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Abstract

Concolic testing is a popular software verification technique based on a combination of concrete and sym-
bolic execution. Its main focus is finding bugs and generating test cases with the aim of maximizing code
coverage. A previous approach to concolic testing in logic programming was not sound because it only
dealt with positive constraints (by means of substitutions) but could not represent negative constraints. In
this paper, we present a novel framework for concolic testing of CLP programs that generalizes the pre-
vious technique. In the CLP setting, one can represent both positive and negative constraints in a natural
way, thus giving rise to a sound and (potentially) more efficient technique. Defining verification and test-
ing techniques for CLP programs is increasingly relevant since this framework is becoming popular as an
intermediate representation to analyze programs written in other programming paradigms.

KEYWORDS: CLP, verification, concolic testing.

1 Introduction

Symbolic execution was first proposed by King (1976) as a technique for automated test case
generation. Essentially, the program is run with some unknown (symbolic) input data. Symbolic
execution then proceeds by speculatively exploring all possible computations. Let us consider a
simple imperative language with conditionals and that the trace of an execution is denoted by the
sequence of choices made in the conditionals of this execution (e.g., the trace tft denotes that
execution entered the true branch of the first conditional, then the false branch of the second
conditional, and finally the true branch of the third conditional).

During symbolic execution, whenever a conditional with condition c is found, one should ex-
plore both branches. In one of the branches, c is assumed; in the other branch, one can assume
the negation of this condition i.e., ¬c. By gathering all the constraints assumed in a symbolic
execution, and solving them, one can produce values for the input arguments. Symbolic exe-
cution methods are sound in the following sense: if a symbolic execution with trace π collects
constraints c1, . . . ,cn, then solving c1 ∧ . . .∧ cn will produce values for a concrete call whose
execution will have the same trace π (i.e., it will follow the same execution path of the symbolic
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execution that produced these constraints). This is a key property in order to achieve a good pro-
gram coverage. Note that test case generation based on symbolic execution is in principle aimed
at a full path coverage.

Concolic testing (Godefroid et al. 2005; Sen et al. 2005) can be seen as an evolution of test
case generation methods based on symbolic execution. The main difference is that, now, both
concrete and symbolic executions are performed in parallel (thus the term “concolic”: concrete
+ symbolic). Roughly speaking, concolic testing proceeds iteratively as follows. It starts with an
arbitrary concrete call. Then, this call is executed with the standard semantics, together with a
corresponding symbolic call that mimics the execution of the concrete one. This is called a con-
colic execution. Once this concolic execution terminates, one can produce alternative test cases
by negating some of the collected constraints and, then, solving them. For example, if we gath-
ered the sequence of constraints c1,c2,c3 (e.g., associated to the execution of three conditionals)
with associated trace ttt, we can now solve the constraints ¬c1 (trace f), c1 ∧¬c2 (trace tf)
and c1∧c2∧¬c3 (trace ttf) in order to produce three new, alternative test cases that will follow
a different execution path. A new iteration starts by considering any of the new test cases, and
so forth. In principle, the process terminates when all alternative test cases have been processed.
Nevertheless, the search space is typically infinite (as in symbolic execution based methods).

Concolic execution has gained popularity because of some advantages over the symbolic ex-
ecution based methods. For instance, one can automatically detect some run-time errors since
concolic testing performs standard (concrete) executions and, thus, if some error is spotted, we
know that this is an actual run-time error. Furthermore, when the constraints become too complex
for state-of-the-art solvers and the methods based on symbolic execution just give up, concolic
testing can still inject some concrete data (from the concrete component) and simplify the con-
straints in order to make them tractable.

Although concolic testing is quite popular in imperative and object-oriented languages, only
a few works can be found in the context of functional and logic programming languages. Some
notable exceptions are those of Giantsios et al. (2015) and Palacios and Vidal (2015) for a func-
tional language, and those of Vidal (2014) and Mesnard et al. (2015a) for a logic language. In
the context of logic programming, concolic execution becomes particularly challenging because
computing the alternatives of a predicate call is not as straightforward as in imperative program-
ming, where negating a condition suffices. Consider, e.g., a predicate call that matches rules r1

and r2. Here, a full path coverage should include test cases for all the following alternatives: no
rule is matched; only rule r1 is matched; only rule r2 is matched; and both rules r1 and r2 are
matched (assuming all these cases are feasible). The problem of finding all these alternative test
cases is based on so-called selective unification (Mesnard et al. 2015a; Mesnard et al. 2017).

A limitation of the approach to concolic testing of Mesnard et al. (2015a) is that only positive
constraints (represented as substitutions) are gathered during concolic execution. As a conse-
quence, the algorithm is not sound in the above sense, as witnessed by the following example:

Example 1
Let us consider the following simple program:

p( f (a)). (r1)

p( f (X))← q(X). (r2)

q(b). (r3)

where terms are built, e.g., from constants a,b,c and the unary function symbol f . If we consider
a semantics that only computes the first solution of a goal (as in the approach by Mesnard et
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al. (2015a)), the only feasible execution paths for an initial goal that calls predicate p are the
following:

• A call that matches no rule, e.g., p(a).
• A call that matches both rules r1 and r2 and then succeeds, e.g., p( f (a)).
• A call that matches only rule r2 and, then, calls predicate q and matches rule r3, e.g.,

p( f (b)).
• A call that matches only rule r2 and, then, calls predicate q but does not match rule r3, e.g.,

p( f (c)).

