eye disease first shown in Scheetz

et al. (2006). The computational aspects of the problem are briefly commented

in Section 8, and the conclusions are provided in Section 9.

2 Penalized quantile regression

Consider a sample of n observations structured as D = (yi,xi), i = 1, . . . , n

from some unknown population and define the following linear model,

yi = xtiβ + εi, i = 1, . . . , n (1)
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where yi is the i-th observation of the response variable, xi ≡ (xi1, . . . , xip) is

the vector of p covariates for observation i and εi is the error term.

Let us introduce now the quantile regression framework by defining the

loss check function,

ρτ (u) = u(τ − I(u < 0)) (2)

where I(·) is the indicator function. In their seminal work Koenker and Bassett

(1978) proved that the τ -th quantile of the response variable can be estimated

by solving the following optimization problem,

β̃ = arg min
β∈Rp

{R(β)} . (3)

where R(β) defines the risk function of quantile regression,

R(β) =
1

n

n∑
i=1

ρτ (yi − xtiβ) (4)

Quantile regression models allow for a relaxation of the classical first two

moment conditions over the model errors εi defined in equation 1. These errors

are no longer required to be centered, homoscedastic or normally distributed,

as stated in Koenker (2005), offering robust estimators capable of dealing with

heteroscedasticity and outliers.

We call high dimensional scenarios to the datasets in which p is much larger

than n (p� n). This problem is becoming more and more common nowadays,

and can be observed in many different fields of research such as computer vision

and pattern recognition (Wright et al., 2010), climate data over different land

regions (Chatterjee et al., 2011) or prediction of cancer recurrence based on

patients genetic information (Simon et al., 2013). An alternative that has
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been intensively studied in recent years for dealing with these scenarios is

the penalization approach. By penalizing a regression model it is possible to

perform variable selection and improve the accuracy and interpretability of

the models.

One of the best known variable selection penalization methods is the least

absolute selection and shrinkage operator, generally known as LASSO, pro-

posed initially by Tibshirani (1996) which, in the case of the QR framework

solves,

β̂ = arg min
β∈Rp

{R(β) + λ ‖β‖1} , (5)

where R(β) is the QR risk function defined in equation (4). The LASSO

penalization sends many β components to zero, offering sparse solutions and

performing automatic variable selection. In the last years, many LASSO-

based algorithms have been proposed. Yuan and Lin (2006) introduced the

group LASSO penalization as an answer for the need to select variables not

individually but at the group level. This penalization solves the following

problem,

β̂ = arg min
β∈Rp

{
R(β) + λ

K∑
l=1

√
pl
∥∥βl∥∥

2

}
, (6)

where K is the number of groups, βl ∈ Rpl are vectors of components of β

from the l-th group, and pl is the size of the l-th group. The group LASSO

penalization works in a similar way to LASSO, but while LASSO enhances

sparsity at individual level, group LASSO enhances sparsity at group level,

selecting, or sending to zero whole groups of variables.

Initially proposed by Friedman et al. (2010), the sparse group LASSO

(SGL) is a linear combination of LASSO and group LASSO penalizations.

Well known in linear regression and other GLM models, to the best of our
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Figure 1: Contour lines for LASSO, group-LASSO and sparse-group-LASSO
penalties in the case of a single 2-dimensional group
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knowledge SGL has not been adapted to QR, and as a first step in the paper,

this penalization is introduced.

β̂ = arg min
β∈Rp

{
R(β) + αλ ‖β‖1 + (1− α)λ

K∑
l=1

√
pl
∥∥βl∥∥

2

}
. (7)

As in LASSO and group LASSO, SGL solutions are, in general, sparse, sending

many of the predictor coefficients to zero. However, while LASSO solutions

are sparse at individual level, and group LASSO solutions are sparse at group

level, SGL offers both between and within group sparsity, outperforming both

alternatives.

From an optimization perspective, equation (7) defines a sum of convex

functions. This convexity ensures that the solution of the minimization prob-

lem is a global minimum. Figure 1 shows the constrains defined by LASSO,

group LASSO and SGL in the case of a single 2-dimensional group of predic-

tors.
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3 Adaptive sparse group LASSO

From an empirical perspective, sparse group LASSO shows great performance.

However, due to its mathematical formulation, it applies a constant penaliza-

tion rate that provides biased estimates for large coefficients. The adaptive

idea, initially introduced by Zou (2006) is considered here as a way to correct

this limitation. In this work, a variant of the SGL penalization, the adaptive

sparse group LASSO (ASGL) for quantile regression is defined. The ASGL

estimator for QR is the result of the following minimization process,

β̂ = arg min
β∈Rp

{
R(β) + αλ

p∑
j=1

w̃j|βj|+ (1− α)λ
K∑
l=1

√
plṽl

∥∥βl∥∥
2

}
, (8)

where w̃ ∈ Rp and ṽ ∈ RK are known weights vectors and R(β) is the risk

function for quantile regression defined in equation 4. The intuition behind

these weights is that if a variable (or group of variables) is important, it should

have a small weight, and this way would be lightly penalized. On the other

hand, if it is not important, by setting a large weight it is heavily penalized.

This enhances the model flexibility and improves variable selection and pre-

diction accuracy. It is worth saying that this formulation defines a convex

function and thus, the global minimum can be found.

4 The oracle property

An estimator is oracle if it can correctly select the nonzero coefficients in a

model with probability converging to one, and if the nonzero coefficients are

asymptotically normally distributed. These properties were initially defined in

Fan and Li (2001), where they proved that the SCAD was an oracle estimator
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under an asymptotic framework of fixed dimension p. The oracle property of

the SCAD estimator was then extended in Fan and Peng (2004) to a double

asymptotic framework of p depending on n. This is, p → ∞ as n → ∞, but

p growing at a lower rate and always n > p. Zou (2006) proved that the

LASSO was not an oracle estimator due to the bias generated by the constant

penalization rate. They proposed the usage of adaptive weights as a means to

correct the bias, showing that the adaptive LASSO was an oracle estimator

under the asymptotic framework of fixed p, as long as the weights required by

the adaptive idea were computed based on a initial
√
n-consistent estimator.

Actually, they proposed using the result from a non penalized model for the

computation of the weights w̃,

w̃i =
1

|β̃i|γ
, (9)

where wi and β̃i correspond to the i-th element of vectors w̃ and β̃ respectively,

|·| denotes the absolute value function, γ is a non negative constant and β̃ is

the solution vector obtained from the unpenalized model (described, in the

case of the QR framework, in equation (3)).

Ever since then, the adaptive idea has been extended to many LASSO-

based formulations in OLS, GLM and QR models among others. One can see

for instance (Ghosh, 2011) where an adaptive elastic net is defined, (Wu and

Liu, 2009) that introduces the adaptive LASSO in QR, (Ciuperca, 2017) where

an adaptive fused LASSO in QR is defined, (Zhao et al., 2014) who proposes

an adaptive hierarchical LASSO in QR or (Poignard, 2018), where an adaptive

sparse group LASSO estimator is defined in a general set of convex functions,

among others. All these works are centered on the demonstration of the oracle

property under the asymptotic or double asymptotic framework, being the
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usage of an initial
√
n-consistent estimator on the calculations of the weights

a key step in the demonstration. A major drawback of this approach in our

opinion is precisely that the asymptotic or double asymptotic frameworks are

limited to low dimensional scenarios where n > p but do not consider high

dimensional scenarios where p� n. This is remarked by the fact that usually,

the initial
√
n-consistent estimators used in the weight calculations are taken

from non penalized models, only feasible in low dimensional scenarios.

Dealing with the problem of an increasing number of covariates is, however,

challenging. When an OLS model is considered, the third order term of the

taylor expansion on the loss function vanishes, but out of this framework, for

example in GLM or QR models, this term does not vanish, and additional

boundaries on the convergence rates of p (the number of variables) and n (the

number of observations) are required in order to demonstrate the consistency

and the oracle property of the estimators. This is pointed out in detail, for a

general framework of convex functions, in Poignard (2018).

When considering a high dimensional scenario it is possible to find very

interesting results from recent years. One can see for example (Huang et al.,

2008a), who considers the oracle property of a bridge penalized least squares

model under the p� n framework as long as the bridge parameter is strictly

between 0 and 1 (leaving out of the formulation the LASSO estimator). In

order to achieve these results, they require additional conditions on the design

matrix X, namely, they require partial orthogonality between the set of signif-

icant variables and the set of non significant variables. Similar results can be

observed for the adaptive LASSO in least squares (Huang et al., 2008b) where

partial orthogonality conditions are required to demonstrate the oracle prop-

erty in high dimensions, for the SCAD penalization in linear models in Kim
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et al. (2008) and for the SCAD and MCP penalizations in quantile regression

in Wang et al. (2012). However, the conditions required on the design matrix

(and therefore on the covariates) to fit the oracle property are difficult to verify

in practice. Thus, the results have an important mathematical relevance that

should be landed in more realistic hypotheses.

5 Adaptive weights calculation

The objective of this section is to introduce different alternatives for the cal-

culation of weights in the adaptive framework. The intuitive idea is to find a

way to substitute β̃, the solution from the unpenalized model, unfeasible in

high dimensional scenarios, in the calculation of the adaptive weights. This

problem will be faced making use of two dimensionality reduction techniques,

principal component analysis (PCA) and partial least squares (PLS). The pro-

posed weight calculation alternatives can be used both in high dimensional and

low dimensional scenarios. It is worth highlighting that these alternatives can

be applied not only to the ASGL algorithm, but also to other adaptive based

algorithms.

