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Abstract

Carotid atherosclerosis is a risk factor for transient ischemic attacks (TIAs) and stroke, one of
the main causes of global mortality. The disease is characterized by the deposit of plaque in
the interior of the carotid artery wall . As the plaque grows it causes luminal narrowing and
may rupture and trigger ischemic events. Quantitative analysis of plaque components and
vessel wall (VW) is useful to identify high-risk plaques and monitor disease progression. For
this, inner and outer-wall contour must be delineated from image acquisitions. The Three-
dimensional - Motion-Sensitized Driven Equilibrium(MSDE)-prepared Rapid Gradient Echo
(3D-MERGE) Magnetic Resonance Imaging (MRI) developed sequence has shown promising
performance in atherosclerotic plaque visualization. However, its integration in the clinical
practice is limited due to the large number of slices that must be manually delineated which
is a time-consuming process.

In this thesis we approach the Carotid Artery Vessel Wall Segmentation Challenge 2021
where the aim is the automatically segment the common carotid artery (CCA), external
carotid artery (ECA) and internal carotid artery (ICA) VW with high accuracy and robustness
from 3D-MERGE MRI images. The main challenges were, the heterogeneity and small size
of the VW morphology and the sparsity of annotations provided. To overcome these chal-
lenges, we implemented an automated VW segmentation workflow with deep learning (DL)
algorithms based on semi-supervised learning (SSL) with shape constraints. For automatic
carotid artery localization, a state-of-the-art object detection algorithm was custom trained
with labelled slices (in total 2078). Then, a 3D vessel centreline reconstruction step increased
the accuracy of detection for region of interest (ROI) extraction. For VW segmentation a
dual-task semi-supervised segmentation network with signed distance map (SDM) regression
was trained with labelled (2078) and unlabelled (8665) carotid patch slices where a task-level
consistency regularization guided the mutual learning of both networks. This allowed to
impose geometrical constraints and take advantage of unlabelled data. Additional shape
constraints were applied at a post-processing stage with a persistent homology (PH)-based
topological loss function for VW topology correction. The results suggest that in challenging
segmentation problems such as vessel wall-Magnetic Resonance Imaging (VW-MRI) seg-
mentation, the model can benefit from enforced shape constraints both during training and
at test-time adaptation. Furthermore, the PH-based post-processing module successfully
increased the percent of topologically meaningful VW predictions by ~ 7%. The final aim of
this work is to advance towards the implementation of DL-based algorithms in the clinical
workflow for carotid atherosclerosis lesion assessment.

keywords: segmentation, detection, semi-supervised learning, shape analysis, vessel wall,
3D-MERGE
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Kurzfassung

Die Atherosklerose der Karotis ist ein Risikofaktor fiir transitorische ischdmische Attacken und
Schlaganfille, eine der Hauptursachen fiir die weltweite Sterblichkeit. Die Krankheit ist durch
die Ablagerung von Plaque im Inneren der Halsschlagader gekennzeichnet. Die quantitative
Analyse von Plaque-Komponenten und der Gefafswand ist niitzlich, um Hochrisiko-Plaques
zu identifizieren und den Krankheitsverlauf zu tiberwachen. Dafiir miissen Innen- und
Aufienwandkontur aus Bildaufnahmen abgegrenzt werden. 3D Black Blood Motion Sensitized
Driven Equilibrium-prepped Rapid Gradient Echo (3D-MERGE) Magnetresonanztomographie
(MRT) Sequenzen erméglichen die Visualisierung von atherosklerotischen Plaques. Allerdings
ist die Umsetzung in der klinischen Praxis aufgrund der manuellen Segmentierung begrenzt.
In dieser Arbeit ndhern wir uns der Carotid Artery Vessel Wall Segmentation Challenge
2021, bei der das Ziel die automatische Segmentierung der gemeinsamen, externen und
inneren Halsschlagader mit hoher Genauigkeit und Robustheit aus 3D MERGE . ist MRT-
Bilder. Die Hauptherausforderungen waren die Heterogenitdt und die geringe Grofie der
Gefaflwandmorphologie und die spérliche Annotationen. Um diese Herausforderungen zu
meistern, haben wir einen automatisierten Workflow zur Segmentierung der Gefafiwande
implementiert, der auf Deep Semi-Supervised Learning mit Formbeschrankungen basiert. Fiir
die automatische Lokalisation der Halsschlagader wurde ein Objekterkennungsalgorithmus
trainiert. Anschlieflend erhohte ein 3D-Schritt zur Rekonstruktion der GefafSmittellinie die
Erkennungsgenauigkeit fiir die Extraktion der interessierenden Region. Fiir die Segmen-
tierung der Gefifiwdnde wurde ein semi-iiberwachtes Segmentierungsnetzwerk mit zwei
Aufgaben und einer vorzeichenbehafteten Distanzkartenregression mit markierten (2078)
und nicht markierten (8665) Karotis-Patch-Slices trainiert, wobei die Konsistenzregulation
auf Aufgabenebene das gegenseitige Lernen beider Netzwerke leitete. Dies ermoglichte es,
geometrische Beschrankungen aufzuerlegen und unbeschriftete Daten zu nutzen. Zusétz-
liche Formbeschrankungen wurden basierend auf der Persistenzhomologie angewendet,
um die Gefdffwandtopologie zu korrigieren. Die Ergebnisse zeigen, dass das Modell von
erzwungenen Formeinschrankungen bei anspruchsvollen Segmentierungsproblemen wie
der MRI-Gefdflwandsegmentierung profitieren kann. Das Persistenzhomologiemodul erhoh-
te den Anteil der korrekten Gefafiwandtopologien um ~7% steigern. Das endgiiltige Ziel
dieser Arbeit ist es, die Implementierung von DL-basierten Algorithmen in den klinischen
Arbeitsablauf zur Beurteilung von Karotis-Atherosklerose-Lasionen voranzutreiben.

Schliisselwdrter: Segmentierung, Erkennung, Semi-tiberwachtes Lernen, Formanalyse,
Gefafiwand, 3D-MERGE
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1 Introduction

1.1 Motivation and Problem Statement

Cardiovascular disease (CVD) is the leading cause of global mortality. It is estimated that 32%
of global deaths in 2019 were caused by CVDs and of these deaths, 85% were due to stroke [1].
Atherosclerosis is the dominant cause of ischemic strokes in CVD and approximately 18-25%
of all strokes are caused by atherosclerosis in the carotid arteries [2] . Carotid atherosclerosis is
characterized by the deposit of plaque in the carotid artery inner wall which leads to luminal
narrowing or stenosis. Approximately 5-10% of the population over the age of 65 suffers
subclinical carotid stenosis with a degree greater than 50% [2]. As the disease progresses the
atherosclerotic plaques may rupture which leads to clinical events such as TIA or stroke [3].

The monitorization of the disease through atherosclerotic plaque assessment may prevent
acute ischemic events with the appropriate care response. Traditional plaque evaluation
methods focused solely on the measurement of luminal stenosis. Recently, further plaque
features such as plaque burden and intraplaque haemorrhage (IPH) have been proposed
to characterize the plaque morphology and composition as well as their associated risks
[3]. Based on these features the appropriate medical treatment may be selected between
non-invasive interventions such as lifestyle changes and pharmacological treatment and more
invasive procedures such as carotid endarterectomy (CEA) [4] and carotid stent placement
[5]. Furthermore, surgical planning for CEA procedures may also require the characterization
of the atheroma plaque [3].

VW-MRI has proven its capability for identifying high-risk atherosclerotic lesions [6].
However, traditional 2D-MRI acquisitions require a long scan time and have low slice
resolution. A 3D-MERGE sequence [7] has been developed capable of fast acquisition times,
submillimetre isotropic resolution, and large coverage of the carotid artery. This sequence
has shown promising results in carotid plaque characterization [8] however, it has a limited
application due to the large number of images where the VW must be manually segmented.
Manual segmentation is a time consuming and labour-intensive process, therefore, there
is a need to develop computational methods capable of automatic VW segmentation. DL
networks have recently revolutionized the field of automatic image segmentation [9].

In this thesis, we approach the Carotid Artery Vessel Wall Segmentation Challenge
(CAVWSC) 2021 [10]. In this challenge, the task is to automatically segment the bilateral
carotid VW from 3D-MERGE [7] MRI images. The aim is to obtain high accuracy and robust
segmentation for common carotid artery (CCA), internal carotid artery (ICA) and external
carotid artery (ECA) branches in patients with various carotid conditions. For this, the inner
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and outer-wall contours are provided but only for a small number of slices. Furthermore,
the carotid VW in the axial view is a small and heterogeneous structure, especially in the
bifurcation region, which normally requires ROI extraction.

The goal of this work is to propose an automated framework with DL algorithms based
on SSL approaches with shape constraints that can provide accurate and robust carotid
VW segmentation from 3D-MERGE MRI images. The proposed method may be a first step
towards the integration of DL algorithms in the carotid plaque assessment workflow as
preprocessing tools for radiologists to monitor and identify high-risk atherosclerotic lesions
from VW-MRL

1.2 Background

1.2.1 Carotid vessel anatomy

The carotid arteries are blood vessels in the neck responsible for the blood supply to the brain,
neck, and face. There are two carotid arteries found in both sides of the neck, known as the
left and right carotid arteries. As observed in Figure 1.1, each carotid artery is composed of a
CCA that branches into the ICA and ECA. The right CCA originates from the brachiocephalic
trunk whilst the left CCA branches directly from the aorta. Both CCAs split into the ICA and
ECA at the level of the thyroid cartilage (C4), this region is known as the carotid bifurcation
(BF) region. Directly superior to the BF region the ICA experiences a slight dilation, known
as the carotid bulb or sinus. The ECA supplies blood to the face and neck, it has a vertical
course which lies more superficial than the ICA. As it ascends it gives rise to six branches:
the superior thyroid artery, the lingual artery, the facial artery, the ascending pharyngeal
artery, the occipital artery, and the posterior auricular artery. The ECA ends in the parotid
gland where it divides into the temporal artery and the maxillary artery. The ICA supplies
the anterior part of the brain and the eye. As it rises into the cranial cavity it does not give off
any branches. Its trajectory is first lateral with respect to ECA and then passes medially and
deeper from it [11].

The carotid VW is composed of three layers: the tunica intima, the tunica media, and the
tunica adventitia. The intima or lumen wall is the inner wall directly in contact with the blood
flow. It is composed of an endothelial monolayer that has a significant role in the formation
of the atherosclerotic plaque. The media or middle layer is composed of smooth muscle cells
surrounded by a matrix of collagen, elastin, and proteoglycans. The adventitia or outer wall
is the external layer mostly composed of collagen which provides support [13].

The reported diameters of CCA, ECA and ICA in the literature vary with different acquisi-
tion techniques and measurement methods [14, 15]. In a recent study by Cobiella et al. (2021)
[16], where external diameters were measured ex-vivo, the average diameter of CCA reported
was 0.97 + 0.14 cm (n=103 cases), the average for ICA was 0.74 £ 0.16 cm (n=139 cases) and
the average for ECA was 0.49 £+ 0.08 cm (n=206 cases).
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Right internal
carotid artery

Right external
carotid artery

Right common
carotid artery

Right subclavian artery

Brachiocephalic trunk

Figure 1.1: Anatomy of the carotid artery [12].

1.2.2 Carotid atherosclerosis

Atherosclerosis is a chronic inflammatory disease caused by the accumulation of low-density
lipoprotein (LDL) cholesterol and calcium on the inner arterial wall, this is otherwise known
as plaque. As the disease progresses the plaque can continue to grow causing luminal
narrowing and blocking the blood flow of the vessel [16]. Figure 1.2 illustrates the progression
of atherosclerosis. The first visible sign of atherosclerosis is known as the ‘fatty streak’
which consists of cholesterol and lipid-containing macrophage cells. The response-to-injury
hypothesis states that this initial event is caused by lesions in the endothelium which produce
an inflammatory response [17]. Endothelial dysfunction has been observed to occur more
likely in arterial regions subjected to a lower shear stress such as curves and bifurcations.
Fatty streaks are not symptomatic and in many cases regress back to normal conditions,
however, they can also progress into the formation of fibrous plaques [18]. The progressive
accumulation of lipids and the infiltration of smooth muscle cells in the intima leads to
the formation of a plaque which narrows the vessel lumen. Atherosclerotic plaques can be
defined by the risk of rupture they have. Stable plaques cause vascular remodelling where
the lumen is only partially occluded and are asymptomatic. They are characterized by a thick
fibrous cap (FC) which prevents plaque rupture and a small necrotic core. Furthermore, they
may suffer calcifications which has been observed to stabilize the plaque. On the other hand,
unstable plaques have thinner fibrous caps and larger necrotic cores that are more likely to
rupture. Plaque rupture results in the discharge of prothrombotic factors from the necrotic
core into the vessel lumen which leads to thrombus formation and clinical events including
myocardial infarction, unstable angina, stroke and sudden cardiac death [17].
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Progression of atherosclerosis

Adventitia

Media ——
Intima -

Fatty streak| Lipid core Fibrous cap! Necrotic core

Figure 1.2: Atherosclerosis progression [19].

In the carotid artery, the atherosclerotic plaques generally develop at the bifurcation region
leading into the ICA and ECA. As illustrated in Figure 1.3, the ICA is mostly affected
involving the regions of the carotid bulb and posterior wall. Furthermore, carotid plaques
also extend to the distal portions of the CCA. Besides the known risk factors, the vessel
geometry and fluid dynamics play an important role in the development of atherosclerosis.
Hemodynamic stress conditions such as low shear and disturbed flow have been reported to
cause endothelial dysfunction which leads to plaque formation [3].

The risk factors for the development of carotid atherosclerosis are similar to other vas-
cular diseases. Some of the risk factors include obesity, cigarette smoking, age, diabetes,
hypertension and advanced glycation end products (AGE) [3].

