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UNDOMINATED SEQUENCES OF INTEGRABLE

FUNCTIONS

LUIS BERNAL-GONZÁLEZ, MARÍA DEL CARMEN CALDERÓN-MORENO,

MARINA MURILLO-ARCILA∗, AND JOSÉ A. PRADO-BASSAS

Abstract. In this paper, we investigate to what extent the conclusion
of the Lebesgue dominated convergence theorem holds if the assump-
tion of dominance is dropped. Specifically, we study both topological
and algebraic genericity of the family of all null sequences of functions
that, being continuous on a locally compact space and integrable with
respect to a given Borel measure in it, are not controlled by an integrable
function.

1. Introduction

Lebesgue’s Dominated Convergence Theorem (LDCT) is probably the
most useful tool to interchange limits and integrals of a sequence of func-
tions. In its most common version (see, e.g., [22, Chapter 1]), it asserts that
if (X,M, µ) is a measure space and f, f1, f2, . . . are extended real-valued
measurable functions on X such that fn(x) −→ f(x) (n→∞) for µ-almost
every x ∈ X and there is an integrable function g : X → [−∞,+∞] with
|fn(x)| ≤ g(x) for µ-almost every x ∈ X and all n ≥ 1, then f is inte-
grable on X and ‖fn − f‖1 → 0 as n→∞ (where ‖h‖1 denotes the 1-norm∫
X |h| dµ), so that, in particular, limn→∞

∫
X fn dµ =

∫
X f dµ. The result

can be generalized to extended complex-valued functions, to orders of in-
tegration p ≥ 1 and to other kinds of convergence, such as convergence in
measure or µ-almost uniform convergence (see, e.g., [19, Chapter 21]), but
we will focus on the former version.

Since measurability of the fn’s and almost everywhere pointwise con-
vergence fn −→ f seem to be “natural” conditions in order that 1-norm
convergence can take place, the following question arises:

Is it feasible to expect ‖fn − f‖1 → 0 without assuming the existence
of some dominating integrable function g?

In turn, since |fn| ≤ g implies automatically integrability for the fn’s and
f , then, after replacing fn by fn − f , the problem can be reduced to get
‖fn‖1 → 0 by assuming fn(x) −→ 0 almost everywhere but not dominance.
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The aim of this paper is to provide an affirmative answer to the above
question, in both topological and algebraic senses. The preliminary back-
ground and terminology is collected in Section 2. Our assertions, together
with motivating related results in the literature, are presented in Section 3.
Finally, the proof of our results will be provided in Sections 4 to 6.

2. Notation and preliminaries

Those readers who are familiar with Borel measures, lineability, preva-
lency and Baire categories can skip this section. As usual, we will denote
by N, N0, R, Q and c, respectively, the set of natural numbers, the set
N ∪ {0}, the real line, the field of rational numbers and the cardinality of
the continuum.

Assume that X is a Hausdorff topological space. Then the family B of
Borel sets of X is the least σ-algebra on X containing all open sets. Then
any continuous function X → R is measurable if X is endowed with a
measurable space structure defined by a σ-algebra M ⊃ B. The symbols
C(X), Cc(X), C0(X) will represent, respectively, the set of all continuous
functions X → R, the subset of those f ∈ C(X) having compact support,
and the subset of those f ∈ C(X) vanishing at infinity. Recall that the

support of an f : X → R is the set {x ∈ X : f(x) 6= 0} (A denotes closure
of A), and that f is said to vanish at infinity provided that, given ε > 0,
there exists a compact K ⊂ X such that |f(x)| < ε for all x ∈ X \K (with
the agreement C0(X) := C(X) if X itself is compact). The functional
‖f‖∞ := supx∈X |f(x)| is a norm both in Cc(X) and C0(X), and if X is
a locally compact Hausdorff space then C0(X) is the completion of Cc(X)
(see [22, Chapter 3]), so that, in particular, C0(X) becomes a Banach space
under the last norm with Cc(X) being dense in it.

For any measure space (X,M, µ), the vector space L1(µ) of measurable
functions f : X → [−∞,+∞] such that ‖f‖1 < +∞ is a Banach space
under the norm ‖ · ‖1 (see, e.g., [19, Chapter 14]). Recall that, in L1(µ),
two functions are identified whenever they are equal µ-almost everywhere
(µ-a.e.).

Suppose that X is a locally compact Hausdorff space. A Borel measure
µ on X is a positive measure defined on some σ-algebra M ⊃ B. If this is
the case, then µ is called regular provided it satisfies, for all A ∈ M, that
µ(A) = sup{µ(K) : K compact, K ⊂ A} (inner regularity) and µ(A) =
inf{µ(G) : G open, G ⊃ A} (outer regularity). Observe that if f ∈ C(X)
and µ is a Borel measure on X then f is measurable. Then expressions as
Y ∩L1(µ), where Y ⊂ C(X), make sense, meaning the set of all f : X → R
that are in Y such that ‖f‖1 < +∞.

A subset A of a topological space Z is said to be of first category whenever
there are countably many nowhere dense sets Fn (n ∈ N) such that A =⋃∞
n=1 Fn. Recall that a subset B ⊂ Z is called nowhere dense if its closure
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has empty interior. A set S ⊂ Z is said to be residual whenever X \ S is of
first category. Baire’s category theorem (see, e.g., [20]) asserts that if Z is
completely metrizable then any countable intersection of dense open subsets
is still dense. If this is the case, a set S ⊂ Z is residual if and only if it
contains a dense Gδ subset. In a topological sense, residual sets are “very
large” in such spaces Z. Moreover, recall that a topological space Z is called
second-countable if it possesses a countable open basis, and σ-compact if Z
is the union of countable many compact subsets.

