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València. 46022 Spain.

bInstituto de Seguridad Industrial, Radiof́ısica y Medioambiental (ISIRYM). Universitat Politècnica de València. Camı́ de
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Abstract

SuiteSparseQR is a factorization package for sparse matrices oriented to parallelism in multicore archi-
tectures. It employs BLAS and LAPACK as well as Intel’s Threading Building Blocks to achieve high
performance. Through the SPQR method implemented in this package we can use the QR decomposition
to reconstruct CT images efficiently. In this paper, we analyze the behavior of the package applied to the
reconstruction of medical CT images, studying the quality of the obtained image. To this purpose, we use
the image dataset DeepLesion, which provides various CT studies of different lesions in different organs
or tissues. We also compare it to our previous iterative reconstruction method called LSQR. This new
method is promising since the computations are simplified if we compare it to the iterative options and the
reconstructions are high-quality, as the results show.
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1. Introduction

Currently, Computerized Tomography (CT) studies are well established in clinical practice for the di-
agnosis of multiple diseases as well as for their monitorization. Unlike other medical imaging methods for
diagnostics such as Magnetic Resonance Imaging (MRI) or ultrasounds, the high power X-rays generated
during CT scanning is a hazard for all patients, especially for vulnerable patients such as children or preg-5

nant women, and also cancer patients who require regular scans to assess the evolution of the disease (Kak
and Slaney, 2001).

Several studies have shown the generalized increase of cancer incidence all over the world, and also the
projection of cancer-provoked deaths by 2020 and 2030 (Rahib et al., 2014). For instance, the risk of having
any type of cancer is about a 30% nowadays in the European Union, according to the The International10

Agency for Research on Cancer (“IARC”). The statistics for 2018 are summarized in (Bray et al., 2018).
Also the projections show an decrease of mortality rates but the incidence is going up in general terms, and
at a higher pace for several types such as lung, breast or thyroid cancer.

Since the radiation produced by an X-ray machine can induce cancer by itself, it is necessary to develop
new methods that can allow reducing it to the maximum while still having a good image quality that helps15

physicians make accurate diagnostics.
Since the issue of radiation came across, the reconstruction techniques for CT scans have significantly

changed. When this clinical test started, they used methods that were based on the Fourier transform. They
are called analytical reconstruction methods and to this day they remain being the most used in clinical
practice, being all modifications of the filtered-backprojection (FBP) algorithm (Feldkamp et al., 1984; Tang20

et al., 2006). That is due to their fast reconstructing times, since you can have a complete CT scan in a
matter of seconds.
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Preprint submitted to Journal of Radiation Physics and Chemistry April 15, 2019



However, they are not the best option regarding radiation, since they need a complete set of projections
to obtain a good-quality image. If the number of projections is reduced, the resulting images have artifacts
such as rings or beam-hardening that can mean they are invalid for diagnosis.25

On the other hand we find algebraic methods, that can be either iterative or direct. Iterative techniques
such as ART (Andersen, 1989), SART (Andersen and Kak, 1984) or LSQR (Flores et al., 2014, 2015;
Parcero et al., 2017) perform an approximation to the solution image and they obtain a good balance
between radiation dose and image quality since they allow us reducing the numbers of projections taken
when doing a CT scan. Nevertheless, they are really slow methods since they iterate to approximate the30

result image.
Direct methods are not widely explored for this field due to their high computational cost for the

large matrices we are working with. But with hardware evolving fast and becoming more affordable, It is
now possible to compute factorizations of extremely large matrices. If we also take advantage of parallel
computing or High-Performance Computing (HPC) it is possible to take the direct algebraic approach to35

the CT image reconstruction problem.
In this paper we focus on the application of the QR matrix factorization for CT image reconstruction.

We perform the QR decomposition in a cluster using the software included in the package SuiteSparseQR
(Davis, 2011). This package gives us a lot of basic sparse matrices algebraic algorithms and also provides
the possibility of using BLAS threads as well as Intel Threading Building Block (TBB) that can parallelize40

the factorization code and allows us to exploit our hardware resources to the maximum. In works like
(Rodŕıguez-Alvarez et al., 2018) they perform the QR factorization to reconstruct small CT images but
as they mention, the method is not parelellized or optimized to reduce the fill-in of the matrix, which the
implementation in this packages does. In our previous work (Chillarón et al., 2018), we did a preliminary
study in which we applied the multifrontal sparse QR (SPQR) method to reconstruct phantom images, in45

order to determine its feasibility. We concluded the maximum resolution we could reach with the hardware
we have available is 256x256 pixels. Besides, we observed we need a full-rank system matrix to reconstruct
the images, which in this case is obtained with 90 projection angles.

