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Abstract Malleability is a property of certain applications (or tasks) that,
under an external request or automatically, can accommodate a dynamic mod-
ification of the degree of parallelism being exploited at runtime. Malleability
improves resource usage (core occupation) on modern multi-core architectures
for applications that exhibit irregular and divergent execution paths and heav-
ily depend on the underlying library performance to attain high performance.
The integration of malleability within high-performance instances of the BLAS
(Basic Linear Algebra Subprograms) is nonexistent and, in addition, it is diffi-
cult to attain given the rigidity of current application programming interfaces
(APIs). In this paper, we overcome these issues presenting the integration of a
malleability mechanism within BLIS, a high-performance and portable frame-
work to implement BLAS-like operations. For this purpose, we leverage low
level (yet simple) APIs to integrate on-demand malleability across all Level-3
BLAS routines, and we demonstrate the performance benefits of this approach
by means of a higher-level dense matrix operation: the LU factorization with
partial pivoting and look-ahead.

Keywords Malleability · Linear Algebra · BLAS · Multi-core architectures
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1 Introduction

The Basic Linear Algebra Subroutines (BLAS) [8] and the Linear Algebra
Package (LAPACK) [12] standardize domain-specific interfaces for Dense Lin-
ear Algebra (DLA) operations that constitute the fundamental building blocks
for many scientific and engineering applications. Since the 70s, the scientific
community has devoted great efforts to further develop these interfaces with
the goal of ensuring performance portability across a wide range of computer
architectures. This portability is mainly achieved by means of highly-optimized
and architecture-specific implementations of the BLAS for almost any com-
puting architecture.

Focusing exclusively on how parallelism is extracted in applications built
on top of the BLAS, we can follow [13] to establish the following categories:

– rigid, in which the amount of parallelism is fixed at application level, via
environment variables, or even fixed at compilation time (as, e.g., in AT-
LAS [16]);

– moldable, in which the amount of parallelism is fixed on a per-call basis,
via thread-safe calls to an application programming interface (API) that
controls the degree of parallelism for individual application threads running
BLAS kernels (as, e.g., in Intel MKL [6] or BLIS [18]); and

– malleable, in which the amount of threads executing a specific BLAS call
can vary during execution.

Typically, parallelism is controlled in modern BLAS implementations via
two different mechanisms, namely:

– Environment variables: In this option, parallelism can only be defined at
application-level, and it is fixed a priori, being unchangable throughout the
complete execution. While this approach is valid for many applications, it
yields rigid parallel BLAS implementations: the amount of threads cannot
vary between different BLAS calls within applications, and obviously, the
amount of threads cannot vary during a BLAS execution.

– Specific runtime APIs: Similarly to other modern BLAS distributions (e.g.,
OpenBLAS or Intel MKL), BLIS addresses the moldability problem by of-
fering ad-hoc APIs to set the overall degree of parallelism for individual
BLAS calls. For this purpose, a recent release of the BLIS framework intro-
duced an Expert API, which allows parallelism to be expressed at routine-
level (see Section 2.2).

Currently, no complete BLAS implementation offers native support for
malleability, though some previous experiences have demonstrated the perfor-
mance potential of such approach, for a few selected DLA applications, by
performing a prototype integration into specific (BLIS) routines [2,3]. In gen-
eral, malleability is of great appeal for applications comprising different high-
level parallel execution paths and where the workload is not perfectly balanced
across them. By leveraging malleability, as soon as one execution path is com-
plete, idle cores can be rapidly leveraged by other execution paths to increase
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their degree of parallelism and improve the occupation of the architecture.
Previous works with malleability use custom codes extracted from BLIS in or-
der to accommodate malleability. In this paper, we propose an innovative and
integral integration strategy to accommodate malleability in all Level-3 BLIS
routines, and we evaluate the potential overhead and application benefits for
a specific LAPACK operation: the LU factorization with look-ahead.

The remainder of the paper is organized as follows. Section 2 provides a
general overview of the mechanisms included in the standard version of BLIS
to extract sequential and parallel performance of BLAS routines. Section 3
describes the modifications proposed in order to integrate malleability in BLIS.
Section 4 evaluates the performance and overhead attained by a fully malleable
BLIS implementation, and its benefits when applied to LU factorization with
look-ahead. Finally, Section 5 closes the paper with some concluding remarks
and proposal for further application of malleability in BLIS.