5.1 Principal components analysis

Given the covariates matrix X ∈ Rn×p defined in equation (1), with maximum

rank r = min {n, p}, consider the matrix of principal components Q ∈ Rp×r

defined in a way such that the first principal component has the largest possi-

ble variance, and each succeeding component has the largest possible variance

under the constraint that it is orthogonal to the preceding components. From

an algebra perspective, the principal components in Q define an orthogonal
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change of basis matrix that maximize the variance explained from X. Con-

sider Z = XQ ∈ Rn×r the projection of X into the principal components

subspace. Two weight calculation alternatives based on principal components

are proposed.

5.1.1 Based on a subset of components

Consider the submatrix Qd = [q1, . . . , qd]
t where qi ∈ Rp is the i-th column of

the matrix Q, and d ∈ {1, . . . , r} is the number of components chosen. Let

αpca,d ∈ [0, 100] be the percentage of variability from X that the principal

components in Qd are able to explain. If d = r then the principal components

in Qd are able to explain all the original variability from X, and αpca,d = 100.

If d < r then αpca,d < 100. The number of components chosen in order to

explain up to a certain percentage of variability is fixed by the researcher.

Obtain Zd = XQd ∈ Rn×d the projection of X into the subspace generated

by Qd and solve the unpenalized model,

β̃ = arg min
β∈Rd

{
1

n

n∑
i=1

ρτ (yi − ztiβ)

}
. (10)

This model defines a low dimensional scenario where β̃ ∈ Rd. Using this

solution, it is possible to obtain an estimation of the high dimensional scenario

solution, β̂ = Qdβ̃ ∈ Rp. Finally, the weights are estimated as,

w̃j =
1

|β̂j|γ1
and ṽl =

1∥∥∥β̂l∥∥∥γ2
2

, (11)

where β̂j is the j-th component from β̂, β̂l is the vector of components of β

from the l-th group, and γ1 and γ2 are non negative constants usually taken
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in [0, 2].

5.1.2 Based on the first component

A more straightforward approach based on the first principal component is also

proposed. The principal components are no more than linear combinations of

the original variables. Therefore, the first principal component q1 ∈ Rp, which

is the first column of the matrix Q, includes one weight for each of the p

original variables. This proposal consists of calculating the weights as,

w̃j =
1

|q1j|γ1
and ṽl =

1∥∥ql1∥∥γ22 , (12)

where q1j is the j-th component from q1 and defines the weight associated to

the j-th original variable, ql1 is the vector of components of q1 from the l-th

group and γ1 and γ2 are non negative constants usually taken in [0, 2].

5.2 Partial least squares

The principal components are defined in a way such that they capture the

maximum possible variance from X under the constraint that they are or-

thogonal to the rest of the principal components. However, being relevant for

describing the variance of X does not necessarily mean that a principal com-

ponent is relevant for predicting the value of y. Partial least squares (PLS) is

a dimensionality reduction technique centered on maximizing the covariance

between X and y.

Given the covariates matrix X ∈ Rn×p defined in equation (1), with max-

imum rank r = min {n, p}, consider the matrix of PLS components T ∈ Rp×s

and the projection of X into the subspace generated by T : U = XT ∈ Rn×s.
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The matrix of PLS components T defines a nonorthogonal change of basis

matrix whose projection U is computed in a way such that the first projec-

tion vector, u1 ∈ Rn has the largest possible covariance with y, and each

succeeding projection vector has the largest possible covariance with y under

the constraint that it is uncorrelated to the rest of the projection vectors.

Given the submatrix Td = [t1, . . . , td]
t where ti ∈ Rp is the i-th column

of the matrix T , and d ∈ {1, . . . , s} is the number of components chosen,

let αpls,d ∈ [0, 100] be the percentage of variability from X that the PLS

components in Td are able to explain. The nonorthogonality of T implies that

the total number of PLS components available to be computed is smaller than

the rank of X, s ≤ r, and that the maximum possible percentage of variability

explained by the PLS components αpls,s is then lower than 100%.

In the case of principal components analysis, the matrix of principal com-

ponents Q defines an orthogonal change of basis matrix that results into an

orthogonal projection matrix Z maximizing the variance of X. On the other

hand, PLS defines a nonnecesarily orthogonal change of basis matrix T that

results into an uncorrelated projection matrix U maximizing the covariance

between U and y. In the same way as for the PCA alternatives proposed, two

alternatives of weight calculation using PLS are considered: based on a subset

of PLS components, and based just on the first PLS component.

5.3 Influence of PCA and PLS on the oracle property

As commented in Section 4, a key condition in the demonstration of the oracle

property in adaptive estimators is to assume that the initial estimator used in

the weights calculation is
√
n-consistent.

The usage of pcad or plsd weight calculation proposes to consider a subset
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of d components in the estimation of the weights. A question that may arise

here is whether these PCA (or PLS) estimator is
√
n-consistent or not. We

propose the following simple low dimensional example in the OLS framework

that can help answering this question.

Example:

Given the random variables X1 ∼ N(0, 0.99) and X2 ∼ N(0, 0.01), consider

the random vector : X = (X1, X2), for which

cov(X) =

0.99 0

0 0.01

 .

And thus, the eigenvalues from cov(X) are λ1 = 0.99 and λ2 = 0.01, and the

matrix of eigenvectors is

P =

1 0

0 1

 .

If PCA is applied on this random vector X, the rotation matrix obtained will

be P , yielding to a first principal component that explains 99% of the original

variability and a second principal component that explains the remaining 1%.

Consider now the following linear model,

y = Xβ + ε,

where β = (0, 100)t and ε ∼ N(0, 0). Following the steps described in Section

5.1.1, consider a subset of components that explain up to a certain percentage

of variability, for example, 99% of the variability. This implies that X will be

projected onto the subspace spanned just by the first principal component P1,

16



Z = XP1 = X1. Solve now the linear model ỹ = Zβ̃, where

β̃ =
cov(Z, y)

var(Z)
=
cov(X1, y)

var(X1)
= 0.

Then, the projection of the estimator β̃ into the original subspace is given by

β̂ = P1β̃ = (0, 0)t. Now, in order to be
√
n-consistent, an estimator should

verify:

(β̂ − β) is Op(n
−1/2) if for all ε > 0 ∃K > 0 s.t.

Pn→∞(
√
n|β̂ − β| > K) < ε

Taking into account that β = (0, 100)t, it is clear that the
√
n-consistency

property is not verified by β̂. The problem arises because the variability in

variable Y is explained by X2, which is not selected because it explains only

1% of the total variability of X.

We would like to point out that this example is meant to be a counterex-

ample of a situation in which the pcad is not
√
n-consistent. However, in our

opinion, it clarifies the conditions required by the estimator in order to be

consistent, as stated in the following remarks.

Remark 1. Consider an ASGL estimator, where the weights are computed

based on a subset of principal components pcad in the asymptotic or double

asymptotic frameworks. If all the components are selected (this is, if the com-

ponents explain 100% of the original variability), then the initial estimator

used in the weights calculation is
√
n-consistent, and therefore, the ASGL es-

timator is an oracle estimator. Observe that by selecting all the components,

β̂ = Qβ̃ is equal to the unpenalized estimator defined in equation (3).
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Remark 2. As shown in Section 4, the proof of the oracle property of an

estimator in high dimensional scenarios is much more complex than in low di-

mensional scenarios. We conjecture that in the high dimensional context, the

pcad estimator will behave in a similar way as in low dimensional scenarios, re-

quiring to achieve a 100% of explained variability, but requiring also additional

hypothesis similar to the ones observed in, for example, Wang et al. (2012).

In this paper, a set of 5 previous conditions is required for the demonstration

of the oracle property in a high dimensional framework in quantile regression

while considering non convex penalizations (such as SCAD). Among other

things, the proposed conditions include restrictions on the design matrix, for

example, that given the design matrix X, S = 1
n
XtX should be bounded,

and the eigenvalues of S should be bounded as well. We consider that due to

the complexity of the required results, studying the theoretical aspect of the

estimator in high dimensional scenarios is a topic for further work. However,

we study the behavior of this estimator in high dimensional scenarios both

in synthetic and real datasets in Sections 6 and 7, and in the supplementary

material, obtaining very good results.

Remark 3. The study of the oracle property of the plsd estimator is much

more complex than this of pcad. As commented in section 5.2, the maximum

percentage of variability explained by the PLS components can be smaller than

100%, and thus, we would be facing the same issues described in the example

above. This situation will also be a topic for further work.
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6 Simulation study: symmetric errors

This section shows the performance of the proposed ASGL estimator under

different synthetic dataset examples focused on symmetric errors as it is usual

in OLS models. The proposed ASGL estimator is studied here under the

framework of the following model,

y = Xβ + ε, ε ∼ t(3),

where the data matrix X is generated from a standard Gaussian distribu-

tion. Variables are organized in groups, considering a within group correlation

of 0.5 and a between group correlation of 0. A quantile level τ = 0.5 is con-

sidered. The scheme used here is an adaptation of other simulation schemes

used in Wu and Liu (2009) and Zhao et al. (2014).

Given that the ASGL formulation in equation (8) includes a weight penal-

ization on the group LASSO part based on the group size (the term
√
pl), two

model formulations are considered:

• Adaptive LASSO in sparse group LASSO (AL-SGL), where w̃ 6= 1 but

ṽ = 1, in which the adaptive idea is only applied to the LASSO part.

