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ABSTRACT

Purpose: To study the differences between continuous and short-pulse mode microwave abla-
tion (MWA).

Methods: We built a computational model for MWA including a 200 mm long and 14 G antenna from
Amica-Gen and solved an electromagnetic-thermal coupled problem using COMSOL Multiphysics. We
compared the coagulation zone (CZ) sizes created with pulsed and continuous modes under ex vivo
and in vivo conditions. The model was used to compare long vs. short pulses, and 1000 W high-pow-
ered short pulses. Ex vivo experiments were conducted to validate the model.

Results: The computational models predicted the axial diameter of the CZ with an error of 2-3% and
overestimated the transverse diameter by 9-11%. For short pulses, the ex vivo computer modeling
results showed a trend toward larger CZ when duty cycles decreases. In general, short pulsed mode
yielded higher CZ diameters and volumes than continuous mode, but the differences were not signifi-
cant (<5%), as in terms of CZ sphericity. The same trends were observed in the simulations mimicking
in vivo conditions. Both CZ diameter and sphericity were similar with short and long pulses. Short
1000 W pulses produced smaller sphericity and similar CZ sizes under in vivo and ex vivo conditions.
Conclusions: The characteristics of the CZ created by continuous and pulsed MWA show no signifi-
cant differences from ex vivo experiments and computer simulations. The proposed idea of enlarging
coagulation zones and improving their sphericity in pulsed mode was not evident in this study.
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1. Introduction effect of applicator placement relative to the tumor location
[26], influence of different characteristics of tumor and
healthy tissue [26], and the effect of blood perfusion [26,37].

It has recently been suggested that pulsed MWA could
create more spherical coagulation zones than MW power
delivered in a continuous mode [38] and that it would pro-
duce larger coagulation zones perpendicular to the antenna
insertion for the same amount of applied energy, i.e. pulsed
MWA can enlarge the transverse diameter of the coagulation
zone. A detailed analysis of pulsed vs. continuous mode
MWA by Bedoya et al. [38] did not report coagulation zone

Microwave ablation (MWA) is a minimally invasive technique
which delivers microwave (MW) power through an antenna
to selectively heat tumors, causing their destruction by ther-
mal coagulative necrosis [1]. MW has increasingly been used
for hepatic ablation as it offers the potential to address
some of the shortcomings of radiofrequency ablation (RFA)
[2]. Some studies have been carried out with the aim of veri-
fying the efficacy and theoretical advantages of MWA versus
RFA [3-14], and improving its effectiveness [15-17].
Computer modeling has also been used to study different

issues related to MWA [18-20]. Some of these studies have
focused on characterizing the temperature dependence of
thermophysical and dielectric properties [21-26], optimizing
MWA applicator designs [27-32], and exploring how to
model some important phenomena involved in MWA such
as tissue shrinkage or vaporization [23,33-35]. Other com-
puter modeling studies focused on other specific questions
related to hepatic MWA such as the impact of working fre-
quency (915MHz vs. 2.45GHz) [15], effect of tumor size on
the shape of the coagulation zone created by MWA [36],

size differences between pulsed and continuous mode in an
ex vivo model, but in the in vivo case they observed larger
coagulation zones in the pulsed mode. Hui et al. [39] intro-
duced the idea of spreading out the pulses intermittently
and also made an in vivo comparison between continuous
and continuously pulsed MWA. They also did not report sig-
nificant differences in coagulation zone size and sphericity
between pulsed and continuous modes. However, these last
two studies considered excessively long on-off intervals
(50-50s, 30-90s, 75-75s in Bedoya et al, and 31-32s of
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cooling pauses in Hui et al.) compared to the intervals cur-
rently proposed by manufacturers (4-6s). In this regard,
Tosoratti et al. [40] assessed pulsed MWA using short on-
intervals (2-8s) and a broad range of duty cycles (20-60%).
However, this study was conducted under ex vivo conditions
without perfusion, which limits the scope of its conclusions.
The use of short (seconds-long) MWA pulses has also been
proposed for other procedures, such as cardiac arrhythmia
ablation [41], but seeking a more uniform myocardial tem-
perature gradient inside the cardiac tissue rather than spher-
ical coagulation zones. Since the currently available
microwave generators for hepatic MWA (e.g. Amica gener-
ator by HS Amica-Gen, HS Hospital Service, Rome, Italy) use
short pulses of only a few seconds we focused on these val-
ues. We thus planned a computer modeling study in five
simulation phases. In Phase 1, the computational model was
validated by our own ex vivo experiments; in Phase 2 we
compared the results obtained with those obtained by
Tosoratti et al. [40]; in Phase 3 we adapted the computa-
tional model to in vivo conditions by including the heat sink
term associated with blood perfusion, and compared the
coagulation zone sizes of short and continuous mode. Phase
4 was planned to study whether long pulses could produce
greater diameters or sphericity than short pulses. In Phase 5
we tested very high-powered short pulses (1000W), as has
been done in the past with radiofrequency [42].