Another way to assess the largeness of a property is by means of the
modern theory of lineability (see [2–5,8,14,15,23] for terminology and back-
ground), which focusses on the algebraic genericity of a family within a
vector space. Assume that Z is a vector space and A ⊂ Z. Then A is said
to be lineable if there is an infinite dimensional vector space M such that
M \ {0} ⊂ A; and maximal-lineable if, moreover, dim(M) = dim(Z). If, in
addition, Z is a topological vector space, then A is called spaceable (dense-
lineable, maximal dense-lineable, resp.) in Z whenever there is a closed
infinite dimensional (a dense, a dense dim(Z)-dimensional, resp.) vector
subspace M of Z such that M \ {0} ⊂ A. Now, assume that Z is a vector
space contained in some (linear) algebra. Then the subset A is called alge-
brable if there is an infinitely generated algebra M –that is, the cardinality
of any system of generators of M is infinite– so that M \ {0} ⊂ A; and, if
α is a cardinal number, then A is said to be strongly α-algebrable if there
exists an α-generated free algebra M with M \ {0} ⊂ A. Recall that if Z
is contained in a commutative algebra, then a set B ⊂ Z is a generating
set of some free algebra contained in A if and only if for any N ∈ N, any
nonzero polynomial P in N variables without constant term and any dis-
tinct f1, . . . , fN ∈ B, we have P (f1, . . . , fN ) 6= 0 and P (f1, . . . , fN ) ∈ A.
The reader can easily check that many implications among these proper-
ties hold; for instance, spaceability implies lineability, dense lineabiliy (if
dim(X) = ∞) implies lineability, strong α-algebrability (if α is infinite)
implies algebrability, and others.

3. Statement of the results

There are in the literature a number of results related to the topic we are
concerned with, see for instance [9,21]. Unless otherwise stated, the measure
considered on an interval of R will be always the Lebesgue measure m.

In [7] it is proved that, in the vector space of sequences

CBLs := {(fk)k ∈ (RR)N : each fk is continuous, bounded and integrable,

‖fk‖∞ −→
k→∞

0 and sup
k≥1
‖fk‖1 < +∞}

(which becomes a non-separable Banach space when endowed with the norm
‖(fk)k‖ = supk ‖fk‖∞+supk ‖fk‖1), the subset {(fk)k ∈ CBLs : ‖fk‖1 6−→ 0
as k →∞} is spaceable. Note that what does not hold for the sequences of
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this subset is the conclusion of LDCT. As a complementary statement, it is
shown in [10] that, in the F-space

Y := {(fk)k ∈ (RR)N : each fk is continuous and integrable, ‖fk‖1 −→
k→∞

0

and fk −→
k→∞

0 uniformly on compacta in R}

(under the topology of both compact and 1-norm convergence), the sub-
set {(fk)k ∈ Y : each fk is unbounded } is maximal dense-lineable in Y
(the result is formulated for functions [0,+∞) → R, but minor changes in
the proof yields that it holds for functions R → R). This time the con-
clusion of LDCT holds for the sequence of the subset, but each member
of each sequence is unbounded (which, incidentally, is not an obstacle for
dominance). For results dealing with lineability of families of sequences of
measurable functions [0, 1] → R or [0,+∞) → R –where several kinds of
convergence are considered– see [1, Section 7] and [11]. See also [6] and [12]
for lineability facts related to expect values of sequences of random variables
defined on a probability space.

In this paper, we focus on the effect of dropping the dominance hypothesis
in LDCT, so as to complement the results from the previous paragraph. We
shall show that, under a topological or algebraic point of view, such effect is
almost imperceptible, in the sense that the conclusion of LDCT still holds
for “many” sequences, even uniformly bounded sequences. Moreover, this
will be carried out into a rather general setting.

In order to state our assertions, we adopt the following notation and
conventions:

• X is a fixed locally compact Hausdorff space.
• µ is a Borel measure onX, so that we have a measure space (X,M, µ)

with M⊃ B.
• µ is a Baire measure (that is, µ(K) < +∞ for all compact subsets
K ⊂ X), regular, and non-finite (that is, µ(X) = +∞).
• We say that a sequence (fk)k ⊂ L1(ν) is L1-undominated if there is

no g ∈ L1(ν) such that |fk| ≤ g on X for all k ∈ N or, equivalently,
if supk |fk| 6∈ L1(ν) (note that the function supk |fk| : X → [0,+∞]
is always measurable).

In what follows, we define the space we are going to deal with:

Definition 3.1. The space c0,1,∞(C0, L
1) will denote the vector space of all

sequences (fk)k ⊂ C0(X) ∩ L1(µ) such that ‖fk‖1 −→ 0 and ‖fk‖∞ −→ 0
as k → ∞ and F will stand for the class of L1-undominated sequences
(fk)k ∈ c0,1,∞(C0, L

1).