• Adaptive sparse group LASSO (ASGL), where w̃ 6= 1 and ṽ 6= 1.

Furthermore, the four weight calculation alternatives proposed are studied:

• PCA weights based on regression on a subset of principal components,

we denote this as pcad;

• PCA weights based on the first principal component, we denote this as

pca1;
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• PLS weights based on regression on a subset of PLS components, we

denote this as plsd;

• PLS weights based on the first PLS component, we denote this as pls1.

The total number of components d used in the weight estimation in plsd and

pcad is chosen such that in both cases the percentage of variability explained

from the original matrixX is αpca,d = 80%, αpls,d = 80%. As commented along

Section 5, due to the non orthogonality of the PLS components it can happen

that the maximum possible variability explained by the PLS components αpls,s

is smaller than 80%. In these cases we consider d such that αpls,d = αpls,s.

The results obtained by the models proposed in this work are compared

with the results from LASSO and SGL formulations. For each dataset D,

a partition into three disjoint subsets, Dtrain, Dval and Dtest is considered.

Dtrain is used for training the models, this is, solving the model equations.

Dval is used for validation, this is, optimizing the model parameters. This

optimization is performed based on grid-search. Finally, Dtest is used for testing

the models prediction accuracy. The model parameters are optimized based

on the minimization of the quantile error, defined as,

Ev =
1

#Dval

∑
(yi,xi)∈Dval

ρτ (yi − xtiβ̂), (13)

where ρτ (·) denotes the quantile function defined at (2), and # denotes the

cardinal of a set. The final model error is calculated over Dtest as,

Et =
1

#Dtest

∑
(yi,xi)∈Dtest

ρτ (yi − xtiβ̂). (14)

Additionally, the following metrics evaluating the performance of the methods
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are considered:

•
∥∥∥β̂ − β∥∥∥

2
the euclidean distance between the estimated vector and the

true vector;

• true positive rate (TPR)= P(β̂i 6= 0|βi 6= 0);

• true negative rate (TNR)= P(β̂i = 0|βi = 0);

• correct selection rate (CSR)= P(β̂ = β).

We are interested in studying the performance of the proposed models

under different situations. An aspect to be analysed is the effect of an increase

on the number of variables, and regarding this aspect, three cases will be

considered:

• high-dimensional case with 625 variables;

• high-dimensional case with 225 variables;

• low dimensional case with 100 variables.

Additionally, another important factor is the spread of the significant vari-

ables among different groups. In order to study this aspect, two cases will be

considered:

• sparse distribution of significant variables: significant variables are spread

among many groups, but there is no group fully formed by significant

variables;

• dense distribution of significant variables: significant variables are con-

centrated into a few number of groups, fully formed by significant vari-

ables.
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Varying the number and the spread of the variables, six cases will be stud-

ied:

Case 1: sparse distribution of 625 variables

There are 25 groups of size 25 each, a total number of 625 variables. Among

these groups, 7 groups with 8 significant variables each are defined, a total

number of 56 significant variables. For l ∈ {1 . . . , 25}, coefficients inside each

group are defined as,


βl = (1, 2, . . . , 8, 0, . . . , 0︸ ︷︷ ︸

17

), l = 1, . . . , 7

βl = (0, . . . , 0︸ ︷︷ ︸
25

), l = 8, . . . , 25.

Case 2: dense distribution of 625 variables

There are 25 groups of size 25 each, a total number of 625 variables. Among

these groups, 3 groups with 25 significant variables each are defined, a total

number of 75 significant variables. For l ∈ {1 . . . , 25}, coefficients inside each

group are defined as,


βl = (1, 2, . . . , 25), l = 1, . . . , 3

βl = (0, . . . , 0︸ ︷︷ ︸
25

), l = 4, . . . , 25.

Case 3: sparse distribution of 225 variables

There are 15 groups of size 15 each, a total number of 225 variables. Among
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these groups, 7 groups with 8 significant variables each are defined, a total

number of 56 significant variables. For l ∈ {1 . . . , 15}, coefficients inside each

group are defined as,


βl = (1, 2, . . . , 8, 0, . . . , 0︸ ︷︷ ︸

7

), l = 1, . . . , 7

βl = (0, . . . , 0︸ ︷︷ ︸
15

), l = 8, . . . , 15.

Case 4: dense distribution of 225 variables

There are 15 groups of size 15 each, a total number of 225 variables. Among

these groups, 3 groups with 15 significant variables each are defined, a total

number of 45 significant variables. For l ∈ {1 . . . , 15}, coefficients inside each

group are defined as,


βl = (1, 2, . . . , 15), l = 1, . . . , 3

βl = (0, . . . , 0︸ ︷︷ ︸
15

), l = 4, . . . , 15.

Case 5: sparse distribution of 100 variables

There are 10 groups of size 10 each, a total number of 100 variables. Among

these groups, 5 groups with 6 significant variables each are defined, a total

number of 30 significant variables. For l ∈ {1 . . . , 10}, coefficients inside each

23



group are defined as,


βl = (1, 2, . . . , 6, 0, . . . , 0︸ ︷︷ ︸

4

), l = 1, . . . , 5

βl = (0, . . . , 0︸ ︷︷ ︸
10

), l = 6, . . . , 10.

Case 6: dense distribution of 100 variables

There are 10 groups of size 10 each, a total number of 100 variables. Among

these groups, 3 groups with 10 significant variables each are defined, a total

number of 30 significant variables. For l ∈ {1 . . . , 10}, coefficients inside each

group are defined as,


βl = (1, 2, . . . , 10), l = 1, . . . , 3

βl = (0, . . . , 0︸ ︷︷ ︸
10

), l = 4, . . . , 10.

We consider that Case 1 is the most representative example in further

applications, and therefore it will be intensively studied here, and also in

the simulations regarding the sensitivity analysis shown in the supplementary

material. Each simulation example has been executed 50 times considering

100/100/5000 observations in the train / validate / test samples, except in the

low dimensional simulations (Case 5 and 6) where 500/500/5000 observations

were considered. The large test sets formed by 5000 observations help increase

the stability of the results, however, models are built using train and validate

sets, making the 625 variables and 225 variables simulations high dimensional

(p > n). The results have been summarized in terms of the mean and standard

deviation values (shown in parenthesis), and the best result from each metric
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is highlighted.

As it was commented in Section 4, the general tendency found in the liter-

ature regarding the weights in adaptive models is to define them based on the

results of the unpenalized model,

w̃i =
1

|β̃i|γ
, (15)

where wi and β̃i correspond to the i-th element of vectors w̃ and β̃ respectively,

|·| denotes the absolute value function, γ is a non negative constant and β̃

is the solution vector obtained from the unpenalized model (described, in

the case of the QR framework, in equation (3)). This approach is limited

just to low dimensional scenarios, where the unpenalized model can actually

be solved. For this reason, in the low dimensional cases, the results of the

proposed models are compared with the results from the weights based on the

unpenalized model.

6.1 Simulation 1: sparse distribution of significant vari-

ables.

This simulation shows the results obtained under simulation Case 1, consid-

ering 625 variables, Case 3, considering 225 variables and Case 5, considering

100 variables. In all of them, the variables are sparsely distributed among

groups, and a symmetric error from a t(3) is considered.

Results from this simulation scheme are displayed in Table 1, which is di-

vided into three parts related to the three Cases under study. The first part

of the table analyses Case 1, which considers 625 variables. In this part, the

results from LASSO and SGL are compared against the eight proposed weight
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Table 1: Simulation 1. Sparse distribution of variables. Considering a t(3)
error. ∥∥∥β̂ − β∥∥∥ Et CSR TPR TNR

p = 625 variables

LASSO 23.37 (4.61) 7.85 (1.70) 0.89 (0.01) 0.76 (0.07) 0.90 (0.01)
SGL 19.62 (3.28) 6.29 (1.08) 0.76 (0.10) 0.90 (0.04) 0.75 (0.12)
AL-SGL-pcad 17.97 (3.56) 5.68 (1.13) 0.83 (0.07) 0.88 (0.05) 0.83 (0.08)
AL-SGL-pca1 21.41 (2.78) 6.88 (0.93) 0.70 (0.10) 0.90 (0.04) 0.68 (0.12)
AL-SGL-plsd 17.60 (3.28) 5.78 (1.14) 0.83 (0.06) 0.89 (0.04) 0.83 (0.07)
AL-SGL-pls1 19.40 (2.99) 6.23 (0.99) 0.78 (0.09) 0.90 (0.04) 0.77 (0.10)
ASGL-pcad 15.19 (3.43) 4.65 (1.04) 0.84 (0.04) 0.92 (0.03) 0.83 (0.04)
ASGL-pca1 21.38 (2.58) 6.80 (0.87) 0.73 (0.10) 0.91 (0.04) 0.71 (0.11)
ASGL-plsd 13.23 (3.35) 4.07 (0.99) 0.85 (0.03) 0.91 (0.04) 0.84 (0.04)
ASGL-pls1 17.56 (3.98) 5.61 (1.33) 0.81 (0.01) 0.91 (0.04) 0.80 (0.07)
ASGL-splsd 14.31 (3.30) 4.36 (0.99) 0.85 (0.03) 0.92(0.04) 0.84 (0.04)
ASGL-spcad 18.05 (3.19) 5.75 (1.06) 0.78 (0.07) 0.91(0.03) 0.77 (0.08)