Medical treatment of carotid atherosclerosis is dependent on the degree of stenosis and
on the symptomatology of the disease. The treatment of asymptomatic patients includes
lifestyle intervention and pharmacological agents. Several lifestyle changes could slow the
progression of carotid atherosclerosis such as not smoking, ingesting foods with low saturated
fats, daily physical exercise and limiting alcohol consumption. Asymptomatic patients with
a degree of stenosis lower than 50% should receive intensive medical treatment through
pharmacological agents. These include antihypertensive agents, agents that lower the AGE
products and increase soluble form of receptor for advanced glycation end products (SRAGE)
and lipid lowering agents. In symptomatic patients or asymptomatic with a degree of stenosis
above 60% other treatments should be considered such CEA [4]. CEA consists of surgically
removing the carotid plaque and repairing the VW. Carotid artery stent placement [5] is a
procedure less invasive than CEA and consists of inserting a small mesh cylinder (stent) at
the site of the narrowed artery with the inflation of a balloon attached at the end of a catheter.
Once it is placed, the balloon is removed, and the stent is left in place which keeps the artery
open [5]. In asymptomatic patients, non-invasive medical management of the disease has
shown comparable success rates with respect to CEA in reducing the risk of stroke with
higher cost-effectiveness [3].
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(b)

External
carotid artery
(supplies face,
scalp and neck)

Internal carotid
artery (supplies
blood to brain)

Right
common
carotid
artery

Figure 1.3: (a) Location of right carotid artery. (b) Normal carotid artery. (c) Artery with
plaque build-up [20].

1.2.3 Carotid vessel wall imaging techniques

The identification of carotid atherosclerosis has been conventionally performed by measuring
the degree of luminal stenosis through imaging techniques such as sonography, catheter-
based angiography and, more recently, Computed Tomography Angiography (CTA) and MRA
[21]. However, histopathologic studies demonstrated that there are considerable differences
between plaques with the same degree of stenosis which could increase the risk of stroke [2].
In addition, it was observed that mild degrees of stenosis may still result in cerebrovascular
events [22]. This led to a more focused research on the features of the plaque associated
with ischemic events [23]. Advanced imaging techniques such as Multidetector Computed
Tomography (MDCT), Ultrasound (US) and high-field MRI have enabled the identification
of plaque features associated with high-risk plaques. Rather than simply measuring the
percentage of luminal stenosis, advanced imaging methods enable the identification of
“vulnerable plaques” which are prone to rupture and cause acute clinical events [2]. Recent
research works have focused on investigating the optimal approach for high-risk plaque
imaging [24]. Carotid vessel wall imaging (VWI) techniques enable the visualization of the
location and extent of the atherosclerotic plaque and could be useful for assisting surgical
planning before CEA or carotid stent placement. Furthermore, carotid VWI could also aid
in the decision making of borderline cases. For example, if a large lipid-rich necrotic core
with IPH is detected inside the carotid plaque of a patient with repeat strokes it could lead to
considering the CEA procedure. In subclinical cases VWI methods could also be useful in
monitoring the progression of the atherosclerotic plaque [2].
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Previous research works [2, 23] have introduced new concepts for the evaluation of
atherosclerosis severity. First, that the degree of stenosis is a weak marker for atherosclerosis
as it does not fully characterize the volume and extension of the plaque. Second, a set of
plaque features identifiable with imaging techniques are closely linked to an increased risk
of stroke regardless of the degree of stenosis. These features can be accurately predicted
thanks to the advancement of imaging techniques that target the VW instead of only the
vessel lumen [2]. The lumen morphology of the carotid plaques can be smooth or present
irregularities. Surface irregularity is considered as a risk factor for embolism and TIA or
stroke [25]. Another important plaque feature is IPH. IPH is a commonly employed feature to
identify vulnerable plaques and strong associations have been observed between the presence
of IPH in the plaque and cerebrovascular accidents [26]. Furthermore, it can be used to give a
measure of plaque progression. The association of intraplaque neovascularization with IPH
and plaque remodelling has also been recently studied [2]. The FC which separates the LRNC
of the plaque from the lumen is one of the most important risk predictors to be considered
[2]. Vulnerable plaques are characterized by thin FC and a large percent area of LRNC and
are highly associated with cardiac events. Lastly, plaque volume or burden has demonstrated
to play a role in determining the ‘vulnerability” of the plaque. An increased plaque volume is
related to higher risk of cardiovascular events and some authors hypothesized that it may be
a better indicator than the degree of stenosis. [2].

Carotid VWI techniques can be used to extract plaque features with the aim of predicting
the risk of cardiac events and monitoring the disease progression. The state-of-the-art non-
invasive imaging modalities used for VWI are US, MRI and Computed Tomography (CT).
US imaging can be used to evaluate the plaque based on echogenicity factors. For example,
hypoechogenic elements are associated with LRNC and hyperechogenic regions or shadowing
may indicate calcifications. However, the visualization of deeper tissues may be limited due to
the acoustic shadowing caused by the calcified plaques. CT scans can provide high resolution
imaging of the carotid wall which renders it a promising tool for the quantification of plaque
volume. Furthermore, the recent advancements in MDCT allows it to differentiate between
fatty and calcified plaques which are associated with different risks of rupture. However, it
presents several limitations such as the radiation dose delivered to patients, the risk associated
when injecting contrast materials and the limited contrast in fat tissue [2].

In high-resolution MRI, the high field strength (1.5T-3T) has improved signal-to-noise
ratio and enables the evaluation of plaque features other than the degree of stenosis. Multi-
contrast carotid MRI (including TIW, T2W, proton density and TOF sequences) provides
comprehensive information of plaque components such as the FC, LRNC, calcifications and
IPH [27]. MRI has demonstrated high sensitivity in the detection of IPH which for some
authors converts it in the leading imaging technique for the detection of vulnerable plaques
[2]. In addition, it does not employ ionizing radiation which is harmful for the patient [8].
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Figure 1.4 shows a comparison of high-resolution MRA, multi-contrast MRI and ex-vivo
histological slide of a carotid VW with plaque. As can be observed, VW-MRI is able to
differentiate between loose matrix (purple outline) and LRNC (yellow outline) which allows
the identification of vulnerable plaques. Furthermore, as can be seen in the image, plaque
evaluation requires the prior step of VW segmentation. VW segmentation involves defining
the contour of the inner wall or lumen (red) and the outer-wall (blue) [28].

FOV: 160 x 160 mm - 52.6 FOV: 160 x 160 mm
512 x 51, o 512 x 512
zoom: 400.0%

’ FOV: 160 x 160 mm =111 FOV: 160 x 160 mm
512 x 512 R 512 x 512

L: 882, W 1739 room: 400.0% JlL: room: 400.0%

Figure 1.4: Comparison of high-resolution MR angiography, 3T multi-contrast MRI and
histological slide of carotid vessel with plaque. (a) MRA. (b) TIW, T2W, TOF and
contrast-enhanced T1IW. (c) T2W where region of LRNC is dark (curved arrow)
and loose matrix is bright (arrow). (d) Histologic slide with LRNC (yellow outline),
loose matrix (purple outline), inner-wall (red outline), outer-wall (blue outline) [6,
28].

3D-MERGE sequence

High-resolution black-blood MRI has emerged as a promising technique for atherosclerotic
plaque characterization [29, 30]. In this sequence the signal from flowing blood is suppressed,
which avoids pulsation or ghosting artifacts common in bright-blood techniques that cause
an overestimation of stenosis. Furthermore, the lack of intraluminal signal allows to clearly
delineate the carotid VW [8]. For this reason, it is the predominant technique for VW
evaluation, and it has been employed for plaque feature analysis such as plaque burden in
several clinical trials [8, 31]. On the other hand, black-blood MRI is mostly employed as a
2D sequence where the longitudinal coverage is limited to approximately 15 mm above and
below the carotid bifurcation. This coverage may not be sufficient to visualize the full extent
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of the carotid plaque atheroma. For example, the plaque length is an important risk factor that
may not be completely quantified with the limited carotid coverage provided by traditional
2D-MRI sequences [8]. In addition, plaque burden quantification can be used to monitor the
disease progression or the response to treatment however, an accurate measurement requires
inner and outer-wall segmentation in images with high resolution in all three directions.
2D-MRI techniques have limited slice resolution as opposed to 3D techniques [7].

A 3D black-blood imaging technique known as 3D-MERGE [7] has recently been imple-
mented to characterize carotid plaque composition and morphology. It consists of a 3D
isotropic sequence with Motion Sensitized Driven Equilibrium (MSDE) preparation for maxi-
mum blood suppression and a gradient echo sequence with short pulse repetition times for a
faster 3D acquisition. 3D-MERGE sequences can acquire images with entire coverage of the
cervical bilateral carotids and with submillimetre isotropic resolution (~0.7 mm?) with a field
strength of 3T. Furthermore, they have faster acquisition scan times (~2 minutes) compared
with other 3D scan techniques therefore ensuring patient compliance and reduced motion
artifacts. The high slice resolution, the expanded coverage of the carotid and the short scan
times have rendered it a promising sequence for characterization of carotid plaques in clinical
applications. Figure 1.5 shows an example of a 3D-MERGE acquisition of the carotid artery.

Sagittal

Coronal

Figure 1.5: Isotropic 3D-MERGE sequence acquisition in three orthogonal planes. Calcification
of right carotid plaque is visible (arrow) [7].
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1.3 Structure

The rest of this manuscript is organized as follows. In Section II, we provide the state-of-the art
of VW DL segmentation methods. The methodology employed in our proposed framework
and the experimental data used are described in Section III, followed by the results and
discussion in Section IV. In Section V we draw the conclusions and in Section VI we present
some of the limitations and future work.
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2 State of the art

During the years, semi-automated and automated computational methods have been proposed
for VW image segmentation. In the field of VW-MRI segmentation Yuan et al.(1999) [32]
applied active contour models for vessel boundary detection whilst Ladaks et al.(2001) [33]
applied discrete dynamic contours for outer-wall and lumen segmentation in a slice-by-slice
mode. Underhill et al. (2006) [34] applied active shape models in black-blood MRI sequences.
However, the above methods required manual interaction for contour initialization. To
increase the accuracy of segmentation, Unal et al.(2008) [35] proposed the introduction of
shape priors to an edge detection method in intravascular ultrasound (IVUS) images, however,
parameter tuning was not trivial. Liu et al.(2012) [36] extended the segmentation task to 3D
MRI images with a B-spline snake evolution model that propagated outer and inner wall
segmentations between slices, the main limitation was that snake models may fail in low
quality images or severely diseased areas. 3D deformable models have also been applied for
vessel segmentation. For example, Van ‘'t Klooster et al.(2012) [37] combined 3D TOF-MRA
data with 2D vessel images and Arias-Lorza et al.(2015) [38] employed multiple sequences
of MRA (proton density-weighted (PDW) black-blood sequences, phase contrast, PDW-echo
planar) for 3D graph-cut optimization. More recently, Luo et al.(2019) [39] proposed to modify
the traditional level set method with a double adaptative threshold for a semi-automatic
segmentation of TOF-MRA carotid artery images. In general, the above methods required
extensive human input in the form of either contour initialization, parameter tuning or
multiple image registration.

With the advent of deep learning, automatic computational methods for image segmenta-
tion have experienced a major break-through. Multi-layer networks that apply convolutional
operations, otherwise known as Convolutional Neural Networks (CNNs), have shown promis-
ing performance in image classification tasks [40]. In addition, Long et al.(2015) [41] proposed
a CNN network with Fully Convolutional Networks (FCNs), capable of efficient pixel-wise
segmentation. Based on FCNs, Ronneberger et al.(2015) [42] proposed a U-shaped network
with skip connections between downsampling and up-sampling paths, otherwise known as
U-Net, achieving promising results in biomedical applications.

Several variants of FCNs and U-Net have been recently proposed for carotid VW segmenta-
tion [9]. For example, Shi et al.(2019) [43] applied a 2D U-Net that combined information of
lumen and outer-wall with a multi-class loss function in MRI image segmentation. Wu et
al.(2019) [44] proposed a 2.5D U-Net with a triple dice loss function that leveraged spatial
information between adjacent slices achieving promising results. However, both methods
required user interaction for artery localization and ROI extraction. More recently, Chen
et al.(2019) [45] proposed a CNN with polar conversion for the task of CCA and ICA seg-
mentation. Furthermore, they automatized ROI extraction with the integration of an object
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detection algorithm coupled with tracklet refinement to the segmentation framework.

Carotid VW segmentation methods have also been extended to 3D applications. For
example, Zhu et al.(2021) [46] recently proposed a 3D U-Net with patch and global level
training. On the other hand, 3D methods require fully labelled annotations in every image
slice which may be challenging in medical image applications.

Recent research works have focused on the introduction of prior knowledge to generate
anatomically plausible medical image segmentations. Embedding prior knowledge such as
shape in deep learning networks has demonstrated increased accuracy and robustness of
segmentation [47].

In this field, Xue et al.(2020) [48] proposed the integration of level set functions that encode
implicit shape representations such as SDMs to the task of image segmentation. By converting
the segmentation task into SDM regression, they showed superior segmentation performance
and better smoothness and continuity in shape in the task of multi-organ segmentation.
Navarro et al.(2019) [49] proposed the integration of SDM prediction as an auxiliary task
for multi-task learning segmentation. Different from level set functions, Clough et al.(2019)
[50] proposed the integration of topological priors to the loss function through the concept
of PH. The topological loss function could be applied both during training and at a post-
processing stage without the requirement of ground-truth annotations and promising results
were achieved in the task of left ventricle myocardium segmentation.

