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ABSTRACT 

A compact optical fiber sensor by embedding fiber Bragg gratings (FBGs) in strongly coupled 

multicore fiber (SCMCF) is proposed for multipoint and multiparameter sensing. To build the device, 

two FBGs with different peak wavelengths were inscribed in a segment of SCMCF. Then one end 

of the SCMCF was fusion spliced to a single-mode fiber (SMF) and the other end of the SCMCF 

was cleaved. In the SMF-SCMCF structure, two supermodes are excited, as a result, the reflection 

spectrum exhibits a sinusoidal pattern with two sharp peaks. The wavelength position of the FBGs 

and the supermode coupler can be extracted simultaneously. Two distinct FBGs inscribed in 

different positions of the SCMCF were used to demonstrate quasi-distributed multipoint sensing in 

the proposed structure. To the best of our knowledge, this is the first demonstration of an optical 

fiber sensor that combines FBGs with SCMCF. The sensor here proposed has the advantage of 

compact size, low-cost, good mechanical strength and ease of interrogation.  
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I. INTRODUCTION 

Over the past decades, optical fiber sensors have been widely used in the fields of civil 

engineering, mechanical manufacturing, robotics and aeronautical engineering due to its unique 

characteristics such as immunity to electromagnetic interference, resistant to corrosion, high 

sensitivity and compact size [1,2]. So far, various optical fiber sensors have been developed based 

on different sensing principles, such as long period gratings, fiber Bragg gratings (FBGs), Fabry-

Perot interferometers, Mach–Zehnder interferometers, and so on [3-6]. Among them, FBG-based 



sensors are one of the most representative and promising optical fiber sensing technique due to their 

mature manufacturing process and multiplexing capability. 

A variety of FBG-based sensors have been validated in different types of optical fibers, such as 

single-mode fiber (SMF), multimode fiber, photonic crystal fiber, microstructure fiber, polymer 

fiber and multicore fiber (MCF) [7-13], just to mention a few. Compared with other types of optical 

fiber, MCF comprises more than one core within the same cladding. Consequently, several identical 

or different sensors can be written at the same position along the length of the MCF, which is 

beneficial for simultaneous measurement of multiple parameters [14-16]. Therefore, multicore fiber 

Bragg grating (MCFBG) sensors have been proposed and successfully validated in a variety of 

mechanical parameters sensing, such as bending, twist, inclination, acceleration, or 3D shape 

sensing [17-22]. For instance, Gander et al. reported the first demonstration of bend sensing using 

a pair of FBGs written in a two-core MCF [23]. Soon afterwards, a two-axis bend measurement was 

realized by writing FBGs into three separate cores of a multicore fiber [24]. Apart from single-point 

measurement, Barrera et al. proposed a multipoint two-dimensional curvature sensor by inscribing 

arrays of apodized highly reflective FBGs in non-twisted homogeneous four-core MCF [25]. Fender 

et al. reported a two-axis temperature-insensitive accelerometer by inscribing pairs of FBGs into 

MCF to measure differential strain [21]. Distributed temperature and 3D shape sensing with high 

accuracy have been demonstrated by using continuous multicore fiber grating arrays [26]. It is 

noteworthy that the MCFBG-based sensors exhibit excellent ability to compensate the variation of 

environmental temperature. This is because all cores are embedded in the same cladding and, 

consequently, have same temperature response. So far, the majority of MCFBG-based sensors were 

fabricated by using weakly coupled MCF, where the coupling between neighboring cores can be 

negligible. In this case, the use of expensive fan-in/out devices to extract sensing information from 

individual cores is inevitable. Thus, weakly coupled MCFBG sensors tend to complex and more 

costly. 

Recently, a new type of MCF known as strongly coupled muti-core fiber (SCMCF) has attracted 

research attention. In an SCMCF, the separation between the cores is small enough; hence, the 

evanescent fields of the guiding cores coupled to each other. Therefore, all cores of the SCMCF 

participate in the sensing task. An important advantage of SCMCFs is their simple interrogation as 

it can be carried out with a conventional SMF. This drastically simplifies the interrogation of 

SCMCF-based sensors. So far, several compact sensors based on SCMCFs have been reported for 

high-temperature, vibration or strain measurement [27-29]. However, such sensors are not suitable 

for multiparameter sensing. To solve this issue, FBGs were inscribed in SCMCF, in this manner 

two sensing structures can be obtained that can sensor two or more parameters has been 

demonstrated by other authors [30-32]. 