p = 225 variables

LASSO 8.09 (2.48) 2.66 (0.81) 0.80 (0.02) 0.96 (0.03) 0.75 (0.02)
SGL 6.43 (2.02) 2.12 (0.60) 0.76 (0.06) 0.98 (0.02) 0.69 (0.07)
AL-SGL-pcad 6.66 (2.33) 2.20 (0.76) 0.78 (0.06) 0.97 (0.03) 0.71 (0.08)
AL-SGL-pca1 7.06 (1.98) 2.30 (0.61) 0.73 (0.06) 0.98 (0.02) 0.65 (0.09)
AL-SGL-plsd 6.95 (1.79) 2.28 (0.56) 0.77 (0.06) 0.97 (0.02) 0.70 (0.08)
AL-SGL-pls1 7.27 (2.46) 2.39 (0.78) 0.74 (0.06) 0.98 (0.02) 0.66 (0.08)
ASGL-pcad 5.09 (1.32) 1.70 (0.38) 0.73 (0.09) 0.99 (0.01) 0.65 (0.12)
ASGL-pca1 7.07 (1.98) 2.31 (0.62) 0.75 (0.06) 0.98 (0.02) 0.67 (0.07)
ASGL-plsd 5.05 (1.30) 1.68 (0.37) 0.74 (0.09) 0.99 (0.02) 0.66 (0.12)
ASGL-pls1 6.21 (1.78) 2.04 (0.52) 0.74 (0.05) 0.98 (0.02) 0.66 (0.06)

p = 100 variables

LASSO 0.59 (0.08) 0.59 (0.01) 0.79 (0.09) 1.00 (0.00) 0.69 (0.14)
SGL 0.60 (0.08) 0.59 (0.01) 0.75 (0.11) 1.00 (0.00) 0.64 (0.16)
ASGL-pcad 0.55 (0.08) 0.58 (0.01) 0.81 (0.10) 1.00 (0.00) 0.73 (0.14)
ASGL-plsd 0.45 (0.07) 0.58 (0.06) 0.95 (0.07) 1.00 (0.00) 0.93 (0.09)
ASGL-unpenalized 0.45 (0.07) 0.58 (0.05) 0.96 (0.07) 1.00 (0.00) 0.95 (0.07)
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Figure 2: Simulation 1. Sparse distribution of 625 variables. Considering a
t(3) error. Box-plots showing the test error of the different models.
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Figure 3: Simulation 1. Sparse distribution of 225 variables. Considering a
t(3) error. Box-plots showing the test error of the different models.
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calculation alternatives commented before. Additionally, the performance of

sparse variations of PCA and PLS is studied. These alternatives appear de-

noted as spcad (from sparse PCA) and splsd (from sparse PLS). Sparse PCA

was initially proposed by (Zou et al., 2006) as a method that computes prin-

cipal components adding a LASSO based penalization to standard PCA. This

yields to principal components that are sparse linear combinations of the orig-

inal variables, though are no longer orthogonal. In the same sense, Chun and

Keleş (2010) proposed an sparse alternative to PLS. Both alternatives are stud-

ied in this simulation.The best results here are obtained by the ASGL model

using plsd weights, closely followed by splsd and pcad weights. This model out-

performs LASSO and SGL both in terms of the distance between predicted and

true β, and in terms of the test error Et. Given that LASSO enhances individ-

ual sparsity, LASSO solutions are more sparse than the solutions obtained by

the proposed models , and this is shown in the TNR values. However, LASSO

offers poor results in terms of the TPR (this is, in terms of the selection of

the truly significant variables). SGL shows the opposite behavior, producing

solutions with large TPR values but low TNR values. Compared to these

techniques, the proposed ASGL formulations achieve good variable selection

results both in terms of TNR and TPR. It is worth highlighting the results

achieved using the sparse PCA (spcad) and sparse PLS (splsd) weights alter-

natives. As can be seen, the performance of spcad and splsd is worse than that

of plsd. Our guess is that establishing a double-sparsity framework, namely,

sparse components used to estimate prior weights for an adaptive sparse group

LASSO, is not that beneficial, and that simple PLS may be sufficient for the

weight calculation, leaving the achievement of sparse solutions to the effect

of the ASGL estimator. Additionally, using sparse PCA or sparse PLS in
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the weight calculation requires to optimize a series of parameters related to

these techniques, and then another series of parameters related to the ASGL

estimator. Finding the optimal solution in such a grid of parameters can be

numerically cumbersome and time-consuming.

A similar behavior is observed in Case 3, that considers 225 variables. As

before, the best results in terms of prediction accuracy are provided by ASGL

plsd and pcad alternatives. Finally, the study performed in the low dimensional

Case 5 is centered on the models achieving the best results among the proposals

considered, namely plsd and pcad weights, that are compared against LASSO

and SGL penalizations, and against the ASGL unpenalized, which is feasible

only in this low dimensional framework and that consists in estimating the

weights based on a unpenalized model (as it is usually done in the literature).

It is worth to remark here that the plsd alternative performs just as well as

the unpenalized one, which is a nice finding of this approach.

Figures 2 and 3 display box-plots of the test error Et for different models

in the high dimensional frameworks, showing that the spread of Et is much

smaller in the ASGL plsd and pcad than in the LASSO and SGL, indicating

that these models provide more stable solutions in terms of prediction accuracy.

6.2 Simulation 2: dense distribution of significant vari-

ables.

This simulation shows the results obtained under simulation Case 2, consid-

ering 625 variables, Case 4, considering 225 variables and Case 6, considering

100 variables. In all of them, the variables are densely distributed among

groups, and a symmetric error from a t(3) is considered.

The results from this simulation scheme are displayed in Table 2. Similar to
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Table 2: Simulation 2. Dense distribution of variables. Considering a t(3)
error. ∥∥∥β̂ − β∥∥∥ Et CSR TPR TNR

p = 625 variables

LASSO 21.00 (13.00) 7.13 (4.67) 0.95 (0.01) 0.96 (0.03) 0.95 (0.01)
SGL 6.02 (1.77) 1.99 (0.56) 0.82 (0.09) 1.00 (0.01) 0.80 (0.10)
AL-SGL-pcad 4.32 (0.99) 1.45 (0.28) 0.94 (0.04) 1.00 (0.01) 0.93 (0.05)
AL-SGL-pca1 7.17 (2.47) 2.30 (0.75) 0.72 (0.09) 1.00 (0.01) 0.68 (0.11)
AL-SGL-plsd 4.81 (1.47) 1.60 (0.44) 0.92 (0.06) 1.00 (0.01) 0.90 (0.07)
AL-SGL-pls1 5.38 (1.20) 1.77 (0.57) 0.87 (0.08) 1.00 (0.01) 0.85 (0.09)
ASGL-pcad 3.61 (0.78) 1.23 (0.20) 0.92 (0.10) 1.00 (0.01) 0.90 (0.12)
ASGL-pca1 7.60 (3.20) 2.46 (1.01) 0.74 (0.09) 1.00 (0.01) 0.71 (0.11)
ASGL-plsd 3.85 (0.83) 1.29 (0.21) 0.85 (0.03) 1.00 (0.01) 0.89 (0.13)
ASGL-pls1 4.17 (1.17) 1.40 (0.32) 0.90 (0.11) 1.00 (0.01) 0.87 (0.09)

p = 225 variables

LASSO 4.43 (1.10) 1.57 (0.35) 0.87 (0.03) 0.99 (0.01) 0.83 (0.05)
SGL 3.29 (0.75) 1.21 (0.21) 0.73 (0.13) 0.99 (0.01) 0.64 (0.17)
AL-SGL-pcad 2.88 (0.50) 1.07 (0.14) 0.78 (0.06) 1.00 (0.01) 0.84 (0.11)
AL-SGL-pca1 3.63 (0.73) 1.30 (0.22) 0.61 (0.15) 0.99 (0.01) 0.47 (0.21)
AL-SGL-plsd 2.92 (0.57) 1.09 (0.16) 0.84 (0.12) 1.00 (0.01) 0.78 (0.16)
AL-SGL-pls1 3.14 (0.65) 1.16 (0.18) 0.76 (0.14) 1.00 (0.01) 0.67 (0.20)
ASGL-pcad 2.56 (0.49) 0.98 (0.13) 0.89 (0.12) 1.00 (0.01) 0.85 (0.16)
ASGL-pca1 3.49 (0.79) 1.25 (0.22) 0.62 (0.15) 1.00 (0.01) 0.49 (0.21)
ASGL-plsd 2.59 (0.43) 0.99 (0.10) 0.88 (0.16) 1.00 (0.01) 0.83 (0.21)
ASGL-pls1 2.80 (0.53) 1.05 (0.14) 0.81 (0.12) 1.00 (0.01) 0.74 (0.17)

p = 100 variables

LASSO 0.52 (0.08) 0.58 (0.01) 0.82 (0.10) 1.00 (0.00) 0.75 (0.13)
SGL 0.50 (0.08) 0.58 (0.01) 0.74 (0.17) 1.00 (0.00) 0.63 (0.24)
ASGL-pcad 0.45 (0.07) 0.57 (0.01) 0.92 (0.11) 1.00 (0.00) 0.88 (0.15)
ASGL-plsd 0.44 (0.07) 0.57 (0.01) 0.95 (0.07) 1.00 (0.00) 0.93 (0.10)
ASGL-unpenalized 0.45 (0.07) 0.57 (0.01) 0.92 (0.12) 1.00 (0.00) 0.89 (0.17)
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Figure 4: Simulation 2. Dense distribution of 625 variables. Considering a
t(3) error. Box-plots showing the test error of the different models.
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Figure 5: Simulation 2. Dense distribution of 225 variables. Considering a
t(3) error. Box-plots showing the test error of the different models.
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the situation shown in the sparse distribution simulation, the ASGL model us-

ing plsd or pcad weights shows the best results in terms of the distance between

predicted and true β, and the value of Et in the high dimensional cases. These

proposals offer also the best compromise between TPR and TNR. It is worth

saying that under a more ”compact” distribution of the significant variables in

a small number of groups, the proposed methods show a great improvement in

terms of prediction accuracy compared to LASSO and SGL. As before, the low

dimensional case is studied centered on the models achieving the best results

among the proposals considered, plsd and pcad weights, that are compared

against LASSO, SGL and ASGL unpenalized penalizations. It can be seen

here that plsd is the one achieving the best results in this framework, closely

followed by pcad and unpenalized results.