Medical image annotations are often expensive to acquire, especially in 3D volumetric
images. To reduce labelling costs, SSL methods aim to learn from a limited amount of labelled
data and a large set of unlabelled data directly. Recently, SSL methods have successfully
incorporated unlabelled data by enforcing the consistency of unlabelled data predictions
through a regularization term in the loss function [51, 52]. Furthermore, the recent integration
of SDM regression to SSL frameworks has achieved state of the art results in medical image
segmentation [53-55]. In this setting, Luo et al.(2020) [53] proposed a dual-task consistency
framework with level set functions whilst Li et al.(2020) [54] enforced consistency of SDM
unlabelled predictions through an adversarial loss. More recently, Zhang et al.(2021) [55]
proposed a dual-task mutual learning framework that combined two individual networks,
trained for binary mask segmentation and SDM regression, through a cross-task consistency
loss. The aim was to leverage information from unlabelled data whilst imposing geometrical
shape constraints and promising results were achieved for left atrium MRI segmentation.

In this thesis, we propose an automated carotid vessel wall segmentation workflow for
3D-MERGE images. First, a state-of-the-art object detection algorithm [56] was employed for
artery localization and automatic ROI extraction. Inspired by the works of Zhang et al.(2021)
[65] and Clough et al.(2019) [50] we propose a VW segmentation framework that imposes
shape constraints at two levels, both during training and at a postprocessing stage, through
SDM regression and topological priors. To our knowledge, shape constrained convolutional
networks and SSL methods have not been previously applied to the task of carotid VW-MRI
segmentation.

12



3 Materials and Methods

3.1 Materials

3.1.1 MR Images

The dataset employed in this thesis was provided by the CAVWSC 2021 [10]. The data
acquisition was performed by the CARE II [31] multicentre study, where patients with
recent ischemic stroke or transient ischaemic attacks were enrolled as subjects. Each subject
underwent bilateral carotid arteries MRI acquisition with standardised protocols. Details of
the dataset are shown in Table 3.1. The dataset consists of fast 3D-MERGE [7] sequences. All
scans were acquired on a Philips Achieva 3T scanner with an 8-channel phase array coil. The
field-of-view (FOV) was of 250 x 160 mm?. The 3D-MERGE sequence was acquired in the
coronal plane and the scan parameters were optimized to image the entire longitudinal extent
of the carotid artery covered by the coil. The scans were acquired with a submillimetre and
isotropic resolution of 0.7 x 0.7 x 0.7 mm? and were zero-resampled to 0.35 x 0.35 x 0.35 mm°.
Figure 3.1 illustrates a sample 3D acquisition of the carotid artery. As can be observed, the
whole neck was covered with the 3D-MERGE image scan, including the CCA, ICA and ECA.

Each scan consisted of a volumetric image resliced in the axial plane with 720 slices per
volume and average size of 100 x 720 (height x width) pixels. The axial slices were interpolated
to 720 x 720 pixel matrix size with zero padding. As can be observed in Figure 3.1 the quality
of the image slices varied along the slice depth due to the coronal acquisition scan with only
the several hundreds of slices in the middle (approximately 200-500) with sufficient image
quality for carotid VW evaluation.

Two sets of data were provided the challenge, both from the same CARE II study and with
the same imaging parameters. The training and testing set consisted of 25 patients.

Table 3.1: CARE-II dataset parameters

Dataset ~ Acquisition Interpolated FOV* Slices Image  Interpolated
name resolution  resolution (mm?) (mm?)  per scan size image size

CARE-II 07x0.7x0.7 035x0.35x0.35 250 x 160 720 100 x 720 720 x 720
*FOV: field-of-view
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Figure 3.1: Illustration of 3D-MERGE images from CARE II study in different carotid regions
[57].

3.1.2 Human labelling

The lumen and outer carotid VW were manually traced by trained reviewers on axial slices
with the aid of a custom designed carotid VW annotation Computer-Aided System for
Cardiovascular Disease Evaluation (CASCADE) software package [58].

In the training set, the annotations included the CCA, ECA and ICA for left (L) and right
(R) arteries and were given in separate slices. The challenge also provided the location of the
bifurcation slice to differentiate between the CCA and ICA/ECA. Figure 3.2 illustrates the
lumen (red) and outer-wall (blue) contours for a sample slice in the original provided image
(Figure 3.2(a)) and with a x9 scale (Figure 3.2(b)). Contours were provided as coordinates
considering the top-left corner of the image as the origin.

For each scan or patient, only the slices with enough image quality for VW diagnosis
were annotated, in total only 20% of the slices [10]. Consequently, the 100-200 slices of the
outer-most edges were unlabelled due to the low image quality provided by the coronal scan.
In addition, in several cases, the annotated slices were sparsely labelled which meant that not
all carotid types were annotated for one particular slice. In total, the number of annotated
slices in the dataset was 2336 and the number of annotated carotid structures extracted
was 2670. It must be remarked that each patient had a different number of annotations for
each carotid branch. The number of unlabelled carotid arteries with experimental value was
computed as the number of carotid structures, within first and last labelled slice location,
with no carotid label. In total, 8665 unlabelled carotid structures were identified.
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(a) (b)

Figure 3.2: (a) Sample image slice (720x720) with lumen (red) and outer-wall (blue) annota-
tions for ICA-L. (b) Lumen and outer-wall annotations with x9 scale.

3.2 Methods

3.2.1 Theoretical concepts
Deep Learning for object detection

Object detection is an important task related to the field of computer vision. It involves the
detection and localization of object instances belonging to a certain class, in digital images and
videos [58]. Object detection can provide valuable information related to many applications
such as human behaviour analysis [59], autonomous driving [60] and face recognition [61].
More recently, object detection algorithms have also been proposed for medical applications,
for example, for medical image processing [62-64].

The goal of object detection is to develop computational tools that can determine the
position of an object in a given image (object localization) and the category it belongs to
(object classification) automatically. The object localization task involves drawing a bounding
box around the object of interest and locate it within an image. However, this may become
challenging as the number of object occurrences in a sample can range from 0 to many and
this information is not known beforehand, therefore the length of the output variable is not
constant [58].

Object recognition requires the extraction of meaningful and semantic representations of
the image, otherwise known as feature vectors. Traditional approaches involve the use of
feature descriptors such as histograms of oriented gradients, however these must be manually
designed and tailored for background and illumination conditions. With the advent of deep
learning and CNN, multilayer convolutional operations have been applied to object detection
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methods for adaptative and robust feature extraction. This has led to a rapid expansion of
object detection algorithms, known as CNN-based object detection methods [58].

CNN-based object detectors can be categorized in two main types: one-stage and two-
stage detectors. Two-stage detectors first require a region proposal network (typically a
region CNN [65]) and based on the features extracted from the proposed regions, object
classification and bounding box regression is performed with a separate architecture. Two-
stage methods normally achieve the highest detection accuracy however their inference time
is significantly slower. The most representative models are faster Region based Convolutional
Neural Network (R-CNN) [66] and mask R-CNN [67]. On the other hand, one-stage object
detection methods predict bounding boxes over the entire image, without the requirement
of a region proposal network, which significantly reduces inference time. One of the most
popular one-stage object detectors is the You only look once (YOLO) [68] algorithm.

YOLO [68] is a non-region-based object detection method that utilizes the entire feature
map to predict the object category and bounding box. Therefore, a single unified architecture
can perform global regression and classification . YOLO pipeline is very simple; it can be
trained on full images by dividing the input into S x S grids and each grid is responsible of
detecting the object whose centre it contains. In this manner, the algorithm can ‘only look
once’” at the image to output the bounding box predictions. Using the feature information
from the whole image reduces the error rate compared with local detection. Figure 3.3 shows
an illustration of this framework. The main advantage of YOLO algorithm is its high inference
speed due to performing object detection in one stage, however, this also comes at the cost
of underperforming in the detection of small and irregular objects. The latest developed
algorithm, YOLO version 4 (YOLOvV4) [56] incorporates additional methods to boost the
detection accuracy limitations from YOLO whilst retaining the high inference speed.

= 1]
0 e s 3 )

Bounding boxes + confidence

S x S grid on input L[ Final detections

Class probability map

Figure 3.3: YOLO one-stage object detection framework [68].

16



3 Materials and Methods

In this thesis, we employ a one-stage CNN-based object detection algorithm known as
YOLOV4 [56] for artery lumen localization. YOLOV4 is characterized by real-time inference
speed with high accuracy of detection and has shown promising results in several computer
vision applications such as vehicle detection [69] or aircraft segmentation [70]. Recently, it has
been employed for medical image processing applications such as lesion detection [63, 64].

Loss function

The optimization of CNN-based object detection algorithms is based on the minimization
of a loss function that computes the error between the predicted and ground-truth bounding
box. In the following section, B = (x,y,w,h) is the predicted bounding box and B&' =
(x8, y8t, w8t het) is the ground-truth bounding box.

YOLOv4 employs a loss function based on the Intersection over Union (IoU), known as the
complete IoU (cIoU) [71]. The cloU loss function is defined in Equation 3.1

p(b, b8

LCIOU =1-—TIoU+ 2 +av (31)

where b and b8! refers to the central points of B and B8' . p is the Euclidean distance and ¢
is the diagonal length of the smallest box encompassing B and B8'. The IoU is a widely used
accuracy metric for object detection and is defined in Equation 3.2

|B N B8
ol = ———— 3.2
M T BUBE (3.2
v measures the consistency aspect ratio as defined in Equation 3.3
4 w8t W,
v = ﬁ(arctan W> — (arctan ﬁ) (3.3)

« is a trade-off parameter that gives higher priority to non-overlapping bounding boxes
during regression. Equation 3.5 defines the parameter « .

v
o= m (34)

As observed, different from the standard IoU loss, the cloU loss considers three geometric
properties: the overlap area, the central point distance and the aspect ratio of prediction and
ground-truth bounding box which leads to faster convergence and performance than IoU
loss.
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Deep learning for semantic image segmentation

Semantic image segmentation is a pixel-wise classification task that assigns a category to each
pixel in an image. For example, in binary image segmentation the pixels are classified in two
categories: pixels belonging to the target object (1) and pixels belonging to the background (0)
[72].

In recent years, DL methods have revolutionized traditional computer vision problems
such as automated image segmentation [72]. In this field, CNN networks have experienced
major success due to their ability of learning hierarchical image feature representations
during training. For end-to-end semantic segmentation FCNs [41] were first proposed by
replacing fully connected layers with convolutional layers in classification models and with
the introduction of an up-sampling path to generate dense predictions. FCNs introduced
encoder-decoder architectures for image segmentation however they often failed to consider
global spatial information. To solve this, an improved FCN variant was proposed known
as U-Net [42]. U-Nets are CNNs with symmetric encoder-decoder architectures and skip
connections that propagate features from the down-sampling to the up-sampling path. In
the encoder, convolutional operations are applied to extract contextual information whilst
the decoder is an expanding path that localizes the detected patterns such as contour and
boundaries in the final resolution image. U-Net networks have achieved state-of-the-art
results in medical image segmentation tasks [42, 72].

Loss function

The optimization of DL-based algorithms such as CNNs for image segmentation is normally
based on the minimization of a supervised loss function that computes the error between the
output of the algorithm (prediction) and the “true” or expected value (ground-truth).

The soft Dice loss function was first proposed by Milletari et al. [73]. It is based on the dice
coefficient (defined in chapter 4 - Equation 4.2) which measures the similarity between the
predicted (p) and the corresponding ground-truth (y) probability map for each pixel i. The
dice loss function is defined in Equation 3.5

N,
. Li d (3.5)
Yo yi+Yi pito

Ldice(y/ P) =1-

where ¢ is a smoothing factor equal to 0.00001.
Activation function

Activation functions are employed in neural networks to transform the weighted sum of the
inputs at each node of a layer into an output signal. Most activation functions are non-linear
to introduce non-linearities to the network design [74].
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Activation functions can be applied in hidden network layers (layers that receives input
from previous layer and pass an output to the next layer) and output layers (layers that output
the final prediction) to limit the range of values of the output probability map. The choice of
activation function normally depends on whether it is applied on a hidden or output layer,
and in the output layer it will depend on the type of the prediction that the model requires
[74].

The Rectified Linear Unit (ReLU) function is an activation function commonly used in
hidden layers. Equation 3.6 shows the mathematical definition.

f(x) = max(0, x) (3.6)

Figure 3.4(a) shows a graphical representation of the ReLU function. As observed when the
input is negative the returned value is 0, otherwise the input value is returned. This function
is widely employed as it is less susceptible to vanishing gradients [74].
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Figure 3.4: Graphical representation of (a) ReLU function, (b) sigmoid and (c) tanh [75].

Output activation functions are activation functions applied to the last layer of the network
to limit the range of output probability maps into a set of finite values.

The sigmoid or logistic activation function is the standard output activation function for
binary classification and segmentation with neural networks. The sigmoid function is defined
in Equation 3.7.

fx) = o(x) = (37)
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As can be observed in Figure 3.4(b) , the sigmoid activation function returns values in
the range of [0,1], therefore it is commonly employed to output a prediction probability
map where each pixel contains the probability of belonging to a binary class. The predicted
probability map can be then converted to a binary mask through the application of a threshold
(i.e., 0.5).

The hyperbolic tangent (tanh) is a logistic function commonly employed as an output
activation function in neural networks. Different from the sigmoid function it is symmetric
around the origin. The tanh function is defined in Equation 3.8

f(x) =tanh(x) =20(2x) — 1 (3.8)

where ¢ corresponds to the sigmoid function.

Tanh returns outputs values in the range [-1,1], as shown in Figure 3.4(c). Due to this
property, it has recently been proposed as an output activation function in the prediction of
normalized SDMs (also in the range [-1,1]) [48].

Limitations of the U-Net

The U-Net has become the benchmark neural network for medical image segmentation
applications, however there are some limitations associated with the architecture and loss
functions that are utilized [47].

The Dice and cross-entropy loss are commonly used in combination with U-Nets for medical
image segmentation, however, they ignore high-level features such as shape or topology of the
object of interest. Furthermore, these losses penalize all mistakes equally without geometrical
or anatomical considerations which could lead to uneven target boundaries and outliers in
the output segmentation. The architecture of the vanilla U-Net also does not integrate any
anatomical or contextual constraints which further results in a lack of spatial awareness in
the final predictions. For this reason, recent research works have focused on the integration
of knowledge priors such as shape into the U-Net or its 3D variant, for medical image
segmentation [53-55]. Embedding prior knowledge could also lead to increased robustness
and accuracy of the network as well as generating anatomically plausible segmentations [47].