However, the concolic testing procedure of Mesnard et al. (2015a) may fail to compute the last
test case. For instance, let us consider that the process starts with the initial call p(a), which
matches no rule. Now, the computed alternatives could be p( f (a)) that matches both r1 and r2

and p( f (b)) that only matches r2.1 Let us first consider p( f (a)). This call immediately succeeds,
so there are no more alternatives to be computed. Consider now the call p( f (b)). This call first
matches rule r2 and, then, calls q(b), which succeeds. Here, one can still generate a new alterna-
tive test case: one that (only) matches rule r2 and, then, fails to match rule r3. Unfortunately, the
concolic testing algorithm of Mesnard et al. (2015a) may generate p( f (a)) again since it only
knows that the argument of p must unify with f (X) (to match rule r2) and that X must not unify
with b (to avoid matching rule r3). Thus, p( f (a)) is a solution. However, this is not the solution
we expected, since this call will match rule r1 and succeed immediately.

In this work, we consider the development of a concolic testing framework for CLP programs,
where both positive and negative constraints can be represented in a natural way. Our main
contributions are the following:

• We extend the original framework (Mesnard et al. 2015a) to CLP programs. In particular,
we illustrate our approach with two instances: CLP(Term) and CLP(N ). As an advantage
of this formulation, efficient external constraint solvers can be used to produce test cases.

• In contrast to previous approaches, we prove the soundness of our approach, i.e., whenever
a test case for a given execution path is produced, we can ensure that the execution of this
test case will indeed follow the associated path. This can be ensured thanks to the use of
negative constraints.

• We prove that, if the constraint domain is decidable, then the so-called selective unification
problem is decidable too. Thus we extend the results of Mesnard et al. (2017).

Defining verification and testing techniques for CLP programs is increasingly relevant since this
setting is becoming popular as an intermediate representation to analyze programs written in
other programming paradigms, see, e.g., the work of Gange et al. (2015) and Gurfinkel et al.
(2015). Furthermore, concolic testing may be useful in the context of run-time verification tech-
niques; see, e.g., the work of Stulova et al. (2014). Therefore, our approach to concolic testing
may constitute a significant contribution to these research areas.

Some more details and proofs of technical results can be found in the extended version of this
paper (Mesnard et al. 2020).

1 Note that matching only r1 is not feasible in this case. E.g., there is no call of the form p(t) for some term t such that
p(t) matches rule r1 but not r2.
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2 Preliminaries

We assume some familiarity with the standard definitions and notations for logic programming
as introduced by Apt (1997) and for constraint logic programming as introduced by Jaffar et al.
(1998). Nevertheless, in order to make the paper as self-contained as possible, we present in this
section the main concepts which are needed to understand our development.

We denote by |S| the cardinality of the set S and by N the set of natural numbers. From now
on, we fix an infinite countable set V of variables together with a signature Σ, i.e., a pair 〈F,ΠC〉
where F is a finite set of function symbols and ΠC is a finite set of predicate symbols with
F ∩ΠC = {} and (F ∪ΠC)∩V = {}. Every element of F ∪ΠC has an arity which is the number
of its arguments. We write f/n ∈ F (resp. p/n ∈ ΠC) to denote that f (resp. p) is an element of
F (resp. ΠC) whose arity is n≥ 0. A constant symbol is an element of F whose arity is 0.

A term is a variable, a constant symbol or an entity f (t1, . . . , tn) where f/n ∈ F , n ≥ 1 and
t1, . . . , tn are terms. For any term t, we let V ar(t) denote the set of variables occurring in t. This
notation is naturally extended to sets of terms. We say that t is ground when V ar(t) = {}.

An atomic constraint is an element p/0 of ΠC or an entity p(t1, . . . , tn) where p/n ∈ΠC, n≥ 1
and t1, . . . , tn are terms. A first-order formula on Σ is built from atomic constraints in the usual
way using the logical connectives ∧, ∨, ¬,→,↔ and the quantifiers ∃ and ∀. For any formula ϕ ,
we let V ar(ϕ) denote its set of free variables and ∃ϕ (resp. ∀ϕ) its existential (resp. universal)
closure.

We fix a Σ-structure D , i.e., a pair 〈D, [·]〉 which is an interpretation of the symbols in Σ. The
set D is called the domain of D and [·] maps each f/0∈ F to an element of D, each f/n∈ F with
n≥ 1 to a function [ f ] : Dn→D, each p/0∈ΠC to an element of {0,1}, and each p/n∈ΠC with
n≥ 1 to a boolean function [p] : Dn→ {0,1}. We assume that the binary predicate symbol = is
in Σ and is interpreted as identity in D. A valuation is a mapping from V to D. Each valuation
v extends by morphism to terms. A valuation v induces a valuation [·]v of terms to D and of
formulas to {0,1}.

Given a formula ϕ and a valuation v, we write D |=v ϕ when [ϕ]v = 1. We write D |= ϕ when
D |=v ϕ for all valuations v. Notice that D |= ∀ϕ if and only if D |= ϕ , that D |= ∃ϕ if and only
if there exists a valuation v such that D |=v ϕ , and that D |= ¬∃ϕ if and only if D |= ¬ϕ . We say
that a formula ϕ is satisfiable (resp. unsatisfiable) in D when D |= ∃ϕ (resp. D |= ¬ϕ).

We fix a set L of admitted formulas, the elements of which are called constraints. In this pa-
per, we suppose that L contains all the atomic constraints, the always satisfiable constraint true
and the unsatisfiable constraint false, and any quantified boolean combination of such formulae
(while usually L only contains conjunctions of atomic constraints which are implicitly existen-
tially quantified). We assume that there is a computable function solv which maps each c ∈L

to one of true or false indicating whether c is satisfiable or unsatisfiable in D . In particular, it
implies that the constraint domain has to be decidable. We call solv the constraint solver.