Figures 4 and 5 display box-plots of test error value Et in high dimensional

scenarios, showing, as in the previous simulation scheme, that ASGL models

with plsd or pcad weights also provide more stable results in terms of spread.

Based on previous simulations, we conclude that the best performance both

in the high dimensional and low dimensional frameworks, considering sparse

or dense distribution of significant variables is achieved by ASGL models with

plsd or pcad weights.

Additionally to the simulations shown here, a comprehensive sensitivity

analysis that studies the behavior of the proposed methodology under different

non symmetric error distributions, when varying the powers γ1 and γ2 entering

the weights and when varying the number of PCA and PLS components chosen

in the weight calculation can be found in the supplementary material.
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7 Real application

The performance of the ASGL estimator is shown here using a genomic dataset

first reported in Scheetz et al. (2006). The dataset consists of 120 twelve-

week-old male offspring animals chosen for tissue harvesting from the eyes

and for micro-array analysis. The dataset contains expression values from

31042 different probe-sets (Affymetric GeneChip Rat Genome 230 2.0 Array)

on a logarithmic scale. As described in Huang et al. (2008b) and Wang et al.

(2012), a two-steps preprocessing is performed, selecting, among the 31042

probe-sets, the ones that are sufficiently expressed, and sufficiently variable.

A probe is considered to be sufficiently expressed if the maximum expression

value observed for that probe among the 120 animals is greater than the 25-th

percentile of the entire set of RMA expression values. A probe is considered

to be sufficiently variable if it shows at least 2-fold variation in the expression

value among the 120 rats. There are 18986 probes that meet these criteria.

We study how expression level of gene TRIM32, corresponding to probe

1389163 at, is related to expression levels at other probes. Chiang et al. (2006)

pointed out that gene TRIM32 was found to cause Bardet-Biedl syndrome, a

disease of multiple organ systems including the retina.(Scheetz et al., 2006, :1)

stated: “Any genetic element that can be shown to alter the expression of a

specific gene or gene family known to be involved in a specific disease is itself

an excellent candidate for involvement in the disease, either primarily or as a

genetic modifier.” Here the sample size is 120 (the number of animals selected

for micro-array analysis), and the number of covariates (probes that pass the

preprocessing steps) is 18985. The correlation coefficients of the 18985 probes

and the probe corresponding to gene TRIM32 is calculated, and the genes in

which the absolute value of the correlation exceeds 0.5 are selected. There are
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3734 probes meeting this criteria. Finally, this dataset is standardized. Only

a few genes are expected to be related to gene TRIM32, making this a high

dimensional sparse problem.

From a biological perspective it is clear that genes do not work individually.

The problem of grouping genes based on a medical criteria is nowadays under

intense study, and it is possible to find some group structures for human genetic

information based, for example, in cytogenetic positions (Subramanian et al.,

2005). It is interesting to remark that groups built based on biological criteria

are usually formed just by a few dozens of genes. For example, in the case of

groups based on cytogenetic positions, groups averaged 30 genes, as stated in

Simon et al. (2013). However, these group structures are not available for all

the genetic information, and to the best of our knowledge there is no genetic

grouping alternative for the dataset under study here.

We address the grouping problem from an statistical perspective, using

principal components analysis to create groups of genes that are similar. It is

worth to remark that in Section 5.1 PCA was used for estimating the ASGL

weights, while here it will be used for variable clustering.

Variable clustering using PCA

1. Given a matrix of covariates X ∈ Rn×p as in Section 5.1, obtain the

matrix of principal components Q ∈ Rp×r X ∈ Rn×p defined in Section

5.1.

2. Consider r possible groups, as many as principal components.

3. Each principal component qi ∈ Q, i ∈ 1, . . . , r, is a linear combination

of the original variables from X. Assign each original variable to the
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Figure 6: Gene expression data of rat eye disease. Box-plot showing the sizes
of the groups built using PCA.
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group associated to the principal component in which that variable had

its maximum weight (in absolute value).

The intuition behind this process is that variables with a large weight in the

same principal component are likely to be related and should be included in

the same group.

In the case of the dataset used in this section, there are 120 observations

from 3734 different genes. The maximum rank ofX here is 120, for this reason

120 possible groups are initially considered. Each gene is assigned to the group

associated to the principal component in which that gene had its maximum

weight. No gene was assigned to one of the groups, and therefore 119 groups

averaging 32 genes per group are created this way. It is worth highlighting

that the average group size obtained based on this proposal is close to the

expected group size in terms of the cytogenetic position. Figure 6 shows a

box-plot of the group sizes.

The dataset is randomly divided into 80/20/20 train / validate / test ob-

servations and LASSO, SGL, ASGL plsd and ASGL pcad models are solved.
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Table 3: Gene expression data of rat eye disease. 20 random dataset divisions
were considered. Results displayed as mean value, with standard errors in
parenthesis.

Et # Variables selected

LASSO 0.34 (0.08) 18.9 (15.4)
SGL 0.31 (0.07) 189.5 (156.6)
ASGL-pcad 0.28 (0.06) 56.35 (70.86)
ASGL-plsd 0.29 (0.06) 101.7 (85.56)

Figure 7: Gene expression data of rat eye disease. 20 random dataset divisions
were considered. Box-plot showing the test error.
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For each model, the test error Et and the significant variables selected are

obtained. This process is repeated 20 times as a way to gain stability.

The results obtained are shown in Table 3. The best results in terms of the

test error are obtained by the proposed ASGL models. LASSO offers a test

error approximately 20% greater while SGL test error is 11% greater. Figure

7 displays box-plots of the test error Et, showing that the spread of Et is also

smaller in the proposed ASGL models providing more stable results. Figure 8

displays box-plots of the number of genes each model selected as significant.

The LASSO is the one offering more sparse solutions, using only 19 variables

(in mean) per model. SGL is the one using the largest number of variables,

approximately 190, and also the one with the largest variability in this metric.
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Figure 8: Gene expression data of rat eye disease. 20 random dataset divisions
were considered. Box-plot showing the number of significant genes.
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Both ASGL pcad and ASGL plsd selected a smaller number of variables than

SGL but still larger than LASSO, and they achieve the best prediction results

of the four models.

Given that we have the results obtained from 20 repetitions, it is possible to

count the number of times each gene has been selected as significant by one of

the models in any of the repetitions. Dividing this number by the total number

of repetitions, a sort of ”probability of being a significant gene” associated to

each gene for each model considered is obtained. Out of the 3734 genes in the

dataset, 1612 genes were selected at least one time by any of the models in

any of the repetitions (the majority being selected by SGL models). Figure 9

shows the probability of being a significant gene for these 1612 variables and

for each model. Rows represent the different models considered and columns

represent each gene. Genes are sorted based on the probabilities obtained in

the ASGL model with pcad weights.

Considering a probability threshold of 0.5, only 1 gene in the LASSO mod-

els reach a probability of significance above the threshold, showing no stability

on the gene selection along the 20 repetitions, and anticipating problems with
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Figure 9: Gene expression data of rat eye disease. 20 random dataset divisions
were considered. Heatmap showing the probability of being a significant gene.
Each row represents a model and each column represents a gene.

possible further biological interpretation of the statistical results. In the case

of the SGL model, 35 genes are above the probability threshold, being 0.6 the

maximum probability achieved. On the other hand, the ASGL model with plsd

weights includes 17 genes with probabilities above the threshold with a max-

imum probability value of 0.75, and the ASGL model with pcad weights has

9 genes above the probability threshold with a maximum probability value

of 0.9, showing more stability on the selection along the 20 repetitions and

possibly better biological interpretation of the results than the other models.

Results displayed in Table 3 and Figure 9 have been obtained using estima-

tors of the median of the response variable, however, it can be interesting to

compare the genes selected at different quantiles. For this reason, the process

described above is repeated and LASSO, SGL, ASGL plsd and ASGL pcad

models are solved for quantile levels τ = 0.3 and τ = 0.7, obtaining prob-

abilities of being a significant gene for each quantile level and each model.
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Table 4: Gene expression data of rat eye disease. 20 random dataset divisions
were considered. Number of genes above the probability threshold for different
quantile levels.

Number of genes above the probability threshold

τ = 0.3 τ = 0.5 τ = 0.7 Three quantiles

LASSO 0 1 1 0
SGL 19 35 17 0
ASGL-pcad 23 9 17 7
ASGL-plsd 41 17 37 9

Considering a probability threshold of 0.5, Table 4 show the number of genes

above the probability threshold for each quantile, and also the number of genes

in the same model that have been selected along the different quantile levels.