Deep neural networks such as the U-Net normally require large amounts of fully annotated
data for successful training. However, in medical image segmentation applications large
and fully labelled datasets are normally expensive and difficult to acquire. When given the
complexity of the model, the amount of training data is not large enough over-fitting may
occur where the model does not generalize well for unseen data [76].

Several regularization techniques have been proposed to improve the generalization ability
of neural networks and avoid over-fitting. Dropout consists of randomly disconnecting layer
outputs with a probability p during training. This can be seen as a form of noise injection
which increases the robustness of the model. Batch normalization standardizes the layer
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inputs to a Gaussian distribution (standard deviation = 1 and mean = 0) which also introduces
noise to the network training. Both techniques make the model more robust and reduce its
variance. Data augmentation is also a useful strategy to reduce the variance of the model. By
applying transformations to the training data such as geometrical or noise perturbations we
can generate new training samples for our dataset [76].

Recently, other strategies have been proposed to regularize the training procedure and
improve the generalization ability of the model. In the following section we describe three
concepts which form the basis of the proposed VW segmentation framework: Semi-supervised
Learning [77], Deep Mutual Learning [78] and shape prior regularization [48, 50, 55].

Semi-supervised learning

Semi-supervised learning (SSL) approaches aim to increase the model performance by
leveraging information from a small amount of labelled data and a large amount of unlabelled
data [77].

In SSL we are provided with a dataset D consisting of a subset of labelled samples D; and a
subset of unlabelled samples D, were normally the portion of labelled samples is significantly
smaller compared with the unlabelled samples. The aim of SSL is to leverage unlabelled
samples D, to increase the performance of a model f(6) with trainable parameters 6 . For
example, D, might provide additional information about the structure of data distribution
p(x) which could lead to a better estimation of the decision boundary between classes, this
can be further observed in Figure 3.5 [77].

One of the first SSL strategies consisted of self-training methods [79] where a model, first
trained with labelled samples, was used to generate pseudo-labels for unlabelled data. The
pseudo labels were then added to the training set for the next iteration. In the deep SSL setting,
Bai et al. (2017) [80] proposed an iterative framework for cardiac image segmentation were
in each iteration pseudo labels were generated and were refined by a Conditional Random
Field (CRF), then the refined pseudo-labels were used to update the network. However,
pseudo-labelling methods rely on the high confidence of pseudo-labels and often annotations
generated by the model may be noisy and have a detrimental effect on subsequent iterations.
Another approach is to utilize unlabelled data through adversarial training. For example,
Zhang et al. (2017) [81] proposed a deep adversarial model that encouraged the predictions
of unlabelled images to be similar to the labelled ones.

Consistency regularization

Consistency regularization is a category of SSL that introduces an unsupervised loss term
to the loss function [77]. It is based on the smoothness assumption (i.e., data points close in
the image space should also be close on the label space) or the manifold assumption (i.e., two
data points in a local low-dimensional manifold have similar class labels) [79]. Consequently,
the output of a predictive model should be robust to realistic perturbations of input data. In
this setting, unlabelled data can be leveraged to produce a decision boundary which captures
the data manifold [77]. Figure 3.5 illustrates the described SSL assumptions.
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Figure 3.5: [llustration of semi-supervised learning assumptions. (a) Smoothness or low-
density assumptions. (b) Manifold assumptions [51].

Consistency regularization methods aim to optimize a loss function L consisting of a
supervised loss Ls,,; and an unsupervised loss or consistency regularization term Lco,s that
enforces consistency between two models” outputs. This is formulated in Equation 3.9

L= Lsup + /\Lcons

(3.9)

where Ly, is applied to D; and Lcoys is applied to D = D; U D,,. A is a weight coefficient
that controls the trade-off between the supervised and unsupervised term.

The consistency regularization term Lc,,s can be formulated as follows. Given an unlabelled
data point x € D, and its perturbed version £ , the objective is to minimize the distance

between the two model outputs d(fp(x), fo(£)). One of the commonly employed distance

metrics for consistency regularization is the mean square error (MSE) and the KL divergence
[82]. Equation 3.10 illustrates the MSE distance metric as a consistency regularization term
for model outputs Y = fy(x) and Y = fy(%)

~ 1 ~
Lcons - dMSE(Y/ Y) - X7 Z(Yi/ Yi)z
N ieEN

(3.10)
where i corresponds to each pixel value in a N x N probability map.

It should be noted that consistency can also be applied between two perturbed inputs and
between outputs of different networks, normally in a teacher-student structure [82].
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Several methods have applied consistency regularization with different techniques [77].
For example, Li et al.(2020) [52] proposed a teacher-student model where consistency was
enforced between the transformed output of a student model with a random augmentation
technique (i.e., dropout, Gaussian noise, random data transformation) and the output of a
teacher model from a transformed input. Based on the consistency of both outputs the weights
of the teacher model were updated with an exponential moving average (EMA). Recently,
QOuali et al.(2020) [83] leveraged unlabelled samples by enforcing consistency between the
predictions of a main and auxiliary decoders with different perturbed inputs.

On the other hand, the above methods only consider the consistency at a data level and
ignore the consistency between different tasks. Furthermore, they require several forward
passes to compute the consistency loss which results in high computational costs. More
recently, Zamir et al. (2020) [84] proposed to enforce consistency across different tasks based
on the invariance of inference paths. This novel strategy showed promising results in that
different from traditional multi-task learning approaches, consistency is explicitly enforced
between predictions of different tasks during training. However, this method has only been
applied in a fully supervised paradigm. Luo et al. (2020) [53] applied cross-task consistency
in a semi-supervised setting achieving promising results.

Deep mutual learning

Model distillation [85] is a widely used technique to transfer knowledge from a teacher to a
student model. The aim is to transfer from a powerful and large network to a smaller network
that will have equal representation capacity but with significantly smaller computational
or memory requirement. In a related but different concept, deep mutual learning (DML)
[78] proposes that the knowledge is transferred between a pool of small student networks.
Specifically, each student network is trained with a supervised loss and a mimicry loss that
aligns the posterior probability of each student. In this manner, each student network can
learn in a peer-teaching scenario which outperforms the conventional independent learning.
Furthermore, this technique is applicable to different sized models.

Equation 3.11 and Equation 3.12 show the loss functions of two networks (©; and ©>) for
the DML approach

Lo, = L¢c, + Dxi(p2 || p1) (3.11)
Le, = Lc, + Dxi(p1 || p2) (3.12)

where L¢, and Lc, are the supervised loss and p1 and p; are the posterior probability of
networks ®; and ©,.
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As observed through the supervised and KL divergence loss the networks learn to solve
the task and to mimic the performance of the other network [78]. Furthermore, as each
network starts from a different initialization, their learnt representation and their probability
estimates are different. This variability provides additional information in DML. Overall,
training collaboratively two networks through DML is effective to improve the generalization
ability of both networks [78].

Dual-task mutual learning for semi-supervised segmentation

In this thesis, inspired by the work of Zhang et al.(2021) [55] we implement a VW seg-
mentation framework based on the concepts of DML and SSL with cross-task consistency
regularization. First, it follows the DML approach by simultaneously training two individual
networks for collaborative learning and peer knowledge transfer. In the proposed framework
each network is trained for a different task guided by a supervised and an unsupervised loss
term. One network is trained for binary mask segmentation and the other for SDM regression.
As each network learns reliable representations of the final segmentation target starting
from different task-level conditions, the estimated probabilities are different which in the
DML approach is exploited as additional knowledge. However, different from Equation 3.11
and Equation 3.12, the unsupervised loss term is not a mimicry loss. Instead, DTML is
implemented in a semi-supervised setting, where an unsupervised cross-task consistency loss
is integrated in the loss function to leverage information from unlabelled data by encouraging
consistent predictions between networks with different tasks. The consistency loss guides the
mutual learning of both networks and enforces shape constraints through signed distance
map predictions.

Shape-aware regularization

The shape constraints enforced in this work during training and post-processing step will
be detailed below.

Signed distance map

Level set functions have been traditionally employed in computer vision tasks to capture
geometric active contours and distance information [86, 87]. As observed in Figure 3.6 , by
viewing the surface of an object as a signed distance function (SDF), the implicit contour of a
shape can be extracted as the intersection of the surface with a plane.

The integration of SDFs in CNN architectures has rejuvenated level set methods in their ap-
plication to DL-based image segmentation [89]. In medical image applications, several works
have reported a superior segmentation performance when incorporating signed distance map
(SDM) regression as an auxiliary task for binary segmentation [90]. SDM regression offers
several advantages. Instead of directly extracting the boundary or surface of a target shape,
we can extract the distance of each pixel to the boundary. Therefore, the incorporation of SDM
prediction to the training strategy can bias the network to learn the per pixel information of
the boundary location and capture implicit geometrical properties [91].
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Figure 3.6: Level set description of a 2D shape. (a) design domain. (b) level set model [88].

The level set or SDM can be directly transformed from a binary segmentation mask with
the function defined in Equation 3.13

—inf|lx—yl2, x€ Gy,

yedG
Gspr =10, x € dG (3.13)
—inf |lx—yl2, x € Gou
yedG

where ||x — y||2 represents the Euclidean distance between pixels x and y, and Gj,, 0G and
Gout represent the inside, boundary and outside of a target segmentation object.

As illustrated in Figure 3.6 and Equation 3.13, SDMs take negative values inside the target
object, positive values outside and 0 values on the boundary (zero-level set). The intensity
value of each pixel is defined as the distance to the closest target boundary. In this work, the
signed distance value is normalized between [-1,1] [55].

To transform the SDM back to the binary segmentation mask a smooth approximation of an
inverse transform is employed, similar to [53]. This transformation is defined in Equation 3.14

1

ToeFs o(k-z),z € Gspr (3.14)

Gmask =

where z is the per pixel value of the SDM and k is a transform factor, following the original
implementation it is selected as k = 1500 [55].
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As observed, Equation 3.14 is equal to a sigmoid function (section 3.2.1 - Equation 3.7)
multiplied by a factor k, therefore it can be seen as an activation function applied to the
networks output [53].

Equation 3.15 proves the differentiability of the inverse function.

oT-1 1 '
dz ~ \1+e k=

1 1
—f— (1=
14 e k= < 1—i—e—k'z>

In this work, SDMs are generated by adding an auxiliary regression head with a hyperbolic
tangent (section 3.2.1 - Equation 3.8) to a classic encoder-decoder architecture. The aim was
to design a geometry-aware approach that could refine output VW segmentation masks by
leveraging shape priors from the transformed distance maps.

(3.15)

Persistent homology

Persistent homology (PH) is a mathematical tool employed to measure the persistence of
topological features across different scales. It is an integral part of topological data analysis
(TDA), an emerging field where the topological attributes of the data are used to extract
meaningful information from high-dimensional and noisy datasets [92]. PH has been applied
to a variety of information extraction tasks, ranging from biological systems [93] to computer
vision [94]. Recently, PH has been applied in medical image segmentation tasks achieving
promising results in noisy images [50].

The general idea of PH is to extract the topology of simplicial complexes which can be used
to represent high dimensional data points. In the present problem, PH is applied to 2D data
represented by cubical complexes. A cubical complex is a set of points, lines, squares and
n-dimensional counterparts used in the computation of homology in the topological space
[50].

If we consider a 2D image, represented by an N, x N, array and defined by a set of pixel
intensities X;;, the output probability of a CNN parametrised with weights w at the pixel (i, j)
is S;j = (f(X;w)) € [0,1] . In cubical complexes, an elementary cube covering the region of
pixel (i, j) can be represented as Q;; = [i,i + 1] x [j,j + 1]. Considering B(p) as the super-level
set of S;; in other words, the set of pixels with S;; above a threshold p, Equation 3.16 can be
formulated as [50]

B(p) = UQz’j :Siizp (3.16)
ij
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By lowering the filtration value p more pixels are considered in the subset B(p), this is
defined in Equation 3.17.

@ C B(1) C B(p1) C B(p)... C B(0) C [0,Ny] x [0, Ny] (3.17)

As more pixels join the pixel set B(p), the cubical complex Q grows, and topological
features may be created or destroyed. PH measures the number of topological components
that appear at different B(p) for each value p. This can be represented through Betti numbers
of different dimensions. A Betti number of dimensions 0 (By) correspond to the number of
connected components present on the image, a Betti number of dimension 1 (1 ) corresponds
to the number of holes [92].

In order to analyse topological features present at different filtration values or thresholds
p, persistence barcode diagrams can be generated to represent the birth (p threshold after
which the topological feature first appears) and death (p threshold after it disappears) of
different topological features. The birth and death values can be denoted as by and dy;,
respectively, for dimension k and I}, largest bar. The length of the bar therefore represents the
difference between by; and dy;, which is known as the persistence of the topological feature.
Only the most persistent features (longest bars) will be represented in this diagram as they
are considered more meaningful. An example of barcode diagram and its corresponding
image can be observed in Figure 3.7. In Figure 3.7(b), the x-axis represents different filtration
values. Each bar corresponds to the persistence of a topological dimension, the red bar
represents topological features of dimension 0 (Bp) and the green bars represent topological
features of dimension 1 (B1). As can be observed in the probability map (Figure 3.7(a)), 3
connected components (objects) are present with one of them having a hole, therefore 4 bars
are represented in the persistence barcode (89 = 3 and B1 = 1) [50].