2. Materials and methods
2.1. Ex vivo experiments

Ablations were conducted at room temperature (24°C) on
sections of fresh bovine liver (within less than 24h of the
death of the animal and refrigerated until the experiments).
The tissue temperature ranged from 18 to 22°C. Ablations
were conducted with a 200mm long 14G antenna (HS
Amica-Gen, HS Hospital Service, Rome, Italy) which is a
coaxial-dipole equipped with a mini-choke to avoid back
heating effects and an internal water cooling circuit (at
24°C) to avoid shaft overheating. As shown in Figure 1(A),
the antenna ended in an arrow-shaped head to facilitate

(A) (B)

Figure 1

insertion into tissue. Two different dielectric materials were
used in the antenna design: polytetrafluoroethylene (PTFE) to
cover the tip and alumina for filling the choke and covering
the active antenna length (Figure 1(B)) [43]. A coaxial cable
UT-031-LL connected antenna and Amica generator (HS
Amica-Gen, HS Hospital Service, Rome, Italy) working at
2.45 GHz, which can deliver power in both continuous and
pulsed mode. The pulse mode was in 10s cycles with power-
on for 4s followed by 65 of power-off. During the ablations
the MW generator indicated the value of the reflection coef-
ficient (%), energy supplied (kJ), antenna temperature (°C)
and power (W).

Pulsed and continuous MW ablations were conducted at
different settings: twelve with pulsed powers of 60, 80, 100
and 125W applied for 180, 300 and 600s. Eighteen ablations
with continuous powers of 60 and 80W were applied for
120, 180, 240, 300, 360 and 600s (180, 300 and 600s abla-
tions were repeated twice). Six additional ablations were
made with continuous power of 60W and different times
(120, 151, 200, 254, 373 and 505s). Table 1 shows the num-
ber of experiments made with each power and time for the
pulsed and continuous protocols. In this last set the times
were set to obtain the same level of energy as the 100W
and 125W pulsed ablations for 180, 300 and 600s. Power
losses in the UT-31-LL cable were 11%. The placement of the
antenna in the tissue was guided by an ultrasound system
model (Siemens Sonoline Antares, Erlangen, Germany)

Table 1. Number and characteristics (power and time) of the ex vivo
experiments.

Continuous Pulsed

60 W 80 W

Power (W) Time (s)

120
151
180
200
240
254
300
360
373
505
600

60W 80W 100W 125W
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(A) Geometry and dimensions of 14G MW antenna. (B) Materials making up the antenna. C: Geometry of the computer model and a scheme of the CZ

measures: A represents the axial diameter and B the middle of the transverse diameter. Dimensions in mm and schemes out of scale.



equipped with a Convex probe working at frequencies of
1.54-2.22 MHz to avoid overlapping lesions. After the abla-
tion the coagulation zones were transversally sectioned to
measure the axial and transversal diameters using a caliper
with an accuracy of £1mm. All these measurements were
based on the central ‘white zone’ induced by thermal thera-
pies, excluding the red area of hyperemia. The axial diameter
was measured following the longitudinal symmetry axis of
the antenna and the transverse diameter just perpendicular
to the axis.

2.2. Description of the computer model

The computer modeling was in five phases: 1) simulations
mimicking the conditions of our own ex vivo experiments
(described in subsection 2.1) to validate the computer model;
2) simulations mimicking the conditions of the ex vivo experi-
ments conducted by Tosoratti et al. [40]; 3) mimicking in vivo
conditions; 4) using a pulsed protocol with long pulses; and
5) using very high power (1000W) with short pulses. The
computational model consisted of an antenna (see Figure
1(A,B)) completely surrounded by a 50mm radius and
100mm high cylinder of hepatic tissue (see Figure 1(C)),
which was identical in all three phases. A convergence test
guaranteed that these outer dimensions were sufficiently
large (see Subsection 3.1. Model verification). The problem
presented axial symmetry and hence a two-dimensional ana-
lysis was possible. The length and thickness of each part of
the antenna were extracted from [16,43-45].

We solved a coupled electromagnetic-thermal problem
using COMSOL Multiphysics software (COMSOL, Burlington,
MA, USA). The governing equation for the thermal problem
was the Bioheat equation modified by the enthalpy method
to take vaporization phenomenon into account the [46]:

o(ph)

TIV(kVT)+q+Qp+Qmet (1)

where p (kg/m3) is tissue density, h (J/kg-K) enthalpy, k (W/
m-K) thermal conductivity, T (°C) temperature and t (s) time.
For biological tissues enthalpy is related to tissue tempera-
ture by the following expression [46]:

p,C/ O<T S 990C
o(ph) _oT { huyC 99<T < 100°C )
o ot PgCq T>100°C

where p; and ¢; are density and specific heat of tissue
respectively at temperatures below 100°C (i=/) and at tem-
peratures above 100°C (i=g), hg is the product of water
latent heat of vaporization and water density at 100°C, and
C is tissue water content inside the liver (68%) [47]. Q, is the
blood perfusion heat, which was set to zero in Phases 1 and
2 (which mimics ex vivo conditions) in order to compare with
an ex vivo experiment. In Phase 3, Q, was set to