The LASSO model shows no stability on the variable selection, having only

one gene above the threshold for τ = 0.5 and τ = 0.7, and no gene with proba-

bility of being significant above 0.5 on the three quantiles simultaneously. The

SGL shows some stability across the 20 repetitions considering each quantile

independently, but when considering all the quantiles simultaneously it has

no gene above the probability threshold. On the other hand, in the case of

the ASGL plsd model, 9 genes had a probability of being significant greater

than 0.5 in the 3 quantiles, and in the case of the ASGL pcad models, 7 genes

fulfilled this, showing more robust results than the other estimators.

We conclude that the best results in this real dataset study are provided

by the ASGL model with pcad weights, given that this model is the one with

the smallest prediction error and showing great stability on the gene selection.

8 Computational aspects

All the simulations and data analysis commented in Sections 6, and 7 and

in the supplementary material were run in a cluster node with two Intel (R)
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Xeon(R) CPU E5-2630 v3 (2.4GHz, 20MB Smart Cache) processors, with

32Gb of RAM memory running CentOS 6.5 Final (Rocks 6.1.1 Sand Boa). The

computation itself has been developed in Python 2.7.15 (Anaconda Inc.). All

the optimization problems have been solved using the CVXPY optimization

framework for Python (Diamond and Boyd, 2016) and the open source solver

ECOS (Domahidi et al., 2013).

9 Conclusion

In this paper the definition of the SGL estimator has been extended to the

QR framework. A new estimator for quantile regression based on the usage

of adaptive weights, the adaptive sparse group LASSO in quantile regression

has also been proposed. As shown in Section 4, adaptive penalizations are

typically centered on the study of the oracle property in both asymptotic and

double asymptotic frameworks. A key step on the demonstration of this prop-

erty is the usage of an initial
√
n-consistent estimator that is usually the result

of a nonpenalized model. However, this definition limits the usage of adaptive

estimators to low dimensional scenarios. As a solution to this problem, four

weight calculation alternatives that can be used in high dimensional scenarios

when working with adaptive estimators have been proposed. Section 5.3 con-

jectures about the relation between these alternatives and the oracle property.

Additionally, the performance of the proposed alternatives have been analyzed

in a set of synthetic data scenarios that includes high dimensional and low di-

mensional examples and symmetric error distributions (Section 6). Moreover,

a thorough sensitivity analysis studying the behavior of the estimator under

different error distributions, and under changes in parameter values has been
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performed in the supplementary material. The performance of the proposed

work is also studied in a real high dimensional dataset including gene expres-

sion values of rat eye disease. Previous synthetic data analysis showed that

the ASGL estimator is a competitive option in both high and low dimensional

scenarios, especially when the adaptive weights are calculated based on subsets

of PCA or PLS components. However, when dealing with the real dataset, the

ASGL pcad estimator achieved better results in terms of prediction error and

stability of the variables selected. For this reason we conclude that the ASGL

pcad provides the best results among the options proposed in this work.

This work has risen some questions that will require further investigation.

One interesting problem is the optimization of the hyper-parameters. In this

work we make use of grid-search, but it is worth commenting that new hyper-

parameter tuning alternatives have appeared in recent years (Laria et al.,

2019), and it can be interesting to investigate the usage of this or other options

in the optimization of the parameters of the models introduced in this work.

Section 5.3 has shown some concluding remarks related to the oracle prop-

erty of the pcad weight calculation alternative. The plsd alternative based

on PLS, however, is more complex and will require further research. In any

case, it is worth mentioning the interesting work performed by Chun and Keleş

(2010), that studies the consistency of the PLS estimator in the asymptotic

and double asymptotic frameworks, reaching the conclusion (in Theorem 1 )

that given some previous assumptions, if p
n
→ 0, then

∥∥βPLS − β∥∥
2
→ 0 in probability.

This result would prove the consistency of the estimator, but It would not be

enough for proving the
√
n-consistency, for this reason, we consider that the
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asymptotic property of the plsd alternative is a topic for future work.

Finally, simulations from Section 6 have studied different model formula-

tions, including (suggested by a referee) the usage of sparse PCA and sparse

PLS in the weight calculation process. The simulations showed that this al-

ternative did not yield to better results than the non sparse PCA or PLS

alternatives, but it can be interesting to study other sparse techniques.
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Simulation study: sensitivity analysis

This supplementary material shows a sensitivity analysis studying the effect of

variations on the error distribution of the model as well as different parameters

of the ASGL estimator proposed in the article.

0.1 Variation on the model errors

In order to perform well, OLS estimators need to set certain hypothesis on the

model errors, namely, being centered, homoscedastic and normally distributed,

that are no longer required in quantile regression models. Along this section,

the behavior of the proposed ASGL QR estimator is studied under the frame-
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Table 1: Simulation 3. Considering 625 variables and a Cauchy(0, 3) error.∥∥∥β̂ − β∥∥∥ Et CSR TPR TNR

625 variables. Sparse distribution of variables

LASSO 33.69 (4.62) 21.33 (10.53) 0.87 (0.02) 0.57 (0.08) 0.91 (0.02)
SGL 25.81 (1.92) 18.43 (10.38) 0.67 (0.12) 0.89 (0.07) 0.66 (0.13)
ASGL-pcad 25.24 (2.08) 17.89 (10.34) 0.80 (0.05) 0.87 (0.07) 0.79 (0.06)
ASGL-pca1 25.81 (2.07) 18.40 (10.36) 0.68 (0.14) 0.89 (0.07) 0.69 (0.15)
ASGL-plsd 25.47 (2.14) 18.15 (10.33) 0.74 (0.08) 0.89 (0.06) 0.72 (0.09)
ASGL-pls1 25.57 (2.16) 18.19 (10.31) 0.75 (0.09) 0.87 (0.006 0.73 (0.10)

625 variables. Dense distribution of variables

LASSO 57.52 (16.14) 27.85 (10.71) 0.95 (0.02) 0.86 (0.06) 0.96 (0.01)
SGL 26.13 (5.30) 17.65 (8.76) 0.73 (0.13) 0.99 (0.01) 0.70 (0.15)
ASGL-pcad 22.05 (4.90) 16.25 (8.76) 0.91 (0.11) 0.99 (0.01) 0.90 (0.13)
ASGL-pca1 22.65 (5.36) 17.50 (8.78) 0.75 (0.11) 0.99 (0.01) 0.71 (0.13)
ASGL-plsd 22.13 (5.07) 16.28 (8.84) 0.89 (0.11) 0.99 (0.01) 0.88 (0.13)
ASGL-pls1 22.17 (4.84) 16.28 (8.74) 0.90 (0.09) 0.99 (0.01) 0.89 (0.10)

work of different error distributions that do not fulfill the OLS hypothesis,

showing this way the benefits of the QR formulation.

Simulation 3: Cauchy(0,3) error

In this section the proposed ASGL estimator is studied under the framework

of the following model,

y = Xβ + ε, ε ∼ Cauchy(0, 3),

The main characteristic of the Cauchy distribution is that the central mo-

ments in this distribution do not exist, making it an interesting variation on

the model error. This distribution is a good example of heavy tail distribu-

tions which often appear in practical situations. This simulation show the

results obtained under simulation Case 1, considering 625 variables sparsely

distributed and Case 2, considering 625 variables densely distributed.

The results from this simulation scheme are displayed in Table 1. Both
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Figure 1: Simulation 3. Sparse distribution of 625 variables. Considering a
Cauchy(0, 3) error. Box-plots showing the test error of the different models.
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Figure 2: Simulation 3. Dense distribution of 625 variables. Considering a
Cauchy(0, 3) error. Box-plots showing the test error of the different models.
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in the case of the sparse or the dense distribution of the significant variables,

the best results in terms of the distance between predicted and true β, and

the value of Et are achieved by the proposed ASGL estimator using pcad

weights. The difference in terms of prediction error among models (excepting

LASSO, which shows by far the largest error) is smaller in this simulation

than in symmetric error ones shown in the article, probably due to the large

tails of Cauchy distributions and the associated outliers. However, even under

this framework, it is interesting to see that the proposed models offer a good

variable selection performance both in terms of TPR and TNR as opposed to

lasso (with large TNR but very low TPR) or SGL (with large TPR but low

TNR). Figures 1 and 2 display box-plots of the test error value Et, showing

clearly the presence of outliers.

Simulation 4: χ2(3) error

In this section the proposed ASGL estimator is studied under the framework

of the following model,

y = Xβ + ε, ε ∼ χ2(3),

The χ2 distribution is non symmetric as opposed to previous error distribu-

tions t and Cauchy that were symmetric. This simulation show the results ob-

tained under simulation Case 1, considering 625 variables sparsely distributed

and Case 2, considering 625 variables densely distributed.

