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Abstract

A subset & of an algebra . of subsets of £2 is a Nikodym set for ba (<) it each ZA-pointwise
bounded subset M of ba(</) is uniformly bounded on </ and £ is a strong Nikodym set
for ba (<) if each increasing covering (%,,);,_, of % contains a %, which is a Nikodym
set for ba(</), where ba(<7) is the Banach space of the real (or complex) finitely additive
measures of bounded variation defined on «7. The subset 8 has (V HS) property if Z is
a Nikodym set for ha(</) and for each sequence (u,)5-_; and each p, both in ba(</) and
such that lim, o 1, (B) = (B), for each B € %, we have that the sequence (1,);,_;
converges weakly to ;. We prove that if (%,)5,_, is an increasing covering of and algebra .o/
that has (V HS) property and there exist a %, which is a Nikodym set for ba (<) then there
exists %4,, with ¢ > p, such that %, has (V HS) property. In particular, if (%), is an
increasing covering of a o' -algebra there exists %, that has (V H S) property. Valdivia proved
that every o -algebra has strong Nikodym property and in 2013 asked if Nikodym property in
an algebra implies strong Nikodym property. We present three open questions related with
this aforementioned Valdivia question and a proof of his strong Nikodym Theorem for o
-algebras that it is independent of the Barrelled spaces theory and it is developed with basic
results of Measure theory and Banach spaces.

Keywords Bounded set - Algebra and o -algebra of subsets - Bounded finitely additive
scalar measure - Nikodym and strong Nikodym property - Vitali-Hahn—Saks and strong
Vitali-Hahn—Saks property

Mathematics Subject Classification 28A60 - 46G10

1 Introduction

Let <7 be an algebra of subsets of a set £2 and let L (<) be the normed real or complex space
generated by the characteristics functions e(A) of the sets A € o/ and endowed with the
supremum norm || - || o. Following [2, Theorem 1.13]) we identify its dual L(<7)* provided
with the dual norm isometrically with the Banach space ba(<”) of bounded finitely additive
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_####_ Page2of15 S. Lopez-Alfonso

27 measures on ./ endowed with the variation norm, denoted by |- | (§£2), or | - | in brief. Then
s foreach u € ba(«) and C € & the value u(C) represents both the value of the measure p
2 in C and the value p(e(C)) of the linear form p in e(C). For an element B of <7 the variation
30 of uon B foreach u € ba(«) is named || (B) and defines a seminorm in ba(<”) such that
s for each finite partition {B; : B; € </, 1 <i < n} of B we have |u| (B) = X; || (B;) .

32 Polar sets, named absolute polar sets in [9, Chapter IV, Sect. 20, 8 Polarity], are considered
33 inthedual pair < L(&), ba(«/) > and M° means the polar of aset M.If # C < the topology
1 T3(A) in ba(«) is the topology of pointwise convergence in . In particular, 7,(<7) is the
35 weak™ topology in ba(«/) defined by the dual pair < L(&), ba(%/) >.

36 The convex (absolutely convex) hull of a subset M of a vector space is denoted by co(M)
37 (absco(M)). For a subset B of a vector space E the seminorm defined in span B by inf{|A| :
;s X € Aabsco B)},foreach x € span B, is the gauge of absco B. The gauge of absco({xc : C €
3 &/})is anorm in L(</) with dual norm the ./-supremum norm, i.e., |||l := sup{|u(C)| :
o Ced}, neba(e).ForO < o) <ay <--- <« and for a pairwise disjoint subsets
a A;j € o, 1 <i < m,the equalities

42

iaiemo _ areUiL; AD + @ —aneUily AD) - -+ (@ — am—1e(An)

o
i=1 mn

4 and

ar+ (e —a1) + -+ (@n —dm—1)
A

1

44

45 imply that the norms supremum || - || o, and the gauge of absco({xc : C € &/}) are equivalent,
4 see [16, Propositions 1 and 2 for an inductive proof], hence its dual norms, variation in £2
47 and o/-supremum, are also equivalent. In general, for each B € &7 the seminorms variation
4 on B and supremum of modulus on {C € &/ : C C B} are equivalent seminorms in ba().
49 If X' isa o-algebra of subsets of a set 2 and M is a X -pointwise bounded subset of ba(X')
so  then M is a bounded subset of ba(X). We will refer this result as Nikodym boundedness
s theorem (see [1, page 80, named as Nikodym—Grothendieck Boundedness Theorem]). It is
s> said that a subset Z of an algebra .o of subsets of a set 2 is a Nikodym set for ba(</), or that
s3 9% has property (N) in brief, if each Z-pointwise bounded subset M of ba(<) is bounded in
s« ba(e/),i.e., forasubset M of ba(</) the Z-pointwise boundedness is a deciding property for
ssthe uniform boundedness in the unit ball of L (<) (see [15, Definition 2.4] or [17, Definition ss
1]). In the frame of uniform bounded deciding properties several equivalent results relative s7 to
the existence of an infinite dimensional separable quotient in a Banach space are presented ssin
[12].

