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Abstract: Emotions play a critical role in our daily lives, so the understanding and recognition of
emotional responses is crucial for human research. Affective computing research has mostly used
non-immersive two-dimensional (2D) images or videos to elicit emotional states. However, immersive
virtual reality, which allows researchers to simulate environments in controlled laboratory conditions
with high levels of sense of presence and interactivity, is becoming more popular in emotion
research. Moreover, its synergy with implicit measurements and machine-learning techniques has the
potential to impact transversely in many research areas, opening new opportunities for the scientific
community. This paper presents a systematic review of the emotion recognition research undertaken
with physiological and behavioural measures using head-mounted displays as elicitation devices.
The results highlight the evolution of the field, give a clear perspective using aggregated analysis,
reveal the current open issues and provide guidelines for future research.

Keywords: affective computing; emotion recognition; emotion elicitation; virtual reality;
head-mounted display; machine learning

1. Introduction

Emotions play an essential role in rational decision-making, perception, learning and a
variety of other functions that affect both human physiological and psychological status [1].
Therefore, understanding and recognising emotions are very important aspects of human behaviour
research. To study human emotions, affective states need to be evoked in laboratory environments,
using elicitation methods such as images, audio, videos and, recently, virtual reality (VR). VR has
experienced an increase in popularity in recent years in scientific and commercial contexts [2]. Its general
applications include gaming, training, education, health and marketing. This increase is based on the
development of a new generation of low-cost headsets which has democratised global purchases of
head-mounted displays (HMDs) [3]. Nonetheless, VR has been used in research since the 1990s [4].
The scientific interest in VR is due to the fact that it provides simulated experiences that create the
sensation of being in the real world [5]. In particular, environmental simulations are representations of
physical environments that allow researchers to analyse reactions to common concepts [6]. They are
especially important when what they depict cannot be physically represented. VR makes it possible to
study these scenarios under controlled laboratory conditions [7]. Moreover, VR allows the time- and
cost-effective isolation and modification of variables, unfeasible in real space [8].

1.1. Virtual Reality Set-Ups

The set-ups that display VR simulations have been progressively integrated into studies as the
relevant technologies have evolved. These consist of a combination of three objective features, formats,
display devices and user interfaces.
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The format describes the structure of the information displayed. The most common are
two-dimensional (2D) multimedia and three-dimensional (3D) environments, and the main difference
between them is their levels of interactivity [9]. 2D multimedia, including 360° panoramic images
and videos, provide non-interactive visual representations. The validity of this format has been
extensively explored [10]. Moreover, the latest advances in computer-generated images simulate light,
texture and atmospheric conditions to such a degree of photorealism that it is possible to produce a
virtual image that is indistinguishable, to the naked eye, from a photograph of a real-world scene [11].
This format allows scientists to test static computer-generated environments, with many variations,
cheaply and quickly in a laboratory. On the other hand, 3D environments generate interactive
representations which allow changes in the user’s point of view, navigation and even interaction
with objects and people [12]. Developing realistic 3D environments is more time consuming than
developing 360° computer-generated photographs, and their level of realism is limited by the power of
the hardware. However, the processing potency of GPUs (graphics processing units) is increasing every
year, which will enhance the performance of 3D environments. Moreover, the interaction capacity of
3D environments, which facilitates the simulation of real-world tasks, is a key aspect in the application
of virtual reality [2].

The display devices are the technological equipment used to visualise the formats. They are
classified according to the level of immersion they provide, that is, the sensorimotor contingencies that
they support. These are related to the actions that experimental subjects carry out in the perception
process, for example, when they bend down and shift the position of their heads, and their gaze
direction, to see underneath an object. Therefore, the sensorimotor contingencies supported by a
system define a set of valid actions (e.g., turning the head, bending forward) that carry meaning in
terms of perception within the virtual environment [13]. Since immersion is objective, one system is
more immersive than another if it is superior in at least one characteristic while others remain equal.
There are three categories of immersion system, non-immersive, semi-immersive and immersive [2].
Non-immersive systems are simpler devices which use a single screen, such as a desktop PC,
to display environments [14]. Semi-immersive systems, such as the cave automatic virtual environment
(CAVE), or the powerwall screen, use large projections to display environments on walls, enveloping
the viewer [15,16]. These displays typically provide a stereo image of an environment, using a
perspective projection linked to the position of the observer’s head. Immersive devices, such as HMDs,
are fully-immersive systems that isolate the user from external world stimuli [17]. These provide a
complete simulated experience, including a stereoscopic view, which responds to the user’s head
movements. During the last two decades, VR has usually been displayed through desktop PCs
or semi-immersive systems, such as CAVEs and powerwalls [18]. However, improvements in the
performance and availability of the new generation of HMDs is boosting their use in research [19].

The user interfaces, which are exclusive to 3D environments which allow this level of interaction,
are the functional connections between the user and the VR environment which allow him or her to
interact with objects and navigate [20]. Regarding interaction with objects, manipulation tasks include:
selection, that is, acquiring or identifying an object or subset of objects, positioning, that is, changing an
object’s 3D position, and rotation, that is, changing an object’s 3D orientation. In terms of the navigation
metaphors in 3D environments, virtual locomotion has been thoroughly analysed [21], and can be
classified as physical or artificial. Regarding the physical, there are room-scale-based metaphors,
such as real-walking, which allow the user to walk freely inside a limited physical space. These are
normally used with HMDs, and position and orientation are determined by the position of the user’s
head. They are the most naturalistic of the metaphors, but are highly limited by the physical tracked
area [22]. In addition, there are motion-based metaphors, such as walking-in-place or redirected
walking. Walking-in-place is a pseudo-naturalistic metaphor where the user performs a virtual
locomotion to navigate, for example, by moving his/her hands as if (s)he was walking, or by performing
footstep-like movements, while remaining stationary [23]. Redirected walking is a technique where
the user perceives (s)he is walking freely but, in fact, is being unknowingly manipulated by the virtual
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display: this allows navigation in an environment larger than the actual tracked area [24]. Regarding
the artificial, controller-based metaphors allow users to control their movements directly through
joysticks or similar devices, such as keyboards and trackballs [25]. In addition, teleportation-based
metaphors allow the user to point where (s)he wants to go and teleport him or her there with an
instantaneous “jump” [26]. Moreover, recent advancements in the latest generation HMD devices
have increased the performance of navigation metaphors. Point-and-click teleport metaphors have
become mainstream technologies implemented in all low-cost devices. However, other techniques
have also increased in performance: walking-in-place metaphors have become more user-friendly
and robust, room-scale-based metaphors now have increased coverage areas, provided by low-cost
tracking methods, and controller-based locomotion now addresses virtual sickness through effective,
dynamic field-of-view adjustments [27].