2 BLIS background

The BLAS-Like Instantation Software (BLIS) is an open-source framework
that unveils the internal implementation of the BLAS kernels, facilitating the
exploration of new optimizations/methodologies [21,20,17,19]. In contrast, im-
plementations such as ATLAS and OpenBLAS expose their internals with a
more reduced detail, while commercial libraries such as Intel MKL only offer
a “black box” service. An additional important aspect of the BLIS frame-
work is that it is competitive with many well-known high-performance BLAS
implementations.

In this section we review the design principles that underlie BLIS, using
the implementation of gemm as a particular case study.

Consider the matrices A ∈ Rm×k, B ∈ Rk×n, and C ∈ Rm×n. BLIS mim-
ics GotoBLAS to implement the gemm kernel as three nested loops around a
macro-kernel plus two packing routines (see Loops 1–3 in Fig. 1). The macro-
kernel is then implemented in terms of two additional loops around a micro-
kernel (Loops 4 and 5 in that figure). The loop ordering in BLIS, together
with the packing routines and an appropriate choice of the BLIS cache config-
uration parameters (nc, kc, mc, nr and mr), orchestrate a regular pattern of
data transfers across the levels of the memory hierarchy, and aim to amortize
the cost of these transfers with enough computation from within the micro-
kernel [18] in order to attain near-peak performance. In most architectures,
mr, nr are in the range 4–16; mc, kc are in the order of a few hundreds; and
nc can be up to a few thousands [18,21].

2.1 Multithreading management

The parallelization of BLIS gemm for multi-threaded architectures has been
analyzed for conventional symmetric multicore processors [21], modern many-
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Loop 1 for jc = 0, . . . , n− 1 in steps of nc

Loop 2 for pc = 0, . . . , k − 1 in steps of kc
Bc := B(pc : pc + kc − 1, jc : jc + nc − 1) // Pack into Bc

Loop 3 for ic = 0, . . . ,m− 1 in steps of mc

Ac := A(ic : ic + mc − 1, pc : pc + kc − 1) // Pack into Ac

Loop 4 for jr = 0, . . . , nc − 1 in steps of nr // Macro-kernel
Loop 5 for ir = 0, . . . ,mc − 1 in steps of mr

Cc(ir : ir + mr − 1, jr : jr + nr − 1) // Micro-kernel
+= Ac(ir : ir + mr − 1, 0 : kc − 1)
· Bc(0 : kc − 1, jr : jr + nr − 1)

endfor
endfor

endfor
endfor

endfor

Fig. 1 High performance implementation of gemm in BLIS. In the code, Cc ≡ C(ic :
ic +mc−1, jc : jc +nc−1) is a notation artifact, introduced to ease the presentation, while
Ac, Bc correspond to actual buffers that are involved in data copies.

threaded architectures [14], and asymmetric multicore processors [4]. The gen-
eral conclusion that can be extracted from these works is that the most suit-
able parallelization strategy strongly depends on the underlying architecture.
Fortunately, an important feature of BLIS is that the five nested-loop orga-
nization of gemm (and of all other Level-3 BLAS routines) is exposed to the
programmer by means of environment variables or by some API calls, so that
the programmer can decide at which level(s) parallelism should be set (i.e., ex-
ploited). In addition, the programmer can delegate this decision to the library
as it is done in many other libraries.

In general, a convenient option in most single socket systems with shared
L3 cache and core-private level L1 and L2 caches is to parallelize Loop 3. With
this strategy, all threads collaborate to pack the macro-panel Bc into the L3
cache, and each thread packs a different macro-panel Ac into its L2 cache
as well as executes a different instance of the macro-kernel. In addition, if
there are not sufficient Ac macro-panels to “feed” all available physical cores,
a second or third level of parallelism can be extracted from Loop 4 and Loop 5
in which different threads will operate on independent instances of the micro-
kernel, but access the same macro-panel Ac in the L2 cache.