Besides the linear structure, we endow c0,1,∞(C0, L
1) with the natural

structure of (linear) algebra by completing sum and scalar multiplication
with the coordenatewise product fg = (fkgk)k, where f = (fk)k and g =
(gk)k. This makes sense because the product of two functions from C0(X)∩
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L1(µ) is still in C0(X)∩L1(µ) (use that the members of C0(X) are bounded)
and, for f and g as above, we have ‖fkgk‖∞ → 0 ← ‖fkgk‖1 as k → ∞,
which in turn follows from the facts ‖fkgk‖∞ ≤ ‖fk‖∞ · supn ‖gn‖∞ and
‖fkgk‖1 ≤ ‖fk‖1 · supn ‖gn‖∞.

Remarks 3.2. 1. A number of assumptions are sometimes redundant. For
instance, in the case M = B, if X satisfies, in addition, that every open
subset is σ-compact, then the sole condition of finiteness of µ on compacta
implies regularity for µ (see [22, Chapter 1]).

2. The assumption µ(X) = +∞ is necessary if we demand uniform conver-
gence fn −→ 0. Indeed, uniform convergence implies the existence of m ∈ N
such that F := supn>m |fn| is bounded. It is clear that F is measurable.
If µ were finite, the function supn |fn| = max{|f1|, . . . , |fm|, F} would be
integrable, which is the non-desired property. In particular, X cannot be
compact.

We first introduce the following auxiliary statement. Note that none of
the assumptions on µ of being Baire, non-finite or regular is needed this
time.

Lemma 3.3. The vector space c0,1,∞(C0, L
1) becomes a Banach space when

endowed with the norm

‖f‖ := sup
k≥1
‖fk‖1 + sup

k≥1
‖fk‖∞,

where f = (fk)k. In particular, it is a Baire space.

Proof. That ‖ · ‖ makes sense on Z := c0,1,∞(C0, L
1) and is a norm on it

is an easy exercise. Regarding completeness, assume that (f j)j ⊂ Z is a

Cauchy sequence for ‖ · ‖. Let f j = (f jk)k (j ∈ N). Fix ε > 0. Then there
is j0 ∈ N satisfying

sup
k≥1
‖f jk − f

l
k‖∞ + sup

k≥1
‖f jk − f

l
k‖1 < ε for all j, l ≥ j0. (1)

It follows at once that each sequence (f lk)k (l ∈ N) is Cauchy both in
(C0(X), ‖ · ‖∞) and (L1(µ), ‖ · ‖1), which are complete metric spaces. Con-
sequently, there are functions fk ∈ C0(X), gk ∈ L1(µ) (k ∈ N) such that,
in their respective topologies, f lk −→ fk and f lk −→ gk as l→∞. The lat-
ter property implies (see, e.g., [19, Theorems 21.4 and 21.9]) the existence

of subsequence (f
l(1,s)
1 )s of (f l1) satisfying f

l(1,s)
1 (x) −→ g1(x) (s → ∞)

for all x ∈ X \ Z1, where µ(Z1) = 0. But f
l(1,s)
2 −→ g2 (s → ∞)

for ‖ · ‖1. Hence there is a subsequence (f
l(2,s)
2 )s of (f

l(1,s)
2 )s satisfying

f
l(2,s)
2 (x) −→ g2(x) (s→∞) for all x ∈ X \ Z2, where µ(Z2) = 0. Follow-

ing this procedure, the diagonal subsequence (l(s, s))s possesses the property

that f
l(s,s)
k (x) −→ gk(x) (s → ∞) for all k ∈ N and all x ∈ X \

⋃
k∈N Zk.

Trivially, f
l(s,s)
k (x) −→ fk(x) (s → ∞) for all k ∈ N and all x ∈ X. By
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uniqueness of pointwise limit, we get fk = gk µ-a.e. for all k ∈ N, because
µ(
⋃
k∈N Zk) = 0. Hence f lk −→ fk (l → ∞) both in maximum norm and

1-norm for all k ∈ N. Finally, a standard reasoning using (1) yields that
f := (fk)k ∈ Z and f j −→ f as j →∞ in ‖ · ‖. �

We can now state or main results that will be proved in the forthcoming
sections:

Theorem 3.4. The set F is a residual subset of (c0,1,∞(C0, L
1), ‖ · ‖).

Theorem 3.5. The set F is spaceable in (c0,1,∞(C0, L
1), ‖ · ‖).

Theorem 3.6. If X is second-countable and every open subset of X is
σ-compact, then F is maximal dense-lineable in (c0,1,∞(C0, L

1), ‖ · ‖).

Theorem 3.7. Assume that µ satisfies the following condition:

(C) There exist α, β ∈ (0,+∞) such that every open set having infinite
measure contains a measurable set M with α < µ(M) < β.

Then the set F is strongly c-algebrable.

Concerning condition (C) above, see several remarks in Section 7 below.

4. Topological genericity of unbounded convergence: proof
of Theorem 3.4

Let us abridge Z := c0,1,∞(C0, L
1). It is enough to show that F is

dense in Z and that the set

A := Z \ F =
{

f = (fk)k ∈ Z :
∥∥ sup
k≥1
|fk|
∥∥

1
< +∞

}
is Fσ in Z, that is, a union of countably many closed sets. With this aim,
note that we can write A =

⋃
n∈N Fn, where

Fn :=
{

f ∈ Z :
∥∥∥ sup
k≥1
|fk|
∥∥∥

1
≤ n

}
.

That A is an Fσ will be proved by showing that each Fn is closed.