Example 2 (CLP(N ) and CLP(Term))
The constraint domain N has <,≤, =, 6=,≥, > as predicate symbols, + as function symbol and
sequences of digits as constant symbols. The domain of computation is the structure with the set
of naturals, denoted by N, as domain and where the predicate symbols and the function symbol
are interpreted as the usual relations and function over the naturals. A constraint solver for N is
described by, e.g., Comon and Kirchner (1999).

The constraint domain Term has =, 6= as predicate symbols and strings of alphanumeric char-
acters as function symbols. The domain of computation is the set of finite trees (or, equivalently,
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of finite terms), Tree. The interpretation of a constant is a tree with a single node labeled with
the constant. The interpretation of an n-ary function symbol f is the function fTree : Treen→ Tree
mapping the trees T1, . . . , Tn to a new tree with root labeled with f and with T1, . . . , Tn as child
nodes. A constraint solver for Term is also described in (Comon and Kirchner 1999).

We let on denote the finite sequence of syntactic objects o1, . . . ,on; we also write o when the
number of elements is not relevant. We let ε denote the empty sequence and o,o′ denote the
concatenation of sequences o and o′. Sequences of distinct variables are denoted by X , Y or Z
and are sometimes considered as sets of variables. Sequences of (not necessarily distinct) terms
are denoted by s, t or u. Given two sequences of n terms sn and tn, we write sn = tn to denote
the constraint s1 = t1 ∧ ·· · ∧ sn = tn. We also extend the notation [·]v by letting [sn]v denote the
sequence [s1]v, . . . , [sn]v.

The signature in which all programs and queries under consideration are included is ΣL =

〈F,ΠC ∪ΠP〉 where ΠP is the set of predicate symbols that can be defined in programs, with
ΠC ∩ΠP = {}. An atom has the form p(sn) where p/n ∈ΠP and sn is a sequence of terms. The
definitions and notations on terms (V ar, ground,. . . ) are extended to atoms in the natural way.
We write [p(sn)]v to denote the atom p([sn]v). For any sequence Am of atoms we let [Am]v denote
the sequence [A1]v, . . . , [Am]v. A rule has the form H ← c∧B where H is an atom called the
head of the rule, c is a satisfiable constraint and B is a finite sequence of atoms. For the sake of
readability, in examples we may simplify rules of the form H ← c∧ ε to H ← c. A program is
a finite set of rules. A state has the form 〈d |B〉 where B is a finite sequence of atoms and d is
a constraint. A constraint atom is a state of the form 〈d | p(t)〉. We denote states as Q, Q′. . . or
R, R′. . . and constraint atoms as C, C′. . . For any state Q := 〈d |B〉 and any constraint d′, we let
Q∧d′ denote the state 〈d∧d′ |B〉.

Any state can be seen as a finite description of a possibly infinite set of sequences of atoms, the
arguments of which are values from D. More precisely, the set described by a state Q := 〈d |B〉
is defined as Set(Q) =

{
[B]v |D |=v d

}
. For instance, for Q := 〈Y ≤ X +2 | p(X),q(Y )〉 in N ,

we have p(0),q(2) ∈ Set(Q). For any states Q := 〈c |A〉 and Q′ := 〈d |B〉, we say that Q′ is less
instantiated (or more general) than Q (equivalently, that Q is more restricted than Q′), and we
write Q≤ Q′, when A and B are variants and, moreover, Set(Q)⊆ Set(Q′); furthermore, we say
they are equivalent when Set(Q) = Set(Q′) (instead of Set(Q) ⊆ Set(Q′)). Furthermore, we say
that Q and Q′ are equivalent, and we write Q≡ Q′, when Set(Q) = Set(Q′).

We consider the usual operational semantics given in terms of derivations from states to states.
Let 〈d | p(u),B〉 be a state and p(s)← c∧B′ be a fresh copy of a rule r. When solv(s= u∧c∧d) =
true then (in this work, a fixed leftmost selection rule is assumed)

〈d | p(u),B〉 −→r 〈s = u∧ c∧d |B′,B〉

is a derivation step of 〈d | p(u),B〉 with respect to r with p(s)← c∧B′ as its input rule. A state
Q := 〈d |B〉 is said to be successful if B is empty; it is said to be failed if B is not empty and no
derivation step is possible. We write Q−→+

P Q′ to summarize a finite number (> 0) of derivation
steps from Q to Q′ where each input rule comes from program P. Let Q0 be a state. A sequence
of derivation steps Q0 −→r1 Q1 −→r2 · · · of maximal length is called a finished derivation of
P∪{Q0} when r1, r2, . . . are rules from P and the standardization apart condition holds, i.e.,
each input rule used is variable disjoint from the initial state Q0 and from the input rules used at
earlier steps.
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3 Concolic Execution

In this section, we introduce a concolic execution semantics for CLP programs that combines
both concrete and symbolic execution. Let us now introduce some auxiliary definitions. First, we
consider unification on constraint atoms:

Definition 1 (≈, unification)
Let C and C′ be two constraint atoms. If they have the same predicate symbol, i.e., C has the form
〈c | p(s)〉 and C′ has the form 〈d | p(t)〉 then C ≈C′ denotes the formula s = t ∧ c∧d. Otherwise,
C ≈C′ is false. We say that C and C′ unify, or that C unifies with C′, when C ≈C′ is satisfiable
(i.e., D |= ∃(C ≈C′) holds).

The following auxiliary function, c-atom, produces a constraint atom associated to either a state,
a rule or a collection of rules. It selects the leftmost atom together with the constraint.