In Section 2, we will describe the method used to simulate a CT scanner, as well as the way to perform
the reconstruction of a CT sinogram using the QR factorization or the LSQR method. We also make a50

brief description of the images dataset DeepLesion, used to take as reference, and the metrics we use to
measure the image quality. In Section 3 we will analize the performance in terms of quality of the CT
reconstructions using the QR decomposition. Moreover, the resulting images will be compared to the best
quality reconstructions obtained through LSQR so we can determine which method is a better alternative
and discuss the disadvantages of each of them. To conclude, in Section 4 we summarize and discuss the55

advantages of the studied methods and propose a future line of work.

2. Material and Methods

2.1. Computerized Tomography

The CT image reconstruction problem can be modelled as described in Eq. (1), so it can be be solved
by algebraic methods. In this linear equations system, A (Eq. (4)) is the system matrix or weights matrix,60

which measures the contribution of each ray beam traced (i) to each image pixel (j ). We calculate this
matrix using the Joseph method (Joseph, 1982). The size of A is M × N , being M the size of the x-ray
projections (no of views*no of detectors) and N the resolution of the image to be reconstructed (32 × 32,
..., 512× 512 pixels). The projection data is g (Eq. (2)), which is the X-ray sinogram represented in vector
form. Last we have the vector u (Eq. (3)), or the solution image we get when we solve the system (Eq. (1))65

for u.

A ∗ u = g (1)

g = [g1, g2, ..., gM ]T ∈ RM (2)

u = [u1, u2, ..., uN ]T ∈ RN (3)

A = ai,j ∈ RMxN (4)
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2.2. QR reconstruction method
If the rank of the system matrix A is complete, the problem could be solved directly using its inverse

as Eq. (5). But our matrices are too large to explicitly calculate the inverse. It would imply a high70

computational cost and the accumulating errors could distort the solution image.
Instead, we use the QR factorization (Golub and Ortega, 1993) of A (Eq. (7)), where the matrix Q is

orthogonal and R is upper triangular. Besides, we perform the decomposition version with pivoting, where
the permutation matrix P is used to reduce the fill-in of the matrices in the factorization process. With this
factorization we simulate the inverse as Eq. (8) (or pseudoinverse as Eq. (6) if A is rank-deficient).75

In this way we can solve the problem with direct algebraic methods as Eq. (9) and most of the computations
can be made in advance and store for later use to reconstruct the image.

u = A−1 ∗ g (5)

u = A+ ∗ g (6)

A ∗ P = Q ∗R (7)

A−1 = PR−1QT (8)

u = P ∗ (R−1(QT ∗ g)) (9)

2.3. Q-less reconstruction method
An alternative to the traditional QR factorization is using Householder reflections. This means we80

don’t need to explicitly calculate and store Q. Instead, we can store only the transforms to be applied in
Householder form as Eq. (10), where Hi are the successive reflection matrices. By doing this, we significantly
reduce the computational cost and we spare main memory resources, which is vital to this scenario.

Q = H1H2 · · ·Hm−2Hm−1 (10)

2.4. Least Squares QR reconstruction method85

The problem in Eq. (1) can also be solved by iterative algebraic
methods. The Least Squares QR method, presented in (Paige and
Saunders, 1982), is a good choice for sparse and possibly rank-deficient
systems as is our case. We verified its validity in our previous works
(Flores et al., 2014, 2015; Parcero et al., 2017; Chillarón et al., 2017).90

This method is based on the bidiagonalization method by Golub
and Kahan (Golub and Kahan, 1965). It solves the system by mini-
mizing ‖g−Au‖2, generating a sequence of approximations uk such as
the 2−norm of the residue (being the residue rk = g − Auk for itera-
tion k) decreases monotonically. The complete LSQR process is shown
in Algorithm 1, where αi and β1 are chosen to normalize the corre-
sponding vectors. For instance, the operation α1v1 = ATx1 implies
computing v̄1 = ATx1, α1 = ‖v̄1‖ and v1 = (1/α1)v̄1.