In this paper, we propose and demonstrate a novel optical fiber sensor for temperature, transverse 

load and vibration sensing. The proposed sensor is fabricated by inscribing two cascaded FBGs in 

an SCMCF, which is then spliced to SMF to form a SMF-SCMCF structure. In the latter 

configuration, two supermodes supported by the SCMCF give rise to a well-defined sinusodial 

pattern. The SMF-SCMCF structure was used as a vibration gauge, while two cascaded FBGs were 

dedicated to measure transverse load and temperature at different locations. The experimental 

results demonstrate that two consecutive FBGs can accurately measure the temperature and 

transverse load at two adjacent positions, while the periodic shift of reflection spectrum can be used 



to monitor vibration with high precision.  

 

II. OPERATION PRICIPLE AND DEVICE FABRICATION 

The SCMCF used to design our sensor was fabricated at the facilities of the University of Central 

Florida (Orlando, USA). The SCMCF consists of seven identical cores made of germanium doped 

silica; one core located in the center of the fiber and other cores are arranged in a hexagonal pattern. 

A micrograph of the cross section of the SCMCF is shown in Fig. 1(a). All cores have the same size 

of 9.2 μm with small core-to-core pitch of 11μm, and the external diameter of the SCMCF is 140 

μm. The numerical aperture (NA) of each core is 0.14, which is the similar as that of 

telecommunications SMF. The schematic structure of the proposed sensor is shown in Fig. 1(b). The 

fabrication of the structure is simple. First, FBGs with different Bragg wavelengths are written in 

the SCMCF. Then, one end of the SCMCF is fusion spliced to an SMF and the other end of the 

SCMCF is cleaved. The reflection spectrum of the structure shown in Fig.1 (b) consists of a periodic 

maxima and minima caused by supermode interference in the SCMCF and two distinct peaks 

generated from two FBGs.  

 

   

Fig. 1. (a) Micrograph of the cross section of the SCMCF. (b) Schematic structure of the proposed sensor. 

The operating principle of the structure shown in Fig.1 (b) can be explained with coupled mode 

theory [33]. Note that the SMF-SCMCF structure is axially symmetric. The unique core of the SMF 

and the central core of the SCMCF are aligned. Under these conditions, only two supermodes that 

have intensity in the central core can be excited in the SCMCF by the fundamental mode of the SMF. 

The two supermodes have different effective refractive indices that can be termed as �� and ��. 

According to [33], the reflection intensity of the light that is collected by the core of the SMF after 

being reflected from the cleaved end of the SCMCF can be expressed as: 

�� = 1 − (6/7)sin �(2√7�∆���/�)                        (1) 

In Eq. (1), ∆� = �� − ��, �� is the length of the SCMCF segment and � is the wavelength of the 

optical source. It is clearly that the supermodes in the SMF-SCMCF structure generates a periodic 

spectrum whose period dependents to the length of the SCMCF. When the SMF-SCMCF structure 

is exposed to vibrations, the bending-induced stress and strain will induce cyclic index changes to 

the supermodes, hence, cyclic changes of the position of the maximum in Eq. (1). As a consequence, 

vibrations can be detected as periodic shifts of the reflected pattern.  

The experiment setup that we used to inscribe FBGs into the SCMCF is illustrated in Fig. 2. It is 

based on the phase-mask technique with the capability to write FBGs with various parameters. A 

frequency-doubled Argon-ion laser operating at 244 nm was used to inscribe FBGs in all cores of 

the SCMCF. The setup can be divided mainly into two subsystems: the laser beam conditioning 

subsystem and the optical fiber positioning subsystem. The laser beam conditioning subsystem is 



exploited to inscribe precisely the FBGs in the SCMCF. It consists of a mirror mounted in a piezo-

electric transducer that is used to induce a vertical deflection in the laser beam and two cylindrical 

lenses that tune the height and the width of the laser beam. The lenses and the phase mask are placed 

on a high precision linear stage controlled by a computer. The optical fiber positioning subsystem 

is composed of a pair of rotation stages that are placed on top of two three-axis translation stages 

