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Abstract: A Bayesian approach alternative to the one used in the strip-pair comparison method
for developing threshold color-difference models is presented in this paper. Strip-pair comparison
method is based on the construction of color-control strips made of pairs of patches put in
contact and ordered by increasing the CIELAB color difference. Observers are required to
indicate the number of the pair of patches in every strip for which they begin to perceive a just
noticeable color difference. Frequency data obtained, from repeating several times the visual
assessment, is recorded to build a Bayesian multinomial logistic regression model, which allows
the determination of the coefficients of the color discrimination ellipsoids. The results of the
Bayesian approach agree closely with the results obtained to validate strip-pair comparison
method for the same theoretical frequency data. The main advantage of the Bayesian approach
over many other methods is that it allows a direct analysis of the statistical variability of the
estimated parameters by means of confidence intervals and other measures of statistical variability.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Scientific progress in defining and configuring new color difference models has been made
possible by the increase and improvement of datasets. Among the many datasets published by the
authors, the BFD [1,2], RIT-Dupont [3], Leeds [4] and Witt [5] datasets have been used to develop
several color difference formulas under standard conditions [6], as CIEDE2000, recommended by
ISO/CIE [7] for industrial applications. For the development of color difference models based on
color appearance models (CAM), such as CIECAM02 [8] and CAM16 [9], other datasets [10–17]
were developed to improve and evaluate the models. Lately, Xu et al. [18] have generated a new
dataset in order to verify the performance of different color difference models for HDR images
reproduction. Improved color reproduction technology in new media will make it necessary to
increase and improve the quality of new color difference datasets, following the CIE guidelines
[19–21] on maintaining a coordinated effort for the evaluation of color differences.

Most commonly used methods to generate color difference datasets have been the grayscale
method (GSM) [22,23] and the pair comparison method (PCM) [3,24,25]. Recently, Brusola et
al. [26] have proposed the strip-pair comparison method (SCM), based on the serial exploration
method proposed by Torgerson [27], to evaluate color differences at threshold as an alternative to
GSM and PCM to accelerate data collection.

SCM has been tested by Brusola et al. [28] to evaluate parametric effects of its use with respect
to PCM for color differences around CIE red color center at threshold for pairs of color samples
in contact, separated by a 0.5 mm black line and spaced 3 mm apart on a white background.
The results led to the conclusion that SCM has very little effect on the shape and orientation
of the color discrimination ellipses when pairs of patches are separated by a 0.5 mm black line
or separated 3 mm apart on a white background. The size of the ellipses tended to be larger
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for SCM than for PCM, although the size obtained by SCM agreed more closely with the size
reported by other authors for the CIE red color center [16,29].

Brusola et al. [30] proposed a Bayesian alternative for the construction of PCM-based color
difference models. This approach was validated with simulated theoretical data and with real data
published by Witt & Döring [31] for the CIE green color center. Among other advantages over
many other methods, the Bayesian approach allows to evaluate the uncertainty of the estimated
model parameters directly in terms of probability [32,33], using confidence intervals or other
measures of statistical variability, and, in general, results are easier to interpret than by the
frequentist approach. The subtleties involved in the correct use and interpretation of p-values and
significance levels in hypothesis testing in classical inference statistics (frequentist) have been
debated at length in the last decade and have forced the specialists to publish a series of guidelines
on what to do and what not to do when reporting research results [34]. Many controversies have
arisen in the past about the advantages and disadvantages of using the frequentist versus Bayesian
approach, and although the divide persists, there seems to be a consensus on using the insights
from both schools to solve complex problems [35]. As a result, a set of new guidelines on how to
analyze statistical evidence from data has been proposed [36].

In the current era, the use of Bayesian methods has experienced great growth in the fields of
genetics, artificial intelligence and medicine. And it is very likely that their use will extend to
other fields of knowledge, including the construction of color difference models. This paper is
intended as a small contribution to this and proposes a methodology to perform SCM by the
Bayesian approach and the determination of the parametric effects, due to its application, with
respect to conventional SCM.

2. Method

The SCM [26] is based on the construction of strips of patches organized by rows and columns.
In one dimension (row or column) of the strip the patches are arranged in pairs and in the other
dimension one of the patches of the pair should be kept colorimetrically constant while the other
should vary so that the color difference with respect to the constant patch increases in regular
steps, up to a maximum difference in the last pair of patches. Such strips are constructed so that
the color difference varies according to different vector directions in the CIELAB color space
around a selected color center. In Fig. 1 is shown an example of a strip, consisting of 10 pairs of
patches, for the CIE gray color center (L∗ = 62, a∗ = 0, b∗ = 0) in the unitary vector direction
(dL∗ = 1, da∗ = 0, db∗ = 0), with a minimum intended color difference ∆E∗

ab=0 in patch #1, a
maximum intended difference ∆E∗

ab=4 in patch #10 and with intended color differences in the
intermediate patches with regular increments of color difference ∆E∗

ab=4/9. The rest of the
strips around the selected color center would be constructed similarly according to the unit
vector belonging to the chosen set of directions. The set of 26 vector directions selected in [26]
corresponds to the set of directions in CIELAB space defined by the color center and vertices,
the midpoint of the edges and the midpoint of the faces of a cube whose center coincides with
the color center.