1.2. Sense of Presence

In addition to the objective features of the set-up, the experience of users in virtual environments
can be measured by the concept of presence, understood as the subjective feeling of “being-there” [28].
A high degree of presence creates in the user the sensation of physical presence and the illusion of
interacting and reacting as if (s)he was in the real world [29]. In the 2000s, the strong illusion of being
in a place, in spite of the sure knowledge that one is not actually there, was characterised as “place
illusion” (PI), to avoid any confusion that might be caused by the multiple meanings of the word
“presence”. Moreover, just as Pl relates to how the world is perceived, and the correlation of movements
and concomitant changes in the images that form perceptions, “plausibility illusion” (Psl) relates to
what is perceived, in a correlation of external events not directly caused by the participant [13]. PsI
is determined by the extent to which a system produces events that directly relate to the participant,
and the overall credibility of the scenario being depicted in comparison with viewer expectations,
for example, when an experimental participant is provoked into giving a quick, natural and automatic
reply to a question posed by an avatar.

Although presence plays a critical role in VR experiences, there is limited understanding of what
factors affect presence in virtual environments. However, there is consensus that exteroception and
interoception factors affect presence. It has been shown that exteroception factors, such as higher levels
of interactivity and immersion, which are directly related to the experimental set-up, provoke increased
presence, especially in virtual environments not designed to induce particular emotions [30-32]. As to
the interoception factors, which are defined by the content displayed, participants will perceive higher
presence if they feel emotionally affected; for example, previous studies have found a strong correlation
between arousal and presence [33]. Recent research has also analysed presence in specific contexts
and suggested that, for example, in social environments, it is enhanced when the VR elicits genuine
cognitive, emotional and behavioural responses, and when participants create their own narratives
about events [34]. On the other hand, presence decreases when users experience physical problems,
such as cybersickness [35].

1.3. Virtual Reality in Human Behaviour Research

VR is, thus, proposed as a powerful tool to simulate complex, real situations and environments,
offering researchers unprecedented opportunities to investigate human behaviour in closely controlled
designs in controlled laboratory conditions [33]. There are now many researchers in the field, who have
published many studies, so a strong, interdisciplinary community exists [2].

Education and training is one field where VR has been much applied. Freina and Ott [36]
showed that VR can offer great educational advantages. It can solve time-travel problems, for example,
students can experience different historical periods. It can address physical inaccessibility, for example,
students can explore the solar system in the first person. It can circumnavigate ethical problems,
for example, students can “perform” serious surgery. Surgical training is now one of the most analysed
research topics. Interventional surgery lacked satisfactory training methods before the advent of VR,
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except learning on real patients [37]. Bhagat, Liou and Chang [38] analysed improvements in military
training. These authors suggested that cost-effective 3D VR significantly improved subjects learning
motivation and outcomes and provided a positive impact on their live-firing achievement scores.
In addition, besides enhancements in cost-effectivity, VR offers a safe training environment, as evidenced
by the extensive research into driving and flight simulators [39,40]. Moreover, de-Juan-Ripoll et al. [41]
proposed that VR is an invaluable tool for assessing risk-taking profiles and to train in related skills,
due to its transferability to real-world situations.

Several researchers have also demonstrated the effectiveness of VR in therapeutic applications.
It offers some distinct advantages over standard therapies, including precise control over the degree
of exposure to the therapeutic scenario, the possibility of tailoring scenarios to individual patients’
needs and even the capacity to provide therapies that might otherwise be impossible [42]. Taking some
examples, studies using VR have analysed the improvement in the training in social skills for persons
with mental and behavioural disorders, such as phobias [43], schizophrenia [44] and autism [45]. Lloréns,
Noé, Colomer and Alcariiz [46] showed that VR-based telerehabilitation interventions promoted the
reacquisition of locomotor skills associated with balance, in the same way as in-clinic interventions
(both complemented with conventional therapy programmes). Moreover, it has been proposed as a
key tool for the diagnosis of neurodevelopmental disorders [47].

In addition, VR has been applied transversally to many fields, such as architecture and marketing.
In architecture, VR has been used as a framework within which to test the overall validity of proposed
plans and architectural designs, generate alternatives and conceptualise learning, instruction and the
design process itself [48]. In marketing, it has been applied in the analysis of consumer behaviour
in laboratory-controlled conditions [49] and as a tool to develop emotionally engaging consumer
experiences [50].

One of the most important topics in human behaviour research is human emotions, due to
the central role that they play in many background processes, such as perception, decision-making,
creativity, memory and social interaction [51]. Given the presence that VR provokes in users, it has
been suggested as a powerful means of evoking emotions in laboratory environments [8]. In one of the
first confirmatory studies into the efficacy of immersive VR as an affective medium, Bafios et al. [30]
showed that emotion has an impact on presence. Subsequently, many other similar studies showed
that VR can evoke emotions, such as anxiety and relaxation [52], positive valence in obese children
taking exercise [53], arousal in natural environments, such as parks [54], and different moods in social
environments featuring avatars [55].

1.4. The Validity of Virtual Reality

Finally, it is crucial to point out that the usefulness of simulation in human behaviour research has
been analysed through the validity concept, that is, the capacity to evoke a response from the user in a
simulated environment similar to one that might be evoked by a physical environment [56]. Thus, thereis
a need to perform direct comparisons between virtual and real environments. Some comparisons
have studied the validity of virtual environments by assessing psychological responses [57] and
cognitive performance [58]. However, there have been fewer analyses of physiological and behavioural
responses [59,60]. Heydarian et al. analysed user performance in office-related activities, for example,
reading texts and identifying objects, and found that the participants performed similarly in an
immersive virtual environment setting and in a benchmarked physical environment for all of the
measured tasks [61]. Chamilothori, Wienold, and Andersen compared subjective perceptions of
daylit spaces, and identified no significant differences between the real and virtual environments
studied [62]. Kimura et al. analysed orienteering-task performance, where participants in a VR
room showed less facility, suggesting that caution must be applied when interpreting the nuances of
spatial cue use in virtual environments [63]. Higuera-Trujillo, Lopez-Tarruella, and Llinares analysed
psycho-physiological responses, through electrodermal activity (EDA), evoked by real-world and
VR scenarios with different immersion levels, and demonstrated correlations in the physiological
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dynamics between real-world and 3D environments [64]. Marin-Morales et al. analysed the emotional
responses evoked in subjects in a real and a virtual museum, and found no self-assessment differences,
but did find differences in brain dynamics [65]. Therefore, further research is needed to understand the
validity of VR in terms of physiological responses and behavioural performance.