1. The set F is dense in Z. Observe that A is a vector subspace of Z.
Indeed, if f = (fk)k,g = (gk)k ∈ A and α, β ∈ R, then∥∥∥ sup

k≥1
|αfk + βgk|

∥∥∥
1
≤ |α|

∥∥∥ sup
k≥1
|fk|
∥∥∥

1
+ |β|

∥∥∥ sup
k≥1
|gk|
∥∥∥

1
< +∞.

If we were able to prove that F 6= ∅ then we would have A 6= Z, and it is
an elementary fact that any proper vector subspace of a topological vector
space has empty interior. Hence its complement F would be dense in Z,
as required. Therefore, it is enough to exhibit an element f ∈ F .

With this aim, note that, by regularity and the fact µ(X) = +∞ > 1,
there is a compact set K1 such that µ(K1) ≥ 1. Since X is locally compact
and Hausdorff, we can find an open set V1 with compact closure such that

K1 ⊂ V1 ⊂ V1 ⊂ X
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(see, e.g., [22, Theorem 2.7]). Then µ(V1) < +∞, so µ(X \ V1) = +∞ > 1.
Again by regularity, there is a compact set K2 ⊂ X \ V1 with µ(K2) ≥ 1.
Now, take an open set V2 with compact closure such that

K2 ⊂ V2 ⊂ V2 ⊂ X \ V1.

Then µ(V1 ∪ V2) < +∞, so µ(X \ V1 ∪ V2) = +∞ > 1. Thus, there is a
compact set K3 ⊂ X \ V1 ∪ V2 with µ(K3) ≥ 1 and, subsequently, there is
an open set V3 with compact closure such that

K3 ⊂ V3 ⊂ V3 ⊂ X \ V1 ∪ V2.

By following this procedure, we can built a sequence (Kn)n of compact sets
as well as a sequence (Vn)n of open sets satisfying

Kn ⊂ Vn, Vm ∩ Vn = ∅ (m 6= n) and 1 ≤ µ(Kn) < +∞ for all n ∈ N.

In addition, regularity allows us to select the Vn’s so that

µ(Vn) < 2µ(Kn) for every n ∈ N.

According to a result due to Urysohn (see [22, Theorem 2.12]), there exists
a function ϕn ∈ Cc(X) such that 0 ≤ ϕn ≤ 1 on X, ϕn = 1 on Kn and
ϕn = 0 outside Vn. Let us define

fn :=
1

n · µ(Kn)
· ϕn (n ∈ N) and f := (fn)n.

Clearly, ‖fn‖∞ ≤ 1
n −→ 0 as n→∞, whereas

‖fn‖1 =

∫
Vn

ϕn
n · µ(Kn)

dµ ≤
∫
Vn

1

n · µ(Kn)
dµ =

µ(Vn)

n · µ(Kn)
≤ 2

n
−→ 0

as n→∞. Hence f ∈ Z. Finally, since the supports of the fn’s are mutually
disjoint, we get∥∥ sup

n≥1
|fn|
∥∥

1
=
∞∑
n=1

‖fn‖1 =
∞∑
n=1

∫
Vn

ϕn
n · µ(Kn)

dµ ≥
∞∑
n=1

∫
Kn

ϕn
n · µ(Kn)

dµ

=
∞∑
n=1

1

n · µ(Kn)
· µ(Kn) =

∞∑
n=1

1

n
= +∞.

To summarize, supn |fn| 6∈ L1(µ) and f ∈ F .

2. For each n ∈ N, the set Fn is closed. Assume that {f j : j ≥ 1} ⊂ Fn
and f j −→ f ∈ Z as j →∞. It should be shown that f ∈ Fn. Let f = (fk)k
and f j = (f jk)k (j ∈ N). Let gj := supk |f

j
k | (j ∈ N) and g := supk |fk|. Then

‖gj‖1 ≤ n for all j ∈ N. Our goal is to prove that ‖g‖1 ≤ n. By assumption,

‖f j − f‖ −→ 0 as j →∞. Then supk ‖f
j
k − fk‖∞ −→ 0. In particular, given

x ∈ X, we obtain from the reverse triangle inequality that

lim
j→∞

sup
k≥1

∣∣∣|f jk(x)| − |fk(x)|
∣∣∣ = 0. (2)
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Now, it is easy to see that, if (ak)k∪(bk)k ⊂ [0,+∞) and α := supk ak, β :=
supk bk (so that α, β ∈ [0,+∞]), then (under the convention |(+∞) −
(+∞)| = 0) we have |α − β| ≤ supk |ak − bk|. It follows from (2) that
gj(x) −→ g(x) as j →∞ for all x ∈ X. Then the extended real-valued func-
tions gj ’s are non-negative and measurable, and g = lim infj→∞ gj . From
Fatou’s Lemma (see, e.g., [19, p. 201]), we get

‖g‖1 =

∫
X
g dµ ≤ lim inf

j→∞

∫
X
gj dµ = lim inf

j→∞
‖gj‖1 ≤ lim inf

j→∞
n = n.

Consequently, ‖g‖1 ≤ n, as required. The proof is finished.

5. Spaceability and lineability of unbounded convergence:
proofs of Theorems 3.5 and 3.6

Firstly, we prove that F is spaceable in Z := c0,1,∞(C0, L
1). To this

aim, we are going to construct an infinite dimensional closed subspace M
with M \ {0} ⊂ F .