95

In our reconstruction method, we combine this iterative method
with a regularization technique called Soft Thresholding Filter
(STF)(Yu and Wang, 2010; Yu and Zeng, 2014) and an acceleration
step called Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)
(Beck and Teboulle, 2009). Both of these techniques help with the con-
vergence rate and they are especially needed for ill-conditioned prob-
lems. The combination is as follows:

100

105

1. Initialization: u0 = 0

2. Iterate:

• Update the current reconstruction using a fixed number of LSQR
iterations.

• Perform the filtering step using STF110

• Apply acceleration technique FISTA

• Return to step (2) until the stopping criterion is satisfied or we
reach a maximum number of iterations

Algorithm 1 LSQR

INPUT: A, g, u0, iter
OUTPUT: u

1) Initialize
β1x1 = g
α1v1 = ATx1

w1 = v1

φ1 = β1

ρ1 = α1

for i=1:iter do
2) Bidiagonalization

βi+1xi+1 = Avi − αixi

αi+1vi+1= ATxi+1 − βi+1vi

3) Update scalars
ρi = (ρi

2 + βi+1
2)1/2

ci= ρi/ρi
si= βi+1/ ρi
θi+1= siαi+1

ρi+1 = -ciαi+1

φi= ciφi

φi+1= siφi

4) Update solution
ui=ui-1 + (φi/ρi)wi

wi+1=vi+1 - (θi+1/ρi)wi

end for
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As stopping criterion, we take the relative residual ‖g − Au‖2/‖g‖2, set to a minimum tolerance which115

is usually 1e-06. On each iteration, we take the solution modified by FISTA as the initial solution for the
next LSQR iteration.

2.5. Image Quality Metrics

To measure the quality of the reconstructed images, we have used the metrics PSNR (Peak Signal-To-
Noise Ratio) and SSIM (Structural Similarity Index) (Hore and Ziou, 2010). The PSNR metric measures120

the ratio between the image signal and the noise it contains. To calculate it, another metric is used, the so-
called Mean Square Error (MSE), which is calculated according to Eq. (11), and represents the mean of the
squared error between the reference image I0 and the reconstructed image u. Once the MSE is calculated,
it is used to calculate the PSNR according to Eq. (12), in which MAX represents the maximum value that
a pixel can take. The higher the PSNR value we get, the better the reconstruction we have.125

With SSIM we can measure the internal structures (shapes) of the images compared with the reference
image. Therefore, it does not look at the gray levels of the pixels, but the shapes of the reconstructed image
with respect to the reference image, and therefore measures what is perceptible to the human eye. It is
applied through windows of fixed size, and the difference between two windows x and y corresponding to
the two images to be compared is calculated, using Eq. (13). In this equation, µx and µy denote the average130

value of the window x and y, σ2
x and σ2

y the variance, σxy the covariance between the windows, and c1 and
c2 are two stabilizing variables dependent on the dynamic range of the image.

MSE =
1

MN

M−1∑
i=0

N−1∑
j=0

||I0(i, j)− u(i, j)||2 (11)

PSNR = 10 ∗ log10
MAX2

I0

MSE
(12)

SSIM =
(2µxµy + c1)(2σx,y + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(13)

2.6. CT Images Dataset

To test the validity of our reconstructions, we used images pertaining to DeepLesion (Yan et al., 2018), a135

dataset with 32,735 lesions in 32,120 CT slices from 10,594 studies of 4,427 unique patients. In this images
collection we can find CT studies for different types of lesions, with tags that divide them into eight classes:
Bone, Abdomen (that are not Liver or Kidney), Mediastinum, Liver, Lung, Kidney, Soft tissue and Pelvis.

We choose one image for each lesion category, shown in Fig. 1. The images were chosen randomly, one
for each type of lesion, and selected from a list of the key slices from each study provided by the authors.140

Since these images are already reconstructions, it is implied the scanner software used its own algorithms
to try to remove Poisson noise, as well as the artifacts due to detectors noise or beam hardening. But the
images we use as reference can still have some noise since they are real reconstructions.