Observers will be asked to indicate the number of the pair of patches in each strip in which
they observe the first just noticeable color difference (JND), assuming that in the patches before
the selected one no color difference should be perceived. Thus, according to this method, only
one record per strip will be recorded for every observation.

2.1. Bayesian statistical model

Our proposed Bayesian statistical model exhibits significant differences compared with that
reported by Brusola et al. [30]. In the present study, the observed frequencies collected from the
observers for each strip correspond to the outputs of a multinomial distribution. The probability
for each pair to be selected in a strip should be proportional to the corresponding value from
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Fig. 1. The probability of selecting a pair of patches in a strip as the first pair whose color
difference is just noticeable (JND) should be proportional to the values of a probability
density function associated with the direction of the strip. The pair of patches nearer to the
median above the 50% cumulative probability point should be the most probable JND pair.

the probability density distribution (pdf ) of the median of the psychometric function. Different
probability density functions are shown in Fig. 1 for the logistic psychometric function and
different parameters α=β. The logistic probability density function corresponds to the derivative
of the logistic function p = 1/(1 + e(α−β∆E)).

In our proposed model, the observed selection frequency for each pair of patches in a strip
follows a multinomial distribution, as stated by Eq. (1).

r⃗i = [ri1 . . . rik . . . riK ] ∼ Multinomial(nRep, p⃗i) (1)

where rik is the number of times the kth couple of patches is selected by observers in strip i after
nRep repetitions, and pik is the probability of selecting the kth patch pair from strip i. Note that∑︁K

k=1 pik = 1, where K is the number of patch pairs in a strip. Then the probability distribution
function (pdf ) for the rik, k=1. . . K, values in each strip i would be given by Eq. (2).

f (r⃗i|n, p⃗i) =
n!

ri1! . . . riK!
pri1

i1 . . . priK
iK , n = nRep (2)
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The estimated values pik (probability of selecting pair patch k in strip i) is determined according
to Eq. (3), which ensures

∑︁K
k=1 pik = 1.

pik =
pdik∑︁K

k=1 pdik
(3)

where pdik, are the corresponding values of pdf of the median on each strip i, given by Eq. (4) for
the color difference in every pair of patches given by Eq. (5).

pdik = pdf (∆Eik) (4)

∆E2
ik = g1∆a2

ik + g2∆b2
ik + g3∆L2

ik + 2g4∆aik∆bik + 2g5∆aik∆Lik + 2g6∆bik∆Lik (5)

If we use as pdf the logistic probability distribution, the values of the density function for each
pair of patches, ik, is given by Eq. (6).

pdik =
βe(α−β∆Eik)

(1 + e(α−β∆Eik))
2 (6)

The likelihood of the model parameters g = {gj |j = 1 : 6} given the data
r = {rik |i = 1 : nStrips, k = 1 : K}, where rik are the observed frequencies, is the probabil-
ity to observe the data r assuming that g are the model parameters and is given by Eq. (7).

L(g|r) = P(r|g) =
∏︂nStrips

i=1
multinomial_pdf (rik, pik) (7)

Once the data is observed and according to Bayes’ rule, the posterior probability of the model
shall be proportional to the product of likelihood by the prior probability of the parameters, given
by Eq. (8).

P(g|r) ∝ P(r|g)
∏︂6

j
Pj(gj) =

∏︂nStrips

i=1
multinomial_pdf (rik, pik)

∏︂6

j=1
Pj(gj) (8)

where Pj(gj) are the probability priors of the ellipsoid parameters gj, j = 1 : 6.
If we use the pdf shown in Eq. (6), for the logistic case, and assume that α= β, we must add a

new factor, to include the prior probability of the independent coefficient α (see Brusola et al.
[30]), as shown in Eq. (9). Note that setting α= β does not cause the problem to lose generality,
because in Eq. (6), when ∆Eik is substituted for Eq. (5), as β = α(β/α) the constant (β/α) can
be merged in coefficients gj as a new coefficient gj

′ = (β/α)2gj. So, if α= β in Eq. (6) then gj
parameters obtained by the Bayesian model would be the coefficients of the 50% probability
color discrimination ellipsoid.

P(Θ|r) ∝ P7(α)
∏︂nStrips

i=1
multinomial_pdf (rik, pik)

∏︂6

j=1
Pj(gj) (9)

where Θ = {gj,α|j = 1 : 6}, to include α in the model parameter set.
To ensure that Eq. (5) yield positive values, we use the Cholesky decomposition, similar to that

in [30]. According to this decomposition, the matrix obtained as the product of a lower triangular
matrix and its transpose is positive definite if all the diagonal elements of the triangular matrix
are positive.
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As stated previously, the coefficients gj in Eq. (5) can be replaced with dj according to the
transformation expressed in Eqs. (10,11).