The by; and dy; values for each topological component correspond to a particular pixel
intensity in image S. Therefore, if the intensity of that pixel is changed the by; and dj; values
would also change. This means that by; and dj; are differentiable with respect to the image
array S. Since S = f(X; w) is also differentiable, the gradient of by, and dy; can be calculated
with respect to the weight of the network. This implies that the weights of the network can
be adjusted to adhere to a specific barcode diagram or expected topology in the image [50].
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Figure 3.7: (a) Sample segmentation probability map of size 80 x 80. (b) PH barcode diagram
of the probability map. The x-axis of the barcode represents different filtration
values. Red bars correspond to 0-dimensional persistent features (o). Green bars
correspond to 1-dimensional persistent features (31) [50]

Persistent homology-based loss function

Due to the differentiable properties of persistence barcodes, the topology of the predicted
segmentation can be compared to the expected topology or topological prior and through
gradient descent the prediction could be brought closer to the correct topology.

In this work, we follow the PH loss function proposed by Clough et al.(2019) [50]. Consid-
ering the Betti numbers of the desired topology as B} the PH loss function can be defined as
in Equation 3.18 and Equation 3.19.

,Bk 00
Le(Bp) = Y (1= b —dig )+ Y [biy — dis|? (3.18)
-1 I=F 11
Liopo = ) _ Lx(B) (3.19)
X

It must be remarked that B can be considered as a topological prior which is determined by
the experimenter and does not require ground-truth annotations. For example, in the present
problem of VW image segmentation the expected topology is a ring shape, therefore the loss
function will be minimised when p; corresponds to By = 1 (one connected component) and
B1 =1 (one hole).
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3.2.2 Network architecture
YOLOv4

YOLOV4 [56] is a state-of-the-art one-stage object detector. As can be observed in Figure 3.8,
its architecture can be divided in 3 basic building blocks: the backbone, the head and the
neck. First the input images are processed through the backbone to extract high-level feature
representations. Then, the neck module down samples the extracted feature for deep feature
selection. In this step, the output features from the backbone network are mixed and combined
and convolutional operations perform feature aggregation. Finally, the head of the detector
generates dense anchor-based predictions, similar to YOLO version 3 algorithm [95].

Input Backbone Sparse Prediction

&

Figure 3.8: Object detector architecture [56].

The backbone consists of a CSPDarknet53 [56] network pretrained on Image-Net dataset
and implemented with a Mish activation function [96]. CSPDarknet53 is a modified version
of Darknet-53 [95] that includes cross-stage partial connections [97] and consists of 29
convolutional layers with 3 x 3 kernel size and receptive field size of 725 x 725. As observed
in Figure 3.9, CSPDarknet53 is composed of a partial dense block and a partial transition layer
that splits the gradient flow and merges it with a cross-stage hierarchy method to increase
gradient richness whilst reducing computation time [97].

At the neck stage, YOLOV4 uses a modified version PANet [98] for feature aggregation that
concatenates instead of adds the features from the previous and current layer. Furthermore,
the object detection algorithm integrates a SPP module [99] to extract more significant context
features and increase the receptive field size [56].

The role of the head detector is to output the coordinates of the predicted bounding box,
the confidence score of the object and the classification label. The output predictions are based
on anchor boxes which are dimension priors selected by the researcher. YOLOv4 divides
the image into n x n grid cells, every grid infers the bounding box coordinates along with a
confidence score [56].
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Figure 3.9: DenseNet with cross-stage partial connections [97].

YOLOV4 outputs 4 anchor-based bounding box coordinates predictions, (ty, ty, tw, t,) where
(tx,ty) corresponds to the centre coordinates with respect to a grid cell (cy, cy) and (t, t;)
corresponds to the width and height of the bounding box. The offset coordinates can be
decoded to the final bounding box coordinates (by, by, by, by) as can be observed in Figure 3.10,
where (py, pi) correspond to the anchor box width and height and ¢ to a sigmoid function
[56, 95]

CX
Py
Cy E----.-------.--.-E
: b, .
o(t) : b=0(t)+c,
ph: b, ._.1 1 by=0(ty)+cy
E O'Ctx) E bw=pwetw
. : b,=p,e*" ‘

Figure 3.10: Bounding box (blue rectangle) with dimensions priors (black rectangle) [95].

As a final output, YOLOv4 generates an output tensor of size: n x n x (C+1)+5 x k
where k is the number of anchor boxes and C the number of classes. The constant equal to 5
corresponds to 4 bounding box offsets coordinates and the confidence prediction of the object.
n X n is the size of the grid the image is divided into. In the current implementation C = 1 as
we only detect one object class (carotid artery) [56].
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Modified U-Net

In the following section, the backbone network architecture employed for VW segmentation
will be described. It consists of a modified U-Net that integrates an additional output layer for
SDM regression and has 16 base filters. The modified U-Net architecture can be considered
as a 2D version of the V-Net [73] without residual connections and with two output branches
as proposed by [53]. The network architecture is illustrated in Figure 3.11. Similar to a
traditional U-Net, it is characterized by encoder-decoder architecture with skip connections
and 2D convolutions. The composition of the encoder and decoder pathway are detailed
below.

Segmentation layer

16 : 16

3232 i . 3232

64 64 64 64 64 64

128 128 128 128 128 128

256 256 256
° ] ° (] > > > >

Regression layer

® Down-sampling

» Up-sampling
2D convolution block

m Segmentation layer (Conv-2D + Sigmoid)
Regression layer (Tanh)

--- Concatenation

Figure 3.11: Backbone architecture of VW segmentation model. Modified U-Net inspired by
[73] and [53].

The encoder or down-sampling path extracts contextual information from an input image.
As observed in Figure 15, the network has a 5-layer depth, each layer of the encoder is
composed of a convolutional block followed by a down-sampling block. The convolutional
block consists of a 2D convolutional layer with kernel size 3 x 3, stride = 1 and padding =
1, followed by a batch normalization layer and a ReLU activation function (defined in
section 3.2.1- Equation 3.6). The number of convolutional blocks varies depending on the
depth of the layer. The down sampling block consists of a convolutional layer with stride = 2
that halves the spatial resolution of input feature maps. The number of base filters equals 16
and it multiplies by 2 as the depth of the layer increases. In this manner, the encoder extracts
increasingly abstracts representations of the image.
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The decoder or up-sampling path reconstructs the output image at full resolution from
the feature representations extracted by the encoder. As observed in Figure 3.11, each layer
consists of a convolutional and an up-sampling block. The convolutional block from the
decoder follows the same structure as in the encoder. The up-sampling block consists of
an up-sampling operation with bilinear interpolation that doubles the spatial resolution of
feature maps. Between the up-sampling and convolutional block a concatenation layer is
applied that integrates the feature maps from the previous up-sampling layer with the output
feature maps from the corresponding level at the encoder. This is otherwise known as skip
connections. Following the work of [53], the output of the decoder consists of 2 branches. The
segmentation layer consists of a convolutional operation followed by a sigmoid activation
function (section 3.2.1 - Equation 3.7) that outputs the pixel-wise probability maps in the
range [0,1] for VW binary segmentation. The regression layer consists of a tanh (section 3.2.1 -
Equation 3.8) activation function that outputs the SDM prediction maps in the range [-1,1].
Dropout is applied in the last layer of the encoder and before the final layer in the decoder
with a probability of p = 0.5.

3.2.3 Proposed framework

In this section we introduce the proposed framework for automated VW segmentation. The
overall framework can be observed in Figure 3.12.
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f(Xqu, g)  5.Dual task semi
supervised framework 6. Topological
with SDM constrained
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Figure 3.12: Proposed framework for VW localization and segmentation.
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The proposed framework consists of localization and a segmentation module. The purpose
of the localization module is the automatic detection of the artery lumen centre. For this,
after an initial preprocessing stage a state-of-the-art object detection algorithm was custom
trained for carotid artery detection. The outputs were bounding boxes encompassing the
artery from which the artery centre could be automatically extracted. To refine the artery
centre predictions, a vessel centreline reconstruction step was applied. In this step, the
predicted artery localization was tracked through consecutive slices for the 3D reconstruction
of the vessel centreline. This provided additional spatial information that could aid in the
identification and correction of miss-detections. From the refined artery centre predictions,
the ROI was extracted. The localization module was applied to both labelled and unlabelled
slices and the ROI was extracted as image patches of size 80 x 80 around the predicted artery
centre. The ROI patches were then resized to size 128 x 128 and input to the segmentation
module.

For VW segmentation, we implemented a DTML framework [55] that consists of two
networks, the first network was tasked with the prediction of a binary mask segmentation and
the second with the prediction a level set representation or SDM. Through SDM regression
geometrical shape constraints were enforced by the network. Both tasks were joined by a
consistency loss applied in a SSL setting which guided the mutual learning of both networks.
The aim was to explore the effect of shape constraint for the task of VW segmentation and to
leverage information from the large number of unlabelled slices provided.

The initial predictions obtained from this framework were then evaluated for their topologi-
cal correctness. Segmentations that did not follow the expected topology of VW were input to
a post-processing module that applied a PH-based topological loss function [50], encouraging
the network to output predictions with the desired topology. Therefore, in this framework
shape constraints were applied both during training of the network through signed distance
map and during the post-processing stage through topological priors.

Image preprocessing

The images provided by the challenge were processed for subsequent experiments. First,
the slices with labelled annotations were identified and extracted from the dataset. Then,
the original zero-padded images of size 720 x 720 were thresholded with Otsu threshold to
identify the padded regions which were cropped out of the image. The final image size of the
axial slices was 100 x 400. Figure 3.13 illustrates this process.

The coordinates of lumen and outer-wall contours provided were extracted with the
CASCADE [58] software and the coordinates were transformed to the cropped image. Then, a
fill operation was applied between the contours to obtain the VW binary segmentation mask.
This is illustrated in Figure 3.14.
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Figure 3.13: Crop operation for zero-padding removal. Left: original image array of size
720x720. Right: cropped image array of size 100x400.

Figure 3.14: VW binary mask extraction. Above: lumen (red) and outer-wall (green) plotted
contours. Below: ground-truth VW binary mask.
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The intensity of the images was adjusted to a constant range and the contrast was maxi-
mized with a linear normalization operation as shown in Equation 3.20, forcing the lowest
pixel intensity value to be 0 and the highest to be 255

" = (H) (3.20)

Omax — Umin

where v; and u; correspond to the intensity of the image at pixel i for the cropped and
normalized image, respectively. v,,;, and v, correspond to the minimum and maximum
intensity of the cropped image.

Artery centre localization

The aim of our proposed artery localization strategy is to automatically and accurately detect
artery centres for ROI extraction prior to the segmentation task. Unlike other organs such as
the brain or the liver, the VW is a very small and thin structure, normally comprising less
than 0.1% of the image [45] (on axial slices), therefore, ROI extraction is normally required
to ‘zoom in’ the target region and reduce class imbalance between foreground pixels (those
corresponding to the VW) and background.

For artery centre localization we employ a 2-step approach: target region identification and
vessel centreline refinement. First, the target object region is identified with a state-of-the-art
object detection algorithm, known as YOLOv4 [56] . From the predicted artery localization
the outer-wall centre is extracted. Then, a vessel centreline refinement method is adopted to
track the artery centres across consecutive slices spatially and correct inaccurate artery centre
predictions.

Target region identification

For target region identification we employed a CNN-based object detection algorithm
known as YOLOvV4 [56]. The aim was to predict minimum encompassing rectangles (bounding
boxes) of the carotid arteries in all slices. YOLOv4 was selected due to its state-of-the-art
results in detection accuracy and inference speed which render the process time efficient.

1. Ground-truth generation

The object detection algorithm requires an input training pair of (D;, B;) where D is the
input image and B denotes the ground-truth bounding box coordinates for each sample i.

The first step was to extract the ground-truth bounding box from the binary segmentation
masks. For this, a contour approximation algorithm was applied to detect the outer-wall
contour from the binary segmentation masks. Figure 3.15 illustrates the bounding box
extraction from the ground-truth binary mask.

35



3 Materials and Methods

W

R—
hb i ® (x('!yr'f)

Figure 3.15: Above: ground-truth bounding box extraction from VW binary mask. Below:
corresponding image with ground-truth bounding box (green rectangle).

Once the ground-truth bounding box coordinates were extracted they were reformatted to
fit the input requirements of YOLOv4. Equation 3.21 shows the attributes of the YOLOv4
label file

Yo Yo Wy Iy
<C' w;" b w;’ hi) (3.2)

where ¢ corresponds to the class identification number (in this work ¢ = 0 as we only
consider one object class), x. and y. define the bounding box centre coordinates with respect
to the top-left corner of the image and (wy, h;) correspond to the size of bounding box b. The
coordinates were normalised with respect to the size (wj, h;) of image i.

2. Image preprocessing

The input resolution of the images is an important parameter as it determines the number of
pixels that the model will perform detection on. For example, increasing the input resolution
may lead to better accuracy results however at the expense of longer training and inference
times. On the other hand, larger pixel resolutions can help the object detector to detect smaller
objects. In addition, YOLOv4 algorithms expect squared input sizes that are multiples of 32.
Due to the small size of the artery and YOLOv4 prerequisites, we select as input resolution
416 x 416 which is also a standard value used in YOLOvV4 training.
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The images were resized applying the factor in Equation 3.22 with bicubic interpolation.

(115, 16) oz

w’' h

The same transformation was then applied to the generated ground-truth bounding box as
illustrated in Figure 3.16.

Figure 3.16: Right: original cropped image of size 100x400. Left: resized YOLOv4 input image
to size 416x416. Ground-truth bounding box in green.

3. Data augmentation

Due to the limited number of annotated images, especially, for certain artery types such as
ICA/ECA, several data augmentation strategies were employed to increase the robustness of
the algorithm and increase the size of the training set.

First, for each labelled slice the ground-truth bounding box was propagated 6 consecutive
slices in each side with the exception of neighbouring slices already containing annotations.

Figure 3.17 illustrates an example of slice propagation, as can be observed, in neighbouring
slices the size and location of the artery does not suffer noticeable changes and remains
bounded within the propagated bounding box.