Q, = Bppcpmp(To—T) (3)

where o, is the blood perfusion coefficient (0.019s7 ), Py
and ¢, are the blood density and specific heat, respectively,
Tp is the temperature of the arterial blood (37°C) and B is a
coefficient that modifies blood perfusion with tissue damage:
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p=0for Q>4.6, and =1 for Q <4.6. The parameter QQ was
assessed by the Arrhenius damage model [48], which associ-
ates temperature with exposure time using a first-order kin-
etics relationship:

t
Q(t) = JAe-%ds (4)
0

where R is the universal gas constant, A (7.39 x 1039s") is a
frequency factor and AE (2.577 x 10° J/mol) is the activation
energy for the irreversible damage reaction. We employed the
D99 thermal damage contour to compute the coagulation
zone dimension, which corresponds to Q =4.6 (99% probabil-
ity of cell death). These same values of the parameters A and
AE were demonstrated to be valid to predict the coagulation
zone boundary including the red area of hyperemia when
Q=1 was used [49]. We also demonstrated here that they are
also able to predict the coagulation zone boundary excluding
the red area when Q =4.6 is used (see Subsection 3.2).

The term Q. refers to the metabolic heat which is negli-
gible in MWA, and was thus not included in our models. The
term g refers to the heat source from MW power. The
absorbed electromagnetic energy, g, was computed from the
electromagnetic field distribution in tissue E (V/m), and is
given by

1
q =0’ (5

where ¢(S/m) was the (effective) conductivity. The time-har-
monic Helmholtz electromagnetic equation was solved to
determine E

’—G) E=0 (6)
WE

prﬁ(VxE)—ké(s,—
0

L, being the relative permeability ratio, which is unity for all
the materials in this model, ko is the propagation constant in
free-space, ¢, is relative permittivity, & (F/m) is the permittiv-
ity of free-space, and o (rad/s) is angular frequency.

In both the electromagnetic and thermal problems an
axial symmetry condition was set in the symmetry axis and
null flux at the outer boundaries. The initial tissue tempera-
ture was set to 20°C in the simulations mimicking ex vivo
experiments (Phases 1 and 2), and 37°C in those mimicking
in vivo conditions (Phase 3). Newton’s law of cooling was
used to model the effect of the antenna cooling circuit, with
a thermal convection coefficient h and a coolant tempera-
ture. In Phase 1, h was 1000 W/K-m? [50] and coolant tem-
perature was 24°C. In Phase 2 and 3, as done by Tosoratti
et al. [40], we considered two combinations of flow rate and
coolant temperature levels: intensive (110 ml/min, 5°C) and
low (25 ml/min, 20°C), which corresponded to h=5943 W/
K-m? and h=2838W/K-m? respectively, according to the
method described in [51].

In the electromagnetic problem, a first-order electromag-
netic scattering boundary condition was applied at the outer
boundaries

nx(VxE)—jkn x(E xn)=0 (7)
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Table 2. Characteristics of materials used in the computer model
[25,27,46,51].
Material o(S/m) g k(W/m-K) p(kg/m3) c(J/kg-K)
Liver 1.8 443 0.564 1050° 3400°
370°¢ 2156°
Copper 587 x 10’ 1 385 9000 384
Alumina 0 10 30 3970 875
PTFE 1.6 x 10° 1.8 0.24 1200 1050
Stainless steel 174 x 10° 1 16.2 8000 500

a: (effective) conductivity; e :
density; ¢: specific heat.
®Measured at 37°C, for temperatures between 37 to 99°C, “for temperatures
higher than 100 °C.

relative permittivity; k: thermal conductivity; p:

This boundary condition is applied at the outer edges of
the simulation domains to approximate a nonreflecting
boundary and provides an approach for implementing a
nonreflecting boundary with considerably reduced computa-
tional requirements (i.e. memory) than a more intensive
absorbing boundary condition, such as perfectly matched
layers. Given the relatively large distance between the radiat-
ing antenna element and the edges of the simulation
domain, and the lossy nature of the intervening tissue, the
electromagnetic waves incident on the boundaries of the
simulation extents are expected to be of very low intensity.
The initial value of the electric field was set at 0V/m. The
input power of both continuous and pulsed cases was speci-
fied as a coaxial port boundary condition at the top of the
antenna. For each power level, the value of the input power
used in the computer model took into account the attenu-
ation in the coaxial cable, using the reflection value provided
by the generator to modify the power value applied in the
model and adapt it to the actual power value. The applied
energy quotient and time provided by the generator also
gave information about the actual power applied for use in
the model.

Table 2 shows the characteristics of materials used in the
model [25,27,47,52]. The inner and outer antenna conductors
were assumed to be copper, while the remaining metal parts
(tip and needle) were assumed to be stainless steel. Tissue
conductivity (g, in S/m) and relative permittivity (¢, dimen-
sionless) were temperature-dependent (7), as in previous
studies [17,21-23,25,53]. We adopted the functions used in
[25]:

1
&(T) =443 <1 7 T 65‘223_0'524T) 8)

1
o(T) =18 (1 1y e6,583—04598T) ©

The model was verified by convergence tests in terms of
domain outer dimensions, mesh size, and time-step. The ref-
erence parameter for the convergence tests was the max-
imum temperature (T,,q) reached after 3, 5 and 10min at
three points 10, 20 and 30mm from the antenna surface.
The domain outer dimensions were those of the reference
[16]. These dimensions were changed +1mm and we
assessed the changes in T, The former dimensions were
used in the model for T, differences of less than 0.5%
between two subsequent simulations. The model mesh was
heterogeneous with a finer size at the antenna-tissue

interface, where the highest electrical and thermal gradients
were expected. All the mesh elements were triangular. The
mesh was verified by repeating the convergence test based
on the analysis of T, Starting from the initial mesh, we
refined it using the automatic COMSOL ‘refine mesh’. For the
time-step, a convergence test verified the use of an adaptive
scheme, since we let the time-stepping method choose time
steps freely.