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
g1 g4 g5

g4 g2 g6

g5 g6 g3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣
d1 0 0

d4 d2 0

d5 d6 d3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎣

d1 d4 d5

0 d2 d6

0 0 d3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(10)

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
d2

1 d1d4 d1d5

d1d4 d2
2 + d2

4 d4d5 + d2d6

d1d5 d4d5 + d2d6 d2
3 + d2

5 + d2
6

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(11)

Thus, the posterior probability distribution of d = {dj,α|j = 1 : 6} can be calculated using
Eq. (12).

P(d|r) ∝ P7(α)P(r|d)
∏︂6

j=1
Pj(dj) (12)

The Bayesian model provided, written in OpenBUGS [33,37] code, is shown in Table 1 for the
logistic case.

In the Bayesian model shown in Table 1, a uniform probability distribution between 0.01
and 2 is supposed for the dj priors. This assumption is based on prior knowledge about the gj
coefficients in used CIE94 color-difference formula. Under this assumption and considering
Eqs. (10,11), coefficients may vary among the values shown in Table 2.

According to Table 2, the allowed range for the variation of the gj coefficients include those
coefficients obtained when using CIE94 color-difference formula because with this formula the
principal semi-axes of the ellipsoid are greater than or equal to 1 and then, when rotated, the
coefficients g1, g2, and g3 can’t be greater than the squared inverses of the principal semi-axes
of the ellipsoid. Therefore, the mentioned coefficients should be less than or equal to unity.
Moreover, it is not difficult to show that absolute values of the g4, g5, and g6 coefficients of a
rotated ellipsoid should be less than or equal to half of the mentioned g1, g2, and g3 upper limit.
So, in our CIE94 case their absolute value should be less than or equal to 0.5. Nevertheless,
wider ranges can be adopted for lower-informative priors of dj if suspected that gj coefficients
could be outside the initial range. Usually, if convergence is achieved, posterior distribution of
parameters should be very little affected by the selection of lower-informative priors. In any case,
it would be easy to detect that the initial hypothesis on the probability distributions priors of dj
coefficients are incorrect because the resulting posterior distribution would show truncations at
the ends of the intervals and even convergence problems could arise.

A uniform probability distribution between 0.1 and 50 is assumed for α prior because the
standard deviation of the logistics distribution is σ = π/(α

√
3) = 18.14 if α = 0.1. This allows

the possibility that 30% of observers do not notice a color difference between two stimuli whose
∆E∗

ab color difference is over 18, which contradicts the observations. Moreover, α values greater
than 50 imply very small standard deviations, e.g., σ = π/(α

√
3) = 0.03 for α = 50, meaning

that the observers should have a color-difference resolution beyond the human color perception
capabilities.

The proposed Bayesian model would provide the upper limit of the parameters of the color
discrimination ellipsoid at threshold, since observers are required to indicate the first pair of
patches in each strip in which they observe a just noticeable color difference (JND), assuming
that in the previous pair of patches they do not observe color difference.

A procedure, similar to that proposed in [26], to directly estimate the values of the color
discrimination ellipsoid parameters at threshold would be to map the recorded frequency values
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Table 1. Implementation of proposed model in OpenBUGS code [33,37]

model;

{

d1 ∼ dunif(0.01,2)

d2 ∼ dunif(0.01,2)

d3 ∼ dunif(0.01,2)

d4 ∼ dunif(−2,2)

d5 ∼ dunif(−2,2)

d6 ∼ dunif(−2,2)

alfa ∼ dunif(0.1,50)

g1 <- (d1*d1)

g2 <- (d2*d2)+ (d4*d4)

g3 <- (d3*d3)+ (d5*d5)+ (d6*d6)

g4 <- (d1*d4)

g5 <- (d1*d5)

g6 <- (d4*d5)+ (d2*d6)

S <- pi()/(alfa*sqrt(3))

for(i in 1:N) {

r[i,1:K] ∼ dmulti(p[i,1:K],nRep)

for (k in 1:K) {

dX2[i,k] <- (g3*dL[i,k]*dL[i,k])+ (g1*dA[i,k]*dA[i,k])+(g2*dB[i,k]*dB[i,k])+
((2*g4)*dA[i,k]*dB[i,k])+((2*g5)*dA[i,k]*dL[i,k])+((2*g6)*dB[i,k]*dL[i,k])

dX[i,k] <- sqrt(dX2[i,k])

dy[i,k]<-exp(alfa*(1- dX[i,k]))

pd[i,k]<- (dy[i,k] /((1+dy[i,k])*(1+dy[i,k])))*alfa

}

sumpd[i] <- sum(pd[i,1:K])

for (k in 1:K) {

p[i,k] <- pd[i,k] / sumpd[i]

}

}

}

Table 2. Variation ranges of gj and α coefficients when d1, d2, d3 ∈ [0.01, 2] and d4, d5, d6 ∈ [−2, 2].