59 Notice that in the definition of Nikodym set for ba(<?) it is enough to consider that the
6 subset M is weak™ closed and absolutely convex or that that M is countable. Moreover, it
e is obvious that Nikodym boundedness theorem states that if X' is a o -algebra then X' is a
&2 Nikodym set for ba(X).

63 A subset Z of an algebra .o/ of subsets of a set £2 is a strong Nikodym set for ba(</)
s« if for each increasing covering {%, : n € N} of # there exists p € N such that %), is a
es Nikodym set for ba(). The subset 2 is a web Nikodym set for ba(<?) if for each increasing
o6 Web {(Bniny.m, hi € NJ1 < i < m,m e N} of % there is a sequence (py);,_; such
o7 that %), p,..p, has (N)-property for every m € N. Remind that increasing web of % means
e that {%,, : n; € N} is an increasing covering of % and that for each m € N and for each
oo (nina...ny) € N we have that {%,,n,..n,n,.1 - Pm+1 € N} is an increasing covering of
70 Buiny..n, - In this paper algebra (o -algebra) is used for algebra (c-algebra) of subsets of a set
71 9 .
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Vitali-Hahn-Saks property in coverings... Page3of 15 _####_

Valdivia obtained in [16, Theorem 2] that for a o-algebra X the set X' is a strong Nikodym
set for ba(X') and in [17, Problem 1] he raised whether if for an algebra <7 it is true that the
property <7 is a Nikodym set for ba(./') implies that .o/ is a strong Nikodym set for ba(<7).
This problem is still open and a partial solution has been obtained in [4, Theorem 3.3]. For a
o-algebra X' it was proved in [8, Theorem 2 ] and [11, Theorem 3] that X' is a web Nikodym
set for ba(X"). Previous related results can be found in [5,14]. An example of an algebra o/
such that <7 is a web Nikodym set for ba(/) is given in [10].

The completion of L(</) endowed with the supremum norm || - || is the space @
of bounded .«7-measurable functions and an algebra of sets <7 has property (G) if for each

sequence (i,)y2; of ba(e?) its weak* convergence to 11 € ba(</), respect to the dual pair

<ﬂg7), ba (o )>, implies its weak convergence to , i.e.
lim 0, (f) = pn(f),Vf € L) = lim p,(p) = u(p), Vo € (ba(«))",
n—o00 n—o0

or, in brief, &/ has property (G) if the space @ is a Grothendieck space, see [15, Intro-
duction] where it is stated that each o -algebra has property (G).

From Banach—Steinhaus theorem it follows that the condition lim,— ~ 1, (f) = w(f),
for each f € @, implies that the sequence (i4,)5c | is bounded in ba(<). Therefore
an algebra of sets </ has property (G) if, and only if, each bounded sequence (1,);2,;
of ba(«/) such that lim,_, £y, (A) = w(A), for each A € o with u € ba(</), implies
that the sequence (u,);,2, converges weakly to . This equivalence follows from the next
straightforward Claim 1.

Claim 1 Let F be a subset of a Banach space E and let (w,);2 | a bounded sequence in its
dual E*. If u € E* and ()2, converges pointwise to v in the subset F then this sequence

n=1
(n)52 | converges pointwise to ju in the closure F of F.

Proof In fact, let ¢ > 0 and v € F. By hypothesis there exists f € F such that v — f| <

€(2(1+ || + sup, | ) ™", and for this f there exists ne such that |(u, — ) (f)] < 27 '€,

for every n > n, . Hence for n > n. we have that |(;, — p)(v)| is less than or equal than
€(|/~‘L| + Supn |Mil|)

€
n = W@ = DI+ ln = (D] < 73777 T supy Il | 2

<€

)

s0 (1n);2 | converges pointwise to /i in F. O

A o-algebra X' verifies the Vitali-Hahn-Saks theorem [15, Introduction]. This theorem
states that every sequence (1,,)°, of ba(X') such that

n=1

lim w,(B) = u(B), forevery B € X,
n—00

is uniformly exhaustive, i.e., for each sequence (B )?0:1 of pairwise disjoint subsets of X' the
lim ;o0 tty (Bj) is 0, uniformly inn € N. An algebra o has (V H S) property if it verifies the
thesis of Vitali-Hahn—Saks theorem and from [15, 2.5. Theorem], see also [7, Theorem 4.2],
it follows that an algebra 7 has (V H S) property if <7 has properties (N) and (G). Therefore
o/ satisfies Vitali-Hahn-Saks (V HS) property if and only .« is a Nikodym set for ba()
and if for each sequence (11,);2; of ba(e/) and 1 € ba(A) such that lim, o 1, (A) =
u(A), for every A € 7, we have that the sequence (u,);,2; converges weakly to w. This
characterization suggest the following definition.
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_####_ Pagedof15 S. Lopez-Alfonso

Definition 1 Let & a subset of an algebra <7. The subset % has (V HS) property if £ is
a Nikodym set for ba(A) and each sequence (u,);2, in ba(<?) and & € ba(A) such that

lim,,— 00 4 (B) = w(B), for each B € 4, verify that (1,)% , converges weakly to .