On the other hand, the bounding box propagation requires at least one labelled slice of the
target carotid branch for each patient, and some carotid branches such as ECA-L(left) and
ECA-R(right) are only annotated on 6 patients. To overcome this and increase the robustness
of the algorithm, we treat YOLOV4 training from a semi-supervised approach by generating
bounding-box pseudo-labels. Initially, the object detection algorithm is pretrained with the
labelled and augmented slices, then unlabelled slices are passed as input during test-time
and pseudo labels are generated for ECA and ICA structures. This way, the bounding box
training set for these carotid branches can be increased.
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Figure 3.17: Label propagation strategy to 6 consecutive slices in both directions (+ 6).

Table 3.2 summarises the number of annotated slices for each structure after each ‘data
augmentation” strategy is applied. Finally, YOLOvV4 is trained with 21260 bounding box
annotations.

Table 3.2: Data augmentation for object detection.

N° of annotations Initial With propagation Without propagation

ICA-L 249 5001 5274
ICA-R 224 4652 4925
ECA-L 24 408 621
ECA-R 39 399 620
CCA-L 1096 4186 4186
CCA-R 1038 5634 5634

ICA: internal carotid artery, ECA: external carotid artery, CCA: common carotid
artery. L: left, R: right.

Once the ground-truth was generated, the next step was to integrate labelled annotations of
different carotid types into the same or corresponding image slice. As observed in Figure 3.18,
due to the sparsely labelled slices provided by the challenge, the number of ground-truth
bounding boxes employed to train the object detection algorithm ranged from 1 to 4.

Finally, data augmentation transformations were applied off-line and on-line, as introduced
in the YOLOV4 algorithm. Online data augmentation consisted of mosaic data augmentation
and photometric distortion with saturation = 1.5 and exposure = 1.5. Offline data aug-
mentation consisted of random transformations of rotation [—15°,15°] and shear [—15°,15°].
Figure 3.19 illustrates an example of off-line data augmentation results for 3 slices.
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Figure 3.19: Offline data augmentation transformations on 3 sample slices. (a) Rotation. (b)
Shear. (c) Rotation & Shear.

Vessel centreline refinement

The predictions of the trained object detection algorithm were refined by a vessel centreline
tracking method. Inspired by [45], vessel centreline reconstruction was performed by mapping
the axial localization (x and y coordinates) of the detected artery centres against the slice
number for each patient. Different from [45] the vessel centreline was reconstructed in 3D
which provided additional insight of the miss-detected artery localizations. Figure 3.20
illustrates the proposed vessel centreline reconstruction method for one patient. Following
the assumption that artery centres have continuity between slices, miss-detections could
be identified as artery centre localizations that spatially deviate from the reconstructed
artery centre line. Once the deviated artery centres were identified they were corrected
by propagating the localization of the nearest prediction within the vessel centreline. In
cases of no-detection the same refinement process was performed. In this manner, the initial
predictions of the localization algorithm were refined with respect to the vessel centreline.
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Figure 3.20: (a) Illustration of vessel tracking. (b) 3D vessel centreline reconstruction graph
for left and right carotid artery. Labelled points correspond to identified miss-
detections.

Vessel wall segmentation

In this step, the aim was to obtain accurate binary segmentation prediction masks of the
carotid vessel wall (VW) for ECA, ICA and CCA bilateral structures. For this, 2 dual-task
networks were employed, inspired by [55].

Image preprocessing

The image preprocessing stage for VW segmentation framework consisted primarily of
patch extraction around the region of interest (ROI).

ROI extraction can be understood as ‘zooming’ into the target region after its localization
to increase the VW size with respect to the background and reduce foreground and back-
ground pixel class imbalance. This facilitates the thin VW segmentation in posterior binary
segmentation methods.

Once the artery vessel centre prediction was refined, to ensure inter-slice continuity the ROI
of VWI segmentation maps were extracted. For this, all VW binary segmentation maps were
cropped around the predicted artery centre with a square crop of 80 x 80 pixels. The ROI
extraction process is illustrated in Figure 3.21. As can be observed, zero-padding was applied
in regions were the cropped patch exceeded the image dimension. The cropped images were
then resized to a final input size of 128 x 128.

40



3 Materials and Methods

Figure 3.21: ROI extraction.

Dual-task mutual learning framework

In the following section we introduce the proposed 2D VW segmentation framework
inspired by the dual-task mutual learning (DTML) approach [55]. Figure 3.21 illustrates
the DTML VW segmentation framework which consists of the integration of two individual
networks. Both networks share the same backbone architecture, detailed in section 3.2.2. The
upper network (M;) aims at predicting a binary mask segmentation whilst the lower one
(My) aims at regressing the SDM. The dual-task training allowed to learn the segmentation
target from different perspectives and with the integration of SDM regression, geometrical
constraints could be enforced to extract more reliable information. Furthermore, as the
segmentation target can be represented by both a pixel-wise probability map and a high-level
contour or SDM both predictions should be consistent. A cross-task consistency loss [84]
was therefore applied between the predicted binary mask from the segmentation network
and the SDM prediction transformed to a binary representation. Different from traditional
consistency training schemes, consistency was enforced between different tasks leading to a
task-level regularization that stabilized the learning procedure. Furthermore, the cross-task
consistency loss guided the transfer of knowledge between both networks, in a concept similar
to DML [78] where, different from the traditional one-way transfer from teacher to student,
an ensemble of student networks can collaboratively and implicitly learn useful knowledge
during the training process. The cross-task consistency loss required no supervision which
allowed to utilize unlabelled cases for the extraction of additional rich information to improve
the model’s generalization ability.
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Figure 3.22: Dual-task mutual learning (DTML) framework [55] for VW segmentation.

Semi-supervised dual-task mutual learning

The implemented dual-task networks employ the same backbone architecture (section 3.2.2),
however, for M; only the segmentation head is activated whilst for M; only the regression
head. Given an input image X € RH*™" the M, network outputs a pixel-wise segmentation
map ( Yseg) and the M, network outputs a SDM (Yais) [55].

The output maps are defined in Equation 3.23
?seg = fseg(X; Gseg>/Ydis = fseg(X; Gdis) (3.23)

where Y/seg € [0,1]H*W and Yy € RHXW, Oseg and 8y;s are the parameters of the segmentation
networks M; and M, respectively.

The dual task networks were implemented in a semi-supervised setting through consistency
regularization (section 3.2.1 - Equation 3.9). For semi-supervised segmentation of 2D medical
images, we can consider a training dataset D consisting of M labelled cases and N unlabelled
cases where M < N. The labelled data set can be denoted as D; = {X;, ¥;}M and the
unlabelled dataset as D, = {X;}N where X; € R™*W and Y € {0, 1}*" represent the input
and ground-truth, respectively.

Both networks were trained simultaneously. Each network backpropagates a loss func-
tion composed of a supervised term (Lseg for Ms and L5 for Ms) applied to D; and an
unsupervised term (Ls) applied to D; U D,,.
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Equation 3.24 and Equation 3.25 defines the loss function for M and M, respectively.

Lseg + Acons * Leons (3.24)
Lyask + Acons * Leons (3.25)

Both M, and M, employ the Dice loss function (section 3.2.1 - Equation 3.5) as the super-
vised term. In M; the supervised loss Ls is applied between the predicted and ground-truth
binary segmentation mask. In M; the supervised loss L, is applied between the output
SDM transformed to a binary mask representation and ground-truth binary mask. The seg-
mentation task learnt pixel-wise information of the target segmentation whilst the regression
task learnt geometrical information of the target segmentation shape.

As observed in Equation 3.24 and Equation 3.25, both networks are joined with a cross-task
consistency loss Lcons. Equation 3.26 defines the implementation of L,,s. The consistency was
enforced through a MSE loss function applied between the M; segmentation prediction and
the transformed M, regression prediction

Leons = Acons Hfseg(X; Gseg) - fn;alsk (fdis <X; 9dis>) H% (326)

where Aos represents the trade-off weight between the supervised and consistency loss

and f, 1 is the inverse transformation applied to SDM predictions. |||> denotes the L2 norm.

fseq(X; 0seq) and fyis(X; 0,4is) correspond to the models Ms and My, respectively.

The weight A5 represents a Gaussian ramp-up function, defined in Equation 3.24 [55]

Acons(t) = 0.0001 # ¢~ 5* (1~ Tz (3.27)

where t is the number of iterations.

In summary, the goal of the segmentation framework is to collaboratively minimize two
loss functions, defined in Equation 3.28 and Equation 3.29 , that correspond to the pixel-wise
segmentation and SDM regression tasks, respectively.

min 2 Lst?g (fseg(Xi} Gseg)/ Yz‘) + Z Leons (fr;alsk (fdis (Xi} Oais ) )/ fseg (Xi) gseg)) (3.28)

Oses ieD, ieD
ngjn ZD Lmask(f,;ulsk(xi} Gdis)/ Yz) + ZD Leons (fn;alsk(fdis(xi;Gdis))/fseg(xi; Gseg)) (329)
5 jeDy; i€

43



3 Materials and Methods

Persistent homology post-processing module

Inspired by the works of Clough et al.(2019) [50] we implemented the following post-
processing framework based on the concept of Persistent homology (PH) (section 3.2.1)
to further correct the topology of the predicted segmentations.

In the post-processing framework, the trained CNN network f with weights w was used
to infer prediction segmentations at test-time. Then, for each sample X,, in the testing set
the persistence barcode, was computed. Figure 3.23 shows an illustration of the persistence
barcode and the corresponding predicted segmentation for 3 slices. The Figure 3.23 above
shows a prediction with a correct or expected topology, this corresponds to ] = 1 (one hole)
and B; = 1 (one connected component). The persistence barcode associated was used as
the “true’” barcode in the loss function. Below, examples of incorrect predictions are shown
where the VW segmentation corresponds to more than one connected component (Figure 3.23
below-left) or a broken down or C-shaped prediction (Figure 3.23 below-right). As observed,
the persistence barcode and Betti numbers deviate from the expected values. In this manner,
predictions with incorrect topology were detected and were input to the PH post-processing
module with the aim of correcting their topology.

EXPECTED TOPOLOGY Persistence barcode

]

i B4 : Num. of ‘holes’

]

Bo : Num. Of connected components

Persistence barcode
B, =0
Bo =1

Figure 3.23: [llustration of persistence barcode extraction for different topologies in 3 sam-
ple predictions. Above: Binary mask and barcode for prediction with correct
VW topology. Below: binary mask and barcode for 2 incorrect VW topology
predictions.
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For each incorrect testing prediction X, the topological loss function defined in section 3.2.1
- Equation 3.19 as Lyop,, which penalized the differences between the predicted persistence
barcode and the “true’ persistence barcode, was minimised. In the PH-based post-processing
module, Ly, guided the test-time adaptation of the weights from the pretrained network
f(Xy, w) to correct the inferred segmentation topology. This resulted in an updated set of
weights (w,) learnt for each individual testing slice. However, since many segmentations
could potentially minimise Lyop,, a similarity constraint in the form of a MSE function between
the original and the updated networks prediction is applied to limit the modifications to a
minimal set necessary to correct the predicted topology. Equation 3.30 illustrates the PH-based
loss function employed

1
L(Xp; w, wy) = V|f(anw) _J[(anwn)’2
+ /\Ltopo(Xn, wn)

(3.30)

where V is the number of pixels and A the weight coefficient between the mean square loss
constraint and the topological loss. Equation 3.30 was minimised for the expected topology
illustrated in Figure 3.23 above with a weight coefficient of A = 1000.

3.2.4 Implementation

The CARE II training dataset provided by the CAVWSC 2021 [10] challenge was employed
to train the proposed framework. The training set consisted of 25 cases with 2670 carotid
VW annotations. Data partitioning was performed in both localization and segmentation
modules where 20% of the training set was randomly selected and used as the validation set.
In total, 20 cases (2078 annotations) were used as the training set and 5 cases (592 annotations)
as the validation set. For the training of the segmentation module, unlabelled slices were
also utilized. From the unlabelled and sparsely labelled slices in the training set a total of
8665 unannotated carotid patches were extracted. Unlabelled slices were considered as slices
with no carotid annotation between the first and last labelled slice for each case (outer-most
unlabelled slices were not considered due to their lack of image quality). A separate set of 25
cases (in total 4198 annotated patches), provided by the CAVWSC 2021 challenge was used
to test the localization and segmentation module. The proposed framework was trained in
Pytorch [100] using an NVIDIA ®Tesla T4 [101] GPU.
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For the custom-training of the object localization algorithm, extensive data augmentation
techniques were employed (section 3.2.3 - Table 3.2) that augmented the labelled training
dataset to a total of 21260 bounding box annotations. The YOLOv4 object detection network
was trained for 6000 iterations with a batch size of 64 and batch subdivision size of 24. The
algorithm was optimized with Stochastic Gradient Descent (SGD) with momentum = 0.949
and decay = 0.005. The input resolution was 416x416 and multi-scale training was applied to
improve the generalization ability of the network. The network was initialized with pretrained
weights from the original implementation. Following the original implementation [56], the
Complete IoU loss function (cloU) (section 3.2.1 - Equation 3.1) with learning rate 0.001 was
employed and 9 anchor boxes were used as dimension priors. Oem

In the VW segmentation module, the DTML framework was trained with the ROI carotid
patches extracted for labelled (2670) and unlabelled (8665) slices. The framework was trained
with a SGD optimizer (momentum = 0.9 and weight decay = 0.0001) for 18000 iterations. The
base learning rate was 0.01 and decayed by 0.1 every 7500 iterations. The batch size is 4
and consisted of 2 labelled and 2 unlabelled images. The network was trained with carotid
patches (after ROI extraction) resized to 128 x 128. To avoid over-fitting, data augmentation
techniques were applied on-the-fly during training and consisted of rotation (+90°) and
flip (horizontal and vertical) transformations. At inference time, the pixel-wise prediction
generated by the M network was employed as the segmentation result.