Parameter Relationship between gj and dj Min. Max.

g1 d1
2 0.0001 4

g2 d2
2 + d4

2 0.0001 8

g3 d3
2 + d5

2 + d6
2 0.0001 12

g4 d1 ∗ d4 −4 4

g5 d1 ∗ d5 −4 4

g6 d4 ∗ d5 + d2 ∗ d6 −8 8

α - 0.1 50
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to the mean value of the color differences between one pair patch and the previous one, replacing
values ∆L∗

ik,∆a∗ik,∆b∗ik given in Eq. (5) by the values ∆L∗
ik,∆a∗ik,∆b∗ik, calculated according to

Eqs. (13)–(15).
∆L∗

ik=(∆L∗
ik+∆L∗

ik−1)/2, k = 1 . . .K (13)

∆a∗ik=(∆a∗ik+∆a∗ik−1)/2, k = 1 . . .K (14)

∆b∗ik=(∆b∗ik+∆b∗ik−1)/2, k = 1 . . .K (15)

Assuming ∆L∗
i0 = 0,∆a∗i0 = 0,∆b∗i0 = 0.

2.2. Bayesian model verification with respect to the same theoretical data simulated in
[26]

To verify the behavior of the Bayesian model, indicated in section 2.1, we will first analyze the
results from the theoretically generated frequency data for four CIE color centers [19] as indicated
in section 2.5 of [26], that, in summary, consists of determining the probability of observing a
color difference in each pair of patches in a strip from the psychometric (Logistic) curve and the
selected color difference model (CIE94); with the calculated probability (p), frequency values are
randomly generated in each pair of patches from a binomial distribution with probability p and
N repetitions; then the first pair of patches whose observed frequency is greater than 50% and
which is closest to the end of the strip with the smallest color difference is selected and assigned a
value of 1 (0 for the rest of the pairs in the strip); repeating the process a number of times (usually
100) will give the observed frequency for every pair patches of been the JND pair in a strip.

Second, results will be analyzed from the frequency data generated by randomly introducing
noise with respect to the color differences between pairs of patches in the strips, repeating
the process described in the previous paragraph. The generated noise is applied to the color
differences in the strip pairs by adding a random error N(0,σcd) of zero mean and standard
deviation σcd.

2.3. Parametric effects due to the use of the Bayesian approach when applied to real
data published in [28]

To verify the Bayesian model behavior with real data, the data obtained in [28] will be analyzed
for the generated strip pairs, around CIE red color center. The strips were printed using an Epson
SureColor P7000 inkjet printer on 250 g/m2 Epson Premium Semigloss Photo Paper. Three sets
of 8 pairs of strips were printed according to the vector directions scheme shown in Fig. 1 of
[28], which correspond to the set of directions defined in the a*-b* plane by the color center
and the vertices and midpoints of the edges of a square whose center coincides with the color
center. The first set of pairs corresponded with pairs of samples arranged on the strip without
separation, the second with a separation by 0.5 mm thick black line and the third set with the
color samples separated 3 mm on a white background. The strips were evaluated 10 times by
15 observers with normal color vision, according to the Farnsworth-Munsell test of 100 shades.
The observers were asked to indicate the number of patches pair on each strip at which they
began to perceive a just noticeable color difference (JND), so that only one frequency record
was obtained per strip per observer’s evaluation. During the evaluation, the strips were observed
in a Verivide viewer equipped with a Master TL-D90 Graphica 18 W/965 lamp with a color
temperature of 6500K and an index Ra=98 and a background color corresponding to a neutral
gray with CIELAB coordinates L*=62, a*=0, b*=0.

3. Results

The proposed model defined in Eqs. (3)–(12) was implemented in MATLAB, using the slicesample
function to sample marginal posterior probability distribution of the parameters from Eq. (12).
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The MATLAB function slicesample uses the slice sampling algorithm of Neal [38] to generate
Markov Chain Monte Carlo (MCMC) samples.

3.1. Relative to the simulated data generated in [26]

The results of applying the proposed Bayesian Strip Comparison Method (BSCM) to the theorical
data shown in Table 1 of [26] for CIE red color center are shown in Table 3.

Table 3. Results for CIE red (L*=44, a*=37, b*=23) color center using MATLAB slicesample function
for theoretical data shown in Table 1 of [26], where Sd is standard deviation, MC_error is Monte

Carlo error, and 2.5 pc and 97.5 pc are 2.5 and 97.5 percentiles, respectively. Sample indicates the
number of chain samples that were considered to simulate posterior distributions. Start indicates

the first sample considered after the burn-in period needed to obtain convergence of distribution. gj

are the estimated parameters of the ellipsoid and S = π/(α
√

3) is the estimated standard deviation of
the psychometric curve.

Mean Sd Mc_error 2.5 pc Median 97.5 pc Start Sample

g1 0.1905 0.0029 0.0001 0.1845 0.1905 0.1961 1001 2000

g2 0.2988 0.0035 0.0001 0.2920 0.2987 0.3060 1001 2000

g3 1.0085 0.0080 0.0004 0.9917 1.0086 1.0243 1001 2000

g4 −0.1111 0.0023 0.0001 −0.1157 −0.1111 −0.1067 1001 2000

g5 −0.0001 0.0044 0.0002 −0.0087 0.0000 0.0082 1001 2000

g6 −0.0022 0.0053 0.0003 −0.0125 −0.0021 0.0080 1001 2000

S 0.1304 0.0024 0.0002 0.1260 0.1305 0.1350 1001 2000

Convergence behavior is shown in Fig. 2 after the burn-in period of 1000 iterations. A kernel of
the marginal posterior probability distribution of the parameters is shown in Fig. 3. No truncation
observed in the posterior probability distributions allows as concluding that hypothesis made
about the prior probability distributions assumed in Table 2 were correct. Similar results were
observed for other CIE color centers shown in the Table 4.