This dataset gives us the required variety of images to test our reconstructions, both with direct and
iterative methods. For this purpose, we project the selected images with Joseph (Joseph, 1982) method145

as we described in Section 2.1. Although the original resolution of the images is 512x512 pixels, we resize
them to 256x256 pixels since it’s the highest resolution we can compute at the moment. The sinograms were
simulated for a scanner with 1025 detectors and using 90 views along the 360 degrees of rotation. Then, we
measure the quality of the results with the metrics PSNR and SSIM (Hore and Ziou, 2010) and we also try
to locate the lesion shown in the reference projected image.150
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(a) Bone (b) Abdomen (c) Mediastinum (d) Liver

(e) Lung (f) Kidney (g) Soft Tissue (h) Pelvis

Figure 1: Selected images classified by type of lesion

3. Results and Discussion

We have used the eight images of selected lesions to reconstruct with each method and compare the
results obtained. All the computations have been made in an HPC cluster with four Intel Xeon E5-4620
8c/16T processors (8 cores/processor, 32 cores/node) and 256GB DDR3 RAM memory (ratio 8GB/core),
using up to 32 threads.155

With SPQR, the reconstruction is trivial since it consists of computing Eq. (9), using the QR factorization
previously performed and stored. With LSQR, the process is more complex, since as we analyzed in our
previous work (Chillarón et al., 2017), in our method (which combines LSQR, the STF filter, and FISTA
acceleration) several parameters need to be adjusted in order to get the better result possible. Therefore,
the reconstruction has to be supervised since there is no guarantee of convergence.160

In Fig. 2 we show the PSNR (Peak Signal-to-Noise Ratio) and SSIM (Structural Similarity Index) of the
two techniques for each lesion image. To measure this, we selected the image region that has the body part,
eliminating the outer region with only air.

As we can see in Fig. 2a, the reconstructions obtained by LSQR seem to be of much lower quality
than those obtained by QR reconstruction, having a difference of around 200 in the PSNR value. The165

reconstructions with the QR can be considered noiseless with these results, compared to the reference
image. The mean squared error (MSE) is of the order of 1e-24 in this case, while for the reconstructions
with LSQR it is of the order of 1e-05. Therefore, reconstructions with the iterative method have more noise,
while the ones obtained with the QR are practically identical to the reference image. These results are
logical since the iterative method is stopped at a desired tolerance, while the reconstruction with the QR is170

direct and the result is not approximated but calculated.
Regarding the SSIM results, shown in Fig. 2b, the difference is not as big. In every case, the QR

reconstructions SSIM value is 1, which is the maximum possible. Nevertheless, for the LSQR the minimum
SSIM is 0.996, which can be considered a high-quality result.

For some lesions (Bone, Mediastinum and Soft Tissue) the SSIM value is above 0.999. This means175

even though the reconstructions could be noisy, the internal structures of the CT images are well preserved
generally speaking. But we could still be losing relevant information with LSQR, since SSIM is not always
1, which doesn’t happen with the direct method.
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(a) PSNR results (b) SSIM results
Figure 2: Quality of the reconstructions

To visually check if we lose information, we show the reconstructed images in Fig. 4 to Fig. 11, each
one with the lesion’s bounding box marked with a green rectangle in the reference image, as well as in the180

reconstructions. We show the appropriate Hounsfield window to correctly visualize each one of the lesions,
as instructed in the dataset information.

In every case, we have been able to locate the lesion in both of the reconstructed images. In addition,
we can see the LSQR results are better than expected since the numerical error is not visually discernible
when showing the relevant window. So even if the quality metrics indicate a significant difference, we don’t185

perceive it as such. We can notice a slight blurriness in every LSQR reconstruction, but it does not alter
the image much.

As an example of this, we provide a zoomed-in image of the reconstructions corresponding to the Liver
lesion in Fig. 3. As we can see, the area of the liver is smoother on the LSQR reconstruction, which differs
from the reference image (Fig. 7). In addition, the edges are slightly more defined on the QR reconstruction,190

as can be observed in the lesion bounding box. But the difference is still small, as it is for the other lesion
reconstructions.

In some particular cases, as can be the image corresponding to the Mediastinum lesion (Fig. 6), we
observe that the QR reconstruction is identical to the reference, but not the LSQR. When windowing the
image to the desired Hounsfield Window, we lose some information. That does nor mean the information is195

not there, just that by windowing we can not see it because the Hounsfield value is not exactly the same in
the LSQR reconstruction.