n=1

Vitali-Hahn—Saks theorem says that for a o-algebra X' the set X' has (V H S) property. In
the next section we prove that for each increasing covering {#, : n € N} of X there exists
p € Nsuch that ), has (V HS) property and that for each increasing web {%),1,...,, : 1i €
N,1 <i <m,m e N} of X there is a sequence (p,;)_, such that %, ,, ., has (VHS)
property, for every m € N. We show that a positive solution of the mentioned Valdivia open
problem [17, Problem 1] imply a positive solution for the corresponding problem for the
(V HS) property, i.e., that (V HS) property for an algebra .7 implies strong (V H S) property
in 7, i.e., each increasing covering {<7, : n € N} of &/ contains an 27, with the (VHS)
property.

In the last section we provide a proof of Valdivia theorem stating that for each o -algebra
X the set X has the strong Nikodym property. This proof is dedicated to M. Valdivia, follows
Valdivia’s scheme in [16], it is made with basic elements of measure theory and a few
elementary properties of Banach spaces. Therefore it is independent of the theory of barrelled
spaces and it may help researchers interested in this subject and not familiar with barrelled
spaces. Barrelled spaces are locally convex spaces that verify the Banach-Steinhaus theorem
and its main properties may be found in [3,6,13], among others.

2 Sets with (VHS) property

Proposition 1 gives a characterization of Nikodym sets for ba ().

Proposition 1 A subset % of an algebra of sets </ is a Nikodym set for ba(/) if and only if
for each increasing covering {%, : n € N} of & there exists p € N such that

absco{e(A): A € By}~

is a neighborhood of zero in L(<7).

Hence spanie(A) : A € Z,]" "
borhood of zero in L(<).

—

= L(&/) and abscol{e(A) : A € Z,) "7 is a neigh-

Proof If 4 is a not a Nikodym set for ba(<?) there exists an unbounded subset C in ba(<)
which is pointwise bounded in Z. This implies that the family of sets %, = {A € £ :
sup,ec IL(A)| < n}, n € N, are an increasing covering of % such that {e(A) : A € %,} C
nC®, for each n € N, hence

abscofe(A) : A € g%’n}L(ﬂ) c nC°.

As C is an unbounded subset of ba(<) we have that nC® is not a neighborhood of zero in

L(4/),s0absco{e(A) : A € B, }L(W) is not a neighborhood of zero in L (/) foreachn € N.
If there exists an increasing covering {%, : n € N} of % such that

absco{e(A) : A € %n}L(W)

is not a neighborhood of zero in L(7) for every n € N, then the polar sets {e(A) : A € %,}°
are unbounded, so there exists u, € {e(A) : A € %B,}° such that |u,| > n, for eachn € N.
If A € A there exists g4 € N such that A € %, for each n > g4, hence |u,(e(A))| < 1
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Vitali-Hahn-Saks property in coverings... Page50f 15  _####_

for n > qa, and we get that {|t,(e(A))| : n € N} is t,(%)-bounded, hence Z is a not a
Nikodym set for ba(<7). O

In particular, if % is a Nikodym set for ba(</) then absco{e(A) : A € Q}L(ﬁ/) is a neigh-
borhood of zero in L(%7) and span{e(A) : A € %}L(V(Z/) = L(A).

Itis said that an increasing web {6),,5,..n,, : 1i € N, 1 <1 <m, m € N} of Ziscontained
in the increasing web {%,,,,,..n,, : ni € N, 1 <i <m, m € N} of A if for each sequence
(gm) g, of natural numbers there exists a sequence (p;,);,_; of natural numbers such that
qm < pm and Gy 45...q = Bpips...pm» for eachm € N.

Corollary 1 Let o/ be an algebra of sets with a subset % that it is a web Nikodym set for
ba(a”). Each increasing web { % ny..n,, - 1i € N, 1 <i <m, m € N} of # contains and
increasing web {6, ny..n,, - ni € N, 1 <i <m,m € N} of B such that each €,,p,.. n,, is a

Nikodym set for ba(<#) and absco{e(A) : A € Comymn]
L(<).

is a neighborhood of zero in

Proof By contradiction we get easily that if & is a web Nikodym set for ba(</) then if for
each increasing covering {%, : n € N} of % there exists p; € N such that for each n > p;
the set %, is also a web Nikodym set for ba(<”). Additionally, by Proposition 1 there exists
p €N, p > pi,such that abscole(A) : A € ZpJ- " is a neighborhood of zero in L (<),
for each n > p. The Corollary follows by a trivial induction. O

Problem 1 Let {«, : n € N} be an increasing covering of an algebra </ with (VHS)
property. We do not know if there exists a natural number p such that </, has (VHS)

property.

Proposition 2 shows that a total or partial positive solution of mentioned Valdivia open
Problem [17, Problem 1] implies a total or partial positive solution of Problem 1.

Proposition 2 Let {<7, : n € N} be an increasing covering of an algebra </ with (VHS)
property. If there exists p such that <7, is a Nikodym set for ba(A) then there exists g € N
such that <7, has the (V HS) property.