1.5. Implicit Measures and the Neuroscience Approach

Traditionally, most theories of human behaviour research have been based on a model of the
human mind that assumes that humans can think about and accurately verbalise their attitudes,
emotions and behaviours [66]. Therefore, classical psychological evaluations used self-assessment
questionnaires and interviews to quantify subjects’ responses. However, these explicit measures have
been demonstrated to be subjective, as stereotype-based expectations can lead to systematically biased
behaviour, given that most individuals are motivated to be, or appear to be, nonbiased [67]. The terms
used in questionnaires can also be differentially interpreted by respondents, and the outcomes depend
on the subjects possessing a wide knowledge of their dispositions, which is not always the case [68].

Recent advances in neuroscience show that most of the brain processes that regulate our emotions,
attitudes and behaviours are not conscious. In contrast to explicit processes, humans cannot verbalise
these implicit processes [69]. In recent years, growing interest has developed in “looking” inside
the brain to seek solutions to problems that have not traditionally been addressed by neuroscience.
Thus, neuroscience offers techniques that can recognise implicit measurements not controlled by
conscious processes [70]. These developments have provoked the emergence in the last decades of a
new field called neuroeconomics, which blends psychology, neuroscience and economics into models of
decision-making, rewards, risks and uncertainties [71]. Neuroeconomics addresses human behaviour
research, in particular the brain mechanisms involved in economic decision-making, from the point of
view of cognitive neuroscience, using implicit measures.

Several implicit measuring techniques have been proposed in recent years. Some examples of
their applications in human behaviour research are: heart rate variability (HRV) has been correlated
with arousal changes in vehicle drivers when detecting critical points on a route [72], electrodermal
activity (EDA) has been used to measure stress caused by cognitive load in the workplace [73],
electroencephalogram (EEG) has been used to assess engagement in audio-visual content [74], functional
magnetic resonance imaging (fMRI) has been used to record the brain activity of participants engaged
in social vs. mechanical/analytic tasks [75], functional near-infrared spectroscopy (NIRS) has been
used as a direct measure of brain activity related to decision-making processes in approach-avoidance
theories [76], eye-tracking (ET) has been used to measure subconscious brain processes that show
correlations with information processing in risky decisions [77], facial expression analysis (FEA) has
been applied to detect emotional responses in e-learning environments [78] and speech emotion
recognition (SER) has been used to detect depressive disorders [79]. Table 1 gives an overview of the
implicit measuring techniques that have been used in human behaviour research.
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Table 1. Overview of the main implicit techniques used in human behaviour research.

6 of 26

Implicit Technique

Biometric Signal Measured

Sensor

Features

Psychological or Behavioural Construct Inferred

EDA
(electro dermal activity)

Changes in skin conductance

Electrodes attached to fingers, palms
or soles

Skin conductance response, tonic
activity and phasic activity

Attention and arousal
[80]

HRV
(heart rate variability)

Variability in heart contraction intervals

Electrodes attached to chest or limbs
or optical sensor attached to finger,
toe or earlobe

Time domain, frequency domain,
non-linear domain

Stress, anxiety, arousal and valence
[81,82]

EEG
(electroencephalogram)

Changes in electrical activity of the brain

Electrodes placed on scalp

Frequency band power, functional
connectivity, event-related potentials

arousal and valence
[83,84]

Attention, mental workload, drowsiness, fatigue,

fMRI
(functional magnetic resonance imaging)

Concentrations of oxygenated vs.
deoxygenated haemoglobin in the blood
vessels of the brain

Magnetic resonance signal

blood-oxygen-level dependent

hunger, fear, arousal and valence
[85]

Motor execution, attention, memory, pain, anxiety,

fNIRS
(functional near-infrared spectroscopy)

Concentrations of oxygenated vs.
deoxygenated haemoglobin in the blood

Near-infrared light placed on scalp

blood-oxygen-level dependent

Motor execution, cognitive task (mental
arithmetic), decision-making and valence

[86]

ET
(eye-tracking)

Corneal reflection and pupil dilation

Infrared cameras point towards eyes

Eye movements (gaze, fixation,
saccades), blinks, pupil dilation

Visual attention, engagement, drowsiness and

fatigue
[87]

FEA
(facial expression analysis)

Activity of facial muscles

Camera points towards face

Position and orientation of head.
Activation of action units

Basic emotions, engagement, arousal and valence

[88]

SER
(speech emotion recognition)

Voice

Microphone

Prosodic and spectral features

Stress, basic emotions, arousal and valence

[89]
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In addition, recent studies have highlighted the potential of virtual reality environments for
enhancing ecological validity in the clinical, affective and social neurosciences. These studies have
usually involved the use of simple, static stimuli which lack many of the potentially important aspects
of real-world activities and interactions [90]. Therefore, VR could play an important role in the future
of neuroeconomics by providing a more ecological framework within which to develop experimental
studies with implicit measures.

1.6. Affective Computing and Emotion Recognition Systems

Affective computing, which analyses human responses using implicit measures, has developed
into an important field of study in the last decades. Introduced by Rosalind Picard in 1997, it
proposed the automatic quantification and recognition of human emotions as an interdisciplinary field
based on psychophysiology, computer science, biomedical engineering and artificial intelligence [1].
The automatic recognition of human emotion statements using implicit measures can be transversally
applied to all human behaviour topics and complement classic explicit measures. In particular,
it can be applied to neuroeconomic research as they share the same neuroscientific approach of using
implicit measures, and due to the important relationship that has been found between emotions and
decision-making [71]. Emotion recognition models can be divided into three approaches: emotional
modelling, emotion classification and emotion elicitation.