At the start of the execution of a Level-3 BLAS routine, BLIS checks the
parallelism set for all five loops and spawns as many threads as the multipli-
cation of these five values. Consider, for example, a Level-3 BLAS routine in
which 2-way parallelism is set (to be exploited) for Loop 4 and 1-way paral-
lelism for the remaining four loops (i.e., no parallelism is to be extracted for
those other loops); see Fig. 2. In this configuration, two threads iterate over
the full iteration space of Loop 1, ranging from 0 to n. Then, in the 2-way
parallel Loop 4, each thread iterates over (roughly) half of the iteration range.
(For example, Th0 iterates from 0 to nc

2 , while Th1 iterates from nc

2 to nc.)
Finally, in the sequential Loop 5, the threads again iterate over the full itera-
tion space of this loop, ranging from 0 to mc. For brevity, Loop 2 and Loop 3
are omitted in the figure, but they are equivalent to Loop 1 or Loop 5 as no
parallelism is exploited in any of those levels for this particular example.
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Fig. 2 Example of workload distribution in the standard version of BLIS.

2.2 APIs in BLIS

BLIS exposes a number of APIs to handle the framework internals that offer a
path to invoke the BLAS routines with different levels of abstraction, function-
ality, complexity and internal exposability. To illustrate these APIs, Listing 1
highlights several prototypes for related routines provided within BLIS for the
Gemm1 kernel.

FortranApi. The legacy BLAS interface exposes the standard Fortran-like
specification of the routines, as introduced in [8]. When stored as two-dimensional
arrays, the API receives typed pointers to input/output linear arrays storing
the matrices, together with their corresponding dimensions (m, n, k in the
listing) and leading dimensions (lda, ldb, ldc). alpha and beta are typed
scalars, and transposition of the matrix operands A and B is controlled through
the corresponding parameters.

ObjectApi. The BLIS Object API abstracts the floating-point types of the
operands, and encapsulates ellaborated data structures that hide internal prop-
erties of the so-called matrix objects, including the possibility of arbitrary (an
independent) row and column strides. This, in practice, overcomes the con-
strain of linear (column- or row-wise) storage of matrices and vectors forced
by the legacy Fortran API.

TypedApi. In terms of functionality, the BLIS Typed API is a hybrid im-
plementation that merges some of the characteristics of the FortranApi and
the ObjectApi. It provides specialized (per-type) calls that expose raw typed
data pointers and matrix dimensions; however, by means of additional param-
eters, it permits arbitrary row and column strides for each matrix.

1 The listing displays the real double-precision floating-point API. Other realisations of
this kernel operating with distinct datatypes and precisions present very similar interfaces.
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ExpertApi. The BLIS Typed Expert API was recently developed to accom-
modate, among other functionality, local per-call multi-threading variations
within the framework, hence introducing moldability into BLIS. In this work,
we leverage this API to extend the functionality and offer support for inter-
routine malleability. As shown in Listing 1, the ExpertApi extends the Type-
dApi by adding the following two new parameters:

– A context object (parameter cntx t * cntx). This structure encodes sev-
eral general parameters with a direct impact on the algorithmic behavior
of BLIS for each specific routine, namely: loop ordering, block sizes (nc,
kc, mc, nr and mr) and specific micro-kernel to employ. In principle, these
parameters should be adjusted to tune the behaviour of BLIS to the un-
derlying micro-architecture and organization of the memory hierarchy.

– A runtime object (parameter rntm t * rntm). This structure controls the
degree and distribution of thread parallelism for the complete BLIS routine,
and it can be modified on a per-routine invocation basis. We emphasize that
the BLIS runtime objects do not have an analogue implementation in most
other BLAS libraries2, where parallelism is usually specified at a global
level. The runtime object should be initialized and its values (amount and
distribution of parallelism) set before passing it to any BLIS routine (by
means of bli rntm init and bli rntm set ways, see Listing 2).

Our strategy to enhance BLIS with intra-routine malleability leverages the
runtime object to dynamically modify the parallel configuration of the BLAS
routine while it is under execution. In order to attain this, we propose a number
of modifications to the framework, and pass additional activation/deactivation
information to the spawned threads, as explained in the next section.

3 Integration of Intra-Routine Malleability

In BLIS, a runtime object includes an array of five integers (one per BLAS
level-3 loop) that specify the degree of parallelism to be extracted from each
loop. This information is used to spawn a given number of threads at the
beginning of the routine execution. By design, the number of spawned threads
cannot be modified after this initialization; however, the behaviour of the
threads can be dynamically adjusted on-demand. In order to do this, we embed
into the runtime object an additional array, also of five integers, that will be
used to set the number of active threads at each loop.