and a vision system. Two rotation stages and two three-axis translation stages allow adjusting the 

distance between the optical fiber and the phase mask as well as the optical fiber inclination with 

high precision. A vision system is adopted to monitor the distance between the SCMCF and phase 

mask. The spatial location for the grating inscription is accurately adjusted using the high precision 

linear stage. Prior to the FBG inscription, the SCMCF was hydrogen-loaded at ambient temperature 

for two weeks at a pressure of 50 bar to increase its photosensitivity. Then, a section of the SCMCF 

with a length of 5 cm was immersed in analytical-grade acetone to facilitate the polymer coating 

removing. Finally, two 10 mm-long FBGs with ~30% reflectivity at 1543 and 1573 nm were written 

into all the cores of the SCMCF respectively, the separation between two FBGs is 2cm. 

 

Fig.2. Experimental setup for inscribing FBGs in SCMCF with the phase-mask technique. (a) Rotation stages. (b) 

Translation stage. (c) Phase Mask. (d) Two cylindrical lenses. (e) SCMCF 

As the NA of the SMF and the SCMCF are similar the insertion losses of our device can be 

minimal. The only important thing is to have high quality fusion splice between the SMF and the 

SCMCF. Thus, a high precision cleaver (Fujikura CT32) was used to cleave the SMF and the 

SCMCF. After cleaving, the fibers were cleaned with ethanol. Then, the junction between the SMF 

and the SCMCF was produced by using a fusion splicer (Fujikura FSM-45PM). The machine was 

configured to use the multimode mode fiber splicing program with a fusion arc time of 2000 ms. 

During the splicing process, the splicer used a cladding alignment method for which the unique core 

of the SMF and the central core of the SCMCF get precisely aligned, and subsequently the SMF 

and SCMCF were permanently joined together. It should be pointed out that, due to the SCMCF 

and SMF used here have the same NA of 0.14, the coupling between them can be maximized, which 

in turn benefits to lower the insertion loss. Besides, the SMF-SCMCF junction has been 

demonstrated to have high tensile strength, withstand up to thousands of microstrains, which ensures 

that the proposed sensor has enough mechanical strength for actual sensing applications [29].  

III. RESULTS AND DISCUSSION 

To measure the reflection spectrum of the device depicted in Fig.1(b), the output from a 

broadband light source is coupled into the proposed sensor through the lead-in SMF, then the 



reflected signal pass through an optical circulator and consequently is measured by an optical 

spectrum analyzer (YOKOGAWA AQ6370D) with a resolution of 0.02 nm. Figure 3 shows the 

measured reflection spectrum of the proposed sensor. Note that the interference spectrum has well 

defined sinusoidal pattern and the minima close to 0. There are two distinctive peaks superimposed 

on the sinusoidal spectrum, which corresponds to two FBGs with the peak wavelength of 1543 and 

1573 nm, respectively. It should be pointed out that although the circular cladding will lead to 

uneven illumination across the cores, all cores in SCMCF obtain almost uniform exposure due to 

the small core-pitch. Therefore, the peak wavelength discrepancy of FBGs from different cores is 

small, the overlapped reflection spectrum still features narrow peak, which is benefit to high-

accuracy measurement.  

 
Fig.3. The measured reflection spectrum of the proposed sensor. 

The feasibility of our device to multipoint temperature measurement was investigated first; the 

experimental setup used is shown in Fig.4. A ceramic thermometer with hollow tube structure was 

used to heat FBGs. The sensor goes through the ceramic tube and contacts with the inner wall of the 

ceramic tube. Due to the length of the ceramic tube is 1.2cm and the separation between two FBGs 

is 2 cm, which allow us to heat each FBG separately. The temperature was changed from 24 °C to 

90 °C in steps of 10 °C, and each step was maintained for 10 minutes to guarantee that the FBG was 

subjected to a stable temperature environment.  

 
Fig.4. Schematic of the experiment setup for temperature sensing.  