Fig. 2. Trace plots of simulated MCMC (a) and corresponding moving average over 50
iterations (b) from posterior probability distribution of gj parameters after a burn-in period
of 1000 iterations.

Table 4 compares the results between BSCM, SCM [26] and CIE94 ellipsoids for shown CIE
color centers. The θ values obtained by SCM and by BSCM for the CIE gray color center are
not included in Table 4 because the CIE94 color discrimination ellipsoids of the CIE gray color
center degenerate into a sphere and, therefore, small differences in the size of one of its major
axes generate large differences in the orientation of its major axis, leading to a large scatter of the
θ values obtained.
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Fig. 3. Kernel plots of estimated marginal posterior density probability distributions of
model parameters.

As shown in Table 4, the ellipsoid parameters using BSCM fit quite well the CIE 94 ellipsoids
of the underlying model and the parameters estimated using SCM [26]. The results have been
obtained by applying SCM and BSCM over randomly generated frequency data, repeating 50
times the procedure indicated in section 2.2.

The effect from the application of an error N(0,σcd) on the simulated theoretical color
differences, as described in section 2.2, on the main parameters of color discrimination ellipsoids
predicted by BSCM, are shown in Figs. 4 and 5.

As can be seen, the results shown in Figs. 4 and 5 are similar to those shown in Figs. 3–5 of
[26]. A summary of the mean values obtained are shown in Table 5, where K is the factor size,
calculated as the cubic root of the ellipsoid volume, K = (4/3πabc)1/3.

To compare the results quantitatively, the evolution of the shape factors for SCM and BSCM
relative to the shape factors of the CIE ellipsoids of the underlying model are shown in Table 6.
Mean values evolution of the relative factor size for all four-color centers are shown in last rows
of Table 6. As can be seen, the size of the estimated ellipsoids tends to be reduced for both
methods as the noise introduced in the value of the color differences of the pairs of patches in the
strips increases, but by BSCM the reduction is smaller than by SCM. It also can be observed
from Table 5 that there are no bias of the predicted parameters by BSCM for σcd = 0.2, which is,
approximately, the expected precision reachable when printing samples carefully using today’s
digital printing systems, as reported in [26].

On average, there is no bias for the parameters estimated by BSCM for σcd = 0÷ 0.2 and about
−2% for σcd = 0.3, very similar to the bias of the parameters estimated by SCM [26], which
ranges from about +1% for σcd = 0 to about −3% for σcd = 0.3.

3.2. Relative to the real data generated in [28]

Table 7 shows the results of applying the proposed BSCM to the real data reported in [28] for the
three cases analyzed, where s0 refers to the case of samples in contact, without separation, b05
refers to the case of pairs of samples separated by a 0.5 mm thick black line and w3 to pairs of
samples separated 3 mm on a white background. The results shown in Table 5 of this paper are
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Table 4. Comparison between the results obtained by BSCM, SCM [26] and CIE94 ellipsoids of the
assumed theoretical model to generate data for specified CIE color centers.

Cc [L* a* b*] Model g1 g2 g3 g4 g5 g6 a b c θ S
Re

d [44 36 22]

CIE94 0.1842 0.2956 1.0000 −0.1128 0.0000 0.0000 2.96 1.65 1.00 31.87 0.11

SCM 0.1960 0.3164 1.0731 −0.1202 −0.0025 0.0030 2.90 1.64 0.99 31.81 -

2σ 0.014 0.022 0.0702 0.0136 0.047 0.05 0.14 0.06 0.03 0.31 -

BSCM 0.1822 0.2893 0.9666 −0.1101 −0.0008 −0.0012 2.97 1.67 1.02 32.04 0.12

2σ 0.0052 0.0075 0.0163 0.0038 0.0066 0.0095 0.05 0.02 0.01 1.10 0.01

Ye
llo

w

[87 −7 47]

CIE94 0.3357 0.1067 1.0000 0.0349 0.0000 0.0000 3.14 1.71 1.00 98.47 0.11

SCM 0.3430 0.1111 1.0193 0.0355 0.0002 0.0000 3.08 1.69 0.99 98.52 -

2σ 0.0025 0.0010 0.0048 0.0013 0.0032 0.0028 0.01 0.01 0.002 0.29 -

BSCM 0.3270 0.1061 0.9927 0.0331 0.0011 −0.0011 3.14 1.74 1.00 98.33 0.13

2σ 0.0076 0.0032 0.0166 0.0052 0.0139 0.0079 0.06 0.02 0.01 1.10 0.01

G
re

en

[56 −32 0]