Armed with this information, at the beginning of each loop iteration, the
workload (that is, the iteration range for that loop) is distributed using the
new array to calculate the mapping of iterations to threads. Those threads
without any workload assigned to them at a given level will advance to the
end of that level, where they will remain blocked (in a passive wait to avoid

2 Modern versions of NVIDIA CUBLAS provide a per-host-thread handler that, in some
sense, resembles the use of context and runtime objects in BLIS. However, it is out-of-scope
for this paper to discuss its functionality and possible application to GPU malleability.
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1 /∗∗∗ Exposed APIs f o r double−p r e c i s i o n GEMM in BLIS . ∗∗∗/
2

3 // BLAS Fortran API .
4 void dgemm (
5 char∗ transa , char∗ transb ,
6 int∗ m, int∗ n , int∗ k ,
7 double∗ alpha , double∗ a ,
8 int∗ lda , double∗ b , int∗ ldb ,
9 double∗ beta , double∗ c , int∗ l d c ) ;

10

11 // BLIS Object API .
12 void bli gemm (
13 o b j t ∗ alpha , o b j t ∗ a , o b j t ∗ b , o b j t ∗ beta , o b j t ∗ c ) ;
14

15 // BLIS Typed API .
16 void bli dgemm (
17 t r a n s t transa , t r a n s t transb , dim t m, dim t n , dim t k ,
18 ctype ∗ alpha , ctype ∗ a , i n c t rsa , i n c t csa ,
19 ctype ∗ b , i n c t rsb , i n c t csb ,
20 ctype ∗ beta , ctype ∗ c , i n c t rsc , i n c t c s c ) ;
21

22 // BLIS Typed Expert API .
23 void bli dgemm ex (
24 t r a n s t transa , t r a n s t transb , dim t m, dim t n , dim t k ,
25 ctype ∗ alpha , ctype ∗ a , i n c t rsa , i n c t csa ,
26 ctype ∗ b , i n c t rsb , i n c t csb ,
27 ctype ∗ beta , ctype ∗ c , i n c t rsc , i n c t c s c
28 cn tx t ∗ cntx ,
29 rntm t∗ rntm /∗ Runtime ob j e c t handle . ∗/ ) ;

Listing 1 Available APIs in BLIS for double precision Gemm.

1 /∗∗∗ Para l l e l i sm−r e l a t e d f u n c t i o n s . ∗∗∗/
2

3 // Runtime ob j e c t i n i t i a l i z a t i o n .
4 b l i r n t m i n i t ( rntm t rntm ) ;
5

6 // Manually encode (maximum) ways o f p a r a l l e l i s m in to runtime ob j e c t .
7 void b l i rn tm se t ways (
8 dim t jc , dim t pc , dim t ic , dim t j r , dim t i r , rntm t∗ rntm ) ;
9

10 // Manually modify a c t i v e threads .
11 void b l i r n t m s e t a c t i v e w a y s (
12 dim t jc , dim t pc , dim t ic , dim t j r , dim t i r , rntm t∗ rntm ) ;

Listing 2 Available routines in BLIS for runtime parallelism management functions.

wasting computational resources) till all the active threads complete their
work. Externally, a different application-level thread can asynchronously mod-
ify the run-time object at any time, including the active thread information
–more specifically the recently added array that specifies the number of active
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threads– of a given routine. As a consequence, this will vary the number of
active threads that execute that routine.

From the user’s perspective, an extra support routine is necessary to modify
the amount and distribution of parallelism for a specific BLAS routine (inde-
pendently of whether or not it is under execution), which is achieved by chang-
ing the internal field of a specific runtime object (bli rntm set active ways;
see Listing 2).