Definition 2 (c-atom)
For any state Q = 〈c |An〉, n > 0, we let c-atom(Q) = 〈c |A1〉. For any rule r = H ← c∧B, we
let c-atom(r) = 〈c |H〉. For any set of rules R (resp. sequence of rules rn), we let c-atom(R) =

{c-atom(r) | r ∈R} (resp. c-atom(rn) = c-atom(r1), . . . ,c-atom(rn)).

Function rules is then used to determine the program rules that match a particular state:

Definition 3 (rules)
Given a state Q and a set of rules P, we let

rules(Q,P) =
{

r ∈ P
∣∣∣∣ solv(c-atom(Q)≈ c-atom(r′)) = true

for some fresh copy r′ of r

}
.

The following function, neg constr, will be essential to guarantee that symbolic execution is
sound, so that symbolic states do not unify with more rules than expected (see below).

Definition 4 (neg constr)
Let C := 〈c | p(s)〉 and H := 〈d | p(t)〉 be some variable disjoint constraint atoms. The constraint
neg constr(C,H) denotes ∀V (s 6= t ∨¬d), where V denotes the set of variables occurring in H.

Let H := {Hk} be a finite set of constraint atoms that have the same predicate symbol as
C and are variable disjoint with C. Then, we let neg constr(C,H ) = neg constr(C,H1)∧ . . .∧
neg constr(C,Hk). In particular, if H = {}, then we have neg constr(C,H ) = true.

Given a constraint atom C and a set of constraint atoms H , we have that C∧neg constr(C,H )

does not unify with any constraint atom in H , as expected; moreover, it is maximal in the sense
that, for any constraint d such that C∧ d does not unify with any constraint atom in H , d will
be less general than neg constr(C,H ).

In this work, we assume that we are interested in producing test cases that achieve a so-called
full path coverage, so that every predicate is called in all possible ways, as explained in the intro-
duction. More precisely, given an initial state of the form 〈true | p(X1, . . . ,Xn)〉, we aim at produc-
ing test cases that cover all feasible subtrees of the execution space of 〈true | p(X1, . . . ,Xn)〉. We
note that, since the execution space of 〈true | p(X1, . . . ,Xn)〉 is typically infinite, so is the number
of feasible subtrees and, thus, the number of test cases. Therefore, achieving a full path cover-
age is not possible and one should introduce some strategy to ensure the termination of concolic
testing (see below).

In order to identify each derivation so that we can keep track of the already considered deriva-
tions in the execution space, we introduce the following notion:
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Definition 5 (trace)
Given a rule r, we let `(r) denote its label, which is unique in a program. A trace is a sequence
of rule labels. The empty trace is denoted by ε . Given a trace π and a rule label `, we denote by
π.` the concatenation of ` to the end of trace π .

Given a derivation with the standard operational semantics, Q0 −→r1 Q1 −→r2 . . . −→rn Qn,
the associated trace is `1`2 . . . `n, where `(ri) = `i, i = 1, . . . ,n.

In the following, we consider that states can be labelled with a trace i.e., Sπ denotes a state S
which is labelled with trace π . Let us now introduce the notion of concolic state:

Definition 6 (concolic state)
A concolic state has the form 〈|Q ][ Sπ |〉 where Q,S are states such that Q ≤ S and π is a trace
labelling state S. Here, Q is called the concrete state of 〈|Q ][ Sπ |〉, while Sπ is called its symbolic
state; we sometimes omit the trace π from the symbolic state when it is not relevant.

In contrast to other programming paradigms, the notion of symbolic execution is very natural in
CLP: the structure of both Q and S is the same (i.e., the sequence of atoms are variants), and
the only difference (besides some labeling for symbolic states) is that some states might be more
restricted in Q than in S.

The standard operational semantics is now extended to concolic states as follows:

Definition 7 (concolic execution)
Let P be a program and let 〈|Q ][ Sπ |〉 be a concolic state. Then, we have a concolic execution step

〈|Q ][ Sπ |〉
r

=⇒π,RQ,RS 〈|Q
′ ][ S′

π.`(r)|〉

if the following conditions hold:

• rules(Q,P) = RQ 6= {}, rules(S,P) = RS,
• γ = neg constr(c-atom(S),c-atom(RS \RQ)),
• r ∈ RQ, Q−→r Q′ and S∧ γ −→r S′.

Besides the applied rule, r, the step is labelled with the current trace, π , the set of rules matching
the concrete state, RQ, and the set of rules matching the symbolic state, RS.2 The applied rule is
often omitted when it is not relevant.

A concolic state 〈|〈c |A〉 ][ 〈d |Bπ〉|〉 is said to be successful if A = B = ε; it is said to be failed
if they are not empty and no derivation step is possible. In either case, we say that π is the trace
of the derivation. The notion of (finished) derivation is extended from the standard semantics in
the natural way.

For each concolic state 〈|Q ][ S|〉 in a derivation, the symbolic component, S, typically unifies
with more rules than the concrete component, Q, since Q is more restricted than S (and, thus,
RQ ⊆ RS; see below). However, we want the execution of the symbolic state to mimic that of the
concrete state. Therefore, both the concrete and symbolic states can only be unfolded using a rule
from RQ. Furthermore, we introduce a negative constraint, γ , into the symbolic state in order to
avoid matching more rules than the concrete state. For this purpose, we use function neg constr
introduced above. In the remainder of the paper, we assume a fixed program P.