As in the previous section, we can find a sequence (Kn)n of compact sets,
a sequence (Vn)n of open sets, and a sequence (ϕn)n ⊂ Cc(X) satisfying

Kn ⊂ Vn, 1 ≤ µ(Kn) ≤ µ(Vn) < 2µ(Kn) < +∞ (n ∈ N),

Vm ∩ Vn = ∅ (m,n ∈ N; m 6= n),

0 ≤ ϕn ≤ 1 on X, ϕn = 1 on Kn, and ϕn = 0 on X \ Vn (n ∈ N).

Let us divide N into infinitely many pairwise disjoint sequences

Nj = {n(j, 1) < n(j, 2) < n(j, 3) < · · · < n(j, k) < · · · } (j ∈ N).

For each j ∈ N, define the sequence f j = (fj,k)k by

fj,k :=
1

k · µ(Kn(j,k))
· ϕn(j,k) (k ∈ N).

As in the last section, it is easy to see that each f j belongs to Z. Let us
show that (f j)j is a basic sequence in Z. Plainly, no f j is zero. Now,
assume that (cj)j∈N ⊂ R. By taking into account that the Vn’s are pairwise
disjoint, that 0 ≤ ϕn ≤ 1, and that ϕn = 1 on Kn, we obtain:∥∥∥ N∑
j=1

cjf
j
∥∥∥ = sup

k≥1
sup

1≤j≤N

|cj |
k · µ(Kn(j,k))

+sup
k≥1

N∑
j=1

|cj |
k · µ(Kn(j,k))

∫
Vn(j,k)

ϕn(j,k) dµ

for all N ∈ N. Therefore ∥∥∥ p∑
j=1

cjf
j
∥∥∥ ≤ ∥∥∥ q∑

j=1

cjf
j
∥∥∥

whenever p, q ∈ N with p < q. Consequently, Nikolskii’s theorem (see, e.g.,
[13, pp. 36–38]) guarantees that (f j)j is a basic sequence in the Banach
space Z (with basic constant 1).
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Now, we define

M := span {f j}j∈N.
Since (f j)j is a basic sequence, we have that M is an infinite dimensional
closed vector subspace of Z. It must be shown that M \ {0} ⊂ F . Take
f = (fk)k ∈M \ {0}. Then there is a unique sequence (cj)j ∈ RN such that

f =
∞∑
j=1

cjf
j in (Z, ‖ · ‖).

Moreover, there is at least one j with cj 6= 0. Let N be the first among
such j’s. For each k ∈ N, we have fk =

∑∞
j=N cjfj,k =

∑∞
j=N

cj
k·µ(Kn(j,k))

·
ϕn(j,k). Since the Vn’s are pairwise disjoint and the ϕn’s are nonnegative,
we get

|fk| =
∞∑
j=N

|cj |
k · µ(Kn(j,k))

· ϕn(j,k) ≥
|cN |

k · µ(Kn(N,k))
· ϕn(N,k).

Again the disjointness of the Vn’s yields

sup
k≥1
|fk| ≥

∞∑
k=1

|cN |
k · µ(Kn(N,k))

· ϕn(N,k).

Recall that ϕn = 1 on Kn and Kn ⊂ Vn. We conclude that∥∥∥ sup
k≥1
|fk|
∥∥∥

1
≥ |cN | ·

∞∑
k=1

∫
V (N,k)

1

k · µ(Kn(N,k))
· ϕn(N,k) dµ

≥ |cN | ·
∞∑
k=1

∫
K(N,k)

1

k · µ(Kn(N,k))
dµ

= |cN | ·
∞∑
k=1

1

k
= +∞.

Consequently, supk |fk| is not µ-integrable, that is, f ∈ F . This finishes the
proof Theorem 3.5.

In order to face dense-lineability, the following lemmas will be invoked.
The first one might be well known, but since we have not been able to find
an exact reference, we provide a proof. The content of the second one is
taken from [2, Theorem 7.3.1].

Lemma 5.1. (a) The set

D :=
{
f = (fk)k ⊂ Cc(X) : there exists k0 = k0(f) ∈ N such

that fk = 0 for all k > k0

}
is a dense subset of Z.

(b) If X is second-countable and every open subset of X is σ-compact, then
Z is separable.
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Proof. (a) First of all, every h ∈ Cc(X) belongs to C0(X), and is integrable
because ‖h‖1 ≤ ‖h‖∞·µ(K), where K is the support of h, which is compact.
Then µ(K) < +∞, whence ‖h‖1 < +∞. This implies that D ⊂ Z.

As for the density, fix an ε > 0 and a vector f = (fk)k ∈ Z. Then
‖fk‖1 + ‖fk‖∞ → 0 as k → ∞. Take k0 ∈ N such that ‖fk‖1 < ε

3 and
‖fk‖∞ < ε

3 for all k > k0. Define gk := 0 for all k > k0. Trivially,

‖fk − gk‖1 <
ε

3
and ‖fk − gk‖∞ <

ε

3
for all k > k0.

Fix k ∈ {1, 2, . . . , k0}. On the one hand, since h := fk ∈ L1(µ), there is
A ∈ M with µ(A) < +∞ such that

∫
X\A |h| <

ε
4 ; and since h ∈ C0(X),

there is a compact set L1 such that |h| < min{ ε3 , 1} outside L1. On
the other hand, the regularity of µ entails the existence of a compact set
L2 ⊂ A with µ(A \ L2) < ε

4 . Let us define K := L1 ∪ L2, which is a
compact set. Then |h| < ε

3 , 1 on X \K and µ(A \K) < ε
4 . Moreover, as

X \K ⊂ (X \A) ∪ (A \K), we get∫
X\K

|h| dµ ≤
∫
X\A
|h| dµ+

∫
A\K
|h| dµ < ε

4
+ µ(A \K) · 1 < ε

2
.