(a) QR rec. (b) LSQR rec.

Figure 3: Liver Lesion (zoomed-in)
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(a) Reference (b) QR rec. (c) LSQR rec.

Figure 4: Bone Lesion. HU Window=[-1500,500]

Figure 5: Abdomen Lesion. HU Window=[-175, 275]

Figure 6: Mediastinum Lesion. HU Window=[-175, 275]

Figure 7: Liver Lesion. HU Window=[-175, 275]

Figure 8: Lung Lesion. HU Window=[-1500, 500]

Figure 9: Kidney Lesion. HU Window=[-160, 240]

Figure 10: Soft Tissue Lesion. HU Window=[-160, 240]

Figure 11: Pelvis Lesion. HU Window=[-175, 275]
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4. Conclusion

In the present work, we have determined the validity of a direct algebraic method for the reconstruction200

of CT images. To do this, we have used various images belonging to the DeepLesion dataset, representing
different parts of the body with different types of lesions.

In our previous work (Chillarón et al., 2018), we determined that the case with the highest resolution
that we can solve by means of the QR factorization is for images of 256x256 pixels. This is because we need
the system matrix A that models the CT scanner to have full rank to get valid results. Therefore, we have205

to take at least 90 projections. If we went up to 512x512 pixels resolution, we would have to use 260 views,
and the A matrix would be of size 266500x262144 in our simulations. This case is not computable with the
algorithms provided by SuiteSparse and the hardware that we currently have. However, it is possible to
solve it by means of LSQR, since we don’t factorize the matrix which is always sparse, just operate with it
performing matrix-vector products. Therefore it needs less computational resources. In addition, for LSQR210

we do not need the matrix to be full rank. We can obtain good reconstructions with fewer projections, as
shown in our previous works (Chillarón et al., 2017; Parcero et al., 2017). Therefore, although using QR we
can reduce the number of projections with respect to analytical methods, we do it to a lesser extent than
with LSQR.

On the other hand, the reconstruction is much simpler with the direct method, since we can factorize215

the matrix once before the reconstruction and have it always stored. When reconstructing, we solve Eq. (9),
which is quite fast. In this case, we solved a full volume with 128 slices in less than 30 minutes, depending on
the number of cores used, using the Householder form to store Q. If we used the explicit Q, the time required
to reconstruct the same volume is doubled. To reduce this time and use less resources, we are working on
a new QR factorization algorithm that uses out-of-core techniques to read the data stored in blocks only220

when it is needed, so we can reconstruct higher resolutions. In addition, since it is a direct operation we can
delimit the time it will take depending on the hardware used.

This is not possible with LSQR, since it is an iterative method. We never know how many iterations it
will need to converge or if it will converge. We could set it to a number of iterations to delimit the time,
but in this way, we can not guarantee a minimum tolerance. In addition, the selection of parameters that225

influence reconstruction should be supervised. Besides, we currently don’t have a tested implementation to
solve several right-hand-side vectors with LSQR, so we need to solve each slice independently, unlike with
the QR. All in all, we’re talking about several hours to get a full volume reconstruction. However, we are
working on implementing a Block LSQR using parallel libraries to reconstruct several right-hand-sides, and
our preliminary tests show a similar performance than the QR reconstructions using the Householder form230

when the parameters are well selected.
Regarding the image quality, we have been able to observe that the reconstructions that are obtained

applying the direct method based on the QR decomposition are perfect, practically speaking. It can be
said that there is no error with respect to the reference images. Nevertheless, it must be noted that in our
simulations we are not considering or removing the possible noise generated in the acquisition process of235

a real CT scanner. In addition, we have compared them to the reconstructions obtained by our previous
method based on LSQR. These reconstructions show worse quality from the numerical point of view, which
we have verified analyzing the results with both PSNR and SSIM metrics. However, when viewing the
images we see that even LSQR obtains reliable results since we are only able to appreciate a slight blurring
in some areas.240

For all the above we determined that both methods are valid to reconstruct CT images with an algebraic
approach. However, the accuracy of the QR method as well as the simplicity of the process is preferable
from the point of view of image quality. Nevertheless, this method requires greater computational resources,
as well as a greater number of views than the LSQR, with which we can solve larger problems.
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