At the post-processing stage, the topological loss function based on PH [50] was applied
only to prediction segmentations with detected incorrect topology (in total 215 slices). For
the test-time adaptation an Adam optimizer was used with a learning rate of 10~ for
100 iterations. Each slice required at worst 5 minutes for the topological correction. All
experiments performed in the post-processing module were implemented using Pytorch [100].
For the computation of persistence barcodes the Topolayer package introduced in [102] was
employed.
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The following section details the results of the proposed framework. Section 4.1 shows
the results of the initial artery localization module. Section 4.2 illustrates the results of the
segmentation module.

Both the artery localization and segmentation modules were evaluated with a separate
testing dataset provided by the CAVWSC 2021 challenge [10]. The testing dataset was
acquired from the CARE II study [31] and consisted of 25 cases. Similar to the training
dataset, not all slices were labelled, and several slices were sparsely labelled. In total, 4189
carotid annotations in 3307 separate slices for bilateral CCA, ECA and ICA carotid types were
employed for evaluation.

Evaluation metrics

In the following section the evaluation metrics employed in this work will be defined.

The evaluation of the object detection system was performed with two metrics, the IoU
between the predicted and ground-truth bounding boxes (section 3.2.1 - Equation 3.2) and the
pixel-wise mean absolute distance (MAD) between the ground-truth vessel centre (or nearest
in cases with no ground-truth annotations) and the predicted artery centre.

The distance metric employed for the MAD measurement was the Euclidean distance. The
pairwise Euclidean distance between 2 points (i.e. predicted and ground-truth artery centre
localization) in a 2-dimensional space is defined in Equation 4.1

d(Py, P) = \/(xz —x1)%+ (y2 —y1)? (4.1)

where P; and P, are 2 points with coordinates (x1,y1) and (x2,y2), respectively.

The performance of the VW segmentation module was evaluated with ground-truth binary
maps representing the VW area. The metrics employed were the Dice coefficient, the Jaccard
Index, the Haussdorf Distance (HD) and the topological correctness. In the following section,
A corresponds to the ground-truth binary mask and B to the predicted binary mask.
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The Dice similarity coefficient [103] represents the spatial overlap between the binary
segmentation prediction and the ground-truth. The definition of Dice coefficient can be seen
in Equation 4.2.

2(ANB)

Dice(A,B) = A 1B

(4.2)

A Dice = 1 indicates a complete area overlap between predicted and ground-truth target
segmentation.

The Jaccard index [104] is a similarity coefficient applied between ground truth and
predicted segmentation. It is defined in Equation 4.3.

|AN B

Jaccard(A, B) = AUB

(4.3)

The HD [105] is defined as the maximum surface distance between two objects in both
directions. It is used to measure the shape similarity between a ground-truth and predic-
tion binary map. The HD between prediction and ground-truth binary map is defined in
Equation 4.4

HD(A, B) = max{sup inf||x + y||,sup inf|x +y||} (4.4)
x€A yeB yEB x€A

where x and y correspond to pixels of binary image arrays A and B, respectively.

The topological correctness is defined in Equation 4.5. A correct topology for VW segmen-
tation is defined by a discrete binary segmentation consisting of one connected component
with one hole inside [50].

N° of predictions with correct topology «100

N° of predictions (4.5)

% Correct topologies =
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4.1 Artery localization

In the following section, the results of the target region detection and vessel centreline
refinement steps will be presented.

4.1.1 Target region identification

For automatic artery centre localization predictions, the custom-trained YOLOv4 object
detection algorithm was employed. The object detection algorithm predicted in total 7121
bounding boxes, however, due to the sparse annotations of the testing set provided by the
challenge, the quantitative evaluation was performed only on output predictions with a
corresponding ground-truth annotation.

To represent the detection accuracy in distinct regions, such as CCA, BF and ECA/ICA,
the bifurcation location provided by the CASCADE [7] software was used. The predicted
bounding boxes were classified with respect to their locations for different carotid branches.

Table 4.1 shows the artery centre detection results for each carotid type. A threshold of
50% IoU between ground-truth and prediction was set to identify successful or hit-detections.
No-detections were identified as arteries with ground-truth labels but no output prediction
and miss-detections were defined as arteries with ground-truth labels and an inaccurate
prediction (IoU < 50%). Furthermore, the MAD in pixels between the artery centre prediction
and the ground-truth or nearest ground-truth annotation was also computed. The detection
accuracy was computed as percentage of hit-detections with respect to all ground-truth slices
as observed in Equation 4.6.

N° hit-detections

N° ground-truth bounding box *100 (4.6)

% Detection =

Table 4.1: YOLOV4 artery localization results.

Carotid Ground- No- Miss- Hit- Average MAD Yo
type truth detection detection detection IoU (%) (pixel)  Detection
ICA 2279 154 50 2075 721 +£93 25+1.5 91.0
ECA 486 83 34 369 724 +86 23+1.3 75.9
CCA 1234 31 8 1195 796 +75 22+1.2 96.8

BF 190 19 2 178 80.3+82 22+14 93.7
Total 4189 292 94 3803 76.1+84 23+14 89.4

ICA: internal carotid artery, ECA: external carotid artery, CCA: common carotid artery, BF: bifurcation.
MAD: mean absolute distance, IoU: Intersection over Union.

49



4 Results and Discussion

As can be observed in Table 4.1, the object detection system was able to detect artery
locations robustly. This can be seen in the high accuracy of detection results in different carotid
types, especially in the BF region (93.7%), a structure known to be highly heterogeneous and
therefore challenging to detect. On the other hand, the accuracy of detection is significantly
lower for ECA (75.9%), this was to be expected due to the smaller number of annotations
provided for this carotid type. Furthermore, the ECA has generally a smaller diameter than
the ICA and can therefore be more challenging to detect by the object detection algorithm.
The mean artery centre deviation was of 2.3 pixels which corresponds to approximately 0.7
mm. Given that the carotid artery lumen diameter is between 4 and 7 mm [106] we considered
it as high accuracy results.

For a qualitative evaluation of the detection results, Figure 4.1 illustrates samples of
successful artery predictions for 3 slices from 3 distinct patients and for different carotid
types. Pink bounding boxes represent the predictions from the object detection algorithm
and green bounding boxes represent the ground-truth.

Figure 4.1: Qualitative evaluation. Hit-detections in 3 sample slices. Green bounding box:
ground-truth and pink bounding box: prediction
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Figure 4.2 illustrates two sample slices of failed detections, signalled by a red arrow. Fig-
ure 4.2 above represents an example of miss-detection and Figure 4.2 below of a no-detection.
In this case, the miss-detection can be identified by its no overlap with a corresponding
ground-truth box when only one bounding box is expected, as it corresponds to the CCA
slice location.

Figure 4.2: Qualitative evaluation. Failed detection in 2 sample slices. Green bounding box:
ground-truth and pink bounding box: prediction. Red arrow indicates failed
artery detection.

As can be qualitatively observed in Figure 4.1, the localization system was capable of
accurately detecting different carotid types with different morphology. Especially, in the BF
slice (Figure 4.1 below), which is a challenging region. Furthermore, this was performed in
slices with different image quality which further proves the robustness of the algorithm.

On the other hand, the algorithm also failed in some slices as can be observed in Figure 4.2.
The red bounding box in Figure 4.2 above illustrates an example of miss-detection where the
detected bounding box has a 0% overlap with the corresponding ground-truth annotation.
This could be due to the observable lower image quality in the above image. Furthermore,
the similar image contrast properties of the miss-detected structure with the target carotid
artery could have further confounded the algorithm. Figure 4.2 below represents an example
of a no-detection where the algorithm failed to output a prediction for the target carotid type.
This could be due to the markedly large size of the non-detected carotid artery compared
with other ICA or ECA structures observed in the slice.
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4.1.2 Vessel centreline tracking

The vessel centreline was spatially reconstructed from the output predictions and compared
with the reconstruction of the available ground-truth annotations for a more comprehensive
evaluation of the artery localization results. Furthermore, this provided additional spatial
information for the identification and posterior correction of miss-detections.

The qualitative evaluation of the vessel centreline refinement method for one patient is
illustrated in Figure 4.3. Figure 4.3 above illustrates the results of the 3D vessel centreline
reconstruction graphs before (Figure 4.3(a)) and after (Figure 4.3(b)) the proposed refinement
step is applied. x and y-axis correspond to localization of artery centre in each slice (z-axis).
Blue circles correspond to the localization of predicted artery s and brown circles to the
localization of the available ground-truth artery centres. The labelled points represent the
identified miss-detections though vessel-centreline reconstruction. To further illustrate the
refinement applied a sample miss-detection (indicated by red arrow) was selected and the
miss-detection, prediction and ground-truth bounding box of the corresponding slice are
illustrated below. This is shown before (Figure 4.3(c)) and after (Figure 4.3(d)) refinement step
is applied.

Table 4.2 shows the number of additional miss-detections (from predictions with no associ-
ated ground-truth) detected with vessel centreline reconstruction (N=44). For a quantitative
evaluation of the vessel centreline refinement, the MAD in pixels between the artery centre
and nearest labelled ground-truth was computed for the identified miss-detections before
and after refinement.

Table 4.2: Quantitative evaluation of vessel centreline refinement

MAD before refinement MAD after refinement
(pixel) (pixel)
44 31.6 2.75

N° of Miss-detections

MAD: mean absolute distance

As can be observed in Figure 4.3, by tracking the artery centres in consecutive slices the
vessel centreline was reconstructed in 3D where the left and right CCA, ECA and ICA branches
can be easily distinguished. The high-degree of overlap between the ground-truth (brown)
and predicted (blue) artery centres illustrates the high accuracy results achieved by the object
detection algorithm. Furthermore, as observed by the labelled points in Figure 4.3(a),in some
slices the object detection algorithm predicted incorrect artery localizations. Due to their
spatial deviation with respect to the reconstructed centreline they could be easily identified
as miss-detections, even in slices with no ground-truth. As observed in Figure 4.3(b) after
the refinement step has been applied,the number of spatially deviated artery centres reduces.
This can be further observed in Figure 4.3(c) and Figure 4.3(d) which show the refinement of
the sample miss-detection (red bounding box) signalled by the red arrow. In Table 4.2 the
effectiveness of this approach can be further observed as the spatial distance between the
miss-detected artery centre localization and the nearest ground-truth significantly reduces.
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Figure 4.3: Qualitative evaluation of proposed vessel centreline refinement method. (a)-(b):
Vessel centreline 3D reconstruction graph (a) before refinement (b) after refinement.
Labelled circles correspond to identified miss-detections. (c)-(d): Slice location of
sample miss-detection (red arrow) (c) before refinement (d) after refinement. Red

bounding box: miss-detection, green bounding box: ground-truth, pink bounding
box: prediction
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4.2 Vessel wall segmentation

4.2.1 Vessel wall segmentation framework

For a quantitative evaluation of the proposed VW segmentation framework, different networks
were trained with the same experimental data.

Table 4.3 shows the quantitative segmentation results achieved by the proposed VW
segmentation framework, referred to as 2D DTML. The results are compared with a modified
U-Net as a reference corresponding to the backbone architecture (section 3.2.2) of the proposed
segmentation framework with only one output segmentation branch. Furthermore, to evaluate
the effect of SSL with shape constraints in other frameworks the 2D version of a state-of-
the-art shape aware semi-supervised framework (SASSnet [54]) with the same backbone
architecture was also trained and evaluated with the same experimental data. Different from
the implemented framework, SASSnet integrates an adversarial loss for consistency training.

Table 4.3: Quantitative evaluation. Comparison of SSL frameworks. N=4089.

Method Labelled Unlabelled Dice + 0 (%) Jaccard = o (%) HD + o (%)
Mod.U-Net 2078 0 71.66 + 15.11  57.70 = 16.01 4.62 +4.63
2D SASSNet [54] 2078 8665 72.62 + 1521  58.92 + 16.26 4.38 +4.19
2D DTML 2078 8665 7296 + 1530  59.38 + 16.40 430 +4.15

o: standard deviation.

An ablation study was performed to individually evaluate the effect of shape constraints
and semi-supervised strategies on the accuracy of segmentation (Table 4.4). L. corresponds
to the backbone network only trained for binary mask segmentation. Ls,e + Lspr corresponds
to the backbone network with combined prediction of binary mask segmentation and SDM.

Table 4.4: Ablation study. N=4089
Method  Labelled Unlabelled Dice + 0 (%) Jaccard =0 (%) HD =+ o (%)

Lseg 2078 0 71.66 £ 1511  57.70 + 16.01 4.62 + 4.63
Lseg + Lspr 2078 0 71.81 £ 1553  58.00 + 16.53 4.55 + 4.58
2D DTML 2078 8665 7296 £ 1530  59.38 + 16.40 4.30 = 4.15

o: standard deviation.

As can be observed in Table 4.3, compared with the fully supervised U-Net, both shape
aware semi-supervised networks show improved segmentation performance on all evaluation
metrics. This would suggest the capability of semi-supervised frameworks in taking advantage
of unlabelled images and that shape priors are useful for semi-supervised image segmentation.
Notably, the implemented 2D DTML achieves slightly better performance than 2D SASSNet
which suggests that cross-task consistency learning with two individual networks is effective
in drawing rich information from unlabelled data.
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Table 4.4 shows the quantitative results of the ablation study performed. The slight accuracy
improvement after the introduction of SDM regression to a fully supervised framework (sec-
ond row) suggest that shape priors have the potential of increasing segmentation performance
by imposing learnt shape constraints on the final segmentation prediction. Furthermore, the
further improvement shown in the cross-task consistency learning strategy (DTML) further
proves the importance of leveraging information from unlabelled data. This improvement
could also be due to the task level regularization imposed by the consistency loss which
guides the mutual learning of both networks and improves the generalization ability of the
model.