The emotional modelling approach can be divided into the discrete and the dimensional. Discrete
models characterise the emotion system as a set of basic emotions, which includes anger, disgust, fear,
joy, sadness and surprise, and the complex emotions that result from combining them [91]. On the other
hand, dimensional models propose that emotional responses can be modelled in a multidimensional
space where each dimension represents a fundamental property common to all emotions. The most
commonly used theory is the circumplex model of affect (CMA), which proposes a three-dimensional
space consisting of: valence, that is, the degree to which an emotion is perceived as positive or negative,
arousal, that is, the intensity of the emotion in terms of activation, from low to high, and dominance,
which ranges from feelings of total lack of control or influence on events and surroundings to the
opposite extreme of feeling influential and in control [92].

Affective computing uses biometric signals and machine-learning algorithms to classify emotions
automatically. Many signals have been used, such as voice, face, neuroimaging and physiological [93].
It is noteworthy that one of the main emotion classification topics uses variables associated with central
nervous system (CNS) and autonomic nervous system (ANS) dynamics [93]. First, human emotional
processing and perception involve cerebral cortex activity, which allows the automatic classification of
emotions using the CNS. EEG is one of the techniques most used in this context [94]. Second, many
emotion recognition studies have used the ANS to analyse the changes in cardiovascular dynamics
provoked by mood changes, where HRV and EDA are the most used techniques [95]. The combination
of physiological features and machine-learning algorithms, such as in support vector machines, linear
discriminant analysis, K-nearest neighbour and neural networks, has achieved high levels of accuracy
in inferring subjects” emotional states [96].

Finally, emotion elicitation is the ability to reliably and ethically elicit affective states. This elicitation
is a critical factor in the development of systems that can detect, interpret and adapt to human affect [97].
The many methods that elicit emotions in laboratories can be mainly divided into two groups, active and
passive. Active methods involve directly influencing subjects, including behavioural manipulation [98],
social interaction [99] and dyadic interaction [100]. Passive methods usually present external stimuli,
such as images, sound or video. As to the use of images, the International Affective Picture System
(IAPS) is among the databases most used as an elicitation tool in emotion recognition methodologies [95].
This includes over a thousand depictions of people, objects and events, standardised on the basis
of valence and arousal [97]. As to audio, the International Affective Digitalised Sound System
(IADS) database is the most commonly applied in studies which use sound to elicit emotions [101].
However, some studies directly use music or narrative to elicit emotions [102]. With respect to
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audio-visual stimuli, many studies have used film to induce arousal and valence [103]. These
emotion elicitation methods have two important limitations. The set-ups used, mostly screens, are
non-immersive devices, which provoke only a low level of presence in subjects [30]. Therefore, the
stimuli do not evoke in the subjects a feeling of “being there”, which is needed to analyse emotions in
simulated real-world situations. In addition, the stimuli are non-interactive, so they do not allow the
subjects to intervene in the scene, which would open the possibility to recognise emotional states during
interactive tasks. These limitations can be overcome by using immersive VR as a new emotion elicitation
method. Since the year 2000, VR has increasingly been used as affective stimulation, however the
majority of the studies undertaken have applied classic statistical methods, such as hypotheses testing
and correlation, to analyse subjects’ physiological responses to different emotions [104]. However,
in recent years, some research has started to apply affective computing paradigms with VR as the
emotion elicitation method, combining implicit measures with machine-learning methods to develop
automatic emotion recognition models [105].

This paper provides a systematic review of the literature on the use of head-mounted displays
in implicit measure-based emotion recognition research, and examines the evolution of the research
field, the emotions analysed, the implicit techniques, the data analysis, the set-ups and the
validations performed.

2. Materials and Methods

Data Collection

We followed an adapted version of the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) study selection guidelines [106]. This includes steps to identify literature,
to screen the identified literature, to check the eligibility of the screened literature and, finally,
to synthesise the literature. The screening and eligibility steps were performed simultaneously.
The literature search was carried out on 25 March 2020. The Scopus database was queried using
the following search string: TITLE-ABS-KEY (“virtual reality” OR “head-mounted display”) AND
TITLE-ABS-KEY (“emotion*” OR “affective*”) AND DOCTYPE (ar OR re). The keywords virtual
reality OR head-mounted display include all the studies on VR and, in particular, all that used
HMDs. In addition, the keywords emotion* OR affective* include all the papers related to emotion.
The combination of both requirements revealed the research that included virtual reality and emotions.
The search was limited to articles in journals and reviews (for snowballing). A total of 1424 records
were identified. Some 14 additional records were identified from other sources.

The screening and eligibility checks were undertaken as follows: (1) first, by investigating titles
and abstracts, 13 duplicates were identified. (2) The manuscripts were superficially screened for a
thematic match with virtual reality as emotion elicitation. A total of 1157 records were excluded for not
matching with the topic, and 3 records because they were inaccessible. (3) We investigated 265 records
to exclude those that did not fit, using a specific rejection order: that is, if they used HMDs, we moved
on to the next filter criterion, implicit measures, if they used implicit measures, we moved on to the
last criterion, the analysis of an emotion. Some 132 records were rejected for not using HMDs, 68 for
not using implicit measures and 23 for not analysing an emotional dimension. Finally, 42 studies were
included in the analysis which used virtual reality displayed in an HMD, in combination with any
implicit measure to analyse or recognise emotional states. The summary of the procedure is depicted
in Figure 1.
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Full-text articles assessed for
elegibility (n = 265)
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42)

Full-text articles excluded
(n=223)

Reason:
Not HMD (n =132)
Not implicit measure (1 = 68)
Not emotion (n = 23)

Figure 1. Scheme of the PRISMA procedure followed in the review.