Proof </ and «%,, n > p, are Nikodym sets for ba(A), hence by Proposition 1 there exists

q > p such that o7, is a Nikodym set for ba(¥) and absco{e(A) : A € ] is a neigh-
borhood of 0 in L(<7). Let (14n);2; be a sequence in ba(/) and u € ba(e/) such that
lim,, 0o 4y (B) = w(B), for each B € 7. It is obvious that lim,— oo s (f) = u(f), for
each f € absco{e(A) : A € ;).

As < is a Nikodym set for ba(%/) then {u,, : n € N} is a bounded subset of ba(.7). Then

Claim 1 implies that lim,, 0 f2x(f) = p(f), for each f € absco{e(A) : A € ) . s0

also limy,— 00 n (f) = u(f),foreach f € @ From this property and the hypothesis that
</ has property (G), it follows that (M,,)fl"=1 converges weakly to u, i.e., lim,_ oo un (f) =
w(f) foreach f € (ba(/))*, hence o7, has (V HS) property. O

In particular, by [16, Theorem 2] and [15, Introduction] it follows that if (%4,)72 ; is an
increasing covering of a o-algebra X' there exists p € N such that %), has (V HS) property.
This result is a particular case of the following Theorem.
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_####_ Page6of15 S. Lopez-Alfonso

Theorem 1 Let {PBniny.m, : 1i € N,1 < i < m,m € N} be an increasing web of a
o-algebra X. There exists an increasing web {€p ny..n, * ni € N1 < i <m,m € N}
contained in {Byn,..n,, * hi € N, 1 <i <m,m € N} such that each €,,n,..n,, has (VHS)
property for every (nina ...ny) € N" andm € N.

Proof By [8, Theorem 2] and [11, Theorem 3] ¥ is a web Nikodym set for ba(</). By
Corollary 1 there exists an increasing web {0y, : i € N;1 < i < m,m € N}
contained in {%y,ny..n,, : ni € N,1 < i < m,m € N} such that each €j,,n,...n,, 15 @

Nikodym set for ba(X') and absco{e(A) : A € Cﬁn,nz_.,nm}up/) is a neighborhood of zero in
L(X). Let (,);2, be a sequence in ba(X) and p € ba(X) such that lim,_ o s (B) =
u(B), for each B € €y n,..n,- It is obvious that lim,_, o ., (f) = u(f), for each f €
absco{e(A) : A € Cuyny..ny)-

As Gniny..n, 1s a Nikodym set for ba(e/) we get that {u, : n € N} is a
bounded subset of ba(;zf)./CElim 1 imply lim, 0o n(f) = wp(f), for each f €

absco{e(A) : A € %nlnz_,,nm}uz), so also limy, 0o un(f) = u(f), for each f € L/(—Z\')
From this property and the fact that every o-algebra has property (G), see [15, Introduc-
tion], it follows that (;L,,);’lo=1 converges weakly to u, i.e., lim,_ o n (f) = p(f) for each

f € (ba(«/))*, hence €y, n,..n,, has (V HS) property. ]

3 Revisiting Valdivia theorem on Nikodym sets

In this section we provide a proof of Valdivia theorem stating that for each o-algebra X' the
set X is a strong Nikodym set for ba(X'), see Theorem 2. This proof only needs basic results
of Measure theory and Banach spaces.

The main results of this section are Propositions 3 and 4. Both are preceded by several
Claims and Lemmas to help its reading. An induction based in Proposition 4 gives Proposi-
tion 5 and a countable subset of the sets and measures obtained in Proposition 5 enables to
prove Valdivia theorem on Nikodym sets in Theorem 2.

Claim 2 Let B and C be two subsets of a vector space E. If C is finite there exists a subset
D of C such that span B N span D = {0} and the gauges defined by absco(B U C) and
absco(B U D) are equivalents.

P q
Proof 1If span B N span C # {0} then there exists g1 = > Bib; + Y yjc;j € C\{0}, with
i=1 j=1
N t
each (b;, ¢;) € B x (C\{g1}).If x € absco(BUC) thenx = ) 8;d; +€q1+ Y €je;, with
i=1 j=1

s t
SIS+ el + D0 ‘ej| < 1and(d;, e;) € B x (C\{q1}), therefore
i=1 j=1

s r q !
x=) 8idi+ Y epibi+ Yy evici+ Y _eje;.
i=1 i=1 j=1 j=1

Ifth = i 1Bil + i |yj‘ then the inequality
i=1 j=1
s )4 q t
DI+ D leBil+ ) levil+ D lej] <1+,
i=1 i=1 j=1 j=1
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provides the second inclusion in
absco(B U (C\{g2})) C absco(B U C) C (1 + h) absco(B U (C\{g1})). (1)

The first inclusion in (1) is obvious and (1) implies that the gauges defined by the sets
absco(B U C) and absco(B U C\{q1}) are equivalents. If span B Nspan(C\{q1}) # {0} then
with the previous construction we determine a vector g» € C\{g1} such that the gauges defined
by absco(B U C\{q1}) and by absco(B U C\{q1, ¢2}) are equivalents. After a finite number r

of repetitions of this process we get a finite subset D = C\{q1, q2, . .., ¢, } such that gauges
defined by absco(B U C) and by absco(B U D) are equivalents and span B N span D = {0}.
This proves the Claim. O

If F is a dense subspace of a normed space E, x € E and 0 < ||x|| < r then there exists
a sequence (x,);° ; in F such that ||x,|| < r,n € N, and lim,_, » x, = x. Therefore

{(xe F:|x| < r}E ={xeE:|x| <r} 2)

In particular, if B is a zero neighborhood in span B and span BE = F then EE is a neigh-
borhood of the null vector of E. This observation is used in the following claim.