CIE94 0.1681 0.4567 1.0000 0.0000 0.0000 0.0000 2.44 1.48 1.00 180 0.11

SCM 0.1730 0.4646 1.0176 0.0002 0.0000 0.0000 2.40 1.47 0.99 180 -

2σ 0.0014 0.0028 0.049 0.0021 0.0030 0.031 0.01 0.01 0.002 0.4 -

BSCM 0.1648 0.4553 0.9834 0.0004 −0.0028 0.0108 2.46 1.48 1.01 180 0.13

2σ 0.051 0.0113 0.0139 0.0054 0.0070 0.0117 0.04 0.02 0.01 1.06 0.01

Bl
ue [35 5−31]

CIE94 0.4548 0.1791 1.0000 0.0457 0.0000 0.0000 2.37 1.46 1.00 279 0.11

SCM 0.4605 0.1851 0.9961 0.0633 0.0004 0.0006 2.42 1.45 1.00 282 -

2σ 0.0033 0.0018 0.0053 0.0022 0.0034 0.0035 0.01 0.01 0.01 0.43 -

BSCM 0.4490 0.1765 0.9822 0.0374 0.0009 −0.0007 2.42 1.48 1.01 278 0.13

2σ 0.0123 0.0060 0.0207 0.0064 0.0094 0.0079 0.04 0.02 0.01 1.28 0.01

G
ra

y

[62 0 0]

CIE94 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 1.00 1.00 1.00 0 0.11

SCM 1.0334 1.0328 1.0336 0.0007 −0.0002 −0.0002 0.99 0.98 0.98 - -

2σ 0.0078 0.0086 0.0083 0.0069 0.0047 0.0058 0.01 0.01 0.01 - -

BSCM 1.0769 1.0523 1.0757 −0.0008 −0.0221 0.0083 0.98 0.97 0.96 - 0.13

2σ 0.0418 0.0448 0.0425 0.0220 0.0216 0.0226 0.02 0.02 0.02 - 0.01

the same as those shown in Table 5 of [28] except for those concerning BSCM. Table 5 of [28]
showed the results of applying the Bayesian model specified by Eqs. (1)–(12), without including
the correction indicated in Eqs. (13)–(15), while Table 7 does show the parameters obtained
including the mentioned correction. Because of this, the parameters specified in Table 7 are
smaller than those indicated in Table 5 of [28], since if we do not apply the correction indicated
in Eqs. (13)–(15) we would obtain the upper limit of the chromatic discrimination ellipse at the
threshold.

In Table 7, as in Table 5 of [28], the results by SCM are compared to the results by PCM, after
trimming the patch pairs from the strips.

For both PCM and SCM, the Bayesian method and T50 were applied. The Bayesian method
for PCM corresponds with that described by Brusola et al. [30] and that described in this paper
for SCM. T50 method for PCM and SCM corresponds to the fitting technique described by
Melgosa et al. [39], as indicated in [28]. The resulting chromatic discrimination ellipses are
shown in Fig. 6.

As already described in [28] the resulting chromatic discrimination ellipses by T50 and by
the Bayesian technique are quite similar when applied to PCM or SCM, appreciating a clear
parametric effect due to applying SCM, whereby the ellipses obtained by SCM are slightly larger
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Fig. 4. Evolution of θ and major axis, a, from color discrimination ellipsoids of the specified
CIE color centers as a function of σcd . Continuous lines correspond to the true values of the
simulated model, dashed lines correspond to the mean values of the estimated parameters
obtained by BSCM for 50 sets of samples, generated randomly, adding an error N(0,σcd) to
the theoretical color differences. Dotted lines correspond to the 2.5 and 97.5 percentiles of
the posterior distribution of the mean of the estimated parameter.

Fig. 5. Evolution of the intermediate axis, b, and minor axis, c, from color discrimination
ellipsoids of the specified CIE color centers as a function ofσcd . Continuous lines correspond
to the true values of the simulated model, dashed lines correspond to the mean values of the
estimated parameters obtained by BSCM for 50 sets of samples generated randomly, adding
an error N(0,σcd) to the theoretical color differences. Dotted lines correspond to the 2.5
and 97.5 percentiles of the posterior distribution of the mean of the estimated parameter.
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Table 5. Mean values of the parameters shown in Figs. 4 and5 and the CIE gray color center
obtained by BSCM and the corresponding CIE94 parameters of the underlaying model used to

simulate data.