Let 〈|Q ][ S|〉 be a concolic state with rules(Q,P) = RQ and rules(S,P) = RS. Our notion of
concolic execution enjoys the following properties:

2 This information can be safely ignored in this section. It will become relevant in the next section in order to generate
test cases.
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• Q≤ S implies rules(Q,P)⊆ rules(S,P).
• rules(S∧γ)=RQ, where γ = neg constr(c-atom(S),c-atom(RS\RQ)). Therefore, γ achieves

the desired effect of preventing S to unify with the rules in RS \RQ.
• If 〈|Q ][ S|〉 =⇒π,RQ,RS 〈|Q′ ][ S′|〉, then 〈|Q′ ][ S′|〉 is also a concolic state, which means that

concolic execution is well defined in the sense that the property Q≤ S is correctly propa-
gated by concolic execution steps.

W.l.o.g., we only consider initial concolic states of the form 〈|Q ][ S|〉, where Q = 〈c | p(X)〉,
S = 〈true | p(Y )ε〉, Q and S are variable disjoint, and ε is the empty trace. Trivially, we have
Q≤ S.

In the following, we assume that all concolic execution derivations start from an initial con-
colic state, so they are well formed.

Example 3
Consider the following CLP(Term) program:

`1 : p(X)← X = a. (r1)

`2 : p(s(Y ))← true∧q(Y ). (r2)

`3 : q(W )←W = a. (r3)

with rules, r1, r2 and r3, where `1, `2, `3 are unique identifiers for these rules. Given the initial
concolic state 〈|〈X = s(a) | p(X)〉 ][ 〈true | p(N)ε〉|〉, we have the following concolic execution:

〈|〈X = s(a) | p(X)〉 ][ 〈true | p(N)〉ε |〉
=⇒ε,{r2},{r1,r2} 〈|〈s(Y ) = X ∧X = s(a) |q(Y )〉 ][

][ 〈s(Y ′) = N∧∀X ′ (N 6= X ′∨X ′ 6= a) |q(Y ′)〉`2 |〉
=⇒`2,{r3},{r3} 〈|〈W = Y ∧W = a∧ s(Y ) = X ∧X = s(a) |ε〉

][ 〈W ′ = Y ′∧W ′ = a∧ s(Y ′) = N∧∀X ′ (N 6= X ′∨X ′ 6= a) |ε〉`2`3 |〉

In the first step, the following negative constraint is computed:

γ1 = neg constr(〈true | p(N)〉,{〈X ′ = a | p(X ′)〉}) = ∀X ′(N 6= X ′∨X ′ 6= a)

so that 〈true | p(N)〉∧ γ1 = 〈∀X ′(N 6= X ′∨X ′ 6= a) | p(N)〉. In the second step, we have γ2 = true

since the matching rules are the same for both the concrete and symbolic states. Hence, no addi-
tional negative constraint is added to the symbolic state. The trace of the derivation is thus `2`3,
i.e., an application of rule r2 followed by an application of rule r3.

Now, we can state that concolic execution is indeed a conservative extension of the standard
operational semantics:

Theorem 1
Let 〈|Q ][ S|〉 be an initial concolic state. Then, we have Q −→∗ Q′ iff 〈|Q ][ S|〉 =⇒∗ 〈|Q′′ ][ S′|〉,
where Q′ ≡ Q′′. Moreover, the trace of both derivations is the same.

Finally, the next property states that the constraints computed for the symbolic state ensure—
when applied to the initial symbolic state—that the standard semantics will follow the same
path. Therefore, our approach to concolic testing can be considered sound. This property did not
hold in the original approach of Mesnard et al. (2015a), as explained in the introduction.

Theorem 2 (soundness)
Let 〈|Q ][ Sε |〉 be an initial concolic state with 〈|Q ][ Sε |〉 =⇒∗ 〈|Q′ ][ S′π |〉. Let S = 〈true |A〉 and
S′ = 〈d |B〉. Then, we have 〈d |A〉 −→∗ S′′ such that S′ ≡ S′′ and the associated trace is π .
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(backtrack)
rules(Q,P) = {}∧ rules(S,P) = RS ∧|Q|> 0

〈|Q,Q ][ Sπ ,S|〉 ↪→π,{},RS
〈|Q ][ S|〉

(next)
Q = 〈c |ε〉

〈|Q,Q ][ Sπ ,S|〉 ↪→π,{},{} 〈|Q ][ S|〉

(choice)
rules(Q,P) = {rn}∧n > 0∧ rules(S,P) = RS ∧ γ = neg constr(c-atom(S),c-atom(RS \{rn}))

〈|Q,Q ][ Sπ ,S|〉 ↪→π,{rn},RS
〈|Qr1 , . . . ,Qrn ,Q ][ γ ∧Sr1

π , . . . ,γ ∧Srn
π ,S|〉

(unfold)
Q−→r R∧S−→r T

〈|Qr,Q ][ Sr
π ,S|〉 ↪→π,{},{} 〈|R,Q ][ Tπ.`(r),S|〉

Fig. 1. Concolic CLP execution semantics (deterministic)

4 Concolic Testing

In this section, we present our concolic testing procedure, which is based on the concolic execu-
tion semantics of the previous section.

First, we introduce a deterministic version of concolic execution that implements a depth-first
search through the concolic execution space (loosely inspired by the linear operational semantics
for Prolog introduced by Ströder et al. (2011)). This deterministic semantics better reflects the
current implementation (Mesnard et al. 2015b) and, moreover, allows one to keep the information
that must survive backtracking steps (e.g., generated test cases and already considered traces).