Let us illustrate the approach with a practical example. Figure 3 provides
an schematic overview of the internal work distribution in a typical scenario.
Here, we propose an initial execution setup in which the maximum degree of
parallelism is 8 (pmax), distributed as (p1max = 2; p4max = 4), where pXmax

indicates the maximum degree of parallelism to be extracted from Loop X. In
addition, the initial distribution of parallelism is set to (p1curr = 1; p4curr =
2); see diagram (a) in the top part of the figure. These initial conditions can
be set by means of the API calls:

1 // Shared by threads .
2 rntm t rntm ;
3 b l i r n t m i n i t ( &rntm ) ;
4

5 // Executed by any thread .
6 b l i s e t w a y s ( 2 , 1 , 1 , 4 , 1 , &rntm ) ;
7 b l i s e t a c t i v e w a y s ( 1 , 1 , 1 , 2 , 1 , &rntm ) ;
8

9 // Executed by any thread .
10 bli dgemm ( . . . , &rntm ) ;

The bottom two diagrams in Figure 3 illustrate the effects of performing the
following two modifications of the current degree of parallelism: (i) increasing
parallelism at Loop 4 so that p4curr = 4 (in diagram (b)); and (ii) increasing
parallelism at Loop 1 so that p1curr = 2 (in diagram (c)). These two variations
are respectively attained via the execution (at any point or path of the same
application,) of the following two API calls:

1 b l i s e t a c t i v e w a y s ( 1 , 1 , 1 , 4 , 1 , &rntm ) ;
2 b l i s e t a c t i v e w a y s ( 2 , 1 , 1 , 4 , 1 , &rntm ) ;

In all cases, pmax threads are spawned at the beginning, but only the active
threads receive part of the workload (iterations of the corresponding loop) at
each level.

4 Experimental results

The experimental results reported in this section demonstrate the potential of
malleability in a specific BLIS routine –Gemm–, and its impact when applied
to a higher-level LAPACK routine, the LU factorization with partial pivoting.



Integration and exploitation of intra-routine malleability in BLIS 9

Per loop iteration space / Active thread assignment
Inactive
threads

Loop 1

jc

[
0,n

)︷ ︸︸ ︷
1-way Th0, Th1

Loop 4
6

jr

[
0,

nc
2

)︷ ︸︸ ︷ [nc
2

,nc
)︷ ︸︸ ︷ Th2, Th3, Th4

2-way Th0 Th1 Th5, Th6, Th7

Loop 5

ir

[
0,mc

)︷ ︸︸ ︷
1-way Th0, Th1

(a) Initial iteration-to-thread assignment.
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(b) Iteration-to-thread assignment after expanding parallelism to 4-way at Loop 4.
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(c) Iteration-to-thread assignment after expanding parallelism to 2-way at Loop 1.

Fig. 3 Partitioning of the iteration space and assignment to threads/cores for a BLIS
execution configured with a maximum amount of threads of 2 for Loop 1 and 4 for Loop 4.
Threads in blue and red are considered active and inactive, respectively. For simplicity,
Loops 2 and 3 are not included in the diagrams.
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The experiments were carried out using ieee double-precision on a server
equipped with a 20-core Intel Xeon Gold 6138 (Skylake microarchitecture)
running at a nominal frequency of 1.7 GHz. The reference codes were linked
with BLIS v0.5.1 or with MKL 2018.1.163, and the malleability mechanism
was integrated in BLIS v0.5.1. In all cases, parallelism is extracted (unless
otherwise stated) only from Loop 3 of the BLIS kernels or, in the case of
MKL, by setting the MKL NUM THREADS environment variable. In those
experiments where the full socket is not used, the tests are carried out using
the taskset command to simulate a socket with a smaller number of physical
cores. Control in terms of thread-to-core affinity is delegated to the OS.

4.1 Evaluation of malleable BLIS: performance and overhead

The first experiment is designed to show the practical effects of malleability
when integrated in the gemm routine. Figure 4 represents a complete timeline
of the execution of successive iterations of Loop 2 when malleability is applied
to Loop 3. Specifically, we initially deploy two application-level threads. The
first application-level thread executes a single gemm of dimensions m = n =
k = 20, 000 and it is initially configured to proceed with eight active threads
(the maximum number of threads is also set to eight). Every four seconds, the
second application-level thread ciclycally varies the number of active threads
in the gemm call in the range nth = [4, 5, 6, 7, 8, 4, 5, . . .].

The test starts with eight active threads, with an average execution time
per iteration of Loop 2 of around 0.14s; after the first reduction in the number
of threads (down to 4), the execution time raises up to around 0.28s. Similar
successive modifications of the number of active threads yield the correspond-
ing proportional increase/decrease in the execution times.

The results show that the response time of the malleability mechanism is
not significant. This response time, however, strongly depends on the exact
loop in which malleability is exploited: for the outermost loops, the implemen-
tation in terms of malleability is less responsive. In the end, the exact loop in
which malleability should be applied is a trade-off between response time and
overhead, as illustrated next.