Color Center Parameter
σcd CIE 94

0 0.1 0.2 0.3

Red

θ 32.03 31.58 31.89 32.91 31.87

a 2.97 2.96 2.93 2.83 2.96

b 1.67 1.67 1.66 1.62 1.65

c 1.02 1.01 1.00 1.01 1.00

K 2.77 2.76 2.73 2.69 2.73

S 0.12 0.12 0.13 0.15 0.11

Yellow

θ 98 98 98 99 98

a 3.14 3.15 3.12 3.04 3.14

b 1.74 1.74 1.70 1.67 1.71

c 1.00 1.00 1.01 1.01 1.00

K 2.84 2.84 2.82 2.79 2.82

S 0.13 0.13 0.13 0.15 0.11

Green

θ 180 179 179 181 180

a 2.46 2.45 2.44 2.36 2.44

b 1.48 1.48 1.47 1.43 1.48

c 1.01 1.01 1.01 0.99 1.00

K 2.49 2.49 2.47 2.42 2.47

S 0.13 0.13 0.14 0.15 0.11

Blue

θ 278 278 279 280 279

a 2.42 2.40 2.38 2.35 2.37

b 1.48 1.49 1.47 1.44 1.45

c 1.01 1.01 1.01 0.99 1.00

K 2.47 2.47 2.45 2.41 2.43

S 0.13 0.13 0.14 0.15 0.11

Gray a

a 0.98 1.04 1.08 1.11 1.00

b 0.97 0.97 0.98 0.97 1.00

c 0.96 0.93 0.90 0.86 1.00

K 1.56 1.58 1.59 1.57 1.61

S 0.12 0.12 0.13 0.17 0.11

aθ values for the CIE gray color center are not included (see third paragraph of section 3.1).
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Table 6. Relative factor size of the discrimination ellipsoids computed by SCM and BSCM with
respect to factor size of CIE94 discrimination ellipsoids of the underlaying model used to simulate

data. The size factor shown in this table correspond to the size factor K divided by the factor size of
the corresponding CIE94 ellipsoid.

Color Center Par
σcd CIE 94 Color Center Par

σcd CIE 94
0 0.1 0.2 0.3 0 0.1 0.2 0.3

Red

BSCM 1.01 1.01 1.00 0.98

1.00 Blue

BSCM 1.02 1.02 1.01 0.99

1.00
2σ 0.02 0.06 0.13 0.17 2σ 0.03 0.08 0.14 0.21

SCM 1.01 1.00 0.99 0.97 SCM 1.02 1.01 0.99 0.97

2σ 0.01 0.08 0.17 0.27 2σ 0.01 0.08 0.16 0.24

Yellow

BSCM 1.01 1.01 1.00 0.99

1.00 Gray

BSCM 0.97 0.98 0.98 0.97

1.00
2σ 0.03 0.06 0.12 0.16 2σ 0.02 0.06 0.10 0.17

SCM 1.01 1.00 0.99 0.97 SCM 0.98 1,00 0.97 0.96

2σ 0.01 0.07 0.14 0.23 2σ 0.01 0.05 0.09 0.12

Green

BSCM 1.01 1.01 1.00 0.98

1.00 Mean

BSCM 1.00 1.00 1.00 0.98

1.00
2σ 0.02 0.08 0.13 0.18 2σ 0.02 0.07 0.12 0.18

SCM 1.01 1.00 0.98 0.96 SCM 1.01 1.00 0.98 0.97

2σ 0.01 0.07 0.16 0.24 2σ 0.01 0.07 0.14 0.22

Table 7. Chromaticity discrimination ellipse parameters in ∆a*-∆b* plane.a

Case Method Fitting g11 g22 g12 A B θ Tilt KG S 2σ

s0

PCM
Bayesian 1.34 0.91 −0.22 1.11 0.84 68° 36° 1.71 0.71 8°

T50 1.19 0.84 −0.20 1.16 0.88 66° 34° 1.79 - -

SCM
Bayesian 0.89 0.52 0.07 1.42 1.05 100° 68° 2.16 0.43 9°

T50 0.78 0.49 0.05 1.44 1.13 99° 67° 2.26 - -

b05

PCM
Bayesian 1.70 1.38 −0.46 0.98 0.70 54° 22° 1.47 0.92 6°

T50 1.69 1.02 −0.33 1.06 0.74 68° 36° 1.57 - -

SCM
Bayesian 0.91 0.75 −0.25 1.33 0.96 54° 22° 2.00 0.7 9°

T50 0.67 0.56 −0.10 1.40 1.17 59° 27° 2.27 - -

w3

PCM
Bayesian 1.14 0.92 −0.25 1.15 0.88 57° 25° 1.78 1.36 8°

T50 0.90 0.81 −0.17 1.21 0.99 53° 21° 1.94 - -

SCM
Bayesian 0.52 0.56 −0.10 1.52 1.25 40° 8° 2.44 0.63 14°

T50 0.45 0.42 −0.05 1.61 1.43 55° 23° 2.69 - -

ag11, g22, and g12: metric coefficients of the ellipse (g11= g1, g22= g2, g12= g4 from 2D version of Eq. (5)); A and B:
major and minor semi-axes, respectively; θ: angle of the major axis with respect to+ a*; Tilt (∆θ): angular difference
between the hue angle (h∗ab) of the color center and the angle of the major axis of the discrimination ellipses with respect
to+ a*, in this order; KG: size factor=