Claim3 Let B be a closed absolutely convex subset of the normed space E such that

span BE = E. If B is not a zero neighborhood in E then for each finite subset C of E
we have that

absco(B U C)

is not a zero neighborhood in E.

Proof By Claim 2 there exists a finite subset D in C such that the gauges of absco(B U C)
and absco(B U D) are equivalent and the algebraic sum span B + span D is direct. Hence if
absco(B U C) is a zero neigbourhood in E then, by equivalence, absco(B U D) is also a zero
neighborhood in E and then (absco(B U D) N (span B) would be a neighborhood of zero in
span B. As the algebraic sum span B + span D is direct we have that

(absco(B U D)) N (span B) = B,

and we get that B is zero neighborhood in span B. The condition span B" =E imply that
the closed set B = B is a neighborhood of zero in E. From this contradiction follows the
proposition. O

Lemma 1 Let M be an unbounded, weak™*-closed and absolutely convex subset ofba(<) such

that span M"L(d) = L(«). For each finite subset Q of </ we have that M N{e(A) : A € Q}°
is unbounded in ba(<?), i.e.,

sup {lnl (£2)} = o0 3)
neMn{e(A):AeQ}e

Proof The set B = M?° verifies the conditions in Claim 3. So the set absco(B U {e(A) : A €
Q}) is not a zero neighborhood in L (7). Hence its polar set

{absco(B U {e(A) : A € QD)I° = M® N {e(A) : A € Q)°

is an unbounded subset of ba(</) and as M = M°° we get (3). O
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Proposition 3 Let {%, : n € N} be an increasing covering of a subset of 2 of an algebra <f .
If # is a Nikodym set for ba(«/) and for every n € N the set %, is not a Nikodym for ba(<7),
then there exists p € N such that for each n > p there exists a subset M, in ba(<) that it is
By -pointwise bounded, absolutely convex, weak*-closed and such that for each finite subset
Q of « the intersection M, N {e(A) : A € Q}° is unbounded in ba(<f).

Proof By Proposition 1 there exists p € N such that for eachn > p

span{e(A) : A € Z,)"") = L(w). 4)

As %, is not a Nikodym for ba () there exists an unbounded, weak™-closed and absolutely
convex subset of M,, in ba(</) which is unbounded in ba(<) and M,, is pointwise bounded
in {e(A) : A € %,}. The pointwise boundedness imply that {e(A) : A € %,} C span M,
hence for each n > p we have by (4) that

L(7) = span{e(A) : A € Zp)""  span M2 © L(wr). (5)
From (5) we deduce that span M2 Ly _ L(«), for each n > p, and the Proposition
follows from Lemma 1. O

Claim 4 Let B be an element of an algebra <, let M be a subset of ba(<?) such that for each
finite subset Q of <

sup {lnl(B)} = o0 (6)
neMnfe(A):AeQ}e

if{B1, B2, ..., By} is a finite partition of B by elements of </ there exist j, 1 < j < gq, such
that for each finite subset Q of </

sup {Iul (B} = . %)
neMnie(A):AeQ}°

Proof The first member of (6) is equal to

q

sup {lul (Bi)}
i—1 neMnie(A):AcQ}°

that with (6) implies (7). O
The next Claim 5 will used in Lemma 2.

Claim5 Let o/ be an algebra of subsets of a set 2, A € o/ and M a weak*-closed and
absolutely convex subset of ba(«/) such that for each finite subset Q of <

sup Ipl(A) = oo @)
neMnie(D):DeQ}°

Then for eacha € R and each subset {B; : 1 < i < n}of o there exists (1, A1) € M x <7,
A1 C A such that

lwi(e(A)I> o, [u1(e(A\AD)| > a, Z li(e(B)| <1
j=1
and for each finite subset Q of <f

sup Il (A\A1) = oo.
neMnie(D):DeQ}°
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Proof By (8)withQ = {A, By, ..., B,}thereexists (vi, P11) € (MN{e(D) : D € Q}°)x <,
with P;; C A such that

WPl > n(e+1), [vi(A)] < 1and |v(Bj)| <1,forl < j <n.