2.3. Phases of the computer modeling study

Phase 1 considered the same conditions as in our ex vivo
experiments at applied power levels of 60, 80, 100 and 125
Wand Phase 2 considered some of the settings used by
Tosoratti et al. [40] but keeping total energy constant at
16.8kJ for a 10min duration. The coagulation zone was
always assessed 10 min after MWA switch-off to include the
effect of thermal latency during the cool-down period. We
compared continuous mode (at 28 W) vs. pulsed mode with
duty cycles of 20, 40 and 60% and powers of 140, 70 and
46.75 W, respectively. Each duty cycle considered three differ-
ent combinations of ON time/OFF time (ton/tors): 2/8, 3/12
and 4/16s for 20%; 2/3, 4/6, 8/12 for 40%; and 3/2, 6/4 and
12/8 for 60%. Duty cycle was defined as 100 x ton/(ton+torr)-
All these combinations were simulated under intensive and
low conditions of antenna internal cooling (see Section 2.2).
For each simulation we computed the axial (A) and trans-
verse (B) diameters, sphericity ratio (B/A) and coagulation
zone CZ volume (tissue zone with Q > 4.6). We follow the
same pattern in the computer modeling to measure the
diameters: following the longitudinal antenna symmetry axis
(axial) and perpendicular to this axis (transverse), which are
the measurements A and 2B given in Figure 1(C). Phase 3
simulated the same settings as Phase 2 but under in vivo
conditions.

In Phase 4 we planned a set of additional simulations
using long pulses as in [38]. Although we had already
addressed our objective of comparing continuous and pulsed
MWA with short pulses during the previous phases, we
wanted to reinforce our conclusions by determining whether
long pulses would produce the same results. For the two ex
vivo simulations we used a different duty cycle of 25% and
50% at a power of 100W, and followed the combinations of
ON time/OFF time (ton/tore) With values 30/90 and 50/50
according to [38]. Durations of 11.2min and 5.6 min were
used for each duty cycle to reach the same level of energy
(kJ) as in Phases 2 and 3. We also repeated these simulations
for in vivo conditions, changing the ton/torr Values to 75/75
in the 25% duty cycle (as in [38]). All the cases were run
with low internal antenna cooling.

In phase 5 we conducted additional simulations with very
high-powered short pulses (1000W). In [42] the authors
obtained a larger CZ using a pulsed protocol in radiofre-
quency ablation at this level of power. We simulated 60%
DC (6s on and 4s off) and 40% DC (4s on and 65 off) for
both ex vivo and in vivo with durations of 28 and 42s to
obtain an energy of 16.8kJ (equal to that used in Phases 2
and 3) with high internal antenna cooling.



3. Results
3.1. Model verification

Although the outer dimensions of the model were taken
from [16], we conducted convergence tests as described in
Subsection 2.2 and found that a cylinder radius of 50 mm and
height of 100cm and mesh size of 0.03mm at the tissue-
antenna interface (0.15 mm at the outer boundary) were suit-
able, also that the optimal time-step to start the adaptive
scheme was 1s for the continuous mode and 0.1s for the
pulsed mode. We also checked the numerical error associ-
ated with the FEM solver by running 8 identical simulations
at 60 W at continuous mode for 10 min. The results, in terms
of coagulation zone size, showed a difference of + 0.01cm in
the axial diameter and + 0.005cm in the transverse
diameter.

3.2. Ex vivo experiments and model validation

Figure 2 shows the relation between the axial and transverse
diameters computed and those measured in the ex vivo
experiments. Each point represents a pair of values (experi-
mental-computational) obtained with a specific applied
power setting and duration. The pairs of values generally
coincided closely, with coefficients of determination (R?)
>92% for continuous and >96% for pulsed mode. The
regression line fitted a linear trend with the coefficient of the
linear equations close to 1 in all the cases. The regression
line was computed considering zero crossing. When the
experiments were repeated twice, both values were com-
pared with the FEM results. The maximum variability
between repeated experiments was 3mm (for the case of
60W and 180s), which corresponded to an 8% of difference.
The remaining differences were between 0 and 5%.

In order to quantify the error associated with the predic-
tion of the computational model, we calculated the relative
error % as 100x(FEM—Exp)/Exp, where Exp is the experimen-
tal value and FEM is the computational value for the pairs of
values shown in Figure 2. To predict the transverse diameter,
the relative error ranged from +3% to +17% (4+11£4%,
mean + standard deviation) for the continuous mode, and
from +1% to +18% (+9+5%) for the pulsed mode. For the
axial diameter prediction, the relative error ranged from

(A) 45
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—5% to +13% (+2+4%) for the continuous mode and from
—3% to +14% (43 +4%) for the pulsed mode. Although we
stated that the cases with the lowest energy levels had the
highest percentage differences, in terms of mm the differen-
ces were similar in all the cases. The axial diameter had a
mean of differences of 0.9 mm in with two cases with differ-
ences of 4 and 5mm, but differences <2 mm were found in
the rest of the cases, regardless of energy level, power or
whether continuous or pulsed protocol was used. The rela-
tive error was highest in cases with the lowest energy level,
which produced smaller axial diameter values. As in some
cases the computer results had higher values than the
experimental, but not in others, the relative error ranged
from negative to positive values. For the transverse diameter
the computer model results were always higher those of the
experimental. Similarly, in the axial diameter the values dif-
ferences varied from 0.5-5mm but with a higher mean of
2.8mm. Again, as the variability was not related to energy
level, power or protocol, the percentage differences were
higher in the cases with the lowest diameter values.