The results from this simulation scheme are displayed in Table 2. The best

results in terms of the distance between predicted and true β, and in terms

of the test error Et are obtained by the ASGL model using pcad weights in

the sparse Case 1 and plsd weights in the dense Case 2, though both methods
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Table 2: Simulation 4. Considering 625 variables and a χ2(3) error.∥∥∥β̂ − β∥∥∥ Et CSR TPR TNR

625 variables. Sparse distribution of variables

LASSO 23.36 (4.00) 7.88 (1.54) 0.89 (0.01) 0.75 (0.06) 0.90 (0.01)
SGL 18.97 (2.99) 6.10 (1.00) 0.78 (0.09) 0.88 (0.04) 0.77 (0.10)
ASGL-pcad 14.77 (3.19) 4.62 (0.97) 0.84 (0.04) 0.90 (0.03) 0.83 (0.04)
ASGL-pca1 18.84 (2.97) 6.07 (1.00) 0.78 (0.07) 0.88 (0.03) 0.77 (0.08)
ASGL-plsd 15.09 (3.07) 4.71 (0.90) 0.83 (0.04) 0.91 (0.03) 0.82 (0.04)
ASGL-pls1 15.09 (3.16) 4.75 (0.99) 0.82 (0.04) 0.90 (0.03) 0.82 (0.04)

625 variables. Dense distribution of variables

LASSO 20.06 (11.52) 6.71 (3.88) 0.95 (0.01) 0.96 (0.03) 0.95 (0.01)
SGL 8.89 (2.23) 2.80 (0.69) 0.78 (0.10) 0.99 (0.01) 0.75 (0.12)
ASGL-pcad 5.79 (1.00) 1.96 (0.28) 0.90 (0.13) 0.99 (0.01) 0.88 (0.14)
ASGL-pca1 8.17 (2.30) 2.73 (0.71) 0.80 (0.09) 0.99 (0.01) 0.77 (0.11)
ASGL-plsd 5.75 (1.04) 1.95 (0.29) 0.89 (0.12) 0.99 (0.01) 0.87 (0.13)
ASGL-pls1 5.92 (1.09) 1.99 (0.29) 0.89 (0.08) 0.99 (0.01) 0.88 (0.09)

Figure 3: Simulation 4. Sparse distribution of 625 variables. Considering a
χ(3) error. Box-plots showing the test error of the different models.
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Figure 4: Simulation 4. Dense distribution of 625 variables. Considering a
χ(3) error. Box-plots showing the test error of the different models.
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provide quite similar solutions. As in previous simulations, LASSO show a

larger TNR value, being the most sparse solution, but also the worst TPR

performance, meaning that the selection of significant variables is not very ac-

curate. Opposed to this behavior, SGL show good TPR value but worse TNR,

selecting too many non significant variables. The proposed ASGL estimator

provides good results both in terms of TPR and TNR. Figures 3 and 4 display

box-plots of the test error Et for the different models, showing that the spread

of Et is much smaller in the ASGL plsd and pcad than in the LASSO and

SGL (especially in the dense case), indicating that these models provide more

stable solutions in terms of prediction accuracy.

0.2 Simulation 5: influence of γ1 and γ2

Given equations

w̃j =
1

|β̂j|γ1
and ṽl =

1∥∥∥β̂l∥∥∥γ2
2

, (1)

and

w̃j =
1

|q1j|γ1
and ṽl =

1∥∥ql1∥∥γ22 , (2)
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Table 3: Simulation 5. Sparse distribution of 625 variables. Considering a t(3)
error. Analysis of γ1 and γ2 influence.∥∥∥β̂ − β∥∥∥ Et CSR TPR TNR

LASSO 23.88 (4.35) 8.02 (1.60) 0.88 (0.01) 0.75 (0.06) 0.90 (0.01)
SGL 19.40 (2.74) 6.19 (0.88) 0.77 (0.07) 0.89 (0.04) 0.76 (0.08)
ASGL 15.14 (2.97) 4.66 (0.87) 0.83 (0.03) 0.92 (0.03) 0.82 (0.04)

γ1 = 1 fixed. Varying γ2

ASGL-γ2 = 0.0 19.74 (2.94) 6.23 (0.94) 0.81 (0.07) 0.89 (0.05) 0.81 (0.08)
ASGL-γ2 = 0.2 19.42 (2.97) 6.08 (0.92) 0.72 (0.07) 0.89 (0.05) 0.81 (0.08)
ASGL-γ2 = 0.4 19.08 (2.83) 5.95 (0.87) 0.83 (0.05) 0.89 (0.05) 0.82 (0.06)
ASGL-γ2 = 0.6 18.74 (2.79) 5.80 (0.85) 0.83 (0.05) 0.89 (0.04) 0.83 (0.05)
ASGL-γ2 = 0.8 18.65 (2.97) 5.75 (0.88) 0.84 (0.04) 0.90 (0.04) 0.84 (0.05)
ASGL-γ2 = 1.0 18.38 (3.07) 5.66 (0.90) 0.85 (0.04) 0.90 (0.04) 0.85 (0.04)
ASGL-γ2 = 1.2 18.24 (3.19) 5.61 (0.94) 0.86 (0.03) 0.90 (0.04) 0.85 (0.04)
ASGL-γ2 = 1.4 18.08 (3.32) 5.56 (0.97) 0.87 (0.02) 0.90 (0.04) 0.86 (0.03)

γ2 = 1 fixed. Varying γ1

ASGL-γ1 = 0.0 16.23 (2.79) 5.03 (0.80) 0.80 (0.04) 0.91 (0.03) 0.79 (0.05)
ASGL-γ1 = 0.2 16.23 (2.91) 5.03 (0.85) 0.82 (0.04) 0.91 (0.03) 0.81 (0.08)
ASGL-γ1 = 0.4 16.54 (2.93) 5.12 (0.87) 0.84 (0.03) 0.91 (0.03) 0.83 (0.04)
ASGL-γ1 = 0.6 17.07 (2.94) 5.28 (0.88) 0.84 (0.04) 0.90 (0.04) 0.84 (0.04)
ASGL-γ1 = 0.8 17.69 (2.96) 5.46 (0.89) 0.85 (0.03) 0.90 (0.04) 0.84 (0.04)
ASGL-γ1 = 1.0 18.38 (3.07) 5.66 (0.90) 0.85 (0.03) 0.90 (0.04) 0.85 (0.04)
ASGL-γ1 = 1.2 18.90 (3.07) 5.81 (0.89) 0.85 (0.04) 0.90 (0.05) 0.84 (0.05)
ASGL-γ1 = 1.4 19.47 (3.02) 5.96 (0.86) 0.85 (0.04) 0.90 (0.05) 0.85 (0.04)

for the calculation of the weights, one can see that the formulation includes two

nonnegative parameters, γ1 in the lasso weights part and γ2 in the group lasso

weights part that are the powers entering the weights. Along this section a

simulation studying the influence of the value of these parameters is performed.

The simulation scheme is that of Case 1 : 625 variables sparsely distributed.

Additionally, a t(3) distribution error is considered, and the weights are calcu-

lated based on a subset of PCA components pcad. Two situations are studied:

the behavior of the ASGL estimator while varying the value of γ2 and leaving

γ1 = 1 and the behavior of the ASGL estimator while varying the value of γ1

and leaving γ2 = 1. The results are compared against the LASSO, SGL and

the ASGL estimator optimizing both γ1 and γ2.
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Figure 5: Simulation 5. Sparse distribution of 625 variables. Considering a
t(3) error. Analysis of γ1 and γ2 influence. Box-plots showing the test error
of the different models.
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The results obtained in this simulation are displayed in Table 3 and Figure

5. The best results in terms of the distance between predicted and true β, and

the value of Et are provided by the ASGL estimator while optimizing both γ1

and γ2, highlighting the importance of the selection of this parameters. It is

also interesting to observe how, while fixing γ1, errors decrease as γ2 increase,

but while fixing γ2, the opposite behavior appears, and errors increase as γ1

increase.

0.3 Influence of αpca,d and αpls,d

The weight calculation alternatives pcad and plsd are based on selecting a sub-

set of d either PCA or PLS components that explain up to a certain percentage

of variability, αpca,d or αpls,d respectively, priorly fixed by the researcher. Along

this section, the effect of changes in the percentage of explained variability is

studied. The simulation schemes are these of Case 1 (625 variables sparsely

distributed) and Case 5 (100 variables sparsely distributed). Additionally,

a t(3) distribution error is considered. Finally, two situations will be stud-

ied: variations on the percentage of variability affecting pcad technique and

variations on the percentage of variability affecting plsd technique.

Simulation 6: Influence of αpca,d

This simulation is centered on the effect of variations in the percentage of

explained variability using PCA. Since PCA technique defines an orthogonal

change of basis matrix, it is possible to recover all the variability from the

original variables, and thus, different ASGL pcad models are solved ranging

the percentage of explained variability from 10% to 100%.

The results obtained are shown in Table 4. In the low dimensional frame-
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Table 4: Simulation 6. Sparse distribution of 625 variables. Considering a t(3)
error. Analysis of αpca,d influence.∥∥∥β̂ − β∥∥∥ Et CSR TPR TNR

625 variables. Sparse distribution of variables.

LASSO 21.85 (4.77) 7.40 (1.77) 0.89 (0.07) 0.77 (0.07) 0.90 (0.08)
SGL 18.14 (3.28) 5.80 (1.07) 0.80 (0.06) 0.89 (0.05) 0.79 (0.10)
ASGL-pca− 10% 17.96 (3.32) 5.76 (1.09) 0.80 (0.08) 0.89 (0.05) 0.79 (0.09)
ASGL-pca− 20% 17.54 (3.47) 5.60 (1.13) 0.81 (0.07) 0.89 (0.05) 0.80 (0.07)
ASGL-pca− 30% 17.54 (3.45) 5.60 (1.12) 0.82 (0.06) 0.90 (0.05) 0.79 (0.09)
ASGL-pca− 40% 16.73 (3.78) 5.33 (1.22) 0.84 (0.04) 0.90 (0.04) 0.80 (0.08)
ASGL-pca− 50% 15.47 (3.78) 4.92 (1.25) 0.84 (0.04) 0.90 (0.04) 0.82 (0.07)
ASGL-pca− 60% 13.35 (3.47) 4.15 (1.16) 0.84 (0.04) 0.92 (0.04) 0.83 (0.05)
ASGL-pca− 70% 12.76 (3.37) 3.92 (1.04) 0.84 (0.04) 0.93 (0.04) 0.83 (0.05)
ASGL-pca− 80% 12.98 (3.36) 4.01 (1.02) 0.84 (0.04) 0.93 (0.04) 0.83 (0.04)
ASGL-pca− 90% 13.04 (3.41) 4.04 (1.03) 0.84 (0.04) 0.92 (0.04) 0.84 (0.04)
ASGL-pca− 100% 14.08 (3.76) 4.34 (0.16) 0.84 (0.03) 0.92 (0.04) 0.84 (0.03)

100 variables. Sparse distribution of variables.