Let Pjp := A\Pjj and ) = n~1v;. The measure | € M and verifies that

(Pl > e+ 1, [ni(A)] < 1, Y |uieB)| < 1,
j=1

hence

w1 (Pi2)l = |1 (A) — w1 (Pl = [pi (Pr)] — (1 (A)] > a.
By Claim 4 it is verified at least one of the inequalities

sup {li] (P11)} = oo, for each finite subset Q € &
neMn{e(D):DeQ}°

or

sup {ln] (P12)} = oo, for each finite subset Q € o
neMnie(D):DeQ}°

In the first we define A| := Pj2 and in the second we take A; := Py to get this Claim. O

Lemma2 Let o/ be an algebra of subsets of a set 2, A € o/ and M a weak*-closed and
absolutely convex subset of ba(/) such that for each finite subset Q of </

sup |l (A) = oo
neMnfe(D):DeQ}°

For each (p, o) € (N\{0, 1}) x R" and each finite subset {B; : 1 <i < n} of < there exists
a partition {A; : A; € @/, 1 <i < p}of A and a subset {i; : 1 <i < p} of M such that

|ni(e(A)| > aand Y |wi(e(B))| < 1, for1 <i <p ©)
j=1

Proof By Claim 5 there exists in A a partition {A}, A\A} € & x < and ameasure | € M
such that

n

1 (e(AD)] > o [p1(e(A\AD)| > @, Y |ui(e(B))| <1
j=1

and for each finite subset Q of .o/

sup lel (A\A1) = oo.
pneMnie(D):DeQ}°

If we apply to A\ A the Claim 5 we getin A\ A a partition {Az, A\(A1UA3)} € & x &
and a measure up € M such that

n
lu2(e(A2))| > o, |2 (e(A\(A1 U A2)))| > a, Z lu2(e(B)))| <1
j=1
and for each finite subset Q of .

sup |1l (A\(A1 U Az)) = oo.
neMn{e(D):DeQ}°
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Following this method we getin A\(A; UA>U---UA,_») apartition {A,_, A\(A| U
AyU---UA, »UA, 1)} € & x o and a measure 1,1 € M such that

|itp-1(e(Ap-1)| > o [ip-1(e(A\(AT U+ U Ap )] > @, 3 |up-1(e(B)| < 1.
j=1

To finish the proof we define A, := A\(A{UAU---UA, yUA, q)and up := pup—1.0

Lemma3 Let o/ be an algebra of subsets of a set 2, A € o and M,,n € 1,2,..., a
weak*-closed and absolutely convex subset of ba(<?) such that for each finite subset Q of </

sup [u] (A) = o0
neM,N{e(D):DeQ}°

forn = ny, ny,..., n, and for an infinity of values of n. For each a € R* and each finite
subset {B; : 1 < i < n} of & there exists in A a partition {A1, A\A1} € &/ x o and a
measure (11 € My, such that

i(e(A)| > wand Y |ni(e(Bp)| <1
Jj=1

and for each finite subset Q of o/

sup el (A\A1) = 00
WeM,N{e(D):DeQ}°

forn =ny, na,..., n, and for an infinity of values of n.

Proof By Lemma 2 for each (p + 2, @) € (N\{0, 1}) x R and for the subset {B; : 1 <
i < n} of &/ there exists a partition {D; : D; € &/,1 < i < p+ 2} of A and a subset
{vi 11 <i < p+2}of My, such that

n
vi(e(D))| > e and Y |vile(B)))| < 1,for 1 <i < p+2.

j=1
From Claim 4 and for each 1 < j < pthereexists i; € {1,2, ..., p + 2} such that for each
finite subset Q of .o/

sup 1l (D) = 00

pceM,,].ﬁ{e(D):DeQ}0
and also there exists ig € {1, 2, ..., p+ 2} such that for each finite subset Q of &/

sup Il (Dy; ) = 00
neM,n{e(D):DeQ}°

for infinite values of n. Let us suppose that i* € {1,2,..., p+2\{im : m =0,1, ..., p}.
To finish this proof let p; := v;= and Ay := D;+. Then

i (e(A) = Juis(e(Di)| > eand Y |i(e(B)] = |vi(e(B)| < 1
j=1 j=1

and for each finite subset Q of .o/

sup [l (ANA1) =00
neM,N{e(D):DeQ}°
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for n = ny, na,. .., np, and for an infinity of values of n, because A\A| = A\D;+ contains
U{Dy;, -0 < j < pl. o

This Lemma may be applied without the finite subset {B; : 1 <i < n} of o/. Then we get
that |1 (e(A1))| > « and that for each finite subset Q of & the set M, N {e(D) : D € Q}°
is unbounded in ba(/) for n = ny, ny,.. ., n, and for an infinity of values of n.

Proposition 4 Let <7 be an algebra of subsets of a set 2, A € o and M,,,n € 1,2, ... a
weak*-closed and absolutely convex subset of ba(<?) such that for each finite subset Q of </

sup [l (A) = o0
peM,Nle(D):DeQ}

forn =ny, ny,..., n, and for an infinity of values of n. For each (p, o) € (N\{0, 1}) x R+
and each subset {B; : 1 <i < n}of o there exists a partition {A; : Aj € &7, 1 <i < p+1}
of Aand n; € My, 1 <i < p, such that

n

|i(e(AN)] >, Y |wi(e(B))| <1, for1 <i < p
j=1

and for each finite subset Q of </

sup Il (Apg1) = o0
peMuNie(D):DeQ)®

forn =ny, ny,..., n, and for an infinity of values of n.