Figure 3(A,B) shows the coagulation zone created with
pulsed MWA at 125W for 5min. From the center to the per-
iphery we observed the following: 1) strong carbonization
zone (central black zone) around the antenna position, 2)
whitish area characteristic of white coagulation necrosis
(dashed white line), and 3) red area of hyperemia in a
~2mm margin (dashed orange line) (see Figure 3(C)). While
the computational model predicted the axial diameter rea-
sonably well (mean values of 2% and 3% for continuous and
pulsed modes, respectively), it overestimated the transverse
diameter (mean values of 11% and 9% for continuous and
pulsed modes, respectively). Although only the central white
zone was used to estimate coagulation zone size, we also
assessed the position of the boundary including the red
zone and found that the red zone contour could be well rep-
resented by the zone between the isolines Q = 1 and Q =
4.6, regardless of the overestimation of the transverse diam-
eter (compare Figure 3(C,D)).

The power reflection coefficient slightly increased during
each ablation. In continuous mode it remained approxi-
mately constant during all the process with slight variations.
In pulsed mode when energy was applied the reflection

(B) 55 .
- y = 1,0166x ‘o
E 50 R?=0,9207 " ]
S "
§ 45 o q.“'.-.‘.
= :
L)
.g 40 . °
T [ L O
S
= 35
g i
© 30
=
w
w 25 @ continuous
- pulsed
20 3,0 40 5,0 6.0

Experimental axial diameter (cm)

Figure 2. Relation between the computed (FEM) and experimental (ex vivo) values obtained for the transverse (A) and axial (B) diameters of the coagulation zone

for continuous and pulsed MWA. The regression line considered zero crossing.
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Figure 3. (A and B) Coagulations zones created in an ex vivo model with pulsed MWA at 125W for 5 min. The dashed lines represent the contours measured on
the images: white line for the zone with only white coagulation, and orange for the zone with red hyperemia also. The solid lines represent the Q = 4.6 isolines
(white solid line) and Q = 1 (orange solid line) computed by the Arrhenius function to represent the CZ boundary. C and D: Comparison of experimental and com-

putational (FEM) results.

Table 3. Computer result of the simulations mimicking the ex vivo experiments reported by Tosoratti et al [40] (Phase 2).

z

Cooling ton(s) tor(s) DC(%) Time(min) P(W) E(k)) Acm) B(cm) S(%) Vezlem?)
Intensive 2 8 20% 10 140 16.8 4nm 373 91% 28.78
3 12 20% 10 140 16.8 3.90 367 94% 26.15
4 16 20% 10 140 16.8 391 366 94% 2626
2 3 40% 10 70 16.8 3.92 3.60 92% 25.85
4 6 40% 10 70 16.8 3.95 3.64 92% 27.20
8 12 40% 10 70 16.8 3.83 351 92% 24.51
3 2 60% 10 46.75 16.8 381 349 92% 23.50
6 4 60% 10 4675 16.8 378 345 91% 22.55
12 8 60% 10 46.75 16.8 3.93 365 93% 26.82
2 0 100% 10 28 16.8 379 349 92% 23.59
Low 2 8 20% 10 140 16.8 403 3.80 94% 29.14
3 12 20% 10 140 16.8 397 3.69 93% 28.70
4 16 20% 10 140 16.8 4.06 3.64 90% 26.51
2 3 40% 10 70 16.8 3.98 355 89% 25.12
4 6 40% 10 70 16.8 4.05 351 87% 2626
8 12 40% 10 70 16.8 408 354 87% 27.13
3 2 60% 10 46.75 16.8 4.00 352 88% 2522
6 4 60% 10 4675 16.8 403 358 89% 2530
12 8 60% 10 46.75 16.8 4m 362 88% 27.06
2 0 100% 10 28 16.8 403 346 86% 25.15

ton: power activated interval; tore: power inactivated interval; DC: Duty cycle (100-ton/(ton +tore)): P: Power; E: Energy; A and B: Axial and transverse diameter
of coagulation zone, respectively; S: Sphericity ratio (B/A); Vcz: Volume of coagulation zone. Values of DC of 100% correspond with the continuous mode while

values <100% are those of the pulsed mode.

coefficient increased abruptly between 0 and the highest
value (11% at 80 W or 13% at 125W).