√
πAB; S: standard deviation of the psychometric curve; 2σ: twice the standard

deviation of the posterior distribution of θ (equivalent to a credibility interval of 95% probability); s0: samples with no
separation; b05: samples separated by a black line 0.5 mm thick; w3: samples separated 3 mm on white background.
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Fig. 6. Plot of the Chromaticity-discrimination ellipses at threshold shown in Table 5.
Continuous lines correspond to chromaticity discrimination ellipses obtained by T50 method
and dashed lines correspond to chromaticity discrimination ellipses obtained by Bayesian
methods. The ellipses shown obtained by BSCM (dashed line of SCM) do not coincide with
those shown in Fig. 7 of [28] because those shown in [28] were calculated not applying
the correction indicated in Eqs (13)–(15), so that they correspond to the upper limit of the
chromatic discrimination ellipses, not with the estimated value at threshold.

than those obtained by PCM. Although, the size factors reported by Huang et al. [16] and Xu et
al. [29], using PCM, are much closer to those obtained by SCM.

We refer the interested reader to the results section in [28] about the parametric effect observed
on the chromatic discrimination ellipses when applying SCM to the different cases exposed.

As can be seen in Fig. 6, the chromatic discrimination ellipses estimated by the Bayesian
approach are slightly smaller than those obtained by PCM and SCM. In contrast to that shown in
Fig. 7 of [28] in which the ellipses obtained by BSCM are slightly larger than those obtained by
SCM, using the T50 fitting method.

With the parameters estimated by BSCM, with the correction indicated in Eqs. (13)–(15), the
same degree of regularity reported in [28] is observed between the tilt of the ellipses obtained
by PCM, BPCM (Bayesian Pair Comparison Method), SCM and BSCM for pairs of patches
separated by a 0.5 mm thick black line and for patches separated 3 mm on a white background,
and a large discrepancy of the tilt between PCM and SCM for pairs of patches with no separation.
So, parametric effect on the tilt due to SCM is confirmed for no separation patches case.

Again, as in [28], Table 7 shows a similar reduction in S, standard deviation of the psychometric
curve, of BSCM relative to BPCM, suggesting some reduction in the degree of observer confusion
when performing color difference tests at threshold by SCM.

4. Discussion

In this paper a Bayesian alternative to the SCM method reported in [26] has been proposed. The
application of the Bayesian model to the same simulated theoretical data used in [26] indicates a
high degree of agreement between the parameters estimated by both methods, either under ideal
conditions, without the presence of noise, or with the presence of simulated noise, by adding to
the theoretical color differences of the color samples a random error of probability distribution
N(0,σcd). As σcd increases with respect to the simulated data, the results obtained indicate that,
as by SCM, the size factor of the estimated color difference ellipsoids decreases with respect
to the size factor of the underlying model in the simulation (corresponding to CIE94 ellipsoids
of the CIE color centers shown in [26] and frequency data generated from the logistic curve
with parameters α = β = 2). However, by BSCM, the size factor is reduced less than by SCM,
the variation being about 2% by BSCM and about 3% by SCM for σcd = 0.3. Both methods
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show a slight bias for data without noise (σcd = 0), but this bias disappears for σcd = 0.2, which
corresponds to the noise expected if carefully printed with current printing systems.

On the other hand, the Bayesian method allows to estimate the sigma (S) of the psychometric
curve of the underlying model, which is not possible directly by SCM. The results show that the
values of S estimated by the Bayesian model agree quite approximately with the expected value,
according to the median theorem, although they also show a tendency to increase as the presence
of noise increases.

The results obtained by applying the proposed Bayesian model to the same real data reported
in [28] indicate small differences between the parameters estimated by both methods. By BSCM
a slight tendency to reduce the factor size KG is appreciated, in the same way as it occurs when
using BPCM in relation to PCM. Regarding the tilt of the chromatic discrimination ellipses, the
difference of the estimated values between BSCM and SCM are always within the range of the
95% credibility interval of the parameter estimated by BSCM, which with the real data range
from 8° to 14° as shown in Table 7.

Given data, the main advantage of using the Bayesian method over the non-Bayesian version is
that the Bayesian method allows a direct analysis of the precision or statistical variability of the
estimated parameters, or any function dependent on them, from the corresponding credibility
intervals or any other measure of dispersion calculable from the resulting MCMC.

In addition, another advantage of BSCM is that it does not require the vectorization process,
necessary for conventional SCM with real data, so that color differences of the pair patches in
every strip are fitted to a vector direction through the origin. The results presented in this work
have been obtained without applying any vectorization, so the BSCM results do not reflect any
influence due to the mentioned preprocessing.

A minor drawback of BSCM, as is often the case with Bayesian methods, is the computational
time. Processing times vary slightly around 1.5 seconds per 100 updates when the model is run
using MATLAB (version R2019a, 64-bit application) on a MacBook Pro computer (64-bit, Intel
Core i5 dual-core 3.1 GHz, 8 GB ram), yielding a total processing time of 30 seconds for the
generation of 2000 samples, as is the case shown in Table 3, which can be considered negligible
compared to the time spent on other necessary tasks when collecting color difference data.
Disclosures. The authors declare no conflicts of interest.

Data availability. Data underlying the results presented in this paper are not publicly available at this time but may
be obtained from the authors upon reasonable request.
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