Again by Urysohn’s result used in the previous section (see [22, Theorem
2.12]), there exists a function ϕ ∈ Cc(X) such that 0 ≤ ϕ ≤ 1 on X and
ϕ = 1 on K. Then the function gk := ϕ · h belongs to Cc(X) and satisfies
for k ∈ {1, . . . , k0} the following:

• ‖fk − gk‖∞ = ‖h(1− ϕ)‖∞ = supX\K |h| ≤ ε
3 <

ε
2 , and

• ‖fk − gk‖1 = ‖h(1− ϕ)‖1 =
∫
X\K |h| dµ <

ε
2 .

It follows easily that the vector g := (gk)k belongs to D and satisfies
‖g − f‖ < ε

2 + ε
2 = ε, which proves the density of D.

(b) Note that in the proof of (a) we have in fact shown that Cc(X) is dense
in C0(X)∩L1(µ) in the topology generated by the norms ‖ · ‖∞ and ‖ · ‖1.
Since D is dense in Z and the members of D are essentially N -tuples
(f1, . . . , fN ) of functions from Cc(X) (N ∈ N), it is enough to prove the
existence of a countable set C ⊂ Cc(X) such that every member of Cc(X)
can be approximated (in both cited norms) by members of C.

Fix a nonempty open subset O ⊂ X. From the assumption, O is σ-
compact. But it is also second-countable, because this property is inherited
by every topological subspace. Then there is a countable open basis {Wm :
m ∈ N} for the restriction of the topology of X to O. By σ-compactness
and local compactness (which is also inherited by O because O is open),
there is a sequence (Uk)k of open sets in O with compact closures contained
in O such that O =

⋃
k∈N Uk and Un ⊂ Un+1 for all n ∈ N (see, e.g.,

[16, pp. 325–326]). From this, it follows easily that the countable collection
(Gn)n∈N of all nonempty intersections of the form Wm ∩ Uk is still an
open basis for the topology of O and its members have compact closures
contained in O.
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Now, local compactness implies the existence, for each n ∈ N, of an open
subset Vn with compact closure such that Gn ⊂ Gn ⊂ Vn ⊂ Vn ⊂ O (see
Remark 4 in Section 7 below). Note that every X\Vn is a closed subset of X
that is not empty because X is not compact. Since X is Hausdorff, locally
compact and second-countable, it is metrizable (see, e.g., [16, p. 342]). Fix
a metric d generating the topology of X. For every n ∈ N, define the
function ϕn : X → R by

ϕn(x) =
d(x,X \ Vn)

d(x,Gn) + d(x,X \ Vn)
.

This function is well defined because both sets Gn and X \Vn are closed and
have empty intersection. Trivially, ϕn ∈ Cc(X) and 0 ≤ ϕn ≤ 1. But, by
considering its restriction to O, we also get ϕn ∈ Cc(O), because its support
is contained in Vn, which is a compact subset of O. It is important the fact
that ϕn(x) = 1 if and only if x ∈ Gn. The family Φ of the restrictions of
the ϕn’s (n ∈ N) to O enjoys the following properties:

• It is nonvanishing, that is, given x0 ∈ O, there is ϕ ∈ Φ with
ϕ(x0) 6= 0. This is evident, because there exists n ∈ N such that
x0 ∈ Gn, so x0 ∈ Gn. Then ϕn(x0) = 1 6= 0.
• It is separating, that is, given distinct points x, y ∈ O, there is ϕ ∈ Φ

with ϕ(x) 6= ϕ(y). Indeed, there are open sets G, S ⊂ O such that
x ∈ G, y ∈ S and G ∩ S = ∅ (Hausdorff property is inherited by
any subspace). From local compactness, one derives the existence of
open sets U, V with compact closures such that x ∈ U ⊂ U ⊂ G
and y ∈ V ⊂ V ⊂ S. Since (Gn)n is an open basis, there exist
m,n ∈ N with x ∈ Gm ⊂ U and y ∈ Gn ⊂ V . But Gm ⊂ G,
Gn ⊂ S and G ∩ S = ∅, so x ∈ Gm 63 y. Then the function
ϕ := ϕm ∈ Φ satisfies ϕ(x) = 1 6= ϕ(y).

According to the Stone–Weierstrass theorem in its version for completely
regular spaces (see [18, Theorem 16.5.7]; recall that any Hausdorff locally
compact space is completely regular, see [24, p. 136]), the algebra B generated
by Φ is dense in C(O) under the compact-open topology. The members of
B are finite linear combinations, with coefficients in R, of finite products of
powers of elements of Φ. A simple argument invoking the continuity of the
scalar multiplication on a topological vector space shows that the collection
CO of all finite linear combinations, with coefficients in Q, of the above
products is a (countable) dense subset of C(O). Note that CO ⊂ Cc(O).
Again by σ-compactness and local compactness, there is a sequence (Ok)k
of open sets in X with compact closures such that O =

⋃
k∈NOk and

On ⊂ On+1 for all n ∈ N. Let us define

C :=
⋃
n∈N
COn .