Proof The Lemma 3 provides in A a subset A; € o/ and u; € M, such that

lw1(e(AD)| > aand Y |ui(e(B;))] < 1
j=1

and for each finite subset Q of .o/

sup [l (A\A) = o0
neM,N{e(D):DeQ}°

forn = ny,ny,..., n, and for an infinity of values of n. If we apply again Lemma 3 to A\ A
we get Ay € o/, Ap C A\ Ay, and up € My, such that

ln2(e(A)l > e, Y |ua(e(B)))] < 1

j=1
and for each finite subset Q of &/
sup [1] (A\N(A1 U Ap)) = 00
neM,Nle(D):DeQ}°
for n = ny, n2,. .., n, and for an infinity of values of n.

Following this method, foreach 1 <i < p — 1 we get in A the pairwise disjoint subsets
A; € o/ and in ba(«/) the measures u; € M,,, 1 <i < p — 1, such that

i(e(AN)] > o, Y |ui(e(B)))| < 1

j=1
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_####_ Page120f 15 S. Lopez-Alfonso

and for each finite subset Q of .

sup Il (AN(ATU A U---UAp_1)) =00
neM,N{e(D):DeQ}°
for n = ny, na,..., np and for an infinity of values of n. The Claim 3 applied to A\(A; U
AyU---UA, 1) provides A, € &/, A, CA\(AJUAU---UA,_y),and ) € M,,p such
that

|wi(e(Ap))] > . D |pite(By)| < 1

j=1
and for each finite subset Q of .«

sup [l (AN(A] U A2 U - U A, UA)) =00
neM,N{e(D):DeQ}°
for n = ny, ny,. .., n, and for an infinity of values of n. With A1 := A\(A; UAU---U
Ap,_1 UA)) the proof is done. O

Proposition 5 Let {#), : n € N} be an increasing covering of a o-algebra X of subsets of a
set 2. If B, is not a Nikodym set for ba(X) for each n € N then for each (i, j) € N2, such
that1 < i < j, there exists A;j € X and ;j € ba(X) such that the sets A;; are pairwise
disjoint, for each natural number i the set of measures {j1;; : j € N, j > i} is pointwise
bounded in %; and

wijeCAi| > j, Y |mijle(Ap))| < 1.

1<k<m<j

Proof By Nikodym boundedness theorem X is a Nikodym set for ba(X'), hence by Proposi-
tion 3 there exists p € N such that for eachn > p there exists in ba(7) an absolutely convex
and weak*-closed subset M,, that it is pointwise bounded in %, and for each finite subset Q
of o

sup il (4) = oo.
neM,Nie(D):DeQ)°
Deleting the first p — 1 sets %, and renumbering the subindex n, I mean changing n by
n — p + 1, we may suppose that p = 1. The proof will be obtained by induction on ;.
For j = 1, the Lemma 3 with &/ = ¥, n = n; = 1 and @ = 1 provides a measure
M1l € My, and Ay € X' such that

[11(e(Aqr))] > 1

and for each finite subset Q of X we have that

sup [l ($2\A11) = o0,
neM,N{e(D):DeQ}°
for n = ny and for the elements 7 of an infinity subset N1 of N\{n}. Then let n, = min{n :
n e N]}.
By Proposition 4 with & = ¥, A = 2\ A1, n € {n1,n2} U (N1\{n2}), p = a =2 and
with {B; : 1 <i < n}equal to {A11} we obtain two measures w;» € M,,,i = 1,2, and two
disjoints elements of X, Aj» and A, contained in £2\ A such that

|wiz(e(Ai2))] > 2, [pniz(e(A1)] < 1,forl <i <2
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and for each finite subset Q of ¥ we have that

sup [l ($2\(A11 U A2 U App) = o0,
neM,N{e(D):DeQ}°
for n € {n1,n2} U Ny, where N, is an infinite subset of Ni\{n,}. Then we define n3 =
min{n : n € Np}.
Let’s suppose that the step j produces the measures u;; € M, and the pairwise disjoints
elements A;;, 1 <i < j, contained in 2\(U{A,, : 1 <k <m < j}) with A;; € X such
that

lwije(A)| > j. Y |wijle(Awm))| < 1. for 1 <i < j

I<k<m<j
and for each finite subset Q of X' we have that

sup [l (C2\N(U{Akm 1 1 <k <m < j})) =00
neM,Nfe(D):DeQ)°
forn = {ny,n2,...,n;}UN;, with N; an infinity subset of N;_1\{n}.