3.3. Pulsed vs. continuous mode under ex vivo and
in vivo conditions

Table 3 shows the results of Phase 2, i.e. simulations mimick-
ing the ex vivo experiments reported by Tosoratti et al. [40].
Figure 4 shows the axial and transverse diameters and the
volumes of the coagulation zones for different duty cycles
and for intensive and low cooling. The results showed a
trend toward larger coagulation zones as the duty cycle
decreased, regardless of cooling type. Pulsed mode cases in
general had larger diameters and CZ volumes than the con-
tinuous mode. With intensive cooling there seems to be no
difference between pulsed and continuous mode sphericity
(values ranging from 91-94%), at low cooling it tended to be
lower in continuous than pulsed mode with a low duty cycle

(86 vs. 94%). The greater sphericity obtained with intensive
cooling in pulsed mode was not really produced by the
greater transversal diameter, as would be desirable, but by
the smaller the axial diameter due to antenna cooling. The
differences between the pulsed and continuous modes at
both intensive and low cooling reached 7% in terms of CZ
volumes.

Table 4 shows the results of Phase 3 with the same cases
as in Phase 2 under in vivo conditions. As in ex vivo, they
showed a trend toward larger coagulation zones at lower
duty cycles and practically all the pulsed cases produced
higher diameters and volumes than the continuous mode,
whatever the cooling. However, only in the volume of the
CZ we observe significant differences of 14%. Similar spher-
icity was found in both modes with no apparent trend in
pulsed cases. The axial and transverse CZ diameters com-
puted for the in vivo case were 14 and 16% smaller than the
ex vivo, respectively, which implied a reduction of ~50% in
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Figure 4. Axial and transverse diameters (A and B) and volumes of the coagulation zones (C and D) computed under ex vivo conditions for different duty cycle val-
ues with intensive and low cooling. Duty cycles of 100% are those of the continuous mode while values <100% are in the pulsed mode.

Table 4. Computer result of the simulations mimicking in vivo conditions (Phase 3).

cz

Cooling ton(s) tof(S) DC(%) Time(min) P(W) E(kJ) A(cm) B(cm) S(%) ch(cm3)

Intensive 2 8 20% 10 140 16.8 3.50 3.01 86% 14.85
3 12 20% 10 140 16.8 348 3.03 87% 14.43
4 16 20% 10 140 16.8 3.45 3.03 88% 13.56
2 3 40% 10 70 16.8 342 3.05 89% 13.76
4 6 40% 10 70 16.8 3.48 3.19 92% 14.31
8 12 40% 10 70 16.8 3.39 3.07 91% 12.24
3 2 60% 10 46.75 16.8 3.28 2.98 91% 11.01
6 4 60% 10 46.75 16.8 3.36 3.03 90% 12.55
12 8 60% 10 46.75 16.8 333 3.00 90% 12.84
2 0 100% 10 28 16.8 3.20 2.93 92% 10.14

Low 2 8 20% 10 140 16.8 3.61 3.03 84% 13.05
3 12 20% 10 140 16.8 3.58 3.02 84% 12.45
4 16 20% 10 140 16.8 3.57 3.03 85% 12.36
2 3 40% 10 70 16.8 348 3.03 87% 12.85
4 6 40% 10 70 16.8 3.46 2.99 86% 12.87
8 12 40% 10 70 16.8 3.30 2.95 89% 12.03
3 2 60% 10 46.75 16.8 3.50 3.01 86% 13.55
6 4 60% 10 46.75 16.8 335 2.96 88% 12.05
12 8 60% 10 46.75 16.8 3.56 3.03 85% 12.56
2 0 100% 10 28 16.8 3.44 2.93 85% 12.19

ton: power activated interval; tor: power inactivated interval; DC: Duty cycle (100-ton/(ton +tor)): P: Power; E: Energy; A and B: Axial and transverse diameter
of coagulation zone, respectively; S: Sphericity ratio (B/A); Vcz: Volume of coagulation zone. Values of DC of 100% correspond with the continuous mode while

values <100% are those of the pulsed mode.

CZ volume. This behavior was similar both for low and inten-
sive cooling.

3.4. Use of long pulses under ex vivo and in vivo
conditions

Table 5 summarizes the results obtained using long pulses.
The most relevant finding was that long pulses presented
smaller diameters and volumes for the 25% duty cycle (ton/
torr=30/90) than all the short pulse cases. The results
obtained with duty cycles of 50% (ton/torr = 50/50 or 75/75)

were similar to those obtained with short pulses. These find-
ings were identical for both ex vivo and in vivo conditions.

3.5. Use of very high-power with short pulses under ex
vivo and in vivo conditions

Table 6 shows the cases considered using very high-powered
pulses (Phase 5) outlined in orange. The rest of the cases in
Table 6 were extracted from Tables 3 and 4 in order to com-
pare them to the high and lower power results. From the ex
vivo results we observed that the CZ was less spherical at
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Table 5. Computer result of the simulations using long pulses.