The objective of the second round of experiments is to quantify the over-
head introduced by the malleability mechanism. This extra cost depends on
two variables, namely: (i) the specific loop at which malleability is exploited;
and (ii) the loops in which the Level-3 BLAS routines check for changes in
the number of active threads. A gemm execution of dimensions m = n = k,
ranging from 1, 000 to 20, 000 in steps of 1, 000, and eight physical cores is used
to quantify this overhead; see Figure 5. The plots there displays the results in
terms of GFLOPS (billions of double-precision floating-point operations per
second). Two plots are included in the figure: the left-hand side plot reports
the attained results when malleability is applied to Loop 3; the right-hand
side plot offers equivalent results when the application is to Loop 4. Both
plots include three configurations: (i) reference BLIS using 8 threads and no
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malleability; (ii) malleable gemm using 8 active threads, with a maximum of
10, and checking for changes in the number of active threads only in Loops 1
and 2; and (iii) malleable gemm using 8 active threads, with a maximum of
10, and checking for changes in the number of active threads in all loops.

No remarkable overhead is observed when malleability is applied to Loop 3.
In contrast, a visible additional cost appears when malleability is exploited at
Loop 4. The source of this overhead is directly related to the number of times
in which BLIS traverses loops, and hence the amount of synchronization points
where unnecessary work is performed (as the threads are not spawn at loop-
level, but at the routine invocation). If the malleability is set in Loop 3, the
non-active threads are blocked at that level, and they do not iterate in the
inner loops. In contrast, if it is set at Loop 4, the threads block at that point.
This translates into a blocking phase per iteration of Loop 3 multiplied by
the number of iterations of Loop 4. In addition, checking for changes in the
number of active threads involves two extra synchronization points per test in
order to ensure that all threads access the same value, increasing the overhead.
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Fig. 5 Overhead introduced by the malleable version of BLIS, applying malleability on
Loop 3 (left) and Loop 4 (right).
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4.2 A Case Study: Application of malleability to the LU factorization

Many of the routines for dense matrix factorizations in LAPACK consist of a
loop that processes the input matrix in steps of b columns/rows per iteration.
At each step of the factorization, a certain block of columns (usually referred
to as the panel) is factorized, while the trailing submatrix is updated with
respect to the corresponding panel factorization. When the target platform is
a multi-core processor, LAPACK simply relies on multi-threaded instances of
the BLAS kernels. In this scenario, a well-known problem is that the panel
factorization presents a reduced degree of parallelism. Thus, depending on
the selected block size b and certain hardware parameters and organization of
the target architecture, that particular kernel may easily constrain the global
performance of the global factorization.

A strategy to tackle the hurdle of the panel factorization in a parallel exe-
cution consists in introducing a look-ahead technique into the algorithm [15].
Concretely, during each iteration of the decomposition, the look-ahead strat-
egy aims to overlap the factorization of the “next” panel with the update of
the “current” trailing submatrix, introducing two independent execution paths
at the higher level, plus a synchronization point at the end of each iteration.

Keeping in mind these two execution paths, a common approach maps a
few threads (p) to perform the next panel factorization (typically p = 1 or 2),
while the remaining threads (t − p) are devoted to update the current trail-
ing submatrix. At this point we note that the look-ahead technique can be
easily implemented using the BLIS Typed Expert API, where the threading
is expressed at the routine level. In comparison, older versions of the BLIS
framework, or other BLAS instances, could only attain this effect via a much
more complex strategy.