The deterministic concolic execution semantics is defined by means of a (labelled) transition
relation, ↪→, as shown in Figure 1. Now, concolic states have the form 〈|Q ][ S|〉, where Q and S
are sequences of states (possibly labelled with a rule). Let us briefly explain the rules:

• In contrast to the nondeterministic concolic execution semantics, unfolding is now split
into two rules: choice and unfold. Rule choice creates as many copies of the states (both
concrete and symbolic) as rules match the concrete state. Then, rule unfold just unfolds
the leftmost state (both concrete and symbolic) using the rule labeling these states.
Consider, for example, a concolic state 〈|Q ][ Sπ |〉. If the nondeterministic version of con-
colic execution (cf. Definition 7) performs, e.g., the following step

〈|Q ][ Sπ |〉
r1=⇒π,RQ,RS 〈|Q

′ ][ S′
π.`(r1)

|〉

with RQ = {r1, . . . ,rn}, then the deterministic version of Figure 1 will perform the choice
step

〈|Q ][ Sπ |〉 ↪→π,RQ,RS 〈|Q
r1 , . . . ,Qrn ][ γ ∧Sr1

π , . . . ,γ ∧Srn
π |〉

followed by the unfolding step

〈|Qr1 , . . . ,Qrn ][ γ ∧Sr1
π , . . . ,γ ∧Srn

π |〉 ↪→π,{},{} 〈|Q′,Qr2 . . . ,Qrn ][ S′
π.`(r1)

,γ ∧Sr2
π . . . ,γ ∧Srn

π |〉

Therefore, we reach the same states, Q′ and S′. The only difference is that alternative paths
are stored explicitly in the concolic state (i.e., Qr2 , . . . ,Qrn and γ ∧ Sr2

π , . . . ,γ ∧ Srn
π ) and

will be explored after a backtracking step (or when looking for more solutions, where an
implicit backtracking step is performed).
• When the concrete state does not match any rule, rule backtrack is applied. As before,

the step is labeled with the current trace and the constraint atoms associated to the rules
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matching both the concrete (the empty set) and symbolic states. Note that we assume that
the sequence Q is not empty; otherwise, the execution would be finished.
For instance, if state Q′ in the example above does match any rule, we will perform the
following backtracking step:

〈|Q′,Qr2 . . . ,Qrn ][ S′
π.`(r1)

,γ∧Sr2
π . . . ,γ∧Srn

π |〉 ↪→π.`(r1),{},RS′
〈|Qr2 . . . ,Qrn ][ γ∧Sr2

π . . . ,γ∧Srn
π |〉

where RS′ = rules(S′,P).
• Finally, rule next is applied when a solution is reached in order to consider alternative

solutions (if any). In other words, our calculus explores the complete execution space for
the initial state rather than stopping after the first solution is found.

The deterministic version of the concolic execution semantics constitutes an excellent basis for
implementing a concolic testing procedure. For instance, one can consider only the computation
of the first solution by removing rule next. Furthermore, one can easily guarantee termination by
either limiting the length of the considered concolic execution derivations or the “depth” of the
search tree in order to only partially explore the execution space.

The following result stating the soundness of the deterministic concolic execution semantics
is straightforward:

Theorem 3
Let 〈|Q0 ][ S0|〉 be an initial concolic state. If 〈|Q0 ][ S0|〉 ↪→∗ 〈|Q,Q ][ S,S|〉, then 〈|Q0 ][ S0|〉 =⇒∗
〈|Q ][ S|〉.

Note that the deterministic version is sound but incomplete in general since it implements a
depth-first search strategy.

Now, we introduce a function to compute alternative test cases in a concolic execution. In the
following definition, we consider a (symbolic) initial state (I), since test cases will always be
particular instances of this state, the current (symbolic) state in a derivation (C), the set of atoms
matching the concrete state (HQ), and the set of atoms matching the corresponding symbolic
state (HS). Intuitively speaking, function alts produces alternative test cases by restricting the
initial symbolic state I so that the current symbolic state C unifies with a subset H + of constraint
atoms from HS, except for the set HQ which was already considered.

Definition 8 (alts)
Let I,C be constraint atoms, with C = 〈c |B〉, and HQ,HS be finite sets of constraint atoms that
have the same predicate symbol as C and all atoms are variable disjoint with each other. Then,

alts(I,C,HQ,HS) =


I∧ c∧ γ

∣∣∣∣∣∣∣∣∣∣∣∣∣

H + ∈P(HS), H + 6= HQ

H − = HS \H +

γ = neg constr(C,H −)

c∧ γ is satisfiable

∀H ∈H + (C∧ γ)≈ H


.

Example 4 (CLP(Term))
Let us consider the call alts(I,C,{H2},{H1,H2}), where I := 〈true | p(W )〉, C := 〈c |q(N)〉 with
c := (W = N), H1 := 〈X = a |q(X)〉, and H2 := 〈true |q(s(M))〉. For brevity, we remove the
occurrences of true in the formulæ below.

Let us consider the case H + := {H1} and H − := {H2}. Then we have γ = neg constr(C,H −)
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(skip)
C ↪→π,RQ,RS C ′∧ (π ∈ TR∨RS = {})

(PTC,TC,TR, I,C ); (PTC,TC,TR∪{π}, I,C ′)

(alts)
C ↪→π,RQ,RS C ′∧RS 6= {}∧π 6∈ TR

(PTC,TC,TR, I,C ); (PTC∪alts(I,c-atom(C ),c-atom(RQ),c-atom(RS)),TC,TR∪{π}, I,C ′)

(restart)
C 6↪→

(PTC∪{〈c | p(X)〉},TC,TR, I,C ); (PTC,TC∪{〈c | p(X)〉},TR, I,〈|〈c | p(X)〉 ][ Iε |〉)

Fig. 2. Concolic testing

= ∀M(N 6= s(M)). As D |=v (c∧ γ) holds for any valuation v with {W 7→ a,N 7→ a} ⊆ v, c∧ γ is
satisfiable.