cz
ton(s) tof(S) DC(%) Time(min) P(W) E(kJ) A(cm) B(cm) S(%) Vez(cm®)
Ex vivo 30 90 25% 1.2 100 16.8 4.04 3.40 84% 22.51
50 50 50% 5.6 100 16.8 4.07 3.61 88% 24.84
In vivo 30 920 25% 1.2 100 16.8 3.14 2.7 86% 8.59
75 75 50% 5.6 100 16.8 3.6 2.98 83% 12.85
Table 6. Computer result of the simulations using short pulses with very high power utlined in orange.
Condition ton (S) tofr (5) DC (%) Time (s) P (W) E (k) A (cm) B (cm) S (%) Vez (cm3)
Ex vivo 6 4 60% 28 1000 16.8 4.74 3.28 69% 24.07
6 4 60% 600 46.75 16.8 3.78 3.45 91% 22.55
4 6 40% 42 1000 16.8 4.95 3.57 72% 28.03
4 6 40% 600 70 16.8 3.95 3.64 92% 27.20
In vivo 6 4 60% 28 1000 16.8 461 3.40 74% 24.38
6 4 60% 600 46.75 16.8 3.36 3.03 90% 12.55
4 6 40% 42 1000 16.8 4.85 339 70% 26.67
4 6 40% 600 70 16.8 3.48 3.19 92% 14.31
The rest of the cases were extracted from Tables 3 and 4.
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Figure 5. CZ contour at the end of the application of the first pulse (gray line) and at the end of power application (black line) for 1000 W (A-B) and 46.75W (C-D)
under ex vivo (A-C) and in vivo (B-D) conditions. All cases were with a 60% protocol (6s on - 4 s off).

1000W, as the axial diameter increased significantly while
the transverse diameter decreased slightly, compared to the
cases at lower powers. Despite these changes, the CZ vol-
ume remained similar, regardless of power. Under ex vivo
conditions, a high power of 1000W implied similar CZ vol-
ume but less sphericity. We also found that the axial diam-
eter increased significantly in vivo, although the transversal
diameter also increased, which meant larger CZ volumes at
1000 W. In fact, the in vivo cases gave similar results to those
obtained from ex vivo cases, and again with a less spherical
CZ than at lower powers. Figure 5 shows the CZ contour at
the end of the application of the first pulse (gray line) and at
the end of power application (black line) for T000W (A-B)
and 46.75W (C-D) under ex vivo (A-C) and in vivo (B-D) con-
ditions. All these were cases with a 60% protocol (6s on and
45 off). No CZ was produced at the end of the first pulse at
46.75W, so no gray line is shown. The less spherical CZ can

be clearly seen in Figure 5 in the 1000 W cases, with the CZ
mostly extended in the axial direction.

At very high power, the temperature rose faster and so
did CZ volume. Figure 6 shows the CZ volume evolution dur-
ing MW power application including the 10 min of thermal
latency. The dashed colored lines show the end of the power
application in the different cases. The CZ growth rate is
much higher in the 1000 W protocols, while all the ex vivo
cases have similar volumes. The main differences between
the final CZ volumes and the growth rate were between
high-powered in vivo cases and lower power values. In all
the cases the CZ volume increased similarly during latency
and was higher under ex vivo conditions. Also, higher tem-
peratures were reached around the antenna at very high
power. Similar temperatures were achieved around the
antenna in both ex and in vivo cases at very high power:
180°C and 170°C at the end of power application and at
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Figure 6. Evolution of CZ volume during the MWA, including the 10 min cooling phase in which CZ can increase due to thermal latency. Dashed colored lines

show the end of the power application in the different cases.

the end of the first pulse, respectively. However, maximum
temperatures were lower using the same DC but short pulses
at 46.75W: 120°C and 38°C at the end of the power applica-
tion and first pulse for ex vivo, and 105°C and 55°C for
in vivo.

4, Discussion
4.1. Experimental validation

While the computational model predicted the axial diameter
reasonably well (mean error 2-3%), it overestimated the
transverse diameter by 9-11%. We think that this can be due
to tissue shrinkage during MWA, which can be up to 15-50%
along one diameter in ex vivo liver [54] and was not taken
into account in our model. In fact, it has been reported that
shrinkage is non-uniform and is greater in the radial direc-
tion (transverse diameter) than longitudinal (axial diameter)
[55], as we found. Liu and Brace reported ~20% in the radial
and ~10% in the longitudinal direction [56]. An accurate
value cannot be given for shrinkage since there is a great
variation in the literature, e.g. 21.7% [57], 23-43% [55], and
31+£6% [58].

Our prediction errors (2-3% for axial and 9-11% for trans-
verse diameter) are partially in agreement with those
reported in other studies which included an experimental
validation. For instance, Cavagnaro et al. [23] reported errors
between —18.5% and 15.5% for the axial diameter and
—9.09% and 10.2% for the transverse diameter (continuous
MWA at 40 W); Chiang et al. [34] reported transverse diame-
ters with differences between experiments and computa-
tional results of ~5% (calculated by us); and Singh et al. [59]
estimated a difference of 5.4% for the transverse and 13%
for the axial diameter between experiments and simulations.
As the differences in mm remain remarkably constant in all
the cases, we found higher percentage differences in the
cases with the smallest coagulation zone diameters.