The experimental results in Figure 6 demonstrate the benefits of introduc-
ing look-ahead for small to mid-size problems, where the overall factorization
execution time is dominated by the panel factorization. However, for large
problems, no performance benefits are visible, and there is actually a perfor-
mance degradation; compare the line labeled as “LU + BLIS” in the plots
with those labeled as “LU LA X + Y”, where X represents the threads in
charge of the panel factorization and Y in charge of the trailing update. Note
that the term “small to mid-size problems” depends on the total number of
threads/physical cores in the target machine and on its distribution among
the two execution paths: for example, in case there are 6 physical cores and
two threads in charge of the panel factorization, this refers to problems of
dimension ranging from 0 to 10,000 but, when there are 12 cores, this refers
to problem dimensions ranging from 0 to 30,000. The reason for this behavior
is that the workload of the two execution paths is unbalanced. For small to
mid-size problems, the panel factorization (which is mostly sequential) takes
longer time than the update of the trailing submatrix (which is processed in
parallel, using the remaining threads), leading to an optimal load balance. On
the other hand, for large problem dimensions, the trailing submatrix update
dominates the time, although it is executed using all available threads except
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Fig. 6 Performance of the LU factorization with partial pivoting on 6 (top-left), 8 (top-
right), 12 (bottom-left), and 20 (bottom-right) cores of an Intel Xeon Gold 6138 processor.
The lines labelled as “LU + MKL BLAS” and “LU + BLIS” correspond to the conventional
implementation of the factorization which simply relies on a multi-threaded instance of
BLAS to extract parallelism. The line “LU LA X + Y” is for the LU factorization enhanced
with look-ahead, with X threads in charge of the panel factorization and Y for the trailing
update. Finally, “MLB LU LA X + Y” is the malleable variant of the latter.

those which participated in the panel factorization (that is, t − p,), yielding
a performance degradation. The latter scenario is precisely the case of interest
for a malleable Level-3 BLAS.

By leveraging the proposed malleable Level-3 BLAS, as soon as the panel
factorization of a given iteration completes its execution, the application-level
thread can modify the number of active threads updating the trailing subma-
trix. Thus, while the panel factorization is being computed, t − p threads
are updating the trailing submatrix; but when the former completes, t threads
become responsible for performing the trailing update. This operation mode
ensures that, at any time, a maximum of t threads are active, enhancing the
performance of the factorization; see lines labeled as “MLB LU LA X + Y” in
Figure 6. This lines are analogous to the lines labeled as “LU LA X + Y” with
the difference that they leverage the malleability mechanism.

The plots also reveal that for the LU factorization with partial pivoting,
and regardless of the number physical cores, the best thread mapping is to use
two threads to perform the panel factorization. For clarity in the plots, lines
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devoting more than two threads for the panel factorization are not depicted
since they do not contribute to increase performance.

Figure 6 also reports results for the execution of the reference LU linked
with Intel MKL. As seen, this option outperforms the results of the reference
implementation linked with BLIS, but it is not able to surpass the performance
of the Maleable Level-3 BLAS; see the line labelled as “LU + MKL BLAS”.

5 Conclusions

In this paper, we have proposed a strategy to integrate intra-routine malleabil-
ity into all level-3 routines by leveraging the BLIS Expert API. This enhance-
ment allows a dynamic variation of the degree of parallelism extracted at each
individual level (loop) within the BLIS framework by means of a simple API
that can be invoked from the application invoking the BLIS kernels. The bene-
fits of this approach are of wide appeal, especially in scenarios in which nested
parallelism is extracted at two levels: application and library. Concretely, li-
brary malleability allows a perfect resource usage when application-level par-
allelism is not perfectly balanced. We illustrate the benefits of our approach
through a practical example of such an application: the LU factorization en-
hanced with look-ahead; our approach attains remarkable performance gains
with minor code modifications.

Considering future work, we believe that malleability can also offer signifi-
cant advantadges for applications that combine inter-task and intra-task paral-
lelism. These scenarios appear, for example, in runtime-based task scheduling
(e.g., libflame’s SuperMatrix [5] or popular task-based programming models
such as StarPU [1] or OmpSs [9]). There, the scarce task-level parallelism in
some parts of the execution [7] can be by-passed by means of dynamically in-
creasing intra-task parallelism on demand. Hence, a fully malleable underlying
library becomes mandatory.

Finally, the tradeoff between simplicity and internal exposure of current
dense linear algebra APIs also deserves a discussion. The introduction of mal-
leability into BLIS has been possible by leveraging specialized expert APIs
that expose many of the internals of the framework so that users can tune its
behaviour, on demand, at runtime. This type of APIs, however, are just a com-
plement to simpler ones (e.g. legacy BLAS), useful for retro-compatibility and
opaque use of the library. Modern and future BLAS-like APIs (e.g. Eigen [11]
or the BLAS C++ API proposal [10]) do not provide this type of mecha-
nisms, and hence malleability (or any other runtime-based modification, such
as micro-kernel selection or on-demand mixed-precision) is harder to imple-
ment.
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