3. Results

3.1. Summary of Previous Research

9 of 26

In recent years, studies have applied implicit measures to analyse emotions using immersive VR
with HMDs. Table 2 provides a summary of the studies included in the analysis.
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Table 2. Summary of previous research.
No Author Emotion Signals Features Data Analysis Subjects HMD VR Stimuli Stlmu.h D.a tas'e t
Comparison Availability
Jang et al. (2002) HR, HRV frequency 3 3D flying and driving
1 [104] Arousal HRV, EDA domain, SCL, ST t-test 11 VEX3D simulator No No
Meehan et al. 3D training room vs.
2 (2005) [107] Arousal HRV, EDA HR, SC, ST t-test 67 Not reported pit room No No
) Partially (with a
3 Wilhelm et al. Anxiety HRV, EDA HR, SC ANO\.IA’ 86 Not reported 3D height exposure different real No
(2005) [108] correlations d
ataset)
Gorini et al. . 30 (20 with food 3D photo and real VR vs. photo vs.
4 (2010 [109] Anxiety HRV, EDA HR, SC ANOVA disorders) Not reported food catering real No
Philipp et al. Virtual Research 3D room with IAPS
5 (2012) [110] Valence EMG EMG ANOVA 49 V8 pictures projected No No
3D high-mobility
Parsons et al. . . .
6 013) [111] Arousal HRV, EDA HR, SC ANOVA 50 eMagin Z800 wheeled vehicle with No No
Stroop task
Pallavicini et al. HRV, EMG, .
7 (2013) [112] Stress RSP HR, SC, RR ANOVA 39 Vuzix VR Bundle 3D classroom No No
3D virtual lab with
8 Peperkorn et al. Fear HRV, EDA HR, SC ANOVA 68 eMagin Z800 time-varying threat No No
(2014) [43] spider-phobic) K
(spiders and snakes)
Felnhofer et al. . 75 (30 high .
9 (2014) [113] Anxiety HRV HR ANOVA anxiety) eMagin Z800 3D lecture hall No No
Hartanto et al. 24 healthy . 3D stressful social
10 (2014) [114] Stress HRV HR MANOVA subjects eMagin Z800 environment No No
3D room with
11 McCalletal. - A ousal  HRV,EDA HR, SC Cross-correlations 306 NVIS nVisor SX60  me-varying threat No No
(2015) [115] (explosions, spiders,
gunshots, etc.)
3D park with 5
Felnhofer et al. g variations (joy,
12 (2015) [54] Arousal EDA SCL ANOVA 120 Sony HMZ-T1 3D sadness, boredom, No No
anger and anxiety)
Notzon et al. . 83 (42 . 3D virtual lab with
13 (2015) [116] Anxiety HRYV, EDA HR, SC ANOVA spider-phobic) eMagin Z800 spiders No No
3D room with
14 Hildebrandtet ol HRV,EDA RMSSD, SC Regression 300 NVIS nVisor SX60  Lme-varying threats No No

al. (2016) [117]

(explosions, spiders,
gunshots, etc.)
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Table 2. Cont.
No Author Emotion Signals Features Data Analysis Subjects HMD VR Stimuli Stlmu.h D.a tas'e t
Comparison Availability
Higuera-Trujillo Kruskall-Wallis 3D rooms (neutral
15 et al. (2016) Stress EDA SCR Test and 12 Oculus Rift DK2 ! No No
1 - stress and calm)
[118] correlations
16 Bianetal 016) HRV,EMG,  HR, LF, HF, LF/HF, RR, Regression 36 Oculus Rift DK2 3D Flight simulator No No
[119] RSP RS
Shiban et al. . 3D Trier Social Stress
17 (2016) [120] Stress HRV, EDA HR, SC ANOVA 45 NVIS nVisor SX60 Test No No
Chirico et al. HRYV, EDA, 360° neutral and awe Immersive vs.
18 (2017) [121] Awe EMG HF, VLE, SC ANOVA 42 Samsung Gear VR videos non-mmersive No
HRV time domain
Zou et al. (2017) (AVNN, SDNN..... )
19 [12é] Arousal HRV, EDA and frequency domain t-test 40 Oculus Rift DK2 3D fire evacuation No No
(LE HF... ),SC, SCL,
SCR
a9  Prewmingeretal . oial  HRV,EDA HR, HE, SC t-test o123 TriVisio VR Vision 3D car accident No No
(2017) [123] agoraphobics)
van’t Wout et al. 44 veterans (19 . 3D combat-related
21 (2017) [124] Stress EDA SCR MANOVA with PTSD) eMagin 2800 and classroom-related No No
Banaei et al. Arousal,
22 (2017) [125] Valence EEG PSD, ERSPs MANOVA 17 Samsung Gear VR 3D rooms No No
23 Andersonetal. g o HRV, EDA LE, HE, LF/HF, SC MANOVA 18 Oculus Rift DK2 360° indoor vs. No No
(2017) [126] natural panoramas
24 Cé‘[‘)tlt;)r ‘E]ezt;]d' Arousal HRV HR, LE, HF, LF/HF ANOVA 108 Sony HMZ-T13D 3D cemetery and park No No
. . Mann-Whitney
Higuera-Trujillo 3D, 360° and real real vs. 3D VR vs.
25 etal. (2017) [64] Pleasantness  HRV, EDA HEF, SCR U tests fmd 100 Samsung Gear VR retail store 360° VR No
correlations
. Mixed reality (3D VR
2 ~ Dledermamnet oy FIRV.EDA, HR, SC, RR ANOVA 100 HTC Vive with real-world No Yes
al. (2017) [128] RSP
elements)
HRV time domain (HR,
Tsai et al. (2018) . RMSSD... ) and . 3D VR claustrophobic Augmented
2 [129] Anxiety HRV frequency domain (HF, ANOVA 30 eMagin 2800 environments reality vs. VR Upon request