Now, we should check that C∧ γ ≈H1 holds. Since C∧ γ = 〈W = N∧∀M (N 6= s(M)) |q(N)〉
and solv(N = X ∧X = a∧W = N ∧∀M (N 6= s(M))) = true, it holds. Therefore, we have I ∧
c∧ γ ∈ alts(I,C,{H2},{H1,H2}), i.e., we produce the state: 〈W = N∧∀M (N 6= s(M)) | p(W )〉
which could be simplified to 〈∀M W 6= s(M) | p(W )〉.

Example 5 (CLP(N ))
Let us consider the call alts(I,C,{H1},{H1,H2,H3}), where I := 〈true | p(W )〉, C := 〈c |q(X)〉,
c :=(W =X∧X ≤ 10), H1 := 〈Y ≤ 2 |q(Y )〉, H2 := 〈8≤ Z ≤ 10 |q(Z)〉, and H3 := 〈T < 5 |q(T )〉.

Let us consider the case H + = {H1,H2} and H − = {H3}. First, we should compute γ =

neg constr(C,H −), i.e., ∀T (X 6= T ∨ 5 ≤ T ), which can be simplified to γ = (5 ≤ X). So,
c∧ γ = (W = X ∧X ≤ 10∧5≤ X) can be simplified to c∧ γ = (W = X ∧5≤ X ≤ 10), which is
clearly satisfiable. Now, we should check that C∧ γ = 〈W = X ∧5≤ X ≤ 10 |q(X)〉 unifies with
both H1 and H2 in order to produce an element of alts(I,C,HQ,HS):

• C∧ γ ≈ H1. In this case, we have solv(X = Y ∧Y ≤ 2∧W = X ∧5≤ X ≤ 10) = false.
• C∧ γ ≈H2. In this case, we have solv(X = Z∧8≤ Z ≤ 10∧W = X ∧5≤ X ≤ 10) = true

(consider, e.g., any valuation v with {X 7→ 9,Z 7→ 9,W 7→ 9} ⊆ v).

Therefore, this case is not feasible and no new test case is produced for it.

4.1 A Concolic Testing Procedure

Now, we consider a concolic testing procedure that aims at achieving a full path coverage. Let us
first informally explain the concolic testing procedure. The process starts with some arbitrary test
case i.e., an initial concrete state of the form 〈c | p(X)〉. Then, concolic testing proceeds iteratively
as follows:

1. First, we form the initial concolic state 〈|〈c | p(X)〉 ][ 〈true | p(Y )〉|〉 and apply the rules of
concolic execution (Figure 1) as much as possible (or up to a number of steps or a time
bound, in order to ensure the termination of the process).

2. Now, for each choice or backtrack steps in this derivation, we use function alts to compute
alternative test cases that will produce a different execution tree. Moreover, we keep track
of the traces where alternative test cases have been produced in order to avoid producing
the same alternative test cases once and again.



12 F. Mesnard, É. Payet and G. Vidal

3. When all alternative test cases for the considered concolic execution have been produced,
we go back to step (1) above and consider any of the pending test cases produced in the
previous step. The iterative algorithm terminates when all pending test cases have been
considered and, moreover, no new test cases are produced.

In order to formalise the above process, we introduce configurations of the form (PTC,TC,TR, I,C ),
where PTC is the set of pending test cases (test cases that have not been explored yet), TC is the
set of test cases already explored, TR is the set of execution traces already considered, I is the
initial symbolic state, and C is a concolic state. The rules of the concolic testing procedure are
shown in Figure 2.

Concolic testing starts with an arbitrary concrete state, say 〈c | p(X)〉. Then, we form the initial
configuration

({},{〈c | p(X)〉},{},〈true | p(Y )〉,〈|〈c | p(X)〉 ][ 〈true | p(Y )〉ε |〉)

where Y are fresh variables, and apply the rules of Figure 2 until no rule is applicable. The second
component of the last configuration will contain the generated test cases. Let us briefly explain
the rules of the concolic testing procedure:

• Rule skip applies when either the trace of the current state, π , is already visited or the set
of rules matching the symbolic state is empty. The second situation happens in rules next
and unfold of the concolic execution semantics, and also when applying rule backtrack

but no rule matches the symbolic state. In this case, we simply update the concolic state
and the set of considered traces (if any), but no new alternative test cases are produced.

• Rule alts applies when the current trace, π , has not been considered yet and, moreover,
the set of rules matching the symbolic state is not empty. This situation happens when
applying rules backtrack or choice for the first time. In this case, we update the set of
pending test cases using the auxiliary function alts. Here, we let c-atom(C ) = c-atom(S)
when C = 〈|Q,Q ][ S,S|〉.

• Finally, rule restart applies when the concolic execution semantics cannot proceed. In this
case, we restart the process with a new concrete state from the set of pending test cases.

The procedure terminates when the set of pending tests cases is empty.3 Then, the generated test
cases can be found in the second component of the configuration.

We note that, in general, concolic testing might produce nonterminating test cases. Here, one
could use the output of some termination analysis to further restrict test cases in order to guar-
antee terminating computations (e.g., requiring ground arguments or fixed variables). This is an
orthogonal issue that constitutes an interesting topic for further research.