4.2. Pulsed vs. continuous mode under ex vivo
conditions

Overall, our results show that under ex vivo conditions the
pulsed mode does not guarantee larger coagulation zones
than the continuous mode, since both ranges of CZ volumes
(computed for pulsed and continuous modes) overlap. This is
in agreement with Tosoratti et al. [40], who found that
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pulsed and continuous mode created similar coagulation vol-
umes at the same power levels. According to Tosoratti et al.
[40] the pulsed mode presents greater sphericity (at intensive
cooling and settings of toy = 2s and DC = 20% and toy =
4s and DC = 40%). Although we did not find different
sphericity between pulsed and continuous modes, we did
obtain slightly higher sphericity values with intensive cooling
and high DC values. In this regard, it is important to remem-
ber that aiming for more spherical coagulation zones is due
to the interest in obtaining a larger transverse diameter. In
the simulated cases with pulsed mode and intensive cooling,
the greater sphericity did not mean a greater transverse
diameter, which was due to the shorter axial diameter, i.e.
cooling type influences sphericity since it increases axial
diameter at low cooling but does not produce a larger trans-
verse diameter with intensive cooling.

4.3. Pulsed vs. continuous mode under in vivo
conditions

The in and ex vivo simulations showed similar tendencies,
suggesting that the pulsed mode does not guarantee larger
coagulation zones than the continuous mode. The only
appreciable difference was the differences in CZ diameters
and volumes with both types of cooling were smaller in vivo,
suggesting that the heat sink effect of blood perfusion and
initial tissue temperature moderates the effect of antenna
cooling.

When ex vivo and in vivo results were compared (regard-
less of application mode) the in vivo results showed axial
and transverse coagulation zone diameters 14 and 16%
smaller than ex vivo, respectively, which means 50% smaller
CZ volumes, which agrees with previous experimental stud-
ies. Amabile et al. [60] found ~50% less CZ volume at 60 W
continuous MWA for 5 and 10 min, with differences of ~25%
and ~12% in axial and transverse diameters, respectively.
Wang et al. [61] also reported differences of ~12% between
ex and in vivo for both axial and transverse diameters for
10min 50 W continuous MWA. The only data available to
compare the outcomes of pulsed ex and in vivo MWA is that
of Bedoya et al. [38], who obtained widely dispersed results
for 25 and 50 W MWA for 10 and 5 min, with differences of
18-37% in the axial and 0-28% in the transverse diameter.

4.4. Use of long pulses

Some manufacturers, such as Amica (HS Amica-Gen, HS
Hospital Service, Rome, Italy), offer short-pulse MWA devices.
We found that using long pulses with the same Amica
antenna did not produce better results and they could have
been even worse, as with a duty cycle of 25%, when worse
results were obtained than those with 50% cycles, in agree-
ment with the findings reported in [38]. A qualitative com-
parison with the results of [38] was not possible because of
the different experimental conditions, especially the
uncooled antenna used by these authors, which must have
been the reason for the less spherical coagulation zones.
Neither were the CZ volumes comparable with ours since

they used diameters instead of radii to calculate the volume
of the ellipsoid and thus considerably overestimated the CZ
volume.

4.5. Use of very high-power with short pulses

The aim in MWA is to create a large CZ volume with a long
transverse diameter, i.e. a CZ as spherical as possible.
However, as 1000 W was associated with less sphericity than
lower powers it does not seem to be an optimal protocol.
Interestingly, a power of 1000 W created larger CZ volumes
than lower powers under in vivo conditions. From the tem-
perature values and the CZ shape obtained, our hypothesis
is that the effect of the internal cooled antenna and blood
perfusion is less important than the higher temperature gra-
dients produced at 1000 W. The axial CZ growth found in the
1000 W cases suggests the minimal effect of the internally
cooled antenna circuit. However, despite the larger CZ vol-
ume obtained in vivo in the very high-powered cases, the
increase in the transverse diameter is not as large as desired,
while the use of this power level could involve increased
risks to the patient.

4.6. Limitations of the study

Some limitations have to be pointed out. First, relatively low
energy values were used (16.8 kJ) in both ex and in vivo con-
ditions (Phases 2 and 3) in comparison with some continu-
ous mode clinical studies, which ranged from 33.6 to 183.9kJ
[6,62-66]. However, low energy values from 6 to 19.2kJ
[64,65,67] have also been used. As the output power of the
microwave generator used in the experiments is limited to
140 W in the pulse mode, the energy is therefore limited to
16.8 kJ to simulate a 20% 10 min duty cycle. Neither was tis-
sue shrinkage considered in the theoretical modeling, which
could cause differences in the transverse diameter values of
the experimental and computational results.

Current references [22,68] suggest thermal conductivity or
specific heat temperature- dependent functions should be
used in the computer modeling. Previous studies have
shown that considering a thermal conductivity temperature-
dependent function has a negligible effect on the results
[69,70] and so we did not consider it in the study. The vari-
ation of the specific heat was included in vaporization mod-
eling through the enthalpy method. As the comparisons with
other vaporization methods [71] provided differences in axial
and transverse diameters <1% we considered using the
enthalpy method to model water vaporization, which
includes the variation of the specific heat value.

5. Conclusions

The characteristics of coagulation zones created by continu-
ous and pulsed MWA show no significant differences from ex
vivo experiments and computer simulations. These conclu-
sions were confirmed in the simulations under in vivo condi-
tions. As such, the proposed idea of enlarging coagulation
zones and improving sphericity by using the pulsed mode



was not confirmed in this study. Since the pulsed mode
requires higher power levels or longer ablations than the
continuous mode in clinical practice, the findings do not
suggest an appreciable advantage associated with the pulsed
mode.
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