LF...)
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No Author Emotion Signals Features Data Analysis Subjects HMD VR Stimuli Stlmu.h D.a tas'e t
Comparison Availability
PSD and functional
connectivity, HRV Time
Marin-Morales Arousal (HR, RMSSD..... ),
28 etal. (2018) ousal, EEG, HRV frequency (HF, LF... ) SVM 60 Samsung Gear VR 360° virtual rooms No Upon request
Valence )
[105] and non-linear (SD1,
SD2, Entropy... )
domain
Kisker et al. f-test, 3D exposure to a high
29 ’ Arousal HRV HR correlations and 30 HTC Vive posu & No No
(2019) [130] . height
regressions
30 Gromer et al. Fear HRY, EDA HR, SC ANOVA 49 HTC Vive 3D forest No Yes
(2019) [131] ’ . (height-fearful)
. HR, salivary cortisol . . -
31 Zimmer et al. Stress HRY, salivary responses, salivary ANOVA 50 Oculus Rift DK2 3D Trier Social Stress Replication of a No
(2019) [132] Test real study
alpha amylase
3 netal 019) g EDA, SC, travel distance,  Mann-Whitney 60 HTC Vive 3D, building on fire No No
[133] Navigation travel time U
Schweizer et al. t-test and [ - 3D neutral and
33 (2019) [134] Stress HRV, EDA HR, SC correlations 80 TriVisio VR Vision trauma-related scene No No
Kim et al. (2019) Calm, St unt, gait d, 360° emotion-related
34 m et al sadness Gait Patterns cp count, gait speed, ANOVA 12 HTC Vive emotion-relate No No
[135] . foot plantar pressure videos
and joy
Uhm et at. o .
35 (2019) [136] Arousal EEG PSD MANOVA 28 Samsung Gear VR 360° sport videos No No
Takac et al. . . 3D rooms with public
36 (2019) [137] Anxiety HRV HR ANOVA 19 Oculus Rift audience No No
PSD and functional
connectivity, HRV Time
e (HR, RMSSD... ),
37 Marin Moralef Arousal, HRV, EEG frequency (HF, LF... ) SVM 60 HTC Vive 3D art museum Real museum vs. Upon request
etal. (2019) [65] Valence N 3D museum
and non-linear (SD1,
SD2, Entropy... )
domain
Stolz et al. . 3D room with angry
38 (2019) [138] Fear EEG ERPs ANOVA 29 Oculus Rift avatars No No
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Table 2. Cont.

No Author Emotion Signals Features Data Analysis Subjects HMD VR Stimuli Stlmu.h D.a tas'e t
Comparison Availability
SVM, RE,
Gradient
Granato et al. Arousal, HRYV, EDA, HR, SC, SCL, SCR, Boosting, . .
% (2020) [139] Valence EMG, RSP EMG, RR Gaussian 33 Oculus Rift DK2 3D video games No Yes
Process
Regression
Balan et al. HRYV, EDA, kNN, SVM, RF, . .
40 (2020) [140] Fear EEG HR, SC, PSD LDA, NN 8 HTC Vive 3D acrophobia game No No
Reichenberger et . - 53 (26 socially . 3D room with angry
41 al. (2020) [141] Fear Eye-tracking Fixation counts, TTFF ANOVA, t-test anxious) HTC Vive avatars No Upon request
2 Huang et al. Stress EDA SCL MANOVA 89 Oculus Rift DKz~ 00" built vs. natural No Yes
(2020) [142] environments

Signals: electroencephalograph (EEG), heart rate variability (HRV), electrodermalactivity (EDA), respiration (RSP) and electromyography (EMG). Features: heart rate (HR), high frequency
(HF), low frequency (LF), LE/HF (low/high frequency ratio), very low frequency (VLF), total skin conductance (S5C), skin conductance tonic level (SCL), fast varying phasic activity (SCR),
skin temperature (ST), respiratory rate (RR), respiratory depth (RS), power spectral density (PSD), event-related spectral perturbations (ERSPs), event-related potencials (ERPs) and time to
first fixation (TTFF). Data analysis: support vector machines (SVM), k-nearest neighbors algorithm (kNN), random forest (RF), linear discriminant analysis (LDA) and neural networks
(NN).
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3.2. Evolution of the Research

Figure 2 shows the number of papers published each year which included the topics virtual reality
and emotion analysis. This number of studies was calculated based on all the papers screened. In the
1990s, the average number of papers published annually was 6.4, the first being published in 1995.
In the 2000s, the average number of papers published increased to 26.3. However, from 2010 to 2014,
the average multiplied by three to 77.4. In the last five years, the curve has grown exponentially to 203
in 2019, and a predicted 278 in 2020.

Evolution of papers about VR and emotion
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Figure 2. Evolution of the number of papers published each year on the topic of virtual reality and
emotions. The total number of papers to be published in 2020 has been extrapolated using data up to
25 March 2020.

3.3. Emotions Analysed

Figure 3 depicts the evolution in the number of papers analysed in the review based on the
emotion under analysis. Until 2015, the majority of the papers analysed arousal-related emotions,
mostly arousal, anxiety and stress. From that year, some experiments started to analyse valence-
related emotions, such as valence, joy, pleasantness and sadness, but the analysis of arousal-related
emotions still predominated. Some 50% of the studies used CMA (arousal 38.1% [54] and valence
11.9% [125]), and the other 50% used basic or complex emotions (stress 23.8% [112], anxiety 16.7% [109],
fear 11.9% [43], awe 2.4% [121], calmness 2.4% [135], joy 2.4% [135], pleasantness 2.4% [64] and sadness
2.4% [135]).

3.4. Implicit Technique, Features used and Participants

Figure 4 shows the evolution of the number of papers analysed in terms of the implicit measures
used. The majority used HRV (73.8%) and EDA (59.5%). Therefore, the majority of the studies used
ANS to analyse emotions. However, most of the studies that used HRV used very few features from
the time domain, such as HR [115,120]. Very few studies used features from the frequency domain,
such as HF, LF or HF/LF [119,126] and 2 used non-linear features, such as entropy and Poincare [65,105].
Of the studies that used EDA, the majority used total skin conductance (SC) [116], but some used
tonic (SCL) [54] or phasic activity (SCR) [124]. In recent years, EEG use has increased, with 6 papers
being published (14.3%), and the CNS has started to be used, in combination with HMDs, to recognise
emotions. The analyses that have been used are ERP [138], power spectral density [140] and functional
connectivity [65]. EMG (11.9%) and RSP (9.5) were also used, mostly in combination with HRV. Other
implicit measures used were eye-tracking, gait patterns, navigation and salivary cortisol responses.
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The average number of participants used in the various studies depended on the signal, that is, 75.34
(o0 =73.57) for EDA, 68.58 (0 = 68.35) for HRV and 33.67 (o = 21.80) for EEG.