Figure 5 shows the response of the two FBGs to temperature. It can be clearly observed that the 

peak wavelength of both FBG exhibit a linear response to temperature and shift to longer 

wavelength with increasing temperature. The R2 values of the linear fitting are all above 0.997. The 

temperature sensitivity of FBG1 and FBG2 are 9.77 pm/°C and 9.72 pm/°C, respectively. The 

wavelength resolution of the used OSA is 20 pm, thus, a temperature resolution of about 2°C can 



be achieved with such an OSA. However, with an FBG interrogating system, which typically has 

picometer resolution, smaller temperature changes can be resolved. 

 

Fig.5. The wavelength shift of the two FBGs versus temperature. (a) FBG1; (b) FBG2 

In order to investigate the sensor’s repeatability and reliability, the temperature experiment was 

repeated three times. The measured discrepancy in wavelength shift at different temperature are 

shown in Fig. 6, the standard deviation based on triplet measurements are also included. The 

maximum discrepancy is less than 22 pm, which corresponds to a temperature uncertainty of 2.2°C. 

In fact, a ceramic thermometer used here has a temperature stability of ± 2 °C, which affected the 

measurement accuracy. With this in mind, the measurement accuracy of the temperature sensing can 

be further improved by using a more accurate temperature-controller device.  

  

Fig.6. The discrepancy in wavelength shift of the two FBGs versus temperature. (a) FBG1; (b) FBG2 

Multipoint transverse load sensing was investigated with the experimental setup shown in Fig. 

7. A metal piece (width × length × thickness = 15 × 70 × 8 mm) with a mass of 0.07 kg was placed 

on the position of FBG located and a supporting fiber that used to balance the transverse load. The 

width of the metal piece is moderately larger than the length of FBG (10 mm), which ensures that 

one FBG is subjected to uniform lateral pressure while minimizes the impact on another adjacent 

FBG. During the experiment, the temperature was stabilized at ~25 °C. The transverse load response 

of two FBGs in SMF-SCMCF structure was examined by increasing the transverse load from 0 to 

0.4 N/mm and the corresponding changes in the reflection spectrum were recorded. 



 

 Fig.7. Schematic of the experiment setup for transverse load sensing.  

The results of the aforementioned experiments are summarized in Fig. 8. It can be seen that the 

wavelength of the FBG in SCMCF undergoes a blue shift with increasing transverse load, which 

has opposite response characteristic compared with temperature sensing. The transverse load 

sensitivities of the two FBGs are -153.3 pm/ (N/mm) and -157.3 pm/ (N/mm), with linearity of 

R2=0.993 and R2=0.994, respectively. We ascribe the small discrepancy in sensitivity to the fact that 

measurement error caused by the limited spectrum resolution of the adopted OSA. It should be 

pointed out that the sensitivity of the proposed sensor is lower compared with the previous works 

based on silica microsphere [34, 35]. However, the proposed device has a more robust structure for 

high transverse load sensing. 

 

Fig.8 The wavelength shift of the two FBGs versus transverse load. (a) FBG1; (b) FBG2. 

In order to investigate the sensor’s repeatability and reliability, a cycling test of transverse load 

was conducted. The transverse load was initially set at 0 N/mm, then increased to 0.4 N/mm, with 

a step size of 0.05 N/mm. The test was repeated with 3 cycles, as shown in Fig.9. The maximum 

discrepancy is observed to be less than 2 pm and 4 pm for FBG1 and FBG2, with the corresponding 

transverse loading uncertainty of 0.013 N/mm and 0.025 N/mm, showing that the proposed sensor 

is highly reversible with very low hysteresis.  



 

Fig.9 Repeated testing of wavelength shift versus transverse load. (a) FBG1; (b) FBG2. 

The proposed SCMCF-FBG sensor can also be used as a vibration sensor. Unlike the 

temperature and transverse load testing discussed above, which is based on decoding the wavelength 

shift of FBG, periodic shifts of the reflection pattern of the SMF-SCMCF were correlated with 

vibration. To induce vibrations to the SMF-SCMCF structure, it was placed in cantilever position 

as shown in Fig. 10. Note that the clamping point is located at the SMF because the SCMCF is 

sensitive to local pressure. A piezo-electric transducer (PZT) directly contact with the clamping 

point and is driven by a function generator to shake the SMF-SCMCF structure. The periodic 

bending of the SCMCF induces cyclic changes of ∆�, which gives rise to a periodic shift of the 

reflection spectrum. To monitor vibrations with our devices, a miniature spectrometer (IMON512-

USB, from Ibsen Photonics, Denmark) is used. Here, the center of gravity (COG) algorithm installed 

in our spectrometer is adopted to track the periodic shift of the interference pattern with high speed 

and accuracy. On this basis, the vibration frequency is determined by applying the fast Fourier 

transform (FFT) algorithm to the measured wavelength shift of the interference pattern as a function 

of time. In a proof-of-concept experiment, the frequency of the function generator is set at 84 Hz.  