LASSO 0.58 (0.08) 0.59 (0.01) 0.73 (0.01) 1.00 (0.00) 0.66 (0.14)
SGL 0.60 (0.08) 0.59 (0.01) 0.72 (0.12) 1.00 (0.00) 0.57 (0.17)
ASGL-pca− 10% 0.59 (0.07) 0.59 (0.01) 0.83 (0.10) 1.00 (0.00) 0.60 (0.14)
ASGL-pca− 20% 0.60 (0.07) 0.59 (0.01) 0.75 (0.10) 1.00 (0.00) 0.60 (0.17)
ASGL-pca− 30% 0.59 (0.07) 0.59 (0.01) 0.78 (0.10) 1.00 (0.00) 0.61 (0.14)
ASGL-pca− 40% 0.58 (0.07) 0.59 (0.01) 0.79 (0.10) 1.00 (0.00) 0.64 (0.14)
ASGL-pca− 50% 0.56 (0.07) 0.58 (0.01) 0.78 (0.10) 1.00 (0.00) 0.68 (0.13)
ASGL-pca− 60% 0.55 (0.08) 0.58 (0.01) 0.79 (0.10) 1.00 (0.00) 0.70 (0.14)
ASGL-pca− 70% 0.55 (0.07) 0.58 (0.01) 0.78 (0.11) 1.00 (0.00) 0.69 (0.17)
ASGL-pca− 80% 0.54 (0.07) 0.58 (0.01) 0.79 (0.10) 1.00 (0.00) 0.70 (0.16)
ASGL-pca− 90% 0.52 (0.07) 0.58 (0.01) 0.82 (0.11) 1.00 (0.00) 0.74 (0.17)
ASGL-pca− 100% 0.44 (0.05) 0.57 (0.01) 0.94 (0.07) 1.00 (0.00) 0.92 (0.10)

Figure 6: Simulation 6. Sparse distribution of 625 variables. Considering a
t(3) error. Analysis of αpca,d influence. Box-plots showing the test error of the
different models.
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Figure 7: Simulation 6. Sparse distribution of 625 variables. Considering a
t(3) error. Analysis of αpca,d influence. Box-plots showing the correct selection
rate of the different models.
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Figure 8: Simulation 6. Sparse distribution of 100 variables. Considering a
t(3) error. Analysis of αpca,d influence. Box-plots showing the test error of the
different models.
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Figure 9: Simulation 6. Sparse distribution of 100 variables. Considering a
t(3) error. Analysis of αpca,d influence. Box-plots showing the correct selection
rate of the different models.
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work considering 100 variables it is possible to see how as the percentage of

variability increases, all the metrics are improved achieving smaller prediction

errors and better variable selection. A similar behavior is observed in the high

dimensional framework for the explained variability ranging between 10% up

to, approximately, 80%. However, when further increasing the percentage of

explained variability up to 100%, the results get worse. Our guess is that in

high dimensional frameworks, attaining a 100% of explained variability in PCA

requires obtaining as many principal components as rows in the data matrix,

producing overfitted solutions and adding noise to the predictions. Figures 6

and 7 show boxplots of the prediction error Et and the correct selection rate in

the high dimensional framework, while Figures 8 and 9 show the same boxplots

in the low dimensional framework. In these boxplots the behavior described

above can be easily seen.

Simulation 7: Influence of αpls,d

This simulation is focused on the effect of variations in the percentage of ex-

plained variability using PLS. PLS defines a non-necesarily orthogonal change

of basis matrix, and therefore, it is not possible to recover all the variability

from the original variables. Actually, in the scheme considering 100 variables,

PLS technique could recover at most 70% of the original variabiity, while in

the simulation scheme considering 625 variables, PLS could recover at most

60%. For this reason, in the low dimensional framework different ASGL plsd

models are solved ranging the percentage of explained variability from 10% to

70%, while in the high dimensional framework the variability ranges from 10%

to 60%.

The results obtained in this simulation are shown in Table 5. In the low di-
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Table 5: Simulation 7. Sparse distribution of 625 variables. Considering a t(3)
error. Analysis of αpls,d influence.∥∥∥β̂ − β∥∥∥ Et CSR TPR TNR

625 variables. Sparse distribution of variables.

LASSO 23.66 (4.97) 7.99 (1.82) 0.85 (0.04) 0.76 (0.07) 0.90 (0.01)
SGL 18.63 (3.95) 6.06 (1.35) 0.84 (0.04) 0.90 (0.04) 0.79 (0.08)
ASGL-pls− 10% 13.88 (4.23) 4.42 (1.30) 0.84 (0.04) 0.92 (0.03) 0.84 (0.04)
ASGL-pls− 20% 14.19 (4.20) 4.42 (1.30) 0.84 (0.04) 0.92 (0.03) 0.83 (0.04)
ASGL-pls− 30% 14.19 (4.20) 4.42 (1.30) 0.84 (0.04) 0.92 (0.03) 0.83 (0.04)
ASGL-pls− 40% 14.19 (4.20) 4.42 (1.30) 0.84 (0.04) 0.92 (0.03) 0.83 (0.04)
ASGL-pls− 50% 14.19 (4.20) 4.42 (1.30) 0.84 (0.04) 0.92 (0.03) 0.83 (0.04)
ASGL-pls− 60% 14.19 (4.20) 4.42 (1.30) 0.84 (0.04) 0.92 (0.03) 0.83 (0.04)

100 variables. Sparse distribution of variables.

LASSO 0.60 (0.07) 0.60 (0.01) 0.77 (0.09) 1.00 (0.00) 0.67 (0.13)
SGL 0.60 (0.07) 0.60 (0.01) 0.73 (0.12) 1.00 (0.00) 0.90 (0.12)
ASGL-pls− 10% 0.50 (0.07) 0.58 (0.01) 0.87 (0.09) 1.00 (0.00) 0.92 (0.13)
ASGL-pls− 20% 0.46 (0.06) 0.58 (0.01) 0.93 (0.08) 1.00 (0.00) 0.93 (0.12)
ASGL-pls− 30% 0.45 (0.06) 0.57 (0.01) 0.94 (0.08) 1.00 (0.00) 0.93 (0.11)
ASGL-pls− 40% 0.45 (0.06) 0.57 (0.01) 0.95 (0.07) 1.00 (0.00) 0.93 (0.11)
ASGL-pls− 50% 0.45 (0.06) 0.57 (0.01) 0.95 (0.07) 1.00 (0.00) 0.93 (0.09)
ASGL-pls− 60% 0.45 (0.06) 0.57 (0.01) 0.96 (0.05) 1.00 (0.00) 0.95 (0.07)
ASGL-pls− 70% 0.45 (0.06) 0.57 (0.01) 0.96 (0.05) 1.00 (0.00) 0.95 (0.07)

Figure 10: Simulation 7. Sparse distribution of 625 variables. Considering a
t(3) error. Analysis of αpls,d influence. Box-plots showing the test error of the
different models.
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Figure 11: Simulation 7. Sparse distribution of 625 variables. Considering a
t(3) error. Analysis of αpls,d influence. Box-plots showing the correct selection
rate of the different models.
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Figure 12: Simulation 7. Sparse distribution of 100 variables. Considering a
t(3) error. Analysis of αpls,d influence. Box-plots showing the test error of the
different models.

lasso sgl asgl_pls_d_0.1 asgl_pls_d_0.2 asgl_pls_d_0.3 asgl_pls_d_0.4 asgl_pls_d_0.5 asgl_pls_d_0.6 asgl_pls_d_0.7 asgl_pls_d_0.8 asgl_pls_d_0.9 asgl_pls_d_1

0.56

0.57

0.58

0.59

0.60

0.61

0.62

Test error

Figure 13: Simulation 7. Sparse distribution of 100 variables. Considering a
t(3) error. Analysis of αpls,d influence. Box-plots showing the correct selection
rate of the different models.
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mensional framework considering 100 variables it is possible to see how as the

percentage of variability increases from 10% up to 30% results improve slightly

in terms of prediction accuracy. Further increases up to 70% produce small

improvements in the TNR, but overall, changes in the percentage of explained

variability in PLS do not affect heavily the performance of the estimator. This

is probabily due to the way the PLS components are obtained, based on the

maximization of the covariance between the response variable and the covari-

ates. This means that the first PLS components already hold the information

most related to the response variable, providing very good results. A similar

behaviour is observed in the high dimensional fraework, where the prediction

accuracy stabilizes while considering a 20% of explained variability. Figures 10

and 11 show boxplots of the prediction error Et and the correct selection rate

in the high dimensional framework, while Figures 12 and 13 show the same

boxplots in the low dimensional framework. In these boxplots the behavior

described above can be easily seen.
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