3.5. Data Analysis

Figure 5 shows the evolution of the number of papers published in terms of the data analysis
performed. The vast majority analysed the implicit responses of the subjects in different emotional states
using hypothesis testing (83.33%), correlations (14.29) or linear regression (4.76%). However, in recent
years, we have seen the introduction of applied supervised machine-learning algorithms (11.90%),
such as SVM [105], Random Forest [139] and kNN [140] to perform automatic emotion recognition
models. They have been used in combination with EEG [65], HRV [105] and EDA [140].
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Figure 3. Evolution of the number of papers published each year based on emotion analysed.
e @ R 6000 QO
e e e 0SS 0R RO,
e e R e O
g Eye-tracking—===----===-----=-=-=-------- 3 --------------------------------- ; --------------------------------- ; ------------------------------- ®----
gGanFanems— ------------------------- :---------------------------------E --------------------------------- ; ------------------------ -@ ----- ; ------
L O @ 210000 c0c
Navigation —----------------------o-choooooooooooooooooooooooooooooo oo E ********************************* E ************************ @ ***** E ******
e e (O R R ORI 0
Salivary = ===========-=-==--=-=-=-------- premm——— E --------------------------------------------------------- -@ ----- E ------

: Years E g

Figure 4. Evolution of the number of papers published each year based on the implicit measure used.

3.6. VR Set-Ups Used: HMDs and Formats

Figure 6 shows the evolution of the number of papers published based on HMD used. In the first
years of the 2010s, eMagin was the most used. In more recent years, advances in HMD technologies
have positioned HTC Vive as the most used (19.05%). In terms of formats, 3D environments are the
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most used [138] (85.71%), with 360° panoramas following far behind [142] (16.67%). One research used
both formats [64].
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Figure 5. Evolution of the number of papers published each year by data analysis method used.
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Figure 6. Evolution of the number of papers published each year based on head-mounted display
(HMD) used.

3.7. Validation of VR

Table 3 shows the percentage of the papers that presented analyses of the validation of VR in an
emotional research. Some 83.33% of the papers did not present any type of validation. Three papers
included direct comparisons of results between VR environments and the physical world [64,65,109],
and 3 compared, in terms of the formats used, the emotional reactions evoked in 3D VRs, photos [109],
360° panoramas [64] and augmented reality [129]. Finally, another compared the influence of
immersion [121], the similarity of VR results with previous datasets [108] and one compared its results
with a previous version of the study performed in the real world [132].
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Table 3. Previous research that included analyses of the validation of virtual reality (VR).

Type of Validation % of Papers Number of Papers
No validation 83.33% 35
Real 7.14% 3
Format 7.14% 3
Immersivity 2.38% 1
Previous datasets 2.38% 1
Replication 2.38% 1

4. Discussion

This work highlights the evolution of the use of immersive VR, in particular using head-mounted
displays, in emotion recognition research in combination with implicit measures. It provides a clear
perspective based on a systematic review and aggregated analysis, focusing on the role that VR might
play as an emotion elicitation tool in the coming years.

The evolution of scientific interest in VR and emotions has grown exponentially, to more than 200
papers per year (Figure 2). In particular, the performance improvements in the last few years in the
latest generation of HMDs, in terms of resolution, field of view, immersion levels and the fall in their
price, has boosted their use in emotion-related research. This accords with VR’s increased application in
recent years in other areas, such as rehabilitation, neurosurgery and therapy [2]. Therefore, the results
suggest that the 2010s was the decade of the rapid growth of VR in emotion research using implicit
measures, and the 2020s might be the decade when the field matures. Environmental simulations
might, in the future, normally go beyond the paradigm of non-immersive/video-based 2D images to
immersive VR scenarios, where subjects feel a very strong sense of presence and can interact with the
stimuli presented.

In regard to HMDs and implicit measures in emotion analysis, there is no consensus about the use
of CMA [92] or the Ekman theory of basic emotions [91], since both approaches are used in 50% of
the research (Figure 3). The differences in the frameworks used causes some difficulties in comparing
the results of different studies. The majority of the studies (90.5%) included analyses of arousal [54],
or high-arousal-related discrete emotions, such as stress [112], anxiety [109] and fear [43]. On the
other hand, only 23.9% of the studies analysed valence, or discrete emotions closely related to valence,
such as awe [121], calm [135], joy [135], pleasantness [64] and sadness [135]. Therefore, although the
whole sub-field of affective computing using HMDs is still in its first growth phase, valence recognition
and its physiological dynamics, in particular, are under-researched. Recent research since 2017 has
started to address this [65,139]. Dominance, a dimension of the CMA still not addressed in general
affective computing research using pictures or videos [143], has also not been analysed in HMD set-up
research. However, fear, a basic emotion closely related to the dominance dimension, was analysed in
11.9% of the studies examined in the review. In contrast to the fear that is felt when someone watches a
horror film, which is based on the empathy of the viewer with the protagonist, the level of presence
that immersive VR offers allows the analysis of fear directly felt by subjects based on scenarios they are
viewing. Therefore, VR can boost the analysis of the dominance dimension in affective computing
in the future. In addition, VR allows researchers to analyse emotional reactions to social stimuli,
such as avatars [138], which might be the next stage in the application of classic 2D affective computing
paradigms to simulated real-world situations, which can provide new insights with a social dimension.

In terms of the implicit techniques used to recognise emotions evoked through HMDs, ANS
measurements are most used: specifically, HRV (73.8%) and EDA (59.5%), many times used in
combination. However, until 2016, the majority of the papers featured only HR and SC (Table 2),
sometimes in combination with EMG and RSP. From 2016, the research started to include HRV frequency
domain and non-linear domain analyses [105,119], and EDA analyses, such as CDA, dividing the
signals into tonic and phasic components [64]. In terms of the CNS, EEG research has been undertaken
since 2016, including ERP [138], power spectral density [140] and functional connectivity analysis [65].
Other non-physiological implicit measures have been used since 2019, such as eye-tracking [141], gait
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patterns [135], navigation [133] and salivary cortisol responses [132]. The use of behavioural measures,
such as eye-tracking, gait patterns and navigation, might be a very powerful approach where VR
can contribute to affective computing research, as they provide high levels of interactivity with the
simulated stimuli. This might open a new sub-field where emotional states can be assessed through
behavioural measures in interactive, real situations.