4.2.2 Persistent homology post-processing module

Table 4.5 shows the quantitative result of the topological post-processing assessed against
several baselines. The first and second row correspond to the evaluation of fully supervised
U-Net and the proposed semi-supervised framework (2D DTML). The third row corresponds
to the DTML framework results after the application of a largest connected component (LCC)
algorithm that extracts the largest binary object as the target. The final row corresponds to
the proposed post-processing step that applies a PH-based topological loss function [22]. The
topological performance was evaluated by the proportion of predicted segmentations that
demonstrated the correct topology: one connected component with one hole inside.

Table 4.5: Persistent homology topological constraint evaluation. N=4089

Model % Correct topologies Dice + 0 (%) HD + o (%)

Mod. U-Net 82.2 71.66 + 15.11  4.62 + 4.63

2D DTML 91.8 7296 + 1530 4.30 +4.15

2D DTML + LCC 94.9 7298 + 1530 4.24 +4.08
2D DTML + LCC + PH 98.7 7298 + 1533  4.23 +4.10

o: standard deviation.

The effect of the PH post-processing step on the shape aware semi-supervised framework
can be observed in Figure 4.4.

Figure 4.5 shows the qualitative evaluation of 4 patients with the fully proposed VW
segmentation module. First, after the application of a shape aware semi-supervised framework
(DTML) with respect to a reference modified U-Net and then, after the application of PH post
processing module in slices with topologically incorrect predictions (columns 3 and 4).
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Figure 4.4: Qualitative evaluation of PH module in 3 sample slices.Above: 2D DTML predic-
tion. Below: 2D DTML + PH post-processing prediction
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Figure 4.5: Qualitative evaluation of complete segmentation framework in 4 sample slices
(columns). First row: Reference modified U-Net, Second row: 2D DTML frame-
work, Third row: 2D DTML + PH (only applied in cases with incorrect topology).
Ground-truth shown in gray, prediction in red and intersection in orange. The

white arrow indicates highlighted regions.
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As can be observed in Table 4.5 , the proposed 2D DTML showed superior percentage
of correct topologies with respect to the reference modified U-Net. This could be due to
the increased shape awareness provided by the combined learning of binary segmentations
and SDM. The third row shows the results for the proposed DTML framework after the
application of a LCC algorithm. As seen in the table, the number of correct topologies
increases as LCC only keeps one connected component (the largest) in the binary image.
However, the percentage of correct topologies is still not optimal. The last row shows the
segmentation results after the introduction of the PH based loss function to the post processing
module. As can be seen, after its application the proportion of correct topologies significantly
increases reaching to a near complete percentage of correctness (98.7% of the predictions are
topologically correct). Different from the LCC algorithm, the PH topological loss function
imposes further topological constraints such as the expectation that VW predictions must be
closed structures with a hole inside. Therefore, the increased topological correctness could be
due to the correction of C-shaped or broken-down VW predictions. This is further illustrated
in Figure 4.4 .

It must be remarked that the improvement of the PH post-processing module cannot be
observed through the Dice metric. This could be due to several reasons. Firstly, the PH
module is only applied on output segmentations with incorrect topologies, which after the
application of the LCC algorithm only accounts for 5% of the testing slices. Furthermore,
correcting C-shaped predictions of the VW could generate a difference of only a small number
of pixels which would not cause observable improvements with respect to the spatial overlap
between prediction and ground-truth segmentation. Although regional metrics such as the
Dice do not show significant improvement, we consider that the application of PH as a
post-refinement step is meaningful, especially for the task of VW segmentation. Clinical
metrics such as the plaque burden, require a closed lumen and outer-wall prediction for their
extraction [8, 107].

Figure 4.5 illustrates the visualization results of the entire segmentation module proposed
in this work, first after the implementation of the shape aware DTMLframework (second row)
and then after the application of the PH-based post-processing module (third row) compared
with the output results of the reference modified U-Net (first row). This was shown for 4
sample patients (columns). In the first two columns, we can observe that DTML predictions
have a higher overlap with the ground-truth mask compared with the reference modified
U-Net. The increased overlap (orange) can be seen both for the inner and outer-wall contours,
as signalled by the white arrows. This further suggests the effectiveness of introducing
knowledge from unlabelled slices and applying shape constraints to improve the accuracy of
segmentation. Furthermore, as seen in Figure 4.5-column 2, this improvement also occurs
in carotid BF regions which shows that applying shape constraints to DL models could aid
in the segmentation of heterogeneous regions. Exploiting unlabelled data for additional
information could have also aided in the segmentation of heterogeneous VW morphologies
due to the increased the generalization ability of the model. In the last two columns, the
DTML failed to output topologically meaningful predictions, this could be due to the complex
signal characteristics of the image. In those cases the PH-based post-processing module
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was applied.As can be observed, the PH module successfully corrects the broken-down VW
prediction, and it does so by generating predictions with a high degree of overlap with respect
to the ground-truth.

Finally, the Dice VW segmentation results achieved with the proposed VW segmentation
and post-processing module (72.98%) were above the average of the submitted works to the
CAVWSC 2021 segmentation challenge [10] (71.70 %) which further proves the effectiveness of
semi-supervised frameworks and of the integration of SDM and topological shape constraints
for the task of VW segmentation. Achieving high accuracy and topologically correct VW
predictions is required for the extraction of quantitative metrics that characterize luminal
stenosis and plaque morphology in clinical applications.
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In this thesis, inspired by the CAVWSC 2021 challenge, we propose an automatic framework
for 2D carotid VW MRI segmentation based on deep SSL with shape priors. The aim was to
achieve high accuracy of segmentation for 3D-MERGE images resliced in the axial plane. The
main challenges encountered where the variability of the carotid vessel wall morphology as
difference carotid branches (CCA, ICA and ECA) were considered in the segmentation task,
the small number of annotated slices provided and the varying degrees of image quality.

The proposed VW segmentation framework consists of a artery localization and segmen-
tation module. The localization module enabled the automatic localization of the carotid
vessel wall for posterior ROI extraction. For this the YOLOv4 object algorithm was custom
trained for carotid center localization and the initial predictions were refined with a vessel
centerline refinement method. The proposed method tracked the artery center localization in
consecutive slices and allowed the identification and correction of miss-detections. As shown
in the results, after the refinement, high accuracy of detection was achieved for different
carotid types.

The second part consisted of a VW segmentation module that enforces shape constraints
at two levels. First, inspired by [55] a DTML framework was implemented that imposed
geometrical shape constraints with the integration of SDM regression. The DTML framework
consisted of two individual dual-task networks (for segmentation and SDM prediction)
that learnt collaboratively, similar to mutual learning methods, and were joined through a
cross-task consistency loss. The cross-task consistency loss leveraged rich information from
unlabelled slices and imposed a task-level regularization that increased the generalization
ability of the network. Then, test-time adaptation was performed with a PH-based topological
loss function [50] that generated topologically meaningful predictions.

The results obtained show that challenging problems such as VW segmentation could
benefit from the integration of shape constraints into the DL framework both during train-
ing, through SDM regression, and at a post-processing stage through topological priors.
Furthermore, the results further show that task-level consistency regularization enables the
extraction of meaningful information from unlabelled slices that can further improve the VW
segmentation accuracy in different carotid branches.

High accuracy of segmentation is necessary for the integration of DL-based VW segmenta-
tion models in the clinical practice. Risk predictors such as plaque burden require for the
VW segmentation to be topologically correct, with no broken-down predictions for their
extraction. On the other hand, due to the challenging nature of VW-MRI segmentation, high
accuracy segmentation is not achieved in some cases. To further improve the performance of
the model we propose, as future work, to smooth the outer-wall contour predictions with the
integration of a curvature-based loss function.
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The results presented in this thesis suggest that the integration of shape priors can improve
the segmentation accuracy of DL models for the task of carotid VW-MRI segmentation.
Achieving high accuracy and topologically correct VW segmentation predictions is crucial
for the extraction of quantitative metrics that characterize luminal stenosis and plaque
morphology in clinical applications. However, the challenging nature of VW segmentation
problems such as neighbouring vessels and the weak signal characteristics of MRI images
have led, in several instances, to output segmentations with non-smooth contours even after
the integration of the proposed shape constraints. This has been especially observed in
outer-wall contour predictions. Further work should be done to increase the accuracy of the
VW segmentation model, with the final aim of its implementation in the clinical practice.

Given the encouraging results obtained after the integration of shape priors we propose,
as future work, an additional shape constraint that encourages the smoothness of contour
predictions such as the outer wall. For this, we propose the minimization of a curvature-based
loss function. The curvature measures the angle of a curve with a fixed direction at a unit
length. In a circular shape, given the regularity or smoothness of the curve the curvature
measurements at different points should not vary, therefore, the standard deviation of the
curvature should tend to 0 [108, 109].

Figure 6.1 illustrates the outer-wall curvature for different VW segmentation predictions.
The graphs represent the magnitude and direction of the curvature at different points in the
curve, which are further colour-coded in the binary mask. The standard deviation of the
curvature is shown in the purple boxes above each prediction segmentation. The two figures
above correspond to predictions with non-smooth or inaccurate contours whilst the figures
below correspond to smooth VW contour predictions. As can be observed in the curvature
graphs, the variation of the curvature is significantly higher in the non-smooth predictions.
This is further shown in the increased value of the corresponding standard deviation of the
curvature which appears significantly higher in predictions with non-smooth contours.

Therefore, to encourage the prediction of smooth contours we aim to constrain the standard
deviation of the curvature to values that tend to 0. For this, we propose as a loss function the
standard deviation of the curvature function. This is defined in Equation 6.1 [109].

x// *y/ _ x/ *y//
LOSScurvaturg — Stdev <(xl " xl + y/ " y/)15> (6.1)

Where x’ and i’ represent the first derivation of the x and y contour coordinates, respectively.
x"" and y" represents the second derivation and stdev() represents the standard deviation.
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Figure 6.1: 4 sample segmentation predictions with corresponding outer-wall curvature
graphs. (a)-(b): non-smooth contour predictions. (c)-(d): smooth contour predic-
tions. The purple box shows the standard deviation of the curvature.

(d)

Through the integration of the curvature-based loss function in the proposed framework,
the smoothness of the outer-wall contours could be enforced. This would lead to higher
accuracy carotid VW segmentation predictions and to step forward towards the integration
of DL-based algorithms in the clinical practice for the evaluation of carotid atherosclerosis.
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Acronyms

3D-MERGE three-dimensional - Motion-Sensitized Driven Equilibrium(MSDE)-prepared
Rapid Gradient Echo. iv, viii, 1, 2, 7, 8, 12-14, 59

AGE advanced glycation end products. 4
BF bifurcation. 2, 49-51, 57

CARE Il Chinese Atherosclerosis Risk Evaluation. viii, 13, 14, 45, 47

CASCADE Computer-Aided System for Cardiovascular Disease Evaluation. 14, 49
CAVWSC Carotid Artery Vessel Wall Segmentation Challenge. 1, 13, 45, 47, 58, 59
CCA common carotid artery. iv, 1, 2, 4, 11, 13, 14, 38, 40, 47, 49, 52, 59

CEA carotid endarterectomy. 1, 4, 5

CNN Convolutional Neural Network. 11, 15-18, 24, 26, 35, 44

CRF Conditional Random Field. 21

CT Computed Tomography. 6

CTA Computed Tomography Angiography. 5

CVD Cardiovascular disease. 1

DL deep learning. iv, 1, 2, 9, 18, 24, 57, 59, 61

DML deep mutual learning. 23, 24, 41

DTML dual-task mutual learning. ix, 24, 33, 41, 54-57, 59

ECA external carotid artery. iv, 1, 2, 4, 13, 14, 37, 38, 40, 47, 49-52, 59

EMA exponential moving average. 23

FC fibrous cap. 3, 6

FCN Fully Convolutional Network. 11, 18
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Acronyms

HD Haussdorf Distance. 47, 48, 54

ICA internal carotid artery. iv, viii, 1, 2, 4, 11, 13-15, 37, 38, 40, 47, 49-52, 59
loU Intersection over Union. 17, 46, 47, 49
IPH intraplaque haemorrhage. 1, 5, 6

IVUS intravascular ultrasound. 11

LCC largest connected component. 55, 57
LDL low-density lipoprotein. 3

LRNC lipid-rich necrotic core. viii, 6, 7

MAD mean absolute distance. 47, 49, 52

MDCT Multidetector Computed Tomography. 5, 6

MRA Magnetic Resonance Angiography. viii, 5, 7, 11

MRI Magnetic Resonance Imaging. iv, 1, 2, 5-8, 11, 13, 59, 61
MSDE Motion Sensitized Driven Equilibrium. 8

MSE mean square error. 22, 43, 45

PDW proton density-weighted. 11

PH persistent homology. iv, ix, 12, 26-28, 33, 44—46, 55-59

R-CNN Region based Convolutional Neural Network. 16
ReLU Rectified Linear Unit. 19

ROI region of interest. iv, 2, 11, 12, 33, 35, 40, 46, 59

SDM signed distance map. iv, 12, 20, 24-26, 31-33, 4143, 54, 55, 57-59
SGD Stochastic Gradient Descent. 46
sRAGE soluble form of receptor for advanced glycation end products. 4

SSL semi-supervised learning. iv, xi, 2, 12, 21, 24, 33, 54, 59

T1W Tl-weighted. viii, 6, 7

T2W T2-weighted. viii, 6, 7
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Acronyms

TIA transient ischemic attack. iv, 1, 6

TOF time-of-flight. viii, 6, 7, 11
US Ultrasound. 5, 6

VW vessel wall. iv, viii, ix, 1, 2, 4, 6, 7, 9, 11-14, 21, 24, 26, 28, 31-33, 35, 40, 42, 44-48, 54, 55,
57-59, 61, 62

VWI vessel wall imaging. 5, 6

VW-MRI vessel wall-Magnetic Resonance Imaging. iv, 1,2, 7, 11, 12, 61

YOLO you only look once. 16, 17, 29, 30, 35, 36, 38, 46, 49, 59
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