Then C is a countable subset of Cc(X).
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Fix f ∈ Cc(X) and ε > 0. Then the support of f is contained in
some Om. Note that µ(Om) < +∞ because Om is compact. Since f ∈
C(Om), the above proved denseness yields the existence of ϕ ∈ COm with
|f(x) − ϕ(x)| < ε

1+µ(Om) for all x ∈ Om. Since f and ϕ vanish outside

Om, we get

‖f − ϕ‖∞ < ε and ‖f − ϕ‖1 =

∫
Om

|f − ϕ| dµ ≤ ε · µ(Om)

1 + µ(Om)
< ε,

as required. �

Lemma 5.2. Assume that E is a metrizable topological vector space. Sup-
pose that A and B are subsets of E satisfying the following:

(i) A is maximal lineable,
(ii) B is dense-lineable,
(i) A+B ⊂ A, and

(iv) A ∩B = ∅.

Then A is maximal dense-lineable in E.

Under the assumptions of Theorem 3.6 and thanks to Lemma 5.1(b), Z
is a separable infinite dimensional Banach space. Then a standard appli-
cation of Baire’s category theorem yields that dim(Z) = c. Recall that we
have denoted A := Z \ F and that A is a vector space. We have already
proved that F is spaceable, which together with a new application of Baire’s
theorem gives that F is maximal lineable. On the one hand, D is dense in
Z by Lemma 5.1(a). But D itself is a vector space, so it is dense-lineable.
As D ⊂ A, we get D ∩ Z = ∅ and F + D ⊂ F + A ⊂ F . Therefore we
can apply Lemma 5.2 with E := Z, A := F and B := D. This finishes the
proof of Theorem 3.6.

6. Algebrability of unbounded convergence: Proof of
Theorem 3.7

Our next goal is to prove Theorem 3.7. Consider the constants α, β fur-
nished by condition (C). By following a procedure similar to the one given in
the proof of Theorem 3.4 (see Section 4), and using (C), we can inductively
produce a sequence (Kn)n of compact sets as well as a sequence (Vn)n of mu-
tually disjoint, relatively compact, open sets, and a sequence ϕn ∈ Cc(X),
such that, for all n ∈ N, we have

Kn ⊂ Vn, α < µ(Kn) < β, µ(Vn) < 2µ(Kn) < 2β, 0 ≤ ϕn ≤ 1,

ϕn(x) = 1 for all x ∈ Kn, and ϕn(x) = 0 for all x ∈ X \ Vn.
This time, the existence of Kn in the nth step is guaranteed by (C) and
the fact that the open set X \ V1 ∪ · · · ∪ Vn−1 (defined as X if n = 1) has
infinite measure, so that Kn is extracted by regularity from a measurable
set M ⊂ X \ V1 ∪ · · · ∪ Vn−1 satisfying α < µ(M) < β.
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Take a linearly Q-independent set H ⊂ (0,+∞) with card(H) = c. For
each t ∈ H, define the function sequence f t = (ft,n)n by

ft,n =
1

(log(n+ 1))t · µ(Kn)
· ϕn.

As in Section 4, it is easy to see that f t ∈ Z (the facts µ(Kn) > α, µ(Vn) <
2β are crucial). Now, we denote by B the linear algebra generated by the
family {f t : t ∈ H}. We are going to show that B is freely generated by
{f t : t ∈ H} and is contained in F ∪ {0}.

With this aim, fix N ∈ N, a nonzero polynomial P of N real variables
without constant term and pairwise distinct numbers t1, . . . , tN ∈ H. It
suffices to prove that g = (gn)n := P (f t1 , . . . , f tN ) ∈ F . Note first that
g ∈ Z because Z is an algebra (under the coordinatewise product). Since
P 6= 0, there are a nonempty finite set F ⊂ NN0 \ {(0, 0, . . . , 0)} and con-
stants αm ∈ R \ {0} (m = (m1, . . . ,mN ) ∈ F ) such that P (x1, . . . , xN ) =∑

m∈F αmx
m1
1 · · ·x

mN
N . Then each component gn has the expression

gn =
∑
m∈F

αm
ϕmt
n

(log(n+ 1))mt · µ(Kn)|m|
,

where m t := m1t1 + · · ·+mN tN and |m| := m1 + · · ·+mN . Our unique
task is to show that

G := sup
n≥1
|gn| = sup

n≥1

∣∣∣∣∣∑
m∈F

αm
ϕmt
n

(log(n+ 1))mt · µ(Kn)|m|

∣∣∣∣∣ 6∈ L1(µ).

Notice the the numbers m t (m ∈ F ) are pairwise distinct due to the
Q-independence of t1, . . . , tN . Then there is a unique n ∈ F such that
n t < m t for all m ∈ F \ {n}. Since the supports of the gn’s are mutually
disjoint, we obtain

G =

∞∑
n=1

|gn| =
∞∑
n=1

∣∣∣∣∣∑
m∈F

αm
ϕmt
n

(log(n+ 1))mt · µ(Kn)|m|

∣∣∣∣∣
=
∞∑
n=1

∣∣∣∣ αn

(log(n+ 1))n t · µ(Kn)|n|
·
(
ϕn t
n + Φn

)∣∣∣∣ ,
where

Φn :=
∑

m∈F\{n}

αm ϕmt
n µ(Kn)|n|−|m|

αn (log(n+ 1))mt−n t
.