However, the current weakest point of HMD-based emotion recognition systems is that only
11.90% of the studies, that is, four, used machine-learning algorithms to classify the emotions analysed.
Since the early 2000s, when physiological signals, in combination with HMDs, were first applied to
analyse emotions, until 2018, all studies used hypothesis testing and/or correlations to provide insights
into the ANS oscillations produced during different affective states, except Reference [125], which used
EEG. Although the classic statistical techniques obtained important and useful insights, they have
some limitations: (i) hypothesis testing analyses differences between two populations based on means
and deviations, but does not provide emotion recognition, (ii) it is difficult to analyse the effect of the
combination of several features in datasets with large sets of variables and (iii) they do not take into
account non-linear relationships. These limitations are being overcome with the use of machine-learning
algorithms, as they can recognise emotions through the development of algorithms in classification
problems, automatic feature selection procedures to recognise complex patterns inside data and offer
non-linear kernels [143]. Marin-Morales et al. [105] presented the first emotion recognition system
using SVM in combination with a large set of HRV features (time, frequency and non-linear domains)
and EEG (PSD and mean phase coherence) in 360° emotional rooms, achieving a recognition rate of
75% in arousal and 71.21% in valence. Marin-Morales et al. [65] developed an emotion recognition
system in a realistic 3D virtual museum, using SVM in combination with HRV and EEG, with rates of
75% and 71.08% of recognition in arousal and valence, respectively. Granato et al. [139] presented an
arousal-valence emotion recognition model with subjects playing a VR racing game. This procedure
collected physiological responses, that is, EDA, HRV, EMG and RSP. Balan et al. [140] analysed the
performance of a set of machine-learning and deep-learning techniques (kNN, SVM, RF, LDA, NN),
which adapted their stimuli based on the level of fear recognised, in fear recognition in a 3D acrophobia
game. The results showed recognition levels ranging from 42.5% to 89.5%. Therefore, the development
of emotion recognition models in immersive VR is an open, fast-growing sub-field, which is moving
from the classic statistical testing paradigm to supervised machine-learning.

As to the set-ups employed, Figure 6 shows the evolution of the HMDs used in implicit
measure-based emotion research. Among the first-generation VR HMDs of the 2000s was VEX3D,
which offers a resolution of 380 x 337 per eye. In the 2010s, the eMaginZ800 improved on the
resolution of previous HMDs, offering 800 x 600 and 40° of field of view, followed by Oculus Rift DK2,
which increased the resolution to 1080 x 960 and, in particular, the FOV to 90°. Finally, in the late 2010s,
the HTC Vive offered an increase in resolution to 1600 X 1400 per eye, and democratised VR with its
competitive price. Those increments in HMD performance are aligned with the exponential growth
of the number of papers that have used HMD in emotion recognition research (Figure 2), and future
HMDs, that might achieve 4K of resolution per eye, could boost the use of VR as a tool to recreate real
situations in controlled laboratory environments.

The format most used overall was the 3D environment (85.71%)—360° panoramas were used
in 16.67% of cases. This is probably due to the fact that 3D environments present a high level of
interactivity, as 360° panoramas do not allow changes in point of view. However, both formats
can be useful, depending on the aim of the experiment. The 360° panorama set-ups can be very
effective for updating classic, closely controlled affective computing methodologies, in particular,
when presenting users with a series of non-interactive stimuli, such as IAPS [95] and IADS [144],
but increasing degrees of presence based on immersion level [30]. However, there is still a need to
develop large datasets of validated immersive stimuli that cover a wide range of emotions, which could
be used as general benchmarks to analyse physiological and behavioural dynamics in immersive VR.
The 360° approach offers a good solution to this, as the interaction, for example, navigation, provokes
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uncontrolled variations during the emotional experience. The first dataset of stimuli published was by
Marin-Morales et al. [105], which included 4 scenarios that recreated all quadrants of the CMA. On the
other hand, the level of interactivity that 3D scenarios offer can be very useful in applied research,
since they display more naturalistic and interactive environments, facilitating decision-making research
and the analysis of daily situations. Taking some examples, Takac et al. [137] analysed the anxiety felt
by speakers when faced by large audiences, Lin et al. [133] analysed the stress felt by individuals when
in a building on fire scenario and Kisker et al. [130] analysed arousal in an exposure to a high height.

Immersive VR can be a very powerful tool to analyse human behaviour in controlled laboratory
conditions, but we do not yet know the level of VR validity needed to allow the extrapolation to the real
world of the insights gained in terms of physiological and behavioural responses. Indeed, 83.33% of the
papers did not present any validation, and only 3 provided a direct comparison between the VR scene
and the physical environment simulated. Gorini et al. [109] analysed anxiety through HRV and EDA
with virtual and real food, Higuera-Trujillo et al. [64] analysed pleasantness through EDA responses in
a 3D, 360° and real retail store, and Marin-Morales et al. [65] analysed arousal and valence oscillations
with HRV and EEG in a virtual and physical museum. Other research analysed the influence of
immersion [121] and other VR features. Thus, VR validation is still an open topic that needs to be more
actively addressed. Understanding and isolating the intrinsic dynamics of VR will be key in future
years for the validation of the insights obtained using HMDs.

Finally, the results suggest that VR will play a central role in the affective computing field.
The research performed has increased its complexity and maturity during the last two decades, and this
tendency is likely to continue during the next years. First, future research should extend the analysis of
the physiological dynamics using VR as emotion elicitation in VR, to achieve a level of understanding at
least as high as we have today using 2D pictures as stimulation. Subsequently, VR might open up many
research opportunities that would be very difficult to assess with non-immersive stimuli. In particular,
the inclusion of the dominance dimension, which is very closely related to the users’ control of the
environment, and impacts on very important features, such as sense of security. Moreover, the social
dimension is a crucial factor in the understanding of the emotional dynamics of human beings.
The future inclusion of responsive, realistic avatars will help increase the understanding of emotions
evoked during social interactions, and the associated physiological responses, in controlled conditions.

5. Conclusions

This work analysed the current state-of-the-art in implicit measure-based emotion recognition
elicited by HMDs, and gave a perspective using a systematic and aggregated analysis that can
guide future research. After two decades of little research analysing emotions using HMDs in
combination with implicit measures, mostly undertaken through the physiological arousal responses
of the ANS, in recent years, an inflexion point has been reached. The number of papers published
is increasing exponentially, and more emotions are being analysed, including valence-related states,
more complex biomedical signal processing procedures are increasingly being performed, including
EEG analyses and other behavioural measures, and machine-learning algorithms are being newly
applied to develop automatic emotion recognition systems. The results suggest that VR might
revolutionise emotion elicitation methods in laboratory environments in the next decade, and impact
on affective computing research, transversely in many areas, opening new opportunities for the
scientific community. However, more research is needed to increase the understanding of emotion
dynamics in immersive VR and, in particular, its validity in performing direct comparisons between
simulated and real environments.
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