4.2 Connections with the Constraint Selective Unification Problem

Here, we fix a constraint atom C = 〈c | p(s)〉 with c satisfiable and two finite sets H + and H −

of constraint atoms. We assume that all constraint atoms are variable disjoint with each other and
that C unifies with any constraint atom from H +∪H −. We recall the definition of a constraint
selective unification problem minus its groundness condition (Mesnard et al. 2017).

3 Note that termination of concolic testing is ensured when concolic execution terminates; see the previous section for
some possible strategies.
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Definition 9 (Constraint Selective Unification Problem, P)
The constraint selective unification problem for C with respect to H + and H − consists in
determining whether the following set of constraint atoms is empty:

P(C,H +,H −) =

C∧d

∣∣∣∣∣∣∣∣∣∣
c∧d is satisfiable

C∧d is variable disjoint with H +∪H −

∀H ∈H + : C∧d and H unify

∀H ∈H − : C∧d and H do not unify

 .

For brevity, and as C, H + and H − are fixed in this section, below we write P instead of
P(C,H +,H −) and we let γ = neg constr(C,H −).

Proposition 1
1. Suppose that c∧γ is satisfiable and C∧γ unifies with each element of H +. Then, we have

C∧ γ ≡C′ for some C′ ∈P .
2. For each C′ ∈P we have C′ ≤ (C∧ γ).
3. If P 6= {} then C∧ γ unifies with each constraint atom in H +.

Below, we naturally let Set(P) = ∪C′∈P Set(C′).

Theorem 4
If C∧ γ unifies with each element of H + then Set(C∧ γ) = Set(P).

Corollary 1
The constraint selective unification problem for C with respect to H + and H − is decidable.

5 Related Work

Concolic testing was originally introduced in the context of imperative programming languages
(Godefroid et al. 2005; Sen et al. 2005) and, then, extended to a concurrent language like Java
by Sen and Agha (2006). To the best of our knowledge, the first work that considered concolic
execution in the context of a nondeterministic, logic programming language was that of Vidal
(2014), where some preliminary ideas were introduced. However, the paper presented no formal
results nor an implementation of the technique. Later, a more mature approach was proposed by
Mesnard et at. (2015a), where the formal concept of a selective unification problem, together
with a correct, terminating but incomplete algorithm to solve it, were introduced. The soundness
of concolic execution itself was not considered and, indeed, it was not sound, as illustrated in
Section 1.

A publicly available proof-of-concept implementation of a concolic testing tool for (pure)
Prolog has been developed: contest (Mesnard et al. 2015b). Our present paper generalizes the
approach to CLP with first order constraints, which provides some crucial help thanks to negative
constraints to prove the operational soundness of our concolic scheme: a generated test case will
indeed follow the intended execution path.

Mesnard et al. (2017) showed that requiring a traditional constraint solver (i.e., a decision
procedure for existentially quantified conjunction of atomic constraints) is not enough to decide
the constraint selective unification problem (CSUP). Indeed, we presented a CLP instance based
on the theory of arrays where we proved that the CSUP is undecidable. Then we showed that
assuming variable elimination together with a traditional constraint solver is enough to decide
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the CSUP. Of course, a constraint domain with both a traditional constraint solver and a variable
elimination algorithm is decidable. But solving the CSUP without variable elimination was an
open question in the paper by Mesnard et al. (2017). In the present paper, we have presented
a more general approach that can solve the CSUP for decidable constraint domains without
variable elimination. CLP(N ) and CLP(Term) are two such constraint domains.

In turn, Fortz et al. (2020) essentially showed that one could rely on an SMT solver to im-
plement a concolic testing tool for Prolog. The paper is focused on designing a more efficient
alternative implementation of contest, as well as trying to avoid the unsoundness of the original
approach by Mesnard et al. (2015a). Unfortunately, the ideas in this paper are preliminary and
it does not provide any theoretical result. Moreover, it only considers pure logic programs, so
even if negative constraints are used during concolic testing, they cannot be represented in the
generated test cases.

Finally, one can also find some similarities with an approach proposed by Leuschel and De Schr-
eye (1998) in the context of partial deduction (Lloyd and Shepherdson 1991). In particular, the
partial deduction algorithm of Gallagher and Bruynooghe (1991) introduced the use of abstract
interpretation based on so-called characteristic paths which, roughly speaking, described the de-
terministic part of the unfolding of an atom. The authors aimed at preserving these characteristic
paths when computing resultants and their (most specific) generalisation. However, as noted by
Leuschel and De Schreye (1998), this property does not hold, since the generated resultants are
sometimes less deterministic than the original rules. In order to overcome this problem, Leuschel
and De Schreye (1998) extended the framework of Gallagher and Bruynooghe (1991) to a con-
straint setting and, moreover, introduce some pruning constraints to avoid matching more rules
than expected. Although in a different context, this is essentially the same solution that we have
proposed in this paper in order to overcome the limitations of Mesnard et al. (2015a).

6 Conclusion and Future Work

In this paper, we have extended concolic testing to CLP. Thanks to the availability of negative
constraints, we have formulated and proved a precise operational soundness criteria. Moreover,
we have proved that for decidable constraint domains, the selective unification problem is decid-
able too. Hence, our approach constitutes an excellent basis for designing a powerful concolic
testing tool for CLP programs.

For future work, we consider the definition of a post-processing that takes the generated test
cases, and further restricts them (if needed) in order to ensure that their execution is always
terminating. For this purpose, we may consider the output of some termination analysis for CLP
programs. Moreover, we plan to deal with a subset of built-ins in order to cope with practical
issues. Finally, we will explore the use of types (as defined in Typed Prolog (Schrijvers et al.
2008) or Mercury (Somogyi et al. 1996)) to further restrict the possible values a variable can
take when generating test cases.
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