 

Fig. 10. Schematic of the experiment setup for vibration sensing. L� is the length of the cantilever. 

Figures 11 shows the measured vibration frequency with our proposed sensor; the inset shows the 

wavelength shift of the reflection pattern versus time. It can be clearly observed that the dominant 

peak of the FFT is located at 84 Hz, which is consistent with the applied vibration frequency. This 

suggests that the simple configuration shown in Fig. 10 can be used for vibrations sensing or for the 

development of accelerometers. It is worth noting that we do not monitor the absolute wavelength 

shift but the period of the shift, the issue of cross-sensitivity arises from temperature or transverse 

load will not affect the vibration interrogation, which enables multiparameter sensing. Furthermore, 

the detectable frequency range of our proposed device can be easily tailored by optimizing the length 

of the cantilever, as demonstrated in our previous publication [28]. 



 

Fig. 11. The inset plots show the position of a peak of the reflection versus time when the MCF was vibrating at 84 

Hz. From such a graph, the FFT was calculated. The position of the FFT peak is at 84 Hz.  

Finally, we compared the performance characteristics of the proposed sensor with the other 

multiparameter sensors based on hybrid structure reported in the literature. Table 1 lists a few 

important features of these sensors for comparison. It can be observed that the proposed sensor 

achieves a comparable temperature sensitivity to other schemes. Although the transverse load 

sensitivity of the proposed sensor is lower compared with the silica-microsphere based sensors, the 

proposed device has better mechanical strength. Besides, most of the existing multiparameter 

sensors can only measure static parameters, by contrast, the proposed sensor can realize both static 

and dynamic sensing.  

Table 1 Comparisons between the sensors for multiparameter measurement 

Sensor Structure Measurand Sensitivity Reference 

Supermode interferometer + FBG 

Temperature 

Transverse load 

Vibration 

9.7 pm/°C 

-157.3 pm/ (N/mm) 

 

This work 

Hybrid FP interferometer  
Temperature 

Strain 

1.3 pm/°C 

5.2 pm/με 
[36] 

FP interferometer + FBG 
Temperature 

Strain 

7.82 pm/°C 

2.1 pm/με 
[32] 

Michelson + FP interferometer 
Temperature 

Transverse load 

12.5- 41.5 pm/°C 

0.85- 1.09 nm/N 
[37] 

Balloon-like interferometer + FBG 
Temperature 

Displacement 

105 pm/°C 

180 pm/μm 
[31] 

 

IV. CONCLUSION 

In conclusion, a simple and compact multipoint and multiparameter sensor by embedding two 



FBGs into the SCMCF-based device is proposed and experimentally demonstrated. The device here 

proposed operators in reflection mode. One end of the SCMCF with FBGs inscribed is fusion 

spliced to the SMF and the other end is cleaved. We demonstrated that the FBG inscribed in SCMCF 

has a good linear response to temperature and transverse load with the sensitivities of 9.7 pm/°C, 

and -157.3 pm/(N/mm), respectively. By virtue of wavelength division multiplexing, cascaded 

FBGs with different wavelength enable the capability of multipoint sensing along the length of the 

fiber. Additionally, the vibration sensing with high precision is validated by tracking the periodic 

shift of the reflection spectrum. The issue of cross sensitivity can be effectively eliminated by 

monitoring the periodic shift of the reflection spectrum instead of the absolute wavelength change, 

which is beneficial to realize multiparameter sensing. The main advantage of the sensor proposed 

here include compactness, low cost, ease of interrogation. In addition, the experimental results show 

that the combination of FBG and SCMCF-based structure is an effective way to realize 

multiparameter and multipoint sensing. It is believed that the sensing configuration proposed here 

can be attractive to the fiber optic sensor community as it can be adapted for the development of 

new functional fiber optic sensors.  
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