Now, observe that for each m ∈ F \{n} the sequence
{
αm ϕmt

n µ(Kn)|n|−|m|

αn

}
n

is uniformly bounded on X, and that 1
(log(n+1))r → 0 as n→∞, for every

r > 0. Since F \ {n} is finite, it follows that Φn −→ 0 uniformly on X.
Therefore, there exists n0 ∈ N such that |Φn(x)| < 1

2 for all n ∈ N, n ≥ n0
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and all x ∈ X. Hence, by the reverse triangle inequality, we obtain

G(x) ≥
∞∑

n=n0

∣∣∣∣ αn

(log(n+ 1))n t · µ(Kn)|n|

∣∣∣∣ · ∣∣∣∣ϕn t
n (x)− 1

2

∣∣∣∣ for all x ∈ X.

Consequently,∫
X
G(x) dµ ≥

∞∑
n=n0

∫
Kn

∣∣∣∣ αn

(log(n+ 1))n t · µ(Kn)|n|

∣∣∣∣ · ∣∣∣∣ϕn t
n (x)− 1

2

∣∣∣∣ dµ
=

∞∑
n=n0

∫
Kn

|αn|
2(log(n+ 1))n t · µ(Kn)|n|

dµ

=

∞∑
n=n0

|αn|
2(log(n+ 1))n t · µ(Kn)|n|−1

≥ |αn|
2 · β|n|−1

·
∞∑

n=n0

1

(log(n+ 1))n t
= +∞,

where the facts µ(Kn) < β, ϕn|Kn = 1 and n t > 0 have been used. To
summarize, G 6∈ L1(µ), as required.

7. Final remarks

1. As the most evident example, all preceding Theorems 3.4–3.7 can be
applied to X = RN (N ∈ N) (or to a rectangle X = I1 × · · · × IN , with the
Ij ’s intervals of R, being unbounded at least one of them) and µ = m =
the Lebesgue N -dimensional measure. Indeed, RN is a second-countable lo-
cally compact Hausdorff space all of whose open subsets are sigma-compact,
and m is a regular Borel non-finite measure that is finite on compacta and
satisfies condition (C) in Theorem 3.7 (any pair 0 < α < β < +∞ works).

2. In fact, we can formulate a more general situation in which condition
(C) is satisfied; namely, (C) is fulfilled by a nonatomic Borel measure ν
satisfying the assumptions in Section 3. Recall that a measure ν defined
on a measurable space (Ω,Σ) is nonatomic if Ω lacks atoms, and a set
A ⊂ Ω is called an atom if ν(A) > 0 and, given B ∈ Σ, one has either
ν(B) = 0 or ν(A \ B) = 0. The measure ν is called semifinite provided
that ν(A) = sup{ν(B) : B ∈ Σ, B ⊂ A and ν(B) < +∞}. If µ is as
in Section 3, then finiteness at compacta together with regularity implies
semifiniteness. Now, it is known (see [19, Theorem 11.27]) that, if ν is
semifinite and nonatomic, then [0, ν(A)] = {ν(B) : B ∈ Σ and B ⊂ A}.
This proves our claim because, again, any pair 0 < α < β < +∞ does the
job.

3. Nevertheless, being nonatomic is not necessary for (C) to hold. For ins-
tance, if X = N under the discrete topology and µ is the cardinal measure
on the set M = P(N) of all parts of N, then µ satisfies all axioms given in
Section 3, including (C) (with α = 1/2 and β = 2, say), and each singleton
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{m} is an atom. However, the measure µ(A) :=
∑∞

n=1 n · card(A ∩ {n})
satisfies all axioms given in Section 3 prior to Theorem 3.4–3.7 and each
{m} is an atom for it, but (C) is not fulfilled.

4. In the proof of Lemma 5.1(b), the following facts have been tacitly used.
Assume that (X, τ) is a Hausdorff topological space and that A ⊂ B ⊂ X.
Then the closure of A with respect to the induced topology τB of τ in B,

denoted A
B

, can be computed as A
B

= A ∩ B. Moreover, A is τ -compact

if and only if it is τB-compact. It follows that if A
B

is τB-compact then

A = A
B

(which implies A ⊂ B): indeed, A
B

is τ -compact, so τ -closed

because X is Hausdorff; then A
B

is a τ -closed set containing A, so A
B ⊃ A;

but A
B

= A ∩B ⊂ A, which yields the identity.

5. We can also consider the size of a subset of a vector space from a measure-
theoretical point of view. In this direction, Hunt, Sauer and Yorke [17]
coined in 1992 the following concept of prevalence. Let Z be a metrizable
topological vector space over R or C. A subset A ⊂ Z is called prevalent in
Z provided that there exist a Borel set S ⊂ Z and a Borel measure µ on Z
satisfying the following conditions:

(i) A ⊃ Z \ S,
(ii) µ(S + v) = 0 for every v ∈ Z,
(iii) 0 < µ(K) <∞ for some compact subset K ⊂ Z.

In [17, p. 222] it is shown that if Z is infinite dimensional then the com-
plement of a proper vector subspace is always prevalent. But in Section 4
it is proved that A := (c0,1,∞(C0, L

1) \ F is a proper vector subspace of
c0,1,∞(C0, L

1). Thus, we can conclude: The set F is a prevalent subset of
(c0,1,∞(C0, L

1), ‖ · ‖).
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neability: the search for linearity in mathematics, Monographs and Research Notes
in Mathematics, CRC Press, Boca Raton, FL, 2016.
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