Then we define nj41 = min{n : n € N;} and from Proposition 4 with & = X, A =
O\NU{Agm 1 <k =m < jh,nefn,n,....nj,nj }UWN\nj},p=a=j+1
and with {B; : 1 < i < n}equal to {Ax, : 1 <k < m < j} we obtain the measures
Wi j+1 € My, and the pairwise disjoints elements A; jyj of ¥, 1 <i < j + 1, such that
each A; ;11 is contained in 2\(U{Ag, : 1 <k <m < j}),

iAo > i+ 1, > |uijn(e(Am))| < 1for 1 <i < j+1
1<k<m<j+1

and for each finite subset Q of X' we have that

sup Il (2\(U{Akm 1 1 <k <m < j+1})) = oo,
weM,N{e(D):DeQ}°
forn = {ny,na2,...,nj,nj1} U Njy1, where N;; is an infinity subset N;\{n;y}. To
finish the induction we define 1> = min{n : n € Nj1}. O

Theorem 2 Let {#, : n € N} be an increasing covering of a o -algebra X of subsets of a set
$2. There exists a g € N such that %, is a Nikodym set for ba(X) for each n > q. O

Proof Let’s proceed by contradiction and suppose that every 4, is not a Nikodym set for
ba(X'). By Proposition 5 for each (i, j) € N2, suchthat1 <i < J» there exists A;; € X and
wij € ba(X) such that

wijeCAin| =7, Y |mijle(Am)| < 1,
I<k<m<j

the sets A;; are pairwise disjoint and the set of measures {u;; : j € N, j > i} is pointwise
bounded in %;, for each i € N.

We claim that there exists a sequence (i, ju)nen such that (i,),en is the sequence of
the first components of the sequence obtained when the elements of N? are ordered by the
diagonal order, i.e.,

(i1, 02, 13,14, 05,16, 07,...) = (1,1,2,1,2,3,1,...),

and (j,)neN 1s a strict increasing sequence such that for eachn € N

| iy, ju| (U{Ai, g :m > n}) < 1.
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Let (i1, j1) := (1, 1), suppose that |M,‘1,‘/1| < kj and split the set {j € N : j > 1} in &
infinite subsets N1, ..., Nik,. At least one of this subsets, named Ny, verifies that
iy | (WAij i < jojeNih <1,
because
ko= wip| = Y || (WAL 10 <, j € Ny
1=<r=<k;

Then we define j, := inf{n : n € N;}. Suppose that we have obtained the natural number
Jjn and the infinite subset N, of N such that

iy in| (ULA; i< jj e Nah) < 1.

Then we define j,+1 = inf{n : n € N,} and if |/"Lin+lvjn+1’ < kp+1 we split the set {j €
Ny i j > jny1}in ky g infinite subsets Nyy1,1, ..., Nut1.k,,, - At least one of this subsets,
named N, verifies that

| Wit jor | (V1A 10 < j,j € Nypa}) <1

because
kst = |l g | = D0 e g [ (UfALj 2 < 1 J € Nagr oD
1<r<kp41
As A = U{A;, j, : m € N} € X there exists r € N such that A € %,. By construction,

there exists and increasing sequence (m, : s € N) such that each i,,,, = r, s € N. Therefore
the set of measures {u;,,  j, s € N} = {u;j, s € N}is pointwise bounded in %, and,
in particular

SUP{ | i, ,jm, (A)| 1 5 € N} = sup{|par j,, (A)] : s € N} < o0. (10)

But from

Wiy s (A)] =

Fig s jmg (U Ai,,,,j,,,)

meN

Do g Ak

1<k<m <Jmg

Z |I’Lims sj}’lls (Aims sjms ) -

- |M1ms 7jms U Aimvjm > -]m\ -2
m> jmg
we get that limg_, o |uims Jims (A)| = 00, in contradiction with (10). O

A proof of the web Nikodym property of every o-algebra is presented in [11, Theorem
1]. It depends of properties of some families of subsets of U{N” : p € N}, called N V-trees
in honor of Nikodym and Valdivia.

Problem 2 To get a proof of the property that every o-algebra has web Nikodym property
with basic results of Measure theory and Banach spaces.

Problem 3 Let <7 be an algebra of subsets of a set §2 such that <7 is a Nikodym set for
ba(e?). Is it true that <7 is a web Nikodym set for ba(<f).

This Problem is the web Nikodym version of [17, Problem 1].
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4 Conclusions

We have proved that if (%,,);._, is an increasing covering of an algebra <7 that has (VHS)
property and there exist a %, which is a Nikodym set for ba (<) then there exists %, with
q > p, such that %, has (V HS) property, being this property defined in a natural way with
the properties that define the (V H S) property in an algebra. An increasing web of a o -algebra
X contains an increasing web formed by sets that have (V H S) property and, in particular, if
(%n);r_; is an increasing covering of a o -algebra there exists %, that has (V HS) property.
We do not know if this property holds for an algebra and we have proved that this problem is
equivalent to the analogous Valdivia open problem for Nikodym property. Other two related
open problems are proposed.

As a help to solve this aforementioned Valdivia problem we give a proof of Valdivia
theorem stating that for each o-algebra X the set X is a strong Nikodym set for ba(X'). This
proof follows the scheme given by Valdivia in [16], but it is independent of the Barrelled
spaces theory and it only needs basic results of Measure theory